WO2020143691A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2020143691A1
WO2020143691A1 PCT/CN2020/071003 CN2020071003W WO2020143691A1 WO 2020143691 A1 WO2020143691 A1 WO 2020143691A1 CN 2020071003 W CN2020071003 W CN 2020071003W WO 2020143691 A1 WO2020143691 A1 WO 2020143691A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
reference signal
tested
measurement interval
frequency domain
Prior art date
Application number
PCT/CN2020/071003
Other languages
English (en)
French (fr)
Inventor
郑黎丽
张宏平
曾清海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020143691A1 publication Critical patent/WO2020143691A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device that can configure a measurement interval.
  • the mobility management of the terminal device is divided into idle state mobility management and connected state mobility management.
  • the idle state mobility management is mainly used for the process of cell selection and/or reselection.
  • the connected state mobility Management is mainly used for the process of cell handover. Whether cell selection and/or reselection or cell handover is performed based on the measurement results of the terminal device, the terminal device measurement is the basis for the mobility management of the terminal device.
  • the measurement of the connected terminal device refers to a process in which the terminal device obtains the corresponding measurement result according to the reference signal to be measured contained in the measurement configuration information after acquiring the measurement configuration information delivered by the base station.
  • the terminal device can operate under multiple operating bandwidths.
  • the terminal device when performing the measurement of the terminal device, sometimes the terminal device needs to perform frequency point switching, so that the frequency point of the working bandwidth of the terminal device is switched to the frequency point of the reference signal to be measured to realize the terminal device measurement.
  • the base station can configure a measurement gap for the terminal device.
  • the measurement interval refers to a period of time configured for the terminal device that does not require the terminal device to send and receive data. During this period of time, the terminal device completes frequency point switching and measurement, and then switches to work after the measurement is completed Bandwidth frequency, continue to send and receive data.
  • the base station determines that the terminal device does not need the measurement interval, it may also instruct the terminal device to release the measurement interval.
  • the base station configuring the measurement interval and the release measurement interval for the terminal device may be slower than the switching of the operating bandwidth of the terminal device, that is, the configuration and release measurement interval of the base station and the terminal device
  • the switching of the working bandwidth is not synchronized, so there is a problem of low configuration efficiency of the measurement interval, which may even affect the measurement efficiency of the terminal device.
  • the embodiments of the present application disclose a communication method and device to improve the configuration efficiency of the measurement interval.
  • an embodiment of the present application discloses a communication method, including:
  • the terminal device determines the relationship between the frequency domain resource of the current working bandwidth and the frequency domain resource of the reference signal to be tested;
  • the terminal device determines whether to ignore the measurement interval according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested.
  • the terminal device can determine whether to ignore the measurement interval according to the relationship between its own frequency domain resource and the frequency domain resource of the reference signal to be tested, thereby improving the efficiency of the terminal device in applying the measurement interval. Further, It can also improve the efficiency of terminal equipment measurement. Further, the efficiency of terminal equipment measurement can also be improved.
  • the terminal device ignores Measurement interval when the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested indicates that the reference signal to be tested is within the working bandwidth.
  • the terminal device can determine whether to ignore the measurement interval according to whether the reference signal to be tested is within the working bandwidth.
  • the frequency domain resource of the reference signal to be tested when the operating bandwidth of the terminal device is characterized by a frequency band, and the frequency domain resource of the reference signal to be tested is located in the current operating frequency band of the terminal device, the frequency domain of the operating bandwidth
  • the relationship between the resource and the frequency domain resource of the reference signal to be tested is that the reference signal to be tested is within the working bandwidth of the terminal device;
  • the operating bandwidth of the terminal device is characterized by a carrier and the frequency domain resource of the reference signal to be tested is located within the carrier currently operating by the terminal device, the frequency domain resource of the operating bandwidth and the to-be-tested
  • the relationship between the frequency domain resources of the reference signal is that the reference signal to be tested is within the working bandwidth of the terminal device;
  • the frequency domain resource of the operating bandwidth is characterized by a bandwidth part BWP
  • the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device
  • the frequency domain resource of the operating bandwidth is The relationship between frequency domain resources of the reference signal to be tested is that the reference signal to be tested is within the working bandwidth of the terminal device.
  • the terminal device ignores the measurement interval;
  • the target frequency of the working bandwidth is the frequency point, minimum frequency or maximum frequency of the working bandwidth.
  • the terminal device can determine whether to ignore the measurement interval according to whether the difference between the target frequency of the working bandwidth and the frequency of the reference signal to be measured is within a preset range.
  • the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB and the same frequency measurement is performed on the terminal device
  • the terminal device ignores the measurement interval
  • the terminal device ignores the measurement interval.
  • the terminal device does not need the measurement interval, that is, the measurement interval is ignored:
  • the frequency domain resource of the reference signal to be tested is located in the BWP currently activated by the terminal device;
  • the current active BWP of the terminal device is the initial BWP.
  • An optional design also includes:
  • the terminal device obtains measurement interval capability information indicating that the terminal device corresponds to at least one supported bandwidth resource or bandwidth resource combination, and whether the terminal device requires a measurement interval for the corresponding reference signal to be tested ;
  • the terminal device determines whether to ignore the measurement interval based on the measurement interval capability information.
  • the terminal device can determine whether to ignore the measurement interval based on the measurement interval capability information.
  • the terminal device after the terminal device obtains the measurement interval capability information, the terminal device further includes:
  • the terminal device reports the measurement interval capability information through radio resource control RRC signaling.
  • the terminal device reporting the measurement interval capability information through radio resource control RRC signaling includes:
  • the terminal device After receiving the RRC reconfiguration information, the terminal device configures its own working bandwidth based on the reconfiguration information, and reports the measurement interval capability information through the RRC signaling based on the configured working bandwidth.
  • the base station may transmit reconfiguration information to the terminal device, so that the terminal device configures its own working bandwidth according to the received reconfiguration information.
  • the measurement interval capability information includes at least one field, where each field indicates that the terminal device corresponds to each supported bandwidth resource or combination of bandwidth resources, and the terminal device When the reference signal to be measured is located in each frequency domain, is the measurement interval required?
  • the communication method of the first aspect above is exemplified by the implementation of the terminal device, and the communication method of the first aspect may also be implemented by components (such as chips or circuits) that can be configured in the terminal device.
  • an embodiment of the present application discloses a communication method, including:
  • the base station determines the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested;
  • the base station determines whether to ignore the measurement interval according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested.
  • the base station can determine whether to ignore the measurement interval according to the frequency domain position relationship between the operating bandwidth of the terminal device and the reference signal to be measured.
  • the base station when the base station determines to ignore the measurement interval, it can continue normal data scheduling and data transmission and reception to ensure the efficiency of data transmission and reception. In addition, when the base station determines not to ignore the measurement interval, it indicates that the terminal device currently needs to perform frequency switching and measurement, which affects the data interaction with the base station. In this case, the data scheduling and data transmission and reception can be suspended, thereby reducing the network resources. waste.
  • the The base station ignores the measurement interval.
  • the base station ignores the measurement interval
  • the target frequency of the working bandwidth is the frequency point, minimum frequency or maximum frequency of the working bandwidth.
  • the base station before determining whether the difference between the target frequency of the operating bandwidth and the frequency of the reference signal to be tested is within a preset range, the base station further includes:
  • the base station obtains the preset range reported by the terminal device.
  • the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB and the same frequency measurement is performed on the terminal device
  • the base station ignores the measurement interval
  • the base station ignores the measurement interval.
  • An optional design also includes:
  • the base station obtains measurement interval capability information indicating that the terminal device corresponds to at least one supported bandwidth resource or a combination of bandwidth resources, and whether the terminal device requires a measurement interval for the corresponding reference signal to be tested;
  • the base station determines whether to ignore the measurement interval based on the measurement interval capability information.
  • the communication method of the second aspect above is exemplified by base station implementation, and the communication method of the second aspect may also be implemented by components (such as chips or circuits) that can be configured at the base station.
  • an embodiment of the present application discloses a communication device, which is applied to a terminal device and includes:
  • the processor is used to determine the relationship between the frequency domain resource of the current working bandwidth and the frequency domain resource of the reference signal to be tested, and according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested Relationship to determine whether to ignore the measurement interval.
  • the processor when the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB, the processor is specifically used when the frequency domain resource of the working bandwidth and the frequency of the reference signal to be tested The relationship between domain resources indicates that when the reference signal to be tested is within the operating bandwidth, the processor ignores the measurement interval.
  • the frequency domain resource of the reference signal to be tested when the operating bandwidth of the terminal device is characterized by a frequency band, and the frequency domain resource of the reference signal to be tested is located in the frequency band currently operating by the terminal device, the frequency domain of the operating bandwidth
  • the relationship between the resource and the frequency domain resource of the reference signal to be tested is that the reference signal to be tested is within the working bandwidth of the terminal device;
  • the operating bandwidth of the terminal device is characterized by a carrier and the frequency domain resource of the reference signal to be tested is located within the carrier currently operating by the terminal device, the frequency domain resource of the operating bandwidth and the to-be-tested
  • the relationship between the frequency domain resources of the reference signal is that the reference signal to be tested is within the working bandwidth of the terminal device;
  • the frequency domain resource of the operating bandwidth is characterized by a bandwidth part BWP
  • the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device
  • the frequency domain resource of the operating bandwidth is The relationship between frequency domain resources of the reference signal to be tested is that the reference signal to be tested is within the working bandwidth of the terminal device.
  • the processor is specifically used when the relationship between the frequency domain resource of the operating bandwidth and the frequency domain resource of the reference signal to be tested indicates that the target frequency of the operating bandwidth and the When the difference of the frequency of the measured reference signal is within the preset range, the processor ignores the measurement interval;
  • the target frequency of the working bandwidth is the frequency point, minimum frequency or maximum frequency of the working bandwidth.
  • the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB and the same frequency measurement is performed on the terminal device
  • the processor is further configured to ignore the measurement interval when the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device;
  • the processor is further configured to ignore the measurement interval when the BWP currently activated by the terminal device is the initial BWP.
  • An optional design also includes:
  • the processor is further configured to obtain measurement interval capability information indicating that the terminal device corresponds to at least one supported bandwidth resource or a combination of bandwidth resources, and the terminal device targets the corresponding reference signal to be tested Whether the measurement interval is required;
  • the processor is further configured to determine whether to ignore the measurement interval based on the measurement interval capability information.
  • An optional design also includes:
  • the transceiver After acquiring the measurement interval capability information, the transceiver is used to report the measurement interval capability information through radio resource control RRC signaling.
  • the transceiver is specifically configured to, after receiving RRC reconfiguration information, configure its own operating bandwidth based on the reconfiguration information, and based on the configured operating bandwidth, through the RRC signaling Report the measurement interval capability information.
  • the measurement interval capability information includes at least one field, where each field indicates that the terminal device corresponds to each supported bandwidth resource or combination of bandwidth resources, and the terminal device When the reference signal to be measured is located in each frequency domain, is the measurement interval required?
  • the communication device in the third aspect may be a terminal device, or may also be a component (chip or circuit) that can be used for the terminal device.
  • an embodiment of the present application discloses a communication device, which is applied to a base station and includes:
  • the processor is used to determine the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested, and according to the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested The relationship between them determines whether to ignore the measurement interval.
  • the processor is specifically used for,
  • the processor ignores the measurement interval.
  • the processor is specifically used when the relationship between the frequency domain resource of the operating bandwidth and the frequency domain resource of the reference signal to be tested indicates that the target frequency of the operating bandwidth and the When the frequency difference of the reference signal is within the preset range, the measurement interval is ignored;
  • the target frequency of the working bandwidth is the frequency point, minimum frequency or maximum frequency of the working bandwidth.
  • An optional design also includes:
  • the transceiver Before determining whether the difference between the target frequency of the working bandwidth and the frequency of the reference signal to be tested is within a preset range, the transceiver is used to obtain the preset range reported by the terminal device.
  • the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB and the same frequency measurement is performed on the terminal device
  • the processor is further configured to ignore the measurement interval when the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device;
  • the processor is further configured to ignore the measurement interval when the BWP currently activated by the terminal device is the initial BWP.
  • the transceiver is further used to obtain measurement interval capability information indicating that the terminal device corresponds to at least one supported bandwidth resource or a combination of bandwidth resources, and the terminal Whether the device needs a measurement interval for the corresponding reference signal to be tested;
  • the processor is further configured to determine whether to ignore the measurement interval based on the measurement interval capability information.
  • the communication device of the fourth aspect above may be a base station, or may also be a component (chip or circuit) that can be used in the base station.
  • an embodiment of the present application discloses a communication method, including: the terminal device reports measurement interval capability information, and the measurement interval capability information indicates that the terminal device corresponds to at least one supported BWP or BWP combination. Whether the terminal device needs a measurement interval for the corresponding reference signal to be tested.
  • the terminal device can report the measurement interval capability information, so that the base station determines that the terminal device corresponds to at least one supported BWP or BWP combination according to the received measurement interval information. Whether the measurement interval is required for the corresponding reference signal to be tested.
  • the BWP in the above "at least one BWP or BWP combination” may refer to the BWP configured by the base station for the terminal device, or may only refer to the activated BWP among the BWP configured by the base station for the terminal device, which is not limited in the present invention.
  • an embodiment of the present application discloses a communication method, including: a base station acquiring measurement interval capability information indicating that the terminal device corresponds to at least one supported BWP or BWP combination, and the terminal device Whether the measurement interval is required for the corresponding reference signal to be tested;
  • the base station determines whether to configure a measurement interval according to the measurement interval capability information.
  • the base station can determine whether the terminal device corresponds to at least one supported BWP or BWP combination according to the received measurement interval information. Measurement interval, and further determine whether the measurement interval needs to be configured accordingly.
  • the BWP in the above "at least one BWP or BWP combination” may refer to the BWP configured by the base station for the terminal device, or may only refer to the activated BWP among the BWP configured by the base station for the terminal device, which is not limited in the present invention.
  • an embodiment of the present application discloses a communication method, including:
  • the base station determines the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested;
  • the base station determines that the reference signal to be tested is located in the active BWP of the terminal device or is located in multiple locations according to the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested Between the frequency domain positions where BWP is activated, the base station determines that there is no need to configure a measurement interval for the terminal device.
  • the base station can determine whether a measurement interval is needed based on the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested, and further determine whether to configure measurement based on this interval.
  • an embodiment of the present application discloses a communication method, including:
  • the base station determines the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested;
  • the base station determines the difference between the target frequency of the working bandwidth and the frequency of the reference signal to be tested according to the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested When the value is within a preset range, the base station determines that it is not necessary to configure a measurement interval for the terminal device, and the target frequency of the working bandwidth is the frequency point, minimum frequency, or maximum frequency of the working bandwidth.
  • an embodiment of the present application discloses a communication device, including:
  • the memory is used to store program instructions
  • the processor is configured to call and execute the program instructions stored in the memory to cause the communication device to execute the communication method described in the first aspect, or any one of the possible design methods in the first aspect, Or the fifth aspect, or any one of the possible design methods of the fifth aspect.
  • an embodiment of the present application discloses a communication device, including:
  • the memory is used to store program instructions
  • the processor is configured to call and execute program instructions stored in the memory to cause the communication device to execute the communication method described in the second aspect, or any method in the second aspect of the possible design, Or the communication method described in the sixth aspect, or any one of the possible designs in the sixth aspect, or the communication method described in the seventh aspect, or any one of the possible designs in the seventh aspect, Or the eighth aspect, or the communication method described in any possible design method of the eighth aspect.
  • the present application provides a computer-readable storage medium having instructions stored therein, which when executed on a computer, causes the computer to execute the first aspect, or any of the first aspect A communication method according to a method in a possible design, or the communication method according to the fifth aspect, or any method in the fifth aspect.
  • the present application provides a computer-readable storage medium having instructions stored therein, which when executed on a computer, causes the computer to execute the second aspect, or any of the second aspect
  • a communication method according to a method in a possible design, or the sixth aspect, or a communication method according to any method in the sixth aspect, or a seventh aspect, or any of the seventh aspect The communication method described in a possible design method, or the eighth aspect, or the communication method described in any one of the possible design methods in the eighth aspect.
  • a computer program product which includes instructions, which when executed, causes the communication device to implement the first aspect, or the method in any one of the possible designs of the first aspect.
  • a fourteenth aspect there is also provided a computer program product which includes instructions, which when executed, causes the communication device to implement the second aspect, or the method in any possible design of the second aspect
  • the communication method, or the eighth aspect, or the communication method described in any one of the possible design methods of the eighth aspect is also provided a computer program product which includes instructions, which when executed, causes the communication device to implement the second aspect, or the method in any possible design of the second aspect.
  • a communication device including:
  • the first determining module is used to determine the relationship between the frequency domain resource of the current working bandwidth and the frequency domain resource of the reference signal to be tested;
  • the second determining module is configured to determine whether to ignore the measurement interval according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested.
  • the second determination module when the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB, the second determination module is specifically configured to use the frequency domain resource of the operating bandwidth and the reference signal to be tested When the relationship between the frequency domain resources indicates that the reference signal to be tested is within the operating bandwidth, the second determination module ignores the measurement interval.
  • the frequency domain resource of the reference signal to be tested when the operating bandwidth of the terminal device is characterized by a frequency band, and the frequency domain resource of the reference signal to be tested is located in the current operating frequency band of the terminal device, the frequency domain of the operating bandwidth
  • the relationship between the resource and the frequency domain resource of the reference signal to be tested is that the reference signal to be tested is within the working bandwidth of the terminal device;
  • the operating bandwidth of the terminal device is characterized by a carrier and the frequency domain resource of the reference signal to be tested is located within the carrier currently operating by the terminal device, the frequency domain resource of the operating bandwidth and the to-be-tested
  • the relationship between the frequency domain resources of the reference signal is that the reference signal to be tested is within the working bandwidth of the terminal device;
  • the frequency domain resource of the operating bandwidth is characterized by a bandwidth part BWP
  • the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device
  • the frequency domain resource of the operating bandwidth is The relationship between frequency domain resources of the reference signal to be tested is that the reference signal to be tested is within the working bandwidth of the terminal device.
  • the second determining module is specifically used when the relationship between the frequency domain resource of the operating bandwidth and the frequency domain resource of the reference signal to be tested indicates that the target frequency of the operating bandwidth is When the frequency difference of the reference signal to be measured is within a preset range, the second determination module ignores the measurement interval;
  • the target frequency of the working bandwidth is the frequency point, minimum frequency or maximum frequency of the working bandwidth.
  • the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB and the same frequency measurement is performed on the terminal device
  • the second determining module is further configured to ignore the measurement interval when the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device;
