WO2020143695A1 - 一种同步信号发送方法及装置 - Google Patents

一种同步信号发送方法及装置 Download PDF

Info

Publication number
WO2020143695A1
WO2020143695A1 PCT/CN2020/071018 CN2020071018W WO2020143695A1 WO 2020143695 A1 WO2020143695 A1 WO 2020143695A1 CN 2020071018 W CN2020071018 W CN 2020071018W WO 2020143695 A1 WO2020143695 A1 WO 2020143695A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
time slot
signal block
block set
candidate
Prior art date
Application number
PCT/CN2020/071018
Other languages
English (en)
French (fr)
Inventor
罗俊
向铮铮
袁璞
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020143695A1 publication Critical patent/WO2020143695A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and device for sending a synchronization signal.
  • V2X Internet of Vehicles
  • vehicle-to-vehicle vehicle-to-base station
  • base station-to-base station communication can be achieved, so that vehicles can better obtain real-time road conditions, road information, pedestrian information and other traffic information, thereby improving driving safety and improving traffic efficiency .
  • V2X only supports omnidirectional transmission, that is to say, when the vehicle 1 sends the synchronization signal, the synchronization signal is sent to the vehicles in various angles around, but since the signal power is fixed, the omnidirectional transmission method is used. , The coverage of the signal is small, and the maximum distance that the synchronization signal can reach is limited. If vehicle 2 and vehicle 3 are far from vehicle 1, vehicle 2 and vehicle 3 may not receive the synchronization signal and cannot achieve synchronization.
  • the synchronization signal in V2X is sent in an omnidirectional manner, which results in a small signal coverage and a low success rate of synchronization between terminal devices.
  • the present application provides a method and a device for sending a synchronization signal, to solve the problem that the synchronization signal in the V2X in the prior art adopts an omnidirectional transmission method, resulting in a small coverage range and a low synchronization success rate between terminal devices.
  • an embodiment of the present application provides a method for transmitting a synchronization signal.
  • the method includes: the first terminal device firstly determines, according to time domain positions of candidate L synchronization signal blocks in a set of synchronization signal blocks corresponding to different subcarrier intervals, To determine the time-domain position of the M synchronization signal blocks actually transmitted in the synchronization signal block set.
  • the synchronization signal block set is a time-domain set used to carry candidate synchronization signal blocks in a radio frame.
  • the L is greater than or equal to 2.
  • Said M is less than or equal to L; after that, the first terminal device sends the M synchronization signal blocks in the set of synchronization signal blocks.
  • the L may also be equal to 1.
  • the first terminal device can determine M synchronizations from the time-domain positions of L synchronization signal blocks
  • the time domain position of the signal block is used to send M synchronization signal blocks, and each synchronization signal block can correspond to a different direction, so that the first terminal device can send multiple synchronization signal blocks, and thus the synchronization signal can be multidirectional, Further, it can support high-frequency transmission, improve signal coverage, and ensure the success rate of synchronization between terminal devices.
  • the time domain length occupied by the set of synchronization signal blocks may be 5 milliseconds or 2 milliseconds.
  • the time domain length of the set of synchronization signal blocks is a set value, which does not occupy a large resource, and can effectively use resources.
  • the first terminal device may send a first indication message to the second terminal device, where the first indication message is used to instruct the first terminal device to send M synchronization signal blocks.
  • the second terminal device can be notified of the number of synchronization signal blocks actually sent by the first terminal device through the first indication message, which can facilitate the second terminal device to detect the synchronization signal blocks.
  • the first terminal device may send a second indication message to the second terminal device, where the second indication message is used to instruct the first terminal device to send M synchronization signal blocks position.
  • the second terminal device can be used to inform the second terminal device where the M synchronization signal blocks are located, so that the second terminal device can more quickly detect the location sent by the first terminal device The synchronization signal block.
  • Case 1 When the subcarrier spacing in the uplink time slot is 15 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot and fifth time slot;
  • Case 3 When the subcarrier spacing in the uplink time slot is 60 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the nineteenth in the synchronization signal block set Time slots and twentieth time slots.
  • two specific time slots in which the time domain positions of the candidate L synchronization signal blocks in the set of synchronization signal blocks are respectively concentrated can make efficient use of resources It is also possible for the terminal device to conveniently detect the synchronization signal block on two specific time slots when detecting the synchronization signal block.
  • Case 1 When the subcarrier spacing in the uplink time slot is 15 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the second in the synchronization signal block set Time slot, third time slot, fourth time slot and fifth time slot.
  • Case 2 When the subcarrier spacing in the uplink time slot is 30 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot, fifth time slot, ninth time slot and tenth time slot.
  • Case 3 When the subcarrier spacing in the uplink time slot is 60 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the ninth in the synchronization signal block set Time slot, tenth time slot, nineteenth time slot and twentieth time slot.
  • the four specific time slots in which the time domain positions of the candidate L synchronization signal blocks in the set of synchronization signal blocks are concentrated respectively can be effectively used.
  • the domain resource may also enable the terminal device to conveniently detect the synchronization signal block in four specific time slots when detecting the synchronization signal block.
  • Case 1 When the subcarrier spacing in the uplink time slot is 60 kHz, the time-domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot, fifth time slot, ninth time slot, tenth time slot, fourteenth time slot, fifteenth time slot, nineteenth time slot and twentieth time slot;
  • Case 2 When the subcarrier spacing in the uplink time slot is 120 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the ninth in the synchronization signal block set Time slot, tenth time slot, 19th time slot, 20th time slot, 29th time slot, 30th time slot, 39th time slot and 40th time slot Time slot.
  • the time domain positions of the candidate L synchronization signal blocks in the set of synchronization signal blocks are respectively concentrated in eight specific time slots, and time domain resources can be obtained Effective use can also enable the terminal device to conveniently detect the synchronization signal block on eight specific time slots when detecting the synchronization signal block.
  • the synchronization signal block may include multiple primary side row synchronization signals and multiple auxiliary side row synchronization signals.
  • the synchronization signal block includes two repeated primary side row synchronization signals And two repeated secondary side row synchronization signals, the two repeated primary side row synchronization signals occupy two time domain symbols, and the two repeated secondary side row synchronization signals occupy two time domain symbols.
  • the synchronization signal block includes multiple primary side row signals and multiple secondary side row synchronization signals, which can ensure the repeated transmission of the primary side row signals and the secondary side row synchronization signals, thereby better ensuring the terminal device Can achieve synchronization between.
  • the synchronization signal block may also carry other information.
  • it may include at least one of the following: PSBCH, AGC, and GAP.
  • the synchronization signal block can also carry other information, which can effectively use the resources in the synchronization signal block, and at the same time, PSBCH, AGC, GAP can also play a gain effect on the reception of the synchronization signal block, Therefore, the receiving end can better receive the synchronization signal block.
  • an embodiment of the present invention provides a method for transmitting a synchronization signal.
  • the method includes: a second terminal device according to time-domain positions of candidate L synchronization signal blocks in a set of synchronization signal blocks corresponding to different subcarrier intervals, Detecting a synchronization signal block sent by a first terminal device in a synchronization signal block set, where the synchronization signal block set is a time-domain set used to carry candidate synchronization signal blocks in a radio frame, and the L is greater than or equal to 2, if the first When the terminal device actually sends M synchronization signal blocks, the second terminal device may receive one of the M synchronization signal blocks. As another possible situation, the L may also be equal to 1.
  • the second terminal device detects the synchronization signal at the time domain position of the candidate L synchronization signal blocks Block, so that the second terminal device receives the synchronization signal block at the time domain position of the candidate L synchronization signal blocks, and thus can realize the multi-directional transmission of the synchronization signal.
  • the synchronization signal can support high-frequency transmission and can improve the signal The coverage of the system can ensure that the synchronization between terminal devices can be successfully synchronized.
  • the second terminal device may receive a first indication message from the first terminal device, where the first indication message is used to instruct the first terminal device to send M synchronization signal blocks .
  • the second terminal device may detect synchronization based on the first indication message based on the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set corresponding to different subcarrier intervals One or more synchronization signal blocks in the M synchronization signal blocks in the signal block set.
  • the second terminal device can determine the number of synchronization signal blocks actually sent by the first terminal device through the first indication message, and can subsequently conveniently detect the synchronization signal blocks.
  • the second terminal device may receive a second indication message from the first terminal device, where the second indication message is used to indicate the location of the M synchronization signal blocks, the When detecting the synchronization signal block, the second terminal device may detect the synchronization signal block set according to the second indication message based on the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set corresponding to different subcarrier intervals One or more synchronization signal blocks among the M synchronization signal blocks.
  • the second terminal device can determine the location of the M synchronization signal blocks through the second indication message, so that the second terminal device can more quickly detect the location sent by the first terminal device The synchronization signal block.
  • the time domain length occupied by the set of synchronization signal blocks may be 5 milliseconds or 2 milliseconds.
  • Case 1 When the subcarrier spacing in the uplink time slot is 15 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot and fifth time slot;
  • Case 3 When the subcarrier spacing in the uplink time slot is 60 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the nineteenth in the synchronization signal block set Time slots and twentieth time slots.
  • Case 1 When the subcarrier spacing in the uplink time slot is 15 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the second in the synchronization signal block set Time slot, third time slot, fourth time slot and fifth time slot.
  • Case 2 When the subcarrier spacing in the uplink time slot is 30 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot, fifth time slot, ninth time slot and tenth time slot.
  • Case 3 When the subcarrier spacing in the uplink time slot is 60 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the ninth in the synchronization signal block set Time slot, tenth time slot, nineteenth time slot and twentieth time slot.
  • Case 1 When the subcarrier spacing in the uplink time slot is 60 kHz, the time-domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot, fifth time slot, ninth time slot, tenth time slot, fourteenth time slot, fifteenth time slot, nineteenth time slot and twentieth time slot;
  • Case 2 When the subcarrier spacing in the uplink time slot is 120 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the ninth in the synchronization signal block set Time slot, tenth time slot, 19th time slot, 20th time slot, 29th time slot, 30th time slot, 39th time slot and 40th time slot Time slot.
  • the synchronization signal block may include multiple primary side row synchronization signals and multiple auxiliary side row synchronization signals.
  • the synchronization signal block includes two repeated primary side row synchronization signals And two repeated secondary side row synchronization signals, the two repeated primary side row synchronization signals occupy two time domain symbols, and the two repeated secondary side row synchronization signals occupy two time domain symbols.
  • the synchronization signal block may also carry other information.
  • it may include at least one of the following: PSBCH, AGC, and GAP.
  • an embodiment of the present application further provides a communication device, which is applied to a first terminal device.
  • the device has the function of realizing the behavior in the method example of the first aspect described above.
  • the functions can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a processing unit and a sending unit, and these units can perform the corresponding functions in the method example of the first aspect described above.
  • the structure of the device includes a processing unit and a sending unit, and these units can perform the corresponding functions in the method example of the first aspect described above.
  • an embodiment of the present application further provides a communication device, which is applied to a second terminal device.
  • the device has the function of realizing the behavior in the method example of the second aspect described above.
  • the functions can be realized by hardware, or can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the structure of the device includes a detection unit, and may further include a receiving unit, and these units may perform the corresponding functions in the method example of the second aspect described above. For details, see the detailed description in the method example. To repeat.
  • an embodiment of the present application further provides a communication device, which is applied to a first terminal device.
  • the structure of the communication device includes a processor and a memory, and the processor is configured to support the terminal to perform the corresponding function in the method of the first aspect.
  • the memory is coupled to the processor, and stores necessary program instructions and data of the communication device.
  • the structure of the communication device further includes a communication interface for communicating with other devices.
  • an embodiment of the present application further provides a communication device, which is applied to a second terminal device.
  • the structure of the communication device includes a processor and a memory, and the processor is configured to support the terminal to perform the corresponding function in the method of the second aspect.
  • the memory is coupled to the processor, and stores necessary program instructions and data of the communication device.
  • the structure of the communication device further includes a transceiver for communicating with other devices.
  • the present application also provides a computer-readable storage medium that stores instructions, which when executed on a computer, causes the computer to perform the methods described in the above aspects.
  • the present application also provides a computer program product containing instructions that, when run on a computer, causes the computer to perform the methods described in the above aspects.
  • the present application further provides a computer chip, the chip is connected to a memory, the chip is used to read and execute a software program stored in the memory, and execute the methods described in the above aspects.
  • FIG. 1 is a schematic structural diagram of a network architecture provided by this application.
  • FIG. 2 is a schematic diagram of a synchronization signal sending method provided by this application.
  • 3A to 3C are schematic diagrams of a set of synchronization signal blocks provided by this application.
  • 4A to 4C are schematic diagrams of a set of synchronization signal blocks provided by this application.
  • 5A-5B are schematic diagrams of a set of synchronization signal blocks provided by this application.
  • 6A-6B are schematic diagrams of a set of synchronization signal blocks provided by this application.
  • FIG. 7 is a schematic diagram of a set of synchronization signal blocks provided by this application.
  • 8A-8B are schematic diagrams of a set of synchronization signal blocks provided by this application.
  • 9A-9D are schematic structural diagrams of a synchronization signal block provided by this application.
  • FIG. 10 is a schematic structural diagram of a synchronization signal block provided by this application.
  • 11 to 14 are schematic structural diagrams of a communication device provided by this application.
  • the application provides a method and a device for sending a synchronization signal, which are used to realize the multi-directional transmission of a synchronization signal.
  • Frequency band refers to the frequency domain range corresponding to the transmission of communication signals in the frequency domain, such as 0 to 3 megahertz (GHz), 3 to 6 GHz, greater than 6 GHz, and so on. Normally, 0 to 3 GHz corresponds to low-band communications, 3 to 6 GHz corresponds to C-band communications, and greater than 6 GHz corresponds to high-band communications.
