WO2020143358A1 - 通信方法、装置、设备、空基平台及存储介质 - Google Patents

通信方法、装置、设备、空基平台及存储介质 Download PDF

Info

Publication number
WO2020143358A1
WO2020143358A1 PCT/CN2019/122140 CN2019122140W WO2020143358A1 WO 2020143358 A1 WO2020143358 A1 WO 2020143358A1 CN 2019122140 W CN2019122140 W CN 2019122140W WO 2020143358 A1 WO2020143358 A1 WO 2020143358A1
Authority
WO
WIPO (PCT)
Prior art keywords
based platform
space
information
area
communication
Prior art date
Application number
PCT/CN2019/122140
Other languages
English (en)
French (fr)
Inventor
乔云飞
杜颖钢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19908366.8A priority Critical patent/EP3902156A4/en
Publication of WO2020143358A1 publication Critical patent/WO2020143358A1/zh
Priority to US17/370,878 priority patent/US20210337368A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • This application relates to the field of communication technology, and in particular, to a communication method, device, equipment, space-based platform, and storage medium.
  • enhanced mobile broadband enhanced mobile broadband
  • URLLC ultrareliable and low latency communications
  • massive machine type communication massive machine type communications
  • mMTC massive machine type communications
  • Embodiments of the present application provide a communication method, device, equipment, space-based platform, and storage medium, which reduce communication costs while ensuring reliable communication between the MTC device in the first area and the communication device in the second area.
  • an embodiment of the present application provides a communication method, including:
  • the MTC device establishes a communication connection with the space-based platform according to a preset time rule, and the MTC device is located in the first area; after establishing the communication connection, the MTC device sends the first information to the space-based platform, so that the space-based platform uses the A message is sent to the communication device located in the second area.
  • the space-based platform establishes a communication connection with the MTC device located in the first area according to the preset time rule. Compared with the existing solution where the space-based platform is always connected to the MTC device, this application can effectively avoid the space-based platform and the MTC The problem of resource waste caused by the invalid communication connection of the device, and improves the flexible layout of the space-based platform.
  • the space-based platform may also receive the second information from the communication device in the second area and send the second information to the MTC device in the first area, thereby establishing the communication between the communication device and the MTC device Two-way communication further provides communication reliability.
  • At least a part of the first area is outside the network coverage of the second area, so that the MTC device in the first area can communicate with the communication device in the second area through the space-based platform.
  • the space-based platform can move between the first area and the second area, so that when the first area and the second area are far away, communication between the two areas can also be achieved, for example, After receiving the first information sent by the MTC device in the first area, the space-based platform moves from the first area to the second area and sends the first information to the communication device in the second area, or the space-based platform is in the second area Receive the second information sent by the communication device, move from the second area to the first area, and send the second information to the MTC device to realize long-distance data transmission.
  • the first information includes information received by the MTC device from at least one other MTC device.
  • the preset time rule includes: any one of a preset time period and a time interval at which the MTC device sends the first information. That is, the space-based platform sends the first information according to a preset time period or a time interval when the MTC device sends the first information. Establishing a communication connection with the MTC device located in the first area not only ensures communication with the MTC device when needed, but also effectively avoids the waste of resources caused by the invalid communication connection between the space-based platform and the MTC device.
  • an embodiment of the present application provides a communication method, including:
  • the space-based platform establishes a communication connection with the MTC device according to a preset time rule, and the MTC device is located in the first area; after establishing the communication connection, the space-based platform receives the first information from the MTC device and transfers the first information Send to the communication device located in the second area.
  • the space-based platform receives the first information from the MTC device and transfers the first information Send to the communication device located in the second area.
  • the space-based platform may also receive second information from the communication device; and send the second information to the MTC device.
  • At least a part of the first area is outside the network coverage of the second area.
  • the space-based platform moves between the first area and the second area.
  • the air-based platform is any one of a drone, a balloon, a glider, an airship, a helicopter, and a satellite.
  • the space-based platform moves to the first area according to a preset time rule.
  • the preset time rule includes any one of a preset time period and a time interval for the MTC device to send the first information.
  • the air-based platform moves under the control of the air-based platform control station, for example, the air-based platform control station sends a flight instruction to the air-based platform, and the air-based platform flies according to the flight instruction.
  • the space-based platform sends the first information to the communication device, which may include: the space-based platform sends the first information to the space-based platform control station, so that the space-based platform The platform control station forwards the first information to the communication device;
  • the above-mentioned space-based platform receiving the second information from the communication device may include: the space-based platform receiving the second information from the space-based platform control station, where the space-based platform control station stores The second information received at the communication device.
  • the space-based platform control station may be a communication device in the second area.
  • the space-based platform control station includes any one of a relay station, a ground station, a flight device, and a communication device.
  • an embodiment of the present application provides a communication device, which is applied to an MTC device, and the device is used to perform the communication method described in the first aspect, and the device includes:
  • the processing unit is used to establish a communication connection with the space-based platform according to a preset time rule, and the MTC device is located in the first area;
  • the sending unit is configured to send the first information to the space-based platform, so that the space-based platform sends the first information to the communication device located in the second area.
  • the above apparatus further includes a receiving unit; the receiving unit is configured to receive second information from the space-based platform, and the second information is received by the space-based platform from the communication device .
  • At least a part of the first area is outside the network coverage of the second area.
  • the space-based platform moves between the first area and the second area.
  • the first information includes information received by the MTC device from at least one other MTC device.
  • the preset time rule includes: any one of a preset time period and a time interval for the MTC device to send the first information.
  • an embodiment of the present application provides a communication device, which is characterized in that it is applied to an air-based platform, and the device is used to perform the communication method described in the second aspect, and the device includes:
  • a processing unit configured to establish a communication connection with the MTC device according to a preset time rule, wherein the MTC device is located in the first area;
  • a receiving unit configured to receive first information from the MTC device
  • the sending unit is configured to send the first information to a communication device, where the communication device is located in the second area.
  • the above-mentioned receiving unit is also used to receive the second information from the communication device; the above-mentioned sending unit is also used to send the second information to the MTC device.
  • At least a portion of the first area is outside the network coverage of the second area.
  • the space-based platform moves between the first area and the second area.
  • the air-based platform is any one of a drone, a balloon, a glider, an airship, a helicopter, and a satellite.
  • the above processing unit is further configured to control the space-based platform to move to the first area according to a preset time rule.
  • the preset time rule includes: any one of a preset time period and a time interval for the MTC device to send the first information.
  • the above processing unit is further configured to receive a movement instruction sent by an air-based platform control station, and control the movement of the space-based platform according to the movement instruction.
  • the sending unit is further configured to send the first information to the space-based platform control station, so that the space-based platform control station forwards the first information to the The communication device; the receiving unit is also used to receive the second information from the space-based platform control station, wherein the space-based platform control station holds the second information received from the communication device .
  • the air-based platform control station is the communication device.
  • the space-based platform control station includes any one of a relay station, a ground station, a flight device, and a communication device.
  • an embodiment of the present application provides a communication device, the communication device includes: a processor and a transceiver, and the processor and the transceiver are used to implement any one of the first aspect or the second aspect Item communication method.
  • an embodiment of the present application provides an apparatus that exists in the form of a chip product.
  • the structure of the apparatus includes a processor and a memory.
  • the memory is used to couple with the processor and store necessary program instructions of the apparatus.
  • the processor is used to execute the program instructions stored in the memory, so that the apparatus performs the function of the MTC device in the above method.
  • an embodiment of the present application provides an MTC device that can implement the functions performed by the MTC device in the foregoing method embodiments.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the structure of the MTC device includes a processor and a transceiver, and the processor is configured to support the MTC device to perform the corresponding function in the foregoing method.
  • the transceiver is used to support communication between the MTC device and other MTC devices or space-based platforms.
  • the MTC device may also include a memory for coupling with the processor, which stores necessary program instructions and data of the MTC device.
  • an embodiment of the present application provides an apparatus that exists in the form of a chip product.
  • the structure of the apparatus includes a processor and a memory, and the memory is used to couple with the processor to store necessary program instructions of the apparatus And data, the processor is used to execute the program instructions stored in the memory, so that the device performs the function of the air-based platform in the above method.
  • an embodiment of the present application provides an air-based platform that can implement the functions performed by the air-based platform in the foregoing method embodiments.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the structure of the space-based platform includes a processor and a communication interface, and the processor is configured to support the space-based platform to perform the corresponding function in the foregoing method.
  • the communication interface is used to support communication between the space-based platform and other network elements.
  • the space-based platform may further include a memory for coupling with the processor, which stores necessary program instructions and data of the space-based platform.
  • the structure of the space-based platform further includes a flight system, and the flight system is used to control the movement of the space-based platform.
  • an embodiment of the present application provides a computer storage medium, where the storage medium includes computer instructions, and when the instructions are executed by a computer, the computer is implemented as described in any one of the first aspect and the second aspect The communication method mentioned.
  • an embodiment of the present application provides a computer program product, where the program product includes a computer program, the computer program is stored in a readable storage medium, and at least one processor of a communication device may be stored from the readable storage The medium reads the computer program, and the at least one processor executes the computer program to cause the communication device to implement the communication method according to any one of the first aspect or the second aspect.
  • an embodiment of the present application provides a communication system.
  • the system includes the above MTC device and a space-based platform.
  • the communication method, device, equipment, space-based platform and storage medium provided in the embodiments of the present application.
  • the space-based platform establishes a communication connection with the MTC device located in the first area according to a preset time rule. After the communication connection is established, the MTC device will The first information is sent to the space-based platform, so that the space-based platform sends the first information to the communication device located in the second area.
  • the space-based platform establishes a communication connection with the MTC device located in the first area according to the preset time rule.
  • this application can effectively avoid the space-based platform and the MTC The problem of resource waste caused by the invalid communication connection of the device, and improves the flexible layout of the space-based platform.
  • FIG. 1 is an application scenario diagram of an embodiment of this application
  • FIG. 3 is a schematic diagram of a scenario according to an embodiment of this application.
  • FIG. 4 is a schematic diagram of another scenario according to an embodiment of the present application.
  • FIG. 5 is an exemplary flowchart of a communication method according to an embodiment of this application.
  • FIG. 6 is a schematic diagram of another scenario according to an embodiment of the present application.
  • FIG. 7 is another exemplary flowchart of a communication method according to an embodiment of this application.
  • FIG. 8 is a schematic diagram of another scenario according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another scenario according to an embodiment of the present application.
  • FIG. 10 is another exemplary flowchart of a communication method according to an embodiment of this application.
  • FIG. 11 is a schematic diagram of another scenario according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another scenario according to an embodiment of the present application.
  • FIG. 13 is another exemplary flowchart of a communication method according to an embodiment of this application.
  • FIG. 14 is a schematic diagram of another scenario according to an embodiment of the present application.
  • 15 is another exemplary flowchart of a communication method according to an embodiment of this application.
