WO2020143293A1 - 一种信息上报方法及通信装置 - Google Patents

一种信息上报方法及通信装置 Download PDF

Info

Publication number
WO2020143293A1
WO2020143293A1 PCT/CN2019/116229 CN2019116229W WO2020143293A1 WO 2020143293 A1 WO2020143293 A1 WO 2020143293A1 CN 2019116229 W CN2019116229 W CN 2019116229W WO 2020143293 A1 WO2020143293 A1 WO 2020143293A1
Authority
WO
WIPO (PCT)
Prior art keywords
bler
blers
physical uplink
control channel
uplink control
Prior art date
Application number
PCT/CN2019/116229
Other languages
English (en)
French (fr)
Inventor
刘哲
彭金磷
唐浩
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020143293A1 publication Critical patent/WO2020143293A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a method and a communication device for reporting channel quality indication in a wireless communication system.
  • Channel quality indicator is a measurement standard for the communication quality of wireless channels.
  • CQI is measured by user equipment (UE).
  • the base station determines the transmission data block size, coding method, and modulation according to the CQI reported by the UE. Way etc.
  • the CQI measurement method In the long term evolution (LET) protocol, there is no clear definition of the CQI measurement method, only the selection principle of the CQI is defined, that is, to ensure the decoding error rate of the physical downlink shared channel (PDSCH) (that is, the error block The block error ratio (BLER) is less than 10% of the CQI used.
  • 5G enhanced mobile broadband
  • URLLC ultra-reliable low-latency communication
  • mMTC Large-scale Internet of Things
  • the BLER requirement corresponding to the eMBB service is less than 10 -1
  • the BLER requirement corresponding to the URLLC service is less than 10 -5 .
  • the URLLC service Compared with the eMBB service, the URLLC service has stricter BLER requirements. Therefore, when the base station allocates resources to the UE, it usually uses a smaller bit rate and uses more resources to transmit data. When there are many UEs and a smaller bit rate is used, a UE needs to use more resources to transmit data. In a scheduling time, the number of UEs that can be scheduled is small, resulting in low utilization of spectrum resources.
  • This application provides an information reporting method and a communication device, which can reasonably use network physical uplink control channel resources to ensure optimal downlink performance.
  • a method for reporting information including: a first device receives first indication information from a second device, the first indication information is used to indicate at least two block error rates BLER; the first device passes At least two physical uplink control channel resources report to the second device channel quality indicator CQI corresponding to the at least two BLERs respectively, wherein the at least two physical uplink control channel resources respectively correspond to the at least two BLERs.
  • one physical uplink control channel resource corresponds to one type of BLER, and the CQI corresponding to the BLER is transmitted on the physical uplink control channel resource.
  • the first device reports the CQI corresponding to the corresponding BLER on the resources corresponding to the corresponding BLER, thereby enabling the first device to obtain appropriate data while reducing signaling overhead Transmission parameters.
  • the first device reporting the channel quality indicator CQI corresponding to the at least two BLERs to the second device through at least two physical uplink control channel resources includes: A device reports the first CQI corresponding to the first BLER to the second device through the first physical uplink control channel resource, where the first physical uplink control channel resource corresponds to the first BLER, and the first BLER is included in the at least In the two types of BLER, the first physical uplink control channel resource is included in the at least two physical uplink control channel resources; the first device reports to the second device the second corresponding to the second BLER through the second physical uplink control channel resource Two CQIs, wherein the second physical uplink control channel resource corresponds to the second BLER, the second BLER is included in the at least two BLERs, and the second physical uplink control channel resource is included in the at least two physical uplink controls Channel resources.
  • the method further includes: the first device receives second indication information from the second device, and the second indication information is used to indicate the target BLER A transmission parameter corresponding to the target BLER, where the target BLER is one of the at least two BLERs.
  • the second device receives one of the at least two BLERs reported from the first device, determines the target BLER, and determines the transmission parameters required by the first device through the CQI corresponding to the target BLER, so that When the second device performs downlink data transmission, it schedules required resources and modulation and coding strategies for the first device, thereby improving the utilization rate of network resource blocks.
  • an information reporting method includes: a second device sends first indication information to a first device, where the first indication information is used to indicate at least two block error rates BLER; the second device passes At least two physical uplink control channel resources receive a channel quality indicator CQI corresponding to the at least two BLERs from the first device, where the at least two physical uplink control channel resources correspond to the at least two BLERs.
  • the CQI corresponding to at least two BLERs reported by the second device so that the second device can configure appropriate transmission parameters for the first device.
  • the second device receives the CQI corresponding to the at least two BLERs from the first device through at least two physical uplink control channel resources, including: the second device Receiving a first CQI corresponding to a first BLER from the first device through a first physical uplink control channel resource, where the first physical uplink control channel resource corresponds to the first BLER, and the first BLER is included in the at least two In a BLER, the first physical uplink control channel resource is included in the at least two physical uplink control channel resources; the second device receives the first corresponding to the second BLER from the first device through the second physical uplink control channel resource Two CQIs, wherein the second physical uplink control channel resource corresponds to the second BLER, the second BLER is included in the at least two BLERs, and the second physical uplink control channel resource is included in the at least two physical uplink controls Channel resources.
  • the method further includes: the second device determining a target BLER from the at least two BLERs; the second device corresponds to the target BLER CQI assigns transmission parameters for the first device.
  • the second device may determine the target BLER based on the service load of the first device.
  • the second device determines the first BLER among the at least two BLERs as the target BLER; in the case where the traffic load of the second device is greater than the first threshold Next, the second device determines the second BLER of the at least two BLERs as the target BLER; the first BLER is smaller than the second BLER.
  • the second device may also determine the target BLER based on the service delay value of the first device.
  • the second device determines the third BLER among the at least two BLERs as the target BLER; the service delay value of the first device is greater than the second In the case of two thresholds, the second device determines the fourth BLER among the at least two BLERs as the target BLER; the third BLER is smaller than the fourth BLER.
  • the second device may determine the target BLER based on the service delay value of the first device and the service load of the second device.
  • the second device determines the fifth BLER of the at least two BLERs as Target BLER; in the case where the service load of the second device is greater than the first threshold and the service delay value of the first device is greater than the second threshold, the second device determines the sixth BLER among the at least two BLERs as the target BLER; The fifth BLER is smaller than the sixth BLER.
  • the first threshold and the second threshold may be predefined or configured by the second device.
  • the first threshold may be a threshold of service load
  • the second threshold may be a threshold of service delay.
  • the CQI corresponding to the BLER reported by the first device can be reasonably selected, so that it can be based on the service delay of the first device and the second device In the case of the business load, it is reasonable to allocate corresponding resources to the first device to achieve improved resource utilization.
  • the method further includes: the second device sends second indication information to the first device, where the second indication information is used to indicate the target BLER and The transmission parameter corresponding to the target BLER.
  • the target BLER is one of the at least two BLERs.
  • a method for reporting information includes: a first device receives first indication information from a second device, where the first indication information is used to indicate M kinds of block error rates BLER, where M ⁇ 2: The first device reports the CQI corresponding to the N BLERs of the M BLERs to the second device, where the N satisfies 1 ⁇ N and N ⁇ M.
  • the first device reports the CQIs corresponding to the N BLERs of the M BLERs, so that the signaling overhead can be reduced during the reporting by the first device.
  • the first device reporting the CQI corresponding to the N BLERs of the M BLERs to the second device includes: the first device sends the CQI to the The second device reports the CQI corresponding to the N BLERs of the M BLERs.
  • the physical uplink channel resources include physical uplink control channel resources and/or physical uplink shared channel resources.
  • the first device may report the CQI corresponding to the N BLERs of the M BLERs in priority order, so that the first device can reasonably use Currently available physical uplink channel resources.
  • the first device reports the CQI corresponding to the N BLERs of the M BLERs to the second device, and further includes: The second device reports the CQI corresponding to the top N BLERs in the first order, where the first order is the order in which the M BLERs are arranged in ascending order or ascending order.
  • the method further includes: the first device receives second indication information from the second device, and the second indication information is used to indicate the target BLER A transmission parameter corresponding to the target BLER, where the target BLER is determined by the second device according to the at least two BLERs.
  • a method for reporting information includes: a second device sends first indication information to a first device, where the first indication information is used to indicate M kinds of block error rates BLER, where M ⁇ 2
  • the second device receives the CQI corresponding to the N BLERs of the M BLERs from the first device, where the N satisfies 1 ⁇ N and N ⁇ M.
  • the CQI corresponding to the N BLERs out of the M BLERs reported by the first device can reduce the implementation complexity of the second device configuring transmission parameters for the first device.
  • the second device receives the CQI corresponding to the N types of BLERs among the M types of BLERs reported preferentially on the first device, thereby preferentially assigning the corresponding transmission to the second device Parameters, thereby saving time for scheduling by the first device.
  • the second device receiving the CQI corresponding to the N BLERs of the M BLERs from the first device includes: the second device receives the physical uplink channel resource The CQI corresponding to the N BLERs of the M BLERs from the first device.
  • the physical uplink channel resources include physical uplink control channel resources and/or physical uplink shared channel resources.
  • the second device receives the CQI corresponding to the N BLERs of the M BLERs from the first device, and further includes: the second device Receiving the CQI corresponding to the first N BLERs in the first order from the first device, where the first order is the order in which the M BLERs are arranged in ascending order or ascending order.
  • the method further includes: the second device determining a target BLER from the N kinds of BLERs; the second device according to the CQI corresponding to the target BLER Assign transmission parameters to the first device.
  • the method further includes: the second device sends second indication information to the first device, and the second indication information is used to indicate the target BLER and The transmission parameter corresponding to the target BLER, wherein the target BLER is one of the M types of BLER.
  • a communication device including: a processor coupled to a memory, where the memory is used to store a program, and when the program is executed by the processor, the communication device is used to execute Each module or unit of the method in the above first aspect and each implementation of the first aspect; or each module or unit for performing the method in the above third aspect and each implementation of the third aspect.
  • the communication device is a terminal device.
  • the device is a communication chip
  • the communication chip may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • the apparatus is a communication device, and the communication device may include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a communication device including: a processor coupled to a memory, where the memory is used to store a program, and when the program is executed by the processor, the communication device is used to execute Each module or unit of the method in the above second aspect and each implementation of the second aspect; or each unit in the device is used to execute each module or unit of the method in the above fourth aspect and each implementation of the fourth aspect .
  • the communication device is a network-side device.
  • the communication device is a communication chip
  • the communication chip may include an input circuit or interface for transmitting information or data, and an output circuit or interface for receiving information or data.
  • the communication device is a communication device
  • the communication chip may include a transmitter for transmitting information or data, and a receiver for receiving information or data.
  • a storage medium is provided, and a computer program or instruction is stored on the storage medium, and when executed, the computer program or instruction causes the computer to execute any of the possible implementation manners of the first aspect or the third aspect method.
  • a storage medium is provided, and a computer program or instruction is stored on the storage medium, and when executed, the computer program or instruction causes the computer to perform any of the possible implementation manners in the second aspect or the fourth aspect method.
  • a chip system including a processor, for performing the method in any possible implementation manner of the foregoing first aspect or third aspect.
  • a chip system including a processor, for performing a method in any possible implementation manner of the second aspect or the fourth aspect.
  • the chip system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • a communication system including: a communication device for performing the method in any possible implementation manner of the first aspect or the third aspect, and/or for performing the second aspect Or a communication device of any possible implementation method in the fourth aspect.
  • a communication device which can implement one or more corresponding functions of the first device in the first aspect or the third aspect.
  • the communication device includes corresponding units or components for performing the above method.
  • the unit included in the communication device may be implemented in software and/or hardware.
  • the communication device may be, for example, a terminal, or a chip, a chip system, or a processor that can support the terminal to realize the above-mentioned functions.
  • a communication device which can implement one or more corresponding functions of the second device in the second aspect or the fourth aspect.
  • the communication device includes corresponding units or components for performing the above method.
  • the unit included in the communication device may be implemented in software and/or hardware.
  • the communication device may be, for example, a network device (such as a base station), or a chip, chip system, or processor that can support the network device to achieve the above-mentioned functions.
  • FIG. 1 is a schematic diagram of an example of the communication system of the present application.
  • FIG. 2 is a schematic flowchart of a channel quality indication reporting method provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of another channel quality indication reporting method provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a first communication device provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a second communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a third communication device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a fourth communication device according to an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a first communication device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a second communication device according to an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a third communication device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a fourth communication device according to an embodiment of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • CDMA code division multiple access
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • LTE Time division duplex time division duplex, TDD
  • universal mobile communication system Universal mobile telecommunication system, UMTS
  • global interconnected microwave access worldwide interoperability for microwave access, WiMAX) communication system, fifth generation (5th generation, 5G) System or new radio (NR), or future evolution network, etc.
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for the method provided by the embodiment of the present application.
  • the communication system 100 may include at least one network device, such as a base station (gNB) in the 5G system shown in FIG. 1; the communication system 100 may also include at least one terminal device, as shown in FIG. 1 Of user equipment (UE) 1 to UE 6.
  • Network devices and terminal devices can communicate through wireless links.
  • the network device may send configuration information to the terminal device, and the terminal device may send uplink data to the network device based on the configuration information; for another example, the network device may send downlink data to the terminal device. Therefore, the gNB and the UE in FIG. 1 can form a communication system.
  • the terminal devices in the communication system 100 may also constitute a communication system.
  • UE4 can control UE5 and UE6 to execute corresponding instructions. This application does not limit this.
  • the network device in the communication system may be any device with wireless transceiver function.
  • the network equipment includes but is not limited to: evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC) ), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), wireless fidelity (WiFi) system Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or sending and receiving point (transmission and reception point, TRP), etc.
  • 5G such as, NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) of the base station in the 5G system, or it can also be a network node that constitutes a gNB or transmission point
  • gNB may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions, DU implements wireless chain Road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements wireless chain Road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layer functions.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in a radio access network (RAN), and may also be divided into network devices in a core network (CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, and an augmented reality (augmented reality, AR) terminal Wireless terminals in equipment, industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( Wireless terminals in transportation, safety terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of the present application do not limit application scenarios.
  • FIG. 1 is only a simplified schematic diagram for ease of understanding and examples.
  • the communication system 100 may also include other network devices or other terminal devices, which are not shown in FIG. 1.
  • CQI is used to reflect the current channel quality.
  • 0 to 15 can be used to represent the PDSCH channel quality, 0 represents the worst channel quality, and 15 represents the best channel quality.
  • CQI is measured by the UE.
  • a base station evolved Node Base-station, eNB
  • the transmission parameters may include MCS.
  • the UE reports that the CQI corresponding to the BLER of 10 -1 is 10, that is, when the CQI index value is 10, the corresponding efficiency is 2.7305.
  • the base station can find the corresponding value less than the efficiency value in the MCS table according to the efficiency value The MCS index.
  • the transmission parameter may also include a modulation method, which may be quadrature phase shift keying (QPSK), or quadrature amplitude modulation (QAM) of 16 symbols, It may be QAM with 64 symbols or QAM with 256 symbols.
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • the choice of modulation mode mainly depends on the upper limit of BLER and the CQI value. Therefore, the base station may be data transmission between the base station and the UE, so that one or more of transmission parameters such as the size, coding mode, and modulation mode of the transmission data block may be determined.
  • LET long term evolution
  • the selection principle is based on the decoding error rate of the physical downlink shared channel (PDSCH) (That is, the block error rate) is less than 10%, the CQI used.
  • the UE needs to evaluate the downlink characteristics based on the measurement results (for example, signal to interference plus noise ratio), and use an internal algorithm to determine the block error ratio (BLER) value that can be obtained under this SINR condition. And according to the limit of BLER ⁇ 10%, report the corresponding CQI.
  • the measurement results for example, signal to interference plus noise ratio
  • BLER block error ratio
  • the BLER requirement corresponding to the eMBB service is less than 10 -1
  • the BLER requirement corresponding to the URLLC service is less than 10 -5 , so as to meet the high reliability requirements of URLLC.
  • the selection principle of the CQI reported by the UE Strict therefore, when the base station allocates resources to the UE, it usually uses a smaller modulation and coding scheme (MCS), and needs to use more resources to transmit data.
  • MCS modulation and coding scheme
  • the network device can allocate the corresponding MCS to the terminal device through the CQI corresponding to one type of BLER or the CQI corresponding to multiple types of BLER reported by the terminal device , So as to ensure that the UE obtains better downlink performance.
  • the resources in the embodiments of the present application may sometimes be referred to as physical resources.
  • the resources may include one or more of time domain resources, frequency domain resources, code domain resources, or space domain resources.
