WO2020143372A1 - 极板、微流控芯片及极板的制备方法 - Google Patents

极板、微流控芯片及极板的制备方法 Download PDF

Info

Publication number
WO2020143372A1
WO2020143372A1 PCT/CN2019/123727 CN2019123727W WO2020143372A1 WO 2020143372 A1 WO2020143372 A1 WO 2020143372A1 CN 2019123727 W CN2019123727 W CN 2019123727W WO 2020143372 A1 WO2020143372 A1 WO 2020143372A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic
superhydrophobic
zone
area
material layer
Prior art date
Application number
PCT/CN2019/123727
Other languages
English (en)
French (fr)
Inventor
宋晓欣
张锋
刘文渠
吕志军
崔钊
姚琪
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/763,838 priority Critical patent/US11759778B2/en
Publication of WO2020143372A1 publication Critical patent/WO2020143372A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • B01L2300/166Suprahydrophobic; Ultraphobic; Lotus-effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/02Drop detachment mechanisms of single droplets from nozzles or pins
    • B01L2400/022Drop detachment mechanisms of single droplets from nozzles or pins droplet contacts the surface of the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/088Passive control of flow resistance by specific surface properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth

Definitions

  • the present disclosure relates to the technical field of microfluidic chips, and in particular, to a polar plate, a microfluidic chip using the polar plate, and a method for manufacturing the polar plate.
  • Microfluidic refers to the design and development of fluidic devices with micro-nano channels with bionic structure functions inspired by the structure and functional principles of living organisms. It is an emerging interdisciplinary subject involving many disciplines such as materials science, chemistry, physical chemistry, interface science, fluid mechanics, biotechnology, and micro-nano processing technology, which will provide breakthroughs in micro-fluidic technology bottlenecks and promote its practical application. New design ideas.
  • Digital microfluidic is to change the wettability of the droplet on the substrate by changing the voltage between the droplet and the insulating substrate, that is, changing the contact angle and causing the droplet to deform and shift.
  • wetting refers to the process where one fluid on the solid surface is replaced by another fluid.
  • the liquid can spread on the solid surface, and the solid-liquid contact surface tends to expand, that is, the adhesion of the liquid to the solid surface is greater than its cohesive force, which is wetting.
  • the liquid cannot spread on the solid surface, and the contact surface tends to shrink into a spherical shape, that is, it does not wet.
  • Non-wetting means that the adhesion of the liquid to the solid surface is less than its cohesive force.
  • Digital microfluidic technology can integrate the basic operation units of sample preparation, reaction, separation, and detection in biological, chemical, and medical analysis processes into a micron-scale chip, and automatically complete the entire analysis process. Because it can reduce costs, and has the advantages of short detection time and high sensitivity, it has already shown great prospects in the fields of biology, chemistry, medicine and so on.
  • the upper plate of the existing microfluidic chip is provided with a super-hydrophobic layer on the side near the liquid channel, the liquid inlet hole penetrates the upper plate, and the contact angle of the droplet when it contacts the hole section in the super-hydrophobic layer Larger, the surface tension of the droplet itself forms a force opposite to the injection direction, and the droplet is not easily injected into the liquid channel.
  • an electrode plate including: a substrate, an electrode, and a surface contact layer that are sequentially stacked, and a liquid inlet hole penetrating the substrate, the electrode, and the surface contact layer; wherein
  • the surface contact layer includes a super-hydrophobic region and a hydrophilic region, and the liquid inlet hole is opened in the hydrophilic region.
  • a transition zone is provided between the hydrophilic zone and the superhydrophobic zone, and the maximum contact angle between the droplet and the transition zone is greater than the maximum contact angle between the droplet and the hydrophilic zone and less than The maximum contact angle between the droplet and the superhydrophobic region.
  • the maximum contact angle between the droplet and the transition zone gradually increases from the hydrophilic zone to the superhydrophobic zone.
  • the transition zone includes hydrophilic blocks and super-hydrophobic blocks arranged alternately.
  • the area ratio of the hydrophilic block to the superhydrophobic block in the unit area gradually decreases.
  • the hydrophilic block and the superhydrophobic block are both annular blocks arranged around the hydrophilic region, and the hydrophilic block and the superhydrophobic block are selected from the The hydrophilic area to the superhydrophobic area are sequentially arranged at intervals.
  • the transition zone includes an annular superhydrophobic zone arranged around the hydrophilic zone and a plurality of hydrophilic blocks embedded in the annular superhydrophobic zone.
  • the area ratio of the hydrophilic block to the superhydrophobic zone in a unit area gradually decreases.
  • the area of the hydrophilic block gradually decreases.
  • the shape of the hydrophilic block is a triangle, a circle, or a diamond.
  • the hydrophilic region is made of resin
  • the super-hydrophobic zone is made of PTFE; or
  • the substrate is a glass substrate
  • the electrode is a conductive glass electrode.
  • a microfluidic chip including a first electrode plate formed of the electrode plate as described above and a side disposed on the surface contact layer close to the first electrode plate A second electrode plate, the first electrode plate is disposed opposite to the second electrode plate and a liquid channel is formed therebetween.
  • a method for manufacturing an electrode plate including:
  • the surface contact layer includes a super-hydrophobic region and a hydrophilic region
  • Liquid inlets are opened in the substrate, electrodes and the hydrophilic area.
  • FIG. 1 is a schematic cross-sectional structural view of an embodiment of an electrode plate related to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural plan view of an embodiment of an electrode plate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional structural view of another embodiment of an electrode plate according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural plan view of another embodiment of an electrode plate according to an embodiment of the present disclosure.
  • 5(a) to 5(c) are partial structural schematic diagrams when different-shaped hydrophilic blocks are used in yet another embodiment of an electrode plate according to an embodiment of the present disclosure
  • FIG. 6 is a schematic cross-sectional structural diagram of a microfluidic chip according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flow chart of a method for manufacturing an electrode plate according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a first embodiment of an electrode plate of an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional structural diagram of a first embodiment of an electrode plate of an embodiment of the present disclosure, as shown in FIGS. 1 and 2
  • the electrode plate of the embodiment of the present disclosure includes: a substrate 1, an electrode 2 and a surface contact layer 3 stacked in this order, and a liquid inlet hole 4 penetrating through the substrate 1, the electrode 2 and the surface contact layer 3.
  • the substrate 1 may be, for example, a glass substrate;
