WO2018059555A1 - 一种信号处理方法、设备及系统 - Google Patents

一种信号处理方法、设备及系统 Download PDF

Info

Publication number
WO2018059555A1
WO2018059555A1 PCT/CN2017/104498 CN2017104498W WO2018059555A1 WO 2018059555 A1 WO2018059555 A1 WO 2018059555A1 CN 2017104498 W CN2017104498 W CN 2017104498W WO 2018059555 A1 WO2018059555 A1 WO 2018059555A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
signal resource
resource
sent
Prior art date
Application number
PCT/CN2017/104498
Other languages
English (en)
French (fr)
Inventor
刘建琴
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020197007668A priority Critical patent/KR20190039282A/ko
Priority to EP17855005.9A priority patent/EP3493604B1/en
Priority to JP2019510624A priority patent/JP2019530301A/ja
Publication of WO2018059555A1 publication Critical patent/WO2018059555A1/zh
Priority to US16/365,342 priority patent/US20190223166A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a signal processing method, device, and system.
  • the common channel or signal in the high frequency band is transmitted based on beamforming (analog beam or digital domain beam), each A common channel or signal under the action of a shaped beam corresponds to a group of users.
  • the user can switch between different shaped beams and select the shaped beam with the best channel propagation condition to serve, so that all users have good Coverage performance.
  • the configuration information (eg, parameter configuration) of channels or signals under different shaped beams is different, and therefore, when When the user switches between different shaped beams, it is necessary to perform radio resource control (English: Connection Reconfiguration Complete, RRC) resetting on the configuration information of the channel or signal under the switched beam, for example, when the user is shaped
  • radio resource control (English: Connection Reconfiguration Complete, RRC) resetting on the configuration information of the channel or signal under the switched beam, for example, when the user is shaped
  • the transmission of the channel and the signal for example, the broadcast channel, the common control channel, the synchronization signal, and the common reference signal
  • the shaped beam 2 configures the channel and the signal.
  • an RRC reconfiguration occurs when the user performs an inter-beam handover. In this case, if the user frequently switches between different beams, the RRC may be caused. Reproducing frequent problems.
  • the present application provides a signal processing method, device, and system to solve the problem that a user frequently switches between different beams, resulting in frequent RRC reconfiguration.
  • a signal sending method may include:
  • the base station notifies the user equipment UE of at least one public information process, where each public information process corresponds to at least one common signal resource, and configuration information of different common signal resources in the same common information process is the same, and the base station according to at least one common information process in the public signal
  • the configuration information of the resource sends a public signal to the UE.
  • each common signal resource can correspond to an shaped beam.
  • the configuration information of the common signal resource may include at least one or more of a sequence setting of the common signal resource, a scrambling code setting of the common signal resource, and configuration information of the random access channel included in the common signal resource.
  • the base station can be configured to send the public signal corresponding to the common signal resource to the UE according to the same configuration information.
  • the configuration information of the common signal resources will remain unchanged.
  • the UE does not need to send to the base station.
  • the RRC reconfiguration request the base station does not need to perform RRC reconfiguration on the public signal of the UE.
  • the base station may notify the UE of at least one public information process by using high-level signaling or control signaling or other public signals other than the public signal, and the public information process is public.
  • the configuration information of the signal resource is notified to the user equipment by the base station through high layer signaling or control signaling.
  • the transmission of the random access channel of the UE is bound to the optimal common signal resource, when the UE detects and selects an optimal common signal resource from the plurality of common signal resources, the UE according to the most The excellent common signal resource performs transmission of the random access channel, wherein the transmission of the random access channel and the optimal common signal resource binding means that the transmission resource information of the random access channel is configured by the optimal public signal. Or the access response information associated with the random access channel and the optimal common signal resource corresponding to the same shaped beam, or the received shaped beam corresponding to the random access channel and the optimal common signal resource The corresponding shaped beams are the same. At this time, if the UE performs the shaped beam switching frequently, it will bring frequent access information reconfiguration and random access procedures. Therefore, in order to avoid the problem, another implementation manner in the first aspect is achieved. In combination with the first aspect or the achievable manner of the first aspect, the method may further include:
  • the base station receives the random access channel sent by the UE for the ith time;
  • the base station does not receive the random access sent by the UE for the ith time.
  • Channel where i is an integer greater than or equal to 2.
  • the new random access channel process is initiated only when corresponding to different public information processes, and the frequent access information of the UE due to frequent shaped beam switching is avoided.
  • the random access process is matched, thereby achieving the effect of saving configuration signaling and UE power saving.
  • the transmission of the uplink sounding reference signal (SRS) of the UE is also bound to the optimal common signal resource, and the UE may select one according to the detection of multiple common signal resources.
  • the optimal common signal resource performs SRS transmission according to the optimal common signal resource, wherein the transmission of the uplink sounding reference signal and the optimal common signal resource binding refer to the base station adopting the corresponding common signal resource.
  • the shaped beam is used for receiving the uplink sounding reference signal. Therefore, in order to ensure that the transmission of the uplink sounding reference signal of the UE is always based on the better receiving shaped beam, in another implementation manner of the first aspect, in another implementation manner of the first aspect, in one aspect or the achievable manner of the first aspect, the method may further include:
  • the base station receives the uplink sounding reference signal sent by the UE for the ith time, wherein , i is an integer greater than or equal to 2;
  • the base station does not receive the uplink sounding parameter sent by the UE. Test signal.
  • the UE performs the uplink sounding reference signal transmission, thereby ensuring that the transmission capability of the uplink sounding reference signal of the UE is always based on comparison. Excellent reception of the shaped beam, so that the transmission performance of the uplink sounding reference signal is guaranteed.
  • the method may further include:
  • the base station receives the public signal resource index sent by the UE for the i th time, wherein , i is an integer greater than or equal to 2;
  • the base station does not receive the public signal resource index sent by the UE for the ith time.
  • the UE can transmit the common signal resource index only when corresponding to the common public information process when the public signal resource index is sent, and the UE avoids detecting the optimal public signal resource.
  • the index of the common signal resource corresponding to the optimal common signal resource is reported to the base station, which greatly reduces the power consumption of the UE.
  • a signal receiving method may include:
  • the user equipment UE acquires at least one public information process notified by the base station, where each public information process corresponds to at least one common signal resource, and configuration information of different common signal resources in the same common information process is the same, and the UE receives the base station according to at least one public information process.
  • each common signal resource can correspond to an shaped beam.
  • the configuration information of the common signal resource may include at least one or more of a sequence setting of the common signal resource, a scrambling code setting of the common signal resource, and configuration information of the random access channel included in the common signal resource.
  • the UE may acquire configuration information that is sent by the base station by using high-level signaling or control information or other public signals other than the public signal, and at least one common information in the public information process.
  • the configuration information of the resource is notified to the UE by the base station through high layer signaling or control signaling.
  • the method may further include:
  • the UE determines that the public information process corresponding to the random access channel transmitted by the UE is different from the public information process corresponding to the random access channel sent by the UE in the i-1th time, the UE performs the i-th random access channel to the base station. Transmit; wherein i is an integer greater than or equal to 2;
  • the UE determines that the public information process corresponding to the random access channel transmitted by the UE is the same as the public information process corresponding to the random access channel transmitted by the UE in the i-1th time, the UE does not perform the ith random access channel to the base station. Send.
  • the UE can only send when the random access channel is transmitted, only when corresponding to different public information processes.
  • the new random access channel process avoids the frequent access information reconfiguration and random access process of the UE due to frequent shaped beam switching, thereby achieving the effect of saving configuration signaling and UE power saving.
  • the method may further include:
  • the UE determines that the public information process corresponding to the uplink sounding reference signal sent by the UE is the same as the public information process corresponding to the uplink sounding reference signal sent by the UE in the i-1th time, the UE performs the i-th uplink sounding reference signal to the base station.
  • Send where i is an integer greater than or equal to 2;
  • the UE determines that the public information process corresponding to the uplink sounding reference signal sent by the UE is different from the public information process corresponding to the uplink sounding reference signal sent by the UE in the i-1th time, the UE does not perform the ith uplink sounding reference signal to the base station. Send.
  • the UE performs the uplink sounding reference signal transmission, thereby ensuring that the transmission capability of the uplink sounding reference signal of the UE is always based on comparison. Excellent reception of the shaped beam, so that the transmission performance of the uplink sounding reference signal is guaranteed.
  • the method may further include:
  • the UE determines that the common information process corresponding to the common signal resource index transmitted by the i th is different from the common information process corresponding to the public signal resource index sent by the UE in the i-1th time, the UE sends the i-th common signal resource index to the base station.
  • i is an integer greater than or equal to 2;
  • the UE determines that the common information process corresponding to the common signal resource index sent by the i th is the same as the public information process corresponding to the public signal resource index sent by the UE in the i-1th time, the UE does not perform the index of the i th common signal resource to the base station. send.
  • the UE can transmit the common signal resource index only when corresponding to the common public information process when the public signal resource index is sent, and the UE avoids detecting the optimal public signal resource.
  • the index of the common signal resource corresponding to the optimal common signal resource is reported to the base station, which greatly reduces the power consumption of the UE.
  • a third aspect provides a base station, where the base station can include:
  • a sending unit configured to notify the user equipment UE of at least one public information process, where each public information process corresponds to at least one public signal resource, and configuration information of different common signal resources in the same public information process is the same;
  • the sending unit is further configured to send a public signal to the UE according to configuration information of a common signal resource in the at least one common information process.
  • the specific implementation manner of the third aspect may refer to the behavior function of the base station in the signal sending method provided by the first aspect or the possible implementation manner of the first aspect.
  • a fourth aspect provides a base station, where the base station can include:
  • a transceiver configured to notify the user equipment UE of at least one public information process, where each public information process corresponds to at least one public signal resource, and configuration information of different common signal resources in the same public information process is the same;
  • the specific implementation manner of the fourth aspect may refer to the first aspect or the possible implementation manner of the first aspect.
  • a non-transitory computer readable storage medium storing one or more programs, the instructions comprising instructions, when included in the third or fourth aspect or any of the above, When the base station is implemented, the base station is caused to perform the following events:
  • each public information process corresponds to at least one common signal resource, and configuration information of different common signal resources in the same public information process is the same, according to the public signal in the at least one public information process
  • the configuration information of the resource sends a public signal to the UE.
  • the third aspect, the fourth aspect, and the specific implementation manner of the fifth aspect may refer to the behavior function of the base station in the signal sending method provided by the first aspect or the possible implementation manner of the first aspect, and details are not described herein again. Meanwhile, the base station provided by the third aspect, the fourth aspect, and the fifth aspect can achieve the same advantageous effects as the first aspect.
  • a UE is provided, and the UE may include:
  • a receiving unit configured to acquire at least one public information process notified by the base station, where each public information process corresponds to at least one public signal resource, and configuration information of different common signal resources in the same public information process is the same;
  • the receiving unit is further configured to receive a public signal that is sent by the base station according to configuration information of a common signal resource in the at least one public information process.
  • the specific implementation manner of the sixth aspect may refer to the behavior function of the UE in the signal receiving method provided by the second aspect or the possible implementation manner of the second aspect.
  • a UE is provided, and the UE may include:
  • a transceiver configured to acquire at least one public information process notified by the base station, where each public information process corresponds to at least one public signal resource, and configuration information of different common signal resources in the same public information process is the same;
  • the specific implementation manner of the seventh aspect may refer to the behavior function of the UE in the signal receiving method provided by the second aspect or the possible implementation manner of the second aspect.
  • a non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions, when included in the sixth or seventh aspect or any of the above, When the implementation of the UE is performed, the UE is caused to perform the following events:
  • each public information process corresponds to at least one public signal resource, and configuration information of different common signal resources in the same public information process is the same;
  • the specific implementation manners of the sixth aspect, the seventh aspect, and the eighth aspect may refer to the behavior function of the UE in the signal receiving method provided by the second aspect or the possible implementation manner of the second aspect, and details are not described herein again. Meanwhile, the UE provided by the sixth aspect, the seventh aspect, and the eighth aspect can achieve the same advantageous effects as the second aspect.
  • a ninth aspect a signal processing system, comprising the base station according to the third aspect or the fourth aspect or the fifth aspect, and the base station according to the sixth aspect or the seventh aspect or the eighth aspect.
  • a signal sending method is provided, and the method may include:
  • the base station notifies the user equipment UE of the set of at least one signal resource, where each set of signal resources corresponds to at least one signal resource, and configuration information of different signal resources in the same signal resource set is the same, and the base station is configured according to at least one signal resource.
  • the configuration information of the signal resource sends a signal to the UE.
  • Each of the signal resources may correspond to one shaped beam.
  • the configuration information of the signal resource may include at least one or more of a sequence setting of the signal resource, a scrambling code setting of the signal resource, and configuration information of the random access channel included in the signal resource.
  • the different signal resources corresponding to the same configuration information are placed in the same set of signal resources, and the base station can send the signal corresponding to the signal resource to the UE according to the same configuration information.
  • the configuration information of the signal resources will remain unchanged.
  • the UE does not need to send the RRC to the base station.
  • the reconfiguration request, the base station does not need to perform RRC reconfiguration on the signal of the UE.
  • the base station may notify the UE of the set of at least one signal resource, the signal in the set of the signal resources, by using high-level signaling or control signaling or other signals than the signal.
  • the configuration information of the resource is notified to the user equipment by the base station through high layer signaling or control signaling.
  • the transmission of the random access channel of the UE is bound to the optimal signal resource.
  • the UE detects and selects an optimal signal resource from multiple signal resources, the UE will according to the optimal signal.
  • the resource performs the transmission of the random access channel, wherein the transmission of the random access channel and the optimal signal resource binding means that the transmission resource information of the random access channel is configured by the optimal signal, or the random connection
  • the access response information associated with the incoming channel corresponds to the same shaped beam as the optimal signal resource, or the received shaped beam corresponding to the random access channel is the same as the shaped beam corresponding to the optimal signal resource.
  • the UE performs the shaped beam switching frequently, it will bring frequent access information reconfiguration and random access procedures. Therefore, in order to avoid the problem, another implementation manner in the tenth aspect is achieved.
  • the method may further include:
  • the base station receives the random access channel sent by the UE for the ith time. ;
  • the base station does not receive the random transmission of the ith time of the UE.
  • Access channel where i is an integer greater than or equal to 2.
  • the new random access channel process is initiated only when the set of different signal resources is corresponding, and the frequent access information of the UE due to frequent shaped beam switching is avoided. Reconfiguration and random access procedures, thereby achieving the effect of saving configuration signaling and UE power saving.
  • the transmission of the uplink sounding reference signal (SRS) of the UE is also bound to the optimal signal resource, and the UE can select an optimal according to the detection of multiple signal resources.
  • the signal resource performs SRS transmission according to the optimal signal resource, wherein the transmission of the uplink sounding reference signal and the optimal signal resource binding means that the base station uses the shaped beam corresponding to the optimal signal resource to perform uplink
  • the detection of the reference signal is received. Therefore, in order to ensure that the transmission of the uplink sounding reference signal of the UE is always based on the preferred receiving beam, in a further implementation of the tenth aspect, the tenth or tenth aspect is combined.
  • the method can also be implemented, the method can also include:
  • the UE transmits the uplink sounding reference signal corresponding to the set of signal resources and the UE transmits the i-1th time
  • the uplink sounding reference signal corresponds to the same set of signal resources
  • the base station receives the uplink sounding reference signal sent by the UE for the ith time, where i is an integer greater than or equal to 2;
  • the base station does not receive the uplink sounding reference sent by the UE for the ith time. signal.
  • the UE performs the uplink sounding reference signal transmission, thereby ensuring that the transmission capability of the uplink sounding reference signal of the UE is always based on The receiving beam is better received, so that the transmission performance of the uplink sounding reference signal is guaranteed.
  • the method may further include:
  • the base station receives the signal resource index sent by the UE for the ith time, where i is an integer greater than or equal to 2;
  • the base station does not receive the signal resource index sent by the UE in the i th time.
  • the UE can transmit the signal resource index only when corresponding to different sets of signal resources when performing signal resource index transmission, thereby avoiding that the UE detects the optimal signal resource, and the optimal The signal resource index corresponding to the signal resource is reported to the base station, which greatly reduces the power consumption of the UE.
  • the signal includes at least one of a broadcast channel, a synchronization signal, a cell-specific reference signal, system information, and an uplink sounding reference signal.