  • the time domain resource included in the resource may include at least one frame, at least one sub-frame, at least one slot, at least one mini-slot, or at least one time Domain symbols, etc.
  • the frequency domain resource included in the resource may include at least one carrier, at least one unit carrier (CC), at least one bandwidth part (BWP), and at least one resource block group (resource block) group, RBG), at least one physical resource block (PRG), at least one resource block (RB), or at least one sub-carrier (SC), etc.
  • CC unit carrier
  • BWP bandwidth part
  • RBG resource block group
  • PRG physical resource block
  • RB resource block
  • SC sub-carrier
  • the airspace resource included in the resource may include at least one beam, at least one port, at least one antenna port, or at least one layer/space layer, and so on.
  • the code domain resource included in the resource may include at least one orthogonal cover code (OCC) or at least one non-orthogonal multiple access code (NOMA).
  • the physical uplink channel resource may be understood as a physical uplink channel; the physical uplink control channel resource may be understood as a physical uplink control channel; and the physical uplink shared channel resource may be understood as a physical uplink shared channel.
  • the multiple BLERs in the embodiments of the present application can be understood that the upper limit values of the multiple BLERs are different.
  • the upper limit value of one BLER is 10 -1 (may also be expressed as a BLER of 10 -1 ), and the upper limit value of another BLER is 10 -5 and so on (may also be expressed as a BLER of 10 -5 ).
  • one CQI table corresponds to one modulation and coding strategy MCS table
  • one BLER may correspond to one or more CQI tables.
  • Table 1 and Table 2 are the corresponding CQI tables when the upper limit of BLER is 10 -1
  • Table 3 is one corresponding to the BLER of 10 -5 CQI form.
  • the efficiency is 5.5547
  • the information that one resource element (resource) can carry is 5.554
  • the rest are Turbo redundant bits.
  • the channel bit or physical bit of each RE is 6.
  • one BLER corresponds to one CQI for reporting.
  • the upper limit of the BLER is 10 -1 , although corresponding to two CQI tables, one CQI is finally reported.
  • the corresponding relationships shown in the above tables may be configured or may be predefined.
  • the value of the indication information in each table is only an example, and can be configured to other values, which is not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, etc.
  • the names of the parameters shown in the titles in the above tables may also use other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that can be understood by the communication device.
  • other data structures may also be used, such as arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables Wait.
  • the method provided by the present application may be applicable to a wireless communication system, for example, the wireless communication system 100 shown in FIG. 1.
  • Two communication devices in a wireless communication system can perform wireless communication, and one of the two communication devices can correspond to one of UE 1 to UE 6 shown in FIG. 1, for example, it can be as shown in FIG.
  • One of UEs 1 to 6 may also be a chip configured in one of UEs 1 to 6; the other of the two communication devices may correspond to the gNB shown in FIG. 1, For example, it may be gNB in FIG. 1 or a chip arranged in gNB.
  • a terminal device in a wireless communication system can communicate with one or more network devices based on the same method. This application does not limit this.
  • FIG. 2 shows a schematic flowchart of a method 200 for reporting a channel quality indicator provided by an embodiment of the present application from the perspective of device interaction. As shown, the method may include steps 210 to 230. The steps in the method 200 are described in detail below.
  • the second device determines at least two BLERs.
  • the second device may determine the CQI corresponding to at least two BLERs reported by the first device (that is, an example of the first device, for example, the first device may be a UE) in the following manner, but this application does not Limited to this.
  • the communication system or the communication protocol may specify at least two block error ratios (BLER).
  • BLER block error ratios
  • the two BLERs may be 10 -1 BLER, 10 -2 BLER, or 10 -1 .
  • three types of BLER, four types of BLER, etc. may also be specified. Taking two types of BLER as an example, it is not limited to this, as long as at least two types are specified.
  • the second device may indicate at least two block error rates BLER for the first device based on the service requirements of the first device.
  • the second device may indicate at least two block error rates BLER for the first device based on the service load of the second device (for example, UE 5 and UE 6 served by UE 4 in FIG. 1 ). For example, if the second device serves more terminal devices, the second device may indicate a looser BLER value for the first device (that is, the upper limit of the BLER is larger); if the terminal device served by the second device is relatively small If it is less, the second device may indicate a stricter BLER value for the first device (that is, the upper limit of the BLER is smaller).
  • the second device sends first indication information to the first device, where the first indication information is used to indicate at least two block error rates BLER.
  • the first device receives the first indication information sent by the second device.
  • the second device indicates at least two BLERs to the first device through the first indication information.
  • a specific arrangement order can be defined.
  • the arrangement order of the at least two BLERs in the first indication information can be implemented in the following two ways. This application is not limited to this.
  • the arrangement order of the at least two BLERs in the first indication information may be predefined.
  • the order in which the at least two BLERs are arranged in the first indication information may be arranged in ascending order or ascending order.
  • the arrangement order of the at least two BLERs in the first indication information may also be configured by the second device for the first device.
  • the presentation form of the order of the at least two BLERs in the first indication information may also be the order of the BLER values (such as the upper limit of the BLER), or the order of the index corresponding to the BLER, which is no longer described here A detailed description.
  • At least two BLERs may be arranged in the first indication information in the following two presentation forms.
  • the presentation form of the arrangement order of the at least two BLERs in the first indication information may be the arrangement order of the BLER values.
  • the second device indicates five types of BLER to the first device, that is, when the upper limit of the BLER is 10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 -1
  • the five types of BLER Can be arranged in the order of BLER value from small to large, that is, 10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 -1
  • BLER can also be arranged in order from large to small , That is, the arrangement order of 10 -1 , 10 -2 , 10 -3 , 10 -4 , and 10 -5 .
  • the second device indicates three types of BLER to the first device, that is, when the upper limit of the BLER is 10 -5 , 10 -3 , and 10 -1 , the three types of BLER can be adjusted from small to large, respectively.
  • Sequential arrangement that is, the arrangement order of 10 -5 , 10 -3 , 10 -1 ;
  • BLER can also be arranged in order from large to small, that is, the arrangement order of 10 -1 , 10 -3 , 10 -5 .
  • the presentation form of the arrangement order of the at least two BLERs in the first indication information may be the arrangement order of the indexes corresponding to the BLER.
  • indexes corresponding to BLER of 10 -5 , 10 -4 , 10 -3 , 10 -2 , and 10 -1 may be 1 , 2 , 3 , 4 , and 5 , respectively.
  • the second device indicates five types of BLER to the first device, that is, when the upper limit of the BLER is 10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 -1 , the five types of BLER It can be arranged in the order of the index corresponding to the BLER from small to large, that is, the order of arrangement of 1, 2, 3, 4, and 5; the five BLERs can be arranged in the order of the index corresponding to the BLER from large to small, that is 5. Arrangement order of 5, 4, 3, 2, and 1.
  • the second device indicates two types of BLER to the first device, that is, when the upper limit values of the BLER are 10 -5 and 10 -2 , respectively
  • the two types of BLER can be adjusted from small to large according to the index corresponding to the BLER.
  • the order of the arrangement is 1, that is, the arrangement order of 1, 5; the two BLERs can be arranged in the order of the index corresponding to the BLER from large to small, that is, the arrangement order of 5, 1.
  • This application does not limit the arrangement order of at least two BLERs in the first indication information, and at the same time, this application also does not limit the correspondence between BLER and the index corresponding to BLER.
  • Step 230 The second device receives the channel quality indicator CQI corresponding to the at least two BLERs reported by the first device; correspondingly, according to the first indication information, the first device reports the channel quality indicator CQI corresponding to the at least two BLERs to the second device .
  • the second device may receive the CQI corresponding to the at least two BLERs reported by the first device through physical uplink channel resources.
  • the physical uplink channel resource may be a physical uplink control channel resource on the control channel or a physical uplink control channel resource on the data channel.
  • the first device may report the CQI corresponding to the N BLERs of the M BLERs to the second device through one physical uplink control channel resource or multiple physical uplink control channel resources, where N is less than or equal to M, and N is greater than or equal to 1, M is greater than or equal to 2.
  • N is less than or equal to M
  • N is greater than or equal to 1
  • M is greater than or equal to 2.
  • the first device may report the CQI corresponding to the M BLERs to the second device, and M ⁇ 2.
  • the first device reports the channel quality indicator CQI corresponding to the M types of BLERs to the second device through M two physical uplink control channel resources, and the M physical uplink control channel resources respectively correspond to the M types of BLERs.
  • the second device indicates two types of BLER to the first device, the first BLER (for example, the upper limit value of BLER is 10 -4 ) and the second BLER (for example, the upper limit value of BLER 10-3 ), according to the mapping relationship, the first device may report the CQIs corresponding to the two types of BLER to the second device through physical uplink control channel resources corresponding to the two types of BLER, respectively.
  • the mapping relationship may be a correspondence between multiple BLERs including the first BLER and the second BLER and multiple physical uplink control channel resources including the first physical uplink control channel resource and the second physical uplink control channel resource.
  • mapping relationship may be predefined or configured by the second device, that is, the network device.
  • the first physical uplink control channel resource may correspond to a BLER of 10 -1
  • the second physical uplink control channel resource may correspond to a BLER of 10 -2
  • the first physical uplink control channel resource may correspond to 10 -3
  • the BLER of the second physical uplink control channel resource may correspond to a BLER of 10 -1
  • the first physical uplink control channel resource may correspond to a BLER of 10 -2
  • the second physical uplink control channel resource may be 10 -3 BLER corresponds; this application is not limited to the mapping relationship between 2 BLERs and 2 physical uplink control channel resources, and the correspondence between multiple BLERs and multiple physical uplink control channel resources can also be pre-defined.
  • the first The device selects the corresponding mapping relationship according to the correspondence between the BLER to be reported and the corresponding physical uplink control channel resource.
  • the first device may report the first CQI corresponding to the first BLER to the second device through the first physical uplink control channel resource, where the first physical uplink control channel resource corresponds to the first BLER, and the first BLER is included in M types In BLER, the first physical uplink control channel resource is included in the M physical uplink control channel resources;
  • the first device may report the second CQI corresponding to the second BLER to the second device through the second physical uplink control channel resource, where the second physical uplink control channel resource corresponds to the second BLER, and the second BLER is included in at least In the two types of BLER, the second physical uplink control channel resource is included in at least two physical uplink control channel resources.
  • the second device When the second device receives the CQI values corresponding to the two types of BLER reported by the first device, the second device needs to determine which physical uplink control channel resource carries the received CQI.
  • the second device obtains the first CQI and the second CQI when performing the blind inspection, but the second device does not know which BLER the first CQI and the second CQI respectively correspond to, so the first The two devices may determine which BLER corresponds to the CQI reported by the physical uplink control channel according to the mapping relationship.
  • the first device needs to report.
  • the second device needs to determine to carry the first Whether the physical uplink control channel resource of a CQI is the first physical uplink control channel resource or the second physical uplink control channel resource, and it is determined whether the physical uplink control channel resource carrying the second CQI is the first physical uplink control channel resource or the second physical uplink Control channel resources.
  • the second device determines that the physical uplink control channel resource carrying the first CQI is the first physical uplink control channel resource, according to the mapping relationship, it can be determined that the BLER corresponding to the first CQI is the first BLER; if the second device determines to carry the first The physical uplink control channel resource of the second CQI is the second physical uplink control channel resource, and according to the mapping relationship, it can be determined that the BLER corresponding to the second CQI is the second BLER.
  • the CQIs corresponding to the M types of BLERs are carried on M physical uplink control channel resources. That is, the first device can report each BLER to a physical uplink control channel resource in a one-to-one correspondence with the second device, so that the first device can reasonably use the physical uplink control channel resources to report to the second device at least two types of BLER corresponding to CQI, so as to reasonably allocate the size of the downlink transmission data block to ensure that the first device obtains better downlink performance.
  • the first device may report the CQI corresponding to the N BLERs of the M BLERs to the second device, and M ⁇ 2, 1 ⁇ N, and N ⁇ M.
  • the first device may report the channel quality indicator CQI corresponding to the N BLERs to the second device through N physical uplink channel resources, and the N physical uplink channel resources respectively correspond to the N BLERs.
  • the second device indicates two types of BLER to the first device, the first BLER (for example, the upper limit value of BLER is 10 -4 ) and the second BLER (for example, the upper limit value of BLER 10-3 ), the first device may report the CQI corresponding to one of the first BLER and the second BLER.
  • the first BLER for example, the upper limit value of BLER is 10 -4
  • the second BLER for example, the upper limit value of BLER 10-3
  • the second device indicates three types of BLER to the first device, the first BLER (for example, the upper limit value of BLER may be 10 -4 ), the second BLER (for example, the upper limit value of BLER 10 -3 ), the third BLER (for example, the upper limit of the BLER may be 10 -2 ), the first device may report one of the first BLER, the second BLER, the third BLER or two BLER correspondence Of CQI.
  • the first BLER for example, the upper limit value of BLER may be 10 -4
  • the second BLER for example, the upper limit value of BLER 10 -3
  • the third BLER for example, the upper limit of the BLER may be 10 -2
  • the first device may report one of the first BLER, the second BLER, the third BLER or two BLER correspondence Of CQI.
  • the first device may report the CQIs corresponding to the N types of BLER through N physical uplink channel resources.
  • the correspondence between the physical uplink channel and the BLER may be based on the above-mentioned mapping relationship, which is not described in detail here.
  • the first device may report the CQI corresponding to the N BLERs through one physical uplink channel resource.
  • the first device may report the CQI corresponding to the two BLERs of the first BLER, the second BLER, and the third BLER. At this time, the first device may Use the above sequence 1 or sequence 2 for CQI reporting.
  • the BLERs in sequence 1 are arranged in the order of 10 -4 , 10 -3 , and 10 -2 in sequence.
  • the first device may report the CQIs corresponding to the first two BLERs in sequence 1 to the second device, that is, the first device will The CQI corresponding to the BLER of 10 -4 and the CQI corresponding to the BLER of 10 -3 are reported to the second device; for another example, the first device may also report the CQI corresponding to the last two BLERs in sequence 1 to the second device, that is, the first The device may report the CQI corresponding to the BLER of 10 -3 and the CQI corresponding to the BLER of 10 -2 to the second device.
  • the index corresponding to BLER in sequence 2 is in the order of 2 (the upper limit of BLER is 10 -4 ), 3 (the upper limit of BLER is 10 -3 ), and 4 (the upper limit of BLER is 10 -2 ).
  • the first device can report the CQI corresponding to the BLER corresponding to the indexes 2 and 3 corresponding to the first 2 BLERs in sequence 2 to the second device, that is, the first device corresponds to the BLER of 10 -4 corresponding to the index 2 corresponding to the BLER
  • the CQI corresponding to the CQI and the index 3 corresponding to the BLER are reported to the second device by the CQI corresponding to the 10-3 BLER; for another example, the first device may also report to the second device the indexes 3 and 4 corresponding to the last 2 BLERs in sequence 1.
  • the CQI corresponding to the corresponding BLER that is, the first device may report the CQI corresponding to the 10 -3 BLER corresponding to the index 3 corresponding to the BLER, and the CQI corresponding to the 10 -2 BLER corresponding to the index 4 corresponding to the BLER to the second device .
  • the first device may select the CQIs corresponding to the N BLERs of the M types of BLERs to carry the N physical uplink control channel resources and report them to the second device.
  • the number N of BLERs reported by the first device is determined by the number of physical uplink channel resources, which is not limited in this application.
  • the second device needs to determine whether the physical uplink control channel resource carrying the CQI corresponding to the two BLERs is the first physical uplink control channel resource or the second physical uplink control channel resource, if the second device It is determined that the physical uplink control channel resource carrying the CQIs corresponding to the two BLERs is the first physical uplink control channel resource, and the second device needs to continue to determine the arrangement order of the CQIs corresponding to the two BLERs on the first physical uplink control channel resource That is, the CQIs corresponding to the two BLERs are arranged in the above sequence 1 or sequence 2 or other preset order, so as to determine which BLERs the two CQIs correspond to.
  • FIG. 3 is a schematic flowchart of another method 300 for reporting channel quality indication provided by an embodiment of the present application from the perspective of device interaction.
  • the method 300 for reporting a channel quality indicator provided in this embodiment may further include steps 310-320 on the basis of the method 200.
  • Step 310 The second device determines the target BLER.
  • the second device may determine the target BLER from the reported at least two types of BLER based on the following three methods.
  • the second device may determine the target BLER based on the service load of the second device.
  • the second device determines the first BLER among the at least two BLERs as the target BLER;
  • the second device determines the second BLER of the at least two BLERs as the target BLER.
  • the first BLER is smaller than the second BLER.
  • the service load of the second device that is, the number of terminal devices served by the second device or the service requirements of the serviced terminal devices.
  • the second device may determine the target BLER based on the service delay value of the first device.
  • the second device determines the third BLER among the at least two BLERs as the target BLER;
  • the second device determines the fourth BLER among the at least two BLERs as the target BLER.
  • the third BLER is smaller than the fourth BLER.
  • the service delay value of the first device may be a predefined delay value or a delay value based on the previous data transmission between the second device and the first device.
  • the second device may determine the target BLER based on the service delay value of the first device and the service load of the second device.
  • the second device Five BLER is determined as the target BLER
  • the second device determines the sixth BLER among the at least two BLERs as the target BLER .
  • the fifth BLER is smaller than the sixth BLER.
  • the first threshold and the second threshold may be predefined, or may be configured by a network device (for example, a second device).
  • the first threshold may be the amount of service load
  • the second threshold may be the service delay value, which is not limited in this embodiment.
  • the second device determines from the reported CQIs corresponding to the N types of BLERs that the upper limit value of the target BLER that can be adopted is 10 -1 .
  • Step 320 The second device configures transmission parameters for the first device according to the CQI corresponding to the target BLER.
  • the transmission parameters include MCS.
  • the target BLER determined by the second device is 10 -1
  • the CQI corresponding to the target BLER is 10.
  • the second device can use the CQI index of 10 in Table 1, and the corresponding efficiency is 2.7305.
  • the second device can For the efficiency value, find an MCS index corresponding to the efficiency value from the MCS table that is less than the efficiency value.
  • the transmission parameter includes a modulation method, which may be quadrature phase shift keying (QPSK), or quadrature amplitude modulation (QAM) of 16 symbols, or It can be QAM with 64 symbols or QAM with 256 symbols.
  • QPSK quadrature phase shift keying
  • QAM quadrature amplitude modulation
  • the choice of modulation mode mainly depends on the upper limit of BLER and the CQI value.