  • the electrode 2 may be, for example, a conductive glass electrode or a metal electrode;
  • the surface contact layer 3 includes a super-hydrophobic region 7 and a hydrophilic region 6, and the liquid inlet hole 4 is opened in the hydrophilic region 6 Inside.
  • the polar plate in the embodiment of the present disclosure is mainly used to form a microfluidic chip with another polar plate.
  • the formed microfluidic chip has a liquid channel between two polar plates, and the surface contact layer 3 is located on the side near the liquid channel
  • the liquid inlet hole 4 on the polar plate is used to inject liquid into the liquid channel. Since the liquid inlet hole 4 is opened in the hydrophilic region 6, the droplet 5 and the hole located in the hole section of the hydrophilic region 6 The contact angle of the wall is small, and the surface tension of the droplet 5 itself is directed toward the injection direction of the droplet 5, which can assist in driving the droplet 5 into the liquid channel, and the droplet 5 is more easily injected into the liquid channel.
  • the super-hydrophobic region 7 may be made of Teflon material
  • the hydrophilic region 6 may be made of Resin material, such as polyamide resin, phenol resin or other types of resin.
  • the hydrophilic area 6 made of resin is used.
  • the contact angle between the droplet 5 and the wall of the inlet hole 4 is about 84°.
  • the surface tension is in the direction of the droplet 5 injection.
  • the droplet can be smooth Inject into the liquid channel.
  • a transition zone 8 can also be provided between the hydrophilic zone 6 and the superhydrophobic zone 7.
  • the maximum contact angle of the transition zone 8 is larger than the maximum contact angle of the droplet 5 and the hydrophilic zone 6 and smaller than the maximum contact angle of the droplet 5 and the superhydrophobic zone 7.
  • the contact angle of the droplet 5 with the surface contact layer 3 gradually becomes larger during the process of the droplet 5 from the hydrophilic region 6 to the transition region 8 and then to the superhydrophobic region 7, which can prevent the droplet 5 from gathering at the hydrophilic region 6 .
  • the contact angle between the droplet 5 and the surface contact layer 3 gradually becoming larger here refers to the same droplet 5.
  • the transition zone 8 may be configured such that, as the distance between the transition zone 8 and the hydrophilic zone 6 increases, the maximum contact angle between the droplet 5 and the transition zone 8 gradually increases. In this way, in the transition zone 8 near the hydrophilic zone 6, the area of the hydrophilic block 9 in the unit area accounts for a larger proportion of the total area of the unit area, and the contact angle between the droplet 5 and the area is still larger.
  • the contact angle of the droplet 5 and the transition zone 8 also gradually increases until the transition zone 8 is close to the superhydrophobic zone 7, the droplet 5 and the transition zone 8 The contact angle is close to the contact angle of the droplet 5 and the super-hydrophobic region 7, and then the droplet 5 can smoothly transition to the super-hydrophobic region 7.
  • the transition zone 8 may include hydrophilic blocks 9 and super-hydrophobic blocks 10 arranged alternately. After the droplet 5 moves to the transition zone 8, it can When the hydrophilic block 9 and the superhydrophobic block 10 are in contact, the maximum contact angle with the surface contact layer 3 is affected by the hydrophilic block 9 and the superhydrophobic block 10 at the same time, which is larger than the droplet 5 and the hydrophilic region 6 The maximum contact angle is smaller than the maximum contact angle of the droplet 5 and the superhydrophobic region 7.
  • the transition zone 8 may be configured such that as the distance from the hydrophilic zone 6 increases, the area ratio of the hydrophilic block 9 and the superhydrophobic block 10 in the unit area of the transition zone 8 gradually decreases. That is, as the distance from the hydrophilic area 6 increases, the ratio of the area of the hydrophilic block 9 in the unit area to the total area of the unit area gradually decreases, and the area of the superhydrophobic block 10 in the unit area accounts for the total area of the unit area Gradually increased.
  • the contact area between the droplet 5 and the superhydrophobic block 10 gradually becomes larger, and the contact area with the hydrophilic block 9 gradually changes, which is increasingly affected by the superhydrophobic block 10
  • both the hydrophilic block 9 and the super-hydrophobic block 10 can be annular blocks arranged around the hydrophilic region 6, and the hydrophilic block 9 and the super-hydrophobic block 10 are from the hydrophilic region 6 to the super-hydrophobic The zones 7 are arranged at intervals.
  • the width of the hydrophilic block 9 may be gradually reduced, or the width of the super-hydrophobic block 10 may be gradually increased, or the width of the hydrophilic block 9 may be gradually reduced while gradually increasing the super
  • the width of the hydrophobic block 10 is such that the area ratio of the hydrophilic block 9 and the super hydrophobic block 10 in the unit area gradually decreases.
  • the hydrophilic region 6 may be a circular region formed by a resin material, the liquid inlet hole 4 is opened in the middle of the circular region, and the transition region 8 is disposed outside the hydrophilic region 6
  • the other areas of the surface contact layer 3 are superhydrophobic regions 7.
  • the transition zone 8 is composed of an annular hydrophilic block 9 and an annular superhydrophobic block 10 arranged at intervals. As the distance from the hydrophilic zone 6 increases, the width of the annular hydrophilic block 9 does not change.
  • the width of the circular superhydrophobic block 10 is gradually increased, and the interval between two adjacent hydrophilic blocks 9 is gradually increased, thereby gradually reducing the hydrophilic block 9 and the superhydrophobic block in the unit area
  • the purpose of the area ratio of 10. can also be gradually reduced by gradually reducing the width of the circular hydrophilic block 9 or gradually increasing the width of the circular superhydrophobic block 10 while gradually reducing the width of the circular hydrophilic block 9
  • the shapes of the hydrophilic block 9 and the superhydrophobic block 10 are not limited to the ring shape, but may also be other staggered blocks with regular shapes or irregular shapes.
  • the transition zone 8 includes an annular superhydrophobic zone 11 arranged around the hydrophilic zone 6 and a plurality of hydrophilic blocks 9 embedded in the annular superhydrophobic zone 11, the droplets 5 can be simultaneously with The hydrophilic block 9 and the superhydrophobic zone 11 are in contact, and the maximum contact angle with the transition zone 8 is simultaneously affected by the hydrophilic zone 9 and the superhydrophobic zone 7 zone, which is greater than the maximum contact between the droplet 5 and the hydrophilic zone 6 The angle is smaller than the maximum contact angle of the droplet 5 and the superhydrophobic region 7.
  • the transition zone 8 can also be configured such that as the distance from the hydrophilic zone 6 increases, the area ratio of the hydrophilic block 9 to the superhydrophobic zone 11 in the unit area of the transition zone 8 gradually decreases, which can also be achieved When the droplet 5 moves from the position close to the hydrophilic area 6 to the position close to the superhydrophobic area 7, the purpose of the contact angle with the transition area 8 gradually becoming larger.