  • a signal receiving method is provided, and the method may include:
  • the user equipment UE acquires a set of at least one signal resource notified by the base station, where each set of signal resources corresponds to at least one signal resource, and configuration information of different signal resources in the same signal resource set is the same, and the UE receiving base station according to at least one signal resource The signal sent by the configuration information of the signal resource in the set.
  • Each of the signal resources may correspond to one shaped beam.
  • the configuration information of the signal resource may include at least one or more of a sequence setting of the signal resource, a scrambling code setting of the signal resource, and configuration information of the random access channel included in the signal resource.
  • the UE may acquire configuration information that is sent by the base station by using high-level signaling or other information other than the control information or the signal, and the signal in the set of the at least one signal resource.
  • the configuration information of the resource is notified to the UE by the base station through high layer signaling or control signaling.
  • the method may further include:
  • the UE determines that the set of signal resources corresponding to the random access channel transmitted by the UE is different from the set of signal resources corresponding to the random access channel transmitted by the UE in the i-1th time, the UE performs the ith random access to the base station.
  • channel Transmission where i is an integer greater than or equal to 2;
  • the UE determines that the set of signal resources corresponding to the random access channel transmitted by the UE is the same as the set of signal resources corresponding to the random access channel transmitted by the UE in the i-1th time, the UE does not perform the i-th random connection to the base station. The transmission of the incoming channel.
  • the new random access channel process is initiated only when the set of different signal resources is corresponding, and the frequent access information of the UE due to frequent shaped beam switching is avoided. Reconfiguration and random access procedures, thereby achieving the effect of saving configuration signaling and UE power saving.
  • the method may further include:
  • the UE determines that the set of signal resources corresponding to the uplink sounding reference signal transmitted by the UE is the same as the set of signal resources corresponding to the uplink sounding reference signal transmitted by the UE, the UE performs the ith uplink sounding reference to the base station.
  • Signal transmission where i is an integer greater than or equal to 2;
  • the UE determines that the set of signal resources corresponding to the uplink sounding reference signal transmitted by the UE is different from the set of signal resources corresponding to the uplink sounding reference signal transmitted by the UE, the UE does not perform the ith uplink detection to the base station. The transmission of the reference signal.
  • the UE performs the uplink sounding reference signal transmission, thereby ensuring that the transmission capability of the uplink sounding reference signal of the UE is always based on The receiving beam is better received, so that the transmission performance of the uplink sounding reference signal is guaranteed.
  • the method may further include:
  • the UE determines that the set of signal resources corresponding to the signal resource index of the ith transmission is different from the set of signal resources corresponding to the signal resource index of the i-1th transmission, the UE sends the ith signal resource index to the base station; Where i is an integer greater than or equal to 2;
  • the UE determines that the set of signal resources corresponding to the signal resource index transmitted by the i th is the same as the set of signal resources corresponding to the signal resource index of the i-1th transmission, the UE does not send the i th signal resource index to the base station. .
  • the UE can transmit the signal resource index only when corresponding to different sets of signal resources when performing signal resource index transmission, thereby avoiding that the UE detects the optimal signal resource, and the optimal The signal resource index corresponding to the signal resource is reported to the base station, which greatly reduces the power consumption of the UE.
  • the signal includes at least one of a broadcast channel, a synchronization signal, a cell-specific reference signal, system information, and an uplink sounding reference signal.
  • a twelfth aspect provides a base station, where the base station can include:
  • a sending unit configured to notify the user equipment UE of the at least one signal resource set, where each set of signal resources corresponds to at least one signal resource, and configuration information of different signal resources in the same signal resource set is the same;
  • the sending unit is further configured to send a signal to the UE according to configuration information of a signal resource in the set of the at least one signal resource.
  • the specific implementation manner of the twelfth aspect may refer to the tenth aspect or the possible implementation side of the tenth aspect.
  • the behavior of the base station in the signal transmission method provided by the method may refer to the tenth aspect or the possible implementation side of the tenth aspect.
  • a thirteenth aspect provides a base station, where the base station can include:
  • a transceiver configured to notify a user equipment UE of a set of at least one signal resource, where each set of signal resources corresponds to at least one signal resource, and configuration information of different signal resources in a set of the same signal resource is the same;
  • the specific implementation manner of the thirteenth aspect may refer to the behavior function of the base station in the signaling method provided by the tenth aspect or the possible implementation manner of the tenth aspect.
  • a non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions that include the twelfth aspect or the thirteenth aspect or When a base station of a possible implementation is executed, the base station is caused to perform the following events:
  • the configuration information of the signal resource sends a signal to the UE.
  • the specific implementation manners of the twelfth aspect, the thirteenth aspect, and the fourteenth aspect may refer to the behavior function of the base station in the signal sending method provided by the tenth aspect or the possible implementation manner of the tenth aspect, where Narration. Meanwhile, the base station provided in the twelfth aspect, the thirteenth aspect, and the fourteenth aspect can achieve the same advantageous effects as the tenth aspect.
  • a UE is provided, and the UE may include:
  • a receiving unit configured to acquire a set of at least one signal resource notified by the base station, where each set of signal resources corresponds to at least one signal resource, and configuration information of different signal resources in the same signal resource set is the same;
  • the receiving unit is further configured to receive, by the base station, a signal that is sent according to configuration information of a signal resource in the set of the at least one signal resource.
  • the specific implementation manner of the fifteenth aspect may refer to the behavior function of the UE in the signal receiving method provided by the eleventh aspect or the possible implementation manner of the eleventh aspect.
  • a UE is provided, and the UE may include:
  • a transceiver configured to acquire a set of at least one signal resource notified by the base station, where each set of signal resources corresponds to at least one signal resource, and configuration information of different signal resources in the same signal resource set is the same;
  • the specific implementation manner of the sixteenth aspect may refer to the behavior function of the UE in the signal receiving method provided by the eleventh aspect or the possible implementation manner of the eleventh aspect.
  • a seventeenth aspect a non-transitory computer readable storage medium storing one or more programs, the one or more programs comprising instructions, when the instructions are included in the fifteenth aspect or the sixteenth aspect or When a UE of a possible implementation is executed, the UE is caused to perform the following events:
  • each set of signal resources corresponds to at least one signal resource, and configuration information of different signal resources in the same signal resource set is the same;
  • the specific implementation manners of the fifteenth aspect, the sixteenth aspect, and the seventeenth aspect may refer to the behavior function of the UE in the signal receiving method provided by the eleventh aspect or the possible implementation manner of the eleventh aspect, where No longer. Meanwhile, the UEs provided in the fifteenth aspect, the sixteenth aspect, and the seventeenth aspect can achieve the same advantageous effects as the eleventh aspect.
  • a signal processing system comprising the base station according to the twelfth aspect or the thirteenth aspect or the fourteenth aspect, and the fifteenth aspect or the sixteenth aspect or the seventeenth aspect The base station described.
  • 1 is a structural diagram of a wireless communication system
  • FIG. 2 is a structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a signal sending method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a UE sending a random access channel according to an embodiment of the present invention
  • FIG. 3b is a flowchart of sending an uplink sounding reference signal by a UE according to an embodiment of the present invention
  • FIG. 3c is a flowchart of a UE transmitting a common signal resource index according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a base station 30 according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a user equipment 40 according to an embodiment of the present invention.
  • FIG. 6 is a structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a signal sending method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a UE transmitting a random access channel according to an embodiment of the present invention.
  • FIG. 7b is a flowchart of sending an uplink sounding reference signal by a UE according to an embodiment of the present invention.
  • FIG. 7c is a flowchart of a UE transmitting a common signal resource index according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram of a base station 80 according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of a user equipment 90 according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of a communication system according to an embodiment of the present invention.
  • the main principle of the present invention is: the base station configures a plurality of common signal resources for the user equipment (English: User Equipment, UE) (each common signal resource can correspond to one shaped beam), and the configuration information of each common signal resource is the same.
  • the base station sends a public signal to the UE according to the configuration information of the common signal resource.
  • the base station may send the public under the current shaped beam by using the same configuration parameters as before the beam switching. Signals do not require RRC reconfiguration of common signal resources.
  • association relationship describing an association object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A exists at the same time. And B, there are three cases of B alone.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the signal processing method of the present invention can be deployed in the wireless communication system shown in FIG. 1, the wireless communication
  • the system can be: Long Term Evolution (LTE) network, Wideband Code Division Multiple Access (WCDMA) network, Code Division Multiple Access (CDMA) system. Time Division Multiple Access (TDMA) system, Frequency Division Multiple Addressing (FDMA) system, Orthogonal Frequency Division Multiple Access (OFDMA) system Any one of a single carrier FDMA (English: Single Carrier-FDMA, SC-FDMA) system and a General Packet Radio Service (GPRS) system. Specifically, the method is applicable to a communication system.
  • the embodiments of the present invention are not limited.
  • the LTE system shown in FIG. 1 is taken as an example to describe a signal processing method, device, and system provided by the present invention.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
  • the system architecture may include: a base station 10 and a user equipment 20, and a radio resource control may be established between the base station 10 and the user equipment 20. (English: Radio Resource Control, RRC) connection to implement uplink transmission and downlink transmission between the base station 10 and the user equipment 20.
  • the base station 10 may be a device in the access network that communicates with the user equipment 20 through one or more sectors on the air interface, for example, may be an evolved base station (NodeB or eNB or e-NodeB) in LTE.
  • the user equipment 20 may be a wireless terminal for communicating with one or more base stations via a radio access network (RAN).
  • RAN radio access network
  • the user equipment 20 may be: Personal Communication Service (PCS) Telephone, Cordless Telephone, Session Initiation Protocol (SIP) Telephone, Wireless Local Loop (WLL) Station, Personal Digital Assistant (English) English: Personal Digital Assistant (PDA), tablet, laptop, Ultra-mobile Personal Computer (UMPC), netbook, personal digital assistant (PDA) .
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • tablet laptop
  • Ultra-mobile Personal Computer UMPC
  • netbook personal digital assistant
  • the base station 10 may include: a transceiver 1011, a processor 1012, a memory 1013, and at least one communication bus 1014.
  • the communication bus 1014 is used to implement these.
  • the user equipment 20 may include: a transceiver 2011, a processor 2012, a memory 2013, and at least one communication bus 2014 for implementing different within the user equipment 20 Connections between components and mutual communication;
  • the transceiver 1011 is a transceiver unit of the base station 10, and is used for data interaction with an external network element.
  • the transceiver 1011 of the base station 10 can send data or configuration information to the user equipment 20; or, receive the user equipment 20 Data or configuration information sent;
  • the transceiver unit 2011 is a transceiver unit of the user equipment 20, and is used for data interaction with an external network element.
  • the transceiver 2011 of the user equipment 20 can receive data or configuration information sent by the base station 10; or send data to the base station 10. Or configuration information;
  • the processor 1012 and the processor 2012 may be a central processing unit (CPU), may be an application specific integrated circuit (ASIC), or be configured to implement the implementation of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • one or more integrated circuits such as one or more microprocessors (English: Digital Signal Processor, DSP), or one or more Field Programmable Gate Arrays (FPGAs).
  • the memory 1013 and the memory 2013 may be volatile memories (English: volatile memory). Such as random access memory (English: Random-Access Memory, RAM); or non-volatile memory (English: non-volatile memory), such as read-only memory (English: Read-Only Memory, ROM), flash memory ( English: flash memory), hard disk (English: Hard Disk Drive, HDD) or solid state hard disk (English: Solid-State Drive, SSD); or a combination of the above types of memory.
  • the processor 1012 can implement various functions of the base station 10 by running or executing program code stored in the memory 1013 and calling data stored in the memory 1013, and the processor 2012 can execute or execute the program stored in the memory 2013.
  • the code, as well as the data stored in the memory 2013, implements various functions of the user device 20.
  • the communication bus 1014 and the communication bus 2014 can be divided into an address bus, a data bus, a control bus, etc., and can be an industry standard architecture (English: Industry Standard Architecture, ISA) bus, and an external device interconnection (English: Peripheral Component, PCI) bus. Or extend the industry standard architecture (English: Extended Industry Standard Architecture, EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the following embodiments show and describe in detail the signal processing method provided by the present invention, wherein the steps shown may also be in any communication system other than the wireless communication system shown in FIG. 1. Executed in. Moreover, although the logical sequence of the signal transmitting methods provided by the present invention is shown in the method flowchart, in some cases, the steps shown or described may be performed in an order different from that herein.
  • FIG. 3 is a flowchart of a signal processing method according to an embodiment of the present invention.
  • the method may be performed by the base station and the user equipment shown in FIG. 1 and FIG. 2, and the signal processing method may be referred to as a base station side.
  • the signal processing method may also be referred to as a signal receiving method; as shown in FIG. 3, the method may include the following steps:
  • the base station notifies the UE of the at least one public information process, where the UE acquires at least one public information process notified by the base station, where the at least one public information process corresponds to at least one public signal resource, and the configuration of different common signal resources in the same common information process The information is the same.
  • the UE may be any UE in the cell served by the base station in the wireless communication network shown in FIG. 1.
  • the public information process is mainly used to indicate the transmission resources and other configuration indications required in the process of public signal transmission.
  • a common information process herein may be a set of multiple common signal resources, or may be multiple shaped beams. a collection of.
  • the public information process may include a common signal and a time domain resource or a frequency domain resource required for transmitting a common signal.
  • Each of the common signal resources may correspond to one shaped beam, and the channel characteristics of the shaped beam corresponding to the common signal resource in the same common information process are similar, and the configuration information corresponding to the common signal resource in the same common information process is the same.
  • Each common signal resource may include: a common signal, and a transmission resource corresponding to the common signal (such as a time-frequency resource, a port resource, etc.), and the common signal may include a broadcast channel, a synchronization signal, a cell-specific reference signal, and system information. At least one of them.
  • the common signal includes, but is not limited to, the above-mentioned signals, and the common signal may also be a new signal that appears as the communication technology develops.
  • the configuration information of the common signal resource may be used to indicate which configuration format is used for transmitting the common signal between the base station and the UE.
  • the configuration information of the common signal resource includes, but is not limited to, a sequence setting of a common signal resource, a scrambling code setting of a common signal resource, and a configuration information of a random access channel (RACH) included in the common signal resource (English: Random Access Channel, RACH) At least one or more of them.
  • RACH random access channel
  • the sequence setting of the common signal resource may include a sequence setting of the synchronization signal; the scrambling code setting of the common signal resource may include a scrambling code initialization setting parameter of the common signal resource, such as a Radio Network Tempory Identity (RNTI), or
  • the scrambling code initialization parameter may be any one of other RNTI identifiers, such as C-RNTI, RAR-RNTI, P-RNTI, etc.
  • the configuration information of the RACH may include a configuration index of the random access channel (PRACH-Config-Index) And at least one of a frequency domain offset (PRACH-Frequency-Offset) of the random access channel and a format configuration of the random access channel.
  • the base station may configure at least one public information process for the UE after the UE accesses the cell, and configure the configured at least one public information process by using high layer signaling or control signaling or other than the public signal.
  • the other public signals are sent to the UE, and the configuration information of the common signal resources in the public information process can be notified to the UE through high-level signaling or control signaling. It should be noted that the notification process of the two may be performed sequentially or simultaneously. This embodiment of the present invention does not limit this; wherein the high layer signaling may be RRC signaling.
  • the base station can allocate 4 common information processes for the UE, and each common information process can correspond to 4 shaped beams.
  • the channel characteristics (such as delay spread and path loss) corresponding to the four shaped beams are different, but It may be similar, so the same public information process may include four common signal resources with the same configuration information, corresponding to the four shaped beams.
  • the base station sends a public signal to the UE according to the configuration information of the common signal resource in the at least one common information process, and the UE receives the public signal sent by the base station.
  • the base station may configure the public signal according to the configuration information of any common signal resource in any public information process, and send the public signal to the UE after the configuration is completed.
  • the base station sends the public signal resource corresponding to the UE according to the same configuration information.
  • Public signal When the UE is switched between different shaped beams, and the common signal resources corresponding to different shaped beams are in the same common information process, the configuration information of the common signal resources will remain unchanged. At this time, the UE does not need to send the RRC to the base station. With the request, the base station does not need to perform RRC reconfiguration on the public signal of the UE.
  • a common information process allocated by the base station to the UE includes four common signal resources, and the four common signal resources correspond to four shaped beams.
  • the shaped beam corresponding to the common signal resource is switched from the shaped beam 1.
  • the base station can transmit the corresponding configuration information corresponding to the shaped beam 1 because the common signal resources corresponding to the shaped beam 2 and the shaped beam 1 use the same configuration information.
  • the common signal that is, the configuration information of the common signal resource corresponding to the original shaped beam 1 can be directly reused on the common signal resource corresponding to the shaped beam 2, and the base station is not required to perform RRC reconfiguration on the common signal corresponding to the shaped beam 2.