  • the second determining module is further configured to ignore the measurement interval when the BWP currently activated by the terminal device is the initial BWP.
  • the second determining module is further used to obtain measurement interval capability information, where the measurement interval capability information indicates that the terminal device corresponds to at least one supported bandwidth resource or a combination of bandwidth resources. Whether the terminal device needs a measurement interval for the corresponding reference signal to be tested;
  • the second determination module is also used to determine whether to ignore the measurement interval based on the measurement interval capability information.
  • An optional design also includes:
  • the sending module After acquiring the measurement interval capability information, the sending module is configured to report the measurement interval capability information through radio resource control RRC signaling.
  • the sending module is specifically configured to, after receiving RRC reconfiguration information, configure its own working bandwidth based on the reconfiguration information, and based on the configured working bandwidth, through the RRC signaling Report the measurement interval capability information.
  • the measurement interval capability information includes at least one field, where each field indicates that the terminal device corresponds to each supported bandwidth resource or combination of bandwidth resources, and the terminal device When the reference signal to be measured is located in each frequency domain, is the measurement interval required?
  • the above-mentioned fifteenth aspect communication device may be a terminal device, or may also be a component (chip or circuit) that can be used for the terminal device.
  • an embodiment of the present application discloses a communication device, including:
  • the third determining module is used to determine the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested;
  • the fourth determining module is configured to determine whether to ignore the measurement interval according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested.
  • the fourth determining module is specifically used when the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested indicates that the reference signal to be tested is in the When the working bandwidth of the terminal device is within the measurement interval, it is determined to ignore the measurement interval.
  • the fourth determining module is specifically used when the relationship between the frequency domain resource of the operating bandwidth and the frequency domain resource of the reference signal to be tested indicates that the target frequency of the operating bandwidth is When the frequency difference of the reference signal to be measured is within the preset range, the measurement interval is ignored;
  • the target frequency of the working bandwidth is the frequency point, minimum frequency or maximum frequency of the working bandwidth.
  • An optional design also includes:
  • the receiving module Before determining whether the difference between the target frequency of the working bandwidth and the frequency of the reference signal to be tested is within a preset range, the receiving module is configured to acquire the preset range reported by the terminal device.
  • the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB and the same frequency measurement is performed on the terminal device
  • the receiving module is further configured to ignore the measurement interval when the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device;
  • the receiving module is further configured to ignore the measurement interval when the BWP currently activated by the terminal device is the initial BWP.
  • the receiving module is further configured to obtain measurement interval capability information indicating that the terminal device corresponds to at least one supported bandwidth resource or a combination of bandwidth resources. The terminal Whether the device needs a measurement interval for the corresponding reference signal to be tested;
  • the fourth determination module is also used to determine whether to ignore the measurement interval based on the measurement interval capability information.
  • the communication device may be a base station, or may be a component (chip or circuit) that can be used in the base station.
  • FIG. 1 is a schematic diagram of a working process of a communication method disclosed in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a frequency domain position relationship between a BWP activated by a terminal device and a reference signal SSB to be tested in a communication method disclosed in an embodiment of the present application;
  • 3(a) is a schematic diagram of a frequency domain distance in the communication method disclosed in the embodiment of the present application.
  • 3(b) is a schematic diagram of another frequency domain distance in the communication method disclosed in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of another workflow of determining whether to ignore a measurement interval in the communication method disclosed in the embodiment of the present application;
  • 5(a) is a schematic diagram of a bitmap for measuring interval capability information in the communication method disclosed in an embodiment of the present application
  • 5(b) is a schematic diagram of another bitmap for measuring interval capability information in the communication method disclosed in the embodiment of the present application.
  • 5(c) is a schematic diagram of another bitmap for measuring interval capability information in the communication method disclosed in the embodiment of the present application.
  • 6(a) is a schematic diagram of a bitmap for measuring interval capability information in the communication method disclosed in the embodiment of the present application;
  • 6(b) is a schematic diagram of another bitmap for measuring interval capability information in the communication method disclosed in the embodiment of the present application.
  • 6(c) is a schematic diagram of another bitmap for measuring interval capability information in the communication method disclosed in the embodiment of the present application.
  • 6(d) is a schematic diagram of yet another bitmap for measuring interval capability information in the communication method disclosed in the embodiment of the present application.
  • 6(e) is a schematic diagram of another bitmap for measuring interval capability information in the communication method disclosed in the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another communication method disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal device disclosed in an embodiment of the present application.
  • embodiments of the present application disclose a communication method and device.
  • the reference signal may include a synchronization signal/physical broadcast channel block (SS (Synchronization Signal)/PBCH Block, SSB), or a channel state information reference signal (Channel State Information Reference, CSI-RS ), or other reference signals, the invention is not limited.
  • SS Synchronization Signal
  • PBCH Block PBCH Block
  • CSI-RS Channel State Information Reference
  • An SSB consists of a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS), a physical broadcast channel (physical broadcast channel, PBCH), and a physical broadcast channel demodulation reference signal required to demodulate the PBCH (Physical broadcast-channel-demodulation reference signal, PBCH-DMRS).
  • primary synchronization signal primary synchronization signal
  • secondary synchronization signal secondary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • PBCH-DMRS Physical broadcast channel demodulation reference signal
  • the reference signal to be measured is SSB
  • the UE measures the synchronization signal (synchronization signals, SS) in the SSB, specifically, the secondary synchronization signal SSS therein.
  • the reference signal is related to the beam.
  • a beam can be understood as a spatial resource, and can refer to a transmission or reception precoding vector with energy transmission directivity.
  • the sending or receiving precoding vector can be identified by index information, which can correspond to the resource identity (ID) of the configured terminal, for example, the index information can correspond to the configured CSI-RS identification or resource ; It can also be the identifier or resource corresponding to the configured SSB; it can also be the identifier or resource corresponding to the configured uplink sounding reference signal (Sounding Reference) (SRS).
  • the index information may also be index information displayed or implicitly carried by a signal or channel carried by a beam.
  • the directivity of energy transmission may refer to the precoding process of the signal to be sent through the precoding vector, the signal after the precoding process has a certain spatial directivity, and the precoding process after receiving the precoding vector
  • the signal has better received power, such as satisfying the reception demodulation signal-to-noise ratio, etc.; the energy transmission directivity may also mean that the same signal sent from different spatial positions received by the precoding vector has different received power.
  • the same communication device may have different precoding vectors, and different devices may also have different precoding vectors, that is, corresponding to different beams.
  • one communication device may use one or more of multiple different precoding vectors at the same time, that is, one beam or multiple beams may be formed at the same time.
  • the first embodiment of the present application discloses a communication method.
  • the communication method includes the following steps:
  • Step S11 The terminal device determines the relationship between the frequency domain resource of the current working bandwidth and the frequency domain resource of the reference signal to be tested.
  • the working bandwidth of the terminal device may take various forms.
  • terminal devices can operate in different bands or carriers; and in a 5th-generation (5G) system , Each carrier can be further subdivided into different bandwidth parts (bandwidth parts (BWP), terminal equipment can activate one or more BWP, thus working in an active BWP (active BWP), in addition, as an extension, the terminal It may also work in a combination of multiple activated BWP.
  • LTE long-term evolution
  • 5G 5th-generation
  • BWP bandwidth parts
  • active BWP active BWP
  • the terminal It may also work in a combination of multiple activated BWP.
  • the frequency domain resource can be characterized by the bandwidth and/or position occupied by the frequency domain resource, and the position of the frequency domain resource is characterized by the frequency point, minimum frequency, or maximum frequency of the frequency domain resource.
  • the frequency domain resource of the working bandwidth includes the occupied bandwidth, and the frequency point, minimum frequency or maximum frequency of the working bandwidth;
  • the frequency domain resource of the reference signal to be tested includes the bandwidth occupied by the reference signal to be tested, and the The frequency, minimum frequency or maximum frequency of the reference signal to be measured.
  • the reference signal to be tested is an SSB
  • the position of the reference signal to be tested is usually characterized by the frequency of the reference signal to be tested.
  • the frequency point of the working bandwidth refers to the center frequency point of the working bandwidth.
  • the frequency of the reference signal to be measured refers to the center frequency point of the reference signal to be measured.
  • one SSB occupies 20 consecutive resource blocks (RBs).
  • the reference signal to be tested is SSB
  • the frequency of the reference signal to be tested refers to SSB No. 10 RB No. 0
  • the frequency of the subcarrier is SSB No. 10 RB No. 0.
  • frequency point in the embodiment of the present application may also be expressed as “frequency”, and this embodiment of the present application does not make a distinction.
  • the terminal device may acquire the frequency domain resource of the reference signal to be measured through the measurement configuration of the base station.
  • the relationship between the frequency domain resource of the working bandwidth of the terminal device and the frequency domain resource of the reference signal under test can be characterized in various forms.
  • the frequency domain position relationship can be as follows One or more combinations: whether the frequency domain resource of the reference signal under test is within the working bandwidth of the terminal device (that is, the operating bandwidth of the terminal device covers the reference signal under test in the frequency domain), and the target frequency of the working bandwidth ( That is, whether the difference between the frequency of the working bandwidth, the minimum frequency, or the maximum frequency) and the frequency of the reference signal under test is within a preset range, and whether the frequency domain resource of the reference signal under test is located between the two activated BWPs of the terminal device Whether the frequency domain distance between the activated BWP of the terminal device and the reference signal to be tested is within a preset distance range, etc.
  • Step S12 The terminal device determines whether to ignore the measurement interval according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested.
  • the terminal device determines not to ignore the measurement interval, it means that the data transmission is not performed within the measurement interval, indicating that the terminal device can perform frequency switching and measurement of the terminal device within the time interval of the measurement interval, and after the measurement is completed, Then switch to the frequency point of the working bandwidth to continue data transmission.
  • the terminal device can perform data transmission within the measurement interval, which means that during the measurement interval, when the base station normally performs data scheduling, the terminal device can also send and receive data normally.
  • the specific configuration of the measurement interval can be pre-configured by the base station and transmitted to the terminal device.
  • the configuration of the measurement interval may include but is not limited to a combination of one or more of the following: measurement interval type, measurement interval period, and measurement interval deviation.
  • the base station can transmit the measurement interval to the terminal equipment through radio resource control (RRC) signaling.
  • RRC signaling may be RRC reconfiguration signaling (that is, RRC Reconfiguration).
  • the signaling includes measurement interval information (for example, the measConfig information element carries the measurement interval information), so that the terminal device acquires the measurement interval.
  • the RRC Reconfiguration signaling may also include other measurement configuration information, which is not limited in this embodiment of the present application.
  • An embodiment of the present application discloses a communication method.
  • a terminal device determines a relationship between a frequency domain resource of a current working bandwidth and a frequency domain resource of a reference signal to be tested, and according to the frequency domain resource of the working bandwidth and The relationship between the frequency domain resources of the reference signal to be tested determines whether to ignore the measurement interval.
  • the base station usually judges whether the terminal device needs the measurement interval, and the base station configures the measurement interval for the terminal device every time it needs it. When not needed, the base station instructs the terminal device to release the measurement interval.
  • the base station configuring the measurement interval and the release measurement interval for the terminal device may be slower than the switching of the operating bandwidth of the terminal device, that is, the configuration and release measurement interval of the base station is not synchronized with the switching of the operating bandwidth of the terminal device, which may cause the configuration efficiency of the measurement interval to be low.
  • the activated BWP (ie, active BWP) of the terminal device can be frequently switched in various ways.
  • the terminal device can perform BWP switching through RRC signaling transmitted by the base station; or, the terminal device can implement BWP switching through downlink control signaling (downlink control information, DCI) transmitted by the base station; or, the terminal device can also be based on a timer ( timer) to implement BWP switching; or, based on the random access channel (random access channel, RACH) trigger, to implement BWP switching.
  • the base station configures the measurement interval for the terminal device through RRC signaling and instructs the terminal device to release the measurement interval, which is a slow process.
  • the terminal device has activated a new BWP and needs a measurement interval during the measurement process, but has not received the measurement interval configured by the base station, that is, the terminal device cannot obtain the measurement interval in time, or appears
  • the terminal device has switched to the newly activated BWP, and the measurement interval is no longer required for the measurement, but the measurement interval configured by the base station has not been released, that is, the measurement interval that is no longer needed continues to take effect, so there is a measurement interval configuration
  • the problem of lower efficiency is a measurement interval configuration
  • the terminal device can determine whether to ignore the measurement interval according to the relationship between its own frequency domain resource and the frequency domain resource of the reference signal to be tested.
  • the solution of the embodiments of the present application can improve the efficiency of the terminal device applying measurement intervals, and further, can also improve the efficiency of the terminal device measurement.
  • the base station usually configures the measurement interval and the release measurement interval for the terminal device through RRC signaling, so the RRC signaling is frequently transmitted.
  • the terminal device can determine whether to ignore the measurement interval based on the relationship between the frequency domain resource of its own working bandwidth and the frequency domain resource of the reference signal to be tested, without requiring the base station to frequently configure measurement for the terminal device through RRC signaling
  • the interval and the release measurement interval therefore, also solves the problem of requiring frequent transmission of RRC signaling in the prior art.
  • the relationship between the frequency domain resource of the working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested may be in various forms.
  • the terminal device may determine whether to ignore the measurement interval in various ways .
  • the terminal device determines the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested Relationship between the two, determine whether to ignore the measurement interval, including:
  • the terminal device ignores the measurement interval.
  • the The terminal equipment ignores the measurement interval.
  • the terminal device When the reference signal to be tested is within the working bandwidth of the terminal device, it indicates that the working bandwidth of the terminal device covers the reference signal to be tested in the frequency domain, and the terminal device does not need to perform frequency point measurement on the terminal device Switch. In this case, the terminal device can perform data transmission within the measurement interval, which means that the terminal device can also send and receive data normally during the measurement interval. That is, when the reference signal to be measured is within the operating bandwidth of the terminal device, the terminal device may ignore the measurement interval.
  • the operating bandwidth of the terminal device may take various forms.
  • the operating bandwidth of the terminal device may include a band, and/or include a carrier, and/or include a BWP.
  • the terminal device determines whether the reference signal to be tested is within the working bandwidth of the terminal device in different ways:
  • the frequency domain resource of the reference signal to be tested is located in the frequency band currently operating by the terminal device, the frequency domain resource of the operating bandwidth and the frequency of the reference signal to be tested
  • the relationship between domain resources is that the reference signal to be tested is within the working bandwidth of the terminal device.
  • the frequency domain resource of the reference signal to be tested is located in the frequency band currently operated by the terminal device, which means that the frequency band currently operated by the terminal device covers the reference signal to be tested in the frequency domain.
  • the frequency domain resource of the reference signal to be tested when the operating bandwidth of the terminal device is characterized by a carrier and the frequency domain resource of the reference signal to be tested is located within the carrier currently operating by the terminal device, the frequency domain resource of the operating bandwidth and the to-be-tested
  • the relationship between frequency domain resources of the reference signal is that the reference signal to be tested is within the working bandwidth of the terminal device.
  • the frequency domain resource of the reference signal to be tested is located in the carrier currently operating by the terminal device, which means that the carrier currently operating by the terminal device covers the reference signal to be tested in the frequency domain.
  • the frequency domain resource of the operating bandwidth is The relationship between frequency domain resources of the reference signal to be tested is that the reference signal to be tested is within the working bandwidth of the terminal device.
  • the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device, which means that the BWP currently activated by the terminal device covers the reference signal to be tested in the frequency domain.
  • the terminal device activates more than two BWPs, and the frequency domain resource of the reference signal to be tested is located between two activated BWPs of the terminal device, The terminal device may also determine that the reference signal to be tested is within the operating bandwidth of the terminal device.
  • the terminal device activates multiple BWPs
  • the reference signal under test can also be considered to be within the operating bandwidth of the terminal device.
  • the frequency domain resource of the reference signal to be tested is located between the two BWPs currently activated by the terminal device, it means that the terminal device should work in both BWPs at the same time, and the corresponding indication that the operating bandwidth of the terminal device can cover the two BWPs, and The frequency domain resource of the reference signal to be tested is located between these two BWPs, indicating that the frequency domain resource of the reference signal to be tested is located within the operating bandwidth of the terminal device, so the terminal device does not need to use the measurement interval when performing the measurement of the terminal device .
  • the terminal device determines whether the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested Relationship between the two, determine whether to ignore the measurement interval, including:
  • the target frequency of the working bandwidth is the frequency point, minimum frequency or maximum frequency of the working bandwidth.
  • the frequency of the reference signal to be measured refers to the frequency point of the reference signal to be tested, that is, the center frequency point of the reference signal to be tested.
  • one SSB occupies 20 consecutive resource blocks (RBs).
  • the reference signal to be tested is SSB
  • the frequency of the reference signal to be tested refers to SSB No. 10 RB No. 0
  • the frequency of the subcarrier is SSB
  • the difference between the target frequency of the working bandwidth and the frequency of the reference signal to be tested is the frequency domain distance between the working bandwidth of the terminal device and the reference signal to be tested.
  • the reference signal to be tested is an SSB
  • the frequency of the reference signal to be tested refers to the frequency point of the SSB.
  • the target frequency of the operating bandwidth is the frequency point, minimum frequency, or maximum frequency of the frequency band in which the terminal device operates.
  • the frequency point of the frequency band refers to the intermediate value of the minimum frequency and the maximum frequency of the frequency band.
  • the target frequency of the working bandwidth is the frequency point, minimum frequency, or maximum frequency of the carrier on which the terminal device works.
  • the frequency of the carrier refers to the intermediate value of the minimum frequency and the maximum frequency of the carrier.
  • the target frequency of the working bandwidth is the frequency point, minimum frequency, or maximum frequency at which the BWP is activated.
  • the frequency of BWP refers to the intermediate value between the minimum frequency and the maximum frequency of the BWP.
  • the preset range is set by the terminal device according to actual measurement requirements.
  • the preset range can be set to 40 MHz. It can be understood that the preset range may also be pre-configured, which is not limited in the embodiment of the present application.
  • the difference between the target frequency of the working bandwidth and the frequency of the reference signal to be tested is not within a preset range, it indicates that the frequency domain distance between the working bandwidth of the terminal device and the reference signal to be tested is large, and the terminal device
  • the RF working range of the radio frequency usually cannot cover the reference signal to be tested. If the reference signal to be measured needs to be measured, the measurement interval is required, that is, the measurement interval is not ignored.
  • FIGS. 3(a) and 3(b) are disclosed, where FIGS. 3(a) and 3(b) indicate that when the terminal device activates the BWP, the activated BWP of the terminal device and the test A schematic diagram of the frequency domain distance of the reference signal SSB.
  • BWP1 represents the activated BWP of the terminal device
  • SSB1 represents the reference signal to be tested
  • the frequency of BWP1 is taken as the target frequency of BWP1
  • two The frequency range between the dotted lines represents the preset range, that is, the difference between the frequency indicated by the y-axis corresponding to the upper dotted line and the frequency indicated by the y-axis corresponding to the lower dotted line is the preset range.
  • the figure shows that the frequency domain distance between BWP 1 and SSB 1 is within the preset range. In this case, the terminal device ignores the measurement interval.
  • BWP 1 represents the BWP activated by the terminal device
  • SSB 1 and SSB 2 are two reference signal SSBs to be tested.
  • the minimum frequency of BWP1 is taken as the target frequency
  • the frequency range between the two dashed lines indicated by each arrow represents the preset
  • the range, that is, of the two broken lines indicated by each arrow, the difference between the frequency indicated by the y-axis corresponding to the upper broken line and the frequency indicated by the y-axis corresponding to the lower broken line is the preset range.
  • the frequency domain distance between BWP1 and SSB1 is within a preset range, then when measuring the terminal device through SSB1, the terminal device ignores the measurement interval.
  • the maximum frequency of BWP 1 is used as the target frequency.
  • the frequency domain distance between BWP1 and SSB2 is within the preset range, when the terminal equipment is measured through SSB2, the terminal equipment ignores the measurement interval.
  • the present application also discloses another embodiment.
  • This embodiment discloses that the reference signal to be measured is an SSB, and when the terminal device performs co-frequency measurement, how the terminal device determines whether to ignore the measurement interval.
  • the method further includes:
  • the terminal device ignores the measurement interval
  • the terminal device ignores the measurement interval.