  • 16 is a schematic structural diagram of a communication device according to an embodiment of this application.
  • 17 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication device according to an embodiment of this application.
  • 21 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • 22 is a schematic structural diagram of an air-based platform provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a drone involved in an embodiment of the present application.
  • 24 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • FIG. 25 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • mMTC is one of the three typical services supported by 5G.
  • Typical mMTC services are: smart grid distribution automation, smart city, etc.
  • the main features are the large number of networked devices, the small amount of data transmitted, and the data is not sensitive to transmission delay.
  • the MTC device is a device that supports the mMTC service.
  • the data transmission interval of the MTC device is long, for example, it is sent every day, month, or even year, and the data packet is small, mostly between a few bits and a few hundred bits.
  • the MTC device can be a wireless device or a wired device.
  • a wireless device can refer to a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or in-vehicle; it can also be deployed on the water (such as ships) Etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • MTC devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality (Virtual Reality, VR) terminal devices, augmented reality (Augmented Reality, AR) terminal devices, industrial control (industrial control) ), wireless devices in self-driving, self-driving, wireless devices in remote medical, wireless devices in smart grid, wireless devices in transportation safety , Wireless devices in smart cities (smart cities), wireless devices in smart homes (smart homes), etc., are not limited here.
  • VR Virtual Reality
  • AR Augmented Reality
  • industrial control industrial control
  • the space-based platform is an airborne base station that relays radio signals between multiple areas.
  • FIG. 1 is an application scenario diagram of an embodiment of the present application.
  • the first area is the area where the MTC device is located
  • the second area is the cellular network coverage area, where the MTC device in the first area and the second area Of the communication devices cannot communicate directly, or the communication signal quality between the first area and the second area is weak. That is, at least a portion of the first area is outside the network coverage of the second area.
  • the first area may be an area with imperfect network coverage, such as deserts, forests, oceans, and mountains, or a disaster area where the network is damaged.
  • Communication systems in the second area include, but are not limited to, 2G, 3G, 4G, 5G communication systems or next generation communication systems, such as Global Mobile Communication System (Global System for Mobile Communications, GSM), code division multiple access (GSM Code Division Multiple Access (CDMA) system, Time Division Multiple Access (Time Division Multiple Access, TDMA) system, Wideband Code Division Multiple Access (Wideband Code Multiple Division Access Wireless, WCDMA), Frequency Division Multiple Access (Frequency Division Division Multiple Addressing, FDMA) System, orthogonal frequency division multiple access (Orthogonal Frequency-Division Multiple Access, OFDMA) system, single carrier FDMA (SC-FDMA) system, general packet radio service (General Packet Radio Service, GPRS) system, long-term evolution (Long Term Evolution) , LTE) system, new radio (NR) communication system, etc.
  • GSM Global Mobile Communication System
  • TDMA Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • OFDMA Ortho
  • the communication device in the second area includes a terminal device and/or a network device, where the terminal device may be a wireless terminal device or a wired terminal device, and the wireless terminal device may refer to a terminal device with a wireless transceiver function.
  • the terminal device may be a wireless terminal device or a wired terminal device
  • the wireless terminal device may refer to a terminal device with a wireless transceiver function. Deployed on land, including indoor or outdoor, handheld or vehicle-mounted terminals; can also be deployed on the water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons, and satellites, etc.).
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, VR terminal devices, AR terminal devices, wireless devices in industrial control, wireless devices in unmanned driving, wireless terminal devices in telemedicine, and smart grids Wireless terminal devices, wireless terminal devices in transportation security, wireless terminal devices in smart cities, wireless terminal devices in smart homes, etc., are not limited herein.
  • the network device is a device in a wireless network, for example, a radio access network (RAN) node that connects a terminal to the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (eg, home evolved NodeB, or home Node B, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node, which is not limited herein.
  • words such as “first” and “second” are used to distinguish the same or similar items whose functions and functions are basically the same. Those skilled in the art may understand that the words “first” and “second” do not limit the number and the execution order, and the words “first” and “second” are not necessarily different.
  • FIG. 2 is a flowchart of a communication method provided by an embodiment of the present application.
  • the embodiment of the present application sets an air-based platform between a first area and a second area, and the air-based platform performs data between the first area and the second area. Forward.
  • the method of the embodiment of the present application includes:
  • the space-based platform establishes a communication connection with the MTC device located in the first area according to a preset time rule.
  • the first area of the embodiment of the present application may include one or more MTC devices, and the space-based platform may be in communication connection with each MTC device in the first area; or, the space-based platform and some MTC devices in the first area Make a communication connection; or, the space-based platform establishes a communication connection with one MTC device 1 in the first area, and other MTC devices in the first area establish a communication connection with the MTC device 1.
  • a space-based platform may be arranged in the first area, and the space-based platform is in communication connection with one or more MTC devices in the first area according to a preset time rule.
  • a plurality of space-based platforms may also be arranged in the first area, and each space-based platform is responsible for communication connection with an MTC device in a part of the first area.
  • each space-based platform is responsible for communication connection with an MTC device in a part of the first area.
  • three space-based platforms are arranged in the first area, and the first area includes three sub-areas.
  • the three space-based platforms are in communication with MTC devices in the three sub-areas according to preset time rules.
  • the first space-based platform is in communication connection with MTC devices in the first sub-area according to preset actual rules
  • the second space-based platform is in communication connection with MTC devices in the second sub-area according to preset actual rules
  • the third The base platform communicates with the MTC devices in the third sub-area according to preset actual rules.
  • the first area and the second area can perform data forwarding through multiple space-based platforms.
  • multiple space-based platforms For example, for an MTC device, two space-based platforms establish a communication connection with the MTC device In this way, when one of the space-based platforms fails, the other space-based platform can realize data forwarding between the MTC device and the communication device, thereby improving the reliability of data forwarding.
  • the air-based platform may be fixedly set in the air, and does not move between the first area and the second area.
  • the air-based platform is a balloon fixedly set in the air. According to the preset time rule, establish a communication connection with the MTC device in the first area.
  • the air-based platform can move between the first area and the second area.
  • FIG. 4 is an example in which the air-based platform is used as a drone It is shown as an example.
  • the space-based platform of the embodiment of the present application is not limited to drones, and may also be flying equipment such as balloons, gliders, airships, helicopters, and satellites that can move between the first area and the second area.
  • the air-based platform When the air-based platform is a flight device, the air-based platform has a parking base, and when the air-based platform does not forward data between the first area and the second area, the air-based platform can be parked in the parking base.
  • the parking base may be located in the first area or in the second area.
  • the parking base may also be located in an area outside the first area and the second area. There is no restriction on the setting position, which is determined according to actual needs.
  • the air-based platform In actual use, if the parking base is located in the first area, that is, when the air-based platform is parked in the first area, the air-based platform establishes a communication connection with at least one MTC device in the first area according to a preset time rule. If the above parking base is located in an area outside the first area, that is, the air-based platform is parked outside the first area, the air-based platform takes off from the parking base according to the preset time rule, moves to the first area, and the first At least one MTC device in the area establishes a communication connection.
  • the foregoing preset time rule includes: any one of a preset time period, a time interval for the MTC device to send the first information, and a time interval for the communication device to receive the first information.
  • the preset time rule is a preset time period, and it is assumed that the preset time period is 24 hours. In this way, the air-based platform establishes a communication connection with the MTC device every 24 hours.
  • the preset time rule is the time interval for the MTC device to send the first information, and the time interval for the MTC device to send the first information is obtained in advance. It is assumed that the time interval at which the MTC device sends the first information is the same, for example, the first message is sent every 8 hours. In this way, the air-based platform establishes a communication connection with the MTC device every 8 hours. Assuming that the time interval at which the MTC device sends the first information is different, the space-based platform determines the time point at which the MTC device sends each first message according to the time interval at which the MTC device sends the first information. When each time point arrives, The air-based platform establishes a communication connection with the MTC equipment. Here, the space-based platform establishes a communication connection with the MTC device when the time of sending each first message arrives, which can be understood as the space-based platform completes the communication connection with the MTC device when the time of sending each first message arrives .
  • the preset time rule is the time interval for the communication device to receive the first information. It is assumed that the communication device receives the same time interval for receiving the first information, for example, the first information is received every 8 hours. Establish a communication connection with MTC equipment within 8 hours. It is assumed that the time interval at which the communication device receives the first information is different, so that the space-based platform determines the time point at which the communication device receives each first information according to the time interval at which the communication device receives the first information, and when each time point arrives, The space-based platform establishes a communication connection with the MTC device, and receives the first information from the MTC device and sends it to the communication device.
  • the time for establishing a communication connection between the space-based platform and the MTC device needs to be based on the time interval for the communication device to receive the first information, the time it takes for the space-based platform to connect with the MTC device, and the space-based platform to send the first information to the The time spent by the communication devices in the second area is determined.
  • the space-based platform in S101 mentioned above includes at least two ways to establish a communication connection with the MTC device:
  • the first is that the space-based platform itself establishes a communication connection with the MTC device according to a preset time rule, for example, the space-based platform itself saves the preset time rule, and the processor of the space-based platform controls the space-based platform according to the preset time rule
  • the communication module in the platform establishes a communication connection with the MTC device.
  • the second is that the air-based platform is controlled by the air-based platform control station, and the air-based platform control station controls the air-based platform to establish a communication connection with the MTC device in the first area according to the preset time rule.
  • the space-based platform establishes a communication connection with the MTC device according to the preset time rule, that is, when the MTC device and the communication device need to communicate, the connection between the space-based platform and the MTC device is established, compared with the existing space-based platform.
  • the space-based platform can be used for other purposes when the MTC device and the communication device do not need to communicate, for example, can be used as a space-based platform in other areas.
  • the MTC device sends the first information to the space-based platform.
  • the space-based platform sends the first information to the communication device located in the second area.
  • the MTV device can generate the first information that needs to be sent to the communication device to the space-based platform.
  • the space-based platform sends the first information to the communication device in the second area.
  • the communication device in which the space-based platform in S103 sends the first information to the second area may be that the space-based platform directly sends the first information to the communication device, for example, the space-based platform moves from the first area to the second Area, sending the first information to the communication device in the second area.
  • the communication device in which the space-based platform in S103 sends the first information to the second area may be that the space-based platform forwards the first information to the communication device in the second area through other flight equipment.
  • the space-based platform sends the first information to other flying equipment.
  • the other flying equipment moves to the second area, the first information is sent to the communication equipment located in the second area.
  • the space-based platform can send the first information to the Communication equipment in the second area.
  • the space-based platform After the space-based platform sends the first information to the communication device in the second area, if the communication device has the second information sent to the MTC device, the method in the embodiment of the present application further includes:
  • the communication device sends the second information to the space-based platform
  • the space-based platform sends the second information to the MTC device.
  • the space-based platform sends the first information to the communication device, at this time, if the communication device detects that the second information needs to be sent to the MTC device, the communication device may use the second information
  • the information is sent to the space-based platform, so that the space-based platform sends the second information to the MTC device in the first area.