  • the method 300 for reporting a channel quality indicator provided by another embodiment of the present application may further include step 260. As shown by the dotted line in Figure 3.
  • Step 330 The second device sends second indication information to the first device, where the second indication information is used to indicate the target BLER and the transmission parameter corresponding to the target BLER.
  • the first device receives the second indication information sent by the second device.
  • the second indication information may be explicitly indicated by downlink control information (downlink control information, DCI) or implicitly indicated by a wireless network temporary identifier (radio network temporary identity, RNTI).
  • DCI downlink control information
  • RNTI radio network temporary identity
  • the second device may directly carry the target BLER and the transmission parameters corresponding to the target BLER in the DCI information, and send the DCI to the first device.
  • the first device may obtain the target BLER and the target BLER from the DCI Corresponding transmission parameters.
  • the second device may configure K (K is an integer greater than or equal to 1) RNTIs for the first device, and one RNTI may correspond to at least one BLER.
  • the first device may try to receive the DCI using the K RNTIs (for example, try to use the K RNTIs to verify or descramble the check information included in the DCI).
  • the first device may obtain the at least one BLER as the target BLER according to the corresponding relationship between the k-th RNTI and the at least one BLER, and may further obtain transmission parameters corresponding to the target BLER.
  • the second device After the second device sends the transmission parameters corresponding to the target BLER to the first device, the second device can adopt the size of the corresponding transmission data block, the number of codes of the PDSCH channel, the coding method, and the modulation method allocated to the first device , So that data transmission can be performed between the second device and the first device.
  • the second device determines the physical uplink control channel resources used for reporting each BLER or uses several physical uplink control channel resources through at least two BLERs reported by the first device, so as to reasonably use the network physical uplink Control the channel resources, and allocate the corresponding transmission data block size, PDSCH channel code number, coding mode, modulation mode, etc. reasonably for the first device.
  • FIGS. 2 to 3 are only to help those skilled in the art to understand the embodiments of the present application, and are not intended to limit the embodiments of the present application to the specific numerical values or specific scenarios illustrated. Those skilled in the art can obviously make various equivalent modifications or changes according to the examples given in FIGS. 2 to 3. For example, those skilled in the art can use the examples in FIGS. 2 to 3 to combine multiple embodiments. Modifications and changes such as combination splitting are also within the scope of the embodiments of the present application.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the execution order of each process should be determined by its function and inherent logic, and should not be applied to the embodiments of the present application.
  • the implementation process constitutes no limitation.
  • the method implemented by the terminal device may also be implemented by components (such as chips or circuits) that can be used for the terminal, and the method implemented by the network device may also be implemented by the network device. Components (such as chips or circuits) to achieve.
  • the method of the embodiment of the present application is described in detail with reference to FIGS. 1 to 3, and the communication device of the embodiment of the present application is described below with reference to FIGS. 4 to 5.
  • FIG. 4 is a schematic structural diagram of a first communication device according to an embodiment of the present application.
  • the communication device 400 may include:
  • Processing unit 410 and transceiver unit 420 are included in the processing unit 410 and transceiver unit 420.
  • the processing unit 410 is used to control the transceiver unit 420 to receive first indication information from a second device, and the first indication information is used to indicate at least two block error rates BLER.
  • the processing unit 410 is further configured to control the transceiver unit 420 to report the channel quality indicator CQI corresponding to the at least two BLERs to the second device through at least two physical uplink control channel resources, wherein the at least two physical uplink control channels The resources respectively correspond to the at least two BLERs.
  • the processing unit 410 is further configured to control the transceiver unit 420 to report the first CQI corresponding to the first BLER to the second device through the first physical uplink control channel resource, where the first physical uplink control channel resource is Corresponding to the first BLER, the first BLER is included in the at least two BLERs, and the first physical uplink control channel resource is included in the at least two physical uplink control channel resources.
  • the processing unit 410 is further configured to control the transceiver unit 420 to report the second CQI corresponding to the second BLER to the second device through the second physical uplink control channel resource, where the second physical uplink control channel resource is Corresponding to the second BLER, the second BLER is included in the at least two BLERs, and the second physical uplink control channel resource is included in the at least two physical uplink control channel resources.
  • the processing unit 410 is further configured to control the transceiver unit 420 to receive second indication information from the second device, where the second indication information is used to indicate the target BLER and the transmission parameter corresponding to the target BLER, where the The target BLER is one of the at least two BLERs.
  • FIG. 5 is a schematic structural diagram of a second communication device according to an embodiment of the present application.
  • the communication device 500 may include:
  • Processing unit 510 and transceiver unit 520 are identical to processing unit 510 and transceiver unit 520.
  • the processing unit 510 is further configured to control the transceiver unit 520 to receive first indication information from a second device, where the first indication information is used to indicate M kinds of block error rates BLER, where M ⁇ 2.
  • the processing unit 510 is further configured to report the CQI corresponding to the N BLERs of the M BLERs to the second device through physical uplink channel resources, where the physical uplink channel resources include physical uplink control channel resources and/or physical Uplink shared channel resources.
  • the processing unit 510 is further configured to control the transceiver unit 520 to report the CQI corresponding to the first N BLERs in the first order to the second device, where the first order is the M BLERs in descending order or large Sorting order from big to small.
  • the processing unit 510 is further configured to control the transceiver unit 520 to receive second indication information from the second device, where the second indication information is used to indicate the target BLER and the transmission parameter corresponding to the target BLER, Among them, the target BLER is one of the M types of BLER.
  • the communication devices 400 and 500 provided in the present application may correspond to the processes performed by the terminal device in the method embodiments of FIGS. 2 to 3 described above.
  • FIGS. 4 and 5 may be terminal devices.
  • FIG. 6 is a schematic structural diagram of a third communication device according to an embodiment of the present application.
  • the device 600 may include:
  • Processing unit 610 and transceiver unit 620 are identical to processing unit 610 and transceiver unit 620.
  • the processing unit 610 is used to control the transceiver unit 620 to send first indication information to the first device, where the first indication information is used to indicate at least two block error rates BLER.
  • the processing unit 610 is further configured to control the transceiver unit 620 to receive the channel quality indicator CQI corresponding to the at least two BLERs from the first device through at least two physical uplink control channel resources, wherein The at least two physical uplink control channel resources respectively correspond to the at least two BLERs.
  • the processing unit 610 is further configured to control the transceiver unit 620 to receive the first CQI corresponding to the first BLER from the first device through the first physical uplink control channel resource, where the first physical uplink control The channel resource corresponds to the first BLER, the first BLER is included in the at least two BLERs, and the first physical uplink control channel resource is included in the at least two physical uplink control channel resources.
  • the processing unit 610 is further configured to control the first device of the transceiver unit 620 to send first indication information, where the first indication information is used to indicate M kinds of block error rates BLER, where M ⁇ 2;
  • the processing unit 610 is further configured to control the transceiver unit 620 to receive the second CQI corresponding to the second BLER from the first device through the second physical uplink control channel resource, wherein the second physical uplink control The channel resource corresponds to the second BLER, the second BLER is included in the at least two BLERs, and the second physical uplink control channel resource is included in the at least two physical uplink control channel resources.
  • the processing unit 610 is further configured to determine a target BLER from at least two BLERs, and the second device allocates transmission parameters to the first device according to the CQI corresponding to the target BLER.
  • the processing unit 610 is further configured to control the transceiver unit 620 to send second indication information to the first device.
  • the second indication information is used to indicate the target BLER and the transmission parameter corresponding to the target BLER.
  • the target BLER is one of the at least two BLERs.
  • the device 700 may include:
  • Processing unit 710 and transceiver unit 720 are identical to processing unit 710 and transceiver unit 720.
  • the processing unit 710 is used to control the transceiver unit 720 to send first indication information to the first device, where the first indication information is used to indicate M kinds of block error rates BLER, where M ⁇ 2.
  • the processing unit 710 is further configured to control the transceiver unit 720 to receive CQIs corresponding to N BLERs of the M BLERs from the first device, where N satisfies 1 ⁇ N, and N ⁇ M.
  • the processing unit 710 is further configured to control the transceiver unit 720 to receive the CQI corresponding to the N BLERs of the M BLERs from the first device through physical uplink channel resources, the physical uplink channel resources include Physical uplink control channel resources and/or physical uplink shared channel resources.
  • the processing unit 710 is further configured to control the transceiver unit 720 to receive the CQI corresponding to the top N BLERs in the first order from the first device, wherein the first order is the M BLERs according to Sorting order from small to large or from large to small.
  • the processing unit 710 is further configured to determine a target BLER from N BLERs, and the second device allocates transmission parameters to the first device according to the CQI corresponding to the target BLER.
  • the processing unit 710 is further configured to control the transceiver unit 720 to send second indication information to the first device, where the second indication information is used to indicate a target BLER and a transmission parameter corresponding to the target BLER, where ,
  • the target BLER is one of the M types of BLER.
  • the communication apparatuses 600 and 700 provided in this application may correspond to the processes performed by the network-side devices in the method embodiments of FIGS. 2 to 3 described above.
  • the functions of each unit/module in the communication apparatus may refer to the description above, and are appropriately omitted here A detailed description.
  • FIGS. 6 and 7 may be network side devices.
  • the communication device shown in FIGS. 4, 5, 6, and 7 may be a communication chip, and the communication chip may include an input circuit or interface for sending information or data, and for receiving information or data Output circuit or interface.
  • the apparatus is a communication device
  • the communication device may include a transceiver for sending information or data and receiving information or data.
  • FIG. 8 is a schematic structural diagram of a first communication device according to an embodiment of the present application.
  • the communication device 800 may include: a transceiver 810.
  • the transceiver 810 is used to receive first indication information from a second device, and the first indication information is used to indicate at least two block error rates BLER.
  • the transceiver 810 is further configured to report the channel quality indicator CQI corresponding to the at least two BLERs to the second device through at least two physical uplink control channel resources, where the at least two physical uplink control channel resources are respectively Two types of BLER correspond.
  • the transceiver 810 is further configured to report the first CQI corresponding to the first BLER to the second device through the first physical uplink control channel resource, where the first physical uplink control channel resource corresponds to the first BLER ,
  • the first BLER is included in the at least two BLERs
  • the first physical uplink control channel resource is included in the at least two physical uplink control channel resources.
  • the transceiver 810 is further configured to report the second CQI corresponding to the second BLER to the second device through the second physical uplink control channel resource, where the second physical uplink control channel resource corresponds to the second BLER , The second BLER is included in the at least two BLERs, and the second physical uplink control channel resource is included in the at least two physical uplink control channel resources.
  • the transceiver 810 is further configured to receive second indication information from the second device, where the second indication information is used to indicate a target BLER and a transmission parameter corresponding to the target BLER, where the target BLER is the at least One of the two BLERs.
  • the communication device 800 may further include a processor, which is used to control or configure the transceiver 810 to perform the above steps.
  • the communication device 900 may include: a transceiver 910.
  • the transceiver 910 is configured to receive first indication information from a second device, where the first indication information is used to indicate M kinds of block error rates BLER, where M ⁇ 2.
  • the processing unit 510 is further configured to report the CQI corresponding to the N BLERs of the M BLERs to the second device through physical uplink channel resources, where the physical uplink channel resources include physical uplink control channel resources and/or physical Uplink shared channel resources.
  • the transceiver 910 is also used to report the CQI corresponding to the first N BLERs in the first order to the second device, where the first order is the M BLERs in ascending order or ascending order Order.
  • the transceiver 910 is further configured to receive second indication information from the second device, where the second indication information is used to indicate a target BLER and transmission parameters corresponding to the target BLER, where the target BLER is the M One of a kind of BLER.
  • the communication device 900 may further include a processor for controlling or configuring the transceiver 910 to perform the above steps.
  • the communication devices 800 and 900 provided by the present application may correspond to the processes performed by the terminal device in the method embodiments of FIGS. 2 to 3 described above.
  • the functions of the processor and the transceiver in the communication device may refer to the description above, and are appropriately omitted here A detailed description.
  • FIGS. 8 and 9 may be terminal devices.
  • the communication device 1000 may include: a transceiver 1010.
  • the transceiver 1010 is used to send first indication information to the first device, where the first indication information is used to indicate at least two block error rates BLER.
  • the transceiver 1010 is further configured to receive the channel quality indicator CQI corresponding to the at least two BLERs from the first device through at least two physical uplink control channel resources, wherein the at least two physical The uplink control channel resources respectively correspond to the at least two BLERs.
  • the transceiver 1010 is further configured to receive the first CQI corresponding to the first BLER from the first device through the first physical uplink control channel resource, where the first physical uplink control channel resource is Corresponding to the first BLER, the first BLER is included in the at least two BLERs, and the first physical uplink control channel resource is included in the at least two physical uplink control channel resources.
  • the transceiver 1010 is also used for the first device to send first indication information, where the first indication information is used to indicate M kinds of block error rates BLER, where M ⁇ 2;
  • the transceiver 1010 is further configured to receive a second CQI corresponding to a second BLER from the first device through a second physical uplink control channel resource, where the second physical uplink control channel resource is Corresponding to a second BLER, the second BLER is included in the at least two BLERs, and the second physical uplink control channel resource is included in the at least two physical uplink control channel resources.
  • the transceiver 1010 is further configured to determine a target BLER from at least two BLERs, and the second device allocates transmission parameters to the first device according to the CQI corresponding to the target BLER.
  • the transceiver 1010 is further configured to send second indication information to the first device, where the second indication information is used to indicate a target BLER and a transmission parameter corresponding to the target BLER, where the target BLER is Describe one of the at least two BLERs.
  • the communication device 1000 may further include a processor for controlling or configuring the transceiver 1010 to perform the above steps.
  • FIG. 11 is a schematic structural diagram of a fourth communication device according to an embodiment of the present application.
  • the communication device 1100 may include: a transceiver 1110.
  • the transceiver 1110 is used to send first indication information to the first device, where the first indication information is used to indicate M kinds of block error rates BLER, where M ⁇ 2.
  • the transceiver 1110 receives the CQI corresponding to the N BLERs of the M BLERs from the first device, where N satisfies 1 ⁇ N and N ⁇ M.
  • the transceiver 1110 receives the CQI corresponding to the N BLERs of the M BLERs from the first device through physical uplink channel resources, where the physical uplink channel resources include physical uplink control channel resources and/or Physical uplink shared channel resources.
  • the transceiver 1110 receives the CQI corresponding to the top N BLERs in the first order from the first device, where the first order is the M BLERs in ascending order or ascending order Sort order.
  • the processing unit 710 is further configured to determine a target BLER from N BLERs, and the second device allocates transmission parameters to the first device according to the CQI corresponding to the target BLER.
  • the transceiver 1110 sends second indication information to the first device, where the second indication information is used to indicate a target BLER and a transmission parameter corresponding to the target BLER, where the target BLER is the One of M types of BLER.
  • the communication device 1100 may further include a processor for controlling or configuring the transceiver 1110 to perform the above steps.
  • the communication devices 1000 and 1100 provided in this application may correspond to the processes performed by the network-side devices in the method embodiments of FIGS. 2 to 3 described above.
  • the functions of the processor and the transceiver in the communication device reference may be made to the descriptions above, as appropriate here Detailed description is omitted.
  • FIGS. 10 and 11 may be network side devices.
  • Embodiments of the present application also provide a computer-readable medium that stores a computer program (also may be referred to as code or instructions) when it runs on a computer, causing the computer to perform any of the above method embodiments The method.
  • a computer program also may be referred to as code or instructions
  • An embodiment of the present application also provides a chip system, including a memory and a processor, the memory is used to store a computer program, the processor is used to call and run the computer program from the memory, so that the communication device installed with the chip system is executed The method in any of the above method embodiments.
  • the chip system may include an input circuit or interface for sending information or data, and an output circuit or interface for receiving information or data.
  • An embodiment of the present application further provides a communication system, including: a communication device for performing the method in any of the foregoing embodiments.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a storage medium, or transmitted from one storage medium to another storage medium, for example, the computer instructions may be from a website site, computer, server or data center via wire (eg, coaxial cable, optical fiber) , Digital subscriber line (digital subscriber line, DSL) or wireless (such as infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available media integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • At least two or “multiple types” means two or more types.
  • the term “and/or” describes the relationship of related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, B exists alone, where A , B can be singular or plural.
  • the character "/" generally indicates that the related object is a "or" relationship.
  • the pre-defined in this application can be understood as definition, pre-defined, stored, pre-stored, pre-negotiated, pre-configured, cured, or pre-fired.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program, and/or a computer.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process and/or thread of execution, and a component can be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the component may, for example, be based on a signal having one or more data packets (eg, data from two components that interact with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components that interact with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种信息上报方法及通信装置,该方法包括:第一设备接收来自第二设备的第一指示信息,第一指示信息用于指示至少两种误块率BLER;该第一设备通过至少两个物理上行控制信道资源向该第二设备上报该至少两种BLER分别对应的信道质量指示CQI,其中,至少两个物理上行控制信道资源分别与至少两种BLER对应。第一设备能够合理地使用物理上行控制信道资源,向第二设备上报至少两种BLER对应的CQI,从而合理的分配下行传输数据块的大小,保证第一设备获取最佳的下行性能。