  • the area ratio of the hydrophilic block 9 to the superhydrophobic zone 11 in the unit area of the transition zone 8 gradually decreases, which can be achieved by gradually reducing the area of the single hydrophilic block 9 as the distance from the hydrophilic zone 6 increases It can also be achieved by gradually reducing the number of hydrophilic blocks 9 in a unit area.
  • the hydrophilic area 6 may be a rectangular area formed by a resin material, the liquid inlet 4 is opened in the middle of the rectangular area, and the transition area 8 is provided outside the rectangular hydrophilic area 6 In the rectangular ring-shaped region, the other regions of the surface contact layer 3 are superhydrophobic regions 7.
  • the super-hydrophobic belt 11 is a rectangular ring-shaped super-hydrophobic belt 11, the hydrophilic block 9 is an isosceles triangle, and the hydrophilic block 9 is embedded in the super-hydrophobic zone 7 in a horizontal and vertical arrangement, and with the affinity As the distance of the water zone 6 increases, the hydrophilic block 9 of the isosceles triangle gradually reduces the area without changing the length of the bottom edge and gradually reducing the length of the two waist edges (that is, gradually increasing the angle value of the angle a), as shown in Figure 5( a) as shown.
  • the hydrophilic block 9 may also be round or diamond-shaped, as shown in FIG. 5 (b), when the hydrophilic block 9 is round At this time, the area can be gradually reduced by gradually reducing the radius of the circle r, as shown in Fig. 5(c), when the hydrophilic block is diamond-shaped, it can be gradually shortened while ensuring a diagonal inconvenience.
  • a diagonal length ie, gradually increase the angle b angle to gradually reduce its area.
  • the maximum contact angle between droplet 5 and transition zone 8 is 125°.
  • the maximum contact angle between droplet 5 and transition zone 8 Increasing gradually, when the ratio of the area of the superhydrophobic zone 11 to the total area of the unit area reaches 0.95, the maximum contact angle between the droplet 5 and the transition zone 8 reaches 165°.
  • the droplet 5 can be smoothly moved to the superhydrophobic zone 7 through the hydrophilic zone 6, and the contact angle of the droplet 5 gradually changes during the process .
  • FIG. 6 is a schematic structural diagram of a microfluidic chip according to an embodiment of the present disclosure.
  • the microfluidic chip according to an embodiment of the present disclosure includes: a first polar plate 12 formed of the polar plate as described above and provided on The surface of the first electrode plate 12 is close to the second electrode plate 13 on the side of the contact layer 3.
  • the first electrode plate 12 and the second electrode plate 13 are oppositely arranged and form a liquid channel G between the two.
  • the microfluidic chip using the above polar plate also has the advantage of easier liquid injection.
  • an embodiment of the present disclosure also provides a manufacturing method for manufacturing the above-mentioned polar plate, which specifically includes the following steps:
  • Step 1 Form the electrode 2 on one side of the substrate 1.
  • the substrate 1 may be a glass substrate, and the electrode 2 may be an ITO electrode.
  • a layer of ITO conductive film is coated on one side of the substrate 1, the thickness of the conductive film may be 400 angstroms to 800 angstroms, and in this embodiment, the conductive film is set to 700 angstroms.
  • annealing treatment is performed to crystallize the conductive thin film.
  • the annealing temperature can be 230°C and the annealing time can be 60 min.
  • the conductive film can also be formed by a process such as magnetron sputtering.
  • Step 2 A surface contact layer 3 is formed on the side of the electrode 2 away from the substrate 1, wherein the surface contact layer 3 includes a super-hydrophobic region 7 and a hydrophilic region 6.
  • this step 2 may include:
  • a hydrophilic material layer is formed on the side of the electrode 2 away from the substrate 1.
  • the hydrophilic material layer may be, for example, a resin layer, and the resin layer may be formed on the electrode 2 through a coating process.
  • the hydrophilic material layer is patterned to form hydrophilic blocks in the hydrophilic region 6 and the transition region 8.
  • a half-tone gray scale exposure process may be used.
  • a superhydrophobic material layer is formed on the electrode 2 and the hydrophilic material layer.
  • the superhydrophobic material may be polytetrafluoroethylene, and a polytetrafluoroethylene emulsion may be coated on the electrode 2 and the hydrophilic material layer by a coating process.
  • the superhydrophobic material layer is cured.
  • the curing temperature may be 230°C, and the curing time may be 60 minutes.
  • the temperature and time of the curing process are not limited to the above values, but can be adjusted according to actual needs.
  • the super-hydrophobic material layer is peeled off to peel off the portion of the super-hydrophobic material layer located above the hydrophilic block 9 of the hydrophilic region 6 and the transition region 8, and the hydrophilic region 6, transition region 8, super
  • the hydrophobic region 7 forms a flat surface for contact with the droplet 5.
  • the peeling treatment may use the Ashing process.
  • this step 2 may also include:
  • a superhydrophobic material layer is coated on the side of the electrode 2 away from the substrate 1, and the superhydrophobic material layer may be a polytetrafluoroethylene layer. After the superhydrophobic material layer is cured, it is subjected to surface smoothing treatment by, for example, a plasma treatment process.
  • a shielding layer is coated on the superhydrophobic material layer, and the shielding layer may be made of plastic rubber.
  • the blocking layer is patterned to remove the blocking layer corresponding to the hydrophilic block 9 in the hydrophilic region 6 and the transition region 8, and the super-hydrophobic material layer is exposed and developed to remove the super-hydrophobic material layer corresponding to A portion of the hydrophilic block 9 in the hydrophilic region 6 and the transition region 8 forms a groove, and the portion of the superhydrophobic material layer that is blocked by the blocking block remains. Then, the occlusion block is peeled off.
  • a hydrophilic material layer is coated on the superhydrophobic material layer and the electrode 2.
  • the hydrophilic material layer is leveled so that the hydrophilic material is fully filled in the grooves between the superhydrophobic blocks 10, and the hydrophilic material layer is formed into a flat surface.
  • the hydrophilic material layer is peeled off to peel off the portion of the hydrophilic material layer above the super-sparse material layer, and the portion of the hydrophilic material layer inside the groove is left to form the hydrophilic region 6 and the transition region 8
  • the hydrophilic block 9 makes the hydrophilic area 6, the transition area 8 and the superhydrophobic area 7 form a flat surface for contact with the droplet 5.
  • Step 3 The liquid inlet 4 is opened in the substrate 1, the electrode 2 and the hydrophilic area 6.
  • step 3 may include the following steps:
  • a mask layer is provided on the surface of the superhydrophobic layer, and the mask layer is patterned to peel off the portion of the mask layer corresponding to the liquid inlet 4, and the substrate 1, the electrode 2 and the pro The liquid inlet 4 is opened in the water area 6 to peel off the mask layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种极板、微流控芯片及极板的制备方法。一种极板包括:依次层叠设置的基板(1)、电极(2)和表面接触层(3),以及贯穿所述基板(1)、所述电极(2)和所述表面接触层(3)的进液孔(4);所述表面接触层(3)包括超疏水区(7)和亲水区(6),所述进液孔(4)开设在所述亲水区(6)内;该微流控芯片包括由如上所述的极板形成的第一极板(12)和设置在靠近所述第一极板(12)的所述表面接触层(3)一侧的第二极板(13),所述第一极板(12)与所述第二极板(13)相对设置并在其之间形成液体通道(G)。

