WO2020143214A1 - 显示面板、显示面板制备方法及显示设备 - Google Patents

显示面板、显示面板制备方法及显示设备 Download PDF

Info

Publication number
WO2020143214A1
WO2020143214A1 PCT/CN2019/097426 CN2019097426W WO2020143214A1 WO 2020143214 A1 WO2020143214 A1 WO 2020143214A1 CN 2019097426 W CN2019097426 W CN 2019097426W WO 2020143214 A1 WO2020143214 A1 WO 2020143214A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display panel
layer
sensing
area
Prior art date
Application number
PCT/CN2019/097426
Other languages
English (en)
French (fr)
Inventor
孙建明
Original Assignee
昆山工研院新型平板显示技术中心有限公司
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山工研院新型平板显示技术中心有限公司, 昆山国显光电有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Publication of WO2020143214A1 publication Critical patent/WO2020143214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present application relates to the field of display technology, in particular to a display panel, a preparation method of the display panel, and a display device.
  • the fingerprint is a texture formed by the uneven skin on the surface of the finger, and has the characteristics of uniqueness and stability. According to this, the fingerprint can be used to realize the identification.
  • the fingerprint recognition sensor can accurately identify the user’s fingerprint and authenticate the user. Therefore, more and more Fingerprint recognition sensors are installed on more display terminals.
  • the fingerprint recognition sensor is widely used to unlock the screen of mobile terminals such as mobile phones. The user covers his finger on the fingerprint recognition sensor. If the user passes the authentication, the user is authorized to use the functions of the mobile phone. If it is not an authorized user, the mobile phone continues to remain locked. .
  • the fingerprint recognition sensor is installed on the punch card machine and used to record the user's attendance time. However, the fingerprint recognition sensor has a problem of low detection sensitivity.
  • an embodiment of the present application provides a display panel, including: a thin film transistor (Thin Film Transistor, abbreviated as TFT) backplane and a plurality of light emitting regions provided on the TFT backplane, the display panel It also includes a sensing area, which is disposed on the TFT backplane and is located between the plurality of light emitting areas, and is used to sense the light emitted by the light emitting area reflected by the object when the object approaches the display panel .
  • TFT Thin Film Transistor
  • the sensing area includes: a lower electrode, a sensing material layer, and an upper electrode stacked on the TFT backplane.
  • the lower electrode is electrically connected to the TFT in the TFT backplane, and the TFT converts the optical signal detected in the sensing area into an electrical signal for subsequent processing.
  • the light transmittance of the transparent upper electrode is higher, which can effectively ensure that the reflected light passes through the upper electrode as much as possible to the sensing area, so as to increase the amount of reflected light received by the sensing area.
  • the sensing material layer is used as a pixel defining layer; there is no need to prepare a pixel defining layer, which saves the process flow and reduces the production cost.
  • the material of the sensing material layer is an organic photoelectric material.
  • Organic photoelectric materials have a large optical path range, large brightness, high efficiency, low driving voltage, low energy consumption, simple manufacturing process and low cost.
  • the organic photoelectric material includes ethoxylated polyethyleneimine (PEIE), [6,6]-phenyl-C61-isomethyl butyrate (PC60BM), poly[[9- (1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiendiyl-2,1,3-benzothiadiazole-4,7-diyl-2,5 -Thiophene diyl] (PCDTBT), poly(3,4-ethylenedioxythiophene)-polystyrene sulfonic acid (PEDOT:PSS) at least one.
  • PES ethoxylated polyethyleneimine
  • PC60BM ethoxylated polyethyleneimine
  • PC60BM poly[[9- (1-octylnonyl)-9H-carbazole-2,7-diyl)-2,5-thiendiyl-2,1,3-benzothiadiazole-4,7-di
  • the material of the transparent upper electrode includes indium tin oxide or indium zinc oxide.
  • the above material has a high light transmittance, which can reduce the light loss caused by the light passing through the upper electrode.
  • the transparent upper electrode is electrically connected to the first electrode of the light-emitting area; the lower electrode and the second electrode of the light-emitting area are on the same layer.
  • the transparent upper electrode is electrically connected to the first electrode, which realizes the sharing of electric potential and reduces the wiring of the display panel.
  • the lower electrode is located on the same layer as the second electrode in the light-emitting area, which reduces the overall thickness of the display panel, makes the display panel lighter and thinner, and has a wider application field.
  • it further comprises: a light absorption structure, which is arranged between the sensing area and the light emitting area, and is used for absorbing the light in the horizontal direction emitted by the light emitting area.
  • the light absorption structure provided between the sensing area and the light emitting area can effectively absorb the light in the horizontal direction, block this part of the light from entering the sensing area, prevent noise, and interfere with the detection accuracy of the sensing area, thereby improving the sensing area Detection accuracy.
  • the light absorption structure is disposed adjacent to the light-emitting area, and the horizontal direction light emitted by the light-emitting area is blocked to the greatest extent to cause interference to the sensing area.
  • an anti-crosstalk structure which is disposed on the side of the sensing area away from the TFT backplane, and has a light shielding block, the center of the blank area between adjacent light shielding blocks and the bottom electrode The centers overlap to form an anti-crosstalk optical path.
  • the light shielding block in the crosstalk prevention structure is arranged in the space above the space between the adjacent sensing area and the light emitting area, so that the light emitted by the light emitting area reaches the sensing area after reflection, forming an anticrosstalk optical path to avoid reflected light Entering the sensing area causes crosstalk, which in turn affects the detection accuracy and sensitivity of the sensing area.
  • the crosstalk prevention structure includes an inorganic layer and an organic layer that are alternately stacked, and the light-shielding block is disposed between the inorganic layer and the organic layer.
  • an embodiment of the present application provides a method for manufacturing a display panel, including: manufacturing a TFT backplane; forming a preset functional layer where the sensing area is located on the TFT backplane, the preset functional layer including Sensing area and light emitting area set at intervals; making encapsulation layer. A spaced-apart sensing area and light emitting area are formed on the TFT backplane. The sensing area is located on the TFT backplane.
  • the light emitted by the light emitting structure and reflected by the object can be directly transmitted to the sensing area without the need to pass through the TFT substrate, so the reflection
  • the light will not be absorbed by the metal traces and various film layers in the TFT backplane, and will not cause light loss, so that the light entering the sensing area is increased, the light transmittance is increased, and then the sensitivity of the sensing area is improved .
  • the forming of the preset functional layer where the sensing region is located on the TFT backplane includes: forming a second electrode material of the light emitting region on the TFT backplane; and patterning the second electrode material , Forming a second electrode of the light emitting region and a lower electrode of the sensing region, the size of the sensing region is the same as the size of the lower electrode; forming a sensor on the patterned second electrode material A material layer; forming a transparent conductive layer on the side of the sensing material layer away from the TFT backplane; patterning the transparent conductive layer to form an upper electrode of the sensing area.
  • the method further includes: forming a light absorption structure between the sensing area and the light emitting area.
  • the light absorption structure provided between the sensing area and the light emitting area can effectively absorb the light in the horizontal direction, block this part of the light from entering the sensing area, prevent noise, and interfere with the detection accuracy of the sensing area, thereby improving the sensing area Detection accuracy.
  • the method further includes: forming an anti-crosstalk structure on a side of the sensing area away from the TFT backplane.
  • the anti-crosstalk structure can effectively prevent crosstalk caused by reflected light entering the sensing area, and improve the detection accuracy and sensitivity of the sensing area.
  • forming the anti-crosstalk structure on the side of the sensing area away from the TFT backplane includes: a layer on the side of the encapsulation layer remote from the TFT backplane and/or the encapsulation layer are spaced apart At least one inorganic layer and at least one organic layer are prepared, a light-shielding layer is prepared between the inorganic layer and the organic layer, and a light-shielding block is patterned to form, the center of the blank area between adjacent light-shielding blocks and the The centers of the lower electrodes overlap.
  • an embodiment of the present application provides a display device, including the display panel according to any one of the first aspect of the present application.
  • the display panel provided by the present application includes: a TFT backplane and a plurality of light emitting regions provided on the TFT backplane, the display panel further includes: a sensing region, which is provided on the TFT backplane and is located on the plurality of The light-emitting areas are used to sense the light emitted by the light-emitting areas reflected by the object when the object approaches the display panel.
  • the sensing area in the above display panel is set on the TFT backplane and is located between multiple light-emitting areas.
  • the light emitted from the light-emitting area can directly enter the sensing area after being reflected by the object, without the need to pass through the TFT backplate, to reduce light transmission
  • the light transmittance caused by passing through the TFT backplane is reduced, reducing the light loss and improving the sensitivity of the sensing area.
  • FIG. 1 is a schematic diagram of a specific example of a display panel in an embodiment of this application.
  • FIG. 2 is a schematic diagram of a specific example of a TFT backplane of a display panel in an embodiment of this application;
  • FIG. 3 is a schematic diagram of another specific example of the display panel in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of another specific example of the display panel in the embodiment of the present application.
  • FIG. 5 is a schematic diagram of another specific example of the display panel in the embodiment of the present application.
  • FIG. 6 is a schematic diagram of another specific example of the display panel in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a specific example of the optical path design of the anti-crosstalk structure of the display panel in the embodiment of the present application.
  • FIG. 8 is a flowchart of a specific example of a method for manufacturing a display panel in an embodiment of the present application.
  • FIG. 9 to 11 are schematic structural diagrams exemplified in a specific step of the method for preparing a display panel in an embodiment of the present application.
  • FIG. 13 to 19 are schematic structural diagrams exemplified in another specific step of the method for preparing a display panel in an embodiment of the present application.