Description

一种信息上报方法及通信装置
本申请要求于2019年01月08日提交中国专利局、申请号为201910015684.5、申请名称为“一种信息上报方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及无线通信系统中的信道质量指示的上报方法及通信装置。
背景技术
信道质量指示(channel quality indication,CQI)是无线信道的通信质量的测量标准,CQI是由用户设备(user equipment,UE)测量所得,基站根据UE上报的CQI确定传输数据块大小,编码方式,调制方式等。
长期演进(long term evolution,LET)协议中,没有明确定义CQI的测量方式,只定义了CQI的选取原则,即保证物理下行共享信道(physical downlink shared channel,PDSCH)的解码错误率(即误块率(block error ratio,BLER))小于10%所使用的CQI。第五代移动通信(the 5th Generation mobile communication,5G)中的三大场景:增强型移动宽带(enhanced mobile broadband,eMBB)、低延时高可靠通信(ultra-reliable low-latency communication,URLLC)、大规模物联网业务(Massive Machine Type Communication,mMTC)。eMBB业务对应的BLER要求小于10 -1,URLLC业务对应的BLER要求小于10 -5
相对于eMBB业务,由于URLLC业务对BLER要求比较严苛,因此,基站为UE分配资源时,通常会采用较小的码率,使用更多的资源传输数据。当UE较多时,采用较小的码率,则一个UE需要使用更多的资源来传输数据,则在一个调度时间内,能够被调度的UE数目较少,从而导致频谱资源利用率低。
发明内容
本申请提供一种信息上报方法及通信装置,能够合理地使用网络物理上行控制信道资源,保证最佳的下行性能。
第一方面,提供了一种信息的上报方法,包括:第一设备接收来自第二设备的第一指示信息,该第一指示信息用于指示至少两种误块率BLER;该第一设备通过至少两个物理上行控制信道资源向该第二设备上报所述至少两种BLER分别对应的信道质量指示CQI,其中,所述至少两个物理上行控制信道资源分别与所述至少两种BLER对应。
示例性地,在可用物理上行控制信道资源数量大于BLER的数量的情况下,一个物理上行控制信道资源对应一种BLER,且在该物理上行控制信道资源上传输该BLER对应的 CQI。
通过第二设备指示的至少两种BLER,该第一设备在与相应BLER对应的资源上,上报相应BLER对应的CQI,从而能够在降低信令开销的情况下使能第一设备获取合适的数据传输参数。
结合第一方面,在一种可能的实现方式中,该第一设备通过至少两个物理上行控制信道资源向该第二设备上报该至少两种BLER分别对应的信道质量指示CQI,包括:该第一设备通过第一物理上行控制信道资源向该第二设备上报第一BLER对应的第一CQI,其中,该第一物理上行控制信道资源与该第一BLER对应,该第一BLER包括在该至少两种BLER中,该第一物理上行控制信道资源包括在该至少两个物理上行控制信道资源中;该第一设备通过第二物理上行控制信道资源向该第二设备上报第二BLER对应的第二CQI,其中,该第二物理上行控制信道资源与该第二BLER对应,该第二BLER包括在该至少两种BLER中,该第二物理上行控制信道资源包括在该至少两个物理上行控制信道资源中。
结合第一方面及其上述实现方式,在一种可能的实现方式中,该方法还包括:该第一设备接收来自该第二设备的第二指示信息,该第二指示信息用于指示目标BLER和该目标BLER对应的传输参数,其中,该目标BLER是该至少两种BLER中的一种BLER。
第二设备接收来自第一设备上报的至少两种BLER中的一种BLER,确定目标BLER,并通过该目标BLER对应的CQI确定第一设备所需的传输参数,从而在该第一设备与第二设备进行下行数据传输时,为第一设备调度所需的资源和调制编码策略,从而提高网络资源块的利用率。
第二方面,提供了一种信息上报方法,该方法包括:第二设备向第一设备发送第一指示信息,该第一指示信息用于指示至少两种误块率BLER;该第二设备通过至少两个物理上行控制信道资源接收来自该第一设备的所述至少两种BLER对应的信道质量指示CQI,其中,所述至少两个物理上行控制信道资源与所述至少两种BLER对应。
通过第二设备上报的至少两种BLER对应的CQI,从而使能第二设备可以为第一设备配置合适的传输参数。
结合第二方面,在一种可能的实现方式中,该第二设备通过至少两个物理上行控制信道资源接收来自该第一设备的所述至少两种BLER对应的CQI,包括:该第二设备通过第一物理上行控制信道资源接收来自该第一设备的第一BLER对应的第一CQI,其中,该第一物理上行控制信道资源与该第一BLER对应,该第一BLER包括在该至少两种BLER中,该第一物理上行控制信道资源包括在该至少两个物理上行控制信道资源中;该第二设备通过第二物理上行控制信道资源接收来自该第一设备的第二BLER对应的第二CQI,其中,该第二物理上行控制信道资源与该第二BLER对应,该第二BLER包括在该至少两种BLER中,该第二物理上行控制信道资源包括在该至少两个物理上行控制信道资源中。
结合第二方面及其上述实现方式,在一种可能的实现方式中,该方法还包括:该第二设备从所述至少两种BLER中,确定目标BLER;该第二设备根据该目标BLER对应的CQI为该第一设备分配传输参数。
可选地,第二设备可以基于第一设备的业务负载量,确定目标BLER。
在第二设备的业务负载量小于或等于第一阈值的情况下,第二设备将至少两种BLER中的第一BLER确定为目标BLER;在第二设备的业务负载量大于第一阈值的情况下,第 二设备将所述至少两种BLER中的第二BLER确定为目标BLER;该第一BLER小于该第二BLER。
可选地,第二设备也可以基于第一设备的业务延时值,确定目标BLER。
在第一设备的业务延时值小于或等于第二阈值的情况下,第二设备将所述至少两种BLER中的第三BLER确定为目标BLER;在第一设备的业务延时值大于第二阈值的情况下,第二设备将所述至少两种BLER中的第四BLER确定为目标BLER;该第三BLER小于该第四BLER。
可选地,第二设备可以基于第一设备的业务延时值和第二设备的业务负载量,确定目标BLER。
在第二设备的业务负载量小于或等于第一阈值且第一设备的业务延时值小于或等于第二阈值的情况下,第二设备将所述至少两种BLER中的第五BLER确定为目标BLER;在第二设备的业务负载量大于第一阈值且第一设备的业务延时值大于第二阈值的情况下,第二设备将至少两种BLER中的第六BLER确定为目标BLER;该第五BLER小于该第六BLER。
可选地,第一阈值、第二阈值可以是预定义或第二设备配置的。其中,第一阈值可以是业务负载量的阈值,第二阈值可以是业务延时值的阈值。
通过考虑第二设备的业务负载和/或第一设备的业务延时值因素,可以合理的选择第一设备上报的BLER对应的CQI,从而可以基于第一设备的业务延时情况和第二设备的业务负载情况,合理为第一设备分配相应的资源,实现提高资源的利用率。
结合第二方面及其上述实现方式,在一种可能的实现方式中,该方法还包括:该第二设备向该第一设备发送第二指示信息,该第二指示信息用于指示目标BLER和该目标BLER对应的传输参数,所述目标BLER是所述至少两种BLER中的一种BLER。
第三方面,提供了一种信息上报方法,该方法包括:第一设备接收来自第二设备的第一指示信息,该第一指示信息用于指示M种误块率BLER,其中,该M≥2;该第一设备向该第二设备上报该M种BLER中的N种BLER对应的CQI,其中,该N满足1≤N,且N<M。
通过第二设备指示的M(M≥2)种BLER,该第一设备上报M种BLER中的N种BLER对应的CQI,从而可以在第一设备上报的过程中,降低信令的开销。
结合第三方面,在一种可能的实现方式中,该第一设备向该第二设备上报该M种BLER中的N种BLER对应的CQI,包括:该第一设备通过物理上行信道资源向该第二设备上报该M种BLER中的N种BLER对应的CQI,该物理上行信道资源包括物理上行控制信道资源和/或物理上行共享信道资源。
示例性地,在可用的物理上行信道资源有限的情况下,该第一设备上可以按照优先级顺序,优先上报M种BLER中的N种BLER对应的CQI,从而可以第一设备可以合理的利用当前可用的物理上行信道资源。
结合第三方面及其上述实现方式,在一种可能的实现方式中,该第一设备向该第二设备上报该M种BLER中的N种BLER对应的CQI,还包括:该第一设备向所述第二设备上报第一顺序中前N种BLER对应的CQI,其中,该第一顺序为该M种BLER按照从小到大或从大到小的排列顺序。
结合第三方面及其上述实现方式,在一种可能的实现方式中,该方法还包括:该第一设备接收来自该第二设备的第二指示信息,该第二指示信息用于指示目标BLER和该目标BLER对应的传输参数,其中,该目标BLER是该第二设备根据所述至少两种BLER确定的。
第四方面,提供了一种信息上报方法,该方法包括:第二设备向第一设备发送第一指示信息,该第一指示信息用于指示M种误块率BLER,其中,该M≥2;该第二设备接收来自该第一设备的该M种BLER中的N种BLER对应的CQI,其中,该N满足1≤N,且N<M。
通过第一设备上报的M种BLER中的N种BLER对应的CQI,从而可以降低第二设备为第一设备配置传输参数的实现复杂度。
示例性地,在可用的物理上行信道资源有限的情况下,该第二设备接收第一设备上优先上报的M种BLER中的N种BLER对应的CQI,从而优先为第二设备分配相应的传输参数,从而节省第一设备调度的时间。
结合第四方面,在一种可能的实现方式中,该第二设备接收来自该第一设备的该M种BLER中的N种BLER对应的CQI,包括:该第二设备通过物理上行信道资源接收来自该第一设备的该M种BLER中的N种BLER对应的CQI,该物理上行信道资源包括物理上行控制信道资源和/或物理上行共享信道资源。
结合第四方面及其上述实现方式,在一种可能的实现方式中,该第二设备接收来自该第一设备的该M种BLER中的N种BLER对应的CQI,还包括:该第二设备接收来自所述第一设备的第一顺序中前N种BLER对应的CQI,其中,该第一顺序为该M种BLER按照从小到大或从大到小的排列顺序。
结合第四方面及其上述实现方式,在一种可能的实现方式中,该方法还包括:该第二设备从该N种种BLER中,确定目标BLER;该第二设备根据该目标BLER对应的CQI为该第一设备分配传输参数。
结合第四方面及其上述实现方式,在一种可能的实现方式中,该方法还包括:该第二设备向该第一设备发送第二指示信息,该第二指示信息用于指示目标BLER和该目标BLER对应的传输参数,其中,所述目标BLER是所述M种BLER中的一种。
第五方面,提供了一种通信装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得通信装置用于执行上述第一方面以及第一方面的各实现方式中方法的各个模块或单元;或者用于执行上述第三方面以及第三方面的各实现方式中方法的各个模块或单元。
在一种实现方式中,该通信装置为终端设备。
在一种设计中,该装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,该装置为通信设备,通信设备可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第六方面,提供了一种通信装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得通信装置用于执行上述第二方面以及第二方面的各实现方式中方法的各个模块或单元;或者该装置中的各单元分别用于 执行上述第四方面以及第四方面的各实现方式中方法的各个模块或单元。
在一种实现方式中,该通信装置为网络侧设备。
在一种设计中,该通信装置为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
在另一种设计中,该通信装置为通信设备,通信芯片可以包括用于发送信息或数据的发射机,以及用于接收信息或数据的接收机。
第七方面,提供了一种存储介质,该存储介质上存储有计算机程序或指令,该计算机程序或指令被执行时使得计算机执行上述第一方面或第三方面中任一种可能实现方式中的方法。
第八方面,提供了一种存储介质,该存储介质上存储有计算机程序或指令,该计算机程序或指令被执行时使得计算机执行上述第二方面或第四方面中任一种可能实现方式中的方法。
第九方面,提供了一种芯片系统,包括处理器,用于执行上述第一方面或第三方面中任一种可能实现方式中的方法。
第十方面,提供了一种芯片系统,包括处理器,用于执行上述第二方面或第四方面中任一种可能实现方式中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
第十一方面,提供了一种通信系统,包括:用于执行上述第一方面或第三方面中任一种可能实现方式中的方法的通信装置,和/或,用于执行上述第二方面或第四方面中任一种可能实现方式中的方法的通信装置。
第十二方面,提供了一种通信装置,可以实现上述第一方面或第三方面中的第一设备的一项或多项的相应功能。所述通信装置包括用于执行上述方法的相应的单元或部件。所述通信装置包括的单元可以通过软件和/或硬件方式实现。所述通信装置,例如可以为终端、或者为可支持终端实现上述功能的芯片、芯片系统、或处理器等。
第十三方面,提供了一种通信装置,可以实现上述第二方面或第四方面中的第二设备的一项或多项的相应功能。所述通信装置包括用于执行上述方法的相应的单元或部件。所述通信装置包括的单元可以通过软件和/或硬件方式实现。所述通信装置,例如可以为网络设备(如基站)、或者为可支持网络设备实现上述功能的芯片、芯片系统、或处理器等。
附图说明
图1是本申请的通信系统的一例的示意图;
图2是本申请实施例提供的一种信道质量指示上报方法的示意性流程图;
图3是本申请实施例提供的另一种信道质量指示上报方法的示意性流程图;
图4为本申请实施例提供的第一种通信装置的结构示意图;
图5为本申请实施例提供的第二种通信装置的结构示意图;
图6为本申请实施例提供的第三种通信装置的结构示意图;
图7为本申请实施例提供的第四种通信装置的结构示意图;
图8为本申请实施例提供的第一种通信设备的结构示意图;
图9为本申请实施例提供的第二种通信设备的结构示意图;
图10为本申请实施例提供的第三种通信设备的结构示意图;
图11为本申请实施例提供的第四种通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。可以理解的是,所描述的实施例是本申请一部分的实施例,而不是全部的实施例。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(Long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、或者未来演进网络等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例提供的方法的通信系统。图1中示出了适用于本申请实施例提供的方法的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,如图1中所示的5G系统中的基站(gNB);该通信系统100还可以包括至少一个终端设备,如图1中所示的用户设备(user equipment,UE)1至UE 6。网络设备与终端设备之间可以通过无线链路通信。例如,网络设备可以向终端设备发送配置信息,终端设备可以基于该配置信息向网络设备发送上行数据;又例如,网络设备可以向终端设备发送下行数据。因此,图1中的gNB和UE可以构成一个通信系统。