Description

极板、微流控芯片及极板的制备方法
相关申请的交叉引用
本公开要求于2019年1月8日向中国国家知识产权局递交的中国专利申请201910016355.2的权益,该申请的公开内容通过引用整体并入本公开中。
技术领域
本公开涉及微流控芯片技术领域,具体而言,涉及一种极板、应用该极板的微流控芯片及该极板的制备方法。
背景技术
微流控是指受生物体结构和功能原理的启发,设计和开发具有仿生结构功能的微纳通道的流体器件。它是一门新兴的交叉学科,涉及材料学、化学、物理化学、界面科学、流体力学、生物技术及微纳米加工技术等众多学科领域,将为突破微流控技术瓶颈、推动其实际应用提供全新的设计思路。
数字微流控是通过改变液滴与绝缘基板之间电压,来改变液滴在基板上的润湿性,即改变接触角,使液滴发生形变、位移的现象。所谓润湿是指固体表面的一种流体被另一种流体所取代的过程。液体在固体表面能铺展,固液接触面有扩大的趋势,即液体对固体表面的附着力大于其内聚力,就是润湿。液体在固体表面不能铺展,接触面有收缩成球形的趋势,就是不润湿,不润湿就是液体对固体表面的附着力小于其内聚力。
数字微流控技术可将生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,并自动完成分析全过程。由于其可以降低成本,且具有检测时间短、灵敏度高等优点,已经在生物、化学、医学等领域展现巨大前景。但是,现有的微流控芯片的上极板在靠近液体通道的一侧设有超疏水层,进液孔贯穿上极板,液滴与位于超疏水层内的孔段接触时,接触角较大,液滴自身的表面张力形成与注入方向相反的作用力,液滴不容易注入到液体通道内。
发明内容
根据本公开的一个方面,提供了一种极板,其包括:依次层叠设置的基板、电极和表面接触层,以及贯穿所述基板、所述电极和所述表面接触层的进液孔;其中,所述表面接触层包括超疏水区和亲水区,所述进液孔开设在所述亲水区内。
在一些实施例中,所述亲水区和所述超疏水区之间设有过渡区,液滴与所述过渡区的最大接触角大于液滴与所述亲水区的最大接触角且小于液滴与所述超疏水区的最大接触角。
在一些实施例中,所述过渡区由所述亲水区至所述超疏水区方向上,液滴与所述过渡区的最大接触角逐渐增大。
在一些实施例中,所述过渡区包括交错布置的亲水区块和超疏水区块。
在一些实施例中,所述过渡区由所述亲水区至所述超疏水区方向上,单位区域内所述亲水区块与所述超疏水区块的面积比逐渐缩小。
在一些实施例中,所述亲水区块和所述超疏水区块均为绕所述亲水区布置的环形区块,且所述亲水区块和所述超疏水区块自所述亲水区至所述超疏水区依次间隔布置。
在一些实施例中,所述过渡区包括绕所述亲水区布置的环形超疏水带和嵌设在所述环形超疏水带内的多个亲水区块。
在一些实施例中,所述过渡区由所述亲水区至所述超疏水区方向上,单位区域内所述亲水区块与所述超疏水带的面积比逐渐缩小。
在一些实施例中,所述过渡区由所述亲水区至所述超疏水区方向上,所述亲水区块的面积逐渐缩小。
在一些实施例中,所述亲水区块的形状为三角形、圆形或菱形。
在一些实施例中,所述亲水区采用树脂材质;或
所述超疏水区采用聚四氟乙烯材质;或
所述基板为玻璃基板;或
所述电极为导电玻璃电极。
根据本公开的另一个方面,提供了一种微流控芯片,其包括由如上所述的极板形成的第一极板和设置在靠近所述第一极板的所述表面接触层 一侧的第二极板,所述第一极板与所述第二极板相对设置并在其之间形成液体通道。
根据本公开的又一个方面,提供了一种极板的制备方法,其包括:
在基板的一面上形成电极;
在所述电极远离所述基板的一面形成表面接触层,其中,所述表面接触层包括超疏水区和亲水区;
在所述基板、电极和所述亲水区开设进液孔。
应当理解,前面的一般描述和以下详细描述都仅是示例性和说明性的,而不是用于限制本公开。
本节提供本公开中描述的技术的各种实现或示例的概述,并不是所公开技术的全部范围或所有特征的全面公开。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开实施例涉及的极板的一种实施例的剖视结构示意图;
图2为本公开实施例涉及的极板的一种实施例的俯视结构示意图;
图3为本公开实施例涉及的极板的另一种实施例的剖视结构示意图;
图4为本公开实施例涉及的极板的又一种实施例的俯视结构示意图;
图5(a)至图5(c)分别为本公开实施例涉及的极板的又一种实施例中采用不同形状的亲水区块时的部分结构示意图;
图6为本公开实施例涉及的微流控芯片的剖视结构示意图;
图7为本公开实施例涉及的极板的制备方法的流程示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
图1为本公开实施例的极板的第一种实施例的结构示意图,图2为本公开实施例的极板的第一种实施例的剖视结构示意图,参见图1和图2所示,本公开实施例的极板包括:依次层叠设置的基板1、电极2和表面接触层3,以及贯穿基板1、电极2和表面接触层3的进液孔4。其中,该基板1可采用例如玻璃基板;该电极2可采用例如导电玻璃电极或金属电极;该表面接触层3包括超疏水区7和亲水区6,进液孔4开设在亲水区6内。