  • the communication method disclosed in the embodiment of the present application further includes the following steps:
  • Step S21 When the reference signal to be tested is SSB, determine whether the measurement performed on the terminal device is the same frequency measurement, and if so, perform the operation of step S22.
  • whether the reference signal to be tested and the SSB of the serving cell are at the same frequency can be used to determine whether it is the same frequency measurement.
  • the reference signal to be tested and the SSB of the serving cell are at the same frequency, it is the same frequency measuring.
  • Step S22 If the measurement performed on the terminal device this time is the same-frequency measurement, determine whether the reference signal to be tested is located in the currently activated BWP. If not, perform the operation of step S23, and if so, perform the operation of step S24.
  • Step S23 If the reference signal to be tested is not located in the currently activated BWP, determine whether the currently activated BWP is the initial BWP. If so, perform the operation of step S24, if not, perform the operation of step S25.
  • Step S24 The terminal device ignores the measurement interval.
  • Step S25 The terminal device does not ignore the measurement interval.
  • the judgment steps of the above steps can also be adjusted. For example, you can first determine whether it is the same frequency measurement, and then determine whether the currently activated BWP is the initial BWP, or whether the reference signal SSB to be tested is within the activated BWP. Or, you can first determine whether the currently activated BWP is the initial BWP. If the currently activated BWP is not the initial BWP, then determine whether the reference signal to be tested is within the activated BWP. If the reference signal to be tested is within the activated BWP, then determine this measurement. Whether it is the same frequency measurement. Alternatively, other orders may also be used, which are not limited in the embodiments of the present application. The purpose of the above steps is to achieve that when the reference signal to be measured is SSB and the current measurement is the same frequency measurement, if any of the following is met, the terminal device does not need the measurement interval, that is, the measurement interval is ignored:
  • the frequency domain resource of the reference signal to be tested is located in the BWP currently activated by the terminal device;
  • the current active BWP of the terminal device is the initial BWP.
  • the base station and the terminal device judging whether the measurement of the terminal device requires a measurement interval may be according to a protocol.
  • the measurement interval is not required, and the protocol may specify other scenarios where the measurement interval is not required.
  • the present application discloses another embodiment.
  • the terminal device determines whether to ignore the measurement interval based on the measurement interval capability information. This embodiment includes the following steps:
  • the terminal device obtains measurement interval capability information indicating that the terminal device corresponds to at least one supported bandwidth resource or bandwidth resource combination, and whether the terminal device requires a measurement interval for the corresponding reference signal to be tested ;
  • the terminal device determines whether to ignore the measurement interval based on the measurement interval capability information.
  • the bandwidth resources supported by the terminal device refer to the bandwidth resources that the terminal device can operate. For example, if the terminal device can operate in Band 1 and Band 2, the bandwidth resources supported by the terminal device include Band 1 and Band 2.
  • the bandwidth resource combination supported by the terminal device is composed of more than two bandwidth resources that the terminal device can work simultaneously. For example, if the terminal device can work simultaneously on BWP1 and BWP2, the bandwidth resource combination supported by the terminal device includes the combination of BWP1 and BWP2.
  • whether the terminal device needs a measurement interval and whether the corresponding terminal device can ignore the measurement interval are included in the terminal device. Among them, when the terminal device does not need the measurement interval, it indicates that the terminal device can ignore the measurement interval; when the terminal device needs the measurement interval, it indicates that the terminal device cannot ignore the measurement interval.
  • the terminal device when the terminal device determines whether to ignore the measurement interval according to the measurement interval capability information, it often needs to be determined according to the current actual working bandwidth of the terminal device and the position of the reference signal to be measured. For example, when the measurement interval capability information indicates that the terminal device is operating in Band 1 and the reference signal to be tested is BWP1, the terminal device ignores the measurement interval, then when the actual operating bandwidth of the terminal device is Band 1, and the reference signal to be tested is BWP1 Based on the measurement interval capability information, the terminal device can determine to ignore the measurement interval.
  • the terminal device can acquire its own measurement interval capability information according to its own software and/or hardware configuration.
  • the measurement interval capability information indicates that the terminal device operates in a different frequency band, and the terminal device needs to measure the interval when measuring the terminal device through the reference signal to be measured.
  • the measurement interval capability indicates that the terminal device works in a certain frequency band and performs the measurement of the terminal device through a reference signal to be tested
  • the terminal device needs the measurement interval, then the terminal device performs data within the measurement interval of the frequency Transmission, that is, the measurement interval is not ignored.
  • the measurement interval capability information indicates whether the terminal device needs to measure the interval when the terminal device works on different carriers and uses the reference signal to be measured to measure the terminal device.
  • the measurement interval capability indicates that the terminal device works on a certain carrier, and the terminal device needs to measure the interval through a reference signal to be tested, the terminal device needs to measure the interval, then the terminal device works on the carrier and needs to When the reference signal to be measured is measured, data transmission is not performed within the measurement interval configured by the base station, that is, the measurement interval is not ignored.
  • the measurement interval capability information instructs the terminal device to activate different BWP, and the terminal device needs to measure the interval when measuring the terminal device through the reference signal to be tested.
  • the measurement interval capability indicates that the terminal device works under a certain BWP or BWP combination band, and the terminal device needs to measure the interval through a certain reference signal to be tested, the terminal device needs to measure the interval, then the terminal device activates the BWP or BWP When combining and measuring the reference signal to be tested, data transmission is not performed within the measurement interval configured by the base station, that is, the measurement interval is not ignored.
  • the terminal device supports band 1, band 2, band 3, and band 4, and also supports band combination of band 1+band 2, band combination of band 1+band 3, and band combination of band 2+band 4, then the terminal In the measurement interval capability information reported by the device, whether the terminal device needs to measure the interval is reported when the terminal device works in each frequency band and each frequency band combination, and the frequency domain resource of the reference signal to be tested is located in each frequency band.
  • the terminal device supports Band 1, Band 2, and Band 3, and the base station allocates four BWPs to Band 1, BWP1, BWP2, BWP3, and BWP4, the terminal device can activate BWP1 and BWP2 at the same time, or activate BWP3 and BWP4 respectively, then
  • the measurement interval capability information reported by the terminal device needs to include that the terminal device activates BWP1 and BWP2, activates BWP3, activates BWP4, works in band 2, works in band 3, and works in band 4.
  • the frequency domain resource is located in each frequency domain, is it necessary to measure the interval.
  • the terminal device after the terminal device obtains the measurement interval capability information, it further includes the following steps:
  • the terminal device reports the measurement interval capability information through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the terminal device may also report the measurement interval capability information through other forms of information, which is not limited in this embodiment of the present application.
  • the base station may determine whether the terminal device needs to use the measurement interval according to the measurement interval capability information. If, according to the measurement interval capability information, the base station determines that when the terminal device works in a certain bandwidth and a measurement interval is required during the measurement of a reference signal to be measured, the base station may configure the measurement interval for the terminal device.
  • the reported measurement interval information may include the terminal device working on multiple different bandwidth resources or a combination of bandwidth resources, for the corresponding reference signal to be tested, Whether the terminal device needs measurement interval information, or each time the terminal device reports measurement interval capability information to the base station, the reported measurement interval information may be the terminal device's currently operating bandwidth resources or a combination of bandwidth resources, for the corresponding The reference signal to be tested, and whether the terminal device needs information about the measurement interval.
  • the base station may transmit reconfiguration information to the terminal device, so that the terminal device configures its own operating bandwidth according to the received reconfiguration information.
  • the terminal device reports the measurement interval capability information through radio resource control RRC signaling, including:
  • the terminal device After receiving the reconfiguration information, the terminal device configures its own working bandwidth based on the reconfiguration information, and reports the measurement interval capability information through the RRC signaling based on the configured working bandwidth.
  • the reconfiguration information sent by the base station to the terminal device may be RRC Reconfiguration signaling, which includes changes in the working bandwidth of the terminal device to instruct the terminal device to configure its own working bandwidth.
  • the terminal device makes a corresponding indication or notification to the base station.
  • the RRC signaling reported by the terminal device to the base station may be RRC Reconfiguration Complete signaling, which is loaded in the RRC Reconfiguration Complete signaling There is information about the measurement interval capability of the terminal equipment.
  • the terminal device reports the measurement interval capability information to the base station every time after configuring its own working bandwidth, so that the base station can promptly acquire the measurement interval capability of the updated terminal device.
  • the measurement interval capability information includes at least one field, wherein each field indicates that the terminal device corresponds to each supported bandwidth resource or bandwidth resource combination, and the terminal device Whether the measurement interval is required when the reference signal to be measured is located in each frequency domain.
  • the field may be in the form of a bitmap
  • the bitmap may include multiple parts of information, one part of which is used to characterize each bandwidth resource or combination of bandwidth resources supported by the terminal device, and the other parts are used to characterize the terminal Whether the device needs to measure the interval when the reference signal to be measured is located in each frequency domain.
  • the bitmap may include only the part that characterizes whether the terminal device needs a measurement interval for the reference signal to be tested in each frequency domain, but does not include a part that characterizes each bandwidth resource or combination of bandwidth resources supported by the terminal device. The part of each bandwidth resource or the combination of bandwidth resources supported by the terminal device is reflected in other parts of the terminal device's capabilities, and the bitmap corresponds one-to-one with it.
  • the terminal device supports band 1, band 2, band 3, and band 4, and also supports band combination of band 1+band 2, band combination of band 1+band 3, and band 2+ Frequency band combination of frequency band 4, then the measurement interval capability information may indicate that when the terminal device works in each frequency band and each frequency band combination, the frequency domain resources of the reference signal to be tested are located in different working bandwidths and/or different frequency domain positions Range, whether the terminal device needs to measure the interval.
  • the bitmap corresponding to the measurement interval capability information can be as shown in Figure 5(a), Figure 5(b) and Figure 5(c) Show.
  • FIG. 5(a) shows whether the terminal device needs to measure the interval when the frequency domain resource of the reference signal to be tested is located in each frequency domain when the terminal device works in the frequency band combination of band 1+band 2.
  • the terminal device works under the combination of Band 1+Band 2, and can separately indicate "whether the terminal device needs a measurement interval when performing inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 1", “terminal device "Whether the measurement interval is required when performing the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 2", “Whether the measurement interval is required when the terminal device performs the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 3" And “whether the terminal device needs a measurement interval when performing the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is in Band 4".
  • the terminal device does not need the measurement interval, if the base station configures the measurement interval for the terminal device, the terminal device can ignore the measurement interval.
  • FIG. 5(b) shows whether the terminal device needs to measure the interval when the frequency domain resource of the reference signal to be tested is located in each frequency domain when the terminal device operates in the band combination of Band 1+Band 3.
  • the terminal device works under the combination of band 1+band 3, and can respectively indicate "whether the terminal device needs a measurement interval when performing inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in band 1", “terminal device "Whether the measurement interval is required when performing the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 2", "Whether the measurement interval is required when the terminal device performs the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 3" And “whether the terminal device needs a measurement interval when performing the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is in Band 4".
  • the terminal device does not need the measurement interval, if the base station configures the measurement interval for the terminal device, the terminal device can ignore the measurement interval.
  • FIG. 5(c) shows whether the terminal device needs to measure the interval when the frequency domain resource of the reference signal to be tested is located in each frequency domain when the terminal device operates in the frequency band 2+ frequency band 4 combination.
  • the terminal device works under the combination of frequency band 2 + frequency band 4 and can separately indicate "whether the terminal device needs a measurement interval when performing inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in frequency band 1", "terminal device "Whether the measurement interval is required when performing the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 2", “Whether the measurement interval is required when the terminal device performs the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 3" And “whether the terminal device needs a measurement interval when performing the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is in Band 4".
  • the terminal device does not need the measurement interval, if the base station configures the measurement interval for the terminal device, the terminal device can ignore the measurement interval.
  • the terminal device supports Band 1, Band 2, Band 3, and Band 4, the base station allocates two BWPs for Band 1, and the two BWPs are BWP1 and BWP2 (that is, Band 1 includes BWP1 and BWP2), the terminal The device can activate BWP1 and BWP2 at the same time.
  • the bitmap corresponding to the measurement interval capability information may be as shown in FIG. 6(a), FIG. 6(b), FIG. 6(c), FIG. 6(d), and FIG. 6(e).
  • Fig. 6(a) shows whether the terminal device needs to be used when the frequency domain resource of the reference signal to be tested is located in each frequency domain when the terminal device works in the frequency band combination of frequency band 1 (and simultaneously activates BWP1 and BWP2) and frequency band 2 Measurement interval.
  • the terminal device works in the frequency band combination of Band 1 (and activates BWP1 and BWP at the same time) and Band 2 can indicate whether the terminal device performs inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 1 "Measuring interval required”, “Does the measurement interval required when the terminal device performs the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 2", “Does the terminal device perform the difference when the frequency domain resource of the reference signal to be tested is located in Band 3? "Whether the measurement interval is required for frequency measurement” and "Whether the measurement interval is required when the terminal device performs inter-frequency measurement when the frequency domain resource of the reference signal to be measured is in Band 4".
  • the terminal device does not need the measurement interval, if the base station configures the measurement interval for the terminal device, the terminal device can ignore the measurement interval.
  • 6(b) shows whether the terminal device needs to measure the interval when the frequency domain resource of the reference signal to be tested is located in each frequency domain when the terminal device operates in the frequency band combination of band 1 (and simultaneously activates BWP1 and BWP2) and band 3 .
  • the terminal device works in the frequency band combination of Band 1 (and activates BWP1 and BWP2 at the same time) and Band 3, and can respectively indicate "whether the terminal device performs inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 1 "Measuring interval required”, “Does the measurement interval required when the terminal device performs the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 2", “Does the terminal device perform the difference when the frequency domain resource of the reference signal to be tested is located in Band 3? "Whether the measurement interval is required for frequency measurement” and "Whether the measurement interval is required when the terminal device performs inter-frequency measurement when the frequency domain resource of the reference signal to be measured is in Band 4".
  • the terminal device does not need the measurement interval, if the base station configures the measurement interval for the terminal device, the terminal device can ignore the measurement interval.
  • 6(c) shows whether the terminal device needs to measure the interval when the frequency domain resource of the reference signal to be tested is located in each frequency domain when the terminal device operates in the frequency band combination of band 1 (and simultaneously activates BWP1 and BWP2) and band 4 .
  • the terminal device works in the frequency band combination of Band 1 (and activates BWP1 and BWP2 at the same time) and Band 4, which can indicate “whether the terminal device performs inter-frequency measurement when the frequency domain resource of the reference signal to be tested is in Band 1 "Measuring interval required”, “Does the measurement interval required when the terminal device performs the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 2", “Does the terminal device perform the difference when the frequency domain resource of the reference signal to be tested is located in Band 3? "Whether the measurement interval is required for frequency measurement” and "Whether the measurement interval is required when the terminal device performs inter-frequency measurement when the frequency domain resource of the reference signal to be measured is in Band 4".
  • the terminal device does not need the measurement interval, if the base station configures the measurement interval for the terminal device, the terminal device can ignore the measurement interval.
  • FIG. 6(d) shows whether the terminal device needs to measure the interval when the frequency domain resource of the reference signal to be tested is located in each frequency domain position when the terminal device operates in the frequency band 2+ frequency band 3 combination.
  • the terminal device works under the combination of frequency band 2+ frequency band 3, and can separately indicate “whether the terminal device needs a measurement interval when performing inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in frequency band 1”, “terminal device "Whether the measurement interval is required when performing the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 2”, "Whether the measurement interval is required when the terminal device performs the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 3" And “whether the terminal device needs a measurement interval when performing the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is in Band 4".
  • the terminal device does not need the measurement interval, if the base station configures the measurement interval for the terminal device, the terminal device can ignore the measurement interval.
  • FIG. 6(e) shows whether the terminal device needs to measure the interval when the frequency domain resource of the reference signal to be tested is located in each frequency domain when the terminal device operates in the frequency band 3+band 4 band combination.
  • the terminal device works under the combination of Band 3+Band 4, and can separately indicate "whether the terminal device needs a measurement interval when performing inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 1", “terminal device "Whether the measurement interval is required when performing the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 2", "Whether the measurement interval is required when the terminal device performs the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is located in Band 3" And “whether the terminal device needs a measurement interval when performing the inter-frequency measurement when the frequency domain resource of the reference signal to be tested is in Band 4".
  • the terminal device does not need the measurement interval, if the base station configures the measurement interval for the terminal device, the terminal device can ignore the measurement interval.
  • an activated BWP can be equivalent to a cell or a frequency band, that is, when multiple activated BWPs are supported in a certain frequency band, each BWP is independent when reporting the measurement interval capability. It is not reported as a band as a whole.
  • the measurement interval capability information includes:
  • the terminal device works in frequency band 2 and performs the inter-frequency measurement that the frequency domain resource of the reference signal to be measured is located in frequency band 1; whether the measurement interval is required;
  • the terminal device works in frequency band 2 and performs the inter-frequency measurement that the frequency domain resource of the reference signal to be measured is located in frequency band 2; whether the measurement interval is required;
  • the terminal device works in the frequency band combination of frequency band 1 + frequency band 2 and performs the inter-frequency measurement in which the frequency domain resource of the reference signal to be measured is located in frequency band 1;
  • the terminal device works in the frequency band combination of frequency band 1+frequency band 2 and performs the inter-frequency measurement that the frequency domain resource of the reference signal to be measured is located in frequency band 2 requires a measurement interval.
  • the measurement interval capability reporting needs to include:
  • the terminal device works in BWP 1 and the frequency interval resource of the reference signal to be tested is located in frequency band 1 if the measurement interval is required;
  • the terminal device works in BWP 2 and performs the inter-frequency measurement that the frequency domain resource of the reference signal to be tested is located in Band 2; whether the measurement interval is required;
  • the terminal device works in frequency band 2 and performs the inter-frequency measurement that the frequency domain resource of the reference signal to be measured is located in frequency band 1; whether the measurement interval is required;
  • the terminal device works in frequency band 2 and performs the inter-frequency measurement that the frequency domain resource of the reference signal to be measured is located in frequency band 2; whether the measurement interval is required;
  • the terminal device works in the BWP combination of BWP1+BWP2 and performs the inter-frequency measurement in which the frequency domain resource of the reference signal to be tested is located in Band 1;
  • the terminal device works in the BWP 1+band 2 bandwidth combination and performs the inter-frequency measurement in which the frequency domain resource of the reference signal to be measured is in band 1;
  • the terminal device works in the BWP 1+band 2 bandwidth combination and performs the inter-frequency measurement that the frequency domain resource of the reference signal to be tested is located in band 2; whether the measurement interval is required;
  • the terminal device works in the BWP2+2+band 2 bandwidth combination and needs to measure the interval when performing the inter-frequency measurement that the frequency domain resource of the reference signal to be tested is located in band 1;
  • the terminal device works in the combination of BWP1+BWP2+band 2 bandwidth and performs the inter-frequency measurement that the frequency domain resource of the reference signal to be tested is located in band 1;
  • the terminal device may not only report the measurement interval capability under all bandwidth combinations but only report the measurement interval capability under the current bandwidth combination. For example, although the terminal device supports operating in Band 1, Band 2, and Band 3, but the network configures the terminal device to operate on the bandwidth combination of Band 1+Band 2 through RRC signaling, then the terminal only reports working in Band 1 through RRC signaling +When the bandwidth of Band 2 is combined, whether the measurement interval is required when the reference signal to be measured is located at each frequency domain position. Optionally, when one or more frequency bands support multiple activated BWPs, the terminal still needs to report the measurement interval capability for each activated BWP.
  • the field characterizing the measurement interval capability information may be in the form of character strings, where each character string indicates when the terminal device corresponds to supporting a bandwidth resource, and the frequency of the reference signal to be tested When the domain resources are located in different working bandwidths and/or different frequency domain position ranges, does the terminal device need a measurement interval; when a measurement interval is needed, the character string includes a preset first value, when a measurement interval is not needed At this time, the character string includes a preset second value.