  • the sending process of the second information can be understood as the inverse process of the sending process of the first information, and specifically refer to the sending process of the first information above.
  • the space-based platform sends the first information to the communication device, when the communication device does not have the second information to send to the MTC device at this time. After a period of time, the communication device needs to send the second information. At this time, if the communication device detects that the space-based platform and the communication device are in a communication connection state, the communication device sends the second information to the space-based platform, so that the space-based The platform forwards the second information to the MTC device.
  • the communication device If the communication device detects that the communication connection between the space-based platform and the communication device is in a disconnected state, the communication device first establishes a communication connection with the space-based platform, and after establishing the communication connection, sends the second information to the space-based platform, so that The space-based platform forwards the second information to the MTC device.
  • the space-based platform establishes a communication connection with the MTC device located in the first area according to a preset time rule, and after establishing the communication connection, the MTC device sends the first information to the space-based platform, In order for the space-based platform to send the first information to the communication device located in the second area. At the same time, the space-based platform receives the second information from the communication device and sends the second information to the MTC device. In this application, the space-based platform establishes a communication connection with the MTC device located in the first area according to the preset time rule. Compared with the existing solution where the space-based platform is always connected to the MTC device, this application can effectively avoid the space-based platform and the MTC The problem of resource waste caused by the invalid communication connection of the device, and improves the flexible layout of the space-based platform.
  • Example 1 As shown in FIG. 4, the air-based platform shown in FIG. 4 is an unmanned aerial vehicle.
  • the air-based platform may also be flying equipment such as balloons, gliders, airships, and helicopters.
  • the communication process of this embodiment is:
  • the air-based platform moves from the parking base to the first area according to a preset rule, and establishes a communication connection with the MTC device in the first area.
  • the above S201 hollow base platform does not need to move, and can establish a communication connection with the MTC device in the first area according to a preset rule.
  • the MTC device sends the first information to the space-based platform.
  • the air-based platform moves from the first area to the second area, and sends the first information to the communication device.
  • the communication device sends the second information to the space-based platform.
  • the space-based platform moves from the second area to the first area, and sends the second information to the MTC device.
  • the air-based platform returns to the parking base.
  • the space-based platform after sending the second information to the MTC device, the space-based platform returns to the parking base station, and repeats the above steps according to the preset time rule.
  • the air-based platform is flying equipment such as drones, balloons, gliders, airships, helicopters, etc., which can move between the first area and the second area to send the first information to the communication device, and Two messages are sent to the MTC device.
  • flying equipment such as drones, balloons, gliders, airships, helicopters, etc.
  • Example 2 As shown in FIG. 6, the space-based platform shown in FIG. 6 is a satellite. As shown in FIG. 7, the communication process in this embodiment may include:
  • the MTC device determines a target satellite from multiple satellites within the satellite detection range of the MTC device according to a preset rule, and establishes a communication connection with the target satellite.
  • the MTC device can detect the satellite passing through its top area, and this area is recorded as the satellite detection range of the MTC device.
  • the MTC device detects the ephemeris information of multiple satellites within its satellite detection range according to preset rules, and determines a target satellite from the multiple satellites according to the ephemeris information.
  • the target satellite is a satellite that satisfies a preset rule, for example, the preset rule is the time interval at which the MTC device sends the first information, and the MTC device can determine according to the ephemeris information of the target satellite, the target satellite is in the first area and the second It moves between areas, and the time interval for the target satellite to reach the first area coincides with the time interval for the MTC device to send the first information.
  • the preset rule is the time interval at which the MTC device sends the first information
  • the MTC device can determine according to the ephemeris information of the target satellite, the target satellite is in the first area and the second It moves between areas, and the time interval for the target satellite to reach the first area coincides with the time interval for the MTC device to send the first information.
  • the MTC device establishes a communication connection with the target satellite.
  • the MTC device sends the first information to the target satellite.
  • the target satellite moves from the first area to the second area, and sends the first information to the communication device.
  • the communication device sends the second information to the target satellite.
  • the target satellite moves from the second area to the first area, and sends the second information to the MTC device.
  • the space-based platform is a satellite
  • the satellite may be a satellite in the current space.
  • the satellite moves between the first area and the second area to send the first information to the communication device and the second information. Send to MTC device.
  • Example 3 as shown in FIG. 8, the air-based platform shown in FIG. 8 is an unmanned aerial vehicle, optionally, the air-based platform may also be flying equipment such as balloons, gliders, airships, helicopters, etc.
  • MTC in this embodiment
  • the first information sent by the device includes information of at least one other MTC device.
  • the MTC device In order to facilitate the area to record the MTC device that establishes a communication connection with the space-based platform as the first MTC device, the first area except the first MTC device The other MTC devices are recorded as the second MTC device.
  • the communication process of this embodiment is:
  • the first MTC device receives first information from at least one second MTC device.
  • the first information sent by the first MTC device includes not only information that the first MTC device needs to send to the communication device, but also information that at least one second MTC device needs to send to the communication device.
  • the air-based platform establishes a communication connection with the first MTC device in the first area according to a preset rule.
  • the MTC device sends the first information to the space-based platform.
  • the space-based platform sends the first information to the communication device.
  • the communication device sends the second information to the space-based platform.
  • the space-based platform sends the second information to the MTC device.
  • the above S304 may be as shown in FIG. 4, that is, the space-based platform moves from the first area to the second area to send the first information to the communication device.
  • the above S305 is that the communication device sends the second information to the space-based platform, the space-based platform moves from the second area to the first area, and sends the second information to the first MTC device.
  • the first MTC device After receiving the second information, the first MTC device parses the second information, and if it is determined that the second information is the information sent to the second MTV device, the first MTC device sends the second information to the corresponding second The MTC device realizes the distribution of the second information.
  • the above S304 may be as shown in FIG. 9, after receiving the first information, the space-based platform forwards the first information to other flight equipment, for example, forwards the first information to other Man-machine, balloon, glider, airship, helicopter, satellite, etc.
  • the above S305 may be that the communication device sends the second information to the other flying devices, and the flying device sends the second information to the space-based platform.
  • the space-based platform then sends the second information to the first MTC device, so that the first MTC device distributes the second information to the corresponding second MTC device.
  • the first MTC device collects the first information of the second MTC device and sends it to the space-based platform, so that the space-based platform only communicates with the first MTC device without connecting to the second MTC
  • the communication connection of the equipment reduces the number of communication connections between the air-based platform and the MTC equipment, thereby improving the efficiency of the communication connection between the air-based platform and the MTC equipment.
  • Example 4 As shown in FIG. 11, the air-based platform shown in FIG. 11 is a drone.
  • the air-based platform may also be flying equipment such as balloons, gliders, airships, helicopters, etc.
  • the air-based platform is in the air Move under the control of the base platform control station.
  • the communication process in this embodiment may include:
  • the air-based platform control station controls the air-based platform to move from the parking base to the first area according to a preset rule, and establishes a communication connection with the MTC device in the first area.
  • the MTC device sends the first information to the space-based platform.
  • the space-based platform sends the first information to the space-based platform control station.
  • the space-based platform control station forwards the first information to the communication device.
  • the communication device sends the second information to the space-based platform control station.
  • the air-based platform control station sends the second information to the air-based platform.
  • the space-based platform sends the second information to the MTC device.
  • the air-based platform moves to the parking base.
  • the space-based platform control station is a non-removable device such as a relay station, ground station, communication device, etc.
  • the space-based platform control station shown in FIG. 11 is located in the first area, optional .
  • the space-based platform control station may also be located in the second area, or an area outside the first area and the second area.
  • the specific installation location of the space-based platform control station in the embodiment of the present application is not limited, depending on actual needs determine.
  • the space-based platform after receiving the first information, sends the first information to the space-based platform control station, and after receiving the first information, the space-based platform control station uses the other flight equipment to send the first information
  • the information is forwarded to the communication equipment.
  • the other flying equipment may be flying equipment such as drones, balloons, gliders, airships, helicopters, satellites and so on.
  • other flight equipment receives the second information from the communication equipment and sends the second information to the air-based platform control station.
  • the space-based platform control station then sends the second information to the space-based platform, so that the space-based platform sends the second information to the MTC device.
  • the space-based platform control station determines the satellite moving between the first area and the second area according to the pre-stored ephemeris. Then, when the satellite arrives in the first area, the cached first information is sent to the satellite, so that the satellite sends the first information to the communication device in the second area.
  • the above-mentioned air-based platform control station may be installed on land or on the water surface, for example, on a water surface platform, ship or buoy.
  • the air-based platform control station is a movable flying device.
  • the air-based platform control station moves from the first area after receiving the first information from the air-based platform To the second area and send the first information to the communication device.
  • the space-based platform control station moves from the second area to the first area, and sends the second information to the space-based platform, so that the space-based platform uses the second information Send to MTC device.
  • the movement of the space-based platform is controlled by the space-based platform control station.
  • the space-based platform can be used as a relay to serve as a bridge between the space-based platform and the communication device, thereby enriching the first area The way to communicate with the second area.
  • Example 5 As shown in FIG. 14, the air-based platform shown in FIG. 14 is an unmanned aerial vehicle.
  • the air-based platform may also be flying equipment such as balloons, gliders, airships, and helicopters.
  • the air-based platform control station is Communication equipment in the second area.
  • the communication process in this embodiment may include:
  • the communication device control station controls the air-based platform to move from the parking base to the first area according to a preset rule, and establishes a communication connection with the MTC device in the first area.
  • the MTC device sends the first information to the space-based platform.
  • the communication device controls the space-based platform to move from the first area to the second area, so that when the space-based platform moves to the second area, the first information is sent to the communication device.
  • the communication device sends the second information to the space-based platform.
  • the communication device controls the space-based platform to move from the second area to the first area, so that when the space-based platform moves to the first area, the second information is sent to the MTC device.
  • the communication equipment controls the movement of the air-based platform to the parking base.
  • execution process of the above S601 to S606 can refer to the specific description of the above S101 to S105, which will not be repeated here.
  • the communication device is used as the space-based platform control station, and the communication device controls the space-based platform to move between the first area and the second area.
  • the communication device may be an MTC device or a component of an MTC device (for example, an integrated circuit, a chip, etc.). As shown in FIG. 16, the communication device 100 may include a processing unit 110 and a sending unit 120.
  • the processing unit 110 is configured to establish a communication connection with the space-based platform according to a preset time rule, wherein the MTC device is located in the first area;
  • the sending unit 120 is configured to send the first information to the space-based platform, so that the space-based platform sends the first information to the communication device located in the second area.
  • the communication device in the embodiments of the present application may be used to execute the technical solution of the MTC device in the above method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 17 is a schematic structural diagram of another communication device provided by an embodiment of the present application. Based on the foregoing embodiment, as shown in FIG. 17, the communication device 100 may further include: a receiving unit 130.