本公开实施例中的极板主要用于与另一极板形成微流控芯片,所形成的微流控芯片的两个极板之间具有液体通道,表面接触层3位于靠近液体通道一侧,本公开实施例中的极板上的进液孔4用于向液体通道内注入液体,由于进液孔4开设在亲水区6,液滴5与位于亲水区6内孔段的孔壁的接触角较小,液滴5自身的表面张力朝向液滴5注入方向,能够辅助驱动液滴5进入到液体通道,液滴5更加容易注入到液体通道内。克服了现有技术中因液滴5与进液孔4位于超疏水层内孔段的孔壁之间的接触角较大,导致液滴5自身的表面张力朝向注入方向的反向,致使液滴5不容易注入的问题。
具体的,该超疏水区7可采用聚四氟乙烯(Teflon)材料,该亲水区6可采用树脂(Resin)材料,例如,聚酰胺树脂、酚醛树脂或其他类型树脂。当液滴为2-18uL时,采用树脂材质的亲水区6,液滴5与进液孔4的孔壁的接触角约为84°,表面张力朝向液滴5注入方向,液滴可以顺利注入到液体通道内。
为使穿过进液孔4的液滴5能够平缓的从亲水区6过渡到超疏水区7,还可在亲水区6和超疏水区7之间设置过渡区8,液滴5与过渡区8的最大接触角大于液滴5与亲水区6的最大接触角且小于液滴5与超疏水区7 的最大接触角。这样,液滴5从亲水区6到过渡区8,再到超疏水区7过程中,液滴5与表面接触层3的接触角逐渐变大,能够避免液滴5在亲水区6处聚集。需要说明的是,此处所说液滴5与表面接触层3的接触角逐渐变大是指同一种液滴5。
进一步的,该过渡区8还可被配置为,随着过渡区8与亲水区6距离的增加,液滴5与该过渡区8的最大接触角逐渐增大。这样,过渡区8内靠近亲水区6的位置,单位区域内亲水区块9的面积占单位区域的总面积的比例较大,液滴5与该区域的接触角仍然较大,液滴5可自亲水区6平缓的过渡到过渡区8;随着与亲水区6距离的增加,单位区域内亲水区块9和超疏水区块10的面积比例逐渐减小,液滴5在过渡区8域内向超疏水区7移动时,液滴5与过渡区8的接触角也逐渐变大,直至过渡区8内靠近超疏水区7的位置时,液滴5与过渡区8的接触角接近液滴5与超疏水区7的接触角,进而液滴5又能够平缓的过渡到超疏水区7上。
过渡区8的形成方式有多种,在一个实施例中,该过渡区8可包括交错布置的亲水区块9和超疏水区块10,液滴5移动至过渡区8后,能够同时与亲水区块9和超疏水区块10接触,其与表面接触层3的最大接触角同时受到亲水区块9和超疏水区块10的影响,既大于液滴5与亲水区6的最大接触角,又小于液滴5与超疏水区7的最大接触角。
进一步的,该过渡区8还可被配置为随着与亲水区6距离的增加,该过渡区8中单位区域内亲水区块9和超疏水区块10的面积比逐渐缩小。即随着与亲水区6距离的增加,单位区域内亲水区块9的面积占单位区域的总面积的比例逐渐缩小,而单位区域内超疏水区块10的面积占单位区域的总面积的比例逐渐增大。随着与亲水区6距离的增加,液滴5与超疏水区块10的接触面积逐渐变大,与亲水区块9的接触面积逐渐变下,受超疏水区块10的影响越来越大,受亲水区块9的影响越来越小,进而实现液滴5在自靠近亲水区6的位置向靠近超疏水区7的位置移动时,与过渡区8的接触角逐渐变大的目的。
更进一步的,该亲水区块9和超疏水区块10均可为绕亲水区6布置的环形区块,且亲水区块9和超疏水区块10自亲水区6至超疏水区7依次间隔布置。随着与亲水区6距离的增加,可采用逐渐缩小亲水区块9的宽度,或逐渐增加超疏水区块10的宽度,或在逐渐缩小亲水区块9的宽 度的同时逐渐增加超疏水区块10的宽度,以使单位区域内亲水区块9和超疏水区块10的面积比逐渐减小。
例如,配合图3所示,该亲水区6可为由树脂材料形成的圆形区域,进液孔4开设在该圆形区域的中间位置,过渡区8设置在该亲水区6的外侧,表面接触层3的其他区域为超疏水区7。过渡区8由间隔布置的圆环形亲水区块9和圆环形超疏水区块10构成,随着与亲水区6距离的增加,圆环形亲水区块9的宽度不变,而圆环形超疏水区块10的宽度逐渐增加,相邻两个亲水区块9之间的间隔逐渐增大,从而实现了逐渐减小单位区域内亲水区块9和超疏水区块10的面积比的目的。当然,也可通过逐渐缩小圆环形亲水区块9的宽度,或逐渐增加圆环形超疏水区块10的宽度的同时逐渐缩小圆环形亲水区块9的宽度,来逐渐减小单位区域内亲水区块9和超疏水区块10的面积比的目的。需要说明的是,亲水区块9和超疏水区块10的形状不仅限于环形,也可为其他规则形状或不规则形状的交错布置的区块。
在另一个实施例中,该过渡区8包括环绕亲水区6布置的环形超疏水带11和嵌设在该环形超疏水带11内的多个亲水区块9,液滴5能够同时与亲水区块9和超疏水带11接触,其与过渡区8的最大接触角同时受到亲水区块9和超疏水区7带的影响,既大于液滴5与亲水区6的最大接触角,又小于液滴5与超疏水区7的最大接触角。
进一步的,该过渡区8也可被配置为随着与亲水区6距离的增加,该过渡区8中单位区域内亲水区块9与超疏水带11的面积比逐渐缩小,也能够实现液滴5在自靠近亲水区6的位置向靠近超疏水区7的位置移动时,与过渡区8的接触角逐渐变大的目的。该过渡区8中单位区域内亲水区块9与超疏水带11的面积比逐渐缩小,可通过随着与亲水区6距离的增加,逐渐缩小单个亲水区块9的面积的方式实现,也可通过逐渐缩小单位区域内亲水区块9的数量的方式实现。
例如,配合图4所示,该亲水区6可为由树脂材料形成的矩形区域,进液孔4开设在该矩形区域的中间位置,过渡区8为设置在该矩形亲水区6外侧的矩形环状区域,表面接触层3的其他区域为超疏水区7。超疏水带11为矩形环状超疏水带11,亲水区块9为等腰三角形,亲水区块9按照横行竖列的排布方式嵌设在超疏水区7内,且随着与亲水区6距离的增 加,等腰三角形的亲水区块9以不改变底边长度、逐渐缩小两腰边长度(即逐渐增大角度a的角度值)的方式逐渐缩小面积,如图5(a)所示。