  • the first value and the second value may be 1-bit values.
  • the first value may be 1, and the second value may be 0.
  • the first value and the second value may also be other values, which are not limited in the embodiments of the present application, but the first value and the second value
  • the numerical values need to be different numerical values to achieve the distinction between the first numerical value and the second numerical value.
  • the field indicating whether the measurement interval is required may be optional. When the field is not present, it indicates that the measurement interval is not required, that is, when the measurement interval is not required, the field is empty. In another possible manner, the field indicating whether the measurement interval is required may be optional, and when this field is present, it indicates that the measurement interval is not required.
  • each field in the measurement interval capability information indicates that the terminal device operates under one of the BWP combinations, and the reference signal SSB to be measured is located at a certain operating bandwidth or a certain frequency Whether the measurement interval is required when the domain position range is used; as an example, when the measurement interval is required, the field includes a preset first value, and when the measurement interval is not required, the field includes a preset second value.
  • a communication method is disclosed. Referring to the schematic workflow diagram shown in FIG. 7, the communication method includes the following steps:
  • Step S31 The base station determines the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested.
  • the working bandwidth of the terminal device may take various forms, for details, refer to the foregoing related description.
  • Step S32 The base station determines whether to ignore the measurement interval according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested.
  • the base station can determine whether to ignore the measurement interval according to the frequency domain position relationship between the working bandwidth of the terminal device and the reference signal to be tested.
  • the base station when the base station determines to ignore the measurement interval, it can continue normal data scheduling and data transmission and reception to ensure the efficiency of data transmission and reception.
  • the base station determines not to ignore the measurement interval, it indicates that the terminal device currently needs to perform frequency switching and measurement, which affects the data interaction with the base station. In this case, the data scheduling and data transmission and reception can be suspended, thereby reducing the network resources. waste.
  • the relationship between the frequency domain resource of the working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested may be in various forms.
  • the base station may determine whether to ignore the measurement interval in various ways.
  • the base station determines the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested To determine whether to ignore the measurement interval, including:
  • the base station ignores the measurement interval.
  • the base station determines whether the reference signal under test is within the working bandwidth of the terminal device in different ways:
  • the frequency domain resource of the reference signal to be tested is located in the frequency band currently operating by the terminal device, the frequency domain resource of the operating bandwidth and the reference signal to be tested
  • the relationship between the frequency domain resources is that the reference signal to be tested is within the working bandwidth of the terminal device
  • the operating bandwidth of the terminal device is characterized by a carrier and the frequency domain resource of the reference signal to be tested is located within the carrier currently operating by the terminal device, the frequency domain resource of the operating bandwidth and the to-be-tested
  • the relationship between the frequency domain resources of the reference signal is that the reference signal to be tested is within the working bandwidth of the terminal device;
  • the frequency domain resource of the operating bandwidth is characterized by a bandwidth part BWP
  • the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device
  • the frequency domain resource of the operating bandwidth is The relationship between frequency domain resources of the reference signal to be tested is that the reference signal to be tested is within the working bandwidth of the terminal device.
  • the terminal device activates more than two BWPs, and the frequency domain resource of the reference signal to be tested is located between two activated BWPs of the terminal device,
  • the base station may also determine that the reference signal to be tested is within the operating bandwidth of the terminal device.
  • the base station uses the frequency domain resource of the operating bandwidth and the frequency domain resource of the reference signal to be tested To determine whether to ignore the measurement interval, including:
  • the target frequency of the working bandwidth is the frequency point, minimum frequency or maximum frequency of the working bandwidth.
  • the base station before determining whether the difference between the target frequency of the operating bandwidth and the frequency of the reference signal to be tested is within a preset range, the base station further includes:
  • the base station obtains the preset range reported by the terminal device.
  • the base station compares the difference between the target frequency of the operating bandwidth of the terminal device and the frequency of the reference signal to be measured within a preset range
  • the applied preset range is reported by the terminal device to the base station in advance.
  • the present application discloses another embodiment.
  • the reference signal to be measured is an SSB, and in the case of performing the same-frequency measurement on the terminal device, how the base station determines whether to ignore the measurement interval.
  • the method when the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB, and the same frequency measurement is performed on the terminal device, the method further includes the following steps:
  • the base station ignores the measurement interval
  • the base station ignores the measurement interval.
  • the desired purpose of the above steps is that when the reference signal to be measured is SSB and the current measurement is the same frequency measurement, if any of the following items is met, the base station does not need the measurement interval, that is, the measurement interval is ignored:
  • the frequency domain resource of the reference signal to be tested is located in the BWP currently activated by the terminal device;
  • the current active BWP of the terminal device is the initial BWP.
  • the base station can also obtain the measurement interval information reported by the terminal device, and determine whether to ignore the measurement interval.
  • This embodiment includes the following steps:
  • the base station obtains measurement interval capability information indicating that the terminal device corresponds to at least one supported bandwidth resource or a combination of bandwidth resources, and whether the terminal device requires a measurement interval for the corresponding reference signal to be tested;
  • the base station determines whether to ignore the measurement interval based on the measurement interval capability information.
  • the base station when the base station determines whether to ignore the measurement interval according to the measurement interval capability information, it often needs to be determined according to the current actual working bandwidth of the terminal device and the position of the reference signal to be measured. For example, when the measurement interval capability information indicates that the terminal device is operating in Band 1, and the reference signal to be tested is BWP1, the base station ignores the measurement interval, then when the actual operating bandwidth of the terminal device is Band 1, and the reference signal to be tested is BWP1, Based on the measurement interval capability information, the base station can determine to ignore the measurement interval.
  • the base station uses a method corresponding to the terminal device to determine whether to ignore the measurement interval.
  • the present application also discloses another embodiment.
  • the embodiment discloses a communication method, which includes the following steps:
  • the terminal device reports measurement interval capability information, and the measurement interval capability information indicates whether the terminal device corresponds to at least one supported BWP or BWP combination, and whether the terminal device requires a measurement interval for the corresponding reference signal to be tested.
  • the base station determines whether the terminal device needs to use the measurement interval. If the base station determines that the measurement interval is required based on the measurement interval capability information, the base station may configure the measurement interval for the terminal device.
  • the terminal device may report the measurement interval capability information through radio resource control (RRC) signaling.
  • RRC radio resource control
  • the base station may transmit reconfiguration information to the terminal device, so that the terminal device configures its own operating bandwidth according to the received reconfiguration information.
  • the terminal device reports the measurement interval capability information through radio resource control RRC signaling, including:
  • the terminal device After receiving the reconfiguration information, the terminal device configures its own BWP combination based on the reconfiguration information, and reports the measurement interval capability information through the RRC signaling based on the configured BWP or BWP combination.
  • the terminal device can report the measurement interval capability information, so that the base station determines that the terminal device corresponds to at least one supported BWP or BWP combination according to the received measurement interval information. Whether the measurement interval is required for the corresponding reference signal to be tested.
  • the terminal device can also determine whether the terminal device corresponds to at least one supported BWP or BWP combination according to the measurement interval capability information, and whether the terminal device requires a measurement interval for the corresponding reference signal to be tested.
  • the BWP in the above "at least one BWP or BWP combination” may refer to the BWP configured by the base station for the terminal device, or may only refer to the activated BWP among the BWP configured by the base station for the terminal device, which is not limited in the present invention. In addition, no measurement interval is required, that is, the measurement interval is ignored.
  • the base station acquires measurement interval capability information indicating that the terminal device corresponds to at least one supported BWP or BWP combination, and whether the terminal device requires a measurement interval for the corresponding reference signal to be tested;
  • the base station determines whether to configure a measurement interval according to the measurement interval capability information.
  • the base station when the base station determines to ignore the measurement interval, it can continue normal data scheduling and data transmission and reception to ensure the efficiency of data transmission and reception.
  • the base station determines not to ignore the measurement interval, it indicates that the terminal device currently needs to perform frequency switching and measurement, which affects the data interaction with the base station. In this case, the data scheduling and data transmission and reception can be suspended, thereby reducing the network resources. waste.
  • the solution of the embodiment of the present application provides a method for the base station to determine whether the measurement interval needs to be configured.
  • the base station can determine whether the terminal device corresponds to at least one supported BWP or BWP combination according to the received measurement interval information. Measurement interval, and further determine whether the measurement interval needs to be configured accordingly.
  • the BWP in the above "at least one BWP or BWP combination” may refer to the BWP configured by the base station for the terminal device, or may only refer to the activated BWP among the BWP configured by the base station for the terminal device, which is not limited in the present invention.
  • the base station determines the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested;
  • the base station determines that the frequency domain resource of the reference signal to be tested is located in the activated BWP of the terminal device according to the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested When it is within or between multiple frequency domain positions where BWP is activated, the base station determines that it is not necessary to configure a measurement interval for the terminal device.
  • the base station determines that it is not necessary to configure the measurement interval for the terminal device.
  • the solution of the embodiment of the present application provides a method for the base station to determine whether the measurement interval needs to be configured.
  • the base station can determine whether a measurement interval is needed based on the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested, and further determine whether to configure measurement based on this interval.
  • the base station determines the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested;
  • the base station determines the difference between the target frequency of the working bandwidth and the frequency of the reference signal to be tested according to the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested When the value is within a preset range, the base station determines that it is not necessary to configure a measurement interval for the terminal device, and the target frequency of the working bandwidth is the frequency point, minimum frequency, or maximum frequency of the working bandwidth.
  • the preset range is set by the terminal device according to actual measurement requirements.
  • the preset range can be set to 40 MHz.
  • the terminal device after determining the preset range, the terminal device will report to the base station.
  • the terminal device can ignore the measurement interval, so the base station does not need to configure the measurement interval for the terminal device.
  • the method or process implemented by the terminal device may also be implemented by components (chips or circuits) that can be configured in the terminal device, and the method or process implemented by the base station may also be implemented by The components (chips or circuits) configuring the base station are implemented.
  • an embodiment of the present application discloses a communication device, including a first determination module and a second determination module.
  • the communication device may be used to implement the steps or processes corresponding to the terminal device in the foregoing method embodiments, as shown in FIG. 8, may include:
  • the first determining module 110 is used to determine the relationship between the frequency domain resource of the current working bandwidth and the frequency domain resource of the reference signal to be tested;
  • the second determination module 120 is configured to determine whether to ignore the measurement interval according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested.
  • first determination module 110 and second determination module 120 may be implemented by a processor.
  • the second determining module 120 when the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB, the second determining module 120 according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested, Determine whether to ignore measurement intervals, including:
  • the second determination module 120 ignores the measurement interval.
  • the terminal device determines whether the reference signal to be tested is within the working bandwidth of the terminal device in different ways:
  • the frequency domain resource of the reference signal to be tested is located within the frequency band currently operating by the terminal device, the frequency domain resource of the operating bandwidth and the frequency of the reference signal to be tested
  • the relationship between domain resources is that the reference signal to be tested is within the working bandwidth of the terminal device
  • the operating bandwidth of the terminal device is characterized by a carrier and the frequency domain resource of the reference signal to be tested is located within the carrier currently operating by the terminal device, the frequency domain resource of the operating bandwidth and the to-be-tested
  • the relationship between the frequency domain resources of the reference signal is that the reference signal to be tested is within the working bandwidth of the terminal device;
  • the frequency domain resource of the operating bandwidth is characterized by a bandwidth part BWP
  • the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device
  • the frequency domain resource of the operating bandwidth is The relationship between frequency domain resources of the reference signal to be tested is that the reference signal to be tested is within the working bandwidth of the terminal device.
  • the second determining module 120 when the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB, the second determining module 120 according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested, Determine whether to ignore measurement intervals, including:
  • the second determination module 120 ignores the measurement interval
  • the target frequency of the working bandwidth is the frequency point, minimum frequency or maximum frequency of the working bandwidth.
  • the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB and the same frequency measurement is performed on the terminal device
  • the second determining module 120 is further configured to ignore the measurement interval when the frequency domain resource of the reference signal to be tested is located in the currently activated BWP of the terminal device;
  • the second determining module 120 is further configured to ignore the measurement interval when the BWP currently activated by the terminal device is the initial BWP.
  • the second determination module 120 is further configured to acquire measurement interval capability information, where the measurement interval capability information indicates that the terminal device corresponds to at least one supported bandwidth resource or a combination of bandwidth resources. Whether the reference signal to be tested needs a measurement interval;
  • the second determination module 120 is further configured to determine whether to ignore the measurement interval according to the measurement interval capability information.
  • the device disclosed in this application further includes: a sending module 130.
  • the sending module 130 After acquiring the measurement interval capability information, the sending module 130 is configured to report the measurement interval capability information through radio resource control RRC signaling. After the second determination module 120 acquires measurement interval capability information, the sending module 130 may acquire the measurement interval capability information through interaction with the second determination module 120.
  • the sending module 130 may also report the measurement interval capability information through other forms of information, which is not limited in this embodiment of the present application.
  • the sending module 130 reports the measurement interval capability information through radio resource control RRC signaling, including:
  • the sending module 130 After receiving the RRC reconfiguration information, the sending module 130 configures its own working bandwidth based on the reconfiguration information, and reports the measurement interval capability information through the RRC signaling based on the configured working bandwidth.
  • the measurement interval capability information includes at least one field, wherein each field indicates that the terminal device corresponds to each supported bandwidth resource or bandwidth resource combination, and the terminal device Whether the measurement interval is needed in the frequency domain position.
  • a communication device is disclosed.
  • the communication device may be used to implement the steps or processes corresponding to the base station in the above method embodiments, as shown in FIG. 9,
  • the device includes a third determination module 210 and a fourth determination module 220.
  • the third determining module 210 is used to determine the relationship between the frequency domain resource of the current working bandwidth of the terminal device and the frequency domain resource of the reference signal to be tested;
  • the fourth determining module 220 is configured to determine whether to ignore the measurement interval according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested.
  • third determination module 210 and fourth determination module 220 may be implemented by a processor.
  • the fourth determining module 220 when the reference signal to be tested is a synchronization signal/physical broadcast channel block SSB, the fourth determining module 220 according to the relationship between the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested, Determine whether to ignore measurement intervals, including:
  • the fourth determination module 220 determines to ignore the measurement interval.
  • the fourth determination module 220 determines whether to determine whether to use the frequency domain resource of the working bandwidth and the frequency domain resource of the reference signal to be tested Ignore the measurement interval, including:
  • the fourth determination module 220 ignores the measurement interval
  • the target frequency of the working bandwidth is the frequency point, minimum frequency or maximum frequency of the working bandwidth.
  • the device further includes: a receiving module 230.
  • the receiving module 230 is configured to acquire the preset range reported by the terminal device.
  • the fourth determination module 220 is further used to: when the reference signal to be tested When the frequency domain resource is located in the currently activated BWP of the terminal device, the measurement interval is ignored;
  • the fourth determination module 220 is further configured to ignore the measurement interval when the BWP currently activated by the terminal device is the initial BWP.
  • the receiving module 230 is further used to obtain measurement interval capability information indicating that the terminal device corresponds to at least one supported bandwidth resource or a combination of bandwidth resources. Whether the measurement interval of the reference signal needs to be measured;
  • the fourth determination module 220 is further configured to determine whether to ignore the measurement interval based on the measurement interval capability information.
  • an embodiment of the present application discloses a terminal device, including:
  • the memory is used to store program instructions
  • the processor 1101 is configured to call and execute program instructions stored in the memory, so as to enable all or part of the steps disclosed in the embodiment corresponding to FIG. 1 or FIG. 4 of the terminal device.
  • the terminal device may further include: a transceiver 1102 and a bus 1103, and the memory includes a random access memory 1104 and a read-only memory 1105.
  • the processor 1101 is coupled to the receiver, the random access memory, and the read-only memory through the bus.
  • the basic input and output system solidified in the read-only memory or the bootloader boot system in the embedded system is used to start the system and guide the device into a normal operating state.
  • the application program and the operating system are run in the random access memory, so that the terminal device performs all or part of the steps disclosed in the embodiment corresponding to FIG. 1 or FIG. 4.
  • a base station including:
  • the memory is used to store program instructions
  • the processor is configured to call and execute program instructions stored in the memory, so that the base station performs part or all of the steps in the embodiment corresponding to FIG. 7.
  • the base station may further include: a transceiver and a bus, and the memory includes random access memory and read-only memory.
  • the processor is coupled to the receiver, the random access memory and the read-only memory through the bus.
  • the basic input and output system solidified in the read-only memory or the bootloader boot system in the embedded system is used to start the system and guide the device into a normal operating state. After the device enters the normal operating state, the application program and the operating system are run in the random access memory, so that the base station performs part or all of the steps in the embodiment corresponding to FIG. 7.
  • an embodiment of the present application further provides a computer storage medium, wherein the computer storage medium provided in any device may store a program, and when the program is executed, the program may be implemented including the embodiment corresponding to FIG. 1 or FIG. 4. All or part of the steps.
  • the storage medium in any device can be a magnetic disk, an optical disk, a read-only memory (English: read-only memory, abbreviation: ROM) or a random storage memory (English: random access memory, abbreviation: RAM), etc.
  • an embodiment of the present application further provides a computer storage medium, where the computer storage medium provided in any device may store a program, and when the program is executed, all or part of the embodiment corresponding to FIG. 7 may be implemented. step.
  • the storage medium in any device can be a magnetic disk, an optical disk, a read-only memory (English: read-only memory, abbreviation: ROM) or a random storage memory (English: random access memory, abbreviation: RAM), etc.
  • the processor involved in each embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • the steps of the foregoing method embodiments may be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (random access memory, RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct RAMbus RAM direct RAMbus RAM
  • the various illustrative logic units and circuits described in the embodiments of the present application may be implemented by a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other programmable logic devices. Discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any conventional processor, controller, microcontroller, or state machine.
  • the processor may also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application may be directly embedded in hardware, a software unit executed by a processor, or a combination of both.
  • the software unit may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium may be provided in the ASIC, and the ASIC may be provided in the terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • the size of the sequence number of each process does not mean that the execution order is sequential, and the execution order of each process should be determined by its function and inherent logic, and should not deal with the embodiments of this application.
  • the implementation process constitutes no limitation.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, Solid State Disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, Solid State Disk (SSD)
  • the technology in the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform.
  • the technical solutions in the embodiments of the present invention can be embodied in the form of software products in essence or part of contributions to the existing technology, and the computer software products can be stored in a storage medium, such as ROM/RAM , Magnetic disks, optical disks, etc., including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种通信方法和装置,该方法包括:终端设备确定当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;所述终端设备根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。通过本方案,终端设备能够根据自身的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,从而提高终端设备应用测量间隔的效率,进一步,还能够提高终端设备测量的效率。