  • Uplink time slot subcarrier interval of uplink time slot
  • communication systems can usually be divided into frequency division system (frequency division duplex, FDD) and time division system (time division duplex, TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • a radio frame contains several subframes or slots. Part of the subframes or time slots are used for downlink transmission, called downlink subframes or downlink time slots; part of the subframes or time slots are used for uplink transmission, called uplink subframes or uplink time slots.
  • OFDM orthogonal frequency division multiple access
  • LTE long term evolution
  • 5G fifth generation
  • NR New Radio
  • the frequency interval between adjacent subcarriers is the subcarrier interval.
  • the subcarrier interval defines the subcarrier frequency interval of the OFDM system.
  • the subcarrier interval of the uplink time slot may be 15 kilohertz (kHz), 30 kHz, 60 kHz, or 120 kHz.
  • Time domain position refers to the position where the communication signal is sent in the time domain.
  • the time domain position can be a system frame, subframe, or OFDM symbol.
  • PSDCH physical layer sidelink broadcast channel
  • AGC Automatic gain control
  • AGC can be set in the synchronization signal block, and the received signal strength at the time of input can be adjusted to meet the signal-to-noise ratio of the signal required for proper decoding.
  • GAP Guard interval
  • a GAP may be set in the synchronization signal block, which may allow a radio frequency conversion time from signal reception to signal transmission for a device receiving the synchronization signal block.
  • One radio frame occupies 10 milliseconds in time.
  • One time slot occupies 14 OFDM symbols in time, and the time length of one time slot depends on the subcarrier interval. The time length of one time slot is different for different subcarrier intervals. ; When the sub-carrier interval is 30KHz, a time slot is 0.5 milliseconds.
  • the RE occupies 1 subcarrier in the frequency domain and 1 OFDM symbol in the time domain.
  • Synchronization signal, synchronization signal block, the synchronization signal involved in the embodiment of the present application is a side line synchronization signal, which can be divided into a primary side line synchronization signal (primary side link synchronization signal, P-SLSS) and a secondary side line synchronization Signal (secondary sidelink synchronization, S-SLSS).
  • the main side line synchronization signal and the auxiliary side line synchronization signal are used to exchange time timing information between terminal devices for time synchronization;
  • the synchronization signal block in the embodiment of the present application is a signal including the main side line synchronization signal and the auxiliary side line synchronization signal set.
  • FIG. 1 it is a schematic diagram of a network architecture provided by an embodiment of the present application, which can be specifically used for device-to-device (D2D), V2X, or other Internet of Things scenarios, including multiple terminal devices, It may also include a network device.
  • D2D device-to-device
  • V2X virtualized multi-device
  • FIG. 1 three terminal devices are used as an example for description.
  • the distribution positions of the above three terminal devices can be referred to FIG. 1, wherein the terminal device 1 is located between the terminal device 2 and the terminal device 3, and the terminal device 2 and the terminal device 3 are located in different directions.
  • Terminal devices can communicate directly, and can exchange real-time information, for example, in V2X scenes, real-time interaction of terminal device status information and road surface conditions, so as to better assist driving.
  • terminal device 1 is the head car
  • terminal device 2 and terminal device 3 are the following vehicles in the fleet
  • terminal device 1 needs to send data to terminal device 2 and terminal device 3, in order to ensure the reliability of data transmission
  • the terminal device 1 and the terminal device 2, and the terminal device 1 and the terminal device 3 need to maintain time synchronization.
  • the terminal device 1 needs to send synchronization signals to the terminal device 2 and the terminal device 3.
  • the terminal device will send a side synchronization signal (primary sidelink synchronization signal (P-SLSS) and Auxiliary side line synchronization signal (secondary sidelink synchronization signal, S-SLSS).
  • P-SLSS primary sidelink synchronization signal
  • S-SLSS secondary sidelink synchronization signal
  • the coverage of the omnidirectional transmission is limited, and the terminal device 2 and the terminal device 3 may not receive the synchronization signal.
  • the multi-directional transmission method allows the terminal device to send a signal in a specific direction within a period of time.
  • the signal power is fixed, the signal can reach a farther distance than the omnidirectional transmission method. That is to say, the multi-directional transmission mode signal has a larger coverage and can support high-frequency transmission, but in the current side communication scenario, the synchronization signal does not support multi-directional transmission.
  • an embodiment of the present application provides a method for sending a synchronization signal.
  • the terminal device (corresponding to the present (The first terminal device in the embodiment of the application)
  • the time domain position of the M synchronization signal blocks actually transmitted in the set of synchronization signal blocks may be determined at the time domain position of the candidate L synchronization signal blocks.
  • the M synchronization signal blocks are sent in the set of synchronization signal blocks; correspondingly, when receiving the synchronization signal, the terminal device (corresponding to the second terminal device in the embodiment of the present application) may select among the L synchronization signal blocks of the candidate Time domain position detection synchronization signal block.
  • the terminal device can send multiple synchronization signal blocks, each synchronization signal block corresponds to a different direction, and the terminal device that needs to receive the synchronization signal can detect the synchronization signal block at the corresponding time domain position. Support multi-directional transmission of synchronization signals.
  • the terminal equipment in this application also known as user equipment (UE), can be deployed on land, including indoor or outdoor, hand-held or vehicle-mounted; it can also be deployed on the water (such as ships); Deploy in the air (such as airplanes, balloons and satellites).
  • the terminal device may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (VR) device, an augmented reality (AR) device, and an industrial control (industrial control) ), wireless devices in self-driving, self-driving, wireless devices in remote medical, wireless devices in smart grid, wireless devices in transportation safety , Wireless devices in smart cities (smart cities), wireless devices in smart homes (smart homes), etc.
  • the network device in this application is a device that can provide wireless communication functions for terminal devices, including but not limited to: 5G next-generation base station (gnodeB, gNB), evolved node B (evolved node B, eNB), Radio network controller (RNC), Node B (node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved) nodeB, or home node B, HNB), baseband unit (BaseBand Unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • 5G next-generation base station gnodeB, gNB
  • evolved node B evolved node B
  • RNC Radio network controller
  • Node B node B
  • BSC base station controller
  • BTS base transceiver station
  • home base station e.g., home evolved nodeB, or home node B, HNB
  • baseband unit BaseB
  • a side synchronization signal sending method provided by an embodiment of the present application To introduce, as shown in Figure 2, the method includes:
  • Step 201 The first terminal device determines the time domain position of the M synchronization signal blocks actually transmitted in the synchronization signal block set according to the time domain positions of the candidate L synchronization signal blocks in the synchronization signal block set corresponding to different subcarrier intervals.
  • the time domain position of the actually transmitted M synchronization signal blocks determined by the first terminal device may be determined as follows: The first terminal device may be based on the candidate L synchronization signal blocks. Time domain position, combined with the uplink and downlink frame ratio of the TDD system, or the current coverage requirement and power of the first terminal device for the synchronization signal block, determine the actual number of M synchronization signal blocks sent in the synchronization signal block set Time domain position.
  • Step 202 The first terminal device sends the M synchronization signal blocks in the synchronization signal block set.
  • Step 203 The second terminal device detects the synchronization signal block sent by the first terminal device in the synchronization signal block set according to the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set corresponding to different subcarrier intervals. , The second terminal device may detect one or more of the M synchronization signal blocks.
  • the set of synchronization signal blocks is a time-domain set for carrying candidate synchronization signal blocks in a radio frame
  • the L is greater than or equal to 2
  • the M is less than or equal to L.
  • the L is also Can be equal to 1.
  • time domain set is a set of some time domain positions in a radio frame.
  • the time domain position may be a slot or an OFDM symbol.
  • the embodiment of the present application does not limit the performance of the time domain position form.
  • different synchronization signal block sets may be set corresponding to different subcarrier intervals, and the synchronization signal block set includes L time domain positions that can be used to transmit synchronization signal blocks, and L number can be used
  • the time domain position for sending the synchronization signal block is called the time domain position of the candidate L synchronization signal blocks; and among the L time domain positions for sending the synchronization signal block, the first terminal device may select L Sending the synchronization signal block at a part of the time domain position in the time domain position (corresponding to the case where M is less than L in step 201), and selecting all the time domain positions in the L time domain positions to send the synchronization signal block (corresponding to step 201) (M is equal to L), in the embodiment of the present application, M is used to represent the number of time-domain positions actually determined by the first terminal device.
  • the actual time in the synchronization signal block set can be detected at the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set corresponding to different subcarrier intervals M synchronization signal blocks sent.
  • the first terminal device may send a first indication message to the second terminal device, where the first indication message is used to instruct the first terminal device to send M synchronization signal blocks,
  • the second terminal device may determine that the first terminal device will actually send M synchronization signal blocks according to the first indication message, and may determine the first indication message according to the first indication message. , Detect one or more synchronization signal blocks in the M synchronization signal blocks in the synchronization signal block set.
  • the first terminal device may send a second indication message to the second terminal device, where the second indication message is used to instruct the first terminal device to send M synchronization signal blocks
  • the second execution message may indicate the position of the M synchronization signal blocks in the time-domain position of the candidate L synchronization signal blocks.
  • the second terminal device may determine the location where M synchronization signal blocks will actually be sent by the first terminal device according to the second indication message, for example, the M number may be determined
  • the position of the synchronization signal block in the time domain position of the candidate L synchronization signal blocks can be more conveniently and quickly detected based on the second indication message, one of the M synchronization signal blocks in the synchronization signal block set or Multiple synchronization signal blocks.
  • the time domain positions of the L synchronization signal blocks of the candidate synchronization signal block set corresponding to different subcarrier intervals may be sent by the network device to the first terminal device and the second terminal device through signaling, the first The terminal device may determine the subcarrier interval according to the current network, and then determine the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set corresponding to the subcarrier interval, and determine the actual transmission in the synchronization signal block set from Time domain positions of M synchronization signal blocks; correspondingly, the second terminal device may determine a subcarrier interval according to the current network, and further determine L candidate synchronization signals in the set of synchronization signal blocks corresponding to the subcarrier interval The time domain position of the block, and then detect the synchronization signal block sent by the first terminal device in the set of synchronization signal blocks at the time domain position of the candidate L synchronization signal blocks.
  • the following takes the time domain length occupied by the set of synchronization signal blocks as 5 milliseconds and 2 milliseconds respectively as an example.
  • the candidate L in the set of synchronization signal blocks (sidelink synchronization block set (SL-SSB Set) corresponding to different subcarrier intervals
  • the time domain position of a synchronization signal block (sidelink synchronization signal block, SL-SSB) is described.
  • the time domain length occupied by the set of synchronization signal blocks is 5 milliseconds.
  • L is 2, and there are two time domain positions in the set of synchronization signal blocks that can be used to send synchronization signal blocks, which can be applied to the scenario where the frequency band is less than 3 GHz.
  • the subcarrier spacing in the uplink time slot is 15 kHz, and the time domain positions of the two candidate synchronization signal blocks in the synchronization signal block set are the fourth time slot and the fifth time in the synchronization signal block set Gap.
  • FIG. 3A it is a schematic diagram of the time domain position of a synchronization signal block in a radio frame, where the time domain length of each square is 1 millisecond (ms), indicating a time slot, in which five time slots constitute an SL -SSB Set, as shown in FIG. 3A, the last five time slots are selected as the SL-SSB Set.
  • the time-domain positions of the two candidate SL-SSBs in the SL-SSB Set are located in the fourth place in the SL-SSB Set Time slot and the fifth time slot, that is, in the last two time slots in the SL-SSB Set.
  • the remaining time slots except the time slots occupied by the SL-SSB Set may be used as downlink time slots.
  • the subcarrier spacing in the uplink time slot is 30 kHz, and the time domain positions of the two candidate synchronization signal blocks in the synchronization signal block set are the ninth time slot and the tenth time in the synchronization signal block set Gap.
  • FIG. 3B it is a schematic diagram of the time domain position of a synchronization signal block in a radio frame, where the time domain length of each square is 0.5 milliseconds (ms), indicating a time slot, in which 10 time slots constitute an SL -SSB Set, as shown in FIG. 3B, the last 10 time slots are selected as the SL-SSB Set, and the time domain positions of the two candidate SL-SSBs in the SL-SSB Set are located in the SL-SSB Set.
  • the ninth time slot and the tenth time slot that is, in the last two time slots in the SL-SSB Set.
  • the remaining time slots except the time slots occupied by the SL-SSB Set may be used as downlink time slots.
  • the subcarrier spacing in the uplink time slot is 60 kHz, and the time domain positions of the two candidate synchronization signal blocks in the synchronization signal block set are the nineteenth time slot and the twentieth in the synchronization signal block set Time slots.
  • FIG. 3C it is a schematic diagram of the time domain position of a synchronization signal block in a radio frame, where the time domain length of each square is 0.25 milliseconds (ms), indicating a time slot, in which 20 time slots constitute an SL -SSB Set, as shown in FIG. 3C, the last 20 time slots are used as the SL-SSB Set, and the time domain positions of the two candidate SL-SSBs in the SL-SSB Set are located in the SL-SSB Set.
  • the nineteenth time slot and the twentieth time slot that is, the last two time slots in the SL-SSB Set.
  • the remaining time slots except the time slots occupied by the SL-SSB Set may be used as downlink time slots.
  • L is 4, and there are 4 time domain positions in the set of synchronization signal blocks that can be used to send the synchronization signal blocks, which can be applied to scenarios where the frequency band is greater than 3 GHz and less than 6 GHz.
  • the subcarrier spacing in the uplink time slot is 15 kHz, and the time domain positions of the four candidate synchronization signal blocks in the synchronization signal block set are the second time slot and the third time in the synchronization signal block set. Slot, fourth slot and fifth slot.
  • FIG. 4A it is a schematic diagram of the time domain position of a synchronization signal block in a radio frame, where the time domain length of each square is 1 millisecond (ms), indicating a time slot, in which five time slots constitute an SL -SSB Set, as shown in FIG. 4A, the last five time slots are selected as the SL-SSB Set, and the time-domain positions of the four candidate SL-SSBs in the SL-SSB Set are located in the second place in the SL-SSB Set Time slot, third time slot, fourth time slot and fifth time slot, that is, in the last four time slots in the SL-SSB Set.