  • 21 to 25 are schematic structural diagrams exemplified in another specific step of the method for manufacturing a display panel in the embodiment of the present application.
  • the conventional fingerprint recognition sensor is attached to the bottom of the display screen in a fitting manner, and the problem of low sensor sensitivity often occurs.
  • the gate and source and drain of the TFT device in the display screen usually use metal materials to form metal traces These metal traces also cause light loss, which further reduces the light transmittance, which in turn reduces the light reaching the sensor and reduces the sensitivity of the sensor.
  • the present application provides a display panel, which can solve the above problems well.
  • the display panel includes: a TFT backplane 1, a plurality of light-emitting regions 2 and a sensing region 3 provided on the TFT backplane 1, and the sensing region 3 It is disposed on the TFT backplane 1 and is located between the plurality of light-emitting areas 2, and is used to sense the light emitted by the light-emitting area 2 reflected by the object when the object approaches the display panel.
  • the sensing area in the above display panel is set on the TFT backplane and is located between multiple light-emitting areas.
  • the light emitted from the light-emitting area can directly enter the sensing area after being reflected by the object, without the need to pass through the TFT backplate, to reduce light transmission
  • the light transmittance caused by passing through the TFT backplane is reduced, reducing the light loss and improving the sensitivity of the sensing area.
  • the TFT backplane 1 includes a laminated substrate 11, a buffer layer (Buffer) 12, an active layer (Active) 13, and a gate insulating layer (Gate Insulator, GI) 14 , Gate 15, Interlayer Dielectric (abbreviated as ILD) 16, Source/Drain (Source/Drain, abbreviated as SD) 17, and Planarization Layer (PLN) 18;
  • ILD Interlayer Dielectric
  • SD Source/Drain
  • PPN Planarization Layer
  • the TFT backplane can also be reasonably set according to needs, such as bottom gate TFT.
  • the sensing area 3 includes a lower electrode 31, a sensing material layer 32 and a transparent upper electrode 33 stacked on the TFT backplane 1.
  • the lower electrode is electrically connected to the TFT in the TFT backplane, and the TFT converts the optical signal detected by the sensing area into an electrical signal for subsequent processing.
  • the transparent upper electrode 33 has a higher light transmittance, which can effectively ensure that the reflected light passes through the upper electrode as much as possible to the sensing material layer 32, so as to increase the amount of reflected light received by the sensing area.
  • the sensing material layer serves as a pixel defining layer.
  • the sensing material layer covers other areas on the TFT backplane except the light-emitting area, and the sensing material layer on the lower electrode forms a sensor.
  • the sensing layer used to sense the reflected light in the area, and the sensing material layer in other areas are used as the pixel defining layer to define the size of the light emitting area, so that there is no need to prepare a pixel defining layer, saving the process flow and reducing the production cost.
  • the material of the sensing material layer is an organic optoelectronic material.
  • the organic optoelectronic material has a large optical path range, large brightness, high efficiency, low driving voltage, low energy consumption, simple manufacturing process, and low cost.
  • the material of the sensing material layer may also use other conventional sensing materials, such as inorganic optoelectronic materials, which can be reasonably set as required.
  • the organic photoelectric material includes at least one of ethoxylated polyethyleneimine (PEIE), PC60BM, PCBTBT, poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT:PSS) These materials are more common, the preparation process is mature, and the cost is low.
  • PEIE ethoxylated polyethyleneimine
  • PC60BM PC60BM
  • PCBTBT poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid
  • PDOT:PSS poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid
  • the material of the transparent upper electrode includes indium tin oxide (Indium Tin Oxid, abbreviated as ITO) or indium zinc oxide (Indium Zinc Oxide, IZO), indium tin oxide and indium zinc oxide materials.
  • ITO Indium Tin Oxid
  • IZO Indium Zinc Oxide
  • the high rate can reduce the light loss caused by the light passing through the upper electrode.
  • the material of the transparent upper electrode is ITO, the preparation process of ITO is mature, and the performance of the prepared ITO is better, which reduces the production cost.
  • the material of the transparent upper electrode may be other transparent materials, such as silver-doped indium tin oxide (Ag+ITO) or silver-doped indium zinc oxide (Ag+IZO), in this embodiment It is only a schematic illustration, not limited to this, and can be set reasonably according to the actual application.
  • Ag+ITO silver-doped indium tin oxide
  • Ag+IZO silver-doped indium zinc oxide
  • the light emitting region 2 includes a first electrode 21, a light emitting structure layer 22 and a second electrode 23.
  • the transparent upper electrode 33 is electrically connected to the first electrode 21 of the light-emitting region 2; the lower electrode 31 is located on the same layer as the second electrode 23 of the light-emitting region 2.
  • the first electrode of the light-emitting area is a cathode, and the transparent upper electrode is electrically connected to the first electrode, which realizes the sharing of potentials and reduces the wiring of the display panel.
  • the lower electrode is located on the same layer as the second electrode in the light-emitting area, which reduces the overall thickness of the display panel, makes the display panel lighter and thinner, and has a wider application field.
  • the above-mentioned display panel further includes a light absorption structure 4 disposed between the sensing area 3 and the light emitting area 2 for absorbing the light in the horizontal direction emitted by the light emitting area 2.
  • the light emitted by the light-emitting area is directed in various directions.
  • the light-absorbing structure provided between the sensing area and the light-emitting area can effectively absorb the light in the horizontal direction, blocking this part of the light from entering the sensing area, preventing noise and interfering with the sensing area Detection accuracy, thereby improving the detection accuracy of the sensing area.
  • the light-absorbing structure 4 is disposed next to the light-emitting area 2 to block the horizontal light emitted by the light-emitting area to the greatest extent to cause interference to the sensing area.
  • the above display panel further includes: an encapsulation layer 6 and an anti-crosstalk structure 5, disposed on the side of the sensing area 3 away from the TFT backplane, and having a light blocking block 51 51 is provided between the sensing area 3 and the space above the light-emitting area 2.
  • the center of the blank area between the adjacent light-shielding blocks 51 overlaps the center of the lower electrode 31 to form an anti-crosstalk optical path.
  • the anti-crosstalk structure is arranged above the sensing area and the light-emitting area, and the light-shielding block in the anti-crosstalk structure is arranged in the space above the space between the adjacent sensing area and the light-emitting area, so that the light emitted by the light-emitting area is reflected After reaching the sensing area, an anti-crosstalk optical path is formed to avoid crosstalk caused by reflected light entering the sensing area, which in turn affects the detection accuracy and sensitivity of the sensing area.
  • the center of the blank area between the adjacent light-shielding blocks 51 overlaps the center of the lower electrode 31, which can effectively ensure that the optical path is not blocked by the light-shielding blocks and improve the detection accuracy of the sensing area.
  • the crosstalk prevention structure 5 includes an inorganic layer 52 and an organic layer 53 that are stacked at intervals, and a light blocking block 51 is provided between the inorganic layer 52 and the organic layer 53. Since the optical path of the anti-crosstalk structure needs to be strictly set, the height of the anti-crosstalk structure has corresponding requirements.
  • the organic layer and the inorganic layer surround the shading block. Since the shading block is not easy to be directly formed on the organic layer, the shading block is formed on On the inorganic layer, an organic layer is formed on the shading block later, the preparation process is simpler and more convenient.
  • L 1 is 2.54cm/DPI
  • L 2 is the size of the sensing area
  • d is the diameter of the sleeve hole
  • H is the height of the sleeve hole
  • h 1 is the distance from the center point of the sleeve hole to the upper surface of the screen
  • h 2 is the sleeve hole The distance from the midline point to the upper surface of the sensing area.
  • L 1 is to calculate the size of each pixel.
  • One inch is 2.54 cm
  • the DPI is the number of pixels per inch. The above-mentioned number of pixels is determined according to the actual application of the display panel, and different display panels correspond to different numbers of pixels.
  • the light transmittance of the material of the shading block is less than 5% to achieve a better shading effect.
  • the transmittance can also be set to other values, such as 10% Or 3%, etc., can be set reasonably as needed.
  • the material of the shading block is a metal, such as molybdenum (Mo); of course, in other embodiments, the material of the shading block can also be reasonably set according to needs, which is not limited in this embodiment.
  • the material of the organic layer is preferably polyethylene terephthalate (Polyethylene terephthalate, abbreviated as PET), polybutylene terephthalate (polybutylene terephthalate, abbreviated as PBT), or the like.
  • PET Polyethylene terephthalate
  • PBT polybutylene terephthalate
  • the material of the inorganic layer is preferably an oxide, such as aluminum oxide (Al 2 O 3 ) or silicon nitride (SiN).
  • This embodiment also provides a method for manufacturing a display panel, as shown in FIG. 8, including steps S1-S3.
  • Step S1 fabricate the TFT backplane 1, as shown in FIG. 9.
  • the TFT backplane can be formed by a Low Temperature Poly-Silicon (abbreviated as TPLS) process, which has low manufacturing cost, high TFT electron mobility, and better performance; of course, in other embodiments, it can also be used Other conventional preparation methods are used to manufacture the TFT backplane.
  • TPLS Low Temperature Poly-Silicon
  • TPLS Low Temperature Poly-Silicon
  • Other conventional preparation methods are used to manufacture the TFT backplane.
  • there is no limitation on the formation method of the TFT backplane there is no limitation on the formation method of the TFT backplane, and it can be set reasonably according to actual needs.
  • FIG. 2 a schematic diagram of a specific example of the TFT backplane 1 is shown in FIG. 2, and its preparation process may be prepared by using conventional preparation methods.
  • Step S2 forming a preset functional layer on the TFT backplane 1 where the sensing area is located, the preset functional layer includes the sensing area 3 and the light emitting area 2 which are arranged at intervals, as shown in FIG. 10. Specifically, the sensing area 3 and the light emitting area 2 are formed on the TFT backplane 1 at intervals. The sensing area is located on the TFT backplane. The light emitted by the light emitting structure and reflected by the object can be directly transmitted through the TFT substrate. Transmission to the sensing area.
  • Step S3 Fabricate an encapsulation layer 6, as shown in FIG. 11. Specifically, an encapsulation layer is formed on the preset functional layer.