配合图4和图5(b)或5(c)所示,该亲水区块9也可为圆形或菱形,如图5(b)所示,当该亲水区块9为圆形时,可通过逐渐缩小圆形半径r的方式逐渐缩小其面积,如图5(c)所示,当该亲水区块为菱形时,可在保证一条对角线不便的情况下逐渐缩短另一条对角线长度(即逐渐增大角度b的角度值)的方式来逐渐缩小其面积。
在单位区域内亲水区块9与超疏水带11的面积比逐渐缩小时,也即单位区域内超疏水带11的面积占单位区域的总面积的比例逐渐增大时,液滴5与过渡区8的最大接触角的变化情况如表1所示,其中,f1为单位区域内超疏水带11的面积占单位区域的总面积的比例,CA为液滴5与过渡区8的最大接触角。表1中分别示例性给出了亲水区块9为三角形、菱形和圆形时,液滴5与过渡区8的最大接触角。
表1
Figure PCTCN2019123727-appb-000001
参见表1可知,以亲水区块9的形状为三角形为例,当超疏水区7的面积与单位区域的总面积的比例为0.37时,也即超疏水区7占单位区域的总面积达到37%时,液滴5与过渡区8的最大接触角为125°,随着超疏水带11的面积与单位区域的总面积的比例逐渐增大,液滴5与过渡区8的最大接触角逐渐增大,当超疏水带11的面积与单位区域的总面积的比例达到0.95时,液滴5与过渡区8的最大接触角达到165°。这样,通过在亲水区6和超疏水区7之间设置该过渡区8,能够使液滴5平稳的经亲水区6移动至超疏水区7,过程中液滴5的接触角逐渐转变。
需要说明的是,该过渡区8不仅限于采用上述结构,例如,也可为由亲水性介于亲水区6和超疏水区7之间的材料所形成的区域。
图6为本公开实施例的微流控芯片的结构示意图,参见图6所示,本公开实施例的微流控芯片包括:由如上所述的极板形成的第一极板12和 设置在靠近第一极板12的表面接触层3一侧的第二极板13,第一极板12与第二极板13两者相对设置并在两者之间形成液体通道G。
由于液滴5与如上所述极板的进液孔4的孔壁之间的接触角较小,液滴5自身的表面张力形成朝向注入方向的辅助驱动力,能够辅助液滴5向超疏水层一侧移动,使液滴5更加容易注入到液体通道内。所以,应用上述极板的微流控芯片,同样具备较容易注入液体的优点。
参见图7所示,本公开实施例还提供了一种用于制备如上所述极板的制备方法,具体包括如下步骤:
步骤1:在基板1的一面上形成电极2。
其中,该基板1可为玻璃基板,该电极2可为ITO电极。
具体可通过如下步骤实现:在基板1的一面上涂覆一层ITO导电薄膜,该导电薄膜的厚度可为400埃米至800埃米,本实施例中该导电薄膜被设置为700埃米。在氮气环境下,进行退火处理,使该导电薄膜晶体化。退火温度可为230℃,退火时间可为60min。该导电薄膜也可通过例如磁控溅镀的工艺形成。
步骤2:在电极2远离基板1的一面形成表面接触层3,其中,该表面接触层3包括超疏水区7和亲水区6。
在一个实施例中,该步骤2可包括:
在电极2远离基板1的一面形成亲水材料层。该亲水材料层可为例如树脂层,该树脂层可通过涂覆工艺形成于电极2上。
对该亲水材料层进行图案化处理以形成亲水区6和过渡区8内的亲水区块。对该亲水材料层进行图案化处理可采用例如Half-Tone灰阶曝光工艺。
在电极2和亲水材料层上形成超疏水材料层。该超疏水材料可为聚四氟乙烯,可采用涂覆工艺将聚四氟乙烯乳浊液涂覆在电极2和亲水材料层上。
对涂覆的超疏水材料层进行流平处理。以使超疏水材料充分的填充在任意相邻两个亲水区块9之间,并使该超疏水材料层形成平整表面。
对该超疏水材料层进行固化处理。固化处理的温度可为230℃,固化处理的时间可为60分钟。该固化处理过程的温度和时间不仅限于上述数值,可根据实际需要调整。
对该超疏水材料层进行剥离处理,以剥离该超疏水材料层位于亲水区6和过渡区8的亲水区块9之上的部分,并使该亲水区6、过渡区8、超疏水区7形成用于与液滴5接触的平整表面。该步骤中剥离处理可采用Ashing工艺。
在另一个实施例中,该步骤2也可包括:
在电极2远离基板1的一面涂覆超疏水材料层,该超疏水材料层可为聚四氟乙烯层。待该超疏水材料层固化后,通过例如等离子处理工艺对其进行表面平整处理。
在该超疏水材料层上涂覆遮挡层,该遮挡层可采用塑料橡胶材质。对该遮挡层进行图案化处理,以去除对应于亲水区6和过渡区8中亲水区块9的遮挡层,对该超疏水材料层进行曝光显影处理,去除超疏水材料层中对应于亲水区6和过渡区8中亲水区块9的部分并形成凹槽,保留该超疏水材料层被遮挡区块遮挡的部分。然后对遮挡区块进行剥离处理。
在该超疏水材料层和电极2上涂覆亲水材料层。对该亲水材料层进行流平处理,以使亲水材料充分填充在超疏水区块10之间的凹槽内,并使该亲水材料层形成平整表面。对该亲水材料层进行剥离处理,以剥离该亲水材料层位于超疏材料层之上的部分,保留该亲水材料层位于凹槽内的部分以形成亲水区6和过渡区8的亲水区块9,并使该亲水区6、过渡区8和超疏水区7形成用于与液滴5接触的平整表面。
步骤3:在基板1、电极2和亲水区6开设进液孔4。
具体的,步骤3可包括如下步骤:
在超疏水层的表面设置一掩膜层,对该掩模层进行图案化处理以剥离该掩模层与进液孔4相对应的部分,利用刻蚀的方法在基板1、电极2和亲水区6上开设进液孔4,对掩模层进行剥离处理。
以上实施例仅为本公开的示例性实施例,不用于限制本公开,本公开的保护范围由权利要求书限定。本领域技术人员可以在本公开的实质和保护范围内,对本公开做出各种修改或等同替换,这种修改或等同替换也应视为落在本公开的保护范围内。