  • the transmission of the random access channel of the UE is bound to the optimal common signal resource
  • the UE detects and selects an optimal common signal resource from the plurality of common signal resources, the UE according to the most The excellent common signal resource performs transmission of the random access channel, wherein the transmission of the random access channel and the optimal common signal resource binding means that the transmission resource information of the random access channel is configured by the optimal public signal.
  • the access response information associated with the random access channel and the optimal common signal resource correspond to the same shaped beam.
  • the UE performs the shaped beam switching frequently frequent access information reconfiguration is brought. And a random access procedure, therefore, in order to avoid the occurrence of the problem, further optional, as shown in FIG.
  • the UE acquires the notification of the base station At least one common information process, and when the UE determines that it needs to perform the transmission of the ith random access channel, the i is a positive integer greater than or equal to 2, and the method may further include:
  • step 1011 The UE determines whether the public information process corresponding to the random access channel sent by the ith time is the same as the public information process corresponding to the random access channel sent by the UE in the i-1th time. If not, proceed to step 1012. If not, step 1013 is performed.
  • the UE sends the i-th random access channel to the base station.
  • the UE does not perform the transmission of the ith random access channel.
  • each common signal resource corresponds to one common information process
  • the transmission of the random access channel of the UE is bound to the optimal common signal resource
  • the transmission of the random access channel of the UE also corresponds to a common information process in which the common public signal resource is located, that is, the public information process corresponding to the random access channel sent by the UE may refer to: a random access channel sent by the UE.
  • the UE can initiate a new random access channel process only when corresponding to different public information processes, and avoid frequent connection of the UE due to frequent shaped beam switching. Into the information reconfiguration and random access process, thereby achieving the effect of saving configuration signaling and UE power saving.
  • the transmission of the uplink sounding reference signal (SRS) of the UE is also bound to the optimal common signal resource, and the UE may select one according to the detection of multiple common signal resources.
  • the optimal common signal resource performs SRS transmission according to the optimal common signal resource, wherein the transmission of the uplink sounding reference signal and the optimal common signal resource binding refer to the base station adopting the corresponding common signal resource.
  • the shaped beam is used for receiving the uplink sounding reference signal. Therefore, in order to ensure that the uplink sounding reference signal of the UE is always transmitted based on the preferred receiving beam, further optional, as shown in FIG. 3b, is obtained at the UE.
  • At least one public information process that is notified by the base station, and when the UE determines that it needs to perform the ith uplink sounding reference signal transmission, the i is a positive integer greater than or equal to 2.
  • the method further includes:
  • the UE determines whether the public information process corresponding to the uplink sounding reference signal transmitted by the ith time is the same as the public information process corresponding to the uplink sounding reference signal sent by the UE in the i-1th time. If the same, the process proceeds to step 2012. If it is different, go to step 2013.
  • the UE sends the i-th uplink sounding reference signal to the base station.
  • the UE does not transmit the uplink sounding reference signal.
  • the UE performs the uplink sounding reference signal transmission, thereby ensuring that the transmission capability of the uplink sounding reference signal of the UE is always based on comparison. Excellent reception of the shaped beam, so that the transmission performance of the uplink sounding reference signal is guaranteed.
  • the method may further include:
  • step 3011 The UE determines whether the common information process corresponding to the common signal resource index sent by the UE in the ith time is the same as the public information process corresponding to the public signal resource index sent by the UE in the i-1th time. If not, step 3012 is performed. If they are the same, step 3013 is performed.
  • the UE sends the ith public signal resource index to the base station.
  • the UE does not perform the transmission of the ith public signal resource index.
  • the common signal resource index may be an index of a common signal resource corresponding to the optimal common signal resource monitored by the UE; the public information process corresponding to the common signal resource index may refer to: an optimal public signal resource corresponding to the common signal resource index.
  • the UE can transmit the common signal resource index only when corresponding to the common public information process when the public signal resource index is sent, and the UE avoids detecting the optimal public signal resource.
  • the index of the common signal resource corresponding to the optimal common signal resource is reported to the base station, which greatly reduces the power consumption of the UE.
  • the solution provided by the embodiment of the present invention is mainly introduced from the perspective of interaction between the base station and the UE.
  • the base station and the UE implement the above functions, which include corresponding hardware structures and/or software modules for performing respective functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may perform division of functional units on a base station, a UE, and the like according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 4 is a schematic diagram showing a possible structure of the base station 30 involved in the foregoing embodiment.
  • the base station 30 includes a sending unit 301 and a receiving unit 302.
  • the sending unit 301 is configured to support the base station to perform the processes S101 and S102 in FIG. 3; the receiving unit 302 can be used to support the process in which the base station performs the signal received by the UE.
  • the transmitting unit 301 and the receiving unit 302 in the base station 30 shown in FIG. 4 may be integrated in the transceiver 1011 in the base station 10 shown in FIG. 2 to support the base station to perform the process in FIG. S101 and S102, and a process of receiving a signal transmitted by the UE.
  • FIG. 5 is a schematic diagram showing a possible structure of the UE 40 involved in the foregoing embodiment.
  • the base station 40 includes a receiving unit 401, a determining unit 402, and a sending unit 403.
  • the receiving unit 401 is configured to support the UE to perform the processes S101 and S102 in FIG. 3;
  • the determining unit 402 is configured to perform the determining process by the UE, and
  • the sending unit 403 may be configured to support the UE to perform a process of transmitting a signal to the base station.
  • the receiving unit 401 and the transmitting unit 403 in the UE 40 shown in FIG. 5 may be integrated in the transceiver 2011 in the UE 20 shown in FIG. 2 to support the base station to perform the process S101 in FIG. 3 and S102, and a process of transmitting a signal to the base station;
  • the determining unit 402 may be implemented in a processor of the UE 20 shown in FIG. 2, or may be stored in the memory of the UE 20 in the form of program code, by one of the UEs 20
  • the processor invokes and executes the functions of the above determining unit 402.
  • an embodiment of the present invention further provides a signal processing system, as shown in FIG.
  • the system may include: the base station 30 and the at least one UE 40 described above.
  • the signal transmission system provided in the embodiment of the present invention implements the method for transmitting signal energy shown in FIG. 3 above. Therefore, the same beneficial effects as the above-described signal transmission method can be achieved, and details are not described herein.
  • FIG. 7 is a flowchart of a signal processing method according to an embodiment of the present invention.
  • the method may be performed by a base station and a user equipment shown in FIG. 1 and FIG. 2, and the signal processing method may be referred to as a base station side.
  • the signal processing method may also be referred to as a signal receiving method; as shown in FIG. 7, the method may include the following steps:
  • the base station notifies the UE of the set of the at least one signal resource, where the UE acquires the at least one signal resource set by the base station, where the at least one signal resource set corresponds to at least one signal resource, and different signal resources in the same signal resource set.
  • the configuration information is the same.
  • the UE may be any UE in the cell served by the base station in the wireless communication network shown in FIG. 1.
  • the set of signal resources is mainly used to indicate information about transmission resources and other configuration indications required during signal transmission.
  • the activation of one signal resource herein may be a set of multiple signal resources, or may be multiple shaped beams.
  • a set of a plurality of common signal resources, or a common information process does not exclude other definitions, which are not limited herein.
  • a collection of signal resources may include signals, common signals, and transmission signals. Time domain resources or frequency domain resources and time domain resources or frequency domain resources required for transmitting public signals.
  • Each of the signal resources may correspond to one shaped beam, and the channel characteristics of the shaped beam corresponding to the signal resources in the set of the same signal resources are similar, and the configuration information corresponding to the signal resources in the set of the same signal resource is the same.
  • Each of the signal resources may include: a signal, and a transmission resource corresponding to the signal (such as a time-frequency resource, a port resource, etc.), and the signal may include a broadcast channel, a synchronization signal, a cell-specific reference signal, system information, and an uplink sounding reference signal. At least one of them.
  • the signals include, but are not limited to, the above-mentioned signals, and the signals may also be new signals that appear as the communication technology develops.
  • the configuration information of the signal resource may be used to indicate which configuration format is used for transmission between the base station and the UE.
  • the configuration information of the signal resource includes, but is not limited to, a sequence setting of the signal resource, a scrambling code setting of the signal resource, and at least one of configuration information of a random access channel (RACH) included in the signal resource. Or multiple.
  • the sequence setting of the signal resource may include a sequence setting of the synchronization signal; the scrambling code setting of the signal resource may include a scrambling code initialization setting parameter of the signal resource, such as a Radio Network Tempory Identity (RNTI), or the interference.
  • the code initialization parameter may be any one of other RNTI identifiers, such as C-RNTI, RAR-RNTI, P-RNTI, etc.; the RACH configuration information may include a random access channel configuration index (PRACH-Config-Index), random At least one of a frequency domain offset (PRACH-Frequency-Offset) of the access channel and a format configuration of the random access channel.
  • the base station may configure at least one signal resource set for the UE after the UE accesses the cell, and configure the set of the at least one signal resource by using high layer signaling or control signaling or in addition to the foregoing signal.
  • the other signals are sent to the UE, and the configuration information of the signal resources in the set of signal resources can be notified to the UE through high layer signaling or control signaling. It should be noted that the notification process of the two may be performed sequentially or simultaneously. This embodiment of the present invention does not limit this; wherein the high layer signaling may be RRC signaling.
  • the base station may allocate a set of four signal resources to the UE, and each set of signal resources may correspond to four shaped beams, and the channel characteristics (such as delay spread and path loss) corresponding to the four shaped beams are different.
  • the same signal resource set may include four signal resources with the same configuration information, respectively corresponding to the four shaped beams.
  • the base station sends a signal to the UE according to the configuration information of the signal resource in the set of the at least one signal resource, and the UE receives the signal sent by the base station.
  • the base station may configure the signal according to configuration information of any one of the signal resources in the set of any signal resources, and send the signal to the UE after the configuration is completed.
  • the signal resources in the set of the same signal resource can be implemented, and the base station sends the signal resource corresponding to the UE according to the same configuration information. signal.
  • the configuration information of the signal resources will remain unchanged.
  • the UE does not need to send the RRC reconfiguration to the base station.
  • the request also does not require the base station to perform RRC reconfiguration on the signal of the UE.
  • a set of signal resources allocated by the base station to the UE includes 4 signal resources, and the 4 signal resources correspond to 4 shaped beams.
  • the shaped beam corresponding to the signal resource is switched from the shaped beam 1 to the assigned beam.
  • the base station since the signal resources corresponding to the shaped beam 2 and the shaped beam 1 use the same configuration information, the base station can transmit the signal corresponding to the shaped beam 2 by using the same configuration information as the shaped beam 1
  • the configuration information of the signal resource corresponding to the original shaped beam 1 can be directly reused on the signal resource corresponding to the shaped beam 2, and the base station is not required to perform RRC reconfiguration on the signal corresponding to the shaped beam 2.
  • the transmission of the random access channel of the UE is bound to the optimal signal resource.
  • the UE detects and selects an optimal signal resource from multiple signal resources, the UE will according to the optimal signal.
  • the resource performs transmission of a random access channel, wherein the transmission of the random access channel and the optimal signal resource binding refer to that the transmission resource information of the random access channel is configured by the optimal signal, and the random access channel
  • the associated access response information and the optimal signal resource correspond to the same shaped beam.
  • the UE performs the shaped beam switching frequently, it will bring frequent access information reconfiguration and random access procedures.
  • the UE acquires a set of at least one signal resource notified by the base station, and when the UE determines that it needs to perform the transmission of the ith random access channel.
  • the i is a positive integer greater than or equal to 2, and the method may further include:
  • step 7011 The UE determines whether the set of signal resources corresponding to the random access channel transmitted by the ith time is the same as the set of the signal resources corresponding to the random access channel sent by the UE in the i-1th time. 7012. If not, step 7013 is performed.
  • the UE sends the ith random access channel to the base station.
  • the UE does not perform the transmission of the i-th random access channel.
  • each of the signal resources corresponds to a set of signal resources
  • the transmission of the random access channel of the UE is bound to the optimal signal resource. Therefore, in the embodiment of the present invention, The transmission of the random access channel of the UE also corresponds to a set of signal resources in which the optimal signal resource is located, that is, the set of signal resources corresponding to the random access channel sent by the UE may refer to: a random access channel sent by the UE. A collection of signal resources in which the optimal signal resources are bound.
  • the UE can implement the random access channel transmission only when corresponding to different signal resources.
  • the new random access channel process is initiated only when the source is set, and the frequent access information reconfiguration and random access process caused by the frequent shaped beam switching of the UE are avoided, thereby saving configuration signaling and saving power of the UE. Effect.
  • the transmission of the uplink sounding reference signal (SRS) of the UE is also bound to the optimal signal resource, and the UE can select an optimal according to the detection of multiple signal resources.
  • the signal resource performs SRS transmission according to the optimal signal resource, wherein the transmission of the uplink sounding reference signal and the optimal signal resource binding means that the base station uses the shaped beam corresponding to the optimal signal resource to perform uplink
  • the detection of the reference signal is received. Therefore, in order to ensure that the transmission of the uplink sounding reference signal of the UE is always based on the preferred receiving beam, further optional, as shown in FIG. 7b, the UE acquires at least one signal notified by the base station. a set of resources, and when the UE determines that it needs to perform the ith uplink sounding reference signal transmission, the i is a positive integer greater than or equal to 2, and the method further includes:
  • the UE determines whether the set of signal resources corresponding to the uplink sounding reference signal transmitted by the ith time is the same as the set of signal resources corresponding to the uplink sounding reference signal sent by the UE in the i-1th time. 8012. If different, step 8013 is performed.
  • the UE sends the ith uplink sounding reference signal to the base station.
  • the UE does not transmit the uplink sounding reference signal.
  • the UE performs the uplink sounding reference signal transmission, thereby ensuring that the transmission capability of the uplink sounding reference signal of the UE is always based on The receiving beam is better received, so that the transmission performance of the uplink sounding reference signal is guaranteed.
  • the method may further include:
  • step 9011 The UE determines whether the set of signal resources corresponding to the signal resource index sent by the UE in the ith time is the same as the set of signal resources corresponding to the signal resource index sent by the UE in the i-1th time. If not, step 9012 is performed. If they are the same, step 9013 is performed.
  • the UE sends the ith signal resource index to the base station.
  • the UE does not perform the transmission of the ith signal resource index.
  • the signal resource index may be a signal resource index corresponding to the optimal signal resource monitored by the UE; the set of signal resources corresponding to the signal resource index may refer to: the signal resource where the optimal signal resource corresponding to the signal resource index is located set.
  • the UE can transmit the signal resource index only when corresponding to different sets of signal resources when performing signal resource index transmission, thereby avoiding that the UE detects the optimal signal resource, and the optimal The signal resource index corresponding to the signal resource is reported to the base station, which greatly reduces the power consumption of the UE.
  • the solution provided by the embodiment of the present invention is mainly introduced from the perspective of interaction between the base station and the UE.
  • the base station and the UE implement the above functions, which include corresponding hardware structures and/or software modules for performing respective functions.
  • the present invention can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • the embodiments of the present invention may perform division of functional units on a base station, a UE, and the like according to the foregoing method.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present invention is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 8 is a schematic diagram showing a possible structure of the base station 80 involved in the foregoing embodiment.
  • the base station 80 includes a sending unit 801 and a receiving unit 802.
  • the sending unit 801 is configured to support the base station to perform the processes S701 and S702 in FIG. 7; the receiving unit 802 can be used to support the process in which the base station performs the signal received by the UE.
  • the transmitting unit 801 and the receiving unit 802 in the base station 80 shown in FIG. 8 may be integrated in the transceiver 1011 in the base station 10 shown in FIG. 2 to support the base station to perform the process in FIG. S701 and S702, and a process of receiving a signal transmitted by the UE.
  • FIG. 9 is a schematic diagram showing a possible structure of the UE 90 involved in the foregoing embodiment.
  • the base station 90 includes a receiving unit 901, a determining unit 902, and a sending unit 907.
  • the receiving unit 901 is configured to support the UE to perform the processes S701 and S702 in FIG. 7;
  • the determining unit 902 is configured to perform the determining process by the UE, and
  • the sending unit 903 can be used to support the UE to perform a process of transmitting a signal to the base station.
  • the receiving unit 901 and the transmitting unit 907 in the UE 90 shown in FIG. 9 may be integrated in the transceiver 2011 in the UE 20 shown in FIG. 2 to support the base station to perform the process S701 in FIG. 7 and S702, and a process of transmitting a signal to the base station;
  • the determining unit 902 may be implemented in one of the processors of the UE 20 shown in FIG. 2, or may be stored in the memory of the UE 20 in the form of program code, by one of the UEs 20
  • the processor invokes and executes the functions of the above determining unit 902.
  • the embodiment of the present invention further provides a signal processing system.
  • the signal sending system may include: the foregoing base station 80, and at least one UE 90.
  • the signal transmission system provided by the embodiment of the present invention implements the signal transmission capability shown in FIG. 7, FIG. 7a, FIG. 7b, and FIG. 7c, and therefore, the same beneficial effects as the above-mentioned signal transmission method can be achieved. Repeatedly.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种信号处理方法、设备及系统,涉及通信技术领域,以解决用户在不同波束间频繁切换,导致的RRC重配频繁的问题。该方法可以包括:基站向用户设备UE通知至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同公共信号资源的配置信息相同;基站根据至少一个信号资源的集合中信号资源的配置信息向UE发送信号。