  • the receiving unit 130 is configured to receive second information from the space-based platform, wherein the second information is received by the space-based platform from the communication device.
  • At least a part of the first area is located outside the network coverage of the second area.
  • the space-based platform moves between the first area and the second area.
  • the first information includes information received by the MTC device from at least one other MTC device.
  • the preset time rule includes: any one of a preset time period and a time interval for the MTC device to send the first information.
  • the communication device in the embodiments of the present application may be used to execute the technical solution of the MTC device in the above method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the communication device may be an air-based platform, or a component of an air-based platform (for example, an integrated circuit, a chip, etc.).
  • the communication device 200 may include: a processing unit 210, a receiving unit 220, and a transmitter Unit 230.
  • the processing unit 210 is configured to establish a communication connection with the MTC device according to a preset time rule, wherein the MTC device is located in the first area;
  • the receiving unit 220 is configured to receive the first information from the MTC device
  • the sending unit 230 is configured to send the first information to a communication device, where the communication device is located in the second area.
  • the communication device in the embodiments of the present application may be used to execute the technical solutions of the air-based platform in the foregoing method embodiments, and the implementation principles and technical effects are similar, and will not be repeated here.
  • the receiving unit 220 is further configured to receive second information from the communication device
  • the sending unit 230 is also used to send the second information to the MTC device.
  • At least a portion of the first area is outside the network coverage of the second area.
  • the space-based platform moves between the first area and the second area.
  • the air-based platform is any one of a drone, a balloon, a glider, an airship, a helicopter, and a satellite.
  • the communication device in the embodiments of the present application may be used to execute the technical solutions of the air-based platform in the foregoing method embodiments, and the implementation principles and technical effects are similar, and will not be repeated here.
  • the communication device 500 described in this embodiment may be the MTC device (or a component that can be used for an MTC device) or an air-based platform (or a component that can be used for an air-based platform) mentioned in the foregoing method embodiments. .
  • the communication device may be used to implement the method corresponding to the MTC device or the space-based platform described in the above method embodiments. For details, refer to the description in the above method embodiments.
  • the communication device 500 may include one or more processors 501.
  • the processor 501 may also be referred to as a processing unit, and may implement certain control or processing functions.
  • the processor 501 may be a general-purpose processor or a dedicated processor. For example, it may be a baseband processor or a central processor.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices, execute software programs, and process data of software programs.
  • the processor 501 may also store instructions 503 or data (for example, intermediate data).
  • the instruction 503 may be executed by the processor, so that the communication device 500 executes the method corresponding to the MTC device or the air-based platform described in the above method embodiments.
  • the communication device 500 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the communication device 500 may include one or more memories 502, on which instructions 504 may be stored, and the instructions may be executed on the processor, so that the communication device 500 performs the above method implementation The method described in the example.
  • the processor and memory can be set separately or integrated together.
  • the memory may also be located outside the communication device.
  • the communication device 500 may further include a transceiver 505 and/or an antenna 506.
  • the processor 501 may be referred to as a processing unit, and controls a communication device (such as an MTC device or an air-based platform).
  • the transceiver 505 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device.
  • the processor 501 may establish a communication connection with the space-based platform according to a preset time rule; establish a communication connection After that, the transceiver 505 sends the first information to the space-based platform, so that the space-based platform sends the first information to the communication device located in the second area.
  • the processor 501 may establish a communication connection with the MTC device according to a preset time rule, wherein the The MTC device is located in the first area; after establishing the communication connection, the transceiver 505 receives the first information from the MTC device and sends the first information to the communication device, wherein the communication device is located in the second area .
  • the processor 501 and the transceiver 505 described in this application may be implemented in integrated circuits (IC), analog ICs, radio frequency integrated circuits (radio frequency integrated circuits (RFIC), mixed-signal ICs, application-specific integrated circuits) circuit, ASIC), printed circuit board (PCB), electronic equipment, etc.
  • IC integrated circuits
  • analog ICs analog ICs
  • radio frequency integrated circuits radio frequency integrated circuits (RFIC), mixed-signal ICs, application-specific integrated circuits) circuit
  • ASIC application-specific integrated circuits
  • PCB printed circuit board
  • the processor and transceiver can also be manufactured using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (nMetal-oxide-semiconductor, NMOS), P-type Metal oxide semiconductors (positive channels, metal oxides, semiconductors (PMOS), bipolar junction transistors (Bipolar Junction Transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor nMetal-oxide-semiconductor
  • PMOS metal oxides, semiconductors
  • BJT bipolar junction transistors
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device 500 is described by taking the MTC device or the space-based platform as an example, the scope of the communication device described in this application is not limited to the above-mentioned MTC device or the above-mentioned space-based platform, and The structure may not be limited by FIG. 19.
  • the communication device may be used to execute the technical solutions of the MTC device (or space-based platform) in the above method embodiments, and the implementation principles and technical effects are similar, and are not repeated here.
  • FIG. 20 is a schematic structural diagram of an MTC device provided by an embodiment of the present application.
  • the MTC device 600 can implement the functions performed by the MTC device in the foregoing method embodiments.
  • the functions can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the structure of the MTC device 600 includes a processor 601, a transceiver 602, and a memory 603, and the processor 601 is configured to support the MTC device 600 to perform the corresponding function in the foregoing method.
  • the transceiver 602 is used to support communication between the MTC device 600 and other MTC devices or network devices.
  • the MTC device 600 may further include a memory 603 for coupling with the processor 601, which stores necessary program instructions and data of the MTC device 600.
  • the processor 601 and the memory 603 may be set separately, or may be integrated together.
  • the memory 603 may also be located outside the device 600.
  • the processor 601 can read the program instructions and data in the memory 603, interpret and execute the program instructions, and process the data of the program instructions.
  • the processor 601 performs baseband processing on the data to be sent, and outputs a baseband signal to the transceiver 602, and the transceiver 602 performs radio frequency processing on the baseband signal and then transmits the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the transceiver 602 receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 601, and the processor 601 converts the baseband signal into data and performs the data deal with.
  • FIG. 20 only shows one memory 603 and one processor 601.
  • the memory 603 may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this.
  • the MTC device in the embodiments of the present application may be used to execute the technical solution of the MTC device in the above method embodiments, and its implementation principles and technical effects are similar, and are not described here again.
  • FIG. 21 is a schematic structural diagram of an apparatus provided by an embodiment of the present application.
  • the device 700 exists in the form of a chip product.
  • the structure of the device includes a processor 701 and a memory 702.
  • the memory 702 is used to couple with the processor 701.
  • the memory 702 stores necessary program instructions and data of the device.
  • the device 701 is used to execute the program instructions stored in the memory 702, so that the apparatus executes the functions of the terminal device in the foregoing method embodiment.
  • the apparatus in the embodiments of the present application may be used to execute the technical solutions of the terminal devices in the foregoing method embodiments, and the implementation principles and technical effects are similar, and will not be repeated here.
  • the processor 701 and the memory 702 may be set separately or integrated together.
  • the memory 702 may also be located outside the device 701.
  • the space-based platform 800 can implement the functions performed by the space-based platform in the foregoing method embodiments.
  • the functions can be implemented by hardware, or can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above functions.
  • the structure of the space-based platform 800 includes a processor 801 and a communication interface 802, and the processor 801 is configured to support the space-based platform 800 to perform the corresponding function in the foregoing method.
  • the communication interface 802 is used to support communication between the space-based platform 800 and other network elements.
  • the space-based platform 800 may further include a memory 803 for coupling with the processor 801, which stores necessary program instructions and data of the space-based platform 800.
  • FIG. 22 only shows one memory 803 and one processor 801.
  • the memory 803 may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this.
  • the processor and memory can be set separately or integrated together.
  • the space-based platform 800 may further include a flight system 804 for controlling the movement of the space-based platform 800 according to flight instructions sent by the processor 801.
  • the space-based platform 800 is a drone, for example, a rotary-wing drone.
  • the drone 400 may include a power system, a flight control system, and a rack.
  • the power system and The flight control system can be understood as the aforementioned flight system 804.
  • the drone 400 can communicate with the control terminal wirelessly, the control terminal can display the flight information of the drone, etc.
  • the control terminal can communicate with the drone 400 wirelessly for remote manipulation of the drone 400, Specifically, the control terminal communicates with the drone 400 through the communication interface of the drone 400.
  • the control terminal may be an air-based platform control station.
  • the rack may include a fuselage 410 and a tripod 420 (also called landing gear).
  • the fuselage 410 may include a center frame 411 and one or more arms 412 connected to the center frame 411, the one or more arms 412 extending radially from the center frame.
  • the tripod 420 is connected to the fuselage 410 to support the drone 400 when it lands.
  • the power system may include one or more electronic governors (referred to simply as electronic governors), one or more propellers 440, and one or more motors 450 corresponding to the one or more propellers 440, wherein the motor 450 is connected to the electronic governor
  • the electronic governor is used to receive the driving signal generated by the flight control system and provide the driving current to the motor according to the driving signal,
  • the rotation speed of the motor 450 is controlled.
  • the motor 450 is used to drive the propeller 440 to rotate, thereby providing power for the flight of the drone 400, which enables the drone 400 to achieve one or more degrees of freedom of movement.
  • the drone 400 can rotate about one or more rotation axes.
  • the rotation axis may include a roll axis, a yaw axis, and a pitch axis.
  • the motor 450 may be a DC motor or an AC motor.
  • the motor 450 may be a brushless motor or a brush motor.
  • the flight control system may include a flight controller and a sensing system.
  • the sensor system is used to measure the attitude information of the UAV, that is, the position information and status information of the UAV 400 in space, for example, three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system may include, for example, at least one of sensors such as a gyroscope, an ultrasonic sensor, an electronic compass, an inertial measurement unit (Inertial Measurement Unit (IMU), a visual sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be a global positioning system (Global Positioning System, GPS).
  • the flight controller is used to control the flight of the drone 400.
  • the flight of the drone 400 can be controlled according to the attitude information measured by the sensor system. It should be understood that the flight controller may control the drone 400 according to pre-programmed program instructions, or may control the drone 400 by responding to one or more control instructions from the control terminal.
  • the space-based platform of the embodiment of the present application may be used to execute the technical solutions of the space-based platform in the above method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the device 900 exists in the form of a chip product.
  • the structure of the device includes a processor 901 and a memory 902.
  • the memory 902 is used to couple with the processor 901.
  • the memory 902 stores necessary program instructions and data of the device.
  • the device 901 is used to execute the program instructions stored in the memory 902, so that the device performs the function of the air-based platform in the above method embodiment.
  • the device in the embodiments of the present application may be used to execute the technical solutions of the hollow-based platform in the above method embodiments, and the implementation principles and technical effects are similar, and are not repeated here.
  • the processor 901 and the memory 902 may be set separately, or may be integrated together. Further, the memory 902 may also be outside the device 900.
  • FIG. 25 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system 300 of the embodiment of the present application includes the MTC device 310 and the space-based platform 320 described above.
  • the MTC device 310 can be used to implement the functions of the MTC device in the above method embodiments, and the space-based platform 320 can be used to implement the functions of the air-based platform side in the above method embodiments.
  • the implementation principles and technical effects are similar, here No longer.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium It includes several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or processor to execute all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (eg, floppy disk, hard disk, magnetic tape), optical medium (eg, DVD), or semiconductor medium (eg, Solid State Disk (SSD)), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法、装置、设备、空基平台及存储介质,该方法包括:空基平台根据预设时间规则,与位于第一区域的MTC设备建立通讯连接,在建立通讯连接后,MTC设备将第一信息发送给空基平台,以使空基平台将第一信息发送给位于第二区域的通信设备。本申请,空基平台根据预设时间规则与位于第一区域的MTC设备建立通讯连接,相比于已有的空基平台始终与MTC设备连接的方案,本申请可以有效避免空基平台与MTC设备的无效通信连接所造成的资源浪费的问题,并且提高了空基平台布置的灵活性。