该通信系统100中的终端设备,如,UE 4至UE 6,也可以构成一个通信系统。例如,UE 4可以控制UE 5和UE 6执行相应的指令。本申请对此不作限定。
应理解,该通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband Unit,BBU),无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功 能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
还可以理解,图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备或者还可以包括其他终端设备,图1中未予以画出。
在通信过程中,CQI用来反映当前信道质量的好坏。例如,可以用0~15来表示PDSCH的信道质量,0表示信道质量最差,15表示信道质量最好。CQI是由UE进行测量所得的。下行数据在传输的过程中,基站(evolved Node Base-station,eNB)需要根据UE上报的CQI,确定传输参数,例如,该传输参数可以包括MCS。例如,UE上报的是10 -1的BLER对应的CQI为10,即CQI索引值为10时,其对应的效率为2.7305,基站可以根据该效率值,从MCS表中找到小于该效率值所对应的MCS索引。例如,该传输参数也可以包括调制方式,该调制方式可以是正交相移键控(quadrature phase shift keying,QPSK),也可以为16种符号的正交幅度调制(quadrature amplitude modulation,QAM),也可以是64种符号的QAM,也可以为256种符号的QAM。调制方式的选取,主要取决于BLER的上限值和CQI值。从而基站可以为基站与UE之间的数据传输,从而可以确定传输数据块的大小、编码方式、调制方式等传输参数中的一种或多种。在长期演进(long term evolution,LET)系统中,没有明确定义CQI的测量方式,只定义了CQI的选取准则,该选取原则是根据物理下行共享信道(physical downlink shared channel,PDSCH)的解码错误率(即误块率)小于10%,所使用的CQI。也就是说,UE需要根据测量结果(例如,信号与干扰加噪声比)评估下行链路特性,并采用内部算法确定此SINR条件下所能获取的误块率(block error ratio,BLER)值,并根据BLER<10%的限制,上报对应的CQI。
例如,在5G通信系统中,eMBB业务对应的BLER要求小于10 -1,URLLC业务对应的BLER要求小于10 -5,从而满足URLLC的高可靠性要求,对于URLLC业务,UE上报的CQI的选取原则较严格,因此,基站为UE分配资源时,通常会使用较小的调制与编码 策略(modulation and coding scheme,MCS),且需要使用更多的资源传输数据。
如前所述,在无线通信系统中,如图1所示的通信系统中,网络设备可以通过终端设备上报的一种BLER对应的CQI或多种BLER对应的CQI,为终端设备分配相应的MCS,从而保证UE获取较好的下行性能。
可以理解的是,本申请实施例中的资源有时也可以被称为物理资源。资源可以包含时域资源,频域资源,码域资源,或,空域资源中的一种或多种。例如,所述资源所包含的时域资源可以包含至少一个帧、至少一个子帧(sub-frame)、至少一个时隙(slot)、至少一个微时隙(mini-slot)、或者至少一个时域符号等。例如,所述资源所包含的频域资源可以包含至少一个载波(carrier)、至少一个单元载波(componont carrier,CC)、至少一个带宽部分(bandwidth part,BWP)、至少一个资源块组(resource block group,RBG)、至少一个物理资源块组(physical resource-block group,PRG)、至少一个资源块(resource block,RB)、或至少一个子载波(sub-carrier,SC)等。例如,所述资源所包含的空域资源可以包含至少一个波束、至少一个端口、至少一个天线端口、或者至少一个层/空间层等。例如,所述资源所包含的码域资源可以包含至少一个正交覆盖码(orthogonal cover code,OCC)、或者至少一个非正交多址码(non-orthogonal multiple access,NOMA)等。
可以理解的是,在本申请实施例中的物理上行信道资源可以理解为物理上行信道;物理上行控制信道资源可以理解为物理上行控制信道;物理上行共享信道资源可以理解为物理上行共享信道。
可以理解的是,在本申请实施例中的多种BLER,可以理解为该多种BLER的上限值不相同。例如,一种BLER的上限值为10 -1(也可以表示成10 -1的BLER),另一种BLER的上限值为10 -5等(也可以表示成10 -5的BLER)。
可以理解的是,一个CQI表格对应一个调制和编码策略MCS表格,一种BLER可以对应一个或多个CQI表格。例如,如表1、表2、表3所示,其中,表1和表2是BLER的上限值为10 -1时,所对应的CQI表格,表3为10 -5的BLER对应的一个CQI表格。
例如,如表1中所示,效率efficiency为5.5547时,一个资源元素(resource element,RE)能承载的信息为5.554,其余为Turbo冗余比特。例如,使用64QAM的调制方式时,每个RE的信道比特或者说物理比特为6。
可以理解的是,终端设备在给网络设备上报BLER时,一种BLER对应一个CQI进行上报,例如,BLER的上限值为10 -1时,虽然对应两个CQI表格,但是最终上报一个CQI。
表1
Figure PCTCN2019116229-appb-000001
Figure PCTCN2019116229-appb-000002
表2
Figure PCTCN2019116229-appb-000003
表3
Figure PCTCN2019116229-appb-000004
Figure PCTCN2019116229-appb-000005
上述各表所示的对应关系可以被配置,也可以是预定义的。各表中的指示信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置指示信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,上述表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信设备可理解的其他名称,其参数的取值或表示方式也可以通信设备可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
下面将结合附图详细说明本申请实施例提供的方法。
可以理解的是,本申请提供的方法可适用于无线通信系统,例如,图1中所示的无线通信系统100。处于无线通信系统中的两个通信装置可进行无线通信,该两个通信装置中的一个通信装置可对应于图1中所示的UE 1至UE 6中的一个,例如,可以为图1中的UE 1至UE 6中的一个,也可以为配置于UE 1至UE 6中的一个UE中的芯片;该两个通信装置中的另一个通信装置可对应于图1中所示的gNB,例如,可以为图1中的gNB,也可以为配置于gNB中的芯片。
下面以终端设备与网络设备之间的交互为例详细说明本申请实施例。可以理解,处于无线通信系统中的一个终端设备可以基于相同的方法与一个或多个网络设备通信。本申请对此不做限定。
图2从设备交互的角度示出本申请实施例提供的一种信道质量指示的上报方法200的示意性流程图。如图所述,该方法可以包括步骤210至步骤230。下面详细说明方法200中的各个步骤。
可选地,步骤210,第二设备(例如,该第二设备可以是gNB)确定至少两种BLER。
在本申请实施例中,第二设备可以通过如下方式确定第一设备(即,第一设备的一例,例如,该第一设备可以为UE)上报的至少两种BLER对应的CQI但本申请不限于此。
方式1,通信系统或通信协议可以规定至少两种误块率(block error ratio,BLER),例如,该两种BLER可以分别为10 -1的BLER、10 -2的BLER,或者10 -1的BLER、10 -3的BLER等。本申请中也可以规定三种BLER、四种BLER等,以两种BLER为例,并不仅限制于此,只要规定至少两种即可。
方式2,第二设备可以基于第一设备的业务需求,为第一设备指示至少两种误块率 BLER。
方式3,第二设备可以基于第二设备的业务负载量(例如,图1中UE4所服务的UE 5和UE 6),为第一设备指示至少两种误块率BLER。例如,如果第二设备所服务的终端设备较多,则第二设备可以为第一设备指示较松(即BLER的上限值较大)的BLER值;如果第二设备所服务的终端设备较少,则第二设备可以为第一设备指示较严苛(即BLER的上限值较小)的BLER值。
可选地,步骤220,第二设备向第一设备发送第一指示信息,该第一指示信息用于指示至少两种误块率BLER。相应的,第一设备接收第二设备发送的第一指示信息。
第二设备通过上述第一指示信息向第一设备指示至少两种BLER。为了便于让BLER值和其相应的CQI对应,这里,可以定义某种特定的排列顺序。至少两种BLER在第一指示信息中的排列顺序可以通过以下两种方式来实现。本申请并不仅限于此。
方式X,至少两种BLER在第一指示信息中的排列顺序可以是预定义的。例如,至少两种BLER在第一指示信息中排列顺序可以是按照从小到大或者从大到小的顺序排列。
方式Y,至少两种BLER在第一指示信息中的排列顺序也可以是第二设备为第一设备配置的。
可选地,至少两种BLER在第一指示信息中排列顺序的呈现形式也可以是BLER值(例如BLER的上限值)的排列顺序,也可以是BLER对应的索引的排列顺序,这里不再详细描述。
可选地,至少两种BLER在第一指示信息中排列顺序的呈现形式可以有如下两种。
顺序1,至少两种BLER在第一指示信息中的排列顺序的呈现形式可以是BLER值的排列顺序。
例如,当第二设备给第一设备指示了5种BLER时,即BLER的上限值分别为10 -5、10 -4、10 -3、10 -2、10 -1时,该5种BLER可以分别被按照BLER值从小到大的顺序排列,即10 -5、10 -4、10 -3、10 -2、10 -1的排列顺序;BLER也可以分别被按照从大到小的顺序排列,即10 -1、10 -2、10 -3、10 -4、10 -5的排列顺序。
又例如,当第二设备给第一设备指示了3种BLER时,即BLER的上限值分别为10 -5、10 -3、10 -1时,该3种BLER可以分别按照从小到大的顺序排列,即10 -5、10 -3、10 -1的排列顺序;BLER也可以分别按照从大到小的顺序排列,即10 -1、10 -3、10 -5的排列顺序。
顺序2,至少两种BLER在第一指示信息中的排列顺序的呈现形式可以是BLER对应的索引的排列顺序。可选地,10 -5、10 -4、10 -3、10 -2、10 -1的BLER分别对应的索引可以分别为1、2、3、4、5。
例如,当第二设备给第一设备指示了5种BLER时,即BLER的上限值分别为10 -5、10 -4、10 -3、10 -2、10 -1时,该5种BLER可以分别被按照BLER对应的索引从小到大的顺序排列,即1、2、3、4、5的排列顺序;该5种BLER可以分别被按照BLER对应的索引从大到小的顺序排列,即5、4、3、2、1的排列顺序。
又例如,当第二设备给第一设备指示了2种BLER时,即BLER的上限值分别为10 -5、10 -2时,该2种BLER可以分别被按照BLER对应的索引从小到大的顺序排列,即1、5的排列顺序;该2种BLER可以分别被按照BLER对应的索引从大到小的顺序排列,即5、1的排列顺序。
本申请对至少两种BLER在第一指示信息中的排列顺序不作限定,同时,本申请对BLER和BLER对应的索引之间的对应关系也不作限定。
步骤230,第二设备接收第一设备上报的至少两种BLER对应的信道质量指示CQI;相应的,根据第一指示信息,第一设备向第二设备上报至少两种BLER对应的信道质量指示CQI。
可选地,第二设备可以通过物理上行信道资源接收第一设备上报的所述至少两种BLER对应的CQI。其中,物理上行信道资源可以是控制信道上的物理上行控制信道资源,也可以是数据信道上的物理上行控制信道资源。
可选地,第一设备可以通过一个物理上行控制信道资源,也可以通过多个物理上行控制信道资源,向第二设备上报M种BLER中的N种BLER对应的CQI,其中,N小于或等于M,且N大于或等于1,M大于或等于2。下面将针对这两种情况,分别描述本申请实施例中,第一设备向第二设备上报至少M种BLER或至少M种BLER中的N种BLER对应的信道质量指示CQI。
情况1,第一设备可以向第二设备上报M种BLER对应上的CQI,且M≥2。
示例性地,第一设备通过M两个物理上行控制信道资源向所述第二设备上报M种BLER分别对应的信道质量指示CQI,M个物理上行控制信道资源分别与M种BLER对应。
示例性地,第二设备给第一设备指示了两种BLER,第一BLER(例如,可以是BLER的上限值为10 -4)和第二BLER(例如,可以是BLER的上限值为10 -3),第一设备可以根据映射关系,分别通过与这两种BLER对应的物理上行控制信道资源,将这两种BLER分别对应的CQI上报给第二设备。该映射关系可以是包括第一BLER和第二BLER在内的多种BLER与包括第一物理上行控制信道资源和第二物理上行控制信道资源在内的多个物理上行控制信道资源的对应关系。
可选地,该映射关系可以是预定义的或是由第二设备,即网络设备配置的。
例如,第一物理上行控制信道资源可以与10 -1的BLER相对应,第二物理上行控制信道资源可以与10 -2的BLER相对应;或者,第一物理上行控制信道资源可以与10 -3的BLER相对应,第二物理上行控制信道资源可以与10 -1的BLER相对应;或者,第一物理上行控制信道资源可以与10 -2的BLER相对应,第二物理上行控制信道资源可以与10 -3的BLER相对应;本申请不仅限于2种BLER与2个物理上行控制信道资源之间的映射关系,也可以预先定义多种BLER与多个物理上行控制信道资源的对应关系,第一设备根据需要上报的BLER与相应的物理上行控制信道资源的对应关系,再选取相应的映射关系。
例如,第一设备可以通过第一物理上行控制信道资源向第二设备上报第一BLER对应的第一CQI,其中,第一物理上行控制信道资源与第一BLER对应,第一BLER包括在M种BLER中,第一物理上行控制信道资源包括在M个物理上行控制信道资源中;
又例如,第一设备可以通过第二物理上行控制信道资源向第二设备上报第二BLER对应的第二CQI,其中,第二物理上行控制信道资源与第二BLER对应,第二BLER包括在至少两种BLER中,第二物理上行控制信道资源包括在至少两个物理上行控制信道资源中。
第二设备接收第一设备上报的两种BLER对应的CQI值时,第二设备需要确定所接 收的CQI是由哪个物理上行控制信道资源承载的。
可选地,第二设备在进行盲检时,获取了第一CQI、第二CQI,但是第二设备并不知道该第一CQI和该第二CQI分别对应的BLER是哪种,所以,第二设备可以根据映射关系,确定该物理上行控制信道上报的CQI对应的是哪种BLER。
例如,物理上行控制信道资源有两个,即第一物理上行控制信道资源和第二物理上行控制信道资源,第一设备需要上报的BLER有2种,此时,第二设备需要确定承载该第一CQI的物理上行控制信道资源是第一物理上行控制信道资源还是第二物理上行控制信道资源,确定承载该第二CQI的物理上行控制信道资源是第一物理上行控制信道资源还是第二物理上行控制信道资源。如果第二设备确定承载第一CQI的物理上行控制信道资源是第一物理上行控制信道资源,根据映射关系,即可确定该第一CQI对应的BLER是第一BLER;如果第二设备确定承载第二CQI的物理上行控制信道资源是第二物理上行控制信道资源,根据映射关系,即可确定该第二CQI对应的BLER是第二BLER。