  • ms millisecond
  • the remaining time slots except the time slots occupied by the SL-SSB Set may be used as downlink time slots.
  • the subcarrier spacing in the uplink time slot is 30 kHz, and the time domain positions of the four candidate synchronization signal blocks in the synchronization signal block set are the fourth time slot and the fifth time in the synchronization signal block set Slot, ninth slot and tenth slot.
  • FIG. 4B it is a schematic diagram of the time domain position of a synchronization signal block in a radio frame, where the time domain length of each square is 0.5 milliseconds (ms), indicating a time slot, in which 10 time slots constitute an SL -SSB Set, as shown in FIG. 3B, the last 10 time slots are selected as the SL-SSB Set.
  • the time-domain positions of the four candidate SL-SSBs in the SL-SSB Set are located in the SL-SSB Set The fourth time slot, the fifth time slot, the ninth time slot and the tenth time slot.
  • the remaining time slots except the time slots occupied by the SL-SSB Set may be used as downlink time slots.
  • the subcarrier spacing in the uplink time slot is 60 kHz
  • the time domain positions of the four candidate synchronization signal blocks in the synchronization signal block set are the ninth time slot and the tenth time in the synchronization signal block set Slot, nineteenth slot and twentieth slot.
  • FIG. 4C it is a schematic diagram of the time domain position of a synchronization signal block in a radio frame, where the time domain length of each square is 0.25 milliseconds (ms), indicating a time slot, in which 20 time slots form an SL -SSB Set, as shown in FIG. 3C, the last 20 time slots are used as the SL-SSB Set.
  • the time-domain positions of the four candidate SL-SSBs in the SL-SSB Set are located in the SL-SSB Set
  • the remaining time slots except the time slots occupied by the SL-SSB Set may be used as downlink time slots.
  • L is 8, and there are 4 time domain positions in the set of synchronization signal blocks that can be used to send the synchronization signal blocks, which can be applied to scenarios where the frequency band is greater than 6 GHz.
  • the subcarrier spacing in the uplink time slot is 60 kHz
  • the time domain positions of the 8 candidate synchronization signal blocks in the synchronization signal block set are the fourth time slot and the fifth time in the synchronization signal block set Slot, ninth slot, tenth slot, fourteenth slot, fifteenth slot, nineteenth slot, and twentieth slot.
  • FIG. 5A it is a schematic diagram of the time domain position of the synchronization signal block, where the time domain length of each square is 0.25 milliseconds (ms), indicating a time slot, of which 20 time slots form a SL-SSB Set, As shown in FIG. 5A, the last 20 time slots are selected as the SL-SSB Set, and the time domain positions of the eight candidate SL-SSBs in the SL-SSB Set are located at the fourth time in the SL-SSB Set Slot, fifth slot, ninth slot, tenth slot, fourteenth slot, fifteenth slot, nineteenth slot, and twentieth slot.
  • ms milliseconds
  • the remaining time slots except the time slots occupied by the SL-SSB Set may be used as downlink time slots.
  • the subcarrier spacing in the uplink time slot is 120 kHz
  • the time domain positions of the 8 candidate synchronization signal blocks in the synchronization signal block set are the ninth time slot and the tenth time in the synchronization signal block set Slot, nineteenth slot, twentieth slot, twenty-ninth slot, thirtieth slot, thirty-ninth slot, and fortieth slot.
  • FIG. 5B it is a schematic diagram of the time domain position of a synchronization signal block in a radio frame, where the time domain length of each square is 0.125 milliseconds (ms), indicating a time slot, of which 40 time slots constitute an SL -SSB Set, as shown in FIG. 5B, the last 40 time slots are selected as the SL-SSB Set, and the time domain positions of the eight candidate SL-SSBs in the SL-SSB Set are located in the SL-SSB Set.
  • the remaining time slots except the time slots occupied by the SL-SSB Set may be used as downlink time slots.
  • the S-SSB set can also be set in the wireless frame.
  • the first half of the frame it can be set according to the specific scene.
  • the position of the S-SSB set in the radio frame can be configured by the network device, for example, the first terminal device or the second terminal device is notified of the S through the PSBCH -SSB set is located in the first half or second half of the radio frame.
  • the first, 2, 3 timeslots can be used for downlink data transmission
  • the 4th timeslot is used to carry S-SSB
  • the 5th timeslot is used for upstream data transmission
  • the 6,7,8 timeslots can be used for
  • the ninth time slot is used to carry S-SSB
  • the tenth time slot is used for uplink data transmission.
  • synchronization signal block transmission can also be performed. In this way, there can be two time slots in a radio frame that can be used to carry S-SSB, and at the same time meet the TDD frame ratio.
  • the time domain length occupied by the set of synchronization signal blocks is 2 milliseconds.
  • L is 2, and there are two time domain positions in the set of synchronization signal blocks that can be used to send synchronization signal blocks, which can be applied to the scenario where the frequency band is less than 3 GHz.
  • the subcarrier spacing in the uplink time slot is 15 kHz, and the time domain positions of the two candidate synchronization signal blocks in the synchronization signal block set are the first time slot and the second time in the synchronization signal block set Gap.
  • FIG. 6A it is a schematic diagram of the time domain position of the synchronization signal block.
  • the time domain length of each square is 1 millisecond (ms), indicating a time slot, and two time slots form a SL-SSB Set.
  • SCI sidelink control information
  • the subcarrier spacing in the uplink time slot is 30 kHz, and the time domain positions of the two candidate synchronization signal blocks in the synchronization signal block set are the first time slot and the second time in the synchronization signal block set Gap.
  • FIG. 6B it is a schematic diagram of the time domain position of the synchronization signal block, where the time domain length of each square is 0.5 milliseconds (ms), indicating a time slot, of which 4 time slots form a SL-SSB Set,
  • the first x-1 OFDM symbols can be used to carry other Information, for example, can be used to carry AGC and SCI.
  • L is 4, and there are 4 time domain positions in the set of synchronization signal blocks that can be used to send the synchronization signal blocks, which can be applied to scenarios where the frequency band is greater than 3 GHz and less than 6 GHz.
  • the subcarrier spacing in the uplink time slot is 30 kHz, and the time domain positions of the four candidate synchronization signal blocks in the synchronization signal block set are the first time slot, the second time slot, The third time slot and the fourth time slot.
  • FIG. 7 it is a schematic diagram of the time domain position of the synchronization signal block, where the time domain length of each square is 0.5 milliseconds (ms), indicating a time slot, of which 4 time slots constitute a SL-SSB Set,
  • the first x-1 OFDM symbols can be used to carry other Information, for example, can be used to carry AGC and SCI.
  • the synchronization signal block set has 8 time domain positions that can be used to transmit the synchronization signal block, which can be applied to the scenario where the frequency band is greater than 6 GHz.
  • the subcarrier spacing in the uplink time slot is 60 kHz, and the time domain positions of the 8 candidate synchronization signal blocks in the synchronization signal block set are 8 time slots in the synchronization signal block set.
  • FIG. 8A it is a schematic diagram of the time domain position of the synchronization signal block, where the time domain length of each square is 0.25 milliseconds (ms), indicating a time slot, in which 8 time slots constitute a SL-SSB Set,
  • the first x-1 OFDM symbols can be used to carry other Information, for example, can be used to carry AGC and SCI.
  • the subcarrier spacing in the uplink time slot is 120 kHz, and the time domain positions of the 8 candidate synchronization signal blocks in the synchronization signal block set are the first 8 time slots in the synchronization signal block set.
  • FIG. 8B it is a schematic diagram of the time domain position of the synchronization signal block, where the time domain length of each square is 0.125 milliseconds (ms), indicating a time slot, of which 16 time slots constitute a SL-SSB Set,
  • the time domain length occupied by the set of synchronization signal blocks is 2 milliseconds, and the time is short, which can ensure that the synchronization signal block and the uplink transmission are tightly combined, and the synchronization signal block can be transmitted by using the synchronization signal block multiplexing uplink time slot. .
  • the synchronization signal blocks in the synchronization signal set can be carried in one time slot.
  • the following describes the composition of the synchronization signal blocks and the occupied resources.
  • the synchronization signal block may include multiple primary side row synchronization signals and multiple secondary side row synchronization signals, to ensure that the primary side row synchronization signal and the secondary side row synchronization signal can be repeatedly transmitted, and further ,
  • the terminal equipment can achieve synchronization, exemplary, including two repeated primary side line synchronization signals (primary sidelink synchronization signal (P-SLSS) and two repeated auxiliary side line synchronization signals (secondary sidelink synchronization signal) , S-SLSS), the two repeated primary side row synchronization signals occupy two time domain symbols, and the two repeated secondary side row synchronization signals occupy two time domain symbols.
  • P-SLSS primary sidelink synchronization signal
  • S-SLSS secondary sidelink synchronization signal
  • the time domain symbol is an OFDM symbol.
  • the synchronization signal block may also include other information, for example, including at least one of the following: PSBCH, AGC, GAP; and setting AGC can make all
  • PSBCH Physical Broadcast Channel
  • AGC Automatic Gain Control Function
  • setting AGC can make all
  • the second terminal device receives the primary side line synchronization signal and the multiple secondary side line synchronization signals
  • the appropriate signal reception strength can be used to provide the reception efficiency of the synchronization signal block
  • setting the GAP can pre-process the second terminal device Allowing radio frequency conversion time from signal reception to signal transmission can facilitate subsequent signal transmission by the second terminal device.
  • 9A is a schematic structural diagram of a synchronization signal block provided by an embodiment of the present application. This includes two P-SLSSs, two S-SLSSs, and two PSBCHs, where one PSBCH is behind two P-SLSSs, and one PSBCH is behind two S-SLSSs.
  • 9B is a schematic structural diagram of a synchronization signal block provided by an embodiment of the present application. This includes two P-SLSSs, two S-SLSSs, and two PSBCHs, where two P-SLSSs are located before the two S-SLSSs, and two PSBCHs are located after the two S-SLSSs.
  • 9C is a schematic structural diagram of another synchronization signal block provided by an embodiment of the present application. It includes two P-SLSSs, two S-SLSSs, and two PSBCHs, where the two PSBCHs are located between the two P-SLSSs and the two S-SLSSs.
  • FIG. 9D is a schematic structural diagram of another synchronization signal block provided by an embodiment of the present application. It includes two P-SLSS, two S-SLSS, and two PSBCH, where one PSBCH is in front of two P-SLSS, one PSBCH is behind two S-SLSS, two P-SLSS and two S-SLSS SLSS is between two PSBCH.
  • One S-PLSS occupies one OFDM symbol in the time domain, one S-PLSS occupies 127 resource units (RE) in the frequency domain, and no information is transmitted on the remaining REs in the OFDM symbol.
  • RE resource units
  • One PSBCH occupies one OFDM symbol in the time domain, and N*12 resource units (RE) in the frequency domain.
  • N is the frequency domain bandwidth of PSBCH, taking resource block (resource so block, RB) as a unit, N can take a value of 12, or 20.
  • An S-SLSS occupies one OFDM symbol in the time domain, and one S-SLSS can occupy 127 resource units (resources, RE) in the frequency domain. The remaining REs within the S-SSB on this OFDM symbol are not send Message.
  • an OFDM symbol may be set before the S-PLSS to carry AGC.
  • the resources occupied in the synchronization signal block may also carry data.
  • FIG. 10 it is a schematic structural diagram of another synchronization signal block provided by an embodiment of the present application, which includes 14 OFDM symbols, the first OFDM symbol is used to carry AGC, the second to four OFDM symbols are used to carry SCI, the fifth to tenth OFDM symbols are used to carry S-SSB and data, and the last OFDM symbol is used to carry GAP.
  • the REs in the fifth to tenth OFDM symbols carry the S-SSB, there are still idle REs, and the idle REs can be used to carry data, so that the synchronization signal block and the data can be multiplexed Time domain resources.
  • the first terminal device may carry a second indication message indicating the location of the M synchronization signal blocks actually sent by the first terminal device in the system message of the PSBCH or the side link, for example, the first
  • the second instruction message is the actual sent S-SSB bitmap bitmap of actual transmitted S-SSB, the length of the bitmap is L, L can be 2 bits when it is less than 3GHz; L can be 3 to 6GHz 4bit; L can be 8bit in the case of greater than 6GHz.
  • the second terminal device may detect the synchronization signal block at the position indicated by the second indication message according to the second indication message.
  • the second terminal device may perform rate matching, that is, when receiving data, it is assumed that there is no data transmission on the RE of the S-SSB or the entire OFDM symbol.
  • an embodiment of the present application further provides a communication device for performing the method performed by the first terminal device in the above method embodiment.
  • the device includes a processing unit 1101 and a sending unit 1102;
  • the processing unit 1101 is configured to determine the time domain position of the M synchronization signal blocks actually transmitted in the synchronization signal block set according to the time domain positions of the candidate L synchronization signal blocks in the synchronization signal block set corresponding to different subcarrier intervals.
  • the set of synchronization signal blocks is a time-domain set for carrying candidate synchronization signal blocks in a radio frame
  • the L is greater than or equal to 2
  • the M is less than or equal to L
  • the L may also be equal to 1.
  • the sending unit 1102 is configured to send the M synchronization signal blocks in the synchronization signal block set.
  • the sending unit 1102 is further configured to send a first indication message, where the first indication message is used to instruct the first terminal device to send M synchronization signal blocks.
  • the sending unit 1102 is further configured to send a second indication message, where the second indication message is used to indicate where the first terminal device sends M synchronization signal blocks.
  • the time domain length occupied by the set of synchronization signal blocks may be 5 milliseconds or 2 milliseconds.
  • Case 1 When the subcarrier spacing in the uplink time slot is 15 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot and fifth time slot;
  • Case 2 When the subcarrier spacing in the uplink time slot is 60 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the nineteenth in the synchronization signal block set Time slots and twentieth time slots.