Description

一种信号处理方法、设备及系统
本申请要求于2016年09月29日提交中国专利局、申请号为201610867679.3、发明名称为“一种信号处理方法、设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种信号处理方法、设备及系统。
背景技术
随着通信技术的发展,当前的频谱资源已经难以满足用户对容量需求的增长,为解决该问题,具有更大的可用带宽的高频频段(特别是毫米波频段),日益成为下一代通信系统的候选频段。然而,与现有长期演进(英文:Long Term Evolution,LTE)等系统支持的工作频段(如:3GHz以下的频段)不同的是,高频频段将带来更大的路径损耗,特别是大气、植被等因素的影响会进一步加剧高频频段无线传播过程中的路径损耗。
为降低高频频段无线传播过程中的路径损耗,提高高频场景下信号传输的覆盖,目前,高频频段下的公共信道或信号基于波束赋形(模拟波束或数字域波束)进行传输,每个赋形波束作用下的公共信道或信号对应覆盖一组用户,用户可以在不同赋形波束间进行切换,选择信道传播条件最佳的赋形波束为其服务,以此使得所有用户具有良好的覆盖性能。
由于,不同赋形波束对应的信道传播条件(如时延扩展和路径损耗)是不同的,使得不同赋形波束下的信道或信号的配置信息(如,参数配置)也是不同的,因此,当用户在不同赋形波束间进行切换时,需要对切换后的赋形波束下的信道或信号的配置信息进行无线资源控制(英文:Connection Reconfiguration Complete,RRC)重置,例如,当用户从赋形波束一切换到赋形波束二时,该赋形波束一下的信道和信号(如,广播信道、公共控制信道、同步信号、公共参考信号)的传输也相应切换到赋形波束二上,重新按照赋形波束二的需求对所述信道和信号进行配置,即现有技术中用户进行一次波束间切换就会发生一次RRC重配,此时,若用户在不同波束间频繁切换,则会导致RRC重配频繁的问题。
发明内容
本申请提供一种信号处理方法、设备及系统,以解决用户在不同波束间频繁切换,导致的RRC重配频繁的问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,提供一种信号发送方法,该方法可以包括:
基站向用户设备UE通知至少一个公共信息进程,每个公共信息进程对应至少一份公共信号资源,同一公共信息进程中的不同公共信号资源的配置信息相同,基站根据至少一个公共信息进程中公共信号资源的配置信息向UE发送公共信号。
其中,每份公共信号资源可以对应一个赋形波束。
公共信号资源的配置信息可以包括:公共信号资源的序列设置、公共信号资源的扰码设置、公共信号资源包含的随机接入信道的配置信息中的至少一个或多个。
如此,将对应了相同配置信息的不同公共信号资源放在同一个公共信息进程中,可以实现基站根据相同的配置信息向UE发送所述公共信号资源对应的公共信号。当UE在不同赋形波束间发生切换,而不同赋形波束对应的公共信号资源在同一公共信息进程时,所述公共信号资源的配置信息将保持不变,此时,UE不需要向基站发送RRC重配请求,基站也不需要对所述UE的公共信号进行RRC重配。
在第一方面的一种可实现方式中,结合第一方面,基站可以通过高层信令或控制信令或公共信号之外的其他公共信号向UE通知至少一个公共信息进程,公共信息进程中公共信号资源的配置信息由基站通过高层信令或控制信令通知给用户设备。
由于在实际应用中,UE的随机接入信道的传输与最优的公共信号资源绑定,当UE从多个公共信号资源中检测选择出一个最优的公共信号资源时,UE会根据该最优的公共信号资源进行随机接入信道的传输,其中,随机接入信道的传输与最优的公共信号资源绑定指的是随机接入信道的传输资源信息由所述最优公共信号进行配置,或所述随机接入信道关联的接入响应信息与最优的公共信号资源对应相同的赋形波束,或所述随机接入信道对应的接收赋形波束与所述最优的公共信号资源对应的赋形波束相同。此时,若UE频繁的进行赋形波束切换,则会带来频繁的接入信息重配和随机接入过程,因此,为了避免该问题的出现,在第一方面的又一种可实现方式中,结合第一方面或第一方面的可实现方式,该方法还可以包括:
若UE第i次发送的随机接入信道对应的公共信息进程与UE第i-1次发送的随机接入信道对应的公共信息进程不同,基站接收UE第i次发送的随机接入信道;
否则,若UE第i次发送的随机接入信道对应的公共信息进程与UE第i-1次发送的随机接入信道对应的公共信息进程相同,基站不接收UE第i次发送的随机接入信道;其中,i为大于或等于2的整数。
如此,可以实现UE在随机接入信道传输时,只在对应不同公共信息进程时才发起新的随机接入信道过程,避免了UE由于频繁的赋形波束切换带来的频繁的接入信息重配和随机接入过程,进而达到节省配置信令和UE省电的效果。
此外,在实际应用中,UE的上行探测参考信号(英文:Sounding Reference Signal,SRS)的传输也与最优的公共信号资源绑定,UE可以根据对多个公共信号资源的检测,选择出一个最优的公共信号资源,根据该最优的公共信号资源进行SRS的传输,其中,上行探测参考信号的传输与最优的公共信号资源绑定指的是基站采用与最优的公共信号资源对应的赋形波束进行上行探测参考信号的接收,因此,为了保证UE的上行探测参考信号的传输总是基于较优的接收赋形波束,在第一方面的再一种可实现方式中,结合第一方面或第一方面的可实现方式,该方法还可以包括:
若UE第i次发送的上行探测参考信号对应的公共信息进程与UE第i-1次发送的上行探测参考信号对应的公共信息进程相同,基站接收UE第i次发送的上行探测参考信号,其中,i为大于或等于2的整数;
若UE第i次发送的上行探测参考信号对应的公共信息进程与UE第i-1次发送的上行探测参考信号对应的公共信息进程不同,基站不接收UE第i次发送的上行探测参 考信号。
如此,当上行探测参考信号的传输对应的接收赋形波束位于同一个公共信息进程时,UE才进行所述上行探测参考信号的发送,保证了UE的上行探测参考信号的传输能总是基于较优的接收赋形波束,从而使上行探测参考信号的传输性能得到保证。
在第一方面的再一种可实现方式中,结合第一方面或第一方面的可实现方式,该方法还可以包括:
若UE第i次发送的公共信号资源索引对应的公共信息进程与UE第i-1次发送的公共信号资源索引对应的公共信息进程不同,基站接收UE第i次发送的公共信号资源索引,其中,i为大于或等于2的整数;
若UE第i次发送的公共信号资源索引对应的公共信息进程与UE第i-1次发送的公共信号资源索引对应的公共信息进程相同,基站不接收UE第i次发送的公共信号资源索引。
如此,通过该方案可以实现UE在进行公共信号资源索引发送时,只在对应不同公共信息进程时才发送所述公共信号资源索引,避免了UE一检测到最优的公共信号资源,就将该最优的公共信号资源对应的公共信号资源索引上报给基站,大大降低了UE的功耗。
第二方面,提供一种信号接收方法,该方法可以包括:
用户设备UE获取基站通知的至少一个公共信息进程,每个公共信息进程对应至少一份公共信号资源,同一公共信息进程中的不同公共信号资源的配置信息相同,UE接收基站根据至少一个公共信息进程中公共信号资源的配置信息发送的公共信号。
其中,每份公共信号资源可以对应一个赋形波束。
公共信号资源的配置信息可以包括:公共信号资源的序列设置、公共信号资源的扰码设置、公共信号资源包含的随机接入信道的配置信息中的至少一个或多个。
如此,将对应了相同配置信息的不同公共信号资源放在同一个公共信息进程中,当UE在不同赋形波束间发生切换,且不同赋形波束对应的公共信号资源在同一公共信息进程时,公共信号资源的配置信息将保持不变,此时,UE不需要向基站发送RRC重配请求,基站也不需要对所述UE的公共信号进行RRC重配。
在第二方面的一种可实现方式中,结合第二方面,UE可以获取基站通过高层信令或控制信息或公共信号之外的其他公共信号发送的配置信息,至少一个公共信息进程中公共信号资源的配置信息由基站通过高层信令或控制信令通知给UE。
在第二方面的又一种可实现方式中,结合第二方面或第二方面的可实现方式,该方法还可以包括:
若UE确定UE第i次发送的随机接入信道对应的公共信息进程与UE第i-1次发送的随机接入信道对应的公共信息进程不同,UE向基站进行第i次随机接入信道的发送;其中,i为大于或等于2的整数;
若UE确定UE第i次发送的随机接入信道对应的公共信息进程与UE第i-1次发送的随机接入信道对应的公共信息进程相同,UE不向基站进行第i次随机接入信道的发送。
如此,可以实现UE在随机接入信道传输时,只在对应不同公共信息进程时才发 起新的随机接入信道过程,避免了UE由于频繁的赋形波束切换带来的频繁的接入信息重配和随机接入过程,进而达到节省配置信令和UE省电的效果。
在第二方面的再一种可实现方式中,结合第二方面或第二方面的可实现方式,该方法还可以包括:
若UE确定UE第i次发送的上行探测参考信号对应的公共信息进程与UE第i-1次发送的上行探测参考信号对应的公共信息进程相同,UE向基站进行第i次上行探测参考信号的发送,其中,i为大于或等于2的整数;
若UE确定UE第i次发送的上行探测参考信号对应的公共信息进程与UE第i-1次发送的上行探测参考信号对应的公共信息进程不同,UE不向基站进行第i次上行探测参考信号的发送。
如此,当上行探测参考信号的传输对应的接收赋形波束位于同一个公共信息进程时,UE才进行所述上行探测参考信号的发送,保证了UE的上行探测参考信号的传输能总是基于较优的接收赋形波束,从而使上行探测参考信号的传输性能得到保证。
在第二方面的再一种可实现方式中,结合第二方面或第二方面的可实现方式,该方法还可以包括:
若UE确定第i次发送的公共信号资源索引对应的公共信息进程与UE第i-1次发送的公共信号资源索引对应的公共信息进程不同,UE向基站进行第i次公共信号资源索引的发送;其中,i为大于或等于2的整数;
若UE确定第i次发送的公共信号资源索引对应的公共信息进程与UE第i-1次发送的公共信号资源索引对应的公共信息进程相同,UE不向基站进行第i次公共信号资源索引的发送。
如此,通过该方案可以实现UE在进行公共信号资源索引发送时,只在对应不同公共信息进程时才发送所述公共信号资源索引,避免了UE一检测到最优的公共信号资源,就将该最优的公共信号资源对应的公共信号资源索引上报给基站,大大降低了UE的功耗。
第三方面,提供一种基站,该基站可以包括:
发送单元,用于向用户设备UE通知至少一个公共信息进程,每个公共信息进程对应至少一份公共信号资源,同一公共信息进程中的不同公共信号资源的配置信息相同;
所述发送单元,还用于根据所述至少一个公共信息进程中公共信号资源的配置信息向所述UE发送公共信号。
其中,第三方面的具体实现方式可以参考第一方面或第一方面的可能的实现方式提供的信号发送方法中基站的行为功能。
第四方面,提供一种基站,该基站可以包括:
收发器,用于向用户设备UE通知至少一个公共信息进程,每个公共信息进程对应至少一份公共信号资源,同一公共信息进程中的不同公共信号资源的配置信息相同;
以及,根据所述至少一个公共信息进程中公共信号资源的配置信息向所述UE发送公共信号。
其中,第四方面的具体实现方式可以参考第一方面或第一方面的可能的实现方式 提供的信号发送方法中基站的行为功能。
第五方面,提供一种存储一个或多个程序的非易失性计算机可读存储介质,该一个或多个程序包括指令,指令当被包括第三方面或第四方面或上述任一种可能的实现方式的基站执行时,使基站执行以下事件:
向用户设备UE通知至少一个公共信息进程,每个公共信息进程对应至少一份公共信号资源,同一公共信息进程中的不同公共信号资源的配置信息相同,根据所述至少一个公共信息进程中公共信号资源的配置信息向所述UE发送公共信号。
其中,第三方面、第四方面、以及第五方面的具体实现方式可以参考第一方面或第一方面的可能的实现方式提供的信号发送方法中基站的行为功能,在此不再赘述。同时,第三方面、第四方面、以及第五方面提供的基站可以达到与第一方面相同的有益效果。
第六方面,提供一种UE,该UE可以包括:
接收单元,用于获取基站通知的至少一个公共信息进程,每个公共信息进程对应至少一份公共信号资源,同一公共信息进程中的不同公共信号资源的配置信息相同;
所述接收单元,还用于接收所述基站根据所述至少一个公共信息进程中公共信号资源的配置信息发送的公共信号。
其中,第六方面的具体实现方式可以参考第二方面或第二方面的可能的实现方式提供的信号接收方法中UE的行为功能。
第七方面,提供一种UE,该UE可以包括:
收发器,用于获取基站通知的至少一个公共信息进程,每个公共信息进程对应至少一份公共信号资源,同一公共信息进程中的不同公共信号资源的配置信息相同;
以及,接收所述基站根据所述至少一个公共信息进程中公共信号资源的配置信息发送的公共信号。
其中,第七方面的具体实现方式可以参考第二方面或第二方面的可能的实现方式提供的信号接收方法中UE的行为功能。
第八方面,提供一种存储一个或多个程序的非易失性计算机可读存储介质,该一个或多个程序包括指令,指令当被包括第六方面或第七方面或上述任一种可能的实现方式的UE执行时,使UE执行以下事件:
获取基站通知的至少一个公共信息进程,每个公共信息进程对应至少一份公共信号资源,同一公共信息进程中的不同公共信号资源的配置信息相同;
以及,接收所述基站根据所述至少一个公共信息进程中公共信号资源的配置信息发送的公共信号。
其中,第六方面、第七方面、以及第八方面的具体实现方式可以参考第二方面或第二方面的可能的实现方式提供的信号接收方法中UE的行为功能,在此不再赘述。同时,第六方面、第七方面、以及第八方面提供的UE可以达到与第二方面相同的有益效果。
第九方面,提供一种信号处理系统,包括如第三方面或第四方面或第五方面所述的基站、以及如第六方面或第七方面或第八方面所述的基站。
第十方面,提供一种信号发送方法,该方法可以包括:
基站向用户设备UE通知至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同,基站根据至少一个信号资源的集合中信号资源的配置信息向UE发送信号。
其中,每份信号资源可以对应一个赋形波束。
信号资源的配置信息可以包括:信号资源的序列设置、信号资源的扰码设置、信号资源包含的随机接入信道的配置信息中的至少一个或多个。
如此,将对应了相同配置信息的不同信号资源放在同一个信号资源的集合中,可以实现基站根据相同的配置信息向UE发送所述信号资源对应的信号。当UE在不同赋形波束间发生切换,而不同赋形波束对应的信号资源在同一信号资源的集合时,所述信号资源的配置信息将保持不变,此时,UE不需要向基站发送RRC重配请求,基站也不需要对所述UE的信号进行RRC重配。
在第十方面的一种可实现方式中,结合第十方面,基站可以通过高层信令或控制信令或信号之外的其他信号向UE通知至少一个信号资源的集合,信号资源的集合中信号资源的配置信息由基站通过高层信令或控制信令通知给用户设备。
由于在实际应用中,UE的随机接入信道的传输与最优的信号资源绑定,当UE从多个信号资源中检测选择出一个最优的信号资源时,UE会根据该最优的信号资源进行随机接入信道的传输,其中,随机接入信道的传输与最优的信号资源绑定指的是随机接入信道的传输资源信息由所述最优信号进行配置,或所述随机接入信道关联的接入响应信息与最优的信号资源对应相同的赋形波束,或所述随机接入信道对应的接收赋形波束与所述最优的信号资源对应的赋形波束相同。此时,若UE频繁的进行赋形波束切换,则会带来频繁的接入信息重配和随机接入过程,因此,为了避免该问题的出现,在第十方面的又一种可实现方式中,结合第十方面或第十方面的可实现方式,该方法还可以包括:
若UE第i次发送的随机接入信道对应的信号资源的集合与UE第i-1次发送的随机接入信道对应的信号资源的集合不同,基站接收UE第i次发送的随机接入信道;
否则,若UE第i次发送的随机接入信道对应的信号资源的集合与UE第i-1次发送的随机接入信道对应的信号资源的集合相同,基站不接收UE第i次发送的随机接入信道;其中,i为大于或等于2的整数。
如此,可以实现UE在随机接入信道传输时,只在对应不同信号资源的集合时才发起新的随机接入信道过程,避免了UE由于频繁的赋形波束切换带来的频繁的接入信息重配和随机接入过程,进而达到节省配置信令和UE省电的效果。
此外,在实际应用中,UE的上行探测参考信号(英文:Sounding Reference Signal,SRS)的传输也与最优的信号资源绑定,UE可以根据对多个信号资源的检测,选择出一个最优的信号资源,根据该最优的信号资源进行SRS的传输,其中,上行探测参考信号的传输与最优的信号资源绑定指的是基站采用与最优的信号资源对应的赋形波束进行上行探测参考信号的接收,因此,为了保证UE的上行探测参考信号的传输总是基于较优的接收赋形波束,在第十方面的再一种可实现方式中,结合第十方面或第十方面的可实现方式,该方法还可以包括:
若UE第i次发送的上行探测参考信号对应的信号资源的集合与UE第i-1次发送 的上行探测参考信号对应的信号资源的集合相同,基站接收UE第i次发送的上行探测参考信号,其中,i为大于或等于2的整数;
若UE第i次发送的上行探测参考信号对应的信号资源的集合与UE第i-1次发送的上行探测参考信号对应的信号资源的集合不同,基站不接收UE第i次发送的上行探测参考信号。
如此,当上行探测参考信号的传输对应的接收赋形波束位于同一个信号资源的集合时,UE才进行所述上行探测参考信号的发送,保证了UE的上行探测参考信号的传输能总是基于较优的接收赋形波束,从而使上行探测参考信号的传输性能得到保证。
在第十方面的再一种可实现方式中,结合第十方面或第十方面的可实现方式,该方法还可以包括:
若UE第i次发送的信号资源索引对应的信号资源的集合与UE第i-1次发送的信号资源索引对应的信号资源的集合不同,基站接收UE第i次发送的信号资源索引,其中,i为大于或等于2的整数;
若UE第i次发送的信号资源索引对应的信号资源的集合与UE第i-1次发送的信号资源索引对应的信号资源的集合相同,基站不接收UE第i次发送的信号资源索引。
如此,通过该方案可以实现UE在进行信号资源索引发送时,只在对应不同信号资源的集合时才发送所述信号资源索引,避免了UE一检测到最优的信号资源,就将该最优的信号资源对应的信号资源索引上报给基站,大大降低了UE的功耗。