Claims (17)

  1. 一种极板,包括:依次层叠设置的基板、电极和表面接触层,以及贯穿所述基板、所述电极和所述表面接触层的进液孔;其中,所述表面接触层包括超疏水区和亲水区,所述进液孔开设在所述亲水区内。
  2. 根据权利要求1所述的极板,其中,所述亲水区和所述超疏水区之间设有过渡区,所述过渡区被构造成使得:液滴与所述过渡区的最大接触角大于液滴与所述亲水区的最大接触角且小于液滴与所述超疏水区的最大接触角。
  3. 根据权利要求2所述的极板,其中,所述过渡区被构造成使得:由所述亲水区至所述超疏水区的方向上,液滴与所述过渡区的最大接触角逐渐增大。
  4. 根据权利要求3所述的极板,其中,所述过渡区包括交错布置的亲水区块和超疏水区块。
  5. 根据权利要求3所述的极板,其中,所述过渡区由所述亲水区至所述超疏水区的方向上,单位区域内所述亲水区块与所述超疏水区块的面积比逐渐缩小。
  6. 根据权利要求5所述的极板,其中,所述亲水区块和所述超疏水区块均为绕所述亲水区布置的环形区块,且所述亲水区块和所述超疏水区块自所述亲水区至所述超疏水区依次间隔布置。
  7. 根据权利要求3所述的极板,其中,所述过渡区包括绕所述亲水区布置的环形超疏水带和嵌设在所述环形超疏水带内的多个亲水区块。
  8. 根据权利要求7所述的极板,其中,所述过渡区由所述亲水区至所述超疏水区的方向上,单位区域内所述亲水区块与所述超疏水带的面积比逐渐缩小。
  9. 根据权利要求8所述的极板,其中,所述过渡区由所述亲水区至所述超疏水区方向上,所述亲水区块的面积逐渐缩小。
  10. 根据权利要求9所述的极板,其中,所述亲水区块的形状为三角形、圆形或菱形。
  11. 根据权利要求2所述的极板,其中,所述过渡区是由亲水性介于亲水区和超疏水区之间的材料所形成的区域。
  12. 根据权利要求1-11任一项所述的极板,其中,所述亲水区采用树脂材质;
    所述超疏水区采用聚四氟乙烯材质。
  13. 根据权利要求1-11任一项所述的极板,其中,所述基板为玻璃基板;所述电极为导电玻璃电极。
  14. 一种微流控芯片,包括由权利要求1-13任一项所述的极板形成的第一极板和设置在靠近所述第一极板的所述表面接触层一侧的第二极板,所述第一极板与所述第二极板相对设置并在所述第一极板与所述第二极板之间形成液体通道。
  15. 一种极板的制备方法,包括:
    在基板的一面上形成电极;
    在所述电极远离所述基板的一面形成表面接触层,其中,所述表面接触层包括超疏水区和亲水区;
    在所述基板、电极和所述亲水区开设进液孔。
  16. 根据权利要求15所述的制备方法,其中,所述在所述电极远离所述基板的一面形成表面接触层的步骤进一步包括:
    在所述电极远离所述基板的一面形成亲水材料层;
    对所述亲水材料层进行图案化处理以形成亲水区和过渡区内的亲水区块;
    在所述电极和所述亲水材料层上形成超疏水材料层;
    对所述超疏水材料层进行流平处理,以使超疏水材料充分的填充在任意相邻两个亲水区块之间,并使所述超疏水材料层形成平整表面;
    对所述超疏水材料层进行固化处理;和
    对所述超疏水材料层进行剥离处理,以剥离所述超疏水材料层位于所述亲水区和所述过渡区的所述亲水区块之上的部分,并使所述亲水区、所述过渡区、所述超疏水区形成用于与液滴接触的平整表面。
  17. 根据权利要求15所述的制备方法,其中,所述在所述电极远离所述基板的一面形成表面接触层的步骤进一步包括:
    在所述电极远离所述基板的一面涂覆超疏水材料层;
    对所述超疏水材料层执行固化处理和表面平整处理;
    在所述超疏水材料层上涂覆遮挡层,并对所述遮挡层进行图案化处理,以去除遮挡层中对应于亲水区和过渡区中亲水区块的部分,对所述超疏水材料层进行曝光显影处理,以去除超疏水材料层中对应于亲水区和过渡区中亲水区块的部分并形成凹槽,而保留所述超疏水材料层被所述遮挡层遮挡的部分;并对所述遮挡层进行剥离处理;
    在所述超疏水材料层和所述电极上涂覆亲水材料层,对所述亲水材料层进行流平处理,以使亲水材料充分填充在超疏水区块之间的凹槽内,并使所述亲水材料层形成平整表面;对所述亲水材料层进行剥离处理,以剥离所述亲水材料层位于超疏材料层之上的部分,保留所述亲水材料层位于凹槽内的部分以形成亲水区和过渡区的亲水区块,并使所述亲水区、所述过渡区和所述超疏水区形成用于与液滴接触的平整表面。
PCT/CN2019/123727 2019-01-08 2019-12-06 极板、微流控芯片及极板的制备方法 WO2020143372A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/763,838 US11759778B2 (en) 2019-01-08 2019-12-06 Electrode plate, microfluidic chip and method of manufacturing electrode plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910016355.2A CN109718878B (zh) 2019-01-08 2019-01-08 极板、微流控芯片及极板的制备方法
CN201910016355.2 2019-01-08