Description

通信方法、装置、设备、空基平台及存储介质
本申请要求于2019年01年11日提交中国专利局、申请号为201910027875.3、申请名称为“通信方法、装置、设备、空基平台及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法、装置、设备、空基平台及存储介质。
背景技术
为了应对未来爆炸性的移动数据流量增长、海量移动通信的设备连接、不断涌现的各类新业务和应用场景,新的移动通信系统应运而生。未来的移动通信系统定义了三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。其中,mMTC其特点是支持大量机器类型的通信,在mMTC场景下,无线连接的个数最高可能达到数百万,而无线节点每次发送的信息量一般比较小,节点的功耗比较低,并且要能支持很大的通信范围,其应用覆盖智能城市、公共事业、后勤保障等场景。
但是,在某些特定的场景下,例如沙漠、森林、海洋、山区等偏远地区,为了保证部署的MTC设备接入网络,需要部署大量接入点、铺设大量光纤网络等,其建设成本以及后期的维护成本高昂。
发明内容
本申请实施例提供一种通信方法、装置、设备、空基平台及存储介质,在保证第一区域的MTC设备与第二区域的通信设备的可靠通信的前提下,降低了通信成本。
第一方面,本申请实施例提供了一种通信方法,包括:
MTC设备根据预设时间规则,与空基平台建立通讯连接,该MTC设备位于第一区域;在建立通讯连接后,MTC设备将第一信息发送给空基平台,以使空基平台将该第一信息发送给位于第二区域的通信设备。本申请,空基平台根据预设时间规则与位于第一区域的MTC设备建立通讯连接,相比于已有的空基平台始终与MTC设备连接的方案,本申请可以有效避免空基平台与MTC设备的无效通信连接所造成的资源浪费的问题,并且提高了空基平台的灵活布置。
在一种实现方式下,空基平台还可以从第二区域的通信设备处接到第二信息,并将该第二信息发送给第一区域的MTC设备,进而建立起通信设备与MTC设备的双向通信,进一步提供了通信的可靠性。
可选的,上述第一区域的至少一部分位于第二区域的网络覆盖范围之外,这样第一区域的MTC设备可以通过空基平台与位于第二区域的通信设备通信。
在一种实现方式下,该空基平台可以在第一区域与第二区域之间移动,这样当第一区域与第二区域较远时,也可以实现两个区域之间的通信,例如,空基平台在第一区域接收MTC设备发送的第一信息后,从第一区域移动至第二区域,将该第一信息发送给第二区域的通信设备,或者,空基平台在第二区域接收通信设备发送的第二信息,并从第二区域移动至第一区域,将该第二信息发送给MTC设备,实现远距离的数据传输。
可选的,第一信息包括MTC设备从其他至少一个MTC设备处接收到的信息。
可选的,预设时间规则包括:预设时间周期、MTC设备发送第一信息的时间间隔中的任意一项。即空基平台根据预设时间周期或MTC设备发送第一信息的时间间隔。与位于第一区域的MTC设备建立通讯连接,不仅保证在需要时与MTC设备通讯连接,而且可以有效避免空基平台与MTC设备的无效通信连接所造成的资源浪费的问题。
第二方面,本申请实施例提供一种通信方法,其包括:
空基平台根据预设时间规则,与所述MTC设备建立通讯连接,该MTC设备位于第一区域;在建立通讯连接后,空基平台从MTC设备处接收第一信息,并将该第一信息发送给位于第二区域的通信设备。这样,保证MTC设备与通信设备的可靠通信的同时,可以有效避免空基平台与MTC设备的无效通信连接所造成的资源浪费的问题,并且提高了空基平台的灵活布置。
在一种实现方式下,空基平台还可以从通信设备处接收第二信息;并将所述第二信息发送给所述MTC设备。
可选的,上述第一区域的至少一部分位于所述第二区域的网络覆盖范围之外。
可选的,所述空基平台在所述第一区域与所述第二区域之间移动。
可选的,所述空基平台为无人机、气球、滑翔机、飞艇、直升机、卫星中的任一种。
在一种实现方式下,若空基平台位于第一区域外,则空基平台根据预设时间规则移动至所述第一区域。
可选的,所述预设时间规则包括:预设时间周期、所述MTC设备发送第一信息的时间间隔中的任一项。
可选的,所述空基平台在空基平台控制站的控制下移动,例如,空基平台控制站向空基平台发送飞行指令,空基平台根据该飞行指令飞行。
在一种实现方式下,上述空基平台将所述第一信息发送给通信设备,可以包括:空基平台将所述第一信息发送给所述空基平台控制站,以使所述空基平台控制站将所述第一信息转发给所述通信设备;
同理,上述空基平台从所述通信设备处接收第二信息,可以包括;空基平台从所述空基平台控制站接收所述第二信息,其中所述空基平台控制站保存有从所述通信设备处接收到的所述第二信息。
可选的,所述空基平台控制站可以为第二区域中的通信设备。
可选的,所述空基平台控制站包括中继站、地面站、飞行设备和通信设备中的任意一种。
第三方面,本申请实施例提供一种通信装置,应用于MTC设备,该装置用于执行上述第一方面所述的通信方法,该装置包括:
处理单元,用于根据预设时间规则,与空基平台建立通讯连接,该MTC设备位于第一区域;
发送单元,用于将第一信息发送给所述空基平台,以使所述空基平台将所述第一信息发送给位于第二区域的通信设备。
在一种实现方式下,上述装置还包括接收单元;该接收单元,用于从所述空基平台处接收第二信息,该第二信息为所述空基平台从所述通信设备处接收的。
可选的,所述第一区域的至少一部分位于所述第二区域的网络覆盖范围之外。
在一种实现方式下,所述空基平台在第一区域与第二区域之间移动。
可选的,所述第一信息包括所述MTC设备从其他至少一个MTC设备处接收到的信息。
可选的,所述预设时间规则包括:预设时间周期、所述MTC设备发送第一信息的时间间隔中的任意一项。
第四方面,本申请实施例提供一种通信装置,其特征在于,应用于空基平台,该装置用于执行上述第二方面所述的通信方法,该装置包括:
处理单元,用于根据预设时间规则,与所述MTC设备建立通讯连接,其中所述MTC设备位于第一区域;
接收单元,用于从所述MTC设备处接收第一信息;
发送单元,用于将所述第一信息发送给通信设备,其中,所述通信设备位于第二区域。
在一种实现方式下,上述接收单元,还用于从所述通信设备处接收第二信息;上述发送单元,还用于将所述第二信息发送给所述MTC设备。
可选的,所述第一区域的至少一部分位于所述第二区域的网络覆盖范围之外。
可选的,所述空基平台在所述第一区域与所述第二区域之间移动。
可选的,所述空基平台为无人机、气球、滑翔机、飞艇、直升机、卫星中的任一种。
在一种实现方式下,上述处理单元,还用于根据预设时间规则控制所述空基平台移动至所述第一区域。
可选的,所述预设时间规则包括:预设时间周期、所述MTC设备发送第一信息的时间间隔中的任一项。
在一种实现方式下,上述处理单元,还用于接收空基平台控制站发送的移动指令,并根据所述移动指令,控制所述空基平台移动。
在一种实现方式下,所述发送单元,还用于将所述第一信息发送给所述空基平台控制站,以使所述空基平台控制站将所述第一信息转发给所述通信设备;所述接收单元,还用于从所述空基平台控制站接收所述第二信息,其中所述空基平台控制站保存有从所述通信设备处接收到的所述第二信息。
可选的,所述空基平台控制站为所述通信设备。
可选的,所述空基平台控制站包括中继站、地面站、飞行设备和通信设备中的任意一种。
第五方面,本申请实施例提供了一种通信设备,该通信设备包括:处理器和收发器,所述处理器和所述收发器用于执行实现如第一方面或如第二方面中任一项所述的通信方法。
第六方面,本申请实施例提供了一种装置,该装置以芯片的产品形态存在,该装置的结构中包括处理器和存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述方法中MTC设备的功能。
第七方面,本申请实施例提供了一种MTC设备,该MTC设备可以实现上述方法实施例中MTC设备所执行的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块或单元。
在一种可能的设计中,该MTC设备的结构中包括处理器和收发器,该处理器被配置为支持该MTC设备执行上述方法中相应的功能。该收发器用于支持该MTC设备与其他MTC设备或空基平台之间的通信。该MTC设备还可以包括存储器,该存储器用于与处理器耦合,其保存该MTC设备必要的程序指令和数据。
第八方面,本申请实施例提供了一种装置,该装置以芯片的产品形态存在,该装置的结构中包括处理器和存储器,该存储器用于与处理器耦合,保存该装置必要的程序指令和数据,该处理器用于执行存储器中存储的程序指令,使得该装置执行上述方法中空基平台的功能。
第九方面,本申请实施例提供了一种空基平台,该空基平台可以实现上述方法实施例中空基平台所执行的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块或单元。
在一种可能的设计中,该空基平台的结构中包括处理器和通信接口,该处理器被配置为支持该空基平台执行上述方法中相应的功能。该通信接口用于支持该空基平台与其他网元之间的通信。该空基平台还可以包括存储器,该存储器用于与处理器耦合,其保存该空基平台必要的程序指令和数据。
在一种可能的实现方式中,该空基平台的结构中还包括飞行系统,该飞行系统用于控制空基平台移动。
第十方面,本申请实施例提供了一种计算机存储介质,所述存储介质包括计算机指令,当所述指令被计算机执行时,使得所述计算机实现如第一方面和第二方面任一项所述的通信方法。
第十一方面,本申请实施例提供一种计算机程序产品,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,通信装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得通信装置实施第一方面或第二方面任一所述的通信方法。
第十二方面,本申请实施例提供了一种通信系统,所述系统包括上述MTC设备和空基平台。
本申请实施例提供的通信方法、装置、设备、空基平台及存储介质,空基平台根据预设时间规则,与位于第一区域的MTC设备建立通讯连接,在建立通讯连接后,MTC设备将第一信息发送给空基平台,以使空基平台将第一信息发送给位于第二区域的通信设备。 本申请,空基平台根据预设时间规则与位于第一区域的MTC设备建立通讯连接,相比于已有的空基平台始终与MTC设备连接的方案,本申请可以有效避免空基平台与MTC设备的无效通信连接所造成的资源浪费的问题,并且提高了空基平台的灵活布置。
附图说明
图1为本申请实施例的应用场景图;
图2为本申请实施例提供的通信方法的流程图;
图3为本申请实施例的一种场景示意图;
图4为本申请实施例的另一种场景示意图;
图5为本申请实施例涉及的通信方法的一种示例流程图;
图6为本申请实施例的另一种场景示意图;
图7为本申请实施例涉及的通信方法的另一种示例流程图;
图8为本申请实施例的另一种场景示意图;
图9为本申请实施例的另一种场景示意图;
图10为本申请实施例涉及的通信方法的另一种示例流程图;
图11为本申请实施例的另一种场景示意图;
图12为本申请实施例的另一种场景示意图;
图13为本申请实施例涉及的通信方法的另一种示例流程图;
图14为本申请实施例的另一种场景示意图;
图15为本申请实施例涉及的通信方法的另一种示例流程图;
图16为本申请实施例提供的一种通信装置的结构示意图;
图17为本申请实施例提供的另一种通信装置的结构示意图;
图18为本申请实施例提供的一种通信装置的结构示意图;
图19为本申请实施例提供的一种通信设备的结构示意图;
图20为本申请实施例提供的一种MTC设备的结构示意图;
图21为本申请实施例提供的一种装置的结构示意图;
图22为本申请实施例提供的一种空基平台的结构示意图;
图23为本申请实施例涉及的无人机的一种结构示意图;
图24为本申请实施例提供的一种装置的结构示意图;
图25为本申请实施例提供的通信系统的结构示意图。
具体实施方式
为了便于理解本申请的实施例,首先对本申请实施例涉及到的相关概念进行如下简单介绍:
mMTC是5G支持的三大典型业务之一,典型的mMTC业务有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感。
MTC设备为支持mMTC业务的设备,MTC设备的数据发送间隔较长,例如每天、每月甚至每年发送一次,数据包较小,大多为几比特到几百比特之间。MTC设备可以是无线设备也可以是有线设备,无线设备可以是指一种具有无线收发功能的设备,可以部署在陆地 上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。MTC设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线设备、无人驾驶(self driving)中的无线设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备、智慧家庭(smart home)中的无线设备等等,在此不作限定。
空基平台为空中基站,在多个区域间进行无线电信号的转发。
图1为本申请实施例的应用场景图,如图1所示,第一区域为MTC设备所在的区域,第二区域为蜂窝网络覆盖区域,其中第一区域中的MTC设备与第二区域中的通信设备无法直接通信,或者第一区域与第二区域之间的通信信号质量较弱。即,第一区域的至少一部分位于第二区域的网络覆盖范围之外。
可选的,第一区域可以是沙漠、森林、海洋、山区等网络覆盖不完善的区域,或者为网络受到破坏的受灾区域。
第二区域的通信系统包括但不限于,2G,3G,4G,5G通信系统或下一代(next generation)通信系统,例如全球移动通信系统(Global System for Mobil ecommunications,GSM),码分多址(Code Division Multiple Access,CDMA)系统,时分多址(Time Division Multiple Access,TDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA),频分多址(Frequency Division Multiple Addressing,FDMA)系统,正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)系统,单载波FDMA(SC-FDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统,新空口(new radio,NR)通信系统等等。
上述第二区域中的通信设备包括终端设备和/或网络设备,其中,终端设备可以是无线终端设备也可以是有线终端设备,无线终端设备可以是指一种具有无线收发功能的终端设备,可以部署在陆地上,包括室内或室外、手持或车载终端;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是手机、平板电脑、带无线收发功能的电脑、VR终端设备、AR终端设备、工业控制中的无线设备、无人驾驶中的无线设备、远程医疗中的无线终端设备、智能电网中的无线终端设备、运输安全中的无线终端设备、智慧城市中的无线终端设备、智慧家庭中的无线终端设备等等,在此不作限定。
网络设备为无线网络中的设备,例如将终端接入到无线网络的无线接入网(radio access network,RAN)节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备,在此并不限定。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。