可选地,在物理上行控制信道资源的数量大于或等于BLER数量的情况下,该M种BLER对应的CQI承载于M个物理上行控制信道资源。即第一设备可以将每种BLER与一个物理上行控制信道资源一一对应向第二设备上报,从而第一设备能够合理地使用物理上行控制信道资源,向第二设备上报至少两种BLER对应的CQI,从而合理的分配下行传输数据块的大小,保证第一设备获取较好的下行性能。
情况2,第一设备可以向第二设备上报M种BLER中的N种BLER对应的CQI,且M≥2,1≤N,且N<M。
示例性地,第一设备可以通过N个物理上行信道资源向所述第二设备上报N种BLER分别对应的信道质量指示CQI,N个物理上行信道资源分别与N种BLER对应。
示例性地,第二设备给第一设备指示了两种BLER,第一BLER(例如,可以是BLER的上限值为10 -4)和第二BLER(例如,可以是BLER的上限值为10 -3),第一设备可以上报第一BLER和第二BLER中的一种BLER对应的CQI。
示例性地,第二设备给第一设备指示了三种BLER,第一BLER(例如,可以是BLER的上限值为10 -4)、第二BLER(例如,可以是BLER的上限值为10 -3)、第三BLER(例如,可以是BLER的上限值为10 -2),第一设备可以上报第一BLER、第二BLER、第三BLER中的一种BLER或两种BLER对应的CQI。
示例性地,第一设备可以通过N个物理上行信道资源对N种BLER对应的CQI进行上报,该物理上行信道与BLER的对应关系可以按照上述的映射关系,这里不再详细描述。
示例性地,第一设备可以通过一个物理上行信道资源对N种BLER对应的CQI进行上报。
可选地,若第二设备给第一设备指示了三种BLER,第一设备可以上报第一BLER、第二BLER、第三BLER中的两种BLER对应的CQI,此时,第一设备可以采用上述顺序1或顺序2进行CQI上报。
示例性地,顺序1中BLER依次按照10 -4、10 -3、10 -2的顺序排列,第一设备可向第二设备上报顺序1中前2种BLER对应的CQI,即第一设备将10 -4的BLER对应的CQI、10 -3的BLER对应的CQI上报给第二设备;又例如,第一设备也可向第二设备上报顺序1中后2种BLER对应的CQI,即第一设备可将10 -3的BLER对应的CQI、10 -2的BLER对应 的CQI上报给第二设备。
示例性地,顺序2中BLER对应的索引依次按照2(BLER上限值为10 -4)、3(BLER上限值为10 -3)、4(BLER上限值为10 -2)的顺序排列,第一设备可向第二设备上报顺序2中前2种BLER对应的索引2和3所对应的BLER对应的CQI,即第一设备将BLER对应的索引2对应的10 -4的BLER对应的CQI、BLER对应的索引3对应的10 -3的BLER对应的CQI上报给第二设备;又例如,第一设备也可向第二设备上报顺序1中后2种BLER对应的索引3和4所对应的BLER对应的CQI,即第一设备可将BLER对应的索引3对应的10 -3的BLER对应的CQI、BLER对应的索引4对应的10 -2的BLER对应的CQI上报给第二设备。
示例性地,在物理上行控制信道资源的数量小于BLER数量的情况下,第一设备可以选取M种BLER中N种BLER对应的CQI承载于N个物理上行控制信道资源,向第二设备上报。
可选地,在当前可用物理上行信道资源有限的情况下,第一设备上报的BLER个数N是由物理上行信道资源的数量决定,本申请对此不作限定。
示例性地,物理上行控制信道资源有两个,即第一物理上行控制信道资源和第二物理上行控制信道资源,第一设备需要上报的BLER有2种。当第二设备在进行盲检时,第二设备需要确定承载该2种BLER对应的CQI的物理上行控制信道资源是第一物理上行控制信道资源还是第二物理上行控制信道资源,如果第二设备确定承载2种BLER对应的CQI的物理上行控制信道资源是第一物理上行控制信道资源,则第二设备还需要继续确定这2种BLER对应的CQI在第一物理上行控制信道资源上的排列顺序,即2种BLER对应的CQI是按上述顺序1或顺序2或其他预设置的顺序排列的,从而确定这2个CQI分别对应的是哪种BLER。图3从设备交互的角度示出的本申请实施例提供的另一种信道质量指示的上报方法300的示意性流程图。该实施例提供的信道质量指示的上报方法300还可在方法200的基础上包括步骤310-步骤320。
步骤310,第二设备确定目标BLER。
当第一设备上报了至少两种BLER时,第二设备可以基于以下三种方式,从上报的至少两种BLER中,确定目标BLER。
方式A,第二设备可以基于第二设备的业务负载量,确定目标BLER。
示例性地,在第二设备的业务负载量小于或等于第一阈值的情况下,第二设备将至少两种BLER中的第一BLER确定为目标BLER;
示例性地,在第二设备的业务负载量大于第一阈值的情况下,所第二设备将所述至少两种BLER中的第二BLER确定为目标BLER。
可以理解的是,本申请实施例中,第一BLER小于第二BLER。第二设备的业务负载量,即第二设备所服务的终端设备的数量或所服务终端设备业务需求的高低。
方式B,第二设备可以基于第一设备的业务延时值,确定目标BLER。
示例性地,在第一设备的业务延时值小于或等于第二阈值的情况下,第二设备将所述至少两种BLER中的第三BLER确定为目标BLER;
示例性地,在第一设备的业务延时值大于第二阈值的情况下,第二设备将所述至少两种BLER中的第四BLER确定为目标BLER。
可以理解的是,本申请实施例中,第三BLER小于第四BLER。第一设备的业务延时值可以是预定义的延时值或者基于第二设备与第一设备前一次数据传输的延时值。
方式C,第二设备可以基于第一设备的业务延时值和第二设备的业务负载量,确定目标BLER。
示例性地,在第二设备的业务负载量小于或等于第一阈值且第一设备的业务延时值小于或等于第二阈值的情况下,第二设备将所述至少两种BLER中的第五BLER确定为目标BLER;
示例性地,在第二设备的业务负载量大于第一阈值且第一设备的业务延时值大于第二阈值的情况下,第二设备将至少两种BLER中的第六BLER确定为目标BLER。
可以理解的是,本申请实施例中,第五BLER小于第六BLER。
可选地,第一阈值、第二阈值可以是预定义的,也可以是由网络设备(例如第二设备)配置的。其中,第一阈值可以是业务负载量,第二阈值可以是业务延时值,本实施例不限于此。
例如,第二设备从上报的N种BLER对应的CQI中,确定可以采用的目标BLER的上限值为10 -1。步骤320,第二设备根据目标BLER对应的CQI为第一设备配置传输参数。
可选地,传输参数包括MCS。例如,第二设备确定的目标BLER为10 -1,该目标BLER对应的CQI为10,第二设备可以根据表1中,CQI索引值为10时,对应的效率为2.7305,第二设备可以根据该效率值,从MCS表中找到小于该效率值所对应的MCS索引。
可选地,传输参数包括调制方式,该调制方式可以是正交相移键控(quadrature phase shift keying,QPSK),也可以为16种符号的正交幅度调制(quadrature amplitude modulation,QAM),也可以是64种符号的QAM,也可以为256种符号的QAM。调制方式的选取,主要取决于BLER的上限值和CQI值。
本申请另一实施例提供的信道质量指示的上报方法300还可包括步骤260。如图3中虚线部分所示。
步骤330,第二设备向第一设备发送第二指示信息,该第二指示信息用于指示目标BLER和所述目标BLER对应的传输参数。相应的,第一设备接收第二设备发送的第二指示信息。
可选地,该第二指示信息可通过下行控制信息(downlink control information,DCI)显式指示或通过无线网络临时标识符(radio network temporary identity,RNTI)隐式指示。
例如,第二设备可以将目标BLER和目标BLER对应的传输参数直接承载于DCI信息中,向第一设备发送该DCI,第一设备通过接收该DCI,可以从该DCI中获取目标BLER和目标BLER对应的传输参数。
又例如,第二设备可以为第一设备配置K(K为大于或等于1的整数)个RNTI,一个RNTI可以对应至少一种BLER。第一设备接收该DCI时,可以尝试使用上述K个RNTI对该DCI进行接收(例如,尝试使用上述K个RNTI对该DCI包含的校验信息进行校验或解扰)。若第一设备使用上述K个RNTI中的第k个RNTI(其中1≤k≤K)成功接收该DCI(例如,使用上述K个RNTI中的第k个RNTI成功校验或成功解扰了校验信息),则第一设备可根据上述第k个RNTI与至少一种BLER的对应关系,获得该至少一种BLER为目标BLER,并可以进一步获得该目标BLER对应的传输参数。
在第二设备向第一设备发送了所述目标BLER对应的传输参数后,第二设备就可以采用为第一设备分配相应的传输数据块的大小、PDSCH信道的码数、编码方式、调制方式,从而第二设备和第一设备之间就可以进行数据传输。
本申请实施例中,第二设备通过第一设备上报的至少两种BLER,确定上报每种BLER所采用的物理上行控制信道资源或采用几个物理上行控制信道资源,从而合理地使用网络物理上行控制信道资源,并为第一设备合理的分配相应的传输数据块的大小、PDSCH信道的码数、编码方式、调制方式等。
应理解,上文中图2至图3的例子,仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图2至图3的例子,显然可以进行各种等价的修改或变化,例如,本领域技术人员可以根据图2至图3的例子,将多个实施例进行组合拆分等,本申请实施例这样的修改或变化也落入本申请实施例的范围内。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法,也可以由可用于终端的部件(例如芯片或者电路)实现,由网络设备实现的方法,也可以由可用于网络设备的部件(例如芯片或者电路)实现。上文中,结合图1至图3详细描述了本申请实施例的方法,下面结合图4至图5描述本申请实施例的通信装置。
图4为本申请实施例提供的第一种通信装置的结构示意图,该通信装置400可以包括:
处理单元410和收发单元420。
示例性地,该处理单元410用于控制该收发单元420接收来自第二设备的第一指示信息,该第一指示信息用于指示至少两种误块率BLER。
该处理单元410还用于控制该收发单元420通过至少两个物理上行控制信道资源向该第二设备上报该至少两种BLER分别对应的信道质量指示CQI,其中,该至少两个物理上行控制信道资源分别与该至少两种BLER对应。
可选地,该处理单元410还用于控制该收发单元420通过第一物理上行控制信道资源向该第二设备上报第一BLER对应的第一CQI,其中,该第一物理上行控制信道资源与该第一BLER对应,该第一BLER包括在该至少两种BLER中,该第一物理上行控制信道资源包括在该至少两个物理上行控制信道资源中。
可选地,该处理单元410还用于控制该收发单元420通过第二物理上行控制信道资源向该第二设备上报第二BLER对应的第二CQI,其中,该第二物理上行控制信道资源与该第二BLER对应,该第二BLER包括在该至少两种BLER中,该第二物理上行控制信道资源包括在该至少两个物理上行控制信道资源中。可选地,该处理单元410还用于控制该收发单元420接收来自该第二设备的第二指示信息,该第二指示信息用于指示目标BLER和该目标BLER对应的传输参数,其中,该目标BLER是该至少两种BLER中的一种BLER。
图5为本申请实施例提供的第二种通信装置的结构示意图,该通信装置500可以包括:
处理单元510和收发单元520。
示例性地,该处理单元510还用于控制该收发单元520接收来自第二设备的第一指示 信息,该第一指示信息用于指示M种误块率BLER,其中,该M≥2。可选地,该处理单元510还用于通过物理上行信道资源向该第二设备上报该M种BLER中的N种BLER对应的CQI,该物理上行信道资源包括物理上行控制信道资源和/或物理上行共享信道资源。
可选地,该处理单元510还用于控制该收发单元520向该第二设备上报第一顺序中前N种BLER对应的CQI,其中,该第一顺序为该M种BLER按照从小到大或从大到小的排列顺序。
处理单元510可选地,该处理单元510还用于控制该收发单元520接收来自该第二设备的第二指示信息,该第二指示信息用于指示目标BLER和该目标BLER对应的传输参数,其中,该目标BLER是该M种BLER中的一种。
本申请提供的通信装置400和500可以对应上述图2至图3方法实施例中终端设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处适当省略详细描述。
应理解,图4和图5中所述的通信装置可以是终端设备。
图6为本申请实施例提供的第三种通信装置的结构示意图,该装置600可包括:
处理单元610和收发单元620。
可选地,该处理单元610用于控制该收发单元620向第一设备发送第一指示信息,所述第一指示信息用于指示至少两种误块率BLER。
可选地,该处理单元610还用于控制该收发单元620通过至少两个物理上行控制信道资源接收来自所述第一设备的所述至少两种BLER分别对应的信道质量指示CQI,其中,所述至少两个物理上行控制信道资源分别与所述至少两种BLER对应。
可选地,该处理单元610还用于控制该收发单元620通过第一物理上行控制信道资源接收来自所述第一设备的第一BLER对应的第一CQI,其中,所述第一物理上行控制信道资源与所述第一BLER对应,所述第一BLER包括在所述至少两种BLER中,所述第一物理上行控制信道资源包括在所述至少两个物理上行控制信道资源中。
可选地,该处理单元610还用于控制该收发单元620第一设备发送第一指示信息,所述第一指示信息用于指示M种误块率BLER,其中,所述M≥2;
可选地,该处理单元610还用于控制该收发单元620通过第二物理上行控制信道资源接收来自所述第一设备的第二BLER对应的第二CQI,其中,所述第二物理上行控制信道资源与所述第二BLER对应,所述第二BLER包括在所述至少两种BLER中,所述第二物理上行控制信道资源包括在所述至少两个物理上行控制信道资源中。
可选地,该处理单元610还用于从至少两种BLER中,确定目标BLER,该第二设备根据该目标BLER对应的CQI为该第一设备分配传输参数。
可选地,该处理单元610还用于控制该收发单元620向所述第一设备发送第二指示信息,所述第二指示信息用于指示目标BLER和所述目标BLER对应的传输参数,所述目标BLER是所述至少两种BLER中的一种BLER。
图7为本申请实施例提供的第四种通信装置的结构示意图,该装置700可包括:
处理单元710和收发单元720。
可选地,该处理单元710用于控制该收发单元720向第一设备发送第一指示信息,所述第一指示信息用于指示M种误块率BLER,其中,所述M≥2。
可选地,该处理单元710还用于控制该收发单元720接收来自所述第一设备的所述M种BLER中的N种BLER对应的CQI,其中,所述N满足1≤N,且N<M。
可选地,该处理单元710还用于控制该收发单元720通过物理上行信道资源接收来自所述第一设备的所述M种BLER中的N种BLER对应的CQI,所述物理上行信道资源包括物理上行控制信道资源和/或物理上行共享信道资源。
可选地,该处理单元710还用于控制该收发单元720接收来自所述第一设备的第一顺序中前N种BLER对应的CQI,其中,所述第一顺序为所述M种BLER按照从小到大或从大到小的排列顺序。
可选地,该处理单元710还用于从N种BLER中,确定目标BLER,该第二设备根据该目标BLER对应的CQI为该第一设备分配传输参数。
可选地,该处理单元710还用于控制该收发单元720向所述第一设备发送第二指示信息,所述第二指示信息用于指示目标BLER和所述目标BLER对应的传输参数,其中,所述目标BLER是所述M种BLER中的一种。