  • the encapsulation layer can effectively block water and oxygen from entering the display panel, prevent the display panel from being eroded by the external environment, and play a good role in protecting the light-emitting area and the sensing area. Service life.
  • the materials of the encapsulation layer include tetrafluoroethylene (Tetrafluoroethylene, abbreviated as TFE), epoxy resin, polyethylene terephthalate (Polyethylene terephthalate, abbreviated as PET) or polybutylene terephthalate (polybutylene terephthalate, abbreviated) PBT), etc.
  • TFE tetrafluoroethylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • this embodiment is only a schematic representation, not limited to this; in other embodiments, the material of the encapsulation layer may also be an inorganic encapsulation material (such as oxide, nitride, etc.), or Organic encapsulating materials (such as epoxy, phenolic, polyester, or silicone) can also be inorganic-organic composite materials.
  • the material of the encapsulation layer can be reasonably set according to actual needs.
  • the sensing area and the light-emitting area are formed on the TFT backplane at intervals.
  • the sensor area is located on the TFT backplane.
  • the light emitted by the light-emitting structure and reflected by the object can be directly transmitted to the sensing area without the need for transparency. After passing through the TFT substrate, the reflected light will not be absorbed by the metal traces in the TFT backplane, and will not cause light loss, which will increase the light entering the sensing area, increase the light transmittance, and thus improve the sensing area Sensitivity.
  • step S2 specifically includes steps S21-S25.
  • Step S21 forming the second electrode material of the light-emitting region on the TFT backplane 1, as shown in FIG. 13.
  • the entire second electrode material can be formed on the TFT backplane by chemical vapor deposition; of course, in other embodiments, other conventional methods can also be used to form the entire second electrode material, such as spin coating Wait, just choose according to your needs.
  • the second electrode material is preferably a transparent conductive material such as indium tin oxide (ITO) to improve the transparency of the entire display panel; of course, in other embodiments, the second conductive material may also be other opaque conductive Materials, such as metal, can be set appropriately according to the needs.
  • ITO indium tin oxide
  • Step S22 patterning the second electrode material to form the second electrode 23 of the light emitting region 2 and the lower electrode 31 of the sensing region 3, the size of the sensing region is the same as the size of the lower electrode.
  • the second electrode material may be patterned through a mask plate to simultaneously form the second electrode of the light emitting area and the lower electrode of the sensing area, so that the second electrode 23 and the lower electrode 31 are simultaneously formed in the same process step, The process preparation process is reduced, materials are saved, and production costs are reduced, and the arrangement of the two layers at the same layer can also reduce the overall package size of the display panel.
  • Step S23 forming a sensing material layer 32 on the patterned second electrode material, as shown in FIG. 14.
  • the sensing electrode layer 32 may be formed by patterning the second electrode material through a mask plate.
  • the material of the sensing material layer is an organic optoelectronic material.
  • the organic optoelectronic material has a large optical path range, large brightness, high efficiency, low driving voltage, low energy consumption, simple manufacturing process, and low cost.
  • the material of the sensing material layer can also use other conventional sensing materials, such as inorganic photoelectric materials, which can be set reasonably according to needs.
  • the material of the sensing material layer is selected from but not limited to ethoxylated polyethyleneimine (PEIE), PC60BM, PCBTBT, poly(3,4-ethylenedioxythiophene)-polystyrene A combination of one or more of sulfonic acid (PEDOT:PSS).
  • PEIE ethoxylated polyethyleneimine
  • PC60BM PC60BM
  • PCBTBT poly(3,4-ethylenedioxythiophene)-polystyrene A combination of one or more of sulfonic acid
  • PDOT:PSS sulfonic acid
  • the sensing material layer may also be other materials than the above-mentioned materials, which can be reasonably determined according to needs, and this embodiment does not make any limitation on this.
  • Step S24 forming a transparent conductive layer on the sensing material layer 32, as shown in FIG. 15. Specifically, a transparent conductive layer ITO is formed on the sensing material layer 32.
  • the ITO preparation process is mature and the performance is better.
  • Step S25 pattern the transparent conductive layer to form the upper electrode 33 of the sensing area 3, and expose the sensing material layer 32 in the light emitting area 2, as shown in FIG.
  • the method further includes dry etching the sensing material layer using the patterned transparent conductive material layer as a hard mask to expose the second electrode of the light emitting area, as shown in FIG. 17.
  • the second electrode material of the light-emitting area is patterned, and the second electrode 23 of the light-emitting area 2 and the lower electrode 31 of the sensing area 3 are simultaneously formed, so that the second electrode and the lower electrode are simultaneously in the same process step
  • the formation reduces the process preparation process, saves materials, and reduces production costs, and the arrangement of the two layers at the same layer can also reduce the overall package size of the display panel.
  • the above-mentioned display panel manufacturing method further includes forming a light-absorbing structure 4 between the sensing area 3 and the light-emitting area 2.
  • the specific forming process of the light-absorbing structure 4 may include etching the sensing material layer 32 using the patterned transparent conductive layer as a mask to form a light-emitting area pattern and a light-absorbing structure pattern. Specifically, as shown in FIG. 17, dry etching is performed using ITO as a hard mask to expose the second electrode of the light-emitting area, a pattern of the light-emitting area is prepared, and a light-absorbing structure 4 is prepared at the same time.
  • the light-absorbing structure 4 is provided at The sensing material layer between the sensing area and the light emitting area.
  • the light-emitting area is an OLED device, and the light-absorbing structure 4 blocks the lateral light of the organic light-emitting diode (Organic Light Emitting Diode, abbreviated as OLED) device, and the OLED light-emitting area and the sensor used for sensing
  • OLED Organic Light Emitting Diode
  • the sensing area is separated to prevent direct contact between the OLED and the sensing material layer; the insulating layer 7 (such as SiN, etc.) is deposited and patterned by chemical vapor deposition (CVD), and the second electrode 23 and the light emitting area are patterned
  • the upper electrode 31 of the sensing area is exposed.
  • the light-absorbing structure is located close to the light-emitting area.
  • the light-absorbing structure is composed of sensing materials. If it directly contacts the light-emitting area, it will affect the light-emitting effect of the light-emitting area. Therefore, it is necessary to provide an insulating layer 7 between the light-absorbing structure and the light-emitting area to avoid causing light-emitting areas. Adverse effects, at the same time, it can effectively block the light emitted by the OLED device from spreading in the horizontal direction and cause interference to the sensing area, thereby improving the detection accuracy of the sensing area.
  • the insulating layer 7 is provided with an opening, and the upper electrode is exposed at the opening for electrical connection with the first electrode of the light-emitting area.
  • the size and position of the opening can be reasonably set according to actual needs, which is not limited in this embodiment.
  • the opening is located at a position corresponding to the lower electrode, so that the reflected light does not need to pass through the insulating layer, reducing light loss.
  • the sensing material layer is used as the pixel defining layer, and the light emitting structure layer 22 of the OLED device is fabricated on the second electrode 23 in the light emitting region pattern, and then, the first electrode 21 is prepared, as shown in FIG. 19.
  • the light emitting structure layer can be formed by vapor deposition.
  • the sensor material layer is used as the pixel defining layer, and there is no need to prepare the pixel defining layer, which saves the process flow and reduces the production cost; and, the light absorption structure provided between the sensing area and the light emitting area can effectively absorb the horizontal direction Light, blocking this part of the light from entering the sensing area, preventing noise and interfering with the detection accuracy of the sensing area, thereby improving the detection accuracy of the sensing area.
  • step S4 forming a crosstalk prevention structure 5 on the side of the sensing area 3 away from the TFT backplane.
  • the crosstalk prevention structure 5 is disposed above the side of the sensing region 3 away from the TFT backplane, and has a light blocking block 51 disposed above the sensing region 3 and the light emitting region 2 Between spaces, an anti-crosstalk optical path is formed.
  • Step S4 may specifically be that at least one inorganic layer 52 and at least one organic layer 53 are alternately laminated on the side of the encapsulation layer 6 away from the TFT backplane, a light shielding layer is prepared between the inorganic layer and the organic layer, and is patterned In the light shielding block 51, the center of the blank area between adjacent light shielding blocks overlaps with the center of the lower electrode, as shown in FIG.
  • an anti-crosstalk structure 5 can also be provided in the encapsulation layer.
  • an anti-crosstalk structure 5 may also be provided between the electrode on the sensing area and the encapsulation layer.
  • a specific preparation process of the anti-crosstalk structure is as follows: after the packaging process is completed, a low temperature process is used to prepare Al 2 O 3 by atomic layer deposition (abbreviated as ALD) technology; Mo is prepared by sputtering (sputter) method, which is graphical The required light-shielding block is prepared; the organic encapsulation layer is prepared by inkjet printing technology or CVD technology; the above three steps are circulated to form an anti-crosstalk structure.
  • ALD atomic layer deposition
  • a cover plate 8 (such as a glass cover plate) is further provided above the crosstalk prevention structure 5, as shown in FIG. 25, the cover plate protects the underlying components.
  • the crosstalk prevention structure can effectively prevent crosstalk caused by reflected light entering the sensing area, and improve the detection accuracy and sensitivity of the sensing area.
  • This embodiment also provides a display device, including the display panel as described in any one of the above embodiments.
  • the display device has the advantage of detection sensitivity.
  • the display device may be a mobile phone, a tablet, a TV, a display, a palmtop computer, an iPod, a digital camera, a navigator, and other products or components with display functions, which are not limited thereto; in other embodiments
  • the display device can also be other conventional products with display functions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种显示面板、显示面板制备方法及显示设备,其中,所述显示面板包括:TFT背板和设置在所述TFT背板上的多个发光区域,所述显示面板还包括:传感区域,设置于TFT背板上且位于所述多个发光区域之间,用于在物体靠近所述显示面板时感应由所述物体反射的由所述发光区域发出的光。上述显示面板中的传感区域设置于TFT背板上且位于多个发光区域之间,发光区域发出的光经过物体反射后可直接进入传感区域,而无需透过TFT背板,以减少光透过TFT背板导致的光的透过率降低,降低光损耗,从而提高了传感区域的灵敏度。

Description

显示面板、显示面板制备方法及显示设备 技术领域
本申请涉及显示技术领域,具体涉及一种显示面板、显示面板制备方法及显示设备。
背景技术
随着显示终端的快速发展,指纹识别传感器越来越多的应用到显示终端上。指纹是手指表面皮肤凹凸不平形成的纹路,具有唯一性、稳定性的特点,据此通过指纹可以实现身份识别,指纹识别传感器能够准确的识别用户的指纹,对用户进行身份验证,因此,越来越多的显示终端上都设置了指纹识别传感器。例如,指纹识别传感器广泛应用于手机等移动终端的屏幕解锁,用户将手指覆盖于指纹识别传感器上,如果通过认证则授权该用户使用手机的各项功能,如果不是授权用户,手机继续保持锁定状态。又例如,指纹识别传感器设置于打卡机上,用于记录用户出勤时间。然而,指纹识别传感器存在检测灵敏度低的问题。
发明内容
基于此,有必要针对上述技术问题,提供一种显示面板、显示面板制备方法及显示设备。
根据第一方面,本申请实施例提供了一种显示面板,包括:薄膜晶体管(Thin Film Transistor,缩写为TFT)背板和设置在所述TFT背板上的多个发光区域,所述显示面板还包括:传感区域,设置于所述TFT背板上且位于所述多个发光区域之间,用于在物体靠近所述显示面板时感应由所述物体反射的所述发光区域发出的光。
在其中一个实施例中,所述传感区域包括:层叠于所述TFT背板上的下电极、传感材料层以及上电极。下电极与TFT背板中的TFT电连接,该TFT将传感区域检测到的光信号转换为电信号用于后续处理。透明上电极的光的透过率较高,能够有效保证反射光尽可能多的透过上电极到达传感区域,以增加传感区域接收的反射光量。
在其中一个实施例中,所述传感材料层作为像素限定层;无需制备像素限定层,节省工艺流程、降低生产成本。
在其中一个实施例中,所述传感材料层的材料为有机光电材料。有机光电材料的光程范围大、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。
在其中一个实施例中,所述有机光电材料包括乙氧基化聚乙烯亚胺(PEIE)、[6,6]-苯基-C61-丁酸异甲酯(PC60BM)、聚[[9-(1-辛基壬基)-9H-咔唑-2,7-二基]-2,5-噻吩二基-2,1,3-苯并噻二唑-4,7-二基-2,5-噻吩二基](PCDTBT)、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)中的至少之一。上述这些材料较常见、制备工艺成熟、成本低。
在其中一个实施例中,所述透明上电极的材料包括氧化铟锡或氧化铟锌。上述材料光的透过率较高,能够减少光透过上电极造成的光损失。
在其中一个实施例中,所述透明上电极与所述发光区域的第一电极电连接;所述下电极与所述发光区域的第二电极位于同一层。透明上电极与第一电极电连接,实现了电位的共用,减少了显示面板的走线。下电极与发光区域的第二电极位于同一层,降低了显示面板的整体厚度,使得显示面板更加轻薄,应用场合更加广阔。
在其中一个实施例中,还包括:吸光结构,设置于所述传感区域和所述发光区域之间,用于吸收所述发光区域发射出的水平方向的光。设置于传感区域和发光区域之间的吸光结构能够有效吸收水平方向的光,阻挡这部分光进入传感区域,防止造成噪声,干扰传感区域的检测准确度,从而提高了传感区域的检测精度。
在其中一个实施例中,所述吸光结构紧邻所述发光区域设置,以最大程度的阻挡发光区域发射出的水平方向的光对传感区域造成干扰。
在其中一个实施例中,还包括:防串扰结构,设置于所述传感区域远离所述TFT背板的一侧,具有遮光块,相邻遮光块之间的空白区域的中心与下电极的中心重叠,形成防串扰光路。防串扰结构中的遮光块设置于相邻的传感区域和发光区域的间隔区域的上方空间之中,以使发光区域发出的光经反射后到达传感区域,形成防串扰光路,避免反射光进入传感区域造成串扰,进而影响传感区域的检测精度和灵敏度。
在其中一个实施例中,所述防串扰结构包括间隔层叠的无机层和有机层,所述遮光块设置在所述无机层和所述有机层之间。
根据第二方面,本申请实施例提供了一种显示面板制备方法,包括:制作TFT背板;在所述TFT背板上形成传感区域所在的预设功能层,所述预设功能层包括间隔设置的传感区域和发光区域;制作封装层。在TFT背板上形成间隔设置的传感区域和发光区域,传感区域位于TFT背板上,发光结构发出并经物体反射的光可直接传输至传感区域,无需透过TFT基板,故反射的光不会被TFT背板中的金属走线和各个膜层吸收,不会造成光损失,使得进入传感区域的光增加,提高了光的透过率,进而提高了传感区域的灵敏度。
在其中一个实施例中,所述在所述TFT背板上形成传感区域所在的预设功能层包括:在TFT背板上形成发光区域的第二电极材料;图形化所述第二电极材料,形成所述发光区域的第二电极和所述传感区域的下电极,所述传感区域的尺寸与所述下电极尺寸相同;在所述图形化后的第二电极材料上形成传感材料层;在所述传感材料层远离所述TFT背板的一侧上形成透明导电层;图形化所述透明导电层,形成传感区域的上电极。对发光区域的第二电极材料图案化,同时形成发光区域的第二电极和传感区域的下电极,使得第二电极和下电极在同一工艺步骤中同时形成,减少工艺制备流程、节省材料、降低生产成本,并且,两者同层设置还可减小显示面板的整体封装尺寸。
在其中一个实施例中,所述方法还包括:在所述传感区域和所述发光区域之间形成吸光结构。设置于传感区域和发光区域之间的吸光结构能够有效吸收水平方向的光,阻挡这部分光进入传感区域,防止造成噪声,干扰传感区域的检测准确度,从而提高了传感区域的检测精度。
在其中一个实施例中,所述方法还包括:在所述传感区域远离所述TFT背板的一侧形成防串扰结构。防串扰结构能够有效避免反射光进入传感区域造成串扰,提高了传感区域的检测精度和灵敏度。
在其中一个实施例中,在所述传感区域远离所述TFT背板的一侧形成防串扰结构包括:在封装层远离所述TFT背板的一侧和/或所述封装层间隔层叠的制备至少一层无机层和至少一层有机层,在所述无机层和有机层之间制备遮光层,并图形化形成遮光块,相邻所述遮光块之间的空白区域的中心与所述下电极的中心重叠。
根据第三方面,本申请实施例提供了一种显示设备,包括如本申请第一方面中任一所述的显示面板。
本申请技术方案,具有如下优点:
本申请提供的显示面板,包括:TFT背板和设置在所述TFT背板上的多个发光区域,所述显示面板还包括:传感区域,设置于TFT背板上且位于所述多个发光区域之间,用于在物体靠近所述显示面板时感应由所述物体反射的所述发光区域发出的光。上述显示面板中的传感区域设置于TFT背板上且位于多个发光区域之间,发光区域发出的光经过物体反射后可直接进入传感区域,无需透过TFT背板,以减少光透过TFT背板导致的光的透过率降低,降低光损耗,提高了传感区域的灵敏度。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式中所需要使用的附图作简单地介绍。
图1为本申请实施例中显示面板的一个具体示例的示意图;
图2为本申请实施例中显示面板的TFT背板的一个具体示例的示意图;
图3为本申请实施例中显示面板的另一个具体示例的示意图;
图4为本申请实施例中显示面板的另一个具体示例的示意图;
图5为本申请实施例中显示面板的另一个具体示例的示意图;
图6为本申请实施例中显示面板的另一个具体示例的示意图;
图7为本申请实施例中显示面板的防串扰结构的光路设计的一个具体示例的示意图;
图8为本申请实施例中显示面板制备方法的一个具体示例的流程图;
图9-图11为本申请实施例中显示面板制备方法的一个具体步骤中示例的结构示意图;
图12为本申请实施例中显示面板制备方法的另一个具体示例的流程图;
图13-图19为本申请实施例中显示面板制备方法的另一个具体步骤中示例的结构示意图;
图20为本申请实施例中显示面板制备方法的另一个具体示例的流程图;
图21-图25为本申请实施例中显示面板制备方法的另一个具体步骤中示例的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”以及“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,需要说明的是,当元件被称为“形成在另一元件上”时,它可以直接连接到另一元件上或者可能同时存在居中元件。当一个元件被认为是“连接”另一个元件,它可以直接连接到另一元件或者同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。
正如背景技术所述,常规的指纹识别传感器采用贴合的方式贴合在显示屏的下方,经常出现传感器灵敏度低的问题,发明人研究发现,出现这种问题的原因在于,指纹识别传感器接收到的光需要先透过显示屏的各个膜层后才能到达传感器的感应层,这些膜层会造成光损耗,同时,显示屏中TFT器件的栅极、源漏极通常采用金属材料形成金属走线,这些金属走线也会产生光损耗,进一步导致光的透过率降低,进而使得到达传感器的光减少,降低传感器的灵敏度。
基于此,本申请提供了一种显示面板,能够很好地解决上述问题。
图1为一实施例中显示面板的剖视图,如图1所示,显示面板包括:TFT背板1、设置在TFT背板1上的多个发光区域2以及传感区域3,传感区域3设置于TFT背板1上且位于多个发光区域2之间,用于在物体靠近显示面板时感应由物体反射的发光区域2发出的光。
上述显示面板中的传感区域设置于TFT背板上且位于多个发光区域之间,发光区域发出的光经过物体反射后可直接进入传感区域,无需透过TFT背板,以减少光透过TFT背板导致的光的透过率降低,降低光损耗,提高了传感区域的灵敏度。
在一较佳实施例中,如图2所示,TFT背板1包括层叠的基板11、缓冲层(Buffer)12、有源层(Active)13、栅极绝缘层(Gate Insulator,GI)14、栅极(Gate)15、层间绝缘层(Interlayer Dielectric,缩写为ILD)16、源漏极(Source/Drain,缩写为SD)17、以及平坦化层(Planarization layer,PLN)18;当然,在其它实施例中,TFT背板还可根据需要合理设置,如底栅TFT。
在一优选实施例中,如图3所示,传感区域3包括层叠于TFT背板1上的下电极31、传感材料层32以及透明上电极33。具体地,下电极与TFT背板中的TFT电连接,该TFT将传感区域检测到的光信号转换为电信号用于后续处理。透明上电极33的光的透过率较高,能够有效保证反射光尽可能多的透过上电极到达传感材料层32,以增加传感区域接收的反射光量。
在一优选实施例中,传感材料层作为像素限定层,具体地,传感材料层覆盖除发光区域之外的TFT背板上的其它区域,位于下电极上的传感材料层形成传感区域中用于感应反射光的传感层,其它区域的传感材料层作为像素限定层以限定发光区域的大小,这样便无需制备像素限定层,节省工艺流程、降低生产成本。
在一优选实施例中,传感材料层的材料为有机光电材料,有机光电材料的光程范围大、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。当然,在其它实施例中,传感材料层的材料还 可采用其它常规的传感材料,如无机光电材料,根据需要合理设置即可。
优选地,有机光电材料包括乙氧基化聚乙烯亚胺(PEIE)、PC60BM、PCBTBT、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)中的至少之一,上述这些材料较常见、制备工艺成熟、成本低。当然,在其它实施例中,也可包括上述材料的任意组合,还可以除上述材料之外的其它材料,根据需要合理确定即可,本实施例对此不作任何限制。
在一优选实施例中,透明上电极的材料包括氧化铟锡(Indium Tin Oxid,缩写为,ITO)或氧化铟锌(Indium Zinc Oxide,IZO),氧化铟锡和氧化铟锌材料的光的透过率较高,能够减少光透过上电极造成的光损失。优选地,透明上电极材料为ITO,ITO的制备工艺成熟、制得的ITO性能较佳,降低生产成本。当然,在其它实施例中,透明上电极的材料还可为其它透明材料,如掺杂银的氧化铟锡(Ag+ITO)或者掺杂银的氧化铟锌(Ag+IZO),本实施例仅作示意性说明,并不以此为限,可根据实际应用合理设置。
在一优选实施例中,如图3所示,发光区域2包括第一电极21、发光结构层22以及第二电极23。
在一优选实施例中,如图3所示,透明上电极33与发光区域2的第一电极21电连接;下电极31与发光区域2的第二电极23位于同一层。具体地,发光区域的第一电极为阴极,透明上电极与第一电极电连接,实现了电位的共用,减少了显示面板的走线。下电极与发光区域的第二电极位于同一层,降低了显示面板的整体厚度,使得显示面板更加轻薄,应用场合更加广阔。
在一优选实施例中,如图4所示,上述显示面板还包括吸光结构4,设置于传感区域3和发光区域2之间,用于吸收发光区域2发射出的水平方向的光。发光区域所发出的光是朝向各个方向的,设置于传感区域和发光区域之间的吸光结构能够有效吸收水平方向的光,阻挡这部分光进入传感区域,防止造成噪声,干扰传感区域的检测准确度,从而提高了传感区域的检测精度。
具体地,吸光结构4紧邻发光区域2设置,以最大程度的阻挡发光区域发射出的水平方向的光对传感区域造成干扰。
在一优选实施例中,如图5所示,上述显示面板还包括:封装层6和防串扰结构5,设置于传感区域3远离TFT背板的一侧,具有遮光块51,该遮光块51设置于传感区域3和发光区域2上方空间之间,相邻遮光块51之间的空白区域的中心与下电极31的中心重叠,形成防串扰光路。防串扰结构设置于传感区域和发光区域的上方,防串扰结构中的遮光块设置于相邻的传感区域和发光区域的间隔区域的上方空间之中,以使发光区域发出的光经反射后到达传感区域,形成防串扰光路,避免反射光进入传感区域造成串扰,进而影响传感区域的检测精度和灵敏度。相邻遮光块51之间的空白区域的中心与下电极31的中心重叠,能够有效保证光路不会被遮光块遮挡,提高传感区域的检测精度。
具体地,如图6所示,防串扰结构5包括间隔层叠的无机层52和有机层53,遮光块51设置在无机层52和有机层53之间。由于防串扰结构的光路需要严格设置,故防串扰结构的高度有相应要求,有机层和无机层将遮光块包围在其中,由于遮光块不易直接成形于有机层上,故先将遮光块形成于无机层上,之后再在遮光块上形成有机层,制备过程更加简单、便捷。
如图7所示,其中,8为盖板,光路的具体设计需要满足如下条件:
Figure PCTCN2019097426-appb-000001
Figure PCTCN2019097426-appb-000002
其中,L 1为2.54cm/DPI,L 2为传感区域的尺寸;d为套孔直径;H为套孔的高度;h 1为套孔中心点到屏幕上表面距离;h 2为套孔中线点到传感区域上表面的距离。具体地,L 1是计算每个像素的大小,一英寸为2.54cm,DPI为每英寸长度内的像素点数,上述像素点数根据实际应用的显示面板确定,不同的显示面板对应不同的像素点数。
在一优选实施例中,遮光块的材料的光的透过率小于5%,以达到较佳的遮光效果,当然,在其它实施例中,透过率还可设置为其它数值,如10%或者3%等,根据需要合理设置即可。优选地,遮光块的材料为金属,如钼(Mo);当然,在其它实施例中,遮光块的材料还可根据需要合理设置,本实施例对此不作任何限制。
在一优选实施例中,有机层的材料优选为聚对苯二甲酸乙二酯(Polyethylene terephthalate,缩写为PET)和聚对苯二甲酸丁二酯(polybutylene terephthalate,缩写为PBT)等。
在一较佳实施例中,无机层的材料优选为氧化物,例如三氧化二铝(Al 2O 3)或氮化硅(SiN)等。
本实施例还提供一种显示面板制备方法,如图8所示,包括步骤S1-S3。
步骤S1:制作TFT背板1,如图9所示。具体地,可通过低温多晶硅(Low Temperature Poly-Silicon,缩写为TPLS)工艺形成TFT背板,制造成本低、TFT的电子迁移率高、性能更优;当然,在其它实施例中,还可采用其它常规的制备方式制作TFT背板,本实施例对TFT背板的形成方式不作任何限制,可根据实际需要合理设置。
具体地,TFT背板1的一个具体示例的示意图如图2所示,其制备过程可采用常规的制备方法制备而成。
步骤S2:在TFT背板1上形成传感区域所在的预设功能层,预设功能层包括间隔设置的传感区域3和发光区域2,如图10所示。具体地,在TFT背板1的上形成间隔设置的传感区域3和发光区域2,传感区域位于TFT背板上,发光结构发出并经物体反射的光无需透过TFT基板,便可直接传输至传感区域。
步骤S3:制作封装层6,如图11所示。具体地,在预设功能层上形成封装层,封装层能够有效阻挡水氧等进入显示面板,避免显示面板受到外界环境的侵蚀,对发光区域和传感区域起到很好地保护作用,延长使用寿命。封装层的材料包括四氟乙烯(Tetrafluoroethylene,缩写为TFE)、环氧树脂、聚对苯二甲酸乙二酯(Polyethylene terephthalate,缩写为PET)或者聚对苯二甲酸丁二酯(polybutylene terephthalate,缩写为PBT)等,本实施例仅作示意性表示,并不以此为限;在其它实施方式中,封装层的材料也可为无机封装材料(如氧化物、氮化物等),也可为有机封装材料(如环氧类、酚醛类、聚酯类或者有机硅类等),还可为无机有机复合材料,封装层的材料可根据实际需要合理设置。
上述显示面板制备方法,在TFT背板上形成间隔设置的传感区域和发光区域,传感区域位于TFT背板上,发光结构发出并经物体反射的光可直接传输至传感区域,无需透过TFT基板,故反射的光不会被TFT背板中的金属走线吸收,不会造成光损失,使得进入传感区域的光增加,提高了光的透过率,进而提高了传感区域的灵敏度。
在一优选实施例中,如图12所示,步骤S2具体包括步骤S21-S25。
步骤S21:在TFT背板1上形成发光区域的第二电极材料,如图13所示。具体地,可通过化学气相沉积方式在TFT背板上形成整面的第二电极材料;当然,在其它实施例中,也可采用其它常规的方式形成整面的第二电极材料,如旋涂等,根据需要合理选择即可。在一优选实施例中,第二电极材料优选为氧化铟锡(ITO)等透明导电材料,以提高整个显示面板的透明度;当然,在其它实施例中,第二导电材料还可为其它不透明导电材料,如金属等,根据需要合理设置即可。
步骤S22:图形化第二电极材料,形成发光区域2的第二电极23和传感区域3的下电极31,传感区域的尺寸与下电极尺寸相同。具体地,可通过掩膜板对第二电极材料进行图案化,同时形成发光区域的第二电极和传感区域的下电极,使得第二电极23和下电极31在同一工艺步骤中同时形成,减少工艺制备流程、节省材料、降低生产成本,并且,两者同层设置还可减小显示面板的整体封装尺寸。
步骤S23:在图形化后的第二电极材料上形成传感材料层32,如图14所示。具体地,可通过掩膜板对第二电极材料进行图案化形成传感材料层32。
在一优选实施例中,传感材料层的材料为有机光电材料,有机光电材料的光程范围大、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。当然,在其它实施例中,传感材料层的材料还可采用其它常规的传感材料,如无机光电材料,根据需要合理设置即可。
在一较佳实施例中,传感材料层的材料选自但不限于乙氧基化聚乙烯亚胺(PEIE)、PC60BM、PCBTBT、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)中的一种或多种的组合。当然,在其它实施例中,传感材料层还可以为除上述材料之外的其它材料,根据需要合理确定即可,本实施例对此不作任何限制。
步骤S24:在传感材料层32上形成透明导电层,如图15所示。具体地,在传感材料层32上形成透明导电层ITO,ITO制备工艺成熟,性能较佳。
步骤S25:图形化透明导电层,形成传感区域3的上电极33,并暴露发光区域2内的传感材料层32,如图16所示。
步骤S25之后,还包括以上述图形化的透明导电材料层为硬掩膜(hard mask)对传感材料层进行干刻,以暴露发光区域的第二电极,如图17所示。
上述显示面板制备方法,对发光区域的第二电极材料图案化,同时形成发光区域2的第二电极23和传感区域3的下电极31,使得第二电极和下电极在同一工艺步骤中同时形成,减少工艺制备流程、节省材料、降低生产成本,并且,两者同层设置还可减小显示面板的整体封装尺寸。
在一优选实施例中,上述显示面板制备方法还包括在传感区域3和发光区域2之间形成吸光结构4。 吸光结构4的具体形成过程可包括以图形化透明导电层为掩膜对传感材料层32进行刻蚀,形成发光区域图形和吸光结构图形。具体地,如图17所示,以ITO为硬掩膜(hard mask)进行干刻,暴露发光区域的第二电极,制备出发光区域图形,并同时制备吸光结构4,吸光结构4为设置于传感区域和发光区域之间的传感材料层。如图18所示,该实施例中,发光区域为OLED器件,吸光结构4将遮挡有机发光二极管(Organic Light Emitting Diode,缩写为OLED)器件的横向光,将OLED发光区域和用于传感的传感区域分开,防止OLED和传感材料层直接接触;通过化学气相沉积(chemical vapor deposition,缩写为CVD)沉积绝缘层7(如SiN等)并图形化,将发光区域的第二电极23和传感区域的上电极31露出。
吸光结构紧邻发光区域设置,吸光结构由传感材料构成,若直接与发光区域接触,会影响发光区域的发光效果,故需在吸光结构和发光区域之间设置绝缘层7,避免对发光区域造成不利影响,同时还能够有效阻挡OLED器件发出的光在水平方向上传播对传感区域造成干扰,提高了传感区域的检测精度。
绝缘层7上设置有开口,开口处露出上电极,以便与发光区域的第一电极电连接,开口的大小和位置可根据实际需要合理设置,本实施例对此不作任何限制。优选地,开口位于与下电极对应的位置上,这样反射的光无需透过该绝缘层,减小光损失。吸光结构制备完成之后,在发光结构图形中制作OLED器件,其中OLED器件的第一电极与上电极连接。具体地,以传感材料层作为像素限定层,并在发光区域图形中的第二电极23上制作OLED器件的发光结构层22,之后,在制备第一电极21,如图19所示。具体地可通过蒸镀的方式形成发光结构层。
上述显示面板制备方法,以传感材料层作为像素限定层,无需制备像素限定层,节省工艺流程、降低生产成本;并且,设置于传感区域和发光区域之间的吸光结构能够有效吸收水平方向的光,阻挡这部分光进入传感区域,防止造成噪声,干扰传感区域的检测准确度,从而提高了传感区域的检测精度。
在上述显示面板制备方法的基础上,如图20所示,还包括步骤S4:在传感区域3远离TFT背板的一侧形成防串扰结构5。具体地,如图21所示,防串扰结构5,设置于传感区域3远离TFT背板的一侧的上方,具有遮光块51,该遮光块51设置于传感区域3和发光区域2上方空间之间,形成防串扰光路。
在一实施例中,形成封装层6后设置遮光块,如图21所示。步骤S4具体可为在封装层6远离TFT背板的一侧间隔层叠的制备至少一层无机层52和至少一层有机层53,在无机层和有机层之间制备遮光层,并图形化形成遮光块51,相邻遮光块之间的空白区域的中心与下电极的中心重叠,如图22所示。
在一可替换实施例中,如图23所示,还可在封装层中设置防串扰结构5。在另一可替换实施例中,如图24所示,还可在传感区域上电极与封装层之间设置防串扰结构5。
防串扰结构的一个具体制备过程如下:在完成封装工艺后,采用低温工艺以原子层沉积(atomiclayer deposition,缩写为ALD)技术制备Al 2O 3;以溅射(Sputter)方式制备Mo,图形化制备出所需遮光块;以喷墨打印技术或CVD技术制备出有机封装层;按以上三个步骤进行循环,形成防串扰结构。
在其它可替换实施例中,在防串扰结构5的上方还设置有盖板8(如玻璃盖板),如图25所示,盖板对下方元器件起到保护作用。
上述显示面板制备方法,防串扰结构能够有效避免反射光进入传感区域造成串扰,提高了传感区域 的检测精度和灵敏度。
本实施例还提供一种显示设备,包括如上述实施例中任一所述的显示面板。该显示设备具有检测灵敏度的优点。
在一优选实施例中,显示设备可以为手机、平板、电视机、显示器、掌上电脑、ipod、数码相机、导航仪等具有显示功能的产品或者部件,并不以此为限;在其它实施例中,显示设备还可为其它常规的具有显示功能的产品。
虽然结合附图描述了本申请的实施例,但是本领域技术人员可以在不脱离本申请的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (18)

  1. 一种显示面板,包括:TFT背板和设置在所述TFT背板上的多个发光区域,所述显示面板还包括:
    传感区域,设置于所述TFT背板上且位于所述多个发光区域之间,用于在物体靠近所述显示面板时感应由所述物体反射的所述发光区域发出的光。
  2. 根据权利要求1所述的显示面板,其中,所述传感区域包括:
    层叠于所述TFT背板上的下电极、传感材料层以及透明上电极。
  3. 根据权利要求2所述的显示面板,其中所述传感材料层作为像素限定层。
  4. 根据权利要求2所述的显示面板,其中,所述传感材料层的材料为有机光电材料。
  5. 根据权利要求4所述的显示面板,其中,所述有机光电材料包括选自乙氧基化聚乙烯亚胺、PC60BM、PCDTBT、聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)组成的组中的至少一种。
  6. 根据权利要求2所述的显示面板,其中,所述透明上电极的材料包括氧化铟锡或氧化铟锌。
  7. 根据权利要求2所述的显示面板,其中,所述透明上电极与所述发光区域的第一电极电连接;
    所述下电极与所述发光区域的第二电极位于同一层。
  8. 根据权利要求1-7任一所述的显示面板,还包括:
    吸光结构,设置于所述传感区域和所述发光区域之间,用于吸收所述发光区域发射出的水平方向的光。
  9. 根据权利要求8所述的显示面板,其中,所述吸光结构紧邻所述发光区域设置。
  10. 根据权利要求2-7和99任一所述的显示面板,还包括:
    防串扰结构,设置于所述传感区域远离所述TFT背板的一侧,具有遮光块,相邻遮光块之间的空白区域的中心与下电极的中心重叠,形成防串扰光路。
  11. 根据权利要求10所述的显示面板,其中,在封装层中设置所述防串扰结构或在传感区域上电极与封装层之间设置所述防串扰结构。
  12. 根据权利要求10所述的显示面板,其中,所述防串扰结构包括间隔层叠的无机层和有机层,所述遮光块设置在所述无机层和所述有机层之间。
  13. 一种显示面板制备方法,包括:
    制作TFT背板;
    在所述TFT背板上形成传感区域所在的预设功能层,所述预设功能层包括间隔设置的传感区域和发光区域;
    制作封装层。
  14. 根据权利要求13所述的显示面板制备方法,其中,所述在所述TFT背板上形成传感区域所在的预设功能层包括:
    在所述TFT背板上形成发光区域的第二电极材料;
    图形化所述第二电极材料,形成所述发光区域的第二电极和所述传感区域的下电极,所述传感区域的尺寸与所述下电极尺寸相同;
    在所述图形化后的第二电极材料上形成传感材料层;
    在所述传感材料层远离所述TFT背板的一侧上形成透明导电层;
    图形化所述透明导电层,形成传感区域的透明上电极。
  15. 根据权利要求13所述的显示面板制备方法,其中,所述方法还包括,在所述传感区域和所述发光区域之间形成吸光结构。
  16. 根据权利要求13-15任一项所述的显示面板制备方法,其中,所述方法还包括:
    在所述传感区域远离所述TFT背板的一侧形成防串扰结构。
  17. 根据权利要求16所述的显示面板制备方法,其中,在所述传感区域远离所述TFT背板的一侧形成防串扰结构包括:
    在封装层远离所述TFT背板的一侧和/或所述封装层间隔层叠的制备至少一层无机层和至少一层有机层,在所述无机层和有机层之间制备遮光层,并图形化形成遮光块,相邻所述遮光块之间的空白区域的中心与所述下电极的中心重叠。
  18. 一种显示设备,包括如权利要求1-7任一项所述的显示面板。
PCT/CN2019/097426 2019-01-09 2019-07-24 显示面板、显示面板制备方法及显示设备 WO2020143214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910021351.3 2019-01-09
CN201910021351.3A CN111430407B (zh) 2019-01-09 2019-01-09 显示面板、显示面板制备方法及显示设备

Publications (1)

Publication Number Publication Date
WO2020143214A1 true WO2020143214A1 (zh) 2020-07-16

Family

ID=71520870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097426 WO2020143214A1 (zh) 2019-01-09 2019-07-24 显示面板、显示面板制备方法及显示设备

Country Status (2)

Country Link
CN (1) CN111430407B (zh)
WO (1) WO2020143214A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024097A1 (en) * 2000-08-31 2002-02-28 Lg. Phillips Lcd Co., Ltd. TFT type optical detecting sensor implementing different TFTs and the fabricating method thereof
CN105183201A (zh) * 2014-05-26 2015-12-23 上海和辉光电有限公司 触摸式显示屏
CN107093617A (zh) * 2017-05-02 2017-08-25 京东方科技集团股份有限公司 阵列基板、图像采集方法及显示装置
CN107180853A (zh) * 2017-07-10 2017-09-19 京东方科技集团股份有限公司 一种oled显示面板及其控制方法、显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108493218B (zh) * 2018-03-30 2021-04-06 京东方科技集团股份有限公司 压感触控显示面板及其制备方法、显示装置
CN108922905A (zh) * 2018-07-17 2018-11-30 京东方科技集团股份有限公司 一种显示基板及制备方法、显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020024097A1 (en) * 2000-08-31 2002-02-28 Lg. Phillips Lcd Co., Ltd. TFT type optical detecting sensor implementing different TFTs and the fabricating method thereof
CN105183201A (zh) * 2014-05-26 2015-12-23 上海和辉光电有限公司 触摸式显示屏
CN107093617A (zh) * 2017-05-02 2017-08-25 京东方科技集团股份有限公司 阵列基板、图像采集方法及显示装置
CN107180853A (zh) * 2017-07-10 2017-09-19 京东方科技集团股份有限公司 一种oled显示面板及其控制方法、显示装置

Also Published As

Publication number Publication date
CN111430407A (zh) 2020-07-17
CN111430407B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
US9997636B2 (en) Fabricating method of optical sensing device
CN109273498B (zh) 一种阵列基板及其制备方法、显示面板、显示装置
US10488962B2 (en) Organic light-emitting diode display device with touch control function and manufacturing method therefor
JP6807178B2 (ja) 表示装置、表示装置の製造方法
US10825875B2 (en) OLED display panel and display device
US20210408439A1 (en) Organic light emitting element, display device, and manufacturing method of organic light emitting element
US11239259B2 (en) Substrate, manufacturing method thereof and transparent display device
US11581374B2 (en) Display substrate and method of manufacturing the same, display device
US11563064B2 (en) Array substrate, display device, and method for fabricating an array substrate
JP7343614B2 (ja) 表示基板及びその製造方法、表示装置
US11538848B2 (en) Fingerprint identification substrate and manufacturing method therefor, identification method and display apparatus
JP2023524325A (ja) 表示基板及び表示装置
CN110429205B (zh) 一种显示面板及显示装置
US20240049524A1 (en) Organic light-emitting display device and method of manufacturing same
US20240168598A1 (en) Touch structure and display panel
WO2020143214A1 (zh) 显示面板、显示面板制备方法及显示设备
CN107978609B (zh) 一种阵列基板及显示装置
CN112420618B (zh) 显示面板及显示面板的制备方法
KR102432128B1 (ko) 터치 내장형 표시 장치
CN113366651A (zh) 显示模组及其制造方法、显示装置
WO2023050347A1 (zh) 显示基板及其制备方法、显示装置
KR20200131584A (ko) 지문 센서 및 그 제조 방법
WO2023093252A1 (zh) 显示基板及其制备方法、显示装置
CN113193011A (zh) 显示面板及其制备方法、显示模组
CN115915846A (zh) 一种显示面板和显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909270

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909270

Country of ref document: EP

Kind code of ref document: A1