另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
图2为本申请实施例提供的通信方法的流程图,本申请实施例在第一区域与第二区域之间设置空基平台,空基平台对第一区域与第二区域之间的数据进行转发。如图2所述,本申请实施例的方法包括:
S101、空基平台根据预设时间规则,与位于第一区域MTC设备建立通讯连接。
本申请实施例的第一区域中可以包括一个或多个MTC设备,空基平台可以与第一区域中的每个MTC设备进行通讯连接;或者,空基平台与第一区域中的部分MTC设备进行通讯连接;或者,空基平台与第一区域中的一个MTC设备1建立通讯连接,第一区域内的其他MTC设备与该MTC设备1建立通讯连接。
可选的,本申请实施例中可以在第一区域内布置一个空基平台,该空基平台根据预设时间规则与该第一区域内的一个或多个MTC设备通信连接。
可选的,本申请实施例中还可以在第一区域内布置多个空基平台,每个空基平台负责与第一区域的一部分范围内的MTC设备通信连接。例如,在第一区域布置3个空基平台,第一区域包括3个子区域,3个空基平台根据预设时间规则,同时分别与3个子区域内的MTC设备通信连接。具体是,第一空基平台根据预设实际规则与第一子区域内的MTC设备通信连接,第二空基平台根据预设实际规则与第二子区域内的MTC设备通信连接,第三空基平台根据预设实际规则与第三子区域内的MTC设备通信连接。
可选的,为了提高数据传输的可靠性,第一区域和第二区域可以通过多个空基平台进行数据转发,例如,对于一个MTC设备,有两个空基平台与该MTC设备建立通讯连接,这样,当其中一个空基平台发生故障时,另一个空基平台可以实现该MTC设备与通信设备之间的数据转发,进而提高了数据转发的可靠性。
在一种实现方式下,如图3所示,空基平台可以在空中固定设置,在第一区域与第二区域之间不移动,例如,空基平台为固定设置在空中的气球,该气球根据预设时间规则,与第一区域中的MTC设备建立通讯连接。
在另一种实现方式下,如图4所示,空基平台可以在第一区域与第二区域之间移动,需要说明的是,图4作为一种示例,以空基平台为无人机为例示出,但是,本申请实施例的空基平台不限于无人机,还可以是气球、滑翔机、飞艇、直升机、卫星等可以在第一区域与第二区域之间移动的飞行设备。
当空基平台为飞行设备时,该空基平台具有停放基地,当空基平台不进行第一区域与第二区域之间的数据转发时,该空基平台可以停放在该停放基地中。可选的,该停放基地可以位于第一区域,或者位于第二区域,可选的,该停放基地还可以位于第一区域和第二区域之外的区域,本申请实施例对停放基站的具体设置位置不做限制,具体根据实际需要确定。
在实际使用时,若上述停放基地位于第一区域,即空基平台停放在第一区域时,空基 平台根据预设时间规则,与第一区域中的至少一个MTC设备建立通讯连接。若上述停放基地位于第一区域之外的区域,即空基平台停放在第一区域之外的区域,空基平台根据预设时间规则,从停放基地起飞,移动至第一区域,与第一区域内的至少一个MTC设备建立通讯连接。
上述预设时间规则包括:预设时间周期、所述MTC设备发送第一信息的时间间隔、所述通信设备接收第一信息的时间间隔中的任意一项。
例如,预设时间规则为预设时间周期,假设该预设时间周期为24小时,这样,空基平台每隔24小时与MTC设备建立一次通讯连接。
再例如,预设时间规则为MTC设备发送第一信息的时间间隔,而MTC设备发送第一信息的时间间隔是事先获得的。假设MTC设备发送第一信息的时间间隔相同,例如每隔8小时发送一次第一信息,这样,空基平台每隔8小时与MTC设备建立一次通讯连接。假设MTC设备发送第一信息的时间间隔不相同,这样空基平台根据MTC设备发送第一信息的时间间隔,确定出MTC设备发送每个第一信息的时间点,在每个时间点到达时,空基平台与MTC设备建立通讯连接。此处,空基平台在每个第一信息的发送时间点到达时与MTC设备建立通讯连接,可以理解为在每个第一信息的发送时间点到达时,空基平台完成与MTC设备通讯连接。
再例如,预设时间规则为通信设备接收第一信息的时间间隔,假设通信设备接收第一信息的时间间隔相同,例如每隔8小时接收第一次第一信息,这样,空基平台每隔8小时与MTC设备建立一次通讯连接。假设通信设备接收第一信息的时间间隔不相同,这样空基平台根据通信设备接收第一信息的时间间隔,确定出通信设备接收每个第一信息的时间点,在每个时间点到达时,空基平台与MTC设备建立通讯连接,且从MTC设备处接到第一信息发送给通信设备。此处,空基平台与MTC设备建立通讯连接的时间,需要根据通信设备接收第一信息的时间间隔、空基平台与MTC设备连接需要花费的时间,以及空基平台将第一信息发送给第二区域中的通信设备所花费的时间来确定。
上述S101中的空基平台根据预设时间规则,与MTC设备建立通讯连接的方式至少包括两种:
第一种是,空基平台自身根据预设时间规则与MTC设备建立通讯连接,例如,空基平台自身保存该预设时间规则,空基平台的处理器根据该预设时间规则,控制空基平台中的通信模块与MTC设备建立通讯连接。
第二种是,空基平台由空基平台控制站控制,空基平台控制站根据该预设时间规则,控制空基平台与第一区域的MTC设备建立通讯连接。
本步骤,空基平台根据预设时间规则与MTC设备建立通讯连接,即在MTC设备与通信设备需要进行通信时,空基平台与MTC设备才建立连接,相比于已有的空基平台始终与MTC设备连接的方案,本申请可以有效避免空基平台与MTC设备的无效通信连接所造成的资源浪费的问题。同时,空基平台在MTC设备与通信设备不需要通信时,可以作为它用,例如,可以作为其他区域的空基平台。
S102、MTC设备将第一信息发送给空基平台。
S103、空基平台将第一信息发送给位于第二区域的通信设备。
根据上述步骤,空基平台与MTC设备建立通信连接后,MTV设备可以将需要发送给通 信设备的第一信息发生给空基平台。空基平台将该第一信息发送给第二区域的通信设备。
可选的,上述S103中空基平台将第一信息发送给第二区域的通信设备可以是,空基平台直接将第一信息发送给通信设备,例如,空基平台从第一区域移动至第二区域,将第一信息发送给第二区域的通信设备。
可选的,上述S103中空基平台将第一信息发送给第二区域的通信设备可以是,空基平台通过其他的飞行设备,将该第一信息转发给第二区域中的通信设备。例如,空基平台将第一信息发送给其他飞行设备,该其他飞行设备移动至第二区域时,将该第一信息发送给位于第二区域的通信设备。
可选的,若空基平台位于第一区域与第二区域的重叠区域,即空基平台既位于第一区域,又位于第二区域时,空基平台可以实时将上述第一信息发送给第二区域的通信设备。
在空基平台将第一信息发送给第二区域的通信设备后,若通信设备存在发送给MTC设备的第二信息时,本申请实施例的方法还包括:
S104、通信设备将第二信息发送给空基平台;
S105、空基平台将第二信息发送给MTC设备。
在上述S104的一种实现方式中,若空基平台将第一信息发送给通信设备后,此时,若通信设备检测到有第二信息需要发送给MTC设备时,通信设备可以将该第二信息发送给该空基平台,以使该空基平台将该第二信息发送给第一区域中的MTC设备。其中,第二信息的发送过程可以理解为第一信息的发送过程的反过程,具体可以参照上述第一信息的发送过程。
在上述S104的另一种实现方式中,若空基平台将第一信息发送给通信设备后,此时通信设备并没有第二信息需要发送给MTC设备时。在过一段时间后,通信设备需要发送第二信息,此时,若通信设备检测到空基平台与通信设备处于通讯连接状态,则通信设备将第二信息发送给空基平台,以使空基平台将该第二信息转发给MTC设备。若通信设备检测到空基平台与通信设备的通讯连接处于断开状态时,则通信设备首先与空基平台建立通讯连接,在建立通讯连接后,将第二信息发送给空基平台,以使空基平台将该第二信息转发给MTC设备。
由上述可知,本申请实施例的方法,空基平台根据预设时间规则,与位于第一区域的MTC设备建立通讯连接,在建立通讯连接后,MTC设备将第一信息发送给空基平台,以使空基平台将第一信息发送给位于第二区域的通信设备。同时,空基平台从通信设备处接到第二信息,并将该第二信息发送给MTC设备。本申请,空基平台根据预设时间规则与位于第一区域的MTC设备建立通讯连接,相比于已有的空基平台始终与MTC设备连接的方案,本申请可以有效避免空基平台与MTC设备的无效通信连接所造成的资源浪费的问题,并且提高了空基平台的灵活布置。
下面结合不同的示例对本申请实施例提供的通信方法进行详细阐述。
示例一,如图4所示,图4示出的空基平台为无人机,可选的,该空基平台还可以是气球、滑翔机、飞艇、直升机等飞行设备。如图5所示,本实施例的通信过程为:
S201、空基平台根据预设规则,从停放基地移动至第一区域,并与第一区域中的MTC设备建立通讯连接。
可选的,若停放基地位于第一区域时,则上述S201中空基平台不需要移动,便可以根 据预设规则与第一区域中的MTC设备建立通讯连接。
S202、MTC设备将第一信息发送给空基平台。
S203、空基平台从第一区域移动至第二区域,并将第一信息发送给通信设备。
S204、通信设备将第二信息发送给空基平台。
S205、空基平台从第二区域移动至第一区域,并将第二信息发送给MTC设备。
S206、空基平台返回至停放基地。
上述S206中,空基平台在将第二信息发送给MTC设备后,返回至停放基站,根据预设时间规则,重复上述步骤。
其中,上述S201至S206的执行过程可以参照上述S101至S105的具体描述,在此不再赘述。
即本实施例,空基平台为无人机、气球、滑翔机、飞艇、直升机等飞行设备,可以在第一区域与第二区域之间移动,以将第一信息发送给通信设备,以及将第二信息发送给MTC设备。
示例二,如图6所示,图6示出的空基平台为卫星,如图7所示,本实施例的通信过程可以包括:
S301、MTC设备根据预设规则,从MTC设备的卫星检测范围内的多个卫星中确定目标卫星,并与该目标卫星建立通讯连接。
具体是,MTC设备可以检测到经过其顶部区域的卫星,将这个区域记为该MTC设备的卫星检测范围。在实际应用中,MTC设备根据预设规则,检测其卫星检测范围内的多个卫星的星历信息,根据星历信息,从这多个卫星中确定出一个目标卫星。该目标卫星为满足预设规则的卫星,例如预设规则为MTC设备发送第一信息的时间间隔,而MTC设备根据该目标卫星的星历信息可以确定,该目标卫星在第一区域与第二区域之间移动,并且该目标卫星到达第一区域的时间间隔与MTC设备发送第一信息的时间间隔相符。
接着,MTC设备与该目标卫星建立通讯连接。
S302、MTC设备将第一信息发送给目标卫星。
S303、目标卫星从第一区域移动至第二区域,并将第一信息发送给通信设备。
S304、通信设备将第二信息发送给目标卫星。
S305、目标卫星从第二区域移动至第一区域,并将第二信息发送给MTC设备。
上述S301至S305的执行过程可以参照上述S101至S105的具体描述,在此不再赘述。
即本实施例,空基平台为卫星,该卫星可以为当前空间中的卫星,该卫星在第一区域与第二区域之间移动,以将第一信息发送给通信设备,以及将第二信息发送给MTC设备。
示例三,如图8所示,图8示出的空基平台为无人机,可选的,该空基平台还可以是气球、滑翔机、飞艇、直升机等飞行设备,本实施例中的MTC设备发送的第一信息包括至少一个其他MTC设备的信息,为了便于区域将与空基平台建立通讯连接的MTC设备记为第一MTC设备,将第一区域中的除所述第一MTC设备之外的其他MTC设备记为第二MTC设备。如图10所示,本实施例的通信过程为:
S401、第一MTC设备从至少一个第二MTC设备处接收第一信息。
即本申请实施例中,第一MTC设备发送的第一信息不仅包括第一MTC设备需要发送给通信设备的信息,还包括至少一个第二MTC设备需要发送给通信设备的信息。
S402、空基平台根据预设规则,与第一区域中的第一MTC设备建立通讯连接。
需要说明的是,上述S301与上述S302之间没有先后顺序关系。
S403、MTC设备将第一信息发送给空基平台。
S404、空基平台将第一信息发送给通信设备。
S405、通信设备将第二信息发送给空基平台。
S406、空基平台将第二信息发送给MTC设备。
在一种实现方式中,上述S304可以如图4所示,即空基平台从第一区域移动至第二区域将第一信息发送给通信设备。对应的,上述S305为通信设备将第二信息发送给空基平台,空基平台从第二区域移动至第一区域,并将第二信息发送给第一MTC设备。
第一MTC设备在接收到第二信息后,解析该第二信息,若确定该第二信息为发送给第二MTV设备的信息,则第一MTC设备将该第二信息发送给对应的第二MTC设备,实现第二信息的分发。
在另一种实现方式中,上述S304可以如图9所示,空基平台接收到第一信息后,将该第一信息转发给其他的飞行设备,例如,将第一信息转发给其他的无人机、气球、滑翔机、飞艇、直升机、卫星等。对应的,上述S305可以是通信设备将第二信息发送给上述其他的飞行设备,该飞行设备将该第二信息发送给空基平台。空基平台再将该第二信息发送给第一MTC设备,以使第一MTC设备将该第二信息分发给对应的第二MTC设备。
其中,上述S301至S306的执行过程可以参照上述S101至S105的具体描述,在此不再赘述。
即本实施例,第一MTC设备对第二MTC设备的第一信息进行收集,并发送给空基平台,这样使得空基平台只与第一MTC设备进行通讯连接,而不需要与第二MTC设备进行通讯连接,降低了空基平台与MTC设备通讯连接的数量,进而提高空基平台与MTC设备通讯连接的效率。
示例四,如图11所示,图11示出的空基平台为无人机,可选的,该空基平台还可以是气球、滑翔机、飞艇、直升机等飞行设备,该空基平台在空基平台控制站的控制下移动。如图13所示,本实施例的通信过程可以包括:
S501、空基平台控制站根据预设规则,控制空基平台从停放基地移动至第一区域,并与第一区域中的MTC设备建立通讯连接。
S502、MTC设备将第一信息发送给空基平台。
S503、空基平台将第一信息发送给空基平台控制站。
S504、空基平台控制站将第一信息转发给通信设备。
S504、通信设备将第二信息发送给空基平台控制站。
S505、空基平台控制站将第二信息发送给空基平台。
S506、空基平台将第二信息发送给MTC设备。
S507、空基平台移动至停放基地。
在一种示例下,如图11所示,若空基平台控制站为中继站、地面站、通信设备等不可移动的装置,图11示出的空基平台控制站位于第一区域,可选的,该空基平台控制站还可以位于第二区域,或者,位于第一区域与第二区域之外的区域,本申请实施例空基平台控制站的具体设置位置不做限制,具体根据实际需要确定。
在该示例下,空基平台接收到第一信息后,将该第一信息发送给空基平台控制站,该空基平台控制站接收到第一信息后,通过其他的飞行设备将该第一信息转发给通信设备,该其他的飞行设备可以是无人机、气球、滑翔机、飞艇、直升机、卫星等飞行设备。同理,其他的飞行设备从通信设备处接到第二信息,并将该第二信息发送给空基平台控制站。空基平台控制站再将第二信息发送给空基平台,以使空基平台将该第二信息发送给MTC设备。
可选的,若上述的飞行设备为卫星时,则空基平台控制站根据预先存储的星历,确定在第一区域与第二区域之间移动的卫星。接着,在该卫星抵达第一区域时,将该缓存的第一信息发送给该卫星,以使该卫星将该第一信息发送给第二区域中的通信设备。