本申请提供的通信装置600和700可以对应上述图2至图3方法实施例中网络侧设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处适当省略详细描述。
应理解,图6和图7中所述的通信装置可以是网络侧设备。
可选地,该图4、图5、图6、图7中所示的通信装置可以为通信芯片,通信芯片可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
可选地,在另一种设计中,该装置为通信设备,通信设备可以包括用于发送信息或数据,接收信息或数据的收发器。
图8为本申请实施例提供的第一种通信设备的结构示意图,该通信设备800可以包括:收发器810。
示例性地,该收发器810用于接收来自第二设备的第一指示信息,该第一指示信息用于指示至少两种误块率BLER。
该收发器810还用于通过至少两个物理上行控制信道资源向该第二设备上报该至少两种BLER分别对应的信道质量指示CQI,其中,该至少两个物理上行控制信道资源分别与该至少两种BLER对应。
可选地,该收发器810还用于通过第一物理上行控制信道资源向该第二设备上报第一BLER对应的第一CQI,其中,该第一物理上行控制信道资源与该第一BLER对应,该第一BLER包括在该至少两种BLER中,该第一物理上行控制信道资源包括在该至少两个物理上行控制信道资源中。
可选地,该收发器810还用于通过第二物理上行控制信道资源向该第二设备上报第二BLER对应的第二CQI,其中,该第二物理上行控制信道资源与该第二BLER对应,该第二BLER包括在该至少两种BLER中,该第二物理上行控制信道资源包括在该至少两个物理上行控制信道资源中。可选地,该收发器810还用于接收来自该第二设备的第二指示信息,该第二指示信息用于指示目标BLER和该目标BLER对应的传输参数,其中,该目标BLER是该至少两种BLER中的一种BLER。
该通信设备800还可以包括处理器,处理器用于控制或配置收发器810执行上述步骤。
图9为本申请实施例提供的第二种通信设备的结构示意图,该通信设备900可以包括:收发器910。
示例性地,该收发器910用于接收来自第二设备的第一指示信息,该第一指示信息用于指示M种误块率BLER,其中,该M≥2。可选地,该处理单元510还用于通过物理上行信道资源向该第二设备上报该M种BLER中的N种BLER对应的CQI,该物理上行信道资源包括物理上行控制信道资源和/或物理上行共享信道资源。
可选地,该收发器910还用于向该第二设备上报第一顺序中前N种BLER对应的CQI,其中,该第一顺序为该M种BLER按照从小到大或从大到小的排列顺序。
可选地,该收发器910还用于接收来自该第二设备的第二指示信息,该第二指示信息用于指示目标BLER和该目标BLER对应的传输参数,其中,该目标BLER是该M种BLER中的一种。
该通信设备900还可以包括处理器,处理器用于控制或配置收发器910执行上述步骤。
本申请提供的通信设备800和900可以对应上述图2至图3方法实施例中终端设备执行的过程,该通信设备中的处理器、收发器的功能可以参见上文中的描述,此处适当省略详细描述。
应理解,图8和图9中所述的通信设备可以是终端设备。
图10为本申请实施例提供的第三种通信设备的结构示意图,该通信设备1000可包括:收发器1010。
可选地,该收发器1010用于向第一设备发送第一指示信息,所述第一指示信息用于指示至少两种误块率BLER。
可选地,该收发器1010还用于通过至少两个物理上行控制信道资源接收来自所述第一设备的所述至少两种BLER分别对应的信道质量指示CQI,其中,所述至少两个物理上行控制信道资源分别与所述至少两种BLER对应。
可选地,该收发器1010还用于通过第一物理上行控制信道资源接收来自所述第一设备的第一BLER对应的第一CQI,其中,所述第一物理上行控制信道资源与所述第一BLER对应,所述第一BLER包括在所述至少两种BLER中,所述第一物理上行控制信道资源包括在所述至少两个物理上行控制信道资源中。
可选地,该收发器1010还用于第一设备发送第一指示信息,所述第一指示信息用于指示M种误块率BLER,其中,所述M≥2;
可选地,该收发器1010还用于通过第二物理上行控制信道资源接收来自所述第一设备的第二BLER对应的第二CQI,其中,所述第二物理上行控制信道资源与所述第二BLER对应,所述第二BLER包括在所述至少两种BLER中,所述第二物理上行控制信道资源包括在所述至少两个物理上行控制信道资源中。
可选地,该收发器1010还用于从至少两种BLER中,确定目标BLER,该第二设备根据该目标BLER对应的CQI为该第一设备分配传输参数。
可选地,该收发器1010还用于向所述第一设备发送第二指示信息,所述第二指示信息用于指示目标BLER和所述目标BLER对应的传输参数,所述目标BLER是所述至少两种BLER中的一种BLER。
该通信设备1000还可以包括处理器,处理器用于控制或配置收发器1010执行上述步骤。
图11为本申请实施例提供的第四种通信设备的结构示意图,该通信设备1100可包括:收发器1110。
可选地,该收发器1110用于向第一设备发送第一指示信息,所述第一指示信息用于指示M种误块率BLER,其中,所述M≥2。
可选地,该收发器1110接收来自所述第一设备的所述M种BLER中的N种BLER对应的CQI,其中,所述N满足1≤N,且N<M。
可选地,该收发器1110通过物理上行信道资源接收来自所述第一设备的所述M种BLER中的N种BLER对应的CQI,所述物理上行信道资源包括物理上行控制信道资源和/或物理上行共享信道资源。
可选地,该收发器1110接收来自所述第一设备的第一顺序中前N种BLER对应的CQI,其中,所述第一顺序为所述M种BLER按照从小到大或从大到小的排列顺序。
可选地,该处理单元710还用于从N种BLER中,确定目标BLER,该第二设备根据该目标BLER对应的CQI为该第一设备分配传输参数。
可选地,该收发器1110向所述第一设备发送第二指示信息,所述第二指示信息用于指示目标BLER和所述目标BLER对应的传输参数,其中,所述目标BLER是所述M种BLER中的一种。
该通信设备1100还可以包括处理器,处理器用于控制或配置收发器1110执行上述步骤。
本申请提供的通信设备1000和1100可以对应上述图2至图3方法实施例中网络侧设备执行的过程,该通信设备中的处理器、收发器的功能可以参见上文中的描述,此处适当省略详细描述。
应理解,图10和图11中所述的通信设备可以是网络侧设备。
本申请实施例还提供了一种计算机可读介质,该计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述任一方法实施例中的方法。
本申请实施例还提供了一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述任一方法实施例中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入电路或者接口,以及用于接收信息或数据的输出电路或者接口。
本申请实施例还提供了一种通信系统,包括:用于执行上述任一实施例中的方法的通信装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在存储介质中,或者从一个 存储介质向另一个存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请中,“至少两种”或“多种”是指两种或两种以上。术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,可以理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种信息上报方法,其特征在于,所述方法包括:
    第一设备接收来自第二设备的第一指示信息,所述第一指示信息用于指示至少两种误块率BLER;
    所述第一设备通过至少两个物理上行控制信道资源向所述第二设备上报所述至少两种BLER分别对应的信道质量指示CQI,其中,所述至少两个物理上行控制信道资源分别与所述至少两种BLER对应。
  2. 根据权利要求1所述的方法,其特征在于,所述第一设备通过至少两个物理上行控制信道资源向所述第二设备上报所述至少两种BLER分别对应的信道质量指示CQI,包括:
    所述第一设备通过第一物理上行控制信道资源向所述第二设备上报第一BLER对应的第一CQI,其中,所述第一物理上行控制信道资源与所述第一BLER对应,所述第一BLER包括在所述至少两种BLER中,所述第一物理上行控制信道资源包括在所述至少两个物理上行控制信道资源中;
    所述第一设备通过第二物理上行控制信道资源向所述第二设备上报第二BLER对应的第二CQI,其中,所述第二物理上行控制信道资源与所述第二BLER对应,所述第二BLER包括在所述至少两种BLER中,所述第二物理上行控制信道资源包括在所述至少两个物理上行控制信道资源中。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收来自所述第二设备的第二指示信息,所述第二指示信息用于指示目标BLER和所述目标BLER对应的传输参数,其中,所述目标BLER是所述至少两种BLER中的一种BLER。
  4. 一种信息上报方法,其特征在于,所述方法包括:
    第二设备向第一设备发送第一指示信息,所述第一指示信息用于指示至少两种误块率BLER;
    所述第二设备通过至少两个物理上行控制信道资源接收来自所述第一设备的所述至少两种BLER分别对应的信道质量指示CQI,其中,所述至少两个物理上行控制信道资源分别与所述至少两种BLER对应。
  5. 根据权利要求4所述的方法,其特征在于,所述第二设备通过至少两个物理上行控制信道资源接收来自所述第一设备的所述至少两种BLER分别对应的CQI,包括:
    所述第二设备通过第一物理上行控制信道资源接收来自所述第一设备的第一BLER对应的第一CQI,其中,所述第一物理上行控制信道资源与所述第一BLER对应,所述第一BLER包括在所述至少两种BLER中,所述第一物理上行控制信道资源包括在所述至少两个物理上行控制信道资源中;
    所述第二设备通过第二物理上行控制信道资源接收来自所述第一设备的第二BLER对应的第二CQI,其中,所述第二物理上行控制信道资源与所述第二BLER对应,所述第二BLER包括在所述至少两种BLER中,所述第二物理上行控制信道资源包括在所述至少 两个物理上行控制信道资源中。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示目标BLER和所述目标BLER对应的传输参数,所述目标BLER是所述至少两种BLER中的一种BLER。
  7. 一种信息的上报方法,其特征在于,所述方法包括:
    第一设备接收来自第二设备的第一指示信息,所述第一指示信息用于指示M种误块率BLER,其中,所述M≥2;
    所述第一设备向所述第二设备上报所述M种BLER中的N种BLER对应的CQI,其中,所述N满足1≤N,且N<M。
  8. 根据权利要求7所述的方法,其特征在于,所述第一设备向所述第二设备上报所述M种BLER中的N种BLER对应的CQI,包括:
    所述第一设备通过物理上行信道资源向所述第二设备上报所述M种BLER中的N种BLER对应的CQI,所述物理上行信道资源包括物理上行控制信道资源和/或物理上行共享信道资源。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一设备向所述第二设备上报所述M种BLER中的N种BLER对应的CQI,还包括:
    所述第一设备向所述第二设备上报第一顺序中前N种BLER对应的CQI,其中,所述第一顺序为所述M种BLER按照从小到大或从大到小的排列顺序。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收来自所述第二设备的第二指示信息,所述第二指示信息用于指示目标BLER和所述目标BLER对应的传输参数,其中,所述目标BLER是所述M种BLER中的一种。
  11. 一种信息上报方法,其特征在于,所述方法包括:
    第二设备向第一设备发送第一指示信息,所述第一指示信息用于指示M种误块率BLER,其中,所述M≥2;
    所述第二设备接收来自所述第一设备的所述M种BLER中的N种BLER对应的CQI,其中,所述N满足1≤N,且N<M。
  12. 根据权利要求11所述的方法,其特征在于,所述第二设备接收来自所述第一设备的所述M种BLER中的N种BLER对应的CQI,包括:
    所述第二设备通过物理上行信道资源接收来自所述第一设备的所述M种BLER中的N种BLER对应的CQI,所述物理上行信道资源包括物理上行控制信道资源和/或物理上行共享信道资源。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第二设备接收来自所述第一设备的所述M种BLER中的N种BLER对应的CQI,还包括:
    所述第二设备接收来自所述第一设备的第一顺序中前N种BLER对应的CQI,其中,所述第一顺序为所述M种BLER按照从小到大或从大到小的排列顺序。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息用于指示目标 BLER和所述目标BLER对应的传输参数,其中,所述目标BLER是所述M种BLER中的一种。
  15. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得通信装置以执行如权利要求1至3或权利要求7至10中任一项所述的方法。
  16. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得通信装置以执行如权利要求4至6或权利要求11至14中任一项所述的方法。
  17. 一种存储介质,所述存储介质上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求1至3或权利要求7至10中任一项所述的方法。
  18. 一种存储介质,所述存储介质上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行如权利要求4至6或权利要求11至14中任一项所述的方法。
  19. 一种芯片系统,其特征在于,包括:处理器,用于执行如权利要求1至3或权利要求7至10中任一项所述的方法。
  20. 一种芯片系统,其特征在于,包括:处理器,用于执行如权利要求4至6或权利要求11至14中任一项所述的方法。
  21. 一种通信系统,其特征在于,包括:
    用于执行如权利要求1至3或权利要求7至10中任一项所述的方法的通信装置,和/或,用于执行如权利要求4至6或权利要求11至14中任一项所述的方法的通信装置。
  22. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1至3或权利要求7至10中任一项所述的方法。
  23. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求4至6或权利要求11至14中任一项所述的方法。
PCT/CN2019/116229 2019-01-08 2019-11-07 一种信息上报方法及通信装置 WO2020143293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910015684.5 2019-01-08
CN201910015684.5A CN111416699A (zh) 2019-01-08 2019-01-08 一种信息上报方法及通信装置