在第十方面的再一种可实现方式中,结合第十方面或第十方面的可实现方式,
信号包括广播信道、同步信号、小区特定参考信号、系统信息以及上行探测参考信号中的至少一个。
第十一方面,提供一种信号接收方法,该方法可以包括:
用户设备UE获取基站通知的至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同,UE接收基站根据至少一个信号资源的集合中信号资源的配置信息发送的信号。
其中,每份信号资源可以对应一个赋形波束。
信号资源的配置信息可以包括:信号资源的序列设置、信号资源的扰码设置、信号资源包含的随机接入信道的配置信息中的至少一个或多个。
如此,将对应了相同配置信息的不同信号资源放在同一个信号资源的集合中,当UE在不同赋形波束间发生切换,且不同赋形波束对应的信号资源在同一信号资源的集合时,信号资源的配置信息将保持不变,此时,UE不需要向基站发送RRC重配请求,基站也不需要对所述UE的信号进行RRC重配。
在第十一方面的一种可实现方式中,结合第十一方面,UE可以获取基站通过高层信令或控制信息或信号之外的其他信号发送的配置信息,至少一个信号资源的集合中信号资源的配置信息由基站通过高层信令或控制信令通知给UE。
在第十一方面的又一种可实现方式中,结合第十一方面或第十一方面的可实现方式,该方法还可以包括:
若UE确定UE第i次发送的随机接入信道对应的信号资源的集合与UE第i-1次发送的随机接入信道对应的信号资源的集合不同,UE向基站进行第i次随机接入信道 的发送;其中,i为大于或等于2的整数;
若UE确定UE第i次发送的随机接入信道对应的信号资源的集合与UE第i-1次发送的随机接入信道对应的信号资源的集合相同,UE不向基站进行第i次随机接入信道的发送。
如此,可以实现UE在随机接入信道传输时,只在对应不同信号资源的集合时才发起新的随机接入信道过程,避免了UE由于频繁的赋形波束切换带来的频繁的接入信息重配和随机接入过程,进而达到节省配置信令和UE省电的效果。
在第十一方面的再一种可实现方式中,结合第十一方面或第十一方面的可实现方式,该方法还可以包括:
若UE确定UE第i次发送的上行探测参考信号对应的信号资源的集合与UE第i-1次发送的上行探测参考信号对应的信号资源的集合相同,UE向基站进行第i次上行探测参考信号的发送,其中,i为大于或等于2的整数;
若UE确定UE第i次发送的上行探测参考信号对应的信号资源的集合与UE第i-1次发送的上行探测参考信号对应的信号资源的集合不同,UE不向基站进行第i次上行探测参考信号的发送。
如此,当上行探测参考信号的传输对应的接收赋形波束位于同一个信号资源的集合时,UE才进行所述上行探测参考信号的发送,保证了UE的上行探测参考信号的传输能总是基于较优的接收赋形波束,从而使上行探测参考信号的传输性能得到保证。
在第十一方面的再一种可实现方式中,结合第十一方面或第十一方面的可实现方式,该方法还可以包括:
若UE确定第i次发送的信号资源索引对应的信号资源的集合与UE第i-1次发送的信号资源索引对应的信号资源的集合不同,UE向基站进行第i次信号资源索引的发送;其中,i为大于或等于2的整数;
若UE确定第i次发送的信号资源索引对应的信号资源的集合与UE第i-1次发送的信号资源索引对应的信号资源的集合相同,UE不向基站进行第i次信号资源索引的发送。
如此,通过该方案可以实现UE在进行信号资源索引发送时,只在对应不同信号资源的集合时才发送所述信号资源索引,避免了UE一检测到最优的信号资源,就将该最优的信号资源对应的信号资源索引上报给基站,大大降低了UE的功耗。
在第十一方面的再一种可实现方式中,结合第十一方面或第十一方面的可实现方式,
信号包括广播信道、同步信号、小区特定参考信号、系统信息以及上行探测参考信号中的至少一个。
第十二方面,提供一种基站,该基站可以包括:
发送单元,用于向用户设备UE通知至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同;
所述发送单元,还用于根据所述至少一个信号资源的集合中信号资源的配置信息向所述UE发送信号。
其中,第十二方面的具体实现方式可以参考第十方面或第十方面的可能的实现方 式提供的信号发送方法中基站的行为功能。
第十三方面,提供一种基站,该基站可以包括:
收发器,用于向用户设备UE通知至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同;
以及,根据所述至少一个信号资源的集合中信号资源的配置信息向所述UE发送信号。
其中,第十三方面的具体实现方式可以参考第十方面或第十方面的可能的实现方式提供的信号发送方法中基站的行为功能。
第十四方面,提供一种存储一个或多个程序的非易失性计算机可读存储介质,该一个或多个程序包括指令,指令当被包括第十二方面或第十三方面或上述任一种可能的实现方式的基站执行时,使基站执行以下事件:
向用户设备UE通知至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同,根据所述至少一个信号资源的集合中信号资源的配置信息向所述UE发送信号。
其中,第十二方面、第十三方面、以及第十四方面的具体实现方式可以参考第十方面或第十方面的可能的实现方式提供的信号发送方法中基站的行为功能,在此不再赘述。同时,第十二方面、第十三方面、以及第十四方面提供的基站可以达到与第十方面相同的有益效果。
第十五方面,提供一种UE,该UE可以包括:
接收单元,用于获取基站通知的至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同;
所述接收单元,还用于接收所述基站根据所述至少一个信号资源的集合中信号资源的配置信息发送的信号。
其中,第十五方面的具体实现方式可以参考第十一方面或第十一方面的可能的实现方式提供的信号接收方法中UE的行为功能。
第十六方面,提供一种UE,该UE可以包括:
收发器,用于获取基站通知的至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同;
以及,接收所述基站根据所述至少一个信号资源的集合中信号资源的配置信息发送的信号。
其中,第十六方面的具体实现方式可以参考第十一方面或第十一方面的可能的实现方式提供的信号接收方法中UE的行为功能。
第十七方面,提供一种存储一个或多个程序的非易失性计算机可读存储介质,该一个或多个程序包括指令,指令当被包括第十五方面或第十六方面或上述任一种可能的实现方式的UE执行时,使UE执行以下事件:
获取基站通知的至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同;
以及,接收所述基站根据所述至少一个信号资源的集合中信号资源的配置信息发送的信号。
其中,第十五方面、第十六方面、以及第十七方面的具体实现方式可以参考第十一方面或第十一方面的可能的实现方式提供的信号接收方法中UE的行为功能,在此不再赘述。同时,第十五方面、第十六方面、以及第十七方面提供的UE可以达到与第十一方面相同的有益效果。
第十八方面,提供一种信号处理系统,包括如第十二方面或第十三方面或第十四方面所述的基站、以及如第十五方面或第十六方面或第十七方面所述的基站。
附图说明
图1为一种无线通信系统的结构图;
图2为本发明实施例提供的一种通信系统的结构图;
图3为本发明实施例提供的一种信号发送方法的流程图;
图3a为本发明实施例提供的UE发送随机接入信道的流程图;
图3b为本发明实施例提供的UE发送上行探测参考信号的流程图;
图3c为本发明实施例提供的UE发送公共信号资源索引的流程图;
图4为本发明实施例提供的一种基站30的结构图;
图5为本发明实施例提供的一种用户设备40的结构图;
图6为本发明实施例提供的一种通信系统的结构图;
图7为本发明实施例提供的一种信号发送方法的流程图;
图7a为本发明实施例提供的UE发送随机接入信道的流程图;
图7b为本发明实施例提供的UE发送上行探测参考信号的流程图;
图7c为本发明实施例提供的UE发送公共信号资源索引的流程图;
图8为本发明实施例提供的一种基站80的结构图;
图9为本发明实施例提供的一种用户设备90的结构图;
图10为本发明实施例提供的一种通信系统的结构图。
具体实施方式
本发明的主要原理是:基站为用户设备(英文:User Equipment,UE)配置多个公共信号资源(每个公共信号资源可对应一个赋形波束),且每个公共信号资源的配置信息是相同的,基站根据公共信号资源的配置信息向UE发送公共信号。当多个公共信号资源的配置信息是相同的,而UE在这些公共信号资源对应的赋形波束间进行波束切换时,基站可以采用与波束切换前相同的配置参数发送当前赋形波束下的公共信号,无需对公共信号资源进行RRC重配。
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明所述的信号处理方法可以部署在图1所示的无线通信系统中,该无线通信 系统可以为:长期演进(英文:Long Term Evolution,LTE)网络、宽带码分多址(英文:Wideband Code Division Multiple Access,WCDMA)网络、码分多址(英文:Code Division Multiple Access,CDMA)系统、时分多址(英文:Time Division Multiple Access,TDMA)系统、频分多址(英文:Frequency Division Multiple Addressing,FDMA)系统、正交频分多址(英文:Orthogonal Frequency Division Multiple Access,OFDMA)系统、单载波FDMA(英文:Single Carrier-FDMA,SC-FDMA)系统、通用分组无线业务(英文:General Packet Radio Service,GPRS)系统中的任一系统,具体的,该方法适用于通信系统,本发明实施例对此不进行限定,本发明实施例仅以图1所示的LTE系统为例,对本发明提供的信号处理方法、设备及系统进行说明。
参照图1,为本发明实施例提供的无线通信系统的架构示意图,如图1所示,该系统架构可以包括:基站10和用户设备20,基站10和用户设备20之间可以建立无线资源控制(英文:Radio Resource Control,RRC)连接,以便实现基站10和用户设备20之间的上行传输和下行传输。其中,基站10可以是指接入网中在空中接口上通过一个或多个扇区与用户设备20通信的设备,如:可以为LTE中的演进型基站(NodeB或eNB或e-NodeB),本发明对其并不限定;用户设备20,可以是无线终端,用于经无线接入网(英文:Radio Access Network,RAN)与一个或多个基站进行通信,如:用户设备20可以为:个人通信业务(英文:Personal Communication Service,PCS)电话、无绳电话、会话发起协议(英文:Session Initiation Protocol,SIP)话机、无线本地环路(英文:Wireless Local Loop,WLL)站、个人数字助理(英文:Personal Digital Assistant,PDA)、平板电脑、笔记本电脑、超级移动个人计算机(英文:Ultra-mobile Personal Computer,UMPC)、上网本、个人数字助理(英文:Personal Digital Assistant,PDA)等任一终端设备。
具体的,为了实现本发明提供的信号处理方法,如图2所示,所述基站10可以包括:收发器1011、处理器1012、存储器1013以及至少一个通信总线1014,通信总线1014用于实现这些基站10内不同部件之间的连接和相互通信;所述用户设备20可以包括:收发器2011、处理器2012、存储器2013、以及至少一个通信总线2014,通信总线2014用于实现用户设备20内不同部件之间的连接和相互通信;
其中,收发器1011为基站10的收发单元,用于与外部网元之间进行数据交互,如:基站10的收发器1011可向用户设备20发送数据或配置信息;或者,接收用户设备20的发送的数据或配置信息;
收发器2011为用户设备20的收发单元,用于与外部网元之间进行数据交互,如:用户设备20的收发器2011可接收基站10发送的数据或配置信息;或者,向基站10发送数据或配置信息;
处理器1012、处理器2012,可能是一个中央处理器(英文:Central Processing Unit,CPU),也可以是特定集成电路(英文:Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(英文:Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(英文:Field Programmable Gate Array,FPGA)。
存储器1013、存储器2013,可以是易失性存储器(英文:volatile memory),例 如随机存取存储器(英文:Random-Access Memory,RAM);或者非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:Read-Only Memory,ROM),快闪存储器(英文:flash memory),硬盘(英文:Hard Disk Drive,HDD)或固态硬盘(英文:Solid-State Drive,SSD);或者上述种类的存储器的组合。处理器1012可以通过运行或执行存储在存储器1013内的程序代码,以及调用存储在存储器1013内的数据,实现基站10的各种功能,处理器2012可以通过运行或执行存储在存储器2013内的程序代码,以及调用存储在存储器2013内的数据,实现用户设备20的各种功能。
通信总线1014、通信总线2014可以分为地址总线、数据总线、控制总线等,可以是工业标准体系结构(英文:Industry Standard Architecture,ISA)总线、外部设备互连(英文:Peripheral Component,PCI)总线或扩展工业标准体系结构(英文:Extended Industry Standard Architecture,EISA)总线等。为便于表示,图2中仅用一条粗线表示各个通信总线,但并不表示仅有一根总线或一种类型的总线。
为了便于描述,以下实施例以步骤的形式示出并详细描述了本发明提供的信号处理方法,其中,示出的步骤也可以在除图1所示无线通信系统之外的其他任一通信系统中执行。此外,虽然在方法流程图中示出了本发明提供的信号发送方法的逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图3为本发明实施例提供的一种信号处理方法的流程图,该方法可以由图1和图2所示的基站、用户设备交互执行,对于基站侧而言,该信号处理方法可以称之为信号发送方法,对于用户设备侧而言,该信号处理方法又可以称之为信号接收方法;如图3所示,该方法可以包括以下步骤:
S101:基站向UE通知至少一个公共信息进程,UE获取基站通知的至少一个公共信息进程,其中,至少一个公共信息进程对应至少一份公共信号资源,同一公共信息进程中的不同公共信号资源的配置信息相同。
其中,UE可以为图1所示无线通信网络中基站服务的小区内的任一UE。
公共信息进程主要用于指示公共信号传输过程中需要的传输资源及其他一些配置指示等信息,这里的一个公共信息进程可以是多份公共信号资源的一个集合,或也可以是多个赋形波束的一个集合。当然不排除有其他定义方式,这里不做限定,例如:公共信息进程中可以包含公共信号、以及传输公共信号所需要的时域资源或者频域资源。
其中每份公共信号资源可以对应一个赋形波束,相同公共信息进程中的公共信号资源对应的赋形波束的信道特征是相近的,同一公共信息进程中的公共信号资源对应的配置信息是相同的。每份公共信号资源可以包括:公共信号、以及公共信号对应的传输资源(如时频资源,端口资源等),所述公共信号可以包括广播信道、同步信号、小区特定参考信号、以及系统信息中的至少一个。需要说明的是,公共信号包括但不限于上述几种信号,该公共信号还可以为随着通信技术发展而出现的新的信号。
其中,公共信号资源的配置信息可以用于指示公共信号在基站和UE间采用哪种配置格式进行传输。具体的,公共信号资源的配置信息包括但不限于:公共信号资源的序列设置、公共信号资源的扰码设置、公共信号资源包含的随机接入信道(英文:Random Access Channel,RACH)的配置信息中的至少一个或多个。
公共信号资源的序列设置可以包括同步信号的序列设置;公共信号资源的扰码设置可以包括公共信号资源的扰码初始化设置参数,如无线网络临时标识(英文:Radio Network Tempory Identity,RNTI),或者所述扰码初始化参数可以为其他RNTI标识中的任意一种,如C-RNTI,RAR-RNTI,P-RNTI等;RACH的配置信息可以包括随机接入信道的配置索引(PRACH-Config-Index)、随机接入信道的频域偏移量(PRACH-Frequency-Offset)、随机接入信道的格式配置中的至少一个。
可选的,基站可以在UE接入所在的小区后,为UE配置至少一个公共信息进程,并将配置好的至少一个公共信息进程通过高层信令或者控制信令或者除上述公共信号之外的其他公共信号发送给UE,而公共信息进程中公共信号资源的配置信息可以通过高层信令或者控制信令通知给UE,需要说明的是,二者的通知过程可以先后进行,也可以同时进行,本发明实施例对此不进行限定;其中,高层信令可以为RRC信令。
例如:基站可以为UE分配4个公共信息进程,每个公共信息进程可以对应4个赋形波束,这4个赋形波束对应的信道特性(如时延扩展和路径损耗)是不同的,但可能是相近的,因此同一公共信息进程中可以包含4份配置信息相同的公共信号资源,分别对应这4个赋形波束。
S102:基站根据至少一个公共信息进程中公共信号资源的配置信息向所述UE发送公共信号,UE接收基站发送的公共信号。
可选的,基站可以根据任一公共信息进程中任一公共信号资源的配置信息对公共信号进行配置,配置完成后向UE发送该公共信号。