可选的,上述空基平台控制站可以设置在陆地上,也可以设置在水面上,例如设置在水面平台上、轮船或浮标上等。
在另一种示例下,空基平台控制站为可移动的飞行设备,此时,如图12所示,空基平台控制站从空基平台处接收到第一信息后,从第一区域移动至第二区域,并将第一信息发送给通信设备。进一步的,空基平台控制站从通信设备处接到第二信息后,从第二区域移动至第一区域,并将第二信息发送给空基平台,以使空基平台将该第二信息发送给MTC设备。
本实施例,通过空基平台控制站来控制空基平台的移动,可选的,空基平台可以作为中继,在空基平台与通信设备之间承担桥梁的作用,进而丰富了第一区域与第二区域通信的方式。
示例五,如图14所示,图14示出的空基平台为无人机,可选的,该空基平台还可以是气球、滑翔机、飞艇、直升机等飞行设备,空基平台控制站为第二区域中的通信设备。如图15所示,本实施例的通信过程可以包括:
S601、通信设备控制站根据预设规则,控制空基平台从停放基地移动至第一区域,并与第一区域中的MTC设备建立通讯连接。
S602、MTC设备将第一信息发送给空基平台。
S603、通信设备控制空基平台从第一区域移动至第二区域,以使空基平台在移动至第二区域时,将第一信息发送给通信设备。
S604、通信设备将第二信息发送给空基平台。
S605、通信设备控制空基平台从第二区域移动至第一区域,以使空基平台移动至第一区域时,将第二信息发送给MTC设备。
S606、通信设备控制空基平台移动至停放基地。
其中,上述S601至S606的执行过程可以参照上述S101至S105的具体描述,在此不再赘述。
本实施例中,将通信设备作为空基平台控制站,通信设备控制空基平台在第一区域与第二区域之间移动。
图16为本申请实施例提供的一种通信装置的结构示意图。该通信装置可以是MTC设备,也可以是MTC设备的部件(例如,集成电路,芯片等等),如图16所示,该通信装置100可以包括:处理单元110和发送单元120。
处理单元110,用于根据预设时间规则,与空基平台建立通讯连接,其中所述MTC设备位于第一区域;
发送单元120,用于将第一信息发送给所述空基平台,以使所述空基平台将所述第一信息发送给位于第二区域的通信设备。
本申请实施例的通信装置,可以用于执行上述各方法实施例中MTC设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
图17为本申请实施例提供的另一种通信装置的结构示意图,在上述实施例的基础上,如图17所示,该通信装置100还可以包括:接收单元130。
所述接收单元130,用于从所述空基平台处接收第二信息,其中,所述第二信息为所述空基平台从所述通信设备处接收的。
在一种实现方式下,所述第一区域的至少一部分位于所述第二区域的网络覆盖范围之外。
在另一种实现方式下,所述空基平台在所述第一区域与所述第二区域之间移动。
在另一种实现方式下,所述第一信息包括所述MTC设备从其他至少一个MTC设备处接收到的信息。
在另一种实现方式下,所述预设时间规则包括:预设时间周期、所述MTC设备发送第一信息的时间间隔中的任意一项。
本申请实施例的通信装置,可以用于执行上述各方法实施例中MTC设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
图18为本申请实施例提供的一种通信装置的结构示意图。该通信装置可以是空基平台,也可以是空基平台的部件(例如,集成电路,芯片等等),如图18所示,该通信装置200可以包括:处理单元210、接收单元220和发送单元230。
处理单元210,用于根据预设时间规则,与所述MTC设备建立通讯连接,其中所述MTC设备位于第一区域;
接收单元220,用于从所述MTC设备处接收第一信息;
发送单元230,用于将所述第一信息发送给通信设备,其中,所述通信设备位于第二区域。
本申请实施例的通信装置,可以用于执行上述各方法实施例中空基平台的技术方案,其实现原理和技术效果类似,此处不再赘述。
在一种实现方式下,所述接收单元220,还用于从所述通信设备处接收第二信息;
所述发送单元230,还用于将所述第二信息发送给所述MTC设备。
在另一种实现方式下,所述第一区域的至少一部分位于所述第二区域的网络覆盖范围之外。
在另一种实现方式下,所述空基平台在所述第一区域与所述第二区域之间移动。
可选的,所述空基平台为无人机、气球、滑翔机、飞艇、直升机、卫星中的任一种。
本申请实施例的通信装置,可以用于执行上述各方法实施例中空基平台的技术方案,其实现原理和技术效果类似,此处不再赘述。
图19为本申请实施例提供的一种通信设备的结构示意图。如图19所示,本实施例所述的通信设备500可以是前述方法实施例中提到的MTC设备(或者可用于MTC设备的部件)或者空基平台(或者可用于空基平台的部件)。通信设备可用于实现上述方法实施例中描述的对应于MTC设备或者空基平台的方法,具体参见上述方法实施例中的说明。
所述通信设备500可以包括一个或多个处理器501,所述处理器501也可以称为处理单元,可以实现一定的控制或者处理功能。所述处理器501可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信设备进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,处理器501也可以存有指令503或者数据(例如中间数据)。其中,所述指令503可以被所述处理器运行,使得所述通信设备500执行上述方法实施例中描述的对应于MTC设备或者空基平台的方法。
在又一种可能的设计中,通信设备500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述通信设备500中可以包括一个或多个存储器502,其上可以存有指令504,所述指令可在所述处理器上被运行,使得所述通信设备500执行上述方法实施例中描述的方法。
可选的,处理器和存储器可以单独设置,也可以集成在一起。当所述通信设备为芯片时,存储器还可以位于所述通信设备之外。
可选的,所述通信设备500还可以包括收发器505和/或天线506。所述处理器501可以称为处理单元,对通信设备(例如MTC设备或者空基平台)进行控制。所述收发器505可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信设备的收发功能。
在一个设计中,若该通信设备500用于实现对应于上述各实施例中MTC设备的操作时,例如,可以由处理器501根据预设时间规则,与空基平台建立通讯连接;建立通讯连接后,再由收发器505将第一信息发送给所述空基平台,以使所述空基平台将所述第一信息发送给位于第二区域的通信设备。
其中,上述收发器505与处理器501的具体实现过程可以参见上述各实施例中MTC设备的相关描述,此处不再赘述。
另一个设计中,若该通信设备500用于实现对应于上述各实施例中空基平台的操作时,例如可以由处理器501根据预设时间规则,与所述MTC设备建立通讯连接,其中所述MTC设备位于第一区域;在建立通讯连接后,由收发器505从所述MTC设备处接收第一信息,并将所述第一信息发送给通信设备,其中,所述通信设备位于第二区域。
其中,上述收发器505与处理器501的具体实现过程可以参见上述各实施例中空基平台的相关描述,此处不再赘述。
本申请中描述的处理器501和收发器505可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信设备500以MTC设备或者空基平台为例来描述, 但本申请中描述的通信设备的范围并不限于上述MTC设备或上述空基平台,而且通信设备的结构可以不受图19的限制。
本申请实施例的通信设备,可以用于执行上述各方法实施例中MTC设备(或空基平台)的技术方案,其实现原理和技术效果类似,此处不再赘述。
图20为本申请实施例提供的一种MTC设备的结构示意图。该MTC设备600可以实现上述方法实施例中MTC设备所执行的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块或单元。
在一种可能的设计中,该MTC设备600的结构中包括处理器601、收发器602和存储器603,该处理器601被配置为支持该MTC设备600执行上述方法中相应的功能。该收发器602用于支持该MTC设备600与其他MTC设备或网络设备之间的通信。该MTC设备600还可以包括存储器603,该存储器603用于与处理器601耦合,其保存该MTC设备600必要的程序指令和数据。
可选的,处理器601和存储器603可以单独设置,也可以集成在一起。当该设备600为芯片时,存储器603还可以位于设备600之外。
当MTC设备600开机后,处理器601可以读取存储器603中的程序指令和数据,解释并执行程序指令,处理程序指令的数据。当需要发送数据时,处理器601对待发送的数据进行基带处理后,输出基带信号至收发器602,收发器602将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,收发器602通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器601,处理器601将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图20仅示出了一个存储器603和一个处理器601。在实际的MTC设备600中,可以存在多个处理器和多个存储器。存储器603也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
本申请实施例的MTC设备,可以用于执行上述各方法实施例中MTC设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
图21为本申请实施例提供的一种装置的结构示意图。该装置700以芯片的产品形态存在,该装置的结构中包括处理器701和存储器702,该存储器702用于与处理器701耦合,该存储器702上保存该装置必要的程序指令和数据,该处理器701用于执行存储器702中存储的程序指令,使得该装置执行上述方法实施例中终端设备的功能。
本申请实施例的装置,可以用于执行上述各方法实施例中终端设备的技术方案,其实现原理和技术效果类似,此处不再赘述。
可选的,处理器701和存储器702可以单独设置,也可以集成在一起。当该装置700为芯片时,存储器702还可以位于装置701之外。
图22为本申请实施例提供的一种空基平台的结构示意图。该空基平台800可以实现上述方法实施例中空基平台所执行的功能,功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个上述功能相应的模块或单元。
在一种可能的设计中,该空基平台800的结构中包括处理器801和通信接口802,该处理器801被配置为支持该空基平台800执行上述方法中相应的功能。该通信接口802用于支持该空基平台800与其他网元之间的通信。该空基平台800还可以包括存储器803, 该存储器803用于与处理器801耦合,其保存该空基平台800必要的程序指令和数据。
本领域技术人员可以理解,为了便于说明,图22仅示出了一个存储器803和一个处理器801。在实际的网设备800中,可以存在多个处理器和多个存储器。存储器803也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。处理器和存储器可以单独设置,也可以集成在一起。
该空基平台800还可以包括飞行系统804,该飞行系统804用于根据处理器801发送的飞行指令来控制空基平台800的运动。
在一种示例中,该空基平台800为无人机,例如为旋翼无人机,如图23所示,该无人机400可以包括动力系统、飞行控制系统和机架,其中动力系统和飞行控制系统可以理解为上述的飞行系统804。无人机400可以与控制终端进行无线通信,该控制终端可以显示无人机的飞行信息等,控制终端可以通过无线方式与无人机400进行通信,用于对无人机400进行远程操纵,具体是,控制终端通过无人机400的通信接口与无人机400进行通信。可选的,该控制终端可以为空基平台控制站。
其中,机架可以包括机身410和脚架420(也称为起落架)。机身410可以包括中心架411以及与中心架411连接的一个或多个机臂412,一个或多个机臂412呈辐射状从中心架延伸出。脚架420与机身410连接,用于在无人机400着陆时起支撑作用。
动力系统可以包括一个或多个电子调速器(简称为电调)、一个或多个螺旋桨440以及与一个或多个螺旋桨440相对应的一个或多个电机450,其中电机450连接在电子调速器与螺旋桨440之间,电机450和螺旋桨440设置在无人机400的机臂412上;电子调速器用于接收飞行控制系统产生的驱动信号,并根据驱动信号提供驱动电流给电机,以控制电机450的转速。电机450用于驱动螺旋桨440旋转,从而为无人机400的飞行提供动力,该动力使得无人机400能够实现一个或多个自由度的运动。在某些实施例中,无人机400可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、偏航轴和俯仰轴。应理解,电机450可以是直流电机,也可以是交流电机。电机450可以是无刷电机,也可以是有刷电机。
飞行控制系统可以包括飞行控制器和传感系统。传感系统用于测量无人飞行器的姿态信息,即无人机400在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统例如可以包括陀螺仪、超声传感器、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器用于控制无人机400的飞行,例如,可以根据传感系统测量的姿态信息控制无人机400的飞行。应理解,飞行控制器可以按照预先编好的程序指令对无人机400进行控制,也可以通过响应来自控制终端的一个或多个控制指令对无人机400进行控制。
应理解,上述对于无人机各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。
本申请实施例的空基平台,可以用于执行上述各方法实施例中空基平台的技术方案,其实现原理和技术效果类似,此处不再赘述。
图24为本申请实施例提供的一种装置的结构示意图。该装置900以芯片的产品形态 存在,该装置的结构中包括处理器901和存储器902,该存储器902用于与处理器901耦合,该存储器902上保存该装置必要的程序指令和数据,该处理器901用于执行存储器902中存储的程序指令,使得该装置执行上述方法实施例中空基平台的功能。
本申请实施例的装置,可以用于执行上述各方法实施例中空基平台的技术方案,其实现原理和技术效果类似,此处不再赘述。
可选的,处理器901和存储器902可以单独设置,也可以集成在一起。进一步地,存储器902还可以在装置900之外。
图25为本申请实施例提供的通信系统的结构示意图。如图25所示,本申请实施例的通信系统300包括上述MTC设备310和空基平台320。
其中,该MTC设备310可以用于实现上述方法实施例中MTC设备的功能,该空基平台320可以用于实现上述方法实施例中空基平台侧的功能,其实现原理和技术效果类似,此处不再赘述。
基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。另外,各个方法实施例之间、各个装置实施例之间也可以互相参考,在不同实施例中的相同或对应内容可以互相引用,不做赘述。