Publications (1)

Publication Number Publication Date
WO2020143372A1 true WO2020143372A1 (zh) 2020-07-16

Family

ID=66298889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123727 WO2020143372A1 (zh) 2019-01-08 2019-12-06 极板、微流控芯片及极板的制备方法

Country Status (3)

Country Link
US (1) US11759778B2 (zh)
CN (1) CN109718878B (zh)
WO (1) WO2020143372A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109718878B (zh) * 2019-01-08 2021-01-26 京东方科技集团股份有限公司 极板、微流控芯片及极板的制备方法
CN112705279B (zh) * 2019-10-25 2022-09-23 成都今是科技有限公司 微流控芯片及其制备方法
CN113713868B (zh) * 2021-09-13 2023-05-12 北京京东方技术开发有限公司 一种微流控制芯片及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140353171A1 (en) * 2012-01-09 2014-12-04 Sophion Bioscience A/S Improved Patch Area Cell Adhesion
CN104841499A (zh) * 2015-04-24 2015-08-19 复旦大学 一种纸基数字微流器件
CN104846400A (zh) * 2015-04-24 2015-08-19 复旦大学 一种基于介质层上电润湿原理的电解器件及其制备方法
CN105833926A (zh) * 2016-04-27 2016-08-10 浙江工业大学 微流体自驱动式纸基微流控芯片、制备方法及其应用
CN105854964A (zh) * 2016-04-27 2016-08-17 浙江工业大学 基于sers检测的微流控芯片、制备方法及其应用
CN205899242U (zh) * 2016-04-27 2017-01-18 浙江工业大学 一种实现液滴自驱动的梯度润湿表面的设备
CN109718878A (zh) * 2019-01-08 2019-05-07 京东方科技集团股份有限公司 极板、微流控芯片及极板的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101135084B1 (ko) * 2008-12-23 2012-04-16 한국전자통신연구원 미세 유체 소자 및 미세 유체 분석 장치
CN103026294B (zh) * 2009-08-14 2016-01-27 辛辛那提大学 显示像素、显示器以及操作显示像素的方法
WO2017078059A1 (ja) * 2015-11-06 2017-05-11 シャープ マイクロフルイディック ソリューションズ リミテッド エレクトロウェッティング装置およびその製造方法並びに液滴注入方法
CA3017636A1 (en) * 2016-03-15 2017-09-21 Evonik Rohm Gmbh Microfluidic devices having a microchannel with hydrophilic coating
CN208302807U (zh) * 2018-04-20 2019-01-01 华南师范大学 一种微流控芯片及其控制系统
CN108927233A (zh) * 2018-09-06 2018-12-04 广州大学 一种无外力控制单向液体运输的微流控芯片结构及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140353171A1 (en) * 2012-01-09 2014-12-04 Sophion Bioscience A/S Improved Patch Area Cell Adhesion
CN104841499A (zh) * 2015-04-24 2015-08-19 复旦大学 一种纸基数字微流器件
CN104846400A (zh) * 2015-04-24 2015-08-19 复旦大学 一种基于介质层上电润湿原理的电解器件及其制备方法
CN105833926A (zh) * 2016-04-27 2016-08-10 浙江工业大学 微流体自驱动式纸基微流控芯片、制备方法及其应用
CN105854964A (zh) * 2016-04-27 2016-08-17 浙江工业大学 基于sers检测的微流控芯片、制备方法及其应用
CN205899242U (zh) * 2016-04-27 2017-01-18 浙江工业大学 一种实现液滴自驱动的梯度润湿表面的设备
CN109718878A (zh) * 2019-01-08 2019-05-07 京东方科技集团股份有限公司 极板、微流控芯片及极板的制备方法

Also Published As

Publication number Publication date
US20210220826A1 (en) 2021-07-22
CN109718878B (zh) 2021-01-26
US11759778B2 (en) 2023-09-19
CN109718878A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2020143372A1 (zh) 极板、微流控芯片及极板的制备方法
TWI794603B (zh) 微流體裝置及其製造方法
Abdelgawad et al. Rapid prototyping in copper substrates for digital microfluidics
WO2017028449A1 (zh) 可拉伸的柔性超疏液薄膜及制备方法与液滴无损转移方法
US11708604B2 (en) Gene sequencing substrate and method for manufacturing the same, gene sequencing device and gene sequencing method
TW201109266A (en) Dielectrophoresis-based microfluidic system
Takahashi et al. Micro groove for trapping of flowing cell
US10137448B2 (en) Microfluidic chip with coating to reduce fluid diffusion and method of manufacturing same
Sun et al. A novel microstructure inspired from Nepenthes alata and lizard skin and its enhanced uni-directional liquid spreading property
US20150086443A1 (en) Microfluidic chips with micro-to-macro seal and a method of manufacturing microfluidic chips with micro-to-macro seal
CN109603939B (zh) 极板及微流控芯片
Zhang et al. Controllable Directional Liquid Transport in Open Channel
WO2021233253A1 (zh) 一种液滴定向运输装置
CN108545692B (zh) 一种通道内壁涂覆聚对二甲苯的微流控芯片制作方法
CN112275332A (zh) 一种自供电数字微流控芯片及液滴操控方法
KR101152642B1 (ko) 폴리머 기반의 미세유체 장치의 제조방법
Hashimoto Oblique micro grooves on bottom wall of flow channel to sort cells
KR101138468B1 (ko) 마이크로플루이딕 채널을 이용한 유체 내 시료 분리방법
Takahashi et al. Sorting of Cells Using Flow Channel with Oblique Micro Grooves
CN115739217B (zh) 一种高保真液态金属三维微电极的制备方法
CN112816535B (zh) 图案化电极及其制备方法和应用
JPH0463973A (ja) マイクロポンプの製造方法
KR20220143395A (ko) 피부 부착형 유체 포집 패치 및 그의 제조방법
KR101383887B1 (ko) 미세입자 포획 및 방출 시스템
KR101484181B1 (ko) 생체 분자 전달 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909035

Country of ref document: EP

Kind code of ref document: A1