Description

通信方法和装置
本申请要求在2019年1月11日提交中国专利局、申请号为201910028445.3、发明名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种可以配置测量间隔的通信方法和装置。
背景技术
为了保障基站与终端设备之间的通信链路不因终端设备的移动而中断,通常需要对终端设备进行移动性管理。根据终端设备的状态,对终端设备进行的移动性管理划分为空闲态移动性管理和连接态移动性管理,空闲态移动性管理主要用于小区选择和/或重选的过程,连接态移动性管理主要用于小区切换的过程。而不论是小区选择和/或重选还是小区切换,都是基于终端设备测量的结果进行的,因此终端设备测量是对终端设备进行移动性管理的基础。其中,连接态终端设备测量指的是终端设备在获取基站下发的测量配置信息之后,根据该测量配置信息中包含的待测参考信号,获取相应的测量结果的过程。
另外,终端设备能够在多个工作带宽下工作。这种情况下,当进行终端设备的测量时,有时需要终端设备进行频点切换,以便终端设备的工作带宽的频点切换至待测参考信号的频点,实现终端设备测量。为了实现频点切换,基站可以为终端设备配置测量间隔(measurement gap)。所述测量间隔,指的是为终端设备配置的一段不要求终端设备进行数据收发的时间段,在该时间段内,终端设备完成频点切换和测量,并在测量完成后,再切换至工作带宽的频点,继续进行数据收发。另外,当基站确定终端设备不需要测量间隔时,还可以指示终端设备释放测量间隔。
但是,发明人在本申请的研究过程中发现,现有技术中,基站为终端设备配置测量间隔和释放测量间隔,可能慢于终端设备工作带宽的切换,即基站配置和释放测量间隔与终端设备工作带宽的切换不同步,因此存在测量间隔的配置效率低的问题,甚至会影响终端设备测量的效率。
发明内容
本申请实施例公开一种通信方法和装置,以提高测量间隔的配置效率。
第一方面,本申请实施例公开一种通信方法,包括:
终端设备确定当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
所述终端设备根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
通过本申请实施例的方案,终端设备能够根据自身的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,从而能够提高终端设备应用测量间隔 的效率,进一步,还能够提高终端设备测量的效率。进一步的,还能够提高终端设备测量的效率。
一种可选的设计中,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述工作带宽内时,所述终端设备忽略测量间隔。
通过上述步骤,终端设备能够根据待测参考信号是否在所述工作带宽内,确定是否忽略测量间隔。
一种可选的设计中,当所述终端设备的工作带宽通过频带表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的频带内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
和/或,当所述终端设备的工作带宽通过载波表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的载波内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
和/或,当所述终端设备的工作带宽通过带宽部分BWP表征,并且所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内。
一种可选的设计中,当所述待测参考信号为同步信号/物理广播信道块SSB时,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述终端设备忽略测量间隔;
所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
通过上述步骤,终端设备能够根据工作带宽的目标频率与所述待测参考信号的频率的差值是否在预设范围内,确定是否忽略测量间隔。
一种可选的设计中,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,
当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述终端设备忽略测量间隔;
或者,所述终端设备当前激活的BWP为初始BWP时,所述终端设备忽略测量间隔。
通过上述步骤,当待测参考信号为SSB,以及当前测量是同频测量时,如果满足以下任一条,则终端设备不需要测量间隔,即忽略测量间隔:
1)待测参考信号的频域资源位于终端设备当前激活的BWP内;
2)终端设备当前的激活BWP为初始BWP。
一种可选的设计中,还包括:
所述终端设备获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述终端设备根据所述测量间隔能力信息,确定是否忽略测量间隔。
通过上述步骤,终端设备能够根据测量间隔能力信息,确定是否忽略测量间隔。
一种可选的设计中,所述终端设备获取测量间隔能力信息之后,还包括:
所述终端设备通过无线资源控制RRC信令上报所述测量间隔能力信息。
一种可选的设计中,所述终端设备通过无线资源控制RRC信令上报所述测量间隔能力信息,包括:
所述终端设备在接收到RRC重配置信息之后,基于所述重配置信息配置自身的工作带宽,并基于配置的工作带宽,通过所述RRC信令上报所述测量间隔能力信息。
通过上述步骤,当终端设备的配置发生变化,基站可以向终端设备传输重配置信息,以便终端设备根据接收到重配置信息配置自身的工作带宽。
一种可选的设计中,所述测量间隔能力信息包括至少一个字段,其中,所述每个字段分别指示所述终端设备对应于支持的每个带宽资源或者带宽资源组合,所述终端设备针对待测参考信号位于各个频域位置时,是否需要测量间隔。
可以理解的是,上述第一方面的通信方法,以终端设备实现进行举例说明,而该第一方面的通信方法也可以由可配置于终端设备的部件(例如芯片或者电路)实现。
第二方面,本申请实施例公开一种通信方法,包括:
基站确定终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
所述基站根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
通过上述方案,基站能够根据终端设备的工作带宽与待测参考信号之间的频域位置关系,确定是否忽略测量间隔。
另外,基站确定忽略测量间隔时,可继续进行正常的数据调度及数据收发,以保障数据收发的效率。另外,基站确定不忽略测量间隔时,则表明终端设备当前需要进行频点切换和测量,从而影响与基站间的数据交互,这种情况下,可暂停数据调度及数据收发,从而减少网络资源的浪费。
一种可选的设计中,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述终端设备的工作带宽内时,所述基站忽略测量间隔。
一种可选的设计中,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述基站忽略测量间隔;
所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
一种可选的设计中,所述基站在确定所述工作带宽的目标频率与所述待测参考信号的频率的差值是否在预设范围内之前,还包括:
所述基站获取所述终端设备上报的所述预设范围。
一种可选的设计中,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,
当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述基站忽略测量间隔;
或者,所述终端设备当前激活的BWP为初始BWP时,所述基站忽略测量间隔。
一种可选的设计中,还包括:
所述基站获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述基站根据所述测量间隔能力信息,确定是否忽略测量间隔。
可以理解的是,上述第二方面的通信方法,以基站实现进行举例说明,而该第二方面的通信方法也可以由可配置于基站的部件(例如芯片或者电路)实现。
第三方面,本申请实施例公开一种通信装置,应用于终端设备中,包括:
处理器;
所述处理器用于确定当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系,并根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
一种可选的设计中,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述处理器具体用于,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述工作带宽内时,所述处理器忽略测量间隔。
一种可选的设计中,当所述终端设备的工作带宽通过频带表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的频带内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
和/或,当所述终端设备的工作带宽通过载波表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的载波内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
和/或,当所述终端设备的工作带宽通过带宽部分BWP表征,并且所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内。
一种可选的设计中,所述处理器具体用于,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述处理器忽略测量间隔;
所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
一种可选的设计中,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,
所述处理器还用于,当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,忽略测量间隔;
或者,所述处理器还用于,所述终端设备当前激活的BWP为初始BWP时,忽略测量间隔。
一种可选的设计中,还包括:
所述处理器还用于,获取测量间隔能力信息,所述测量间隔能力信息指示所述终 端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述处理器还用于,根据所述测量间隔能力信息,确定是否忽略测量间隔。
一种可选的设计中,还包括:
收发器;
获取测量间隔能力信息之后,所述收发器用于通过无线资源控制RRC信令上报所述测量间隔能力信息。
一种可选的设计中,所述收发器具体用于,在接收到RRC重配置信息之后,基于所述重配置信息配置自身的工作带宽,并基于配置的工作带宽,通过所述RRC信令上报所述测量间隔能力信息。
一种可选的设计中,所述测量间隔能力信息包括至少一个字段,其中,所述每个字段分别指示所述终端设备对应于支持的每个带宽资源或者带宽资源组合,所述终端设备针对待测参考信号位于各个频域位置时,是否需要测量间隔。
可以理解的是,上述第三方面的通信装置,可以为终端设备,或者也可以为可用于终端设备的部件(芯片或者电路)。
第四方面,本申请实施例公开一种通信装置,应用于基站,包括:
处理器;
所述处理器用于确定终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系,并且,根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
一种可选的设计中,所述处理器具体用于,
当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述终端设备的工作带宽内时,所述处理器忽略测量间隔。
一种可选的设计中,所述处理器具体用于,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,忽略测量间隔;
所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
一种可选的设计中,还包括:
收发器;
在确定所述工作带宽的目标频率与所述待测参考信号的频率的差值是否在预设范围内之前,所述收发器用于获取所述终端设备上报的所述预设范围。
一种可选的设计中,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,
所述处理器还用于,当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,忽略测量间隔;
或者,所述处理器还用于,所述终端设备当前激活的BWP为初始BWP时,忽略测量间隔。
一种可选的设计中,所述收发器还用于,获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所 述终端设备针对相应的待测参考信号是否需要测量间隔;
所述处理器还用于,根据所述测量间隔能力信息,确定是否忽略测量间隔。
可以理解的是,上述第四方面的通信装置,可以为基站,或者也可以为可用于基站的部件(芯片或者电路)。
第五方面,本申请实施例公开一种通信方法,包括:所述终端设备上报测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个BWP或者BWP组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔。
通过本申请实施例的方案,终端设备能够上报测量间隔能力信息,从而使基站根据接收到的测量间隔信息,确定所述终端设备对应于支持的至少一个BWP或者BWP组合中,所述终端设备针对相应的待测参考信号时,是否需要测量间隔。
其中,上述“至少一个BWP或者BWP组合”中的BWP,可以是指基站为终端设备配置的BWP,也可以仅指基站为终端设备配置的BWP当中的激活BWP,本发明对此不做限定。
第六方面,本申请实施例公开一种通信方法,包括:基站获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个BWP或者BWP组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述基站根据所述测量间隔能力信息,确定是否配置测量间隔。
通过本申请实施例的方案,基站能够根据接收到的测量间隔信息,确定所述终端设备对应于支持的至少一个BWP或者BWP组合中,所述终端设备针对相应的待测参考信号时,是否需要测量间隔,并进一步据此确定是否需要配置测量间隔。
其中,上述“至少一个BWP或者BWP组合”中的BWP,可以是指基站为终端设备配置的BWP,也可以仅指基站为终端设备配置的BWP当中的激活BWP,本发明对此不做限定。
第七方面,本申请实施例公开一种通信方法,包括:
基站确定终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
当所述基站根据所述终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定所述待测参考信号位于所述终端设备的激活BWP内或者位于多个激活BWP的频域位置之间时,所述基站确定不需要为所述终端设备配置测量间隔。
通过本申请实施例的方案,基站能够根据终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否需要测量间隔,并进一步据此确定是否需要配置测量间隔。
第八方面,本申请实施例公开一种通信方法,包括:
基站确定终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
当所述基站根据所述终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述基站确定不需要为所述终端设备配置测量间隔,所述工作带宽的 目标频率为所述工作带宽的频点、最小频率或最大频率。
第九方面,本申请实施例公开一种通信装置,包括:
处理器和存储器,
所述存储器,用于存储程序指令;
所述处理器,用于调用并执行所述存储器中存储的程序指令,以使所述通信装置执行第一方面,或第一方面的任意一种可能的设计中的方法所述的通信方法,或第五方面,或第五方面的任意一种可能的设计中的方法所述的通信方法。
第十方面,本申请实施例公开一种通信装置,包括:
处理器和存储器,
所述存储器,用于存储程序指令;
所述处理器,用于调用并执行所述存储器中存储的程序指令,以使所述通信装置执行第二方面,或第二方面的任意一种可能的设计中的方法所述的通信方法,或第六方面,或第六方面的任意一种可能的设计中的方法所述的通信方法,或第七方面,或第七方面的任意一种可能的设计中的方法所述的通信方法,或第八方面,或第八方面的任意一种可能的设计中的方法所述的通信方法。
第十一方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第一方面,或第一方面的任意一种可能的设计中的方法所述的通信方法,或第五方面,或第五方面的任意一种可能的设计中的方法所述的通信方法。
第十二方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行第二方面,或第二方面的任意一种可能的设计中的方法所述的通信方法,或第六方面,或第六方面的任意一种可能的设计中的方法所述的通信方法,或第七方面,或第七方面的任意一种可能的设计中的方法所述的通信方法,或第八方面,或第八方面的任意一种可能的设计中的方法所述的通信方法。
第十三方面,还提供了一种计算机程序产品,其上包括指令,当该指令被执行,使得通信装置实现第一方面,或第一方面的任意一种可能的设计中的方法所述的通信方法,或第五方面,或第五方面的任意一种可能的设计中的方法所述的通信方法。
第十四方面,还提供了一种计算机程序产品,其上包括指令,当该指令被执行,使得通信装置实现第二方面,或第二方面的任意一种可能的设计中的方法所述的通信方法,或第六方面,或第六方面的任意一种可能的设计中的方法所述的通信方法,或第七方面,或第七方面的任意一种可能的设计中的方法所述的通信方法,或第八方面,或第八方面的任意一种可能的设计中的方法所述的通信方法。
第十五方面,还提供了一种通信装置,包括:
第一确定模块,用于确定当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
第二确定模块,用于根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
一种可选的设计中,当所述待测参考信号为同步信号/物理广播信道块SSB时,所 述第二确定模块具体用于,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述工作带宽内时,第二确定模块忽略测量间隔。
一种可选的设计中,当所述终端设备的工作带宽通过频带表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的频带内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
和/或,当所述终端设备的工作带宽通过载波表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的载波内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
和/或,当所述终端设备的工作带宽通过带宽部分BWP表征,并且所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内。
一种可选的设计中,所述第二确定模块具体用于,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,第二确定模块忽略测量间隔;
所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
一种可选的设计中,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,
第二确定模块还用于,当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,忽略测量间隔;
或者,所述第二确定模块还用于,所述终端设备当前激活的BWP为初始BWP时,忽略测量间隔。
一种可选的设计中,所述第二确定模块还用于,获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述第二确定模块还用于,根据所述测量间隔能力信息,确定是否忽略测量间隔。
一种可选的设计中,还包括:
发送模块;
获取测量间隔能力信息之后,所述发送模块用于通过无线资源控制RRC信令上报所述测量间隔能力信息。
一种可选的设计中,所述发送模块具体用于,在接收到RRC重配置信息之后,基于所述重配置信息配置自身的工作带宽,并基于配置的工作带宽,通过所述RRC信令上报所述测量间隔能力信息。
一种可选的设计中,所述测量间隔能力信息包括至少一个字段,其中,所述每个字段分别指示所述终端设备对应于支持的每个带宽资源或者带宽资源组合,所述终端设备针对待测参考信号位于各个频域位置时,是否需要测量间隔。
可以理解的是,上述第十五方面的通信装置,可以为终端设备,或者也可以为可用于终端设备的部件(芯片或者电路)。
第十六方面,本申请实施例公开一种通信装置,包括:
第三确定模块,用于确定终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
第四确定模块,用于根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
一种可选的设计中,所述第四确定模块具体用于,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述终端设备的工作带宽内时,确定忽略测量间隔。
一种可选的设计中,所述第四确定模块具体用于,当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,忽略测量间隔;
所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
一种可选的设计中,还包括:
接收模块;
在确定所述工作带宽的目标频率与所述待测参考信号的频率的差值是否在预设范围内之前,所述接收模块用于获取所述终端设备上报的所述预设范围。
一种可选的设计中,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,
所述接收模块还用于,当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,忽略测量间隔;
或者,所述接收模块还用于,所述终端设备当前激活的BWP为初始BWP时,忽略测量间隔。
一种可选的设计中,所述接收模块还用于,获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述第四确定模块还用于,根据所述测量间隔能力信息,确定是否忽略测量间隔。
可以理解的是,上述第十六方面的通信装置,可以为基站,或者也可以为可用于基站的部件(芯片或者电路)。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例公开的一种通信方法的工作流程示意图;
图2为本申请实施例公开的一种通信方法中,终端设备激活BWP与待测参考信号SSB之间的频域位置关系示意图;
图3(a)为本申请实施例公开的通信方法中,一种频域距离的示意图;
图3(b)为本申请实施例公开的通信方法中,又一种频域距离的示意图;
图4为本申请实施例公开的通信方法中,又一种确定是否忽略测量间隔的工作流程示意图;
图5(a)为本申请实施例公开的通信方法中,一种测量间隔能力信息的位图的示意图;
图5(b)为本申请实施例公开的通信方法中,又一种测量间隔能力信息的位图的示意图;
图5(c)为本申请实施例公开的通信方法中,又一种测量间隔能力信息的位图的示意图;
图6(a)为本申请实施例公开的通信方法中,一种测量间隔能力信息的位图的示意图;
图6(b)为本申请实施例公开的通信方法中,又一种测量间隔能力信息的位图的示意图;
图6(c)为本申请实施例公开的通信方法中,又一种测量间隔能力信息的位图的示意图;
图6(d)为本申请实施例公开的通信方法中,又一种测量间隔能力信息的位图的示意图;
图6(e)为本申请实施例公开的通信方法中,又一种测量间隔能力信息的位图的示意图;
图7为本申请实施例公开的又一种通信方法的工作流程示意图;
图8为本申请实施例公开的一种通信装置的结构示意图;
图9为本申请实施例公开的一种通信装置的结构示意图;
图10为本申请实施例公开的一种终端设备的结构示意图。
具体实施方式
为了解决现有技术中,基站配置和释放测量间隔与终端设备工作带宽的切换不同步,从而导致的测量间隔的配置效率低的问题,本申请实施例公开一种通信方法及装置。
在本申请各个实施例中,参考信号可以包括同步信号/物理广播信道块(SS(Synchronization Signal)/PBCH Block,SSB),也可以包括信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),或者其他参考信号,本发明不做限定。
一个SSB由主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)、物理广播信道(physical broadcast channel,PBCH)以及为了解调PBCH所需的物理广播信道解调参考信号(physical broadcast channel-demodulation reference signal,PBCH-DMRS)构成。在时域上,一个SSB占4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号。在频域上,一个SSB占据20个连续的资源块(resource block,RB)。
当待测的参考信号是SSB时,指的是UE对SSB中的同步信号(synchronization signal,SS)进行测量,具体来说是对其中的辅同步信号SSS进行测量。
参考信号是与波束(beam)相关的。波束可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信息进行标识,所述索引信息可以对应配置终端的资源标识(identity,ID),比如, 所述索引信息可以对应配置的CSI-RS的标识或者资源;也可以是对应配置的SSB的标识或者资源;也可以是对应配置的上行探测参考信号(Sounding Reference Signal,SRS)的标识或者资源。可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息。所述能量传输指向性可以指通过该预编码向量对所需发送的信号进行预编码处理,经过该预编码处理的信号具有一定的空间指向性,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。