  • Case 1 When the subcarrier spacing in the uplink time slot is 15 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the second in the synchronization signal block set Time slot, third time slot, fourth time slot and fifth time slot.
  • Case 2 When the subcarrier spacing in the uplink time slot is 30 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot, fifth time slot, ninth time slot and tenth time slot.
  • Case 3 When the subcarrier spacing in the uplink time slot is 60 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the ninth in the synchronization signal block set Time slot, tenth time slot, nineteenth time slot and twentieth time slot.
  • the time domain length occupied by the synchronization signal block set is 5 milliseconds
  • the L is 8
  • Case 1 When the subcarrier spacing in the uplink time slot is 60 kHz, the time-domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot, fifth time slot, ninth time slot, tenth time slot, fourteenth time slot, fifteenth time slot, nineteenth time slot and twentieth time slot;
  • Case 2 When the subcarrier spacing in the uplink time slot is 120 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the ninth in the synchronization signal block set Time slot, tenth time slot, 19th time slot, 20th time slot, 29th time slot, 30th time slot, 39th time slot and 40th time slot Time slot.
  • the synchronization signal block may include multiple primary side row signals and multiple auxiliary side row synchronization signals.
  • the synchronization signal block includes two repeated primary side row synchronization signals And two repeated secondary side row synchronization signals, the two repeated primary side row synchronization signals occupy two time domain symbols, and the two repeated secondary side row synchronization signals occupy two time domain symbols.
  • the synchronization signal block may also carry other information.
  • it may include at least one of the following: PSBCH, AGC, and GAP.
  • an embodiment of the present application further provides a communication device for performing the method performed by the terminal device in the above method embodiment.
  • the device includes a detection unit 1201:
  • the detection unit is configured to detect the synchronization signal block sent by the first terminal device in the synchronization signal block set according to the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set corresponding to different subcarrier intervals.
  • the signal block set is a time-domain set used to carry candidate synchronization signal blocks in a radio frame.
  • the L is greater than or equal to 2, and the L may also be equal to 1.
  • the apparatus further includes a receiving unit 1202 configured to receive a first indication message from the first terminal device, and the first indication message is used to indicate the first
  • the terminal device sends M synchronization signal blocks; the detection unit 1201 may detect the synchronization signal based on the first indication message based on the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set corresponding to different subcarrier intervals One or more synchronization signal blocks in the M synchronization signal blocks in the block set.
  • the receiving unit 1202 is configured to receive a second indication message from the first terminal device.
  • the second indication message is used to indicate where the first terminal device sends M synchronization signal blocks. position.
  • the detection unit 1201 may detect the M synchronization signal blocks in the synchronization signal block set based on the second indication message based on the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set corresponding to different subcarrier intervals. Of one or more synchronization signal blocks.
  • the time domain length occupied by the set of synchronization signal blocks may be 5 milliseconds or 2 milliseconds.
  • Case 1 When the subcarrier spacing in the uplink time slot is 15 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot and fifth time slot;
  • Case 2 When the subcarrier spacing in the uplink time slot is 60 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the nineteenth in the synchronization signal block set Time slots and twentieth time slots.
  • Case 1 When the subcarrier spacing in the uplink time slot is 15 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the second in the synchronization signal block set Time slot, third time slot, fourth time slot and fifth time slot.
  • Case 2 When the subcarrier spacing in the uplink time slot is 30 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot, fifth time slot, ninth time slot and tenth time slot.
  • Case 3 When the subcarrier spacing in the uplink time slot is 60 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the ninth in the synchronization signal block set Time slot, tenth time slot, nineteenth time slot and twentieth time slot.
  • the time domain length occupied by the synchronization signal block set is 5 milliseconds
  • the L is 8
  • Case 1 When the subcarrier spacing in the uplink time slot is 60 kHz, the time-domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the fourth in the synchronization signal block set Time slot, fifth time slot, ninth time slot, tenth time slot, fourteenth time slot, fifteenth time slot, nineteenth time slot and twentieth time slot;
  • Case 2 When the subcarrier spacing in the uplink time slot is 120 kHz, the time domain position of the candidate L synchronization signal blocks in the synchronization signal block set is the ninth in the synchronization signal block set Time slot, tenth time slot, 19th time slot, 20th time slot, 29th time slot, 30th time slot, 39th time slot and 40th time slot Time slot.
  • the synchronization signal block may include multiple primary side row signals and multiple auxiliary side row synchronization signals.
  • the synchronization signal block includes two repeated primary side row synchronization signals And two repeated secondary side row synchronization signals, the two repeated primary side row synchronization signals occupy two time domain symbols, and the two repeated secondary side row synchronization signals occupy two time domain symbols.
  • the synchronization signal block may also carry other information.
  • it may include at least one of the following: PSBCH, AGC, and GAP.
  • the division of the units in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be other ways of division.
  • the functional units in the embodiments of the present application may be integrated in one process. In the device, it can also exist alone physically, or two or more units can be integrated into one module.
  • the above integrated unit may be implemented in the form of hardware or software function module.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to enable a terminal device (which may be a personal computer, mobile phone, or network device, etc.) or processor to execute all or part of the steps of the method in various embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program codes .
  • both the first terminal device and the second terminal device can be presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to a specific ASIC, circuit, processor and memory that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above-mentioned functions.
  • the first terminal device may adopt the form shown in FIG. 13.
  • the communication device 1300 shown in FIG. 13 includes at least one processor 1301 and memory 1302, and optionally, may also include a transceiver 1303.
  • the memory 1302 may be a volatile memory, such as a random access memory; the memory may also be a non-volatile memory, such as a read-only memory, a flash memory, a hard disk drive (HDD), or a solid-state drive (solid-state drive, SSD), or the memory 1302 is any other medium that can be used to carry or store a desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 1302 may be a combination of the aforementioned memories.
  • the specific connection medium between the processor 1301 and the memory 1302 is not limited.
  • the memory 1302 and the processor 1301 are connected by a bus 1304 in the figure, and the bus 1304 is indicated by a thick line in the figure.
  • the connection between other components is only for illustrative purposes, and is not cited. Limited.
  • the bus 1304 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor 1301 may have a data transceiving function and can communicate with other devices.
  • an independent data transceiving module may also be provided, such as a transceiver 1303, for transceiving data; the processor 1301 is communicating with other devices During communication, data can be transmitted through the transceiver 1303.
  • the processor 1301 in FIG. 13 may call the computer stored in the memory 1302 to execute instructions, so that the base station can execute all the methods in any of the foregoing method embodiments. The method performed by the base station is described.