如此,通过将对应了相同配置信息的不同公共信号资源放在同一个公共信息进程中,可以实现对于同一公共信息进程内的公共信号资源,基站根据同一配置信息向UE发送所述公共信号资源对应的公共信号。当UE在不同赋形波束间发生切换,且不同赋形波束对应的公共信号资源在同一公共信息进程时,公共信号资源的配置信息将保持不变,此时,UE不需要向基站发送RRC重配请求,基站也不需要对所述UE的公共信号进行RRC重配。
例如,基站分配给UE的一个公共信息进程包含4份公共信号资源,这4份公共信号资源对应4个赋形波束,当UE发生移动,公共信号资源对应的赋形波束从赋形波束1切换到赋形波束2时,由于赋形波束2和赋形波束1对应的公共信号资源采用相同的配置信息,则基站可以采用与赋形波束1相同的配置信息发送所述赋形波束2对应的公共信号,即原来赋形波束1对应的公共信号资源的配置信息可直接重用到赋形波束2对应的公共信号资源上,不需要基站重新对赋形波束2对应的公共信号进行RRC重配。
由于在实际应用中,UE的随机接入信道的传输与最优的公共信号资源绑定,当UE从多个公共信号资源中检测选择出一个最优的公共信号资源时,UE会根据该最优的公共信号资源进行随机接入信道的传输,其中,随机接入信道的传输与最优的公共信号资源绑定指的是随机接入信道的传输资源信息由所述最优公共信号进行配置,且随机接入信道关联的接入响应信息与最优的公共信号资源对应相同的赋形波束,此时,若UE频繁的进行赋形波束切换,则会带来频繁的接入信息重配和随机接入过程,因此,为了避免该问题的出现,进一步可选的,如图3a所示,在UE获取到基站通知的 至少一个公共信息进程,且在UE确定自身需要进行第i次随机接入信道的发送时,所述i为大于等于2的正整数,所述方法还可以包括:
1011:UE判断自身第i次发送的随机接入信道对应的公共信息进程与所述UE第i-1次发送的随机接入信道对应的公共信息进程是否相同,若不同,则执行步骤1012,若不同,则执行步骤1013。
1012:UE向基站进行第i次随机接入信道的发送。
1013:UE不进行第i次随机接入信道的发送。
可理解的是,本发明实施例中,由于每个公共信号资源对应一个公共信息进程,而UE的随机接入信道的传输与最优的公共信号资源绑定,因此,在本发明实施例中,UE的随机接入信道的传输也对应了最优的公共信号资源所在的一个公共信息进程,即上述UE发送的随机接入信道对应的公共信息进程可以指:与UE发送的随机接入信道相绑定的最优的公共信号资源所在的公共信息进程。
如此,通过上述方案可以实现UE在随机接入信道传输时,只在对应不同公共信息进程时才发起新的随机接入信道过程,避免了UE由于频繁的赋形波束切换带来的频繁的接入信息重配和随机接入过程,进而达到节省配置信令和UE省电的效果。
此外,在实际应用中,UE的上行探测参考信号(英文:Sounding Reference Signal,SRS)的传输也与最优的公共信号资源绑定,UE可以根据对多个公共信号资源的检测,选择出一个最优的公共信号资源,根据该最优的公共信号资源进行SRS的传输,其中,上行探测参考信号的传输与最优的公共信号资源绑定指的是基站采用与最优的公共信号资源对应的赋形波束进行上行探测参考信号的接收,因此,为了保证UE的上行探测参考信号的传输总是基于较优的接收赋形波束,进一步可选的,如图3b所示,在UE获取到基站通知的至少一个公共信息进程,且在UE确定自身需要进行第i次上行探测参考信号发送时,所述i为大于等于2的正整数,所述方法还包括:
2011:UE判断自身第i次发送的上行探测参考信号对应的公共信息进程与所述UE第i-1次发送的上行探测参考信号对应的公共信息进程是否相同,若相同,则执行步骤2012,若不同,则执行步骤2013。
2012:UE向基站进行第i次上行探测参考信号的发送。
2013:UE不进行上行探测参考信号的发送。
如此,当上行探测参考信号的传输对应的接收赋形波束位于同一个公共信息进程时,UE才进行所述上行探测参考信号的发送,保证了UE的上行探测参考信号的传输能总是基于较优的接收赋形波束,从而使上行探测参考信号的传输性能得到保证。
进一步可选的,如图3c所示,在UE获取到基站通知的至少一个公共信息进程,且在UE确定自身需要进行第i次公共信号资源索引发送时,所述i为大于等于2的正整数,所述方法还可以包括:
3011:UE判断UE第i次发送的公共信号资源索引对应的公共信息进程与所述UE第i-1次发送的公共信号资源索引对应的公共信息进程是否相同,若不同,则执行步骤3012,若相同,则执行步骤3013。
3012:UE向基站进行第i次公共信号资源索引的发送。
3013:UE不进行第i次公共信号资源索引的发送。
其中,公共信号资源索引可以为UE监测到的最优的公共信号资源对应的公共信号资源索引;公共信号资源索引对应的公共信息进程可以指:与公共信号资源索引对应的最优的公共信号资源所在的公共信息进程。
如此,通过该方案可以实现UE在进行公共信号资源索引发送时,只在对应不同公共信息进程时才发送所述公共信号资源索引,避免了UE一检测到最优的公共信号资源,就将该最优的公共信号资源对应的公共信号资源索引上报给基站,大大降低了UE的功耗。
上述主要从基站和UE之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,基站、UE实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对基站、UE等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能单元的情况下,图4示出了上述实施例中所涉及的基站30的一种可能的结构示意图,基站30包括:发送单元301、接收单元302。发送单元301用于支持基站执行图3中的过程S101和S102;接收单元302可以用于支持基站执行接收UE发送的信号的过程。
在采用集成的单元的情况下,图4示出的基站30中的发送单元301、接收单元302可以集成在图2所示基站10中的收发器1011中,以支持基站执行图3中的过程S101和S102、以及接收UE发送的信号的过程。
在采用对应各个功能划分各个功能单元的情况下,图5示出了上述实施例中所涉及的UE40的一种可能的结构示意图,基站40包括:接收单元401、确定单元402、发送单元403。接收单元401用于支持UE执行图3中的过程S101和S102;确定单元402用于持UE执行确定过程,发送单元403可以用于支持UE执行向基站发送信号的过程。
在采用集成的单元的情况下,图5示出的UE40中的接收单元401、发送单元403可以集成在图2所示UE20中的收发器2011中,以支持基站执行图3中的过程S101和S102、以及向基站发送信号的过程;确定单元402可以集成在图2所示UE20的某一个处理器中实现,此外,也可以以程序代码的形式存储于UE20的存储器中,由UE20的某一个处理器调用并执行以上确定单元402的功能。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能单元的功能描述,在此不再赘述。
再一方面,本发明实施例还提供一种信号处理系统,如图6所示,该信号发送系 统可以包括:上述所述基站30、及至少一个UE40。
本发明实施例提供的信号发送系统,实现上述图3所示的信号发送能的方法,因此,可以达到与上述信号发送方法相同的有益效果,此处不再进行赘述。
图7为本发明实施例提供的一种信号处理方法的流程图,该方法可以由图1和图2所示的基站、用户设备交互执行,对于基站侧而言,该信号处理方法可以称之为信号发送方法,对于用户设备侧而言,该信号处理方法又可以称之为信号接收方法;如图7所示,该方法可以包括以下步骤:
S701:基站向UE通知至少一个信号资源的集合,UE获取基站通知的至少一个信号资源的集合,其中,至少一个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同。
其中,UE可以为图1所示无线通信网络中基站服务的小区内的任一UE。
信号资源的集合主要用于指示信号传输过程中需要的传输资源及其他一些配置指示等信息,这里的一个信号资源的激活可以是多份信号资源的一个集合,或也可以是多个赋形波束的一个集合,或者是多个公共信号资源的集合,或者是公共信息进程,当然不排除有其他定义方式,这里不做限定,例如:信号资源的集合可以包含信号、公共信号、传输信号所需要的时域资源或者频域资源以及传输公共信号所需要的时域资源或者频域资源。
其中每份信号资源可以对应一个赋形波束,相同信号资源的集合中的信号资源对应的赋形波束的信道特征是相近的,同一信号资源的集合中的信号资源对应的配置信息是相同的。每份信号资源可以包括:信号、以及信号对应的传输资源(如时频资源,端口资源等),所述信号可以包括广播信道、同步信号、小区特定参考信号、系统信息以及上行探测参考信号中的至少一个。需要说明的是,信号包括但不限于上述几种信号,该信号还可以为随着通信技术发展而出现的新的信号。
其中,信号资源的配置信息可以用于指示信号在基站和UE间采用哪种配置格式进行传输。具体的,信号资源的配置信息包括但不限于:信号资源的序列设置、信号资源的扰码设置、信号资源包含的随机接入信道(英文:Random Access Channel,RACH)的配置信息中的至少一个或多个。
信号资源的序列设置可以包括同步信号的序列设置;信号资源的扰码设置可以包括信号资源的扰码初始化设置参数,如无线网络临时标识(英文:Radio Network Tempory Identity,RNTI),或者所述扰码初始化参数可以为其他RNTI标识中的任意一种,如C-RNTI,RAR-RNTI,P-RNTI等;RACH的配置信息可以包括随机接入信道的配置索引(PRACH-Config-Index)、随机接入信道的频域偏移量(PRACH-Frequency-Offset)、随机接入信道的格式配置中的至少一个。
可选的,基站可以在UE接入所在的小区后,为UE配置至少一个信号资源的集合,并将配置好的至少一个信号资源的集合通过高层信令或者控制信令或者除上述信号之外的其他信号发送给UE,而信号资源的集合中信号资源的配置信息可以通过高层信令或者控制信令通知给UE,需要说明的是,二者的通知过程可以先后进行,也可以同时进行,本发明实施例对此不进行限定;其中,高层信令可以为RRC信令。
例如:基站可以为UE分配4个信号资源的集合,每个信号资源的集合可以对应4个赋形波束,这4个赋形波束对应的信道特性(如时延扩展和路径损耗)是不同的,但可能是相近的,因此同一信号资源的集合中可以包含4份配置信息相同的信号资源,分别对应这4个赋形波束。
S702:基站根据至少一个信号资源的集合中信号资源的配置信息向所述UE发送信号,UE接收基站发送的信号。
可选的,基站可以根据任一信号资源的集合中任一信号资源的配置信息对信号进行配置,配置完成后向UE发送该信号。
如此,通过将对应了相同配置信息的不同信号资源放在同一个信号资源的集合中,可以实现对于同一信号资源的集合内的信号资源,基站根据同一配置信息向UE发送所述信号资源对应的信号。当UE在不同赋形波束间发生切换,且不同赋形波束对应的信号资源在同一信号资源的集合时,信号资源的配置信息将保持不变,此时,UE不需要向基站发送RRC重配请求,基站也不需要对所述UE的信号进行RRC重配。
例如,基站分配给UE的一个信号资源的集合包含4份信号资源,这4份信号资源对应4个赋形波束,当UE发生移动,信号资源对应的赋形波束从赋形波束1切换到赋形波束2时,由于赋形波束2和赋形波束1对应的信号资源采用相同的配置信息,则基站可以采用与赋形波束1相同的配置信息发送所述赋形波束2对应的信号,即原来赋形波束1对应的信号资源的配置信息可直接重用到赋形波束2对应的信号资源上,不需要基站重新对赋形波束2对应的信号进行RRC重配。
由于在实际应用中,UE的随机接入信道的传输与最优的信号资源绑定,当UE从多个信号资源中检测选择出一个最优的信号资源时,UE会根据该最优的信号资源进行随机接入信道的传输,其中,随机接入信道的传输与最优的信号资源绑定指的是随机接入信道的传输资源信息由所述最优信号进行配置,且随机接入信道关联的接入响应信息与最优的信号资源对应相同的赋形波束,此时,若UE频繁的进行赋形波束切换,则会带来频繁的接入信息重配和随机接入过程,因此,为了避免该问题的出现,进一步可选的,如图7a所示,在UE获取到基站通知的至少一个信号资源的集合,且在UE确定自身需要进行第i次随机接入信道的发送时,所述i为大于等于2的正整数,所述方法还可以包括:
7011:UE判断自身第i次发送的随机接入信道对应的信号资源的集合与所述UE第i-1次发送的随机接入信道对应的信号资源的集合是否相同,若不同,则执行步骤7012,若不同,则执行步骤7013。
7012:UE向基站进行第i次随机接入信道的发送。
7013:UE不进行第i次随机接入信道的发送。
可理解的是,本发明实施例中,由于每个信号资源对应一个信号资源的集合,而UE的随机接入信道的传输与最优的信号资源绑定,因此,在本发明实施例中,UE的随机接入信道的传输也对应了最优的信号资源所在的一个信号资源的集合,即上述UE发送的随机接入信道对应的信号资源的集合可以指:与UE发送的随机接入信道相绑定的最优的信号资源所在的信号资源的集合。
如此,通过上述方案可以实现UE在随机接入信道传输时,只在对应不同信号资 源的集合时才发起新的随机接入信道过程,避免了UE由于频繁的赋形波束切换带来的频繁的接入信息重配和随机接入过程,进而达到节省配置信令和UE省电的效果。
此外,在实际应用中,UE的上行探测参考信号(英文:Sounding Reference Signal,SRS)的传输也与最优的信号资源绑定,UE可以根据对多个信号资源的检测,选择出一个最优的信号资源,根据该最优的信号资源进行SRS的传输,其中,上行探测参考信号的传输与最优的信号资源绑定指的是基站采用与最优的信号资源对应的赋形波束进行上行探测参考信号的接收,因此,为了保证UE的上行探测参考信号的传输总是基于较优的接收赋形波束,进一步可选的,如图7b所示,在UE获取到基站通知的至少一个信号资源的集合,且在UE确定自身需要进行第i次上行探测参考信号发送时,所述i为大于等于2的正整数,所述方法还包括:
8011:UE判断自身第i次发送的上行探测参考信号对应的信号资源的集合与所述UE第i-1次发送的上行探测参考信号对应的信号资源的集合是否相同,若相同,则执行步骤8012,若不同,则执行步骤8013。
8012:UE向基站进行第i次上行探测参考信号的发送。
8013:UE不进行上行探测参考信号的发送。
如此,当上行探测参考信号的传输对应的接收赋形波束位于同一个信号资源的集合时,UE才进行所述上行探测参考信号的发送,保证了UE的上行探测参考信号的传输能总是基于较优的接收赋形波束,从而使上行探测参考信号的传输性能得到保证。
进一步可选的,如图7c所示,在UE获取到基站通知的至少一个信号资源的集合,且在UE确定自身需要进行第i次信号资源索引发送时,所述i为大于等于2的正整数,所述方法还可以包括:
9011:UE判断UE第i次发送的信号资源索引对应的信号资源的集合与所述UE第i-1次发送的信号资源索引对应的信号资源的集合是否相同,若不同,则执行步骤9012,若相同,则执行步骤9013。
9012:UE向基站进行第i次信号资源索引的发送。
9013:UE不进行第i次信号资源索引的发送。
其中,信号资源索引可以为UE监测到的最优的信号资源对应的信号资源索引;信号资源索引对应的信号资源的集合可以指:与信号资源索引对应的最优的信号资源所在的信号资源的集合。
如此,通过该方案可以实现UE在进行信号资源索引发送时,只在对应不同信号资源的集合时才发送所述信号资源索引,避免了UE一检测到最优的信号资源,就将该最优的信号资源对应的信号资源索引上报给基站,大大降低了UE的功耗。
上述主要从基站和UE之间交互的角度对本发明实施例提供的方案进行了介绍。可以理解的是,基站、UE实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本发明实施例可以根据上述方法示例对基站、UE等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能单元的情况下,图8示出了上述实施例中所涉及的基站80的一种可能的结构示意图,基站80包括:发送单元801、接收单元802。发送单元801用于支持基站执行图7中的过程S701和S702;接收单元802可以用于支持基站执行接收UE发送的信号的过程。
在采用集成的单元的情况下,图8示出的基站80中的发送单元801、接收单元802可以集成在图2所示基站10中的收发器1011中,以支持基站执行图7中的过程S701和S702、以及接收UE发送的信号的过程。
在采用对应各个功能划分各个功能单元的情况下,图9示出了上述实施例中所涉及的UE90的一种可能的结构示意图,基站90包括:接收单元901、确定单元902、发送单元907。接收单元901用于支持UE执行图7中的过程S701和S702;确定单元902用于持UE执行确定过程,发送单元903可以用于支持UE执行向基站发送信号的过程。
在采用集成的单元的情况下,图9示出的UE90中的接收单元901、发送单元907可以集成在图2所示UE20中的收发器2011中,以支持基站执行图7中的过程S701和S702、以及向基站发送信号的过程;确定单元902可以集成在图2所示UE20的某一个处理器中实现,此外,也可以以程序代码的形式存储于UE20的存储器中,由UE20的某一个处理器调用并执行以上确定单元902的功能。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能单元的功能描述,在此不再赘述。
再一方面,本发明实施例还提供一种信号处理系统,如图10所示,该信号发送系统可以包括:上述所述基站80、及至少一个UE90。
本发明实施例提供的信号发送系统,实现上述图7、图7a、图7b、以及图7c所示的信号发送能的方法,因此,可以达到与上述信号发送方法相同的有益效果,此处不再进行赘述。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (29)