可选地,同一通信装置(比如终端设备或网络设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束。针对通信装置的配置或者能力,一个通信装置在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。
下面结合附图对本申请提供的测量间隔配置方法进行具体说明。
本申请第一实施例公开一种通信方法。参见图1所示的工作流程示意图,所述通信方法包括以下步骤:
步骤S11、终端设备确定当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系。
其中,终端设备的工作带宽可为多种形式。例如,在长期演进(long term evolution,LTE)系统中,终端设备能够在不同频带(band)或载波(carrier)下进行工作;而在第五代移动通信技术(5th-generation,5G)系统中,可将每个载波进一步细分为不同的带宽部分(bandwidth part,BWP),终端设备能够激活一个或多个BWP,从而工作在一个激活的BWP(active BWP)中,另外,作为扩展,终端也可能工作在多个激活的BWP的组合中。
频域资源可通过该频域资源所占的带宽和/或位置进行表征,频域资源的位置为该频域资源的频点、最小频率或最大频率表征。相应的,工作带宽的频域资源包括所占的带宽,以及该工作带宽的频点、最小频率或最大频率;待测参考信号的频域资源包括该待测参考信号所占的带宽,以及该待测参考信号的频点、最小频率或最大频率。当所述待测参考信号为SSB时,待测参考信号的位置通常通过该待测参考信号的频点表征。
在本申请实施例中,工作带宽的频点指的是工作带宽的中心频点。待测参考信号的频率指的是待测参考信号的中心频点。由于在频域上,一个SSB占据20个连续的资源块(resource block,RB),当待测参考信号为SSB时,所述待测参考信号的频率指的是SSB的10号RB的0号子载波的频点。
需要说明的是,本申请实施例中的“频点”,也可以表达为“频率”,本申请实施例对此不做区分。
在本申请实施例中,终端设备可通过基站的测量配置,获取待测参考信号的频域资源。
另外,终端设备的工作带宽的频域资源与待测参考信号的频域资源之间的关系,可通过多种形式表征,以待测参考信号是SSB为例,该频域位置关系可以为以下一种 或多种的组合:待测参考信号的频域资源是否位于终端设备的工作带宽内(即终端设备的工作带宽在频域上覆盖所述待测参考信号)、工作带宽的目标频率(即工作带宽的频点、最小频率或最大频率)与所述待测参考信号的频率的差值是否在预设范围内、待测参考信号的频域资源是否位于终端设备两个激活的BWP之间以及终端设备的激活BWP与待测参考信号之间的频域距离是否在预设的距离范围内等。
步骤S12、所述终端设备根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
其中,如果终端设备确定不忽略测量间隔,即表示不在测量间隔内进行数据传输,表明终端设备在测量间隔这一时间段内,可以进行频点切换和终端设备的测量,并在测量完成之后,再切换至所述工作带宽的频点,继续进行数据传输。
如果终端设备确定忽略测量间隔,终端设备可以在测量间隔内进行数据传输,即表示在测量间隔期间,基站正常进行数据调度时,终端设备也可以正常收发数据。
另外,测量间隔的具体配置,可由基站预先配置,并传输至终端设备。其中,测量间隔的配置,可以包括但不限于以下一个或多个的组合:测量间隔类型、测量间隔周期和测量间隔偏差。
基站可通过无线资源控制(radio resource control,RRC)信令,向终端设备传输测量间隔。其中,该RRC信令可以为RRC重配置信令(即RRC Reconfiguration),在该信令中,包含测量间隔信息(例如通过measConfig信元携带该测量间隔信息),从而使终端设备获取测量间隔。
另外,在RRC Reconfiguration信令中,还可以包含其他测量配置信息,本申请实施例对此不做限定。
本申请实施例公开一种通信方法,该方法中,终端设备确定当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系,并根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
在现有技术中,通常由基站判断终端设备是否需要测量间隔,并在每次需要的情况下,基站为终端设备配置测量间隔,在不需要时,基站指示终端设备释放测量间隔。基站为终端设备配置测量间隔和释放测量间隔,可能慢于终端设备工作带宽的切换,即基站配置和释放测量间隔与终端设备工作带宽的切换不同步,会导致测量间隔的配置效率低。
例如,在新空口(new-rat,NR)系统中,终端设备的激活的BWP(即active BWP)可通过多种方式进行频繁切换。其中,终端设备可通过基站传输的RRC信令进行BWP切换;或者,终端设备可通过基站传输的下行控制信令(downlink control information,DCI)实现BWP切换;或者,终端设备也可以基于定时器(timer)实现BWP的切换;或者,基于随机接入信道(random access channel,RACH)的触发,实现BWP的切换。而现有技术中,基站通过RRC信令为终端设备配置测量间隔,以及指示终端设备释放测量间隔,该过程较慢。因此,在现有技术中,有时会出现终端设备已经激活新的BWP并且测量过程中需要测量间隔,但还未收到基站配置的测量间隔的情况,即终端设备无法及时获取测量间隔,或者出现终端设备已经切换到新的激活BWP,并且进行测量时已经不需要测量间隔,但基站配置的测量间隔还未释放的情况,即已经不 需要的测量间隔还在继续生效,因此存在测量间隔的配置效率较低的问题。
而通过本申请实施例的方案,终端设备能够根据自身的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。与现有技术相比,本申请实施例的方案能够提高终端设备应用测量间隔的效率,进一步,还能够提高终端设备测量的效率。
进一步的,在现有技术中,基站通常通过RRC信令为终端设备配置测量间隔和释放测量间隔,因此会频繁传输RRC信令。而本申请中,终端设备可通过自身的工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,无需基站频繁地通过RRC信令为终端设备配置测量间隔和释放测量间隔,因此,还解决了现有技术中需要频繁传输RRC信令的问题。
在本申请实施例中,终端设备的工作带宽的频域资源与待测参考信号的频域资源之间的关系可为多种形式,相应的,终端设备可通过多种方式确定是否忽略测量间隔。
在其中一种可行的方式中,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述终端设备根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述工作带宽内时,所述终端设备忽略测量间隔。
也就是说,当通过步骤S11,获取的终端设备的工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述工作带宽内时,所述终端设备忽略测量间隔。
当所述待测参考信号在所述终端设备的工作带宽内时,则表明终端设备的工作带宽在频域上覆盖所述待测参考信号,终端设备进行测量时不需要对终端设备进行频点切换。这种情况下,终端设备可以在测量间隔内进行数据传输,即表示在测量间隔期间终端设备也可以正常收发数据。也就是说,当所述待测参考信号在所述终端设备的工作带宽内时,终端设备可忽略测量间隔。
另外,终端设备的工作带宽可为多种形式,例如,终端设备的工作带宽可包括频带(band),和/或包括载波(carrier),和/或包括BWP。在不同形式的工作带宽下,终端设备确定待测参考信号是否在所述终端设备的工作带宽内的方式不同:
当所述终端设备的工作带宽通过频带表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的频带内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内。其中,所述待测参考信号的频域资源位于所述终端设备当前工作的频带内,指的是所述终端设备当前工作的频带在频域上覆盖所述待测参考信号。
和/或,当所述终端设备的工作带宽通过载波表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的载波内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内。其中,所述待测参考信号的频域资源位于所述终端设备当前工作的载波内,指的是所述终端设备当前工作的载波在频域上覆盖所述待测参考信号。
和/或,当所述终端设备的工作带宽通过带宽部分BWP表征,并且所述待测参考 信号的频域资源位于所述终端设备当前激活的BWP内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内。其中,所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内,指的是所述终端设备当前激活的BWP在频域上覆盖所述待测参考信号。
另外,当所述待测参考信号为同步信号/物理广播信道块SSB,所述终端设备激活两个以上BWP,而待测参考信号的频域资源位于终端设备两个激活的BWP之间时,终端设备也可确定所述待测参考信号在所述终端设备的工作带宽内。
当终端设备激活多个BWP时,参见图2所示的终端设备的激活的BWP与待测参考信号之间的频域位置关系示意图,其中,BWP1和BWP2分别为终端设备激活的BWP,而待测参考信号的频域资源位于BWP1和BWP2之间,即待测参考信号的频域资源位于所述终端设备当前激活的两个BWP之间。这种情况下,也可认为待测参考信号在终端设备的工作带宽内。
如果待测参考信号的频域资源位于终端设备当前激活的两个BWP之间,即表明终端设备要同时在这两个BWP工作,相应的表明终端设备的工作带宽能够涵盖这两个BWP,而待测参考信号的频域资源位于这两个BWP之间,则表明待测参考信号的频域资源位于终端设备的工作带宽内,因此终端设备在进行终端设备的测量时,不需要使用测量间隔。
通过本申请实施例公开的上述方案,能够确定待测参考信号是否在终端设备的工作带宽内。
在另一种可行的方式中,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述终端设备根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述终端设备忽略测量间隔;
所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
在本申请实施例中,待测参考信号的频率指的是待测参考信号的频点,即待测参考信号的中心频点。由于在频域上,一个SSB占据20个连续的资源块(resource block,RB),当待测参考信号为SSB时,所述待测参考信号的频率指的是SSB的10号RB的0号子载波的频点。
本申请实施例中,工作带宽的目标频率与待测参考信号的频率的差值即为终端设备的工作带宽与待测参考信号之间的频域距离。其中,当所述待测参考信号为SSB时,待测参考信号的频率指的是该SSB的频点。
当所述终端设备的工作带宽为频带时,工作带宽的目标频率即为终端设备工作的频带的频点、最小频率或最大频率。其中,频带的频点指的是该频带的最小频率和最大频率的中间值。
当所述终端设备的工作带宽为载波时,工作带宽的目标频率即为终端设备工作的载波的频点、最小频率或最大频率。其中,载波的频点指的是该载波的最小频率和最大频率的中间值。
另外,当所述终端设备激活不同的BWP时,工作带宽的目标频率即为激活BWP的频点、最小频率或最大频率。其中,BWP的频点指的是该BWP的最小频率和最大频率的中间值。
其中,所述预设范围由终端设备根据实际测量需求进行设定,例如,可将预设范围设置为40MHz。可以理解,该预设范围也可以是预先配置的,本申请实施例对此不作限定。
如果所述工作带宽的目标频率与所述待测参考信号的频率的差值不在预设范围内,则表明终端设备的工作带宽与待测参考信号之间的频域距离较大,则终端设备的射频工作范围通常不能够覆盖待测参考信号,如果需要对待测参考信号进行测量,则需要测量间隔,即不忽略测量间隔。
为了明确频域距离的概念,公开图3(a)和图3(b),其中,图3(a)和图3(b)表示当终端设备激活BWP时,终端设备激活的BWP与待测参考信号SSB的频域距离的示意图。
在图3(a)中,BWP 1表示的是终端设备的激活BWP,而SSB 1表示的是待测参考信号,并且,该示意图中,将BWP 1的频点作为BWP 1的目标频率,两条虚线之间的频率范围表示所述预设范围,即上方的虚线对应的y轴指示的频率与下方的虚线对应的y轴指示的频率之差为所述预设范围。该图表示BWP 1与SSB 1的频域距离在所述预设范围内,这种情况下,终端设备忽略测量间隔。
另外,在图3(b)中,BWP 1表示的是终端设备激活的BWP,SSB 1和SSB 2分别为两个待测参考信号SSB。在该示意图中,在计算BWP 1与SSB 1之间的频域距离时,将BWP 1的最小频率作为目标频率,并且,每条箭头指示的两条虚线之间的频率范围表示所述预设范围,即每条箭头指示的两条虚线中,上方的虚线对应的y轴指示的频率与下方的虚线对应的y轴指示的频率之差为所述预设范围。该图中,BWP 1与SSB 1的频域距离在预设范围内,则通过SSB 1进行终端设备的测量时,终端设备忽略测量间隔。在计算BWP 1与SSB 2之间的频域距离时,将BWP 1的最大频率作为目标频率。并且该图中,BWP 1与SSB 2的频域距离在预设范围内,则通过SSB 2进行终端设备的测量时,终端设备忽略测量间隔。
另外,本申请还公开另一实施例,该实施例公开待测参考信号为SSB,并且对终端设备进行同频测量的情况下,终端设备如何确定是否忽略测量间隔。
具体的,在本申请实施例中,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,还包括:
当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述终端设备忽略测量间隔;
或者,所述终端设备当前激活的BWP为初始BWP(即initial BWP)时,所述终端设备忽略测量间隔。
这种情况下,参见图4所示的工作流程示意图,本申请实施例公开的通信方法还包括以下步骤:
步骤S21、当所述待测参考信号为SSB时,判断对所述终端设备进行的测量是否为同频测量,若是,执行步骤S22的操作。
该步骤中,可通过待测参考信号与服务小区的SSB是否为同一频率,判断是否为同频测量,其中,当所述待测参考信号与服务小区的SSB为同一频率时,则为同频测量。
步骤S22、如果本次对所述终端设备进行的测量是同频测量,判断待测参考信号是否位于当前激活的BWP中,若否,执行步骤S23的操作,若是,执行步骤S24的操作。
步骤S23、如果待测参考信号不位于当前激活的BWP中,判断当前激活的BWP是否为初始BWP,若是,执行步骤S24的操作,若否,执行步骤S25的操作。
步骤S24、终端设备忽略测量间隔。
步骤S25、终端设备不忽略测量间隔。
需要说明的是,以上各个步骤的判断步骤也可以调整顺序,比如,可以先判断是否为同频测量,再判断当前激活BWP是否为初始BWP,或者再判断待测参考信号SSB是否在激活BWP内等,或者,可以先判断当前激活BWP是否为初始BWP,如果当前激活BWP不是初始BWP,再判断待测参考信号是否在激活BWP内,如果待测参考信号在激活BWP内,再判断本次测量是否为同频测量。或者,还可以采用其他顺序,本申请实施例不作限定。上述步骤希望达到的目的是,当待测参考信号为SSB,以及当前测量是同频测量时,如果满足以下任一条,则终端设备不需要测量间隔,即忽略测量间隔:
1)待测参考信号的频域资源位于终端设备当前激活的BWP内;
2)终端设备当前的激活BWP为初始BWP。
可选地,基站和终端设备判断终端设备的测量是否需要测量间隔可以是根据协议规定。例如,除了上述情况不需要测量间隔,协议也可以规定其他不需要测量间隔的场景。
另外,本申请还公开另一实施例,该实施例中,终端设备根据测量间隔能力信息,确定是否忽略测量间隔。该实施例包括以下步骤:
所述终端设备获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述终端设备根据所述测量间隔能力信息,确定是否忽略测量间隔。
其中,终端设备支持的带宽资源,指的是终端设备能够工作的带宽资源,例如,终端设备能够在频带1和频带2工作,则终端设备支持的带宽资源包括频带1和频带2。终端设备支持的带宽资源组合,由终端设备能够同时工作的两个以上带宽资源组成,例如,终端设备能够同时在BWP1和BWP2工作,则终端设备支持的带宽资源组合包括BWP1和BWP2的组合。
另外,所述终端设备是否需要测量间隔,对应终端设备是否能够忽略测量间隔。其中,当终端设备不需要测量间隔时,则表明终端设备可忽略测量间隔;当终端设备需要测量间隔时,则表明终端设备不可忽略测量间隔。
在本申请实施例中,当所述终端设备根据所述测量间隔能力信息,确定是否忽略测量间隔时,往往需要根据终端设备当前实际的工作带宽以及所述待测参考信号的位 置确定。例如,当测量间隔能力信息表明终端设备在频带1工作,并且待测参考信号为BWP1时,终端设备忽略测量间隔,则当终端设备实际的工作带宽为频带1,并且待测参考信号为BWP1时,通过该测量间隔能力信息,终端设备即可确定忽略测量间隔。
在本申请实施例中,终端设备能够根据自身的软件和/或硬件配置,获取自身的测量间隔能力信息。
另外,当终端设备在各个频带下工作时,测量间隔能力信息指示终端设备工作在不同频带,并通过待测参考信号进行终端设备的测量时,终端设备是否需要测量间隔。其中,当测量间隔能力表示,终端设备工作在某一频带下,并通过某个待测参考信号进行终端设备的测量时,终端设备需要测量间隔,则终端设备在该频的测量间隔内进行数据传输,即不忽略测量间隔。
当终端设备在各个载波下工作时,测量间隔能力信息指示终端设备工作在不同载波,并通过待测参考信号进行终端设备的测量时,终端设备是否需要测量间隔。其中,当测量间隔能力表示,终端设备工作在某一载波下,并通过某个待测参考信号进行终端设备的测量时,终端设备需要测量间隔,则终端设备在该载波下工作并且需要对该待测参考信号进行测量时,不在基站配置的测量间隔内进行数据传输,即不忽略测量间隔。
当终端设备激活不同的BWP时,测量间隔能力信息指示终端设备激活不同BWP,并通过待测参考信号进行终端设备的测量时,终端设备是否需要测量间隔。其中,当测量间隔能力表示,终端设备在某一个BWP或BWP组合带下工作,并通过某个待测参考信号进行终端设备的测量时,终端设备需要测量间隔,则终端设备激活该BWP或BWP组合并且需要对该待测参考信号进行测量时,不在基站配置的测量间隔内进行数据传输,即不忽略测量间隔。
例如,若终端设备支持频带1、频带2、频带3和频带4,并且还支持频带1+频带2的频带组合、频带1+频带3的频带组合以及频带2+频带4的频带组合,那么终端设备上报的测量间隔能力信息中,会上报当终端设备分别在各个频带以及各个频带组合下工作,并且待测参考信号的频域资源位于各个频带时,终端设备是否需要测量间隔。若终端设备支持频带1、频带2和频带3,基站为频带1分配了四个BWP,分别为BWP1、BWP2、BWP3和BWP4,终端设备可以同时激活BWP1和BWP2,或者分别激活BWP3和BWP4,则终端设备上报的测量间隔能力信息中,需要包括终端设备激活BWP1和BWP2、激活BWP3、激活BWP4、工作在频带2、工作在频带3和工作在频带4这几种情况下,待测参考信号的频域资源位于各个频域位置时,是否需要测量间隔。
进一步的,在本申请实施例中,所述终端设备获取测量间隔能力信息之后,还包括以下步骤:
所述终端设备通过无线资源控制(radio resource control,RRC)信令上报所述测量间隔能力信息。
另外,终端设备也可通过其他形式的信息上报所述测量间隔能力信息,本申请实施例对此不做限定。
基站在接收到终端设备上报的测量间隔能力信息之后,可根据所述测量间隔能力 信息确定终端设备是否需要使用测量间隔。若根据所述测量间隔能力信息,基站确定当终端设备工作在某一带宽,且对某个待测参考信号进行测量的过程中需要测量间隔时,基站可为该终端设备配置测量间隔。
这种情况下,终端设备每次向基站上报测量间隔能力信息时,所上报的测量间隔信息可以包括终端设备工作在多个不同的带宽资源或者带宽资源组合时,针对相应的待测参考信号,所述终端设备是否需要测量间隔的信息,或者,终端设备每次向基站上报测量间隔能力信息时,所上报的测量间隔信息可以为终端设备在当前工作的带宽资源或者带宽资源组合下,针对相应的待测参考信号,所述终端设备是否需要测量间隔的信息。
基站与终端设备之间能够进行信息交互。当终端设备的配置发生变化,基站可以向终端设备传输重配置信息,以便终端设备根据接收到重配置信息配置自身的工作带宽。
这种情况下,所述终端设备通过无线资源控制RRC信令上报所述测量间隔能力信息,包括:
所述终端设备在接收到重配置信息之后,基于所述重配置信息配置自身的工作带宽,并基于配置的工作带宽,通过所述RRC信令上报所述测量间隔能力信息。
其中,基站向终端设备发送的重配置信息可以为RRC Reconfiguration信令,该信令中包含终端设备的工作带宽的变化情况,以指示终端设备配置自身的工作带宽。在完成工作带宽的重新配置之后,所述终端设备向基站进行相应的指示或者通知,例如,终端设备向基站上报的RRC信令可以为RRC Reconfiguration Complete信令,所述RRC Reconfiguration Complete信令中加载有终端设备的测量间隔能力信息。
通过上述方案,终端设备每次在配置自身的工作带宽之后,向基站上报测量间隔能力信息,从而能够使基站及时获取配置更新后的终端设备的测量间隔能力。
在一种可行的实现方式中,所述测量间隔能力信息包括至少一个字段,其中,所述每个字段分别指示所述终端设备对应于支持的每个带宽资源或者带宽资源组合,所述终端设备针对待测参考信号位于各个频域位置时,是否需要测量间隔。
例如,所述字段可以为位图的形式,所述位图可包括多部分的信息,其中一部分用于表征终端设备对应于支持的每个带宽资源或者带宽资源组合,其他部分分别用于表征终端设备针对待测参考信号位于各个频域位置时,是否需要测量间隔。或者所述位图可以只包括用于表征终端设备针对待测参考信号位于各个频域位置时,是否需要测量间隔,而不包括表征终端设备支持的每个带宽资源或者带宽资源组合的部分,表征终端设备支持的每个带宽资源或者带宽资源组合的部分在终端设备能力的其他部分体现,而所述位图与其一一对应。
为了明确字段的形式,在一个示例中,终端设备支持频带1、频带2、频带3和频带4,并且还支持频带1+频带2的频带组合、频带1+频带3的频带组合以及频带2+频带4的频带组合,那么测量间隔能力信息中,可指示当终端设备分别在各个频带,以及各个频带组合下工作,待测参考信号的频域资源位于不同的工作带宽和/或不同频域位置范围时,终端设备是否需要测量间隔。
这种情况下,针对终端设备工作在各个频带组合的情况下,是否需要测量间隔, 测量间隔能力信息对应的位图可如图5(a)、图5(b)和图5(c)所示。
其中,图5(a)表示当终端设备工作在频带1+频带2的频带组合下,待测参考信号的频域资源位于各个频域位置时,终端设备是否需要测量间隔。具体来说,终端设备工作在频带1+频带2的组合下,可以分别指示“终端设备进行待测参考信号的频域资源位于频带1时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带2时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带3时的异频测量时是否需要测量间隔”以及“终端设备进行待测参考信号的频域资源位于频带4时的异频测量时是否需要测量间隔”。当终端设备不需要测量间隔时,如果基站为终端设备配置了测量间隔,则终端设备可以忽略该测量间隔。
图5(b)表示当终端设备工作在频带1+频带3的频带组合下,待测参考信号的频域资源位于各个频域位置时,终端设备是否需要测量间隔。具体来说,终端设备工作在频带1+频带3的组合下,可以分别指示“终端设备进行待测参考信号的频域资源位于频带1时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带2时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带3时的异频测量时是否需要测量间隔”以及“终端设备进行待测参考信号的频域资源位于频带4时的异频测量时是否需要测量间隔”。当终端设备不需要测量间隔时,如果基站为终端设备配置了测量间隔,则终端设备可以忽略该测量间隔。
图5(c)表示当终端设备工作在频带2+频带4的频带组合下,待测参考信号的频域资源位于各个频域位置时,终端设备是否需要测量间隔。具体来说,终端设备工作在频带2+频带4的组合下,可以分别指示“终端设备进行待测参考信号的频域资源位于频带1时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带2时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带3时的异频测量时是否需要测量间隔”以及“终端设备进行待测参考信号的频域资源位于频带4时的异频测量时是否需要测量间隔”。当终端设备不需要测量间隔时,如果基站为终端设备配置了测量间隔,则终端设备可以忽略该测量间隔。
在另外一个示例中,终端设备支持频带1、频带2、频带3和频带4,基站为频带1分配了两个BWP,两个BWP分别为BWP1和BWP2(即频带1包括BWP1和BWP2),终端设备可同时激活BWP1和BWP2。这种情况下,测量间隔能力信息对应的位图可如图6(a)、图6(b)、图6(c)、图6(d)和图6(e)所示。
其中,图6(a)表示当终端设备工作在频带1(并同时激活BWP1和BWP2)和频带2的频带组合下,待测参考信号的频域资源位于各个频域位置时,终端设备是否需要测量间隔。具体来说,终端设备工作在频带1(并同时激活BWP1和BWP)和频带2的频带组合,可以分别指示“终端设备进行待测参考信号的频域资源位于频带1时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带2时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带3时的异频测量时是否需要测量间隔”以及“终端设备进行待测参考信号的频域资源位于频带4时的异频测量时是否需要测量间隔”。当终端设备不需要测量间隔时,如果基站为终端设备配置了测量间隔,则终端设备可以忽略该测量间隔。
图6(b)表示当终端设备工作在频带1(并同时激活BWP1和BWP2)和频带3的频带组合下,待测参考信号的频域资源位于各个频域位置时,终端设备是否需要测量间隔。具体来说,终端设备工作在频带1(并同时激活BWP1和BWP2)和频带3的频带组合,可以分别指示“终端设备进行待测参考信号的频域资源位于频带1时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带2时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带3时的异频测量时是否需要测量间隔”以及“终端设备进行待测参考信号的频域资源位于频带4时的异频测量时是否需要测量间隔”。当终端设备不需要测量间隔时,如果基站为终端设备配置了测量间隔,则终端设备可以忽略该测量间隔。