  • the functions/implementation processes of the sending unit and the processing unit in FIG. 11 can be implemented by the processor 1301 in FIG. 13 calling the computer execution instructions stored in the memory 1302 or the processor 1301 controlling the transceiver 1303.
  • the function/implementation process of the processing unit in FIG. 11 can be implemented by the processor 1301 in FIG. 13 calling the computer execution instructions stored in the memory 1302, and the function/implementation process of the sending unit in FIG. 11 can be implemented in FIG. 13 The transceiver 1303 is implemented.
  • the first terminal device may adopt the form shown in FIG. 14.
  • the communication device 1400 shown in FIG. 14 includes at least one processor 1401 and memory 1402, and optionally, may also include a transceiver 1403.
  • the memory 1402 may be a volatile memory, such as a random access memory; the memory may also be a non-volatile memory, such as a read-only memory, flash memory, hard disk drive (HDD), or solid-state drive (solid-state drive, SSD), or the memory 1402 is any other medium that can be used to carry or store a desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 1402 may be a combination of the above memories.
  • connection medium between the processor 1401 and the memory 1402 is not limited.
  • the memory 1402 and the processor 1401 are connected by a bus 1404 in the figure, and the bus 1404 is indicated by a thick line in the figure.
  • the connection mode between other components is only for a schematic description and is not cited. Limited.
  • the bus 1404 can be divided into an address bus, a data bus, and a control bus. For ease of representation, only a thick line is used in FIG. 14, but it does not mean that there is only one bus or one type of bus.
  • the processor 1401 may have a data transmission and reception function and can communicate with other devices.
  • an independent data transmission and reception module may also be provided, such as a transceiver 1403, for transmitting and receiving data; the processor 1401 is communicating with other devices When communicating, data can be transmitted through the transceiver 1403.
  • the processor 1401 in FIG. 14 may call the computer stored in the memory 1402 to execute instructions, so that the terminal device can execute the terminal device in any of the foregoing method embodiments The method of execution.
  • the functions/implementation processes of the detection unit and the receiving unit in FIG. 12 can be implemented by the processor 1401 in FIG. 14 calling the computer execution instructions stored in the memory 1402 or the processor 1401 controlling the transceiver 1403.
  • the function/implementation process of the processing unit in FIG. 12 can be implemented by the processor 1401 in FIG. 14 calling the computer execution instructions stored in the memory 1402, and the function/implementation process of the receiving unit in FIG. 12 can be implemented by sending and receiving in FIG. 14 1403 to achieve.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • computer usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to generate computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种同步信号发送方法及装置,可以应用于车联网,例如V2X、LTE-V、V2V等。第一终端设备先根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,确定同步信号块集合中实际发送的M个同步信号块的时域位置,同步信号块集合为无线帧中用于承载候选同步信号块的时域集合,相应的,第二终端设备根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,检测同步信号块集合中第一终端设备实际发送的同步信号块,使得第一终端设备可以发送多个同步信号块,可以支持同步信号多方向发送,能够增加信号的覆盖范围,进一步提升终端设备的同步的成功率。

Description

一种同步信号发送方法及装置
相关申请的交叉引用
本申请要求在2019年01月11日提交中国专利局、申请号为201910028428.X、申请名称为“一种同步信号发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种同步信号发送方法及装置。
背景技术
车联网(vehicle to everything,V2X),指的是车辆可以与外界设备进行通信。通过V2X,车辆与车辆、车辆与基站、基站与基站之间能够实现通信,使得车辆能够较好的获得实时路况、道路信息、行人信息等各种交通信息,进而提高驾驶安全性、提高交通效率。
为了保证车辆之间的信息、时间等保持同步,车辆之间会发送同步信号,当车辆1需要向周围的车辆2和车辆3发送同步信号时,车辆1则需要向车辆2和车辆3发送同步信号,目前V2X中同步信号仅支持全向发送,也就是说,车辆1发送同步信号时,向周围各个角度内的车辆发送同步信号,但是由于信号功率是一定的,采用全向发送的发送方式,信号的覆盖范围较小,同步信号能够达到的最远距离会受限,若车辆2和车辆3距离车辆1较远时,车辆2和车辆3有可能无法接收到同步信号,无法实现同步。
综上,目前V2X中同步信号采用全向发送的方式,导致信号的覆盖范围较小,终端设备间同步的成功率较低。
发明内容
本申请提供一种同步信号发送方法及装置,用解决现有技术中V2X中同步信号采用全向发送的方式,导致覆盖范围较小,终端设备间同步的成功率较低的问题。
第一方面,本申请实施例提供了一种同步信号发送方法,所述方法包括:第一终端设备先根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,确定同步信号块集合中实际发送的M个同步信号块的时域位置,所述同步信号块集合为无线帧中用于承载候选同步信号块的时域集合,所述L大于等于2,所述M小于等于L;之后,所述第一终端设备在所述同步信号块集合中发送所述M个同步信号块,作为另一种可能的情况,所述L也可以等于1。
通过上述方法,不同子载波间隔对应的同步信号块集合中存在候选的L个同步信号块的时域位置,且所述第一终端设备可以从L个同步信号块的时域位置确定M个同步信号块的时域位置,用于发送M个同步信号块,每个同步信号块可以对应不同的方向,使得所述第一终端设备可以发送多个同步信号块,进而可以实现同步信号多方向,进一步的,可以支持高频发送,提高信号的覆盖范围,能够保证终端设备间同步的成功率。
在一种可能的设计中,所述同步信号块集合占用的时域长度可以是5毫秒,也可以是 2毫秒。
通过上述方法,所述同步信号块集合的时域长度为一设定值,不会占用较大的资源,可以实现资源的有效利用。
在一种可能的设计中,所述第一终端设备可以向所述第二终端设备发送第一指示消息,所述第一指示消息用于指示所述第一终端设备发送M个同步信号块。
通过上述方法,可以通过所述第一指示消息告知所述第二终端设备所述第一终端设备实际发送的同步信号块的个数,能够方便所述第二终端设备检测所述同步信号块。
在一种可能的设计中,所述第一终端设备可以向所述第二终端设备发送第二指示消息,所述第二指示消息用于指示所述第一终端设备发送M个同步信号块所在位置。
通过上述方法,可以通过所述第二指示消息告知所述第二终端设备所述M个同步信号块所在位置,使得所述第二终端设备可以更加快捷的检测到所述第一终端设备发送的所述同步信号块。
在一种可能的设计中,所述同步信号块集合占用的时域长度是5毫秒时,当所述L为2时,不同子载波间隔对应的同步信号块集合中候选的两个同步信号块的时域位置有如下三种情况:
情况一、在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙和第五个时隙;
情况二、在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙和第十个时隙;
情况三、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第十九个时隙和第二十个时隙。
通过上述方法,在不同的上行时隙中的子载波间隔下,所述同步信号块集合中候选的L个同步信号块的时域位置分别集中的两个特定的时隙,可以使得资源有效利用,也可以使得所述终端设备在检测所述同步信号块时,较为便捷的在两个特定的时隙上检测所述同步信号块。
在一种可能的设计中,所述同步信号块集合占用的时域长度为5毫秒时,当所述L为4时,不同子载波间隔对应的同步信号块集合中候选的四个同步信号块的时域位置有如下三种情况:
情况一、在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第二个时隙、第三个时隙、第四个时隙和第五个时隙。
情况二、在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙和第十个时隙。
情况三、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙和第二十个时隙。
通过上述方法,在不同的上行时隙中的子载波间隔下,所述同步信号块集合中候选的L个同步信号块的时域位置分别集中的四个特定的时隙,能够有效的利用时域资源,也可 以使得所述终端设备在检测所述同步信号块时,较为便捷的在四个特定的时隙上检测所述同步信号块。
在一种可能的设计中,所述同步信号块集合占用的时域长度是5毫秒时,当所述L为8时,不同子载波间隔对应的同步信号块集合中候选的八个同步信号块的时域位置有如下两种情况:
情况一、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙、第十个时隙、第十四个时隙、第十五个时隙、第十九个时隙和第二十个时隙;
情况二、在所述上行时隙中的子载波间隔为120kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙、第二十个时隙、第二十九个时隙、第三十个时隙、第三十九个时隙和第四十个时隙。
通过上述方法,在不同的上行时隙中的子载波间隔下,所述同步信号块集合中候选的L个同步信号块的时域位置分别集中的八个特定的时隙,时域资源能够得到有效利用,也可以使得所述终端设备在检测所述同步信号块时,较为便捷的在八个特定的时隙上检测所述同步信号块。
在一种可能的设计中,所述同步信号块中可以包括多个主侧行信号和多个辅侧行同步信号,示例性的,所述同步信号块包括两个重复的主侧行同步信号和两个重复的辅侧行同步信号,所述两个重复的主侧行同步信号占用两个时域符号,所述两个重复的辅侧行同步信号占用两个时域符号。
通过上述方法,所述同步信号块中包括多个主侧行信号和多个辅侧行同步信号,可以保证主侧行信号和辅侧行同步信号的重复发送,进而可以较好地确保终端设备之间能够达到同步。
在一种可能的设计中,所述同步信号块还可以携带有其他信息,示例性的,可以包括下列中的至少一项:PSBCH、AGC、GAP。
通过上述方法,所述同步信号块还可以携带有其他信息,可以有效利用所述同步信号块中的资源,同时,PSBCH、AGC、GAP还可以对所述同步信号块的接收起到增益效果,使得接收端可以更好的接收所述同步信号块。
第二方面,本发明实施例提供了一种同步信号发送方法,所述方法包括:第二终端设备根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,检测同步信号块集合中第一终端设备发送的同步信号块,所述同步信号块集合为无线帧中用于承载候选同步信号块的时域集合,所述L大于等于2,若所述第一终端设备实际发送了M个同步信号块,则所述第二终端设备可以接收到M个中的一个同步信号块,作为另一种可能的情况,所述L也可以等于1。
通过上述方法,不同子载波间隔对应的同步信号块集合中存在候选的L个同步信号块的时域位置,且所述第二终端设备在候选的L个同步信号块的时域位置检测同步信号块,使得所述第二终端设备在候选的L个同步信号块的时域位置上接收同步信号块,进而可以实现同步信号多方向发送,进一步的,同步信号可以支持高频发送,能够提高信号的覆盖范围,能保证终端设备间同步可以成功同步。
在一种可能的设计中,所述第二终端设备可以从所述第一终端设备接收到第一指示消 息,所述第一指示消息用于指示所述第一终端设备发送M个同步信号块,所述第二终端设备在检测所述同步信号块时,可以基于不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,根据所述第一指示消息检测同步信号块集合中M个同步信号块中的一个或多个同步信号块。
通过上述方法,所述第二终端设备可以通过所述第一指示消息确定所述第一终端设备实际发送的同步信号块的个数,后续能够方便得检测所述同步信号块。
在一种可能的设计中,所述第二终端设备可以从所述第一终端设备接收到第二指示消息,所述第二指示消息用于指示所述M个同步信号块所在位置,所述第二终端设备在检测所述同步信号块时,可以基于不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,根据所述第二指示消息检测同步信号块集合中M个同步信号块中的一个或多个同步信号块。
通过上述方法,所述第二终端设备可以通过所述第二指示消息确定所述M个同步信号块所在位置,使得所述第二终端设备可以更加快捷的检测到所述第一终端设备发送的所述同步信号块。
在一种可能的设计中,所述同步信号块集合占用的时域长度可以是5毫秒,也可以是2毫秒。
在一种可能的设计中,所述同步信号块集合占用的时域长度是5毫秒时,当所述L为2时,不同子载波间隔对应的同步信号块集合中候选的两个同步信号块的时域位置有如下三种情况:
情况一、在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙和第五个时隙;
情况二、在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙和第十个时隙;
情况三、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第十九个时隙和第二十个时隙。
在一种可能的设计中,所述同步信号块集合占用的时域长度为5毫秒时,当所述L为4时,不同子载波间隔对应的同步信号块集合中候选的四个同步信号块的时域位置有如下三种情况:
情况一、在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第二个时隙、第三个时隙、第四个时隙和第五个时隙。
情况二、在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙和第十个时隙。
情况三、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙和第二十个时隙。
在一种可能的设计中,所述同步信号块集合占用的时域长度是5毫秒时,当所述L为8时,不同子载波间隔对应的同步信号块集合中候选的八个同步信号块的时域位置有如下 两种情况:
情况一、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙、第十个时隙、第十四个时隙、第十五个时隙、第十九个时隙和第二十个时隙;
情况二、在所述上行时隙中的子载波间隔为120kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙、第二十个时隙、第二十九个时隙、第三十个时隙、第三十九个时隙和第四十个时隙。
在一种可能的设计中,所述同步信号块中可以包括多个主侧行信号和多个辅侧行同步信号,示例性的,所述同步信号块包括两个重复的主侧行同步信号和两个重复的辅侧行同步信号,所述两个重复的主侧行同步信号占用两个时域符号,所述两个重复的辅侧行同步信号占用两个时域符号。
在一种可能的设计中,所述同步信号块还可以携带有其他信息,示例性的,可以包括下列中的至少一项:PSBCH、AGC、GAP。
第三方面,本申请实施例还提供了一种通信装置,所述通信装置应用于第一终端设备,有益效果可以参见第一方面的描述此处不再赘述。该装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述装置的结构中包括处理单元和发送单元,这些单元可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第四方面,本申请实施例还提供了一种通信装置,所述通信装置应用于第二终端设备,有益效果可以参见第二方面的描述此处不再赘述。该装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述装置的结构中包括检测单元,还可以包括接收单元,这些单元可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,本申请实施例还提供了一种通信装置,所述通信装置应用于第一终端设备,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置的结构中包括处理器和存储器,所述处理器被配置为支持所述终端执行上述第一方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。所述通信装置的结构中还包括通信接口,用于与其他设备进行通信。