Publications (1)

Publication Number Publication Date
WO2020143293A1 true WO2020143293A1 (zh) 2020-07-16

Family

ID=71494025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116229 WO2020143293A1 (zh) 2019-01-08 2019-11-07 一种信息上报方法及通信装置

Country Status (2)

Country Link
CN (1) CN111416699A (zh)
WO (1) WO2020143293A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117856968A (zh) * 2022-09-30 2024-04-09 中兴通讯股份有限公司 目标误块率控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631927A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 信息传输方法及装置
CN109150458A (zh) * 2017-06-16 2019-01-04 中兴通讯股份有限公司 控制信息传输方法及装置
CN109150478A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信道质量反馈方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105338024A (zh) * 2014-07-15 2016-02-17 成都鼎桥通信技术有限公司 一种cbtc业务的数据传输方法
CN106209299B (zh) * 2015-04-29 2019-06-18 上海诺基亚贝尔股份有限公司 一种针对叠加传输上报csi的方法与设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631927A (zh) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 信息传输方法及装置
CN109150458A (zh) * 2017-06-16 2019-01-04 中兴通讯股份有限公司 控制信息传输方法及装置
CN109150478A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信道质量反馈方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "MCS/CQI Design for URLLC Transmission.", 3GPP TSG RAN WG1 AD HOC MEETING R1-1800059., 26 January 2018 (2018-01-26), XP051384562 *
MEDIATEK INC.: "CQI Reporting for Multiple Services in NR.", 3GPP TSG RAN WG1 #91 R1-1719584., 1 December 2017 (2017-12-01), XP051369398 *
VIVO.: "Discussion on CSI Report for URLLC.", 3GPP TSG RAN WG1 MEETING #92BIS R1-1803845., 20 April 2018 (2018-04-20), XP051413027 *

Also Published As

Publication number Publication date
CN111416699A (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
US20230224071A1 (en) Method and apparatus for determining a duration of a repetition of a transport block
US10313073B2 (en) Transmission of reference signals
AU2021204172B2 (en) Allocation of communication resources for control signals in the uplink
US9548850B2 (en) Assignment of component carriers
US9986543B2 (en) Allocation of communication resources
WO2020164784A1 (en) User equipment and system performing transmission and reception operations
WO2019029473A1 (zh) 传输数据的方法、终端设备和网络设备
CN110891315B (zh) 通信方法、装置及计算机存储介质
JP7191998B2 (ja) アンテナポート指示方法および装置
CN102377539B (zh) 反馈及获取多个cc的csi的方法、ue及基站
CN107710848A (zh) 数据传输方法、装置及系统
WO2020143293A1 (zh) 一种信息上报方法及通信装置
WO2016116165A1 (en) Method, apparatus and system for the configuration of an uplink control channel
CN111669251B (zh) 传输块大小的确定方法及通信装置
EP2635081A1 (en) Allocation of communication resources
US20230362928A1 (en) Pucch transmission method and apparatus
WO2021032167A1 (zh) 传输块大小确定方法及装置
WO2024092673A1 (zh) 数据信道的调度方法、装置、设备及存储介质
WO2023026975A1 (ja) 端末、無線通信システム及び無線通信方法
WO2023281608A1 (ja) 端末および無線通信方法
WO2020177735A1 (zh) 传输块大小的确定方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909405

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909405

Country of ref document: EP

Kind code of ref document: A1