图6(c)表示当终端设备工作在频带1(并同时激活BWP1和BWP2)和频带4的频带组合下,待测参考信号的频域资源位于各个频域位置时,终端设备是否需要测量间隔。具体来说,终端设备工作在频带1(并同时激活BWP1和BWP2)和频带4的频带组合,可以分别指示“终端设备进行待测参考信号的频域资源位于频带1时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带2时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带3时的异频测量时是否需要测量间隔”以及“终端设备进行待测参考信号的频域资源位于频带4时的异频测量时是否需要测量间隔”。当终端设备不需要测量间隔时,如果基站为终端设备配置了测量间隔,则终端设备可以忽略该测量间隔。
图6(d)表示当终端设备工作在频带2+频带3的频带组合下,待测参考信号的频域资源位于各个频域位置时,终端设备是否需要测量间隔。具体来说,终端设备工作在频带2+频带3的组合下,可以分别指示“终端设备进行待测参考信号的频域资源位于频带1时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带2时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带3时的异频测量时是否需要测量间隔”以及“终端设备进行待测参考信号的频域资源位于频带4时的异频测量时是否需要测量间隔”。当终端设备不需要测量间隔时,如果基站为终端设备配置了测量间隔,则终端设备可以忽略该测量间隔。
图6(e)表示当终端设备工作在频带3+频带4的频带组合下,待测参考信号的频域资源位于各个频域位置时,终端设备是否需要测量间隔。具体来说,终端设备工作在频带3+频带4的组合下,可以分别指示“终端设备进行待测参考信号的频域资源位于频带1时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带2时的异频测量时是否需要测量间隔”、“终端设备进行待测参考信号的频域资源位于频带3时的异频测量时是否需要测量间隔”以及“终端设备进行待测参考信号的频域资源位于频带4时的异频测量时是否需要测量间隔”。当终端设备不需要测量间隔时,如果基站为终端设备配置了测量间隔,则终端设备可以忽略该测量间隔。
需要说明的是,当终端设备支持多个BWP同时激活时,在对测量间隔能力进行上报时,需要考虑各个激活BWP的情况。在上报格式上,一个激活BWP可以等效为一个小区,或者是等效为一个频带,即,当某个频带内支持多个激活BWP时,在上报测量间隔能力时,各个BWP是独立的,而不是整体作为一个频带来上报。
作为示例而非限定,终端设备只支持单个激活BWP时,假设终端设备支持频带1、 频带2及其中两者的频带组合,那么测量间隔能力信息包括:
终端设备工作在频带1并且进行待测参考信号的频域资源位于频带1的异频测量时是否需要测量间隔;
终端设备工作在频带1并且进行待测参考信号的频域资源位于频带2的异频测量时是否需要测量间隔;
终端设备工作在频带2并且进行待测参考信号的频域资源位于频带1的异频测量时是否需要测量间隔;
终端设备工作在频带2并且进行待测参考信号的频域资源位于频带2的异频测量时是否需要测量间隔;
终端设备工作在频带1+频带2的频带组合并且进行待测参考信号的频域资源位于频带1的异频测量时是否需要测量间隔;
终端设备工作在频带1+频带2的频带组合并且进行待测参考信号的频域资源位于频带2的异频测量时是否需要测量间隔。
在同样的例子中,如果终端设备支持的频带1上有两个BWP同时激活(BWP1和BWP2),那么测量间隔能力上报需要包括:
终端设备工作在BWP 1并且进行待测参考信号的频域资源位于频带1的异频测量时是否需要测量间隔;
终端设备工作在BWP 1并且进行待测参考信号的频域资源位于频带2的异频测量时是否需要测量间隔;
终端设备工作在BWP 2并且进行待测参考信号的频域资源位于频带1的异频测量时是否需要测量间隔;
终端设备工作在BWP 2并且进行待测参考信号的频域资源位于频带2的异频测量时是否需要测量间隔;
终端设备工作在频带2并且进行待测参考信号的频域资源位于频带1的异频测量时是否需要测量间隔;
终端设备工作在频带2并且进行待测参考信号的频域资源位于频带2的异频测量时是否需要测量间隔;
终端设备工作在BWP 1+BWP2的BWP组合并且进行待测参考信号的频域资源位于频带1的异频测量时是否需要测量间隔;
终端设备工作在BWP 1+BWP2的BWP组合并且进行待测参考信号的频域资源位于频带2的异频测量时是否需要测量间隔;
终端设备工作在BWP 1+频带2的带宽组合并且进行待测参考信号的频域资源位于频带1的异频测量时是否需要测量间隔;
终端设备工作在BWP 1+频带2的带宽组合并且进行待测参考信号的频域资源位于频带2的异频测量时是否需要测量间隔;
终端设备工作在BWP 2+频带2的带宽组合并且进行待测参考信号的频域资源位于频带1的异频测量时是否需要测量间隔;
终端设备工作在BWP 2+频带2的带宽组合并且进行待测参考信号的频域资源位于频带2的异频测量时是否需要测量间隔;
终端设备工作在BWP1+BWP 2+频带2的带宽组合并且进行待测参考信号的频域资源位于频带1的异频测量时是否需要测量间隔;
终端设备工作在BWP1+BWP 2+频带2的带宽组合并且进行待测参考信号的频域资源位于频带2的异频测量时是否需要测量间隔。
作为另一个示例,终端设备为了减少RRC信令开销,可以不用对所有带宽组合下的测量间隔能力进行上报而只对当前的带宽组合下的测量间隔能力进行上报。例如,虽然终端设备支持工作在频带1、频带2和频带3,但是网络通过RRC信令配置终端设备工作在频带1+频带2的带宽组合上,那么终端只通过RRC信令上报工作在频带1+频带2的带宽组合时,待测参考信号分别位于各个频域位置时是否需要测量间隔。可选地,当其中一个或多个频带支持多个激活BWP时,终端仍需要针对工作在各个激活BWP来进行测量间隔能力的上报。
在另一个示例中,表征所述测量间隔能力信息的字段可以为字符串的形式,其中每个字符串指示当所述终端设备对应于支持一个带宽资源中,并且所述待测参考信号的频域资源位于不同的工作带宽和/或不同频域位置范围时,所述终端设备是否需要测量间隔;当需要测量间隔时,所述字符串中包括预设的第一数值,当不需要测量间隔时,所述字符串中包括预设的第二数值。具体的,第一数值和第二数值可为1比特的数值。
其中,所述第一数值可为1,第二数值可为0,当然,第一数值和第二数值还可以为其他数值,本申请实施例对此不做限定,但第一数值和第二数值需要为不同的数值,以实现对第一数值和第二数值的区分。一种可能的方式中,表示是否需要测量间隔的字段可以是可选的,不存在该字段时表示不需要测量间隔,也就是说不需要测量间隔时,该字段为空。另一种可能的方式中,表示是否需要测量间隔的字段可以是可选的,存在该字段时表示不需要测量间隔。
另外,当终端设备能够在多个BWP组合下工作时,测量间隔能力信息中每个字段指示所述终端设备工作在其中一个BWP组合下,待测参考信号SSB位于某个工作带宽或某个频域位置范围时是否需要测量间隔;作为一种示例,当需要测量间隔时,所述字段包括预设的第一数值,当不需要测量间隔时,所述字段包括预设的第二数值。
在本申请另一实施例中,公开一种通信方法,参见图7所示的工作流程示意图,所述通信方法包括以下步骤:
步骤S31、基站确定终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系。
其中,终端设备的工作带宽可为多种形式,具体可以参考前述相关描述。
步骤S32、所述基站根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
通过本申请实施例的方案,基站能够根据终端设备的工作带宽与待测参考信号之间的频域位置关系,确定是否忽略测量间隔。
在本申请实施例中,基站确定忽略测量间隔时,可继续进行正常的数据调度及数据收发,以保障数据收发的效率。另外,基站确定不忽略测量间隔时,则表明终端设 备当前需要进行频点切换和测量,从而影响与基站间的数据交互,这种情况下,可暂停数据调度及数据收发,从而减少网络资源的浪费。
在本申请实施例中,终端设备的工作带宽的频域资源与待测参考信号的频域资源之间的关系可为多种形式,相应的,基站可通过多种方式确定是否忽略测量间隔。
在其中一种方式中,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述基站根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述终端设备的工作带宽内时,所述基站忽略测量间隔。
在不同形式的工作带宽下,基站确定待测参考信号是否在所述终端设备的工作带宽内的方式不同:
其中,当所述终端设备的工作带宽通过频带表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的频带内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
和/或,当所述终端设备的工作带宽通过载波表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的载波内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
和/或,当所述终端设备的工作带宽通过带宽部分BWP表征,并且所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内。
另外,当所述待测参考信号为同步信号/物理广播信道块SSB,所述终端设备激活两个以上BWP,而待测参考信号的频域资源位于终端设备两个激活的BWP之间时,基站也可确定所述待测参考信号在所述终端设备的工作带宽内。
在另一种可行的方式中,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述基站根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述基站忽略测量间隔;
所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
进一步的,所述基站在确定所述工作带宽的目标频率与所述待测参考信号的频率的差值是否在预设范围内之前,还包括:
所述基站获取所述终端设备上报的所述预设范围。
也就是说,基站在比较终端设备的工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所应用的预设范围由终端设备预先上报至基站。
另外,本申请还公开另一实施例,该实施例公开待测参考信号为SSB,并且对终端设备进行同频测量的情况下,基站如何确定是否忽略测量间隔。
在本申请实施例公开的通信方法中,当所述待测参考信号为同步信号/物理广播信 道块SSB,并且对所述终端设备进行同频测量时,还包括以下步骤:
当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述基站忽略测量间隔;
或者,所述终端设备当前激活的BWP为初始BWP时,所述基站忽略测量间隔。
上述步骤希望达到的目的是,当待测参考信号为SSB,以及当前测量是同频测量时,如果满足以下任一条,则基站不需要测量间隔,即忽略测量间隔:
1)待测参考信号的频域资源位于终端设备当前激活的BWP内;
2)终端设备当前的激活BWP为初始BWP。
另外,本申请还公开另一实施例,该实施例中,基站还能够获取终端设备上报的测量间隔信息,确定是否忽略测量间隔。该实施例包括以下步骤:
所述基站获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述基站根据所述测量间隔能力信息,确定是否忽略测量间隔。
在本申请实施例中,当所述基站根据所述测量间隔能力信息,确定是否忽略测量间隔时,往往需要根据终端设备当前实际的工作带宽以及所述待测参考信号的位置确定。例如,当测量间隔能力信息表明终端设备在频带1工作,并且待测参考信号为BWP1时,基站忽略测量间隔,则当终端设备实际的工作带宽为频带1,并且待测参考信号为BWP1时,通过该测量间隔能力信息,基站即可确定忽略测量间隔。
可以看出,图7所示的实施例中,基站采用和终端设备对应的方法确定是否忽略测量间隔。
本申请还公开另一实施例,该实施例公开一种通信方法,该方法包括以下步骤:
所述终端设备上报测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个BWP或者BWP组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔。
另外,基站在接收到终端设备上报的测量间隔能力信息之后,确定终端设备是否需要使用测量间隔。若根据所述测量间隔能力信息,基站确定需要测量间隔时,基站可为该终端设备配置测量间隔。
在本申请实施例中,所述终端设备可通过无线资源控制(radio resource control,RRC)信令上报所述测量间隔能力信息。
另外,当终端设备的配置发生变化,基站可以向终端设备传输重配置信息,以便终端设备根据接收到重配置信息配置自身的工作带宽。
这种情况下,所述终端设备通过无线资源控制RRC信令上报所述测量间隔能力信息,包括:
所述终端设备在接收到重配置信息之后,基于所述重配置信息配置自身工作的BWP组合,并基于配置后的BWP或BWP组合,通过所述RRC信令上报所述测量间隔能力信息。
通过本申请实施例的方案,终端设备能够上报测量间隔能力信息,从而使基站根 据接收到的测量间隔信息,确定所述终端设备对应于支持的至少一个BWP或者BWP组合中,所述终端设备针对相应的待测参考信号时,是否需要测量间隔。
并且,终端设备也能够根据该测量间隔能力信息,确定所述终端设备对应于支持的至少一个BWP或者BWP组合中,所述终端设备针对相应的待测参考信号时,是否需要测量间隔。
其中,上述“至少一个BWP或者BWP组合”中的BWP,可以是指基站为终端设备配置的BWP,也可以仅指基站为终端设备配置的BWP当中的激活BWP,本发明对此不做限定。另外,不需要测量间隔,即为忽略所述测量间隔。
相应的,在本申请另一实施例公开的通信方法中,公开以下步骤:
基站获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个BWP或者BWP组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述基站根据所述测量间隔能力信息,确定是否配置测量间隔。
在本申请实施例中,基站确定忽略测量间隔时,可继续进行正常的数据调度及数据收发,以保障数据收发的效率。另外,基站确定不忽略测量间隔时,则表明终端设备当前需要进行频点切换和测量,从而影响与基站间的数据交互,这种情况下,可暂停数据调度及数据收发,从而减少网络资源的浪费。
本申请实施例的方案,提供一种基站确定是否需要配置测量间隔的方法。通过本申请实施例的方案,基站能够根据接收到的测量间隔信息,确定所述终端设备对应于支持的至少一个BWP或者BWP组合中,所述终端设备针对相应的待测参考信号时,是否需要测量间隔,并进一步据此确定是否需要配置测量间隔。
其中,上述“至少一个BWP或者BWP组合”中的BWP,可以是指基站为终端设备配置的BWP,也可以仅指基站为终端设备配置的BWP当中的激活BWP,本发明对此不做限定。
相应的,在本申请另一实施例公开的通信方法中,公开以下步骤:
基站确定终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
当所述基站根据所述终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定所述待测参考信号的频域资源位于所述终端设备的激活BWP内或者位于多个激活BWP的频域位置之间时,所述基站确定不需要为所述终端设备配置测量间隔。
如果待测参考信号的频域资源位于所述终端设备激活的BWP内或者位于多个激活的BWP的频域位置之间,则表明终端设备的工作带宽能够涵盖激活的BWP,因此终端设备在进行终端设备的测量时,不需要使用测量间隔,这种情况下,基站确定不需要为所述终端设备配置测量间隔。
本申请实施例的方案,提供一种基站确定是否需要配置测量间隔的方法。通过本申请实施例的方案,基站能够根据终端设备当前的工作带宽的频域资源与待测参考信 号的频域资源之间的关系,确定是否需要测量间隔,并进一步据此确定是否需要配置测量间隔。
相应的,在本申请另一实施例公开的通信方法中,公开以下步骤:
基站确定终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
当所述基站根据所述终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述基站确定不需要为所述终端设备配置测量间隔,所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
其中,所述预设范围由终端设备根据实际测量需求进行设定,例如,可将预设范围设置为40MHz。并且,终端设备在确定所述预设范围之后,会上报至基站。
如果所述工作带宽的目标频率与所述待测参考信号的频率的差值不在预设范围内,则表明终端设备的工作带宽与待测参考信号之间的频域距离较大,则终端设备的射频工作范围通常不能够覆盖待测参考信号,如果需要对待测参考信号进行测量,则需要测量间隔,即不忽略测量间隔。另外,如果所述工作带宽的目标频率与所述待测参考信号SSB的差值在预设范围内,则终端设备可忽略测量间隔,因此基站无需为终端设备配置测量间隔。
需要说明的是,上述各个方法实施例中,由终端设备实现的方法或者流程,也可以由可以配置于终端设备的部件(芯片或者电路)实现,由基站实现的方法或者流程,也可以由可配置基站的部件(芯片或者电路)实现。
相应的,本申请实施例公开一种通信装置,包括第一确定模块和第二确定模块。
一种可能的设计中,该通信装置可以用于实现上述方法实施例中对应于终端设备的步骤或者流程,如图8所示,可以包括:
第一确定模块110,用于确定当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
第二确定模块120,用于根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
可以理解,上述第一确定模块110和第二确定模块120可以通过处理器实现。
其中,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述第二确定模块120根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述工作带宽内时,所述第二确定模块120忽略测量间隔。
在不同形式的工作带宽下,终端设备确定待测参考信号是否在所述终端设备的工作带宽内的方式不同:
当所述终端设备的工作带宽通过频带表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的频带内时,所述工作带宽的频域资源与待测参考信号的频 域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
和/或,当所述终端设备的工作带宽通过载波表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的载波内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
和/或,当所述终端设备的工作带宽通过带宽部分BWP表征,并且所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内。
另外,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述第二确定模块120根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述第二确定模块120忽略测量间隔;
所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
一种可选的设计中,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,
所述第二确定模块120还用于,当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,忽略测量间隔;
或者,所述第二确定模块120还用于,所述终端设备当前激活的BWP为初始BWP时,忽略测量间隔。
另外,所述第二确定模块120还用于,获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述第二确定模块120还用于,根据所述测量间隔能力信息,确定是否忽略测量间隔。
另外,参见图8所示的结构示意图,在本申请实施公开的装置中,还包括:发送模块130。
获取测量间隔能力信息之后,所述发送模块130用于通过无线资源控制RRC信令上报所述测量间隔能力信息。其中,在所述第二确定模块120获取测量间隔能力信息之后,所述发送模块130可通过与所述第二确定模块120的交互,获取所述测量间隔能力信息。
另外,所述发送模块130也可通过其他形式的信息上报所述测量间隔能力信息,本申请实施例对此不做限定。
具体的,所述发送模块130通过无线资源控制RRC信令上报所述测量间隔能力信息,包括:
所述发送模块130在接收到RRC重配置信息之后,基于所述重配置信息配置自身的工作带宽,并基于配置的工作带宽,通过所述RRC信令上报所述测量间隔能力信息。
另外,所述测量间隔能力信息包括至少一个字段,其中,所述每个字段分别指示 所述终端设备对应于支持的每个带宽资源或者带宽资源组合,所述终端设备针对待测参考信号位于各个频域位置时,是否需要测量间隔。
相应的,在本申请实施例中,公开一种通信装置,一种可能的设计中,该通信装置可以用于实现上述方法实施例中对应于基站的步骤或者流程,如图9所示,通信装置包括第三确定模块210和第四确定模块220。
所述第三确定模块210用于确定终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
所述第四确定模块220,用于根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
可以理解,上述第三确定模块210和第四确定模块220可以通过处理器实现。
其中,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述第四确定模块220根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述终端设备的工作带宽内时,所述第四确定模块220确定忽略测量间隔。
在不同形式的工作带宽下,确定待测参考信号是否在所述终端设备的工作带宽内的方式不同。
当所述待测参考信号为同步信号/物理广播信道块SSB时,所述第四确定模块220根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述第四确定模块220忽略测量间隔;
所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
另外,该装置还包括:接收模块230。
在确定所述工作带宽的目标频率与所述待测参考信号的频率的差值是否在预设范围内之前,接收模块230用于获取所述终端设备上报的所述预设范围。
另外,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,所述第四确定模块220还用于,当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,忽略测量间隔;
或者,所述第四确定模块220还用于,当所述终端设备当前激活的BWP为初始BWP时,忽略测量间隔。
另外,所述接收模块230还用于,获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
所述第四确定模块220还用于,根据所述测量间隔能力信息,确定是否忽略测量间隔。
应理解,上述各个通信装置实施例中各模块执行上述相应步骤的具体过程在上述 方法实施例中已经详细说明,为了简洁,在此不再赘述。
参见图10,本申请实施例公开一种终端设备,包括:
处理器1101和存储器,
所述存储器,用于存储程序指令;
所述处理器1101,用于调用并执行所述存储器中存储的程序指令,以使所述终端设备图1或图4对应的实施例所公开的中的全部或部分步骤。
一种可能的方式中,该终端设备还可以包括:收发器1102和总线1103,所述存储器包括随机存取存储器1104和只读存储器1105。
其中,处理器1101通过总线分别耦接收发器、随机存取存储器以及只读存储器。其中,当需要运行该网络设备时,通过固化在只读存储器中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导该设备进入正常运行状态。在该设备进入正常运行状态后,在随机存取存储器中运行应用程序和操作系统,从而使所述终端设备执行图1或图4对应的实施例所公开的中的全部或部分步骤。
在本申请另一实施例中,公开一种基站,包括:
处理器和存储器,
所述存储器,用于存储程序指令;
所述处理器,用于调用并执行所述存储器中存储的程序指令,以使所述基站执行图7所对应的实施例的部分或全部步骤。
一种可能的方式中,基站还可以包括:收发器和总线,所述存储器包括随机存取存储器和只读存储器。
其中,处理器通过总线分别耦接收发器、随机存取存储器以及只读存储器。其中,当需要运行该网络设备时,通过固化在只读存储器中的基本输入输出系统或者嵌入式系统中的bootloader引导系统进行启动,引导该设备进入正常运行状态。在该设备进入正常运行状态后,在随机存取存储器中运行应用程序和操作系统,从而使所述基站执行图7所对应的实施例的部分或全部步骤。
具体实现中,本申请实施例还提供一种计算机存储介质,其中,设置在任意设备中计算机存储介质可存储有程序,该程序执行时,可实施包括图1或图4对应的实施例中的全部或部分步骤。任意设备中的存储介质均可为磁碟、光盘、只读存储记忆体(英文:read-only memory,简称:ROM)或随机存储记忆体(英文:random access memory,简称:RAM)等。
具体实现中,本申请实施例还提供一种计算机存储介质,其中,设置在任意设备中计算机存储介质可存储有程序,该程序执行时,可实施包括图7对应的实施例中的全部或部分步骤。任意设备中的存储介质均可为磁碟、光盘、只读存储记忆体(英文:read-only memory,简称:ROM)或随机存储记忆体(英文:random access memory,简称:RAM)等。
本申请各个实施例中所涉及到的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域技术任何还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软 件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于本申请装置的实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。
以上所述的本发明实施方式并不构成对本发明保护范围的限定。

Claims (19)

  1. 一种通信方法,其特征在于,包括:
    终端设备确定当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
    所述终端设备根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
  2. 根据权利要求1所述的通信方法,其特征在于,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述终端设备根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
    当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述工作带宽内时,所述终端设备忽略测量间隔。
  3. 根据权利要求2所述的通信方法,其特征在于,
    当所述终端设备的工作带宽通过频带表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的频带内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
    和/或,当所述终端设备的工作带宽通过载波表征,并且所述待测参考信号的频域资源位于所述终端设备当前工作的载波内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内;
    和/或,当所述终端设备的工作带宽通过带宽部分BWP表征,并且所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述工作带宽的频域资源与待测参考信号的频域资源之间的关系为所述待测参考信号在所述终端设备的工作带宽内。
  4. 根据权利要求1所述的通信方法,其特征在于,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述终端设备根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
    当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述终端设备忽略测量间隔;
    所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
  5. 根据权利要求1所述的通信方法,其特征在于,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,还包括:
    当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述终端设备忽略测量间隔;
    或者,所述终端设备当前激活的BWP为初始BWP时,所述终端设备忽略测量间隔。
  6. 根据权利要求1所述的通信方法,其特征在于,还包括:
    所述终端设备获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考信号是否需要测量间隔;
    所述终端设备根据所述测量间隔能力信息,确定是否忽略测量间隔。
  7. 根据权利要求6所述的通信方法,其特征在于,所述终端设备获取测量间隔能力信息之后,还包括:
    所述终端设备通过无线资源控制RRC信令上报所述测量间隔能力信息。
  8. 根据权利要求7所述的通信方法,其特征在于,所述终端设备通过无线资源控制RRC信令上报所述测量间隔能力信息,包括:
    所述终端设备在接收到RRC重配置信息之后,基于所述重配置信息配置自身的工作带宽,并基于配置的工作带宽,通过所述RRC信令上报所述测量间隔能力信息。
  9. 根据权利要求6至8任一项所述的通信方法,其特征在于,
    所述测量间隔能力信息包括至少一个字段,其中,所述每个字段分别指示所述终端设备对应于支持的每个带宽资源或者带宽资源组合,所述终端设备针对待测参考信号位于各个频域位置时,是否需要测量间隔。
  10. 一种通信方法,其特征在于,包括:
    基站确定终端设备当前的工作带宽的频域资源与待测参考信号的频域资源之间的关系;
    所述基站根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔。
  11. 根据权利要求10所述的通信方法,其特征在于,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述基站根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
    当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述待测参考信号在所述终端设备的工作带宽内时,所述基站忽略测量间隔。
  12. 根据权利要求10所述的通信方法,其特征在于,当所述待测参考信号为同步信号/物理广播信道块SSB时,所述基站根据所述工作带宽的频域资源与待测参考信号的频域资源之间的关系,确定是否忽略测量间隔,包括:
    当所述工作带宽的频域资源与待测参考信号的频域资源之间的关系表明所述工作带宽的目标频率与所述待测参考信号的频率的差值在预设范围内时,所述基站忽略测量间隔;
    所述工作带宽的目标频率为所述工作带宽的频点、最小频率或最大频率。
  13. 根据权利要求12所述的通信方法,其特征在于,所述基站在确定所述工作带宽的目标频率与所述待测参考信号的频率的差值是否在预设范围内之前,还包括:
    所述基站获取所述终端设备上报的所述预设范围。
  14. 根据权利要求10所述的通信方法,其特征在于,当所述待测参考信号为同步信号/物理广播信道块SSB,并且对所述终端设备进行同频测量时,还包括:
    当所述待测参考信号的频域资源位于所述终端设备当前激活的BWP内时,所述基站忽略测量间隔;
    或者,所述终端设备当前激活的BWP为初始BWP时,所述基站忽略测量间隔。
  15. 根据权利要求10所述的通信方法,其特征在于,还包括:
    所述基站获取测量间隔能力信息,所述测量间隔能力信息指示所述终端设备对应于支持的至少一个带宽资源或者带宽资源组合中,所述终端设备针对相应的待测参考 信号是否需要测量间隔;
    所述基站根据所述测量间隔能力信息,确定是否忽略测量间隔。
  16. 一种通信装置,其特征在于,用于实现如权利要求1-9任一项所述的通信方法。
  17. 一种通信装置,其特征在于,用于实现如权利要求10-15任一项所述的通信方法。
  18. 一种计算机可读存储介质,其特征在于,
    所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-9任一项所述的通信方法。
  19. 一种计算机可读存储介质,其特征在于,
    所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得所述计算机执行如权利要求10-15任一项所述的通信方法。
PCT/CN2020/071003 2019-01-11 2020-01-08 通信方法和装置 WO2020143691A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028445.3 2019-01-11
CN201910028445.3A CN111435891B (zh) 2019-01-11 2019-01-11 通信方法和装置

Publications (1)

Publication Number Publication Date
WO2020143691A1 true WO2020143691A1 (zh) 2020-07-16

Family

ID=71520653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071003 WO2020143691A1 (zh) 2019-01-11 2020-01-08 通信方法和装置

Country Status (2)

Country Link
CN (2) CN113938261B (zh)
WO (1) WO2020143691A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070509A (zh) * 2020-08-03 2022-02-18 中国移动通信有限公司研究院 处理参考信号的方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117223248A (zh) * 2021-04-30 2023-12-12 上海诺基亚贝尔股份有限公司 测量间隙增强
US20240032008A1 (en) * 2021-08-04 2024-01-25 Apple Inc. User equipment capability signaling for measurement gap enhancements
WO2024000133A1 (zh) * 2022-06-27 2024-01-04 北京小米移动软件有限公司 一种测量配置方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991220A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
US20180227717A1 (en) * 2017-02-08 2018-08-09 Qualcomm Incorporated Techniques and apparatuses for utilizing measurement gaps to perform signal decoding for a multimedia broadcast or multicast service

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8706068B2 (en) * 2008-06-23 2014-04-22 Telefonaktiebolaget L M Ericsson (Publ) Adaptive signal power measurement methods and apparatus
EP2538741B1 (en) * 2011-06-22 2014-04-30 NTT DoCoMo, Inc. Interference coordination between base stations
US9572152B2 (en) * 2012-03-23 2017-02-14 Telefonaktiebolaget L M Ericsson (Publ) Bandwidth adaptive reference signals
CN104716998A (zh) * 2013-12-16 2015-06-17 中兴通讯股份有限公司 参考信号发射方法及装置
CN106455091B (zh) * 2015-08-13 2021-10-19 中兴通讯股份有限公司 一种信道状态信息csi的上报方法和装置
US10117199B2 (en) * 2015-09-24 2018-10-30 Lg Electronics Inc. Method of transmitting channel state information and apparatus therefor
CN108810972B (zh) * 2017-05-04 2021-02-12 华为技术有限公司 通信方法、终端设备和网络设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991220A (zh) * 2015-01-30 2016-10-05 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
US20180227717A1 (en) * 2017-02-08 2018-08-09 Qualcomm Incorporated Techniques and apparatuses for utilizing measurement gaps to perform signal decoding for a multimedia broadcast or multicast service

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BROADCOM CORPORATION: "Measurement Gap Configuration for Dual Connectivity", 3GPP DRAFT; R2-142129, 23 May 2014 (2014-05-23), Seoul, Korea, pages 1 - 6, XP050818354 *
QUALCOMM INCORPORATED: "On the Necessity of Adding SSB Frequency Location in SSB Configuration as RLM-RS", 3GPP DRAFT; R2-1805205, 6 April 2018 (2018-04-06), Sanya, China, pages 1 - 4, XP051415898 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114070509A (zh) * 2020-08-03 2022-02-18 中国移动通信有限公司研究院 处理参考信号的方法及装置

Also Published As

Publication number Publication date
CN113938261B (zh) 2023-03-10
CN111435891A (zh) 2020-07-21
CN113938261A (zh) 2022-01-14
CN111435891B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2020143691A1 (zh) 通信方法和装置
JP7282181B2 (ja) 通信方法および通信装置
EP3817479B1 (en) Communication method and communication apparatus
US10368393B2 (en) Methods and apparatuses for enhancing the setup of carrier aggregation, dual connectivity, multi connectivity, license assisted access, or LTE-WLAN in communications networks
US11363552B2 (en) Method of synchronized signal block measurement, user equipment and network device
WO2020224575A1 (zh) 通信方法与装置
WO2019029422A1 (zh) 一种定位、测量上报方法及装置
US20210219164A1 (en) Measurement reporting entry processing method and device
US11337122B2 (en) Switch method, terminal and network side device
CN109474951B (zh) 一种移动性测量方法、装置及系统
WO2020078318A1 (zh) 通信方法及装置
CN113922931B (zh) 定位测量方法、装置及通信设备
US11825322B2 (en) Measurement control method, terminal, and non-transitory computer-readable storage medium
EP3621347B1 (en) User equipment, base station, and random access method
US20230047727A1 (en) Positioning measurement reporting method and configuration method, apparatus, and electronic device
KR20200135856A (ko) 셀 정보 획득 방법 및 기기
US11039376B2 (en) Indication method, detection method and related device
TW202310643A (zh) 下行定位參考信號收發方法、終端、基地台、設備及裝置
WO2017028053A1 (zh) 通信方法、处理装置、通信设备和通信系统
CN113923750A (zh) 接入小区的方法和装置
JP6968890B2 (ja) 測定方法、基地局及び端末
WO2018059555A1 (zh) 一种信号处理方法、设备及系统
US11006322B2 (en) Link reconfiguration processing method and related products
US10349429B1 (en) System and method for frequency redirection in a communication system
WO2021031004A1 (zh) 载波测量方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738166

Country of ref document: EP

Kind code of ref document: A1