第六方面,本申请实施例还提供了一种通信装置,所述通信装置应用于第二终端设备,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置的结构中包括处理器和存储器,所述处理器被配置为支持所述终端执行上述第二方面方法中相应的功能。所述存储器与所述处理器耦合,其保存所述通信装置必要的程序指令和数据。所述通信装置的结构中还包括收发器,用于与其他设备进行通信。
第七方面,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第八方面,本申请还提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面所述的方法。
第九方面,本申请还提供一种计算机芯片,所述芯片与存储器相连,所述芯片用于读取并执行所述存储器中存储的软件程序,执行上述各方面所述的方法。
附图说明
图1为本申请提供的一种网络架构的结构示意图;
图2为本申请提供的一种同步信号发送方法示意图;
图3A~3C为本申请提供的一种同步信号块集合的示意图;
图4A~4C为本申请提供的一种同步信号块集合的示意图;
图5A~5B为本申请提供的一种同步信号块集合的示意图;
图6A~6B为本申请提供的一种同步信号块集合的示意图;
图7为本申请提供的一种同步信号块集合的示意图;
图8A~8B为本申请提供的一种同步信号块集合的示意图;
图9A~9D为本申请提供的一种同步信号块的结构示意图;
图10为本申请提供的一种同步信号块的结构示意图;
图11~图14为本申请提供的一种通信装置的结构示意图。
具体实施方式
本申请提供了一种同步信号发送方法及装置,用以实现同步信号多方向发送。
首先,对本申请中的部分用语进行解释说明,以便使本领域技术人员理解。
1、频段;频段是指通信信号在频域上发送所对应频域范围,例如0~3兆赫兹(GHz),3~6GHz,大于6GHz等等。通常情况下,0~3GHz对应的是低频段通信,3~6GHz对应的是C波段通信,大于6GHz对应的是高频段通信。
2、上行时隙,上行时隙的子载波间隔;通信系统通常可以分为频分系统(frequency division duplex,FDD)和时分系统(time division duplex,TDD)。针对TDD系统,一个无线帧(radio frame)包含若干个子帧(subframe)或时隙(slot)。其中部分子帧或时隙是用于下行传输,称为下行子帧或下行时隙;部分子帧或时隙是用于上行传输,称为上行子帧或上行时隙。
采用正交频分多址(orthogonal frequency division multiplexing,OFDM)技术的通信系统如长期演进(long term evolution,LTE)或第五代(5th Generation,5G)新空口(New Radio,NR)系统,每个OFDM符号都对应一个正交的子载波,通过载波间的正交性来对抗干扰。相邻子载波之间的频率间隔就是子载波间隔,子载波间隔定义了OFDM系统的子载波频率间距,例如上行时隙的子载波间隔可以是15千赫兹(kHz)、30kHz、60kHz或120kHz。
3、时域位置,时域位置指的是通信信号在时域上发送的位置,时域位置可以是系统帧,子帧,或OFDM符号。通过指定时域位置,接收设备能准确在指定的时域位置上进行信号接收,降低接收复杂度和功耗。
4、物理层侧行广播信道(physical sidelink broadcast channel,PSBCH),用于承载系统中所必须的系统消息。
5、自动增益控制(automatic gain control,AGC),在本申请实施例中,同步信号块中可以设置AGC,可以调节输入时的接收信号强度,以满足合适的解码要求的信号信噪比。
6、保护间隔(GAP),在本申请实施例中,同步信号块中可以设置GAP,可以为接收同步信号块的设备留出从信号接收到信号发送的射频转换时间。
7、无线帧、时隙、OFDM符号,资源单位(resource element,RE)。一个无线帧在时间上占据10毫秒。一个时隙在时间上占据14个OFDM符号,一个时隙的时间长度取决于子载波间隔,子载波间隔不同一个时隙的时间长度不同,例如子载波间隔为15KHz时,一个时隙为1毫秒;子载波间隔为30KHz时,一个时隙为0.5毫秒。RE在频域上占据1个子载波,在时域上占据1个OFDM符号。
8、同步信号,同步信号块,在本申请实施例中涉及的同步信号为侧行同步信号,具体可以分为主侧行同步信号(primary sidelink synchronization signal,P-SLSS)和一个辅侧行同步信号(secondary sidelink synchronization signal,S-SLSS)。主侧行同步信号和辅侧行同步信号用于终端设备之间交互时间定时信息,进行时间同步;本申请实施例中同步信号块是包括有主侧行同步信号和辅侧行同步信号的信号集合。
在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,需要理解的是,在本申请实施例的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序;为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
如图1所示,为本申请实施例提供的一种网络架构示意图,具体可用于与设备对设备(device to device,D2D)、V2X,或其他物联网场景,其中,包括多个终端设备,还可以包括网络设备,在图1中以三个终端设备为例进行说明。
上述三个终端设备的分布位置可参见图1,其中,终端设备1位于终端设备2和终端设备3之间,且终端设备2和终端设备3位于不同的方位。
终端设备之间可以直接进行通信,可以实时的交互信息,例如在V2X场景中可以实时的交互终端设备的状态信息以及路面情况,从而更好地进行辅助驾驶。
但为了保证终端设备之间通信的时延和可靠性,要求需要通信的终端设备之间进行同步,保证需要通信的终端设备在时间上的统一。
例如在车辆编队场景下,终端设备1为头车,终端设备2、终端设备3为车队中的跟随车辆,终端设备1需要向终端设备2和终端设备3发送数据,为了保证数据传输的可靠性,终端设备1与终端设备2,以及终端设备1与终端设备3之间需要保持时间同步。
具体的,终端设备1需要向终端设备2和终端设备3发送同步信号,终端设备在一个同步信号的发送周期中,会向各个方向发送侧行同步信号(primary sidelink synchronization signal,P-SLSS)和辅侧行同步信号(secondary sidelink synchronization signal,S-SLSS),由于侧行同步信号和辅侧行同步信号的数量限制,导致同步信号的发送仅支持全向发送。
当终端设备2和终端设备3与终端设备1距离较远时,则受限于全向发送的覆盖范围,终端设备2和终端设备3可能无法接收到同步信号。
而多方向发送的发送方式可以使得终端设备在一个时间段内朝一个特定的方向发送信号,在信号功率一定的情况下,相比于全向发送的发送方式可以使得信号到达更远的距离,也就是说多方向发送的发送方式信号的覆盖范围更大,可以支持高频发送,但目前侧行通信场景下,同步信号并不支持多方向发送。
为了使得同步信号支持多方向发送,增加信号的覆盖范围,进一步提升终端设备的同步的成功率,在本申请实施例提供了一种同步信号发送方法,本申请实施例中,终端设备 (对应本申请实施例中的第一终端设备)在需要发送同步信号时,可以在候选的L个同步信号块的时域位置确定同步信号块集合中实际发送的M个同步信号块的时域位置,在所述同步信号块集合中发送所述M个同步信号块;相应的,终端设备(对应本申请实施例中的第二终端设备)在接收同步信号时,可以在候选的L个同步信号块的时域位置检测同步信号块。采用本申请实施例的方式,终端设备可以发送多个同步信号块,每个同步信号块对应于不同方向,需要接收同步信号的终端设备可以在相应的时域位置上检测到同步信号块,可以支持同步信号的多方向发送。
本申请中的终端设备,又可称之为用户设备(user equipment,UE),可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线设备、无人驾驶(self driving)中的无线设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备、智慧家庭(smart home)中的无线设备等等。
在本申请中的网络设备是一种可以为终端设备提供无线通信功能的设备,包括但不限于:5G中的下一代基站(gnodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。
下面基于如图1所示的网络架构,以第一终端设备为同步信号块发送端,第二终端设备为同步信号块接收端为例,对本申请实施例提供的一种侧行同步信号发送方法进行介绍,如图2所示,所述方法包括:
步骤201:第一终端设备根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,确定同步信号块集合中实际发送的M个同步信号块的时域位置。
作为一种可能的实施方式,所述第一终端设备确定的实际发送的M个同步信号块的时域位置可以通过如下方式确定:所述第一终端设备可以基于候选的L个同步信号块的时域位置,结合TDD系统的上下行的帧配比、或当前所述第一终端设备对所述同步信号块的覆盖要求和功率,确定同步信号块集合中实际发送的M个同步信号块的时域位置。
步骤202:所述第一终端设备在所述同步信号块集合中发送所述M个同步信号块。
步骤203:所述第二终端设备根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,检测同步信号块集合中所述第一终端设备发送的同步信号块,所述第二终端设备可以检测到所述M个同步信号块中的一个或多个。
其中,所述同步信号块集合为无线帧中用于承载候选同步信号块的时域集合,所述L大于等于2,所述M小于等于L,作为另一种可能的情况,所述L也可以等于1。
应需理解的是,时域集合为无线帧中的一些时域位置的集合,时域位置可以是时隙(slot)、也可以是OFDM符号,本申请实施例并不限定时域位置的表现形式。
在本申请实施例中,对应于不同的子载波间隔,可以设置不同的同步信号块集合,所述同步信号块集合中包括L个可以用于发送同步信号块的时域位置,L个可以用于发送同 步信号块的时域位置称为候选的L个同步信号块的时域位置;在所述L个用于发送同步信号块的时域位置上,所述第一终端设备可以选择L个时域位置中的部分时域位置发送所述同步信号块(对应步骤201中M小于L的情况),选择L个时域位置中的全部时域位置发送所述同步信号块(对应步骤201中M等于L的情况),在本申请实施例中,以M表征所述第一终端设备实际确定的时域位置的数量。
相应的,当所述第二终端设备需要接收同步信号块时,可以在不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置检测所述同步信号块集合中实际发送的M个同步信号块。
作为一种可能的实施方式,所述第一终端设备可以向所述第二终端设备发送第一指示消息,所述第一指示消息用于指示所述第一终端设备发送M个同步信号块,当所述第二终端设备接收到所述第一指示消息后,可以根据所述第一指示消息确定所述第一终端设备实际会发送M个同步信号块,并可以根据所述第一指示消息,检测同步信号块集合中M个同步信号块中的一个或多个同步信号块。
作为一种可能的实施方式,所述第一终端设备可以向所述第二终端设备发送第二指示消息,所述第二指示消息用于指示所述第一终端设备发送M个同步信号块所在的位置,示例性的,所述第二执行消息可以指示所述M个同步信号块在所述候选的L个同步信号块的时域位置中的位置。
当所述第二终端设备接收到所述第二指示消息后,可以根据所述第二指示消息确定所述第一终端设备实际会发送M个同步信号块所在位置,如可以确定所述M个同步信号块在所述候选的L个同步信号块的时域位置中的位置,可以基于所述第二指示消息,较为方便快捷的检测到同步信号块集合中M个同步信号块中的一个或多个同步信号块。
不同子载波间隔对应的同步信号块集合候选的L个同步信号块的时域位置可以是所述网络设备通过信令发送给所述第一终端设备和所述第二终端设备,所述第一终端设备可以根据当前所处的网络确定子载波间隔,进而确定该子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,并从中确定同步信号块集合中实际发送的M个同步信号块的时域位置;相应的,所述第二终端设备可以根据当前所处的网络确定子载波间隔,进而确定该子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,进而在所述候选的L个同步信号块的时域位置检测所述同步信号块集合中所述第一终端设备发送的同步信号块。
下面分别以所述同步信号块集合占用的时域长度为5毫秒和2毫秒为例,对不同子载波间隔对应的同步信号块集合(sidelink synchronization signal block Set,SL-SSB Set)中候选的L个同步信号块(sidelink synchronization signal block,SL-SSB)的时域位置进行说明。
第一种、所述同步信号块集合占用的时域长度为5毫秒。
(一)、L为2,同步信号块集合中有2个可以用于发送同步信号块的时域位置,可以应用于频段小于3GHz的场景。
1、上行时隙中的子载波间隔为15kHz,所述同步信号块集合中候选的两个同步信号块的时域位置为所述同步信号块集合中的第四个时隙和第五个时隙。
如图3A所示,为一个无线帧中同步信号块的时域位置的示意图,其中每一个方格的时域长度为1毫秒(ms),表示一个时隙,其中五个时隙构成一个SL-SSB Set,如图3A中选用后五个时隙作为SL-SSB Set,所述SL-SSB Set中候选的两个SL-SSB的时域位置,位 于所述SL-SSB Set中的第四个时隙和第五个时隙,也即在所述SL-SSB Set中的最后两个时隙内。
如图3A所示,除所述SL-SSB Set占用的时隙的剩余时隙可以用作下行时隙。
2、上行时隙中的子载波间隔为30kHz,所述同步信号块集合中候选的两个同步信号块的时域位置为所述同步信号块集合中的第九个时隙和第十个时隙。
如图3B所示,为一个无线帧中同步信号块的时域位置的示意图,其中每一个方格的时域长度为0.5毫秒(ms),表示一个时隙,其中10个时隙构成一个SL-SSB Set,如图3B中选用后10个时隙作为所述SL-SSB Set,所述SL-SSB Set中候选的两个SL-SSB的时域位置,位于所述SL-SSB Set中的第九个时隙和第十个时隙,也即在所述SL-SSB Set中的最后两个时隙内。
如图3A所示,除所述SL-SSB Set占用的时隙的剩余时隙可以用作下行时隙。
3、上行时隙中的子载波间隔为60kHz,所述同步信号块集合中候选的两个同步信号块的时域位置为所述同步信号块集合中的第十九个时隙和第二十个时隙。
如图3C所示,为一个无线帧中同步信号块的时域位置的示意图,其中每一个方格的时域长度为0.25毫秒(ms),表示一个时隙,其中20个时隙构成一个SL-SSB Set,如图3C中选用后20个时隙作为所述SL-SSB Set,所述SL-SSB Set中候选的两个SL-SSB的时域位置,位于所述SL-SSB Set中的第十九个时隙和第二十个时隙,也即在所述SL-SSB Set中的最后两个时隙内。
如图3C所示,除所述SL-SSB Set占用的时隙的剩余时隙可以用作下行时隙。
(二)、L为4,同步信号块集合中有4个可以用于发送同步信号块的时域位置,可以应用于频段大于3GHz,小于6GHz的场景。
1、上行时隙中的子载波间隔为15kHz,所述同步信号块集合中候选的四个同步信号块的时域位置为所述同步信号块集合中的第二个时隙、第三个时隙、第四个时隙和第五个时隙。
如图4A所示,为一个无线帧中同步信号块的时域位置的示意图,其中每一个方格的时域长度为1毫秒(ms),表示一个时隙,其中五个时隙构成一个SL-SSB Set,如图4A中选用后五个时隙作为SL-SSB Set,所述SL-SSB Set中候选的四个SL-SSB的时域位置,位于所述SL-SSB Set中的第二个时隙、第三个时隙、第四个时隙和第五个时隙,也即在所述SL-SSB Set中的最后四个时隙内。
如图4A所示,除所述SL-SSB Set占用的时隙的剩余时隙可以用作下行时隙。
2、上行时隙中的子载波间隔为30kHz,所述同步信号块集合中候选的四个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙和第十个时隙。
如图4B所示,为一个无线帧中同步信号块的时域位置的示意图,其中每一个方格的时域长度为0.5毫秒(ms),表示一个时隙,其中10个时隙构成一个SL-SSB Set,如图3B中选用后10个时隙作为所述SL-SSB Set,所述SL-SSB Set中候选的四个SL-SSB的时域位置,位于所述SL-SSB Set中的第四个时隙、第五个时隙、第九个时隙和第十个时隙。
如图4B所示,除所述SL-SSB Set占用的时隙的剩余时隙可以用作下行时隙。
3、上行时隙中的子载波间隔为60kHz,所述同步信号块集合中候选的四个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙和第二十 个时隙。
如图4C所示,为一个无线帧中同步信号块的时域位置的示意图,其中每一个方格的时域长度为0.25毫秒(ms),表示一个时隙,其中20个时隙构成一个SL-SSB Set,如图3C中选用后20个时隙作为所述SL-SSB Set,所述SL-SSB Set中候选的四个SL-SSB的时域位置,位于所述SL-SSB Set中的第九个时隙、第十个时隙、第十九个时隙和第二十个时隙。
如图4C所示,除所述SL-SSB Set占用的时隙的剩余时隙可以用作下行时隙。
(三)、L为8,同步信号块集合中有4个可以用于发送同步信号块的时域位置,可以应用于频段大于6GHz的场景。
1、上行时隙中的子载波间隔为60kHz,所述同步信号块集合中候选的8个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙、第十个时隙、第十四个时隙、第十五个时隙、第十九个时隙和第二十个时隙。
如图5A所示,为同步信号块的时域位置的示意图,其中每一个方格的时域长度为0.25毫秒(ms),表示一个时隙,其中20个时隙构成一个SL-SSB Set,如图5A中选用后20个时隙作为所述SL-SSB Set,所述SL-SSB Set中候选的八个SL-SSB的时域位置,位于所述SL-SSB Set中的第四个时隙、第五个时隙、第九个时隙、第十个时隙、第十四个时隙、第十五个时隙、第十九个时隙和第二十个时隙。
如图5A所示,除所述SL-SSB Set占用的时隙的剩余时隙可以用作下行时隙。
2、上行时隙中的子载波间隔为120kHz,所述同步信号块集合中候选的8个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙、第二十个时隙、第二十九个时隙、第三十个时隙、第三十九个时隙和第四十个时隙。
如图5B所示,为一个无线帧中同步信号块的时域位置的示意图,其中每一个方格的时域长度为0.125毫秒(ms),表示一个时隙,其中40个时隙构成一个SL-SSB Set,如图5B中选用后40个时隙作为所述SL-SSB Set,所述SL-SSB Set中候选的八个SL-SSB的时域位置,位于所述SL-SSB Set中的第九个时隙、第十个时隙、第十九个时隙、第二十个时隙、第二十九个时隙、第三十个时隙、第三十九个时隙和第四十个时隙。
如图5B所示,除所述SL-SSB Set占用的时隙的剩余时隙可以用作下行时隙。
从图3A~3C、4A~4C以及5A~5B中,是以所述S-SSB set设置在无线帧的后半帧为例,事实上,所述S-SSB set也可以设置在无线帧的前半帧中,可以根据具体的场景进行设置。
作为一种可能的实施方式,所述S-SSB set设置在无线帧中的位置,可以由所述网络设备配置,例如通过PSBCH通知所述第一终端设备或所述第二终端设备所述S-SSB set位于无线帧的前半帧或后半帧。
采用如图3A~3C、4A~4C以及5A~5B所示的S-SSB set设置方式,可以看出,在一个无线帧中,可以预留一些时隙用做下行时隙,根据TDD帧配比,可以适当的调整S-SSB set位置,以保证S-SSB set的位置,能够适用于TDD帧配比,以TDD帧配比为4:1为例,在一个无线帧中,第1,2,3个时隙可以用于下行数据的传输,第4个时隙用于承载S-SSB,第5个时隙用于上行数据的传输,第6,7,8个时隙可以用于下行数据的传输,第9个时隙用于承载S-SSB,第10个时隙用于上行数据的传输,在保证正常的下行传输的前提下,还可以进行同步信号块的传输,可以看出,采用这种方式,在一个无线帧中可以存在两个时隙可以用于承载S-SSB,且同时满足TDD帧配比。
第二种、所述同步信号块集合占用的时域长度为2毫秒。
(一)、L为2,同步信号块集合中有2个可以用于发送同步信号块的时域位置,可以应用于频段小于3GHz的场景。
1、上行时隙中的子载波间隔为15kHz,所述同步信号块集合中候选的2个同步信号块的时域位置为所述同步信号块集合中的第一个时隙和第二个时隙。
如图6A所示,为同步信号块的时域位置的示意图,其中每一个方格的时域长度为1毫秒(ms),表示一个时隙,其中两个时隙构成一个SL-SSB Set,所述SL-SSB Set中候选的两个SL-SSB的时域位置,分别位于所述SL-SSB Set中的两个时隙中,也就是说,一个时隙承载一个SL-SSB,一所述SL-SSB Set中的一个时隙为例,所述SL-SSB可以承载在该时隙的第x个(如x=5)OFDM符号开始,前x-1个OFDM符号可以用于承载其他信息,例如可以用承载AGC和侧行链路控制消息(sidelink control information,SCI)。
2、上行时隙中的子载波间隔为30kHz,所述同步信号块集合中候选的2个同步信号块的时域位置为所述同步信号块集合中的第一个时隙和第二个时隙。
如图6B所示,为同步信号块的时域位置的示意图,其中每一个方格的时域长度为0.5毫秒(ms),表示一个时隙,其中4个时隙构成一个SL-SSB Set,所述SL-SSB Set中候选的两个SL-SSB的时域位置,分别位于所述SL-SSB Set中的两个时隙中,也就是说,一个时隙承载一个SL-SSB,一所述SL-SSB Set中的一个时隙为例,所述SL-SSB可以承载在该时隙的第x个(如x=5)OFDM符号开始,前x-1个OFDM符号可以用于承载其他信息,例如可以用承载AGC和SCI。
(二)、L为4,同步信号块集合中有4个可以用于发送同步信号块的时域位置,可以应用于频段大于3GHz,小于6GHz的场景。
上行时隙中的子载波间隔为30kHz,所述同步信号块集合中候选的4个同步信号块的时域位置为所述同步信号块集合中的第一个时隙、第二个时隙、第三个时隙以及第四个时隙。
如图7所示,为同步信号块的时域位置的示意图,其中每一个方格的时域长度为0.5毫秒(ms),表示一个时隙,其中4个时隙构成一个SL-SSB Set,所述SL-SSB Set中候选的四个SL-SSB的时域位置,分别位于所述SL-SSB Set中的四个时隙中,也就是说,一个时隙承载一个SL-SSB,一所述SL-SSB Set中的一个时隙为例,所述SL-SSB可以承载在该时隙的第x个(如x=5)OFDM符号开始,前x-1个OFDM符号可以用于承载其他信息,例如可以用承载AGC和SCI。
(三)、L为8,同步信号块集合有8个可以用于发送同步信号块的时域位置,可以应用于频段大于6GHz的场景。
1、上行时隙中的子载波间隔为60kHz,所述同步信号块集合中候选的8个同步信号块的时域位置为所述同步信号块集合中的8个时隙。
如图8A所示,为同步信号块的时域位置的示意图,其中每一个方格的时域长度为0.25毫秒(ms),表示一个时隙,其中8个时隙构成一个SL-SSB Set,所述SL-SSB Set中候选的八个SL-SSB的时域位置,分别位于所述SL-SSB Set中的八个时隙中,也就是说,一个时隙承载一个SL-SSB,一所述SL-SSB Set中的一个时隙为例,所述SL-SSB可以承载在该时隙的第x个(如x=5)OFDM符号开始,前x-1个OFDM符号可以用于承载其他信息,例如可以用承载AGC和SCI。
2、上行时隙中的子载波间隔为120kHz,所述同步信号块集合中候选的8个同步信号块的时域位置为所述同步信号块集合中的前8个时隙。
如图8B所示,为同步信号块的时域位置的示意图,其中每一个方格的时域长度为0.125毫秒(ms),表示一个时隙,其中16个时隙构成一个SL-SSB Set,所述SL-SSB Set中候选的八个SL-SSB的时域位置,分别位于所述SL-SSB Set中的前八个时隙中,也就是说,一个时隙承载一个SL-SSB,一所述SL-SSB Set中的一个时隙为例,所述SL-SSB可以承载在该时隙的第x个(如x=5)OFDM符号开始,前x-1个OFDM符号可以用于承载其他信息,例如可以用承载AGC和SCI。
所述同步信号块集合占用的时域长度为2毫秒,时间较短,可以实现保证同步信号块和上行传输紧密结合,可以利用采用同步信号块复用上行时隙的方式进行同步信号块的传输。
从上述说明中可以看出,所述同步信号集合中的同步信号块可以承载在一个时隙中,下面对所述同步信号块的构成,以及占用的资源进行介绍。
作为一种可能的实施方式,所述同步信号块中可以包括多个主侧行同步信号和多个辅侧行同步信号,可以保证主侧行同步信号和辅侧行同步信号可以重复发送,进一步,可以保证终端设备之间能够实现同步,示例性的,包括两个重复的主侧行同步信号(primary sidelink synchronization signal,P-SLSS)和两个重复的辅侧行同步信号(secondary sidelink synchronization signal,S-SLSS),所述两个重复的主侧行同步信号占用两个时域符号,所述两个重复的辅侧行同步信号占用两个时域符号。
示例性的,所述时域符号为OFDM符号。
可选的,为了提高所述同步信号块中的资源利用率,所述同步信号块中还可以包括其他信息,例如包括下列中的至少一项:PSBCH、AGC、GAP;且设置AGC可以使所述第二终端设备接收主侧行同步信号和多个辅侧行同步信号时,采用合适的信号接收强度,可以提供所述同步信号块的接收效率;设置GAP可以为所述第二终端设备预留出从信号接收到信号发送的射频转换时间,可以方便后续所述第二终端设备发送信号。
如图9A为本申请实施例提供的一种同步信号块的结构示意图。其中包括两个P-SLSS、两个S-SLSS以及两个PSBCH,其中,一个PSBCH位于两个P-SLSS后,一个PSBCH位于两个S-SLSS后。
如图9B为本申请实施例提供的一种同步信号块的结构示意图。其中包括两个P-SLSS、两个S-SLSS以及两个PSBCH,其中,两个P-SLSS位于两个S-SLSS之前,两个PSBCH位于两个S-SLSS之后。
如图9C为本申请实施例提供的另一种同步信号块的结构示意图。其中包括两个P-SLSS、两个S-SLSS以及两个PSBCH,其中,两个PSBCH位于两个P-SLSS和两个S-SLSS之间。
如图9D为本申请实施例提供的另一种同步信号块的结构示意图。其中包括两个P-SLSS、两个S-SLSS以及两个PSBCH,其中,一个PSBCH位于两个P-SLSS前,一个PSBCH位于两个S-SLSS后,两个P-SLSS和两个S-SLSS介于两个PSBCH之间。
其中,一个S-PLSS在时域上占据一个OFDM符号,一个S-PLSS在频域上可以占用127个资源单位(resource element,RE),在该个OFDM符号中剩余的RE上不发送信息。
一个PSBCH在时域上占据一个OFDM符号,在频域上占据N*12个资源单位(resource  element,RE)。其中,N为PSBCH的频域带宽,以资源块(resource block,RB)为单位,N可以取值12,或20。
一个S-SLSS在时域上占据一个OFDM符号,一个S-SLSS在频域上可以占用127个资源单位(resource element,RE),在该个OFDM符号上S-SSB之内剩余的RE上不发送信息。
作为一种可能的实施方式,在S-PLSS前可以设置一个OFDM符号,用于承载AGC。
为了保证资源的有效利用,在所述同步信号块中所占用的资源上,还可以承载数据,如图10所示,为本申请实施例提供的另一中同步信号块的结构示意图,其中包括14个OFDM符号,第一个OFDM符号用于承载AGC,第二到四个OFDM符号承载SCI,第五到第十OFDM符号用于承载S-SSB和数据,最后一个OFDM符号用于承载GAP。
从频域上,由于第五到第十OFDM符号中的RE在承载了S-SSB后,还存在空闲的RE,可以利用空闲的RE承载数据,可以使得所述同步信号块与数据可以复用时域资源。
所述第一终端设备可以在PSBCH或者侧行链路的系统消息中携带用于指示所述第一终端设备实际发送的M个的同步信号块所在位置的第二指示消息,例如,所述第二指示消息为实际发送的S-SSB的位图bitmap of actual transmitted S-SSB,位图的长度为L,在小于3GHz情况下L可以为2比特(bit);在3~6GHz情况下L可以为4bit;在大于6GHz情况下L可以为8bit。
例如,L=4,实际发送的M个同步信号块是前2个,那么位图(bitmap)的指示信息为1100;L=8,实际发送的M个同步信号块是后4个,那么bitmap的指示信息为00001111。
相应的,当所述第二终端设备在接收到所述第二指示信息后,可以根据所述第二指示消息,在所述第二指示消息指示的位置上检测所述同步信号块。
作为一种可能的实现方式,所述第二终端设备可以进行速率匹配,也就是在接收数据的时候,假定S-SSB的RE或整个OFDM符号上没有数据传输。
基于与方法实施例同一发明构思,本申请实施例还提供了一种通信装置,用于执行上述方法实施例中所述第一终端设备执行的方法,相关特征可参见上述方法实施例,此处不再赘述,如图11所示,该装置包括处理单元1101以及发送单元1102;
所述处理单元1101,用于根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,确定同步信号块集合中实际发送的M个同步信号块的时域位置,所述同步信号块集合为无线帧中用于承载候选同步信号块的时域集合,所述L大于等于2,所述M小于等于L,所述L也可以等于1。
所述发送单元1102,用于在所述同步信号块集合中发送所述M个同步信号块。
在一种可能实施方式中,所述发送单元1102还用于发送第一指示消息,所述第一指示消息用于指示所述第一终端设备发送M个同步信号块。
在一种可能实施方式中,所述发送单元1102还用于发送第二指示消息,所述第二指示消息用于指示所述第一终端设备发送M个同步信号块的所在位置。
在一种可能实施方式中,所述同步信号块集合占用的时域长度可以是5毫秒,也可以是2毫秒。
在一种可能实施方式中,所述同步信号块集合占用的时域长度是5毫秒时,当所述L为2时,不同子载波间隔对应的同步信号块集合中候选的两个同步信号块的时域位置有如下三种情况:
情况一、在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙和第五个时隙;
情况二、在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙和第十个时隙;
情况二、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第十九个时隙和第二十个时隙。
在一种可能实施方式中,所述同步信号块集合占用的时域长度为5毫秒时,当所述L为4时,不同子载波间隔对应的同步信号块集合中候选的四个同步信号块的时域位置有如下三种情况:
情况一、在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第二个时隙、第三个时隙、第四个时隙和第五个时隙。
情况二、在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙和第十个时隙。
情况三、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙和第二十个时隙。
在一种可能实施方式中,所述同步信号块集合占用的时域长度是5毫秒时,当所述L为8时,不同子载波间隔对应的同步信号块集合中候选的八个同步信号块的时域位置有如下三种情况:
情况一、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙、第十个时隙、第十四个时隙、第十五个时隙、第十九个时隙和第二十个时隙;
情况二、在所述上行时隙中的子载波间隔为120kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙、第二十个时隙、第二十九个时隙、第三十个时隙、第三十九个时隙和第四十个时隙。
在一种可能实施方式中,所述同步信号块中可以包括多个主侧行信号和多个辅侧行同步信号,示例性的,所述同步信号块包括两个重复的主侧行同步信号和两个重复的辅侧行同步信号,所述两个重复的主侧行同步信号占用两个时域符号,所述两个重复的辅侧行同步信号占用两个时域符号。
在一种可能实施方式中,所述同步信号块还可以携带有其他信息,示例性的,可以包括下列中的至少一项:PSBCH、AGC、GAP。
基于与方法实施例同一发明构思,本申请实施例还提供了一种通信装置,用于执行上述方法实施例中终端设备执行的方法,相关特征可参见上述方法实施例,此处不再赘述,如图12所示,该装置包括检测单元1201:
所述检测单元,用于根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,检测同步信号块集合中第一终端设备发送的同步信号块,所述同步信号 块集合为无线帧中用于承载候选同步信号块的时域集合,所述L大于等于2,所述L也可以等于1。
在一种可能实施方式中,所述装置还包括接收单元1202,所述接收单元1202用于从所述第一终端设备接收第一指示消息,所述第一指示消息用于指示所述第一终端设备发送M个同步信号块;所述检测单元1201可以基于不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,根据所述第一指示消息,检测同步信号块集合中M个同步信号块中的一个或多个同步信号块。
在一种可能实施方式中,所述接收单元1202用于从所述第一终端设备接收第二指示消息所述第二指示消息用于指示所述第一终端设备发送M个同步信号块的所在位置。所述检测单元1201可以基于不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,根据所述第二指示消息,检测同步信号块集合中M个同步信号块中的一个或多个同步信号块。
在一种可能实施方式中,所述同步信号块集合占用的时域长度可以是5毫秒,也可以是2毫秒。
在一种可能实施方式中,所述同步信号块集合占用的时域长度是5毫秒时,当所述L为2时,不同子载波间隔对应的同步信号块集合中候选的两个同步信号块的时域位置有如下三种情况:
情况一、在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙和第五个时隙;
情况二、在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙和第十个时隙;
情况二、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第十九个时隙和第二十个时隙。
在一种可能实施方式中,所述同步信号块集合占用的时域长度为5毫秒时,当所述L为4时,不同子载波间隔对应的同步信号块集合中候选的四个同步信号块的时域位置有如下三种情况:
情况一、在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第二个时隙、第三个时隙、第四个时隙和第五个时隙。
情况二、在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙和第十个时隙。
情况三、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙和第二十个时隙。
在一种可能实施方式中,所述同步信号块集合占用的时域长度是5毫秒时,当所述L为8时,不同子载波间隔对应的同步信号块集合中候选的八个同步信号块的时域位置有如下三种情况:
情况一、在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中 候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙、第十个时隙、第十四个时隙、第十五个时隙、第十九个时隙和第二十个时隙;
情况二、在所述上行时隙中的子载波间隔为120kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙、第二十个时隙、第二十九个时隙、第三十个时隙、第三十九个时隙和第四十个时隙。
在一种可能实施方式中,所述同步信号块中可以包括多个主侧行信号和多个辅侧行同步信号,示例性的,所述同步信号块包括两个重复的主侧行同步信号和两个重复的辅侧行同步信号,所述两个重复的主侧行同步信号占用两个时域符号,所述两个重复的辅侧行同步信号占用两个时域符号。
在一种可能实施方式中,所述同步信号块还可以携带有其他信息,示例性的,可以包括下列中的至少一项:PSBCH、AGC、GAP。
本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能单元可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台终端设备(可以是个人计算机,手机,或者网络设备等)或处理器(processor)执行本申请各个实施例该方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请实施例中,所述第一终端设备、所述第二终端设备接收均可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域的技术人员可以想到所述第一终端设备可采用图13所示的形式。
如图13所示的通信装置1300,包括至少一个处理器1301、存储器1302,可选的,还可以包括收发器1303。
存储器1302可以是易失性存储器,例如随机存取存储器;存储器也可以是非易失性存储器,例如只读存储器,快闪存储器,硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)、或者存储器1302是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1302可以是上述存储器的组合。
本申请实施例中不限定上述处理器1301以及存储器1302之间的具体连接介质。本申请实施例在图中以存储器1302和处理器1301之间通过总线1304连接,总线1304在图中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线1304可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示, 但并不表示仅有一根总线或一种类型的总线。
处理器1301可以具有数据收发功能,能够与其他设备进行通信,在如图13装置中,也可以设置独立的数据收发模块,例如收发器1303,用于收发数据;处理器1301在与其他设备进行通信时,可以通过收发器1303进行数据传输。
当所述第一终端设备采用图13所示的形式时,图13中的处理器1301可以通过调用存储器1302中存储的计算机执行指令,使得所述基站可以执行上述任一方法实施例中的所述基站执行的方法。
具体的,图11中的发送单元和处理单元的功能/实现过程均可以通过图13中的处理器1301调用存储器1302中存储的计算机执行指令来实现或者通过处理器1301控制收发器1303来实现。或者,图11中的处理单元的功能/实现过程可以通过图13中的处理器1301调用存储器1302中存储的计算机执行指令来实现,图11中的发送单元的功能/实现过程可以通过图13中的收发器1303来实现。
在一个简单的实施例中,本领域的技术人员可以想到所述第一终端设备可采用图14所示的形式。
如图14所示的通信装置1400,包括至少一个处理器1401、存储器1402,可选的,还可以包括收发器1403。
存储器1402可以是易失性存储器,例如随机存取存储器;存储器也可以是非易失性存储器,例如只读存储器,快闪存储器,硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)、或者存储器1402是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1402可以是上述存储器的组合。
本申请实施例中不限定上述处理器1401以及存储器1402之间的具体连接介质。本申请实施例在图中以存储器1402和处理器1401之间通过总线1404连接,总线1404在图中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线1404可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
处理器1401可以具有数据收发功能,能够与其他设备进行通信,在如图14装置中,也可以设置独立的数据收发模块,例如收发器1403,用于收发数据;处理器1401在与其他设备进行通信时,可以通过收发器1403进行数据传输。