Claims (42)

  1. 一种通信方法,其特征在于,所述方法包括:
    MTC设备根据预设时间规则,与空基平台建立通讯连接,其中所述MTC设备位于第一区域;
    所述MTC设备将第一信息发送给所述空基平台,以使所述空基平台将所述第一信息发送给位于第二区域的通信设备。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述MTC设备从所述空基平台处接收第二信息,其中,所述第二信息为所述空基平台从所述通信设备处接收的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一区域的至少一部分位于所述第二区域的网络覆盖范围之外。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述空基平台在所述第一区域与所述第二区域之间移动。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述第一信息包括所述MTC设备从其他至少一个MTC设备处接收到的信息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述预设时间规则包括:预设时间周期、所述MTC设备发送第一信息的时间间隔中的任意一项。
  7. 一种通信方法,其特征在于,所述方法包括:
    空基平台根据预设时间规则,与所述MTC设备建立通讯连接,其中所述MTC设备位于第一区域;
    所述空基平台从所述MTC设备处接收第一信息;
    所述空基平台将所述第一信息发送给通信设备,其中,所述通信设备位于第二区域。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述空基平台从所述通信设备处接收第二信息;
    所述空基平台将所述第二信息发送给所述MTC设备。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一区域的至少一部分位于所述第二区域的网络覆盖范围之外。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述空基平台在所述第一区域与所述第二区域之间移动。
  11. 根据权利要求10所述的方法,其特征在于,所述空基平台为无人机、气球、滑翔机、飞艇、直升机、卫星中的任一种。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述空基平台根据预设时间规则移动至所述第一区域。
  13. 根据权利要求7-12任一项所述的方法,其特征在于,所述预设时间规则包括:预设时间周期、所述MTC设备发送第一信息的时间间隔中的任一项。
  14. 根据权利要求7-13任一项所述的方法,其特征在于,所述空基平台在空基平台控制站的控制下移动。
  15. 根据权利要求14所述的方法,其特征在于,所述空基平台将所述第一信息发送 给通信设备,包括:
    所述空基平台将所述第一信息发送给所述空基平台控制站,以使所述空基平台控制站将所述第一信息转发给所述通信设备;
    所述空基平台从所述通信设备处接收第二信息,包括;
    所述空基平台从所述空基平台控制站接收所述第二信息,其中所述空基平台控制站保存有从所述通信设备处接收到的所述第二信息。
  16. 根据权利要求14所述的方法,其特征在于,所述空基平台控制站为所述通信设备。
  17. 根据权利要求14或15所述的方法,其特征在于,所述空基平台控制站包括中继站、地面站、飞行设备和通信设备中的任意一种。
  18. 一种通信装置,其特征在于,应用于MTC设备,所述装置包括:
    处理单元,用于根据预设时间规则,与空基平台建立通讯连接,其中所述MTC设备位于第一区域;
    发送单元,用于将第一信息发送给所述空基平台,以使所述空基平台将所述第一信息发送给位于第二区域的通信设备。
  19. 根据权利要求18所述的装置,其特征在于,还包括接收单元;
    所述接收单元,用于从所述空基平台处接收第二信息,其中,所述第二信息为所述空基平台从所述通信设备处接收的。
  20. 根据权利要求18或19所述的装置,其特征在于,所述第一区域的至少一部分位于所述第二区域的网络覆盖范围之外。
  21. 根据权利要求18-20任一项所述的装置,其特征在于,所述空基平台在所述第一区域与所述第二区域之间移动。
  22. 根据权利要求18-21任一项所述的装置,其特征在于,所述第一信息包括所述MTC设备从其他至少一个MTC设备处接收到的信息。
  23. 根据权利要求18-22任一项所述的装置,其特征在于,所述预设时间规则包括:预设时间周期、所述MTC设备发送第一信息的时间间隔中的任意一项。
  24. 一种通信装置,其特征在于,应用于空基平台,所述装置包括:
    处理单元,用于根据预设时间规则,与所述MTC设备建立通讯连接,其中所述MTC设备位于第一区域;
    接收单元,用于从所述MTC设备处接收第一信息;
    发送单元,用于将所述第一信息发送给通信设备,其中,所述通信设备位于第二区域。
  25. 根据权利要求24所述的装置,其特征在于,
    所述接收单元,还用于从所述通信设备处接收第二信息;
    所述发送单元,还用于将所述第二信息发送给所述MTC设备。
  26. 根据权利要求24或25所述的装置,其特征在于,所述第一区域的至少一部分位于所述第二区域的网络覆盖范围之外。
  27. 根据权利要求24-26任一项所述的装置,其特征在于,所述空基平台在所述第一 区域与所述第二区域之间移动。
  28. 根据权利要求27所述的装置,其特征在于,所述空基平台为无人机、气球、滑翔机、飞艇、直升机、卫星中的任一种。
  29. 根据权利要求28所述的装置,其特征在于,
    所述处理单元,还用于根据预设时间规则控制所述空基平台移动至所述第一区域。
  30. 根据权利要求24-29任一项所述的装置,其特征在于,所述预设时间规则包括:预设时间周期、所述MTC设备发送第一信息的时间间隔中的任一项。
  31. 根据权利要求24-30任一项所述的装置,其特征在于,
    所述处理单元,还用于接收空基平台控制站发送的移动指令,并根据所述移动指令,控制所述空基平台移动。
  32. 根据权利要求31所述的装置,其特征在于,
    所述发送单元,还用于将所述第一信息发送给所述空基平台控制站,以使所述空基平台控制站将所述第一信息转发给所述通信设备;
    所述接收单元,还用于从所述空基平台控制站接收所述第二信息,其中所述空基平台控制站保存有从所述通信设备处接收到的所述第二信息。
  33. 根据权利要求31所述的装置,其特征在于,所述空基平台控制站为所述通信设备。
  34. 根据权利要求32或33所述的装置,其特征在于,所述空基平台控制站包括中继站、地面站、飞行设备和通信设备中的任意一种。
  35. 一种通信设备,其特征在于,包括:处理器和收发器,所述处理器和所述收发器用于执行实现如权利要求1至6或如权利要求7至17中任一项权利要求所述的通信方法。
  36. 一种空基平台,其特征在于,包括:飞行系统、处理器和通信接口,所述飞行系统、所述处理器和所述通信接口用于执行实现如权利要求7至17中任一项权利要求所述的通信方法。
  37. 一种计算机存储介质,其特征在于,所述存储介质包括计算机指令,当所述指令被计算机执行时,使得所述计算机实现如权利要求1至17中任一项权利要求所述的通信方法。
  38. 一种计算机程序产品,其特征在于,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,通信装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得通信装置实现如权利要求1至17中任一项权利要求所述的通信方法。
  39. 一种MTC设备,其特征在于,包括:处理器和收发器,所述处理器和所述收发器用于执行实现如权利要求1至6中任一项权利要求所述的通信方法。
  40. 一种装置,其特征在于,所述装置以芯片的产品形态存在,所述装置的结构中包括处理器和存储器,所述存储器用于与所述处理器耦合,保存所述装置的程序指令和数据,所述处理器用于执行所述存储器中存储的程序指令,使得所述装置执行如权利要求1至6任一项所述的MTC设备的功能。
  41. 一种装置,其特征在于,所述装置以芯片的产品形态存在,所述装置的结构中包括处理器和存储器,所述存储器用于与所述处理器耦合,保存所述装置的程序指 令和数据,所述处理器用于执行所述存储器中存储的程序指令,使得所述装置执行如权利要求7至17任一项所述的空基平台的功能。
  42. 一种通信系统,其特征在于,所述系统包括如权利要求39所述的MTC设备和如权利要求36所述的空基平台。
PCT/CN2019/122140 2019-01-11 2019-11-29 通信方法、装置、设备、空基平台及存储介质 WO2020143358A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19908366.8A EP3902156A4 (en) 2019-01-11 2019-11-29 COMMUNICATION METHOD, APPARATUS AND DEVICE, SPACE PLATFORM AND INFORMATION MEDIA
US17/370,878 US20210337368A1 (en) 2019-01-11 2021-07-08 Communication Method, Apparatus, And Device, Space-Based Platform, And Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910027875.3 2019-01-11
CN201910027875.3A CN111436022A (zh) 2019-01-11 2019-01-11 通信方法、装置、设备、空基平台及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/370,878 Continuation US20210337368A1 (en) 2019-01-11 2021-07-08 Communication Method, Apparatus, And Device, Space-Based Platform, And Storage Medium

Publications (1)

Publication Number Publication Date
WO2020143358A1 true WO2020143358A1 (zh) 2020-07-16

Family

ID=71521649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122140 WO2020143358A1 (zh) 2019-01-11 2019-11-29 通信方法、装置、设备、空基平台及存储介质

Country Status (4)

Country Link
US (1) US20210337368A1 (zh)
EP (1) EP3902156A4 (zh)
CN (1) CN111436022A (zh)
WO (1) WO2020143358A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115963520B (zh) * 2022-09-06 2024-04-16 中电信数智科技有限公司 一种基于6g空中基站结合北斗卫星定位的优化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004157A2 (en) * 2002-04-17 2004-01-08 Aerovironment, Inc. High altitude platform deployment system
CN107204847A (zh) * 2017-06-20 2017-09-26 西安电子科技大学 空天车地轨道专用网络接入认证与密钥协商协议和方法
WO2018136370A2 (en) * 2017-01-21 2018-07-26 Microsoft Technology Licensing, Llc Low-cost, long-term aerial imagery

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102257859B (zh) * 2011-06-01 2013-08-07 华为技术有限公司 混合非连续接收方法及基站和用户设备
US9621254B2 (en) * 2012-09-21 2017-04-11 Spatial Digital Systems, Inc. Communications architectures via UAV
US9319891B2 (en) * 2014-06-24 2016-04-19 Verizon Patent And Licensing Inc. Method and apparatus for leveraging wireless communication using an aerial vehicle
US10524108B2 (en) * 2015-10-19 2019-12-31 Qualomm Incorporated D2D communication for eMTC design considerations
US20170146990A1 (en) * 2015-11-19 2017-05-25 Caterpillar Inc. Augmented communication and positioning using unmanned aerial vehicles
US9471064B1 (en) * 2015-12-08 2016-10-18 International Business Machines Corporation System and method to operate a drone
CN107027090B (zh) * 2016-02-02 2020-04-21 华为技术有限公司 一种网络通信方法及装置
US20170302368A1 (en) * 2016-04-13 2017-10-19 Google Inc. Predicting Signal Quality in a Rotating Beam Platform
CA3040134C (en) * 2016-10-11 2021-08-17 T-Mobile Usa, Inc. Uav for cellular communication
CN106549705A (zh) * 2016-11-22 2017-03-29 深圳市元征科技股份有限公司 无人机及基于无人机的通信方法
US9836049B1 (en) * 2017-05-05 2017-12-05 Pinnacle Vista, LLC Relay drone system
US20190102730A1 (en) * 2017-10-04 2019-04-04 Michael E. Giorgi Drone delivery and landing
KR102024305B1 (ko) * 2017-11-15 2019-09-23 성균관대학교산학협력단 드론 네트워크 환경에서의 서비스 영역 스케줄링 방법 및 장치
CN108111214A (zh) * 2017-12-18 2018-06-01 张明虎 基于无人机的野外生态环境观测数据自动收集系统及方法
CN108736957A (zh) * 2018-04-17 2018-11-02 浙江大学 一种天-空-地海上应急网络通信系统
CN109151793A (zh) * 2018-08-09 2019-01-04 南京信息工程大学 基于云计算的多网精细化应急救援指挥系统
EP4145948A1 (en) * 2018-12-10 2023-03-08 Google LLC User equipment dual connectivity with a terrestrial base station and a satellite or a high-altitude platform

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004157A2 (en) * 2002-04-17 2004-01-08 Aerovironment, Inc. High altitude platform deployment system
WO2018136370A2 (en) * 2017-01-21 2018-07-26 Microsoft Technology Licensing, Llc Low-cost, long-term aerial imagery
CN107204847A (zh) * 2017-06-20 2017-09-26 西安电子科技大学 空天车地轨道专用网络接入认证与密钥协商协议和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3902156A4

Also Published As

Publication number Publication date
EP3902156A1 (en) 2021-10-27
US20210337368A1 (en) 2021-10-28
EP3902156A4 (en) 2022-02-09
CN111436022A (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
US12008912B2 (en) Broadcasting geolocation information in a radio frame transmitted from an unmanned aerial vehicle
US11271637B2 (en) Network capacity management
CN110199566B (zh) 无人机用户设备指示
CN108886514B (zh) 基于小区广播消息的飞行路径控制
US11923954B1 (en) Distributing wireless relays to form an ad hoc wireless network
US11711134B2 (en) Autonomous beam switch in HAPS coverage
JP2018034691A (ja) 基地局装置、通知システム及び通知方法
WO2020143358A1 (zh) 通信方法、装置、设备、空基平台及存储介质
Brodņevs Development of a flexible software solution for controlling unmanned air vehicles via the internet
EP4062556A1 (en) Technique for controlling an airborne antenna system
WO2022156519A1 (zh) 一种无线通信的方法及装置
JP7195448B2 (ja) 制御装置、制御方法、およびプログラム
CN114285459B (zh) 一种卫星信号收发系统及其数据处理方法
OA19800A (en) Broadcasting geolocation information in a radio frame transmitted from an unmanned aerial vehicle.
JP2021156840A (ja) 補正サーバ、移動端末、補正方法、及びプログラム
CN117413567A (zh) 信息传输方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019908366

Country of ref document: EP

Effective date: 20210719