  1. 一种信号发送方法,其特征在于,所述方法包括:
    基站向用户设备UE通知至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同;
    所述基站根据所述至少一个信号资源的集合中信号资源的配置信息向所述UE发送信号。
  2. 根据权利要求1所述的方法,其特征在于,
    所述信号资源的配置信息包括:所述信号资源的序列设置、所述信号资源的扰码设置、所述信号资源包含的随机接入信道的配置信息中的至少一个或多个。
  3. 根据权利要求1或2所述的方法,其特征在于,所述基站向用户设备UE通知至少一个信号资源的集合,包括:
    所述基站通过高层信令或控制信令或所述信号之外的其他信号向所述UE通知所述至少一个信号资源的集合;
    所述至少一个信号资源的集合中信号资源的配置信息由所述基站通过高层信令或控制信令通知给所述用户设备。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述基站接收所述UE第i次发送的随机接入信道;
    其中,所述UE第i次发送的随机接入信道对应的信号资源的集合与所述UE第i-1次发送的随机接入信道对应的信号资源的集合不同,所述i为大于或等于2的整数。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述基站接收所述UE第i次发送的上行探测参考信号;
    其中,所述UE第i次发送的上行探测参考信号对应的信号资源的集合与所述UE第i-1次发送的上行探测参考信号对应的信号资源的集合相同,所述i为大于或等于2的整数。
  6. 根据权利要求1-3中任一项所述的方法,其特征在于,所述方法还包括:
    所述基站接收所述UE第i次发送的信号资源索引;
    其中,所述UE第i次发送的信号资源索引对应的信号资源的集合与所述UE第i-1次发送的信号资源索引对应的信号资源的集合不同,所述i为大于或等于2的整数。
  7. 根据权利要求1所述的方法,其特征在于,
    所述信号包括广播信道、同步信号、小区特定参考信号、系统信息以及上行探测参考信号中的至少一个。
  8. 一种信号接收方法,其特征在于,所述方法包括:
    用户设备UE获取基站通知的至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同;
    所述UE接收所述基站根据所述至少一个信号资源的集合中信号资源的配置信息发送的信号。
  9. 根据权利要求8所述的方法,其特征在于,
    所述信号资源的配置信息包括:所述信号资源的序列设置、所述信号资源的扰码设置、所述信号资源包含的随机接入信道的配置信息中的至少一个或多个。
  10. 根据权利要求8或9所述的方法,其特征在于,所述UE获取基站通知的至少一个信号资源的集合,包括:
    所述UE获取所述基站通过高层信令或控制信息或所述信号之外的其他信号发送的配置信息;
    所述至少一个信号资源的集合中信号资源的配置信息由所述基站通过高层信令或控制信令通知给所述UE。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述方法还包括:
    所述UE确定所述UE第i次发送的随机接入信道对应的信号资源的集合与所述UE第i-1次发送的随机接入信道对应的信号资源的集合不同;
    所述UE向所述基站进行第i次随机接入信道的发送;
    其中,所述i为大于或等于2的整数。
  12. 根据权利要求8-10任一项所述的方法,其特征在于,所述方法还包括:
    所述UE确定所述UE第i次发送的上行探测参考信号对应的信号资源的集合与所述UE第i-1次发送的上行探测参考信号对应的信号资源的集合相同;
    所述UE向所述基站进行第i次上行探测参考信号的发送;
    其中,所述i为大于或等于2的整数。
  13. 根据权利要求8-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述UE确定第i次发送的信号资源索引对应的信号资源的集合与所述UE第i-1次发送的信号资源索引对应的信号资源的集合不同;
    所述UE向所述基站进行第i次信号资源索引的发送;
    其中,所述i为大于或等于2的整数。
  14. 根据权利要求8所述的方法,其特征在于,
    所述信号包括广播信道、同步信号、小区特定参考信号、系统信息以及上行探测参考信号中的至少一个。
  15. 一种基站,其特征在于,所述基站包括:
    发送单元,用于向用户设备UE通知至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同;
    所述发送单元,还用于根据所述至少一个信号资源的集合中信号资源的配置信息向所述UE发送信号。
  16. 根据权利要求15所述的基站,其特征在于,
    所述信号资源的配置信息包括:所述信号资源的序列设置、所述信号资源的扰码设置、所述信号资源包含的随机接入信道的配置信息中的至少一个或多个。
  17. 根据权利要求15或16所述的基站,其特征在于,所述发送单元具体用于:
    通过高层信令或控制信令或所述信号之外的其他信号向所述UE通知所述至少一个信号资源的集合;
    所述至少一个信号资源的集合中信号资源的配置信息由所述基站通过高层信令或控制信令通知给所述用户设备。
  18. 根据权利要求15-17任一项所述的基站,其特征在于,所述基站还包括:
    接收单元,用于接收所述UE第i次发送的随机接入信道;
    其中,所述UE第i次发送的随机接入信道对应的信号资源的集合与所述UE第i-1次发送的随机接入信道对应的信号资源的集合不同,所述i为大于或等于2的整数。
  19. 根据权利要求15-17任一项所述的基站,其特征在于,所述基站还包括:
    接收单元,用于接收所述UE第i次发送的上行探测参考信号;
    其中,所述UE第i次发送的上行探测参考信号对应的信号资源的集合与所述UE第i-1次发送的上行探测参考信号对应的信号资源的集合相同,所述i为大于或等于2的整数。
  20. 根据权利要求15-19中任一项所述的基站,其特征在于,所述基站还包括:
    接收单元,用于接收所述UE第i次发送的信号资源索引;
    其中,所述UE第i次发送的信号资源索引对应的信号资源的集合与所述UE第i-1次发送的信号资源索引对应的信号资源的集合不同,所述i为大于或等于2的整数。
  21. 根据权利要求15所述的基站,其特征在于,
    所述信号包括广播信道、同步信号、小区特定参考信号、系统信息以及上行探测参考信号中的至少一个。
  22. 一种用户设备UE,其特征在于,所述UE包括:
    接收单元,用于获取基站通知的至少一个信号资源的集合,每个信号资源的集合对应至少一份信号资源,同一信号资源的集合中的不同信号资源的配置信息相同;
    所述接收单元,还用于接收所述基站根据所述至少一个信号资源的集合中信号资源的配置信息发送的信号。
  23. 根据权利要求22所述的UE,其特征在于,
    所述信号资源的配置信息包括:所述信号资源的序列设置、所述信号资源的扰码设置、所述信号资源包含的随机接入信道的配置信息中的至少一个或多个。
  24. 根据权利要求22或23所述的UE,其特征在于,所述接收单元具体用于:
    获取所述基站通过高层信令或控制信息或所述信号之外的其他信号发送的配置信息;
    所述至少一个信号资源的集合中信号资源的配置信息由所述基站通过高层信令或控制信令通知给所述UE。
  25. 根据权利要求22-24任一项所述的UE,其特征在于,所述UE还包括:
    确定单元,用于确定所述UE第i次发送的随机接入信道对应的信号资源的集合与所述UE第i-1次发送的随机接入信道对应的信号资源的集合不同;
    发送单元,用于向所述基站进行第i次随机接入信道的发送;
    其中,所述i为大于或等于2的整数。
  26. 根据权利要求22-24任一项所述的UE,其特征在于,所述UE还包括:
    确定单元,用于确定所述UE第i次发送的上行探测参考信号对应的信号资源的集合与所述UE第i-1次发送的上行探测参考信号对应的信号资源的集合相同;
    发送单元,用于向所述基站进行第i次上行探测参考信号的发送;
    其中,所述i为大于或等于2的整数。
  27. 根据权利要求22-25中任一项所述的UE,其特征在于,所述UE还包括:
    确定单元,用于确定第i次发送的信号资源索引对应的信号资源的集合与所述UE 第i-1次发送的信号资源索引对应的信号资源的集合不同;
    发送单元,用于向所述基站进行第i次信号资源索引的发送;
    其中,所述i为大于或等于2的整数。
  28. 根据权利要求22所述的UE,其特征在于,
    所述信号包括广播信道、同步信号、小区特定参考信号、系统信息以及上行探测参考信号中的至少一个。
  29. 一种信号处理系统,其特征在于,包括:如权利要求15-21任一项所述的基站、以及至少一个如权利要求22-28任一项所述的用户设备UE。
PCT/CN2017/104498 2016-09-29 2017-09-29 一种信号处理方法、设备及系统 WO2018059555A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020197007668A KR20190039282A (ko) 2016-09-29 2017-09-29 신호 처리 방법, 장치 및 시스템
EP17855005.9A EP3493604B1 (en) 2016-09-29 2017-09-29 Signal processing method, device and system
JP2019510624A JP2019530301A (ja) 2016-09-29 2017-09-29 信号処理方法、デバイス及びシステム
US16/365,342 US20190223166A1 (en) 2016-09-29 2019-03-26 Signal Processing Method, Device, and System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610867679.3A CN107889196B (zh) 2016-09-29 2016-09-29 一种信号处理方法、设备及系统
CN201610867679.3 2016-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/365,342 Continuation US20190223166A1 (en) 2016-09-29 2019-03-26 Signal Processing Method, Device, and System