当第二终端设备采用图14所示的形式时,图14中的处理器1401可以通过调用存储器1402中存储的计算机执行指令,使得所述终端设备可以执行上述任一方法实施例中的终端设备执行的方法。
具体的,图12中的检测单元和接收单元的功能/实现过程均可以通过图14中的处理器1401调用存储器1402中存储的计算机执行指令来实现或通过处理器1401控制收发器1403实现。图12中的处理单元的功能/实现过程可以通过图14中的处理器1401调用存储器1402中存储的计算机执行指令来实现,图12中的接收单元的功能/实现过程可以通过图14中的收发器1403来实现。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种同步信号发送方法,其特征在于,所述方法包括:
    第一终端设备根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,确定同步信号块集合中实际发送的M个同步信号块的时域位置,所述同步信号块集合为无线帧中用于承载候选同步信号块的时域集合,所述L大于等于2,所述M小于等于L;
    所述第一终端设备在所述同步信号块集合中发送所述M个同步信号块。
  2. 如权利要求1所述的方法,其特征在于,所述同步信号块集合占用的时域长度为5毫秒。
  3. 如权利要求1或2所述的方法,其特征在于,所述L为2;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙和第五个时隙;
    在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙和第十个时隙;
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第十九个时隙和第二十个时隙。
  4. 如权利要求1或2所述的方法,其特征在于,所述L为4;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第二个时隙、第三个时隙、第四个时隙和第五个时隙;
    在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙和第十个时隙;
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙和第二十个时隙。
  5. 如权利要求1或2所述的方法,其特征在于,所述L为8;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙、第十个时隙、第十四个时隙、第十五个时隙、第十九个时隙和第二十个时隙;
    在所述上行时隙中的子载波间隔为120kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙、第二十个时隙、第二十九个时隙、第三十个时隙、第三十九个时隙和第四十个时隙。
  6. 如权利要求1~5任一所述的方法,其特征在于,所述同步信号块中包括两个重复的主侧行同步信号和两个重复的辅侧行同步信号,所述两个重复的主侧行同步信号占用两个时域符号,所述两个重复的辅侧行同步信号占用两个时域符号。
  7. 如权利要求1~5任一所述的方法,其特征在于,所述同步信号块还可以包括下列中的至少一项:
    侧行链路广播信道PSBCH、自动增益控制AGC、保护间隔GAP。
  8. 一种同步信号发送方法,其特征在于,所述方法包括:
    第二终端设备根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,检测同步信号块集合中第一终端设备发送的同步信号块,所述同步信号块集合为无线帧中用于承载候选同步信号块的时域集合,所述L大于等于2。
  9. 如权利要求8所述的方法,其特征在于,所述同步信号块集合占用的时域长度为5毫秒。
  10. 如权利要求8或9所述的方法,其特征在于,所述L为2;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙和第五个时隙;
    在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙和第十个时隙;
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第十九个时隙和第二十个时隙。
  11. 如权利要求8或9所述的方法,其特征在于,所述L为4;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第二个时隙、第三个时隙、第四个时隙和第五个时隙;
    在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙和第十个时隙;
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙和第二十个时隙。
  12. 如权利要求8或9所述的方法,其特征在于,所述L为8;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙、第十个时隙、第十四个时隙、第十五个时隙、第十九个时隙和第二十个时隙;
    在所述上行时隙中的子载波间隔为120kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙、第二十个时隙、第二十九个时隙、第三十个时隙、第三十九个时隙和第四十个时隙。
  13. 如权利要求8~12任一所述的方法,其特征在于,所述同步信号块中包括两个重复的主侧行同步信号和两个重复的辅侧行同步信号,所述两个重复的主侧行同步信号占用两个时域符号,所述两个重复的辅侧行同步信号占用两个时域符号。
  14. 如权利要求8~12任一所述的方法,其特征在于,所述同步信号块还可以包括下 列中的至少一项:
    侧行链路广播信道PSBCH、自动增益控制AGC、保护间隔GAP。
  15. 一种通信装置,其特征在于,所述装置包括处理单元和发送单元:
    所述处理单元,用于根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,确定同步信号块集合中实际发送的M个同步信号块的时域位置,所述同步信号块集合为无线帧中用于承载候选同步信号块的时域集合,所述L大于等于2,所述M小于等于L;
    所述发送单元,用于在所述同步信号块集合中发送所述M个同步信号块。
  16. 如权利要求15所述的装置,其特征在于,所述同步信号块集合占用的时域长度为5毫秒。
  17. 如权利要求15或16所述的装置,其特征在于,所述L为2;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙和第五个时隙;
    在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙和第十个时隙;
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第十九个时隙和第二十个时隙。
  18. 如权利要求15或16所述的装置,其特征在于,所述L为4;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第二个时隙、第三个时隙、第四个时隙和第五个时隙;
    在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙和第十个时隙;
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙和第二十个时隙。
  19. 如权利要求15或16所述的装置,其特征在于,所述L为8;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙、第十个时隙、第十四个时隙、第十五个时隙、第十九个时隙和第二十个时隙;
    在所述上行时隙中的子载波间隔为120kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙、第二十个时隙、第二十九个时隙、第三十个时隙、第三十九个时隙和第四十个时隙。
  20. 如权利要求15~19任一所述的装置,其特征在于,所述同步信号块中包括两个重复的主侧行同步信号和两个重复的辅侧行同步信号,所述两个重复的主侧行同步信号占用两个时域符号,所述两个重复的辅侧行同步信号占用两个时域符号。
  21. 如权利要求15~19任一所述的装置,其特征在于,所述同步信号块还可以包括下列中的至少一项:
    侧行链路广播信道PSBCH、自动增益控制AGC、保护间隔GAP。
  22. 一种通信装置,其特征在于,所述装置包括检测单元:
    所述检测单元,用于根据不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,检测同步信号块集合中第一终端设备发送的同步信号块,所述同步信号块集合为无线帧中用于承载候选同步信号块的时域集合,所述L大于等于2。
  23. 如权利要求22所述的装置,其特征在于,所述同步信号块集合占用的时域长度为5毫秒。
  24. 如权利要求22或23所述的装置,其特征在于,所述L为2;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙和第五个时隙;
    在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙和第十个时隙;
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第十九个时隙和第二十个时隙。
  25. 如权利要求22或23所述的装置,其特征在于,所述L为4;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为15kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第二个时隙、第三个时隙、第四个时隙和第五个时隙;
    在所述上行时隙中的子载波间隔为30kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙和第十个时隙;
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙和第二十个时隙。
  26. 如权利要求22或23所述的装置,其特征在于,所述L为8;
    不同子载波间隔对应的同步信号块集合中候选的L个同步信号块的时域位置,包括:
    在所述上行时隙中的子载波间隔为60kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第四个时隙、第五个时隙、第九个时隙、第十个时隙、第十四个时隙、第十五个时隙、第十九个时隙和第二十个时隙;
    在所述上行时隙中的子载波间隔为120kHz的情况下,所述同步信号块集合中候选的L个同步信号块的时域位置为所述同步信号块集合中的第九个时隙、第十个时隙、第十九个时隙、第二十个时隙、第二十九个时隙、第三十个时隙、第三十九个时隙和第四十个时隙。
  27. 如权利要求22~26任一所述的装置,其特征在于,所述同步信号块中包括两个重复的主侧行同步信号和两个重复的辅侧行同步信号,所述两个重复的主侧行同步信号占用两个时域符号,所述两个重复的辅侧行同步信号占用两个时域符号。
  28. 如权利要求22~26任一所述的装置,其特征在于,所述同步信号块还可以包括下 列中的至少一项:
    侧行链路广播信道PSBCH、自动增益控制AGC、保护间隔GAP。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1~7中任一所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求8~14中任一所述的方法。
PCT/CN2020/071018 2019-01-11 2020-01-08 一种同步信号发送方法及装置 WO2020143695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028428.XA CN111435889B (zh) 2019-01-11 2019-01-11 一种同步信号发送方法及装置
CN201910028428.X 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020143695A1 true WO2020143695A1 (zh) 2020-07-16

Family

ID=71521428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071018 WO2020143695A1 (zh) 2019-01-11 2020-01-08 一种同步信号发送方法及装置

Country Status (2)

Country Link
CN (1) CN111435889B (zh)
WO (1) WO2020143695A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822000B (zh) * 2021-01-19 2022-07-15 深圳市联诚发科技股份有限公司 基于5g控制系统的智能LED显示屏的控制方法及智能LED显示屏
CN114286328A (zh) * 2021-10-11 2022-04-05 北京物资学院 一种无线通信系统中的信号处理方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108390747A (zh) * 2018-01-19 2018-08-10 宇龙计算机通信科技(深圳)有限公司 一种同步信号的发送方法和装置
CN108401533A (zh) * 2017-11-30 2018-08-14 北京小米移动软件有限公司 信息指示方法及装置、基站和用户设备
CN108632982A (zh) * 2017-03-24 2018-10-09 北京展讯高科通信技术有限公司 基站、同步信号块配置方法、用户设备及其同步方法
CN109076477A (zh) * 2018-07-11 2018-12-21 北京小米移动软件有限公司 参考信号的发送和接收方法及装置、基站和用户设备
KR20180136917A (ko) * 2017-06-15 2018-12-26 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438387B2 (en) * 2011-07-27 2016-09-06 Lg Electronics Inc. Method and apparatus for transmitting synchronization signal in wireless communication system
CN104093168B (zh) * 2014-07-31 2017-10-24 武汉邮电科学研究院 一种lte同频邻区检测方法及装置
CN107370579B (zh) * 2016-05-11 2024-03-01 北京华为数字技术有限公司 一种信息的发送方法、接收方法、用户设备及基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632982A (zh) * 2017-03-24 2018-10-09 北京展讯高科通信技术有限公司 基站、同步信号块配置方法、用户设备及其同步方法
KR20180136917A (ko) * 2017-06-15 2018-12-26 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
CN108401533A (zh) * 2017-11-30 2018-08-14 北京小米移动软件有限公司 信息指示方法及装置、基站和用户设备
CN108390747A (zh) * 2018-01-19 2018-08-10 宇龙计算机通信科技(深圳)有限公司 一种同步信号的发送方法和装置
CN109076477A (zh) * 2018-07-11 2018-12-21 北京小米移动软件有限公司 参考信号的发送和接收方法及装置、基站和用户设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "On Remaining Details on RMSI", 3GPP DRAFT; R1-1720170, 1 December 2017 (2017-12-01), Reno, USA, pages 1 - 20, XP051369806 *

Also Published As

Publication number Publication date
CN111435889A (zh) 2020-07-21
CN111435889B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
US20240089921A1 (en) Signal transmitting method and apparatus, signal receiving method and apparatus, device and storage medium
CN110049557B (zh) 随机接入方法及装置
WO2018145566A1 (zh) 一种终端与终端之间通信的方法、网络侧设备和终端
EP4057754A1 (en) Transmission channel configuration method and apparatus, transmission channel sending method and apparatus, device and storage medium
JPWO2019064768A1 (ja) 端末装置、基地局装置、方法及び記録媒体
CN108737039B (zh) 随机接入及响应方法、终端设备、网络设备
WO2021063176A1 (zh) 一种波束的指示方法及装置
CN109428692B (zh) 一种数据传输方法及设备
CN110247731A (zh) 下行控制信息传输方法及基站、终端
US11357046B2 (en) Method and apparatus for controlling signal transmission of terminal supporting plurality of carriers
WO2020244393A1 (zh) 一种数据传输方法及装置
WO2009046668A1 (fr) Procédé et appareil de transmission de service dans le système de duplexage par répartition dans le temps
WO2020143695A1 (zh) 一种同步信号发送方法及装置
US11750345B2 (en) Electronic device, wireless communication method and computer readable medium
US11856560B2 (en) System information transmission method, and related device and system
US20240064806A1 (en) Method and apparatus for transmitting uplink information
EP3641150B1 (en) Beam training method, initiator device, and responder device
CN113573246B (zh) 一种组播通信方法、装置和系统
WO2017193283A1 (zh) V2v通信方法、装置与终端
CN104956750A (zh) 一种资源指示方法、装置和系统
US20240057168A1 (en) Method for determining transmission reception point, network device, and storage medium
CN112106417B (zh) 一种通信方法及装置
JP7477094B2 (ja) 通信方法、通信装置、通信システム、コンピュータ可読記憶媒体、コンピュータプログラムおよびチップ
CN112118637B (zh) 配置rach参数的方法、基站及通信系统
CN104717763A (zh) 传输数据的方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738338

Country of ref document: EP

Kind code of ref document: A1