Publications (1)

Publication Number Publication Date
WO2018059555A1 true WO2018059555A1 (zh) 2018-04-05

Family

ID=61763173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104498 WO2018059555A1 (zh) 2016-09-29 2017-09-29 一种信号处理方法、设备及系统

Country Status (6)

Country Link
US (1) US20190223166A1 (zh)
EP (1) EP3493604B1 (zh)
JP (1) JP2019530301A (zh)
KR (1) KR20190039282A (zh)
CN (1) CN107889196B (zh)
WO (1) WO2018059555A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11197324B2 (en) * 2018-02-23 2021-12-07 Qualcomm Incorporated NR RACH MSG3 and MSG4 resource configuration for CV2X
US20220123890A1 (en) * 2020-10-16 2022-04-21 Qualcomm Incorporated Reference signal based information using index modulation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330486A (zh) * 2007-06-21 2008-12-24 大唐移动通信设备有限公司 下行专用导频的传输方法与装置
US20140003240A1 (en) * 2012-07-02 2014-01-02 Xiaogang Chen Supporting measurments and feedback for 3d mimo with data transmission optimization

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610552A (zh) * 2009-08-04 2009-12-23 杭州华三通信技术有限公司 共用资源的调度方法和装置
CN101765193B (zh) * 2010-01-28 2013-06-05 华为技术有限公司 在edch上进行资源调度的方法、用户终端和通信系统
US8989114B2 (en) * 2010-03-17 2015-03-24 Lg Electronics Inc. Method and apparatus for providing channel state information-reference signal (CSI-RS) configuration information in a wireless communication system supporting multiple antennas
US8908492B2 (en) * 2011-08-11 2014-12-09 Blackberry Limited Orthogonal resource selection transmit diversity and resource assignment
CN103037514B (zh) * 2011-09-30 2017-02-22 上海贝尔股份有限公司 一种通信网络中用于传输解调参考信号的方法和装置
CN104052532B (zh) * 2013-03-15 2019-02-22 中兴通讯股份有限公司 一种无线信道参考信号的发送方法和装置
WO2015020404A1 (ko) * 2013-08-05 2015-02-12 삼성전자 주식회사 무선 통신 시스템에서 빔 그룹핑을 통한 레퍼런스 신호 송수신 방법 및 장치
WO2016056981A1 (en) * 2014-10-10 2016-04-14 Telefonaktiebolaget L M Ericsson (Publ) Method for csi feedback

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330486A (zh) * 2007-06-21 2008-12-24 大唐移动通信设备有限公司 下行专用导频的传输方法与装置
US20140003240A1 (en) * 2012-07-02 2014-01-02 Xiaogang Chen Supporting measurments and feedback for 3d mimo with data transmission optimization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Mobility and Beam Support in NR", R2-163579 3GPP TSG RAN WG2 MEETING #94, 27 May 2016 (2016-05-27), XP051095404 *

Also Published As

Publication number Publication date
KR20190039282A (ko) 2019-04-10
EP3493604B1 (en) 2020-12-30
US20190223166A1 (en) 2019-07-18
EP3493604A1 (en) 2019-06-05
CN107889196A (zh) 2018-04-06
CN107889196B (zh) 2023-11-10
JP2019530301A (ja) 2019-10-17
EP3493604A4 (en) 2019-08-28

Similar Documents

Publication Publication Date Title
EP3817479B1 (en) Communication method and communication apparatus
WO2019095944A1 (zh) 通信方法及其终端设备、网络设备
WO2018228270A1 (zh) 测量方法、测量配置方法和相关设备
CN102845109B (zh) 用于切换的优化载波聚合
KR102340706B1 (ko) 핸드오버 방법, 단말 및 네트워크 측 장치
WO2019149088A1 (zh) 一种随机接入方法及装置
EP3780858B1 (en) User equipment
JP7301870B2 (ja) 物理ランダムアクセスチャネル伝送用のチャネルアクセス方法、装置およびプログラム
US11582687B2 (en) Methods and devices for accessing a radio access network
WO2021190364A1 (zh) 一种测量配置方法及装置
CN111182578A (zh) 一种测量上报方法、测量配置方法、终端及网络侧设备
CN108141880B (zh) 提供对无线装置的增强覆盖的移动性支持的系统和方法
RU2748942C2 (ru) Способ конфигурации ресурсов управляющего канала, базовая станция и терминальное устройство
WO2018059555A1 (zh) 一种信号处理方法、设备及系统
WO2017219959A1 (zh) 一种语音调度方法及装置
WO2021073018A1 (zh) 系统信息传输资源的确定、指示方法及装置
EP3939366B1 (en) Dynamic and semi-persistent scheduling mixed multi-panel uplink precoding
WO2017000269A1 (zh) 一种数据传输方法及装置
JPWO2019242452A5 (zh)
RU2775832C2 (ru) Способ связи, терминальное устройство и сетевое устройство
WO2024021937A1 (zh) 小区服务控制、信号配置、信号发送方法、设备及终端
WO2024051584A1 (zh) 配置的方法和装置
WO2023202316A1 (zh) 一种一致性lbt失败的处理方法、终端及网络设备
WO2021239095A1 (zh) 通信方法及装置
KR20160079241A (ko) 캐리어 결합을 지원하는 통신 시스템에서 단말과 기지국 간의 연결을 설정하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510624

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017855005

Country of ref document: EP

Effective date: 20190227

ENP Entry into the national phase

Ref document number: 20197007668

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE