WO2020140868A1 - 无线资源管理测量方法与装置 - Google Patents

无线资源管理测量方法与装置 Download PDF

Info

Publication number
WO2020140868A1
WO2020140868A1 PCT/CN2019/129918 CN2019129918W WO2020140868A1 WO 2020140868 A1 WO2020140868 A1 WO 2020140868A1 CN 2019129918 W CN2019129918 W CN 2019129918W WO 2020140868 A1 WO2020140868 A1 WO 2020140868A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrm measurement
rrm
drx
period
network device
Prior art date
Application number
PCT/CN2019/129918
Other languages
English (en)
French (fr)
Inventor
高宽栋
黄煌
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020140868A1 publication Critical patent/WO2020140868A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0248Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal dependent on the time of the day, e.g. according to expected transmission activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and in particular to a radio resource management (RRM) measurement method and device.
  • RRM radio resource management
  • DRX cycle DRX cycle
  • LTE long term evolution
  • the basic mechanism of DRX is to configure a DRX cycle (DRX cycle) for terminal devices in a connected state.
  • the DRX cycle includes an activation period (on duration) and a sleep period (opportunity for DRX).
  • the terminal device monitors and receives the downlink signal, and during the sleep period, the terminal device does not monitor or receive the downlink signal to save power consumption.
  • the power saving signal is used to instruct the terminal device to sleep or monitor and measure during the activation period of the next DRX cycle.
  • the power saving signal is configured for the terminal device based on the measurement requirements of the physical downlink control channel (PDCCH) of the network device.
  • PDCCH physical downlink control channel
  • the network device In order to satisfy the purpose of radio resource management (RRM), the network device will configure the terminal device to measure the radio resource. This measurement is called RRM measurement.
  • RRM measurement This measurement is called RRM measurement.
  • the terminal device After using the power saving signal, relatively speaking, the terminal device will increase the number of sleeps in an RRM measurement period, and it may occur that the terminal device sleeps during the DRX cycle that requires RRM measurement, which results in the RRM measurement period. The reduced number of RRM measurements will reduce the measurement accuracy of RRM measurements.
  • the present application provides an RRM measurement method and device, which can increase the number of RRM measurements in the RRM measurement period, thereby improving the measurement accuracy of the RRM measurement.
  • an RRM measurement method which includes: performing RRM measurement during an activation period of at least one DRX cycle in which the network device instructs to sleep in a discontinuous reception during the RRM measurement cycle.
  • the number of RRM measurements within the RRM measurement cycle can be increased, which is beneficial to improve the measurement of RRM measurement Precision.
  • the network device when it does not need to monitor the physical downlink control channel PDCCH, it indicates to sleep in the active period of the DRX cycle, and when it needs to monitor the PDCCH, it indicates that Wake up during the active phase of the DRX cycle.
  • the network device instructs to sleep or wake up during the active period of the DRX cycle through the power saving signal.
  • the RRM measurement method further includes: receiving a power saving signal sent by a network device.
  • performing RRM measurement during an activation period of at least one DRX cycle in which the network device is instructed to sleep includes: in X DRXs instructed to be dormant by the network device RRM measurement is performed during the activation period of the cycle, and the value of X is such that the number of RRM measurements within the RRM measurement period is not less than the minimum number of measurements that satisfy the RRM measurement accuracy.
  • RRM measurement is performed during the activation period of at least one DRX cycle instructed by the network device to sleep, so that the number of RRM measurements within the RRM measurement period is not less than the minimum number of measurements that satisfy the RRM measurement accuracy, thereby effectively improving RRM The measurement accuracy of the measurement.
  • performing RRM measurement during an activation period of at least one DRX cycle in which the network device is instructed to sleep includes: in the RRM measurement period, all The network equipment instructs to do RMM measurement during the activation period of the dormant DRX cycle.
  • the measurement accuracy of RRM measurement can be improved to a greater extent.
  • the method further includes: during the RRM measurement period, other than the at least one DRX period is instructed by the network device to sleep The DRX cycle is dormant during the active period.
  • the terminal device performs sleep during the active period of the DRX cycle in which the network device is instructed to sleep, and performs RRM measurement during the active period of the DRX cycle in which the network device is instructed to sleep.
  • the number of RRM measurements within one RRM measurement cycle can be increased, so that the RRM can be improved to a certain extent
  • the measurement accuracy of the measurement in addition, by performing sleep during the activation period of another DRX cycle in which the network device is instructed to sleep, the energy consumption of the terminal device can be reduced.
  • performing RRM measurement during an activation period of at least one DRX cycle instructed by the network device to sleep includes: during the RRM measurement period, whenever a The DRX cycle instructed by the network device to reduce the count value K of the counter by L1, L1 is an integer, the initial value of the count value K is less than or equal to the number of DRX cycles included in the RRM measurement period;
  • the number of unreached DRX cycles in the RRM measurement cycle is equal to the value of K
  • RRM measurement is performed during the activation period of the reciprocal K DRX cycles of the RRM measurement cycle, and the reciprocal K DRX cycles include the The DRX cycle in which the network device instructs to sleep.
  • the present application can also reduce the energy consumption of the terminal device while ensuring the measurement accuracy of the RRM measurement to a large extent.
  • L1 is equal to 1.
  • the value of L1 is based on the number of RRM measurements in the activation period of the DRX cycle instructed by the network device to wake up, and The number of RRM measurements during the activation period of the penultimate K-th DRX cycle in the RRM measurement cycle is determined.
  • L1 is equal to 0; when the activation period of the DRX cycle instructed to wake up When the number of RRM measurements is equal to or greater than the number of RRM measurements during the activation period of the penultimate K-th DRX cycle, L1 is equal to 1, or L1 is an integer greater than 1.
  • the initial value of the count value K of the counter is equal to the number of DRX cycles required to satisfy the minimum number of measurements required for RRM measurement accuracy.
  • This application can also reduce the energy consumption of the terminal device when the RRM measurement accuracy is satisfied.
  • performing RRM measurement during an activation period of at least one DRX cycle instructed by the network device to sleep includes: during the RRM measurement period, whenever a When instructed by the network device to wake up the DRX cycle, the value of the counter's count value R is reduced by L2, L2 is equal to the number of RRM measurements during the activation period of the instructed wake up DRX cycle, and the initial value of the counter's R The value is the number of RRM measurements in the RRM measurement period; when the sum of the number of RRM measurements in the reciprocal G DRX cycles not reached in the RRM measurement period is equal to or greater than the value of R, and the reciprocal G-1 DRX cycles When the sum of RRM measurement times in is equal to or less than the value of R, RRM measurement is performed during the activation period of the reciprocal G DRX cycles, and the reciprocal G DRX cycles include the DRX instructed by the network device to sleep cycle.
  • the initial value of the count value R of the counter is equal to the minimum number of measurements that satisfy the RRM measurement accuracy.
  • the energy consumption of the terminal device can also be reduced when the RRM measurement accuracy is satisfied to a large extent.
  • performing RRM measurement during an activation period of at least one DRX cycle instructed by the network device to sleep includes: when the network has been When the device indicates that the number of dormant DRX cycles reaches a threshold, the network device that does not arrive within the RRM measurement cycle indicates that the active period of the dormant DRX cycle performs RRM measurement.
  • the RRM measurement method further includes: reporting the measurement result of the RRM measurement to the network device in the last DRX cycle of the RRM measurement cycle or Sending a resource scheduling request to the network device.
  • an apparatus including a unit for implementing the first aspect or any possible implementation manner of the first aspect.
  • an apparatus including: a memory for storing a computer program; a processor for executing the computer program stored in the memory, and when the computer program is executed, the processor is used for Perform the method provided in the first aspect or any possible implementation manner of the first aspect.
  • the apparatus provided in the third aspect is a terminal device or a chip or an integrated circuit provided on the terminal device.
  • a chip for performing the method provided in the first aspect or any possible implementation manner of the first aspect is provided.
  • a computer-readable storage medium in which computer instructions are stored, and when the computer instructions run on a computer, the computer is caused to perform the first aspect or the first aspect. Any possible implementation method.
  • a computer program product containing instructions that, when the computer program product runs on a computer, causes the computer to execute the method provided in the first aspect or any possible implementation manner of the first aspect.
  • Figure 1 is a schematic diagram of the DRX mechanism
  • FIG. 2 is a schematic diagram of introducing a power saving signal WUS in the DRX mechanism
  • FIG. 3 is a schematic diagram of an application scenario of an embodiment of this application.
  • FIG. 5 is another schematic flowchart of an RRM configuration method according to an embodiment of this application.
  • FIG. 6 is another schematic flowchart of an RRM configuration method according to an embodiment of this application.
  • FIG. 7 is another schematic diagram of an RRM configuration method according to an embodiment of this application.
  • FIG 8 is another schematic diagram of an RRM configuration method according to an embodiment of this application.
  • FIG. 10 is a schematic block diagram of an apparatus according to an embodiment of this application.
  • FIG. 11 is another schematic block diagram of an apparatus according to an embodiment of this application.
  • FIG. 12 is yet another schematic block diagram of the device of the embodiment of the present application.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • 5G fifth generation
  • NR new radio
  • the terminal device in the embodiments of the present application may refer to any one of the following: user equipment (use equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (wireless local loop (WLL) stations, personal digital processing (personal digital assistant, PDA), wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or terminals in future public land mobile communications networks (PLMN)
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile communications networks
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device.
  • the network device may be an evolved base station (Evolutional NodeB, eNB, or eNodeB) in an LTE system, or may be a cloud radio access network (cloud radio) access (network, CRAN) scenario, or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, a network device in a 5G network, or a network device in a PLMN network that will evolve in the future.
  • the application examples are not limited.
  • Packet-based data streams are usually bursty. When there is no data transmission, power consumption can be reduced by closing the receiving circuit of the terminal device, thereby improving the battery life of the terminal device. This is the origin of the discontinuous reception (DRX) mechanism.
  • DRX discontinuous reception
  • the schematic diagram of the DRX mechanism is shown in Figure 1.
  • time is divided into successive DRX cycles (DRX cycles).
  • the DRX cycle includes an activation period (on duration) and a sleep period (opportunity for DRX).
  • the terminal device monitors and receives downlink signals (for example, a physical downlink control channel (PDCCH)), and during the sleep period, the terminal device does not monitor or receive downlink signals to save power consumption.
  • PDCH physical downlink control channel
  • the working state of the DRX mechanism is divided into an idle state DRX (Idle-DRX) and a connected state DRX (Connected-DRX).
  • the idle state DRX refers to configuring the DRDX cycle for the terminal device in the idle state
  • the connected state DRX refers to configuring the DRX cycle for terminal devices in the connected state.
  • This application only concerns connected DRX.
  • the connected state DRX is simply referred to as DRX in this article.
  • the DRX mentioned below refers to the connected state DRX.
  • the power saving signal is configured by the network device on the terminal device based on the measurement requirements of the PDCCH. For example, when the terminal device needs to monitor the PDCCH during the activation period of the next DRX cycle (or part of the activation period), the network device instructs the terminal device to activate the next DRX cycle (or part of the activation period) through a power saving signal ) Monitoring the PDCCH; when the terminal device does not need to monitor the PDCCH during the activation period of the next DRX cycle, the network device instructs the terminal device to sleep during the activation period of the next DRX cycle through the power saving signal.
  • the power saving signal can be configured in the following two ways.
  • the network device indicates whether the terminal device sleeps during the activation period of the next DRX cycle through different state values of the power saving signal.
  • the power saving signal has two status values "0" and "1".
  • the status value of the power saving signal is "0” it means that the terminal device sleeps during the activation period of the next DRX cycle.
  • the status value of the power saving signal When it is "1”, it means that the terminal device monitors the PDCCH during the activation period of the next DRX cycle.
  • the power saving signal that is always present can be used to indicate whether the terminal device sleeps during the activation period of the next DRX cycle.
  • Configuration method 1 can also be described as: the network device instructs the terminal device whether to sleep during the activation period of the next DRX cycle through the always-on power saving signal. In other words, regardless of whether the terminal device needs to monitor the PDCCH during the activation period of the next DRX cycle, the network device will configure a power saving signal for the terminal device.
  • Power saving signal configuration method 2 The network device indicates whether the terminal device sleeps during the activation period of the next DRX cycle by configuring the power saving signal.
  • the network device configures the power saving signal for the terminal device, and when the terminal device does not need to monitor the PDCCH during the activation period of the next DRX cycle, the network device does not configure the terminal device Power saving signal.
  • the terminal equipment also knows this way of indicating. That is, on the terminal device side, when the power saving signal is detected, the PDCCH is monitored during the activation period of the next DRX cycle, and when the power saving signal is not detected before the arrival of the next DRX cycle, it sleeps during the activation period of the next DRX cycle.
  • the situation described in the above example may be reversed.
  • Configuration method 2 can also be described as: the network device instructs the terminal device whether to sleep during the activation period of the next DRX cycle through the intermittent power saving signal.
  • the network device can notify the terminal device of the configuration of the power saving signal through any of the following signaling: radio resource control (Radio Resource Control, RRC) signaling, and media access control control element (Media Access Control-Control element).
  • RRC Radio Resource Control
  • Media Access Control-Control element Media Access Control-Control element
  • MAC-CE Radio Resource Control
  • DCI Downlink Control Information
  • SI System Information
  • the power saving signal may be a wake-up signal (WUS) or a go-to-sleep signal (DTS).
  • the power saving signal can also be other signals, for example, the power saving signal is any one of the following signals: channel state information reference signal (channel state information reference signal, CSI-RS), demodulation reference signal (demodulation reference signal, DMRS ), tracking reference signals (tracking reference signals, TRS) or synchronization signals/physical broadcast channel blocks (synchronization signals/physical broadcast channel block, SS/PBCH block).
  • the power saving signal may be a serial signal or a data signal.
  • the power saving signal may be any one of the following: DCI, physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), MAC-CE, or RRC.
  • the power saving signal may also be PDCCH. Alternatively, the power saving signal can also be
  • the network device may configure the power saving signal as a sequence signal or PDCCH.
  • the network device may send the power saving signal to the terminal device through any of the following signaling: RRC signaling, MAC-CE signaling.
  • the association relationship between the DRX mechanism and the power saving signal may be configured by the network device and delivered to the terminal device.
  • the configuration information may be carried on any of the following: physical broadcast channel (physical broadcast channel, PBCH), remaining minimum system information (remaining minimum system information, RMSI), system information block (system information block, SIB)1 , SIB2, SIB3, media access control element (media access control-control element, MAC-CE), downlink control information (down link control information, DCI), radio resource control (radio resource control, RRC), and system information.
  • association relationship between the DRX mechanism and the power saving signal may also be specified by the standard, or pre-agreed by the network device and the terminal device.
  • FIG. 2 is a schematic diagram of introducing a power saving signal in the DRX mechanism.
  • the power saving signal is WUS as an example.
  • the terminal device when WUS is configured, the terminal device performs blind detection at a corresponding time in the DRX cycle. If WUS is detected, the PDCCH detection module is woken up to perform PDCCH detection during the active period of the DRX cycle; if it is not detected At WUS, the terminal device sleeps again until the activation period of the next DRX cycle is reached.
  • the value of the offset may determine whether to transmit according to some circumstances.
  • whether to send the offset value can be determined according to the transmission of uplink and downlink data.
  • the power saving signal meets the transmission timing of the uplink signal, it may not be sent.
  • the terminal device when it conflicts with the SSB, it is determined whether to transmit the power saving signal. When conflicting with the SSB, the power saving signal may not be sent. When the terminal device does not receive the power saving signal, the terminal device needs to detect the data signal in the activation period of the next DRX cycle or the data in the next DRX cycle.
  • the network device does not send the power saving signal, and the terminal device does not detect the data signal in the activation period of the next DRX cycle, or detects the data signal in the next DRX cycle.
  • the offset value between the power saving signal and the activation period of the DRX cycle, or the position of the power saving signal, or the position of the activation period in the DRX cycle may also be changed.
  • one variation method is to determine according to the presence or absence of the power saving signal; or according to the offset value of the active period of the power saving signal and the DRX cycle according to the indication of the power saving signal; or according to the Pre -The existence of wake-up window changes.
  • the first way to change is that the position of the power saving signal is fixed, the relative offset of the start position or offset position of the DRX cycle and the position of the power saving signal changes, and the start time of the activation period (onDuration) is The relative offset of the position of the power saving signal is variable, and there may be no offset between the start position of the DRX cycle and the start position of the activation period.
  • the second change method is that the position of the power saving signal is fixed, the starting position of the DRX cycle is fixed, and the relative offset between the start time of the activation period and the position of the power saving signal changes.
  • the value of Delta_offset can be configured or it can be the same as the length of the measured reference signal duration.
  • the value of Delta_offset can be configured.
  • the value of offset2 or offset1 or Delta offset can also be configured by the network device, or specified by the protocol or derived from the parameters.
  • the value configured by the network device may be slot-based or symbol-based or subframe-based or frame-based.
  • the value of offset1, offset2, or Delta may be part or all of all integers in 1-19.
  • the unit of the offset value may be any one of frame, subframe, time slot or symbol.
  • K2 positions for the power saving signal.
  • the value of K2 may be part or all of all integers from 1 to 64.
  • the network device may configure the value of K2 to be 8, where 8 is the number of PDSCH transmission configuration indications activated by the MAC-CE.
  • the value of K2 may be the same as the indicated number of transmission configuration numbers of PDCCH or PDSCH configured by the network device through RRC signaling.
  • the network device may transmit the power saving signal at each configured power saving signal, or may not transmit the power saving signal at one or more configured power saving signals.
  • the location of the power saving signal can be configured by the network device.
  • the network device may configure the terminal device with an index of the location where the power saving signal is sent.
  • the position of the power saving signal is indirectly configured, for example, the position of the power saving signal can be configured through a time offset, which can be an offset relative to the position of different time slots, different frames, and different symbols; or The time offset may be an offset with respect to positions of different time slots, the same frame, and different symbols; or, the time offset may be an offset with respect to positions of the same time slot, the same frame, and different symbols.
  • the value of the time offset may be the same or different.
  • the time offset can be configured according to the configuration of the power saving signal, and the configured parameters can include the index, period and offset of the configuration signal.
  • the time offset can also be configured relative to the same starting position of an activation period or DRX cycle.
  • the network device and the terminal device can configure multiple active power saving signal positions or multiple power saving signal positions at the same time.
  • the network device may set one or more main signals to indicate whether the terminal device is sleeping during the activation period in the next DRX cycle, and other power saving signals are used for the measurement of the terminal device.
  • the network device configuration mentioned in the embodiments of the present application may be implemented through any one of the following: configuration through RRC signaling, configuration through MAC-CE signaling, configuration through DCI signaling, and configuration through MAC-CE signaling Configure with RRC signaling, configure with MAC-CE signaling and DCI, configure with RRC signaling and DCI signaling, configure with RRC signaling and MAC-CE signaling, and DCI signaling.
  • the network device configures the terminal device to perform radio resource measurement. This measurement is called RRM measurement.
  • the measurement quantities that need to be measured in RRM measurement can include the reference signal received power (RSRP), reference signal received quality (RSRQ), and the ratio of signal to interference and noise (signal to interference, plus noise, ratio (SINR) or reference signal strength indicator (RSSI), etc.
  • the measurement quantity may include RSRP, RSRQ, SINR, or RSSI of a channel state information reference signal (channel-state information-reference signal, CSI-RS).
  • the measurement quantity may be RSRP, RSRQ, SINR or RSSI of its reference signal.
  • the measurement quantity may be other measurement quantities, such as channel status information (channel status information (CSI), channel quality indicator (CQI), precoding matrix indicator (precoding matrix indicator (PMI), precoding type indicator At least one of (precoding type indicator, PTI), diversity indication (rank indication, RI), and CSI-RS resource index (CSI-RS index, CRI).
  • CSI channel status information
  • CQI channel quality indicator
  • PMI precoding matrix indicator
  • precoding type indicator At least one of (precoding type indicator, PTI), diversity indication (rank indication, RI), and CSI-RS resource index (CSI-RS index, CRI).
  • the synchronization signal block may also be referred to as a synchronization signal/physical broadcast channel (SS/PBCH) block.
  • the synchronization signal block may include at least one of the following: PBCH, primary synchronization signal (primary synchronization signal (PSS), secondary synchronization signal (secondary synchronization signal (SSS)).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the synchronization signal block may also be called SSB or SS/PBCH block or SS block.
  • the terminal device After the RRM measurement is performed by the terminal device, when the reporting standard is met, the measurement result will be reported to the network device. For example, when the RSRP/RSRQ value of the SSB is greater than the threshold configured by the network device, the terminal device may initiate a measurement report.
  • the RRM measurement period specified by RAN4 (a working group responsible for the standardization work of the LTE radio access network) is shown in Table 1 and Table 2.
  • Table 1 for the frequency band FR1, when the DRX cycle is not set or the DRX cycle is less than 320ms, the minimum value of the RRM measurement cycle is 200ms.
  • Table 2 for the frequency band FR2, when the DRX cycle is not set or the DRX cycle is less than 320ms, the minimum value of the RRM measurement cycle is 400ms.
  • max() represents the function of finding the maximum value
  • f() represents the rounding function up or down, for example, f() is floor() or ceil()
  • K p represents the constant determined according to the frequency .
  • the RRM measurement timing configuration (SMTC) period based on the synchronization signal block represents the period of the RRM-based synchronization signal/physical broadcast channel block measurement timing configuration (SS/PBCH Block Measurement Timing Configuration, SMTC).
  • max() represents the function of finding the maximum value
  • f() represents the rounding function up or down, for example, f() is floor() or ceil()
  • K p represents the constant determined according to the frequency
  • M meas_period_w/o_gaps represents a constant determined according to the power type
  • K RLM represents a constant determined according to the measurement gap.
  • RRM measurement requires a certain measurement accuracy, which is referred to as RRM measurement accuracy in this article.
  • RRM measurement accuracy is related to the number of measurement samples in the RRM measurement period.
  • the RRM measurement accuracy can be expressed as that the measurement fluctuation amplitude does not exceed a certain value, and the measurement fluctuation amplitude refers to the measurement power fluctuation amplitude.
  • RRM measurement accuracy means that the measurement fluctuation amplitude does not exceed +-4dB, +-6dB, or +-9dB.
  • the larger the number of measurement samples in an RRM measurement period the smaller the measurement fluctuation range, and the higher the RRM measurement accuracy, and vice versa. Therefore, it can be considered that a certain RRM measurement accuracy corresponds to a certain number of measurement samples in the RRM measurement period. For example, to meet the RRM measurement accuracy, in the 320ms RRM measurement period, 5 measurement samples need to be measured.
  • the number of measurement samples in an RRM measurement period can be referred to as the minimum number of measurements that satisfy RRM measurement accuracy.
  • the measurement sample represents the result of RRM measurement of one or more signals.
  • the result of RRM measurement of a signal can be regarded as a measurement sample.
  • the results of RRM measurement of multiple signals can be regarded as a measurement sample.
  • the results of RRM measurement performed by all CSI-RSs in a CSI-RS set can be counted as one measurement sample.
  • the results of RRM measurement performed by all SSBs in a half frame can be counted as one measurement sample.
  • the RRM measurement accuracy can be determined according to the measurement accuracy of the measurement amount (as described above) in the RRM measurement.
  • the terminal device in order to satisfy the RRM measurement accuracy, within one RRM measurement period, the terminal device needs to perform a certain number of measurement samples in the RRM measurement period.
  • the terminal device when the power saving signal is used, the terminal device will sleep more times in one RRM measurement cycle, which may cause the terminal device to sleep during the DRX cycle that requires RRM measurement. This situation will reduce the measurement accuracy of the RRM measurement.
  • the DRX cycle is 40 ms
  • the SMTC cycle is 40 ms
  • the RRM measurement cycle is 320 ms
  • the RRM measurement cycle includes 8 DRX cycles.
  • 5 measurements are required within the RRM measurement period. Due to the indication of the power saving signal, the terminal device sleeps in 5 DRX cycles, and wakes up to monitor and measure in only 3 DRX cycles, that is, the terminal device performs only 3 measurements in the RRM measurement cycle, as shown in FIG. 3 Show. Therefore, the RRM measurement shown in FIG. 3 reduces the measurement accuracy of the RRM measurement.
  • the embodiments of the present application provide an RRM measurement solution, which can improve the measurement accuracy of RRM measurement to a certain extent while taking into account the energy consumption of the terminal device.
  • FIGS. 1 to 3 and the above descriptions in conjunction with FIGS. 1 to 3 are exemplary descriptions given for better understanding of the embodiments of the present application, and do not limit the embodiments of the present application.
  • FIG. 4 is a schematic flowchart of an RRM measurement method 400 provided by an embodiment of the present application.
  • the execution subject of the method 400 may be a terminal device or a chip or an integrated circuit.
  • the method 400 includes the following steps.
  • RRM measurement is performed during the active period of at least one DRX cycle instructed by the network device to sleep, indicating that RRM measurement is performed during the active period of one or more DRX cycles instructed by the network device to sleep.
  • the terminal device may perform RRM measurement during an activation period in which any one or more DRX cycles instructed by the network device to sleep are selected.
  • the network device instructs the terminal device whether to sleep during the active period of the DRX cycle according to the demand for monitoring the PDCCH. For example, when the network device does not need to monitor the PDCCH, it instructs the terminal device to sleep during the activation period of the DRX cycle, and when it needs to monitor the PDCCH, instructs the terminal device to wake up during the activation period of the DRX cycle.
  • the network device may instruct the terminal device to sleep or wake up during the active period of the DRX cycle through the power saving signal.
  • the method 400 further includes: 420, receiving a power saving signal sent by a network device.
  • the power saving signal may include a wake signal (WUS) or a sleep signal (GTS) or a sequence signal.
  • WUS wake signal
  • GTS sleep signal
  • the network device indicates to sleep during the activation period of the DRX cycle, indicating that the terminal device does not monitor the PDCCH during the activation period of the DRX cycle, and the network device indicates to wake up during the activation period of the DRX cycle, indicating that the terminal device monitors and receives the PDCCH during the activation period of the DRX cycle .
  • the terminal device sleeps during the activation period of all DRX cycles instructed by the network device to sleep. If the number of DRX cycles that the terminal device sleeps in a RRM measurement period is larger, the number of RRM measurements is less , May cause the measurement accuracy of RRM measurement to decrease.
  • the number of RRM measurements within the RRM measurement cycle can be increased, which is beneficial to improve RRM measurement Measurement accuracy.
  • the RRM measurement period in the embodiment of the present application may be configured by the network device.
  • the network device can configure the RRM measurement period for the terminal device through any one of the following: radio resource control (radio resource control (RRC) signaling, media access control element (media access control-control element, MAC-CE) Configure signaling and system information.
  • radio resource control radio resource control (RRC) signaling
  • media access control element media access control-control element, MAC-CE) Configure signaling and system information.
  • the size of the RRM measurement period can be determined according to the size of the DRX period.
  • the size of the RRM measurement period is determined in the manner described above in conjunction with Table 1 or Table 2.
  • the RRM measurement period can also be a multiple derived from the configuration parameters.
  • one way to derive configuration parameters is M1*N1*4*T, where T represents the DRX cycle and M1 and N1 represent constants.
  • the maximum value of the RRM measurement period may not exceed 10.24s.
  • the value of this multiple can be configured by the network device.
  • the value of the multiple may be any one of some or all of the integers 1 to 32.
  • the network device may configure the value of this multiple according to the speed of the terminal device.
  • the network device may also configure the number of samples measured by the terminal device during the RRM measurement period, and the configurable values are some or all of 1, 2, 3, 4, 5, 6, 7, and 8.
  • the network device When configuring the value of the multiple and/or the number of samples, the network device can be configured through the measurement target. For example, the network device configures the value of the multiple and/or the number of samples together with the frequency of the SSB.
  • the activation period of the DRX cycle in the embodiment of the present application indicates the timing period of the DRX cycle.
  • the activation period of the DRX cycle can be expressed as On Duration, and for the short DRX cycle, the activation period of the DRX cycle can be expressed as Inactive Time.
  • step 410 includes: performing RRM measurement during an activation period of X DRX cycles instructed by the network device to sleep.
  • the value of X is such that the number of RRM measurements in the RRM measurement cycle is not less than The minimum number of measurements to meet RRM measurement accuracy.
  • the number of RRM measurements in the RRM measurement period refers to the number of measurement samples in the RRM measurement period.
  • the number of RRM measurements during the activation period of the DRX cycle described below refers to the number of measurement samples during the activation period of the DRX cycle.
  • the measurement sample represents the result obtained by performing RRM measurement on one or more signals.
  • the result of RRM measurement of a signal can be regarded as a measurement sample.
  • the results of RRM measurement of multiple signals can be regarded as a measurement sample.
  • the results of RRM measurement performed by all CSI-RSs in a CSI-RS set can be counted as one measurement sample.
  • the results of RRM measurement performed by all SSBs in a half frame can be counted as one measurement sample.
  • the minimum number of measurements that satisfy the RRM measurement accuracy refers to the minimum number of measurement samples that need to be measured in the RRM measurement period in order to satisfy the RRM measurement accuracy.
  • the RRM measurement accuracy can be determined according to the measurement accuracy of the measurement quantity measured by RRM.
  • the minimum number of measurements that meet the RRM measurement accuracy can be pre-configured by the network device, or can also be specified by agreement.
  • the minimum number of measurements that satisfy RRM measurement accuracy is any one of 8, 7, 6, 5, 4, 3, 2, or 1.
  • the minimum measurement times mentioned below refer to the minimum measurement times that satisfy the RRM measurement accuracy.
  • the value of X is also determined according to specific requirements.
  • the number of RRM measurements in the RRM measurement period is not less than the minimum number of measurements that satisfy the RRM measurement accuracy, thereby effectively improving RRM The measurement accuracy of the measurement.
  • step 410 includes: during the RRM measurement period, RMM measurement is performed during the activation period of all DRX cycles instructed by the network device to sleep.
  • the embodiment of the present application can improve the measurement accuracy of RRM measurement to a large extent.
  • the method 400 includes the following steps.
  • sleep is performed during the active period of the DRX period other than the at least one DRX period in which the network device is instructed to sleep.
  • the terminal device performs sleep during the activation period of the DRX cycle in which the network device is instructed to sleep, and performs RRM measurement during the activation period of the DRX cycle in which the network device is instructed to sleep.
  • the number of RRM measurements within one RRM measurement cycle can be increased, so that it can be to a certain extent Improve the measurement accuracy of RRM measurement; in addition, by performing sleep during the activation period of another part of the DRX cycle instructed by the network device to sleep, the energy consumption of the terminal device can be reduced.
  • RRM measurement is performed during an activation period of at least one DRX cycle instructed by the network device to sleep.
  • step 410 includes the following steps 411a and 412a.
  • the initial value of the count value K is less than or equal to the number of DRX cycles included in the RRM measurement cycle. For example, if the RRM measurement cycle includes 8 DRX cycles, the initial value of the count value K may be 5 or 6 or 7.
  • the initial value of the count value K of the counter is equal to the number of DRX cycles required for the minimum number of measurements.
  • the initial value of the count value K is N, and the value of N can be calculated by the following steps.
  • Step 1) Obtain the average number of measurements S in each DRX cycle in the RRM measurement cycle.
  • S is equal to the number of measurements for any DRX cycle in the RRM measurement cycle.
  • the average number of measurements S in the RRM measurement cycle can be estimated.
  • Y is less than the total number of all DRX cycles included in the RRM measurement cycle.
  • the value of S is determined according to the following formula.
  • M1 represents the total measurement times of Y DRX cycles.
  • f1(M1/Y) can be any of the following functions: floor(M1/Y), ceil(M1/Y), or M1/Y.
  • the function floor() indicates rounding down, or rounding down, that is, floor(M1/Y) indicates that the largest integer not greater than the quotient of M1 and Y.
  • the function ceil() indicates rounding up, ie ceil(M1/Y) indicates that the minimum integer is not less than the quotient of M1 and Y1. It should be understood that in the case where M1 and Y are divisible, f1(M1/Y) may be M1/Y, otherwise, it should be floor(M1/Y) or ceil(M1/Y).
  • the Y DRX cycles may be the last Y DRX cycles in the RRM measurement cycle, or may be the Y DRX cycles at other positions in the RRM measurement cycle.
  • Y equals 1.
  • Step 2) according to the minimum number of measurements and the average number of measurements, calculate the value of N.
  • the minimum number of measurements can be configured by the network to the terminal device, or can be specified by agreement.
  • N is determined according to the following formula.
  • f(M/S) can be any of the following functions: floor(M/S), ceil(M/S), or M/S.
  • the function floor() indicates rounding down, or rounding down, that is, floor(M/S) indicates that the largest integer not greater than the quotient of M and S.
  • the function ceil() indicates rounding up, ie ceil(M/S) indicates that the minimum integer is not less than the quotient of M and S. It should be understood that in the case where M and S are divisible, f(M/S) may be M/S, otherwise, it should be floor(M/S) or ceil(M/S).
  • the value of N can also be determined according to the experience value. For example, assuming that an RRM measurement cycle includes 8 DRX cycles, according to experience, it is required to perform RRM measurement during the activation period of 5 DRX cycles, that is, N equals 5 .
  • the value of N can be determined by calculation; when the number of measurements in different DRX cycles in the RRM measurement cycle is different, the empirical value can be used Determine the value of N.
  • the value of N can be reported to the network device by the terminal device.
  • the value of N can be configured by the network device to the terminal device.
  • L1 depends on the following conditions.
  • L1 is equal to 0; when the activation period of the DRX cycle instructed to wake up When the number of RRM measurements is equal to or greater than the number of RRM measurements during the activation period of the penultimate K-th DRX cycle, L1 is equal to 1, or L1 is an integer greater than 1.
  • the number of RRM measurements in the penultimate K DRX cycle is a1, the number of RRM measurements in the penultimate K-1 DRX cycle is a2, and the number of RRM measurements in the penultimate K-2 DRX cycle is a3.
  • the number of RRM measurements of the DRX cycle instructed by the network device to be awake is b. When b is less than a1, L1 is equal to 0. When b is equal to a1, L1 is equal to 1. When b is greater than a1, L1 is equal to or greater than 1.
  • L1 is equal to 1; when b is equal to the sum of a1 and a2, L1 may be equal to 2; when b is greater than the sum of a1 and a2, L1 can be equal to or greater than 2.
  • L1 when b is greater than the sum of a1 and a2, when b is less than the sum of a1, a2, and a3, L1 is equal to 2; when b is equal to the sum of a1, a2, and a3, L1 is equal to 3; when b is greater than When the sum of a1, a2, and a3, L1 can be equal to or greater than 3. And so on, no longer enumerate.
  • L1 is equal to 1
  • b is less than c
  • L1 is equal to 0.
  • b is equal to c
  • L1 is equal to 1.
  • b is greater than c
  • L1 is greater than 1, for example, L1 is equal to floor(b/c), and floor(b/c) means rounding down the quotient of b and c.
  • step 412a the number of RRM measurements in the last K DRX cycles in the RRM measurement cycle and the number of RRM measurements in the DRX cycle before the last K DRX cycle are equal to or greater than the minimum number of measurements.
  • the last K DRX cycles in the RRM measurement cycle may include any one or more of the following: a DRX cycle instructed by the network device to sleep, a DRX cycle instructed by the network device to wake up, but not by the network device DRX cycle indicating sleep or wake up.
  • the DRX cycle for RRM measurement in the DRX cycle before the penultimate K-th DRX cycle in the RRM measurement cycle is the DRX cycle instructed by the network device to wake up.
  • FIG. 7 is a specific example of the embodiment shown in FIG. 6.
  • the number of RRM measurements for each DRX cycle in the RRM measurement cycle is the same.
  • the RRM measurement period is equal to 320 ms, and the DRX period is equal to 40 ms.
  • An RRM measurement period includes 8 DRX cycles, and the number of RRM measurements for each DRX cycle is 1.
  • the network device instructs the terminal device to sleep or wake up during the active period of the DRX cycle through the power saving signal.
  • the DRX cycle marked with the “sleep” symbol indicates the DRX cycle in which the power saving signal indicates sleep.
  • the method of implementing RRM measurement during the activation period of the reciprocal K DRX cycles of the RRM measurement cycle is as follows:
  • the first DRX cycle is instructed to wake up, and the value of K is reduced by 1 to 4; the second DRX cycle is instructed to sleep, maintaining the value of K to 4; the third DRX cycle is instructed to sleep, and the value of K The value is maintained at 4; the 4th DRX cycle is instructed to wake up, and the value of K is reduced by 1 to 3; the 5th DRX cycle is instructed to sleep, and the value of K is maintained at 3, at this time, RRM measurement The number of unreached DRX cycles in the cycle is 3, which is equal to the value of K, and RRM measurement is performed in the last 3 DRX cycles of the RRM measurement cycle.
  • the terminal device will perform RRM measurement during the activation period of the 6th and 8th DRX cycles.
  • the embodiment shown in FIG. 7 can also reduce the energy consumption of the terminal device when the RRM measurement accuracy is satisfied.
  • FIG. 8 is another specific example of the embodiment shown in FIG. 6.
  • the RRM measurement period is equal to 320 ms
  • the DRX period is equal to 40 ms
  • one RRM measurement period includes 8 DRX periods.
  • the number of RRM measurements in different DRX cycles is not exactly the same.
  • the number of measurements in the first, third, fifth and seventh DRX cycles is 2, and the number of measurements in the second, fourth, sixth and eight DRX cycles is one.
  • the network device instructs the terminal device to sleep or wake up during the active period of the DRX cycle through the power saving signal.
  • the DRX cycle marked with “sleep” indicates the DRX cycle in which the power saving signal indicates sleep.
  • the method of implementing RRM measurement during the activation period of the reciprocal K DRX cycles of the RRM measurement cycle is as follows:
  • the first DRX cycle is instructed to wake up.
  • the number of measurements during the activation period of the awakened DRX cycle is 2, and the countdown K (the value of K at this time is 5).
  • the number of measurements for the DRX cycle is 1, the countdown K-
  • the number of measurements in one DRX cycle is 1, at this time, the value of K can be subtracted by 2, that is, the value of K is updated to 3.
  • the number of unprocessed DRX cycles in the RRM measurement cycle is 7.
  • the second DRX cycle is instructed to sleep, and the value of K is maintained at 3. At this time, the number of unprocessed DRX cycles in the RRM measurement cycle is 6.
  • the third DRX cycle is instructed to sleep, the value of K is maintained at 3, and the number of unprocessed DRX cycles in the RRM measurement cycle is 5.
  • the 4th DRX cycle is instructed to wake up.
  • the number of measurements during the activation period of the awakened DRX cycle is 1, and the number of measurements in the penultimate Kth (the value of K at this time is 3) is 1 for the DRX cycle. Decrease the value of K by 1, that is, update the value of K to 2. At this time, the number of unprocessed DRX cycles in the RRM measurement cycle is 4.
  • the fifth DRX cycle is instructed to sleep, and the value of K is maintained at 2. At this time, the number of unprocessed DRX cycles in the RRM measurement cycle is 3.
  • the 6th DRX cycle is instructed to sleep, and the value of K is maintained at 2.
  • the number of unprocessed DRX cycles in the RRM measurement cycle is 2, that is, the number of unprocessed DRX cycles in the RRM measurement cycle is equal to K In this case, it is determined that RRM measurement will be performed in the last 2 DRX cycles of the RRM measurement cycle.
  • the terminal device will perform RRM measurement during the activation period of the 8th DRX cycle.
  • the embodiment shown in FIG. 8 can also reduce the energy consumption of the terminal device when the RRM measurement accuracy is satisfied.
  • the energy consumption of the terminal device can also be reduced.
  • step 412a in the embodiment shown in FIG. 6 may be replaced by: when the number of unreached DRX cycles is equal to the value of K except for the last DRX cycle in the RRM measurement cycle, measure at the RRM The RRM measurement is performed from the penultimate K+1 DRX cycle of the cycle to the activation period of the penultimate DRX cycle.
  • the penultimate K+1 DRX cycle to the penultimate DRX cycle include the DRX cycle instructed by the network device to sleep.
  • step 410 includes the following steps 411b and 412b.
  • the value of the count value R of the counter is decreased by L2, L2 is equal to the number of RRM measurements during the activation period of the DRX cycle instructed to wake up, the counter The initial value of the count value R is the number of RRM measurements within the RRM measurement period.
  • the initial value of the count value R of the counter is equal to the minimum number of measurements that satisfy the RRM measurement accuracy.
  • the number of RRM measurements in the last G DRX cycles in the RRM measurement cycle and the number of RRM measurements in the DRX cycle before the last G DRX cycle are equal to or greater than the minimum number of measurements.
  • the last G DRX cycles in the RRM measurement cycle may include one or more of the following: a DRX cycle instructed by the network device to sleep, a DRX cycle instructed by the network device to wake up, but not indicated by the network device DRX cycle to sleep or wake up.
  • the DRX cycle for RRM measurement in the DRX cycle before the penultimate G-th DRX cycle in the RRM measurement cycle is a DRX cycle instructed to wake up by the network device.
  • the energy consumption of the terminal device can be reduced when the RRM measurement accuracy is satisfied to a large extent.
  • step 410 may be implemented through the second implementation manner.
  • step 412b in the embodiment shown in FIG. 9 may be replaced by: when the RRM measurement period except the last DRX cycle, the unreached G+1 to the penultimate DRX cycle
  • the penultimate G+1 to the penultimate RRM measurements are performed during the activation period of the second DRX cycle.
  • the penultimate G+1 to penultimate DRX cycle includes the DRX cycle instructed by the network device to sleep.
  • step 410 includes: when the number of DRX cycles that have been instructed by the network device to sleep in the RRM measurement cycle reaches a threshold, the network devices that have not arrived within the RRM measurement cycle indicate the sleep DRX cycle RRM measurements are performed during the activation period.
  • the threshold is less than the total number of all DRX cycles included in the RRM measurement cycle.
  • the total number of all DRX cycles included in the RRM measurement cycle is 8, and the threshold may be 2 or 3.
  • the threshold can be pre-configured or can be determined according to specific needs.
  • the threshold may be configured by the network device to the terminal device, or may be reported by the terminal device to the network device.
  • step 410 may be replaced by: when the number of DRX cycles in the RRM measurement cycle that has been instructed by the network device to sleep reaches the threshold, the RRM measurement cycle except the last DRX cycle 3. The unreached network device instructs the dormant DRX cycle to perform RRM measurement during the activation period.
  • the terminal device may report the measurement result to the network device.
  • the terminal device prepares to report the measurement result, if there is available uplink resource, the uplink resource can be used to report the measurement result. If there is no available uplink resource, the terminal device sends a scheduling request (SR) to the network device to request Uplink resources.
  • SR scheduling request
  • the RRM measurement in the embodiment of the present application may include at least one of the following: RRM measurement, measurement result reporting, and reference signal configuration.
  • the RRM measurement in the embodiment of the present application includes reporting the measurement result.
  • the method 400 provided in this embodiment of the present application further includes: reporting the measurement result during an activation period or other times in the K-th DRX cycle that is the last to last RRM measurement cycle.
  • the value of K may be any one or all of 1,2,3,4,5,6,7,8,9,10.
  • the value of K can be configured or specified in the protocol, or it can be derived from certain parameters.
  • the terminal device reports the measurement result during the activation period of the penultimate (ie, last) DRX cycle of the RRM measurement cycle.
  • the activation period in the DRX cycle reports the measurement result of the RRM measurement to the network device or sends a resource scheduling request to the network device for reporting the measurement result.
  • the activation period in the DRX cycle may be the OndurationTimer counting period in the DRX cycle, the InactiveTimer counting period, or a period defined in other ways in the DRX cycle.
  • the terminal device may report the measurement result during the activation period of the DRX cycle.
  • the terminal device may report the measurement result during the activation period of the DRX cycle, or may be activated during the next DRX cycle Report during the period, you can also report the measurement results during the activation period of the penultimate DRX cycle in the RRM measurement cycle, or you can report in the DRX cycle in the next measurement cycle or the time when the terminal device wakes up in the next measurement cycle For reporting, it can also be reported during the activation period of any wake-up DRX cycle after the last RRM measurement.
  • the DRX cycle reported by the terminal device or the time reported in the DRX cycle may be configured by the network device, may also be derived by the terminal device, or may be specified by a protocol.
  • the terminal device When the terminal device prepares to report the measurement result, if there is available uplink resource, the terminal device reports the measurement result of the RRM measurement to the network device. When the terminal device is ready to report the measurement result, if there is no available uplink resource, a scheduling request (SR) is reported to the network device to request the uplink resource.
  • SR scheduling request
  • the network device may configure the uplink resource on the DRX cycle in which the terminal device reports the measurement result, for reporting the measurement result, or configure the uplink control resource for scheduling request application.
  • the time domain position of the uplink resource may be the activation period of the reported DRX cycle, or may be another separate period of time in the DRX cycle.
  • the DRX cycle in this embodiment may be a DRX cycle instructed by the network device to sleep during the activation period, or may be a DRX cycle instructed by the network device not to sleep during the activation period.
  • the uplink resource in this embodiment may be a PUSCH resource, a PUCCH resource, or a RACH resource.
  • the terminal device when the terminal device reports the measurement result, it may report the speed of the terminal device together with the measurement result. The terminal device may also report the measured sample number together with the measurement result.
  • one way of reporting is to report in the measurement result of the measured quantity.
  • the measurement result of the measured quantity As shown below.
  • Another way of reporting is to report with the reference signal.
  • the reference signal As an example, as shown below.
  • Another way of reporting is to report along with the measurement cell identity.
  • the measurement cell identity As an example, as shown below.
  • the aforementioned speed range of the terminal device (also referred to as the speed range of the terminal device) (UESpeed-Range) may be part or all of the following values:
  • 0 means stillness
  • 3-7 means walking speed
  • 10-20 means riding speed
  • 30-30 means car speed
  • 120 or more means high-speed rail or train speed.
  • the unit of the speed of the terminal device may be kilometers/hour or meters/second.
  • the terminal device may also report the number of measurements in the RRM measurement period.
  • the value of the number of measurements may be any one of the following: 1, 2, 3, 4, 5, 6, 7, 8.
  • the method for reporting the number of measurements by the terminal device may be the same as the method for reporting the speed of the terminal device described above.
  • the terminal device may also report the period for RRM measurement.
  • the period may be 1 times, 2 times, 3 times, 4 times, 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, 11 times, 12 times, 13 times of the RRM measurement period currently used by the terminal device Times, 14 times, 15 times, 16 times some or all of the values.
  • the method for the terminal device to report the period may be the same as the method for reporting the speed of the terminal device described above.
  • the network device may configure SR resources or random access channel (Random Access Channel, RACH) resources for the terminal device to perform scheduling resource requests.
  • RACH Random Access Channel
  • the SR resource or RACH resource may be activated according to the number of DRX cycles in which the terminal device sleeps during the RRM measurement cycle. For example, when the number of DRX cycles during which the terminal device sleeps during the RRM measurement cycle is greater than a preset threshold, the terminal device may activate the SR resource or RACH resource during the activation period of the last DRX cycle of the RRM measurement cycle. For example, the activation period of the last DRX cycle of the RRM measurement cycle may be used to configure reporting resources, or send a reporting request, or send an uplink scheduling request.
  • the network device may also configure an index of the DRX cycle reported by the terminal device, where the index is an index within the RRM measurement cycle.
  • the network device may instruct the terminal device to report the measurement result or report the scheduling request during the activation period of a certain DRX cycle of the RRM measurement cycle through the index in the RRM measurement cycle.
  • the network device instructs the terminal device to report the measurement result during the activation period of the last DRX cycle of the RRM measurement cycle through the index in the RRM measurement cycle.
  • the network device may add a reference signal in the DRX cycle to facilitate the terminal device to perform RRM measurement.
  • the reference signal may be added in the last or last K DRX cycles of the RRM measurement period, and when the terminal device performs RRM measurement in the last or last K DRX cycles, the number of RRM measurements may be increased.
  • the network device can increase the number of times the terminal device performs RRM measurement by increasing the number of reference signals in the DRX cycle.
  • the measurement quantity of the RRM measurement may be the SSB in the SMTC or the CSI-RS.
  • the configuration of the SMTC by the network device may be cell-based, frequency-based, beam-based, or the first three or the first three Of the two.
  • the SMTC is based on a cell
  • the entire SMTC can be configured based on the cell
  • the offset of the SMTC can be configured based on the cell
  • the period of the SMTC can be configured based on the cell
  • the duration of the SMTC can be configured based on the cell
  • the SMTC can be configured based on the cell
  • the period and offset of the SMTC can also be configured based on the cell offset and duration of the SMTC, and can also be configured based on the cell.
  • cell-based configuration is that each cell has one or a group of individual configuration parameters or each cell group has one or a group of individual configuration parameters.
  • One configuration method is [PCI1, SMTC offset1, SMTC duration1].
  • PCI1 represents physical cell ID or other cell ID.
  • ID is identification.
  • SMTC configuration parameters can be added to InterFreqNeighCellInfo or IntraFreqNeighCellInfo.
  • the configuration parameter may be any of the above examples.
  • the network device may also configure the CSI-RS measurement window.
  • the measurement window may contain the duration, period and offset of the CSI-RS.
  • the duration can be any of 1ms, 2ms, 3ms, 4ms, and 5ms.
  • the period of the measurement window may be any one of 4ms, 5ms, 10ms, 20ms, 40ms, 80ms, and 160ms.
  • the CSI-RS window may also be configured based on a cell, may be configured based on a frequency, or may be configured based on a beam.
  • the configuration based on frequency can be configured based on the granularity of ARFCN.
  • an embodiment of the present application provides an apparatus 1000, and the apparatus 1000 includes the following units.
  • the processing unit 1010 is configured to perform RRM measurement during an active period of at least one DRX cycle in which the network device instructs to sleep in the DRX cycle during the radio resource management RRM measurement cycle.
  • the number of RRM measurements within the RRM measurement cycle can be increased, which is beneficial to improve RRM measurement Measurement accuracy.
  • the network device indicates to sleep during the activation period of the DRX cycle when it does not need to monitor the physical downlink control channel PDCCH, and to wake up during the activation period of the DRX cycle when it needs to monitor the PDCCH.
  • the network device instructs to sleep or wake up during the active period of the DRX cycle through the power saving signal.
  • the apparatus 1000 further includes a receiving unit 1020, configured to receive the power saving signal sent by the network device.
  • the processing unit 1010 is configured to perform RRM measurement during an activation period of X DRX cycles in which the network device is instructed to sleep.
  • the value of X is such that the number of RRM measurements in the RRM measurement cycle is not Less than the minimum number of measurements that meets RRM measurement accuracy.
  • the processing unit 1010 is further configured to, during the RRM measurement period, sleep during an activation period of a DRX period other than at least one DRX period that is instructed by the network device to sleep.
  • the processing unit 1010 is configured to: during the RRM measurement period, whenever a DRX cycle instructed by the network device to wake up occurs, the count value K of the counter is reduced by L1, L1 is an integer, and the count value The initial value of K is less than or equal to the number of DRX cycles included in the RRM measurement cycle; when the number of unreached DRX cycles in the RRM measurement cycle is equal to the value of K, the reciprocal of the RRM measurement cycle is the activation period of K DRX cycles All RRM measurements are performed, and the last K DRX cycles include the DRX cycle instructed by the network device to sleep.
  • the number of RRM measurements during the activation period of each DRX cycle in the RRM measurement cycle is the same, and L1 is equal to 1.
  • the number of RRM measurements in the activation period of different DRX cycles in the RRM measurement period is different, and the value of L1 is based on the number of RRM measurements in the activation period of the DRX cycle instructed by the network device to wake up, and the RRM measurement period The number of RRM measurements during the activation period of the penultimate K-th DRX cycle is determined.
  • L1 is equal to 0; when the number of RRM measurements during the activation period of the DRX cycle instructed to wake up is equal to or When the number of RRM measurements is greater than the activation period of the penultimate K-th DRX cycle, L1 is equal to 1, or L1 is an integer greater than 1.
  • the initial value of the count value K of the counter is equal to the number of DRX cycles required to satisfy the minimum number of measurement times for RRM measurement accuracy.
  • the processing unit 1010 is configured to: during an RRM measurement period, whenever a DRX cycle instructed by the network device to wake up occurs, decrement the value of the counter's count value R by L2, which is equal to Indicates the number of RRM measurements during the activation period of the awakening DRX cycle.
  • the initial value of the counter's count value R is the number of RRM measurements during the RRM measurement cycle;
  • RRM measurement is performed during the activation period of the reciprocal G DRX cycle, and the reciprocal G DRX
  • the cycle includes the DRX cycle instructed by the network device to sleep.
  • the processing unit 1010 is configured to: when the number of DRX cycles that have been instructed by the network device to sleep in the RRM measurement cycle reaches a threshold, network devices that have not arrived within the RRM measurement cycle indicate the sleeping DRX RRM measurement is performed during the activation period of the cycle.
  • the processing unit 1010 is configured to perform RMM measurement during the activation period of all DRX cycles instructed by the network device to sleep during the RRM measurement period.
  • the apparatus 1000 further includes: a sending unit 1020, configured to report the measurement result of the RRM measurement to the network device or send a resource scheduling request to the network device in the last DRX cycle of the RRM measurement cycle.
  • a sending unit 1020 configured to report the measurement result of the RRM measurement to the network device or send a resource scheduling request to the network device in the last DRX cycle of the RRM measurement cycle.
  • processing unit 1010 may be implemented by a processor or a processor-related circuit.
  • the receiving unit 1020 may be implemented by a receiver or a receiver-related circuit.
  • the sending unit 1030 may be implemented by a transmitter or a transmitter-related circuit.
  • an embodiment of the present application further provides an apparatus 1100.
  • the apparatus 1100 includes a processor 1110, a memory 1120, and a transceiver 1130.
  • the memory 1120 stores instructions or programs, and the processor 1110 is used to execute the memory 1120. Instructions or programs stored in.
  • the processor 1110 is used to perform the operation performed by the processing unit 1010 in the foregoing embodiment
  • the transceiver 1130 is used to perform the operation performed by the transmission unit 1030 in the foregoing embodiment.
  • the apparatus 1000 or the apparatus 1100 provided by the embodiments of the present application may correspond to the terminal device in the above method embodiments, and the operations and/or functions of the various modules in the terminal apparatus apparatus or the apparatus 1100 are respectively for implementing the above description
  • the corresponding flow of each method of the method will not be repeated here.
  • An embodiment of the present application further provides an apparatus, which may be a terminal device or an integrated circuit or a chip.
  • the apparatus may be used to perform the actions performed by the terminal device in the foregoing method embodiments.
  • FIG. 12 shows a simplified structural diagram of the terminal device. It is easy to understand and convenient to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and input and output devices.
  • the processor is mainly used for processing communication protocols and communication data, as well as controlling terminal devices, executing software programs, and processing data of software programs.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive user input data and output data to users. It should be noted that some types of terminal devices may not have input/output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing, and then sends the radio frequency signal in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only one memory and processor are shown in FIG. 12. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiments of the present application.
  • an antenna and a radio frequency circuit with a transceiver function can be regarded as a transceiver unit of a terminal device, and a processor with a processing function can be regarded as a processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device used to implement the receiving function in the transceiver unit 1210 can be regarded as a receiving unit, and the device used to implement the sending function in the transceiver unit 1210 can be regarded as a sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, transceiver, or transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1210 is used to perform the sending operation and the receiving operation on the terminal device side in the above method embodiment
  • processing unit 1220 is used to perform other operations on the terminal device in addition to the transceiving operation in the above method embodiment.
  • the processing unit 1220 is configured to perform step 410 in FIG. 4, and/or the processing unit 1220 is further configured to execute other processing steps on the terminal device side in the embodiments of the present application.
  • the transceiver unit 1210 is also used to perform step 420 in FIG. 4, and/or the transceiver unit 1210 is also used to perform other transceiver steps on the terminal device side in the embodiments of the present application.
  • the processing unit 1220 is used to perform the steps in FIG. 5 and/or the processing unit 1220 is also used to perform other processing steps on the terminal device side in the embodiments of the present application.
  • the transceiver unit 1210 is also used to perform other transceiver steps on the terminal device side in the embodiments of the present application.
  • the processing unit 1220 is used to perform the steps in FIG. 6 and/or the processing unit 1220 is also used to perform other processing steps on the terminal device side in the embodiments of the present application.
  • the transceiver unit 1210 is also used to perform other transceiver steps on the terminal device side in the embodiments of the present application.
  • the processing unit 1220 is used to perform the steps in FIG. 9 and/or the processing unit 1220 is also used to perform other processing steps on the terminal device side in the embodiments of the present application.
  • the transceiver unit 1210 is also used to perform other transceiver steps on the terminal device side in the embodiments of the present application.
  • the chip When the device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit and a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or part of the technical solution can be embodied in the form of a software product
  • the computer software product is stored in a storage medium, including Several instructions are used to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种无线资源管理RRM测量方法与装置,该RRM测量方法包括:在RRM测量周期内,在至少一个被网络设备指示休眠的非连续接收DRX周期的激活期进行RRM测量。通过在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,相比于现有技术,可以增加RRM测量周期内的RRM测量次数,从而有利于提高RRM测量的测量精度。

Description

无线资源管理测量方法与装置
本申请要求于2019年01月03日提交中国专利局、申请号为201910004585.7、申请名称为“无线资源管理测量方法与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,具体涉及一种无线资源管理(Radio Resource Management,RRM)测量方法与装置。
背景技术
移动业务的发展对无线通信的数据速率和效率要求越来越高。在无线通信中,终端设备的功耗是一个重要问题。为了降低终端设备的功耗,3GPP标准协议在长期演进(long term evolution,LTE)系统中引入非连续接收(discontinuous reception,DRX)机制。DRX的基本机制是,为处于连接态的终端设备配置DRX周期(DRX cycle),DRX周期包括激活期(on duration)和休眠期(opportunity for DRX)。在激活期,终端设备监听并接收下行信号,在休眠期,终端设备不监听也不接收下行信号以节省功耗。
为了进一步降低终端设备的功耗,有人提出在DRX机制中引入功率节省信号。功率节省信号用于指示终端设备在下一个DRX周期的激活期进行休眠或者进行监听与测量。功率节省信号是网络设备基于物理下行控制信道(physical downlink control channel,PDCCH)的测量需求为终端设备配置的。
为了满足无线资源管理(radio resource management,RRM)的目的,网络设备会配置终端设备测量无线资源,这个测量称为RRM测量。
使用功率节省信号后,相对来说,会使终端设备在一个RRM测量周期中睡眠次数增多,可能会出现,终端设备在需要进行RRM测量的DRX周期进行休眠的情形,即导致RRM测量周期内的RRM测量次数减少,会降低RRM测量的测量精度。
发明内容
本申请提供一种RRM测量方法与装置,可以增加RRM测量周期内的RRM测量次数,从而可以提高RRM测量的测量精度。
第一方面,提供一种RRM测量方法,包括:在RRM测量周期内,在至少一个被网络设备指示休眠的非连续接收DRX周期的激活期进行RRM测量。
在本申请中,通过在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,相比于现有技术,可以增加RRM测量周期内的RRM测量次数,从而有利于提高RRM测量的测量精度。
结合第一方面,在第一方面的一种可能的实现方式中,所述网络设备在不需要监听物 理下行控制信道PDCCH时,指示在DRX周期的激活期休眠,在需要监听PDCCH时,指示在DRX周期的激活期苏醒。
结合第一方面,在第一方面的一种可能的实现方式中,所述网络设备通过功率节省信号指示在DRX周期的激活期进行休眠或苏醒。
可选地,该RRM测量方法还包括:接收网络设备发送的功率节省信号。
结合第一方面,在第一方面的一种可能的实现方式中,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,包括:在X个被所述网络设备指示休眠的DRX周期的激活期进行RRM测量,X的取值使得,在所述RRM测量周期内的RRM测量次数不小于满足RRM测量精度的最小测量次数。
在本申请中,通过在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,使得在RRM测量周期内的RRM测量次数不小于满足RRM测量精度的最小测量次数,从而可以有效提高RRM测量的测量精度。
结合第一方面,在第一方面的一种可能的实现方式中,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,包括:在所述RRM测量周期内,在所有被所述网络设备指示休眠的DRX周期的激活期均进行RMM测量。
在本申请中,可以在较大程度上提高RRM测量的测量精度。
结合第一方面,在第一方面的一种可能的实现方式中,所述方法还包括:在所述RRM测量周期内,在所述至少一个DRX周期之外的其它被所述网络设备指示休眠的DRX周期的激活期进行休眠。
换言之,在本实现方式中,终端设备在一部分被网络设备指示休眠的DRX周期的激活期进行休眠,在另一部分被网络设备指示休眠的DRX周期的激活期进行RRM测量。
在本申请中,通过在一部分被网络设备指示休眠的DRX周期的激活期进行RRM测量,相比于现有技术,可以增加一个RRM测量周期内的RRM测量次数,从而可以在一定程度上提高RRM测量的测量精度;此外,通过在另一部分被网络设备指示休眠的DRX周期的激活期进行休眠,可以降低终端设备的能耗。
结合第一方面,在第一方面的一种可能的实现方式中,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,包括:在所述RRM测量周期内,每当出现一个被所述网络设备指示苏醒的DRX周期,将计数器的计数值K减L1,L1为整数,所述计数值K的初始值小于或等于所述RRM测量周期内包括的DRX周期的数目;当所述RRM测量周期内未到达的DRX周期的数目与K的值相等时,在所述RRM测量周期的倒数K个DRX周期的激活期均进行RRM测量,所述倒数K个DRX周期中包括被所述网络设备指示休眠的DRX周期。
本申请在较大程度上保证RRM测量的测量精度的情况下,还可以降低终端设备的能耗。
在本实现方式中,当所述RRM测量周期中每个DRX周期的激活期的RRM测量次数相同,L1等于1。
在本实现方式中,当所述RRM测量周期内不同DRX周期的激活期的RRM测量次数不同,L1的值根据所述被所述网络设备指示苏醒的DRX周期的激活期的RRM测量次数,与所述RRM测量周期中倒数第K个DRX周期的激活期的RRM测量次数确定。当所述 被指示苏醒的DRX周期的激活期的RRM测量次数小于所述倒数第K个DRX周期的激活期的RRM测量次数时,L1等于0;当所述被指示苏醒的DRX周期的激活期的RRM测量次数等于或大于所述倒数第K个DRX周期的激活期的RRM测量次数时,L1等于1,或者L1为大于1的整数。
可选地,在本实现方式中,所述计数器的计数值K的初始值等于满足RRM测量精度的最小测量次数所需的DRX周期的个数。
本申请,在满足RRM测量精度的情况下,还可以降低终端设备的能耗。
结合第一方面,在第一方面的一种可能的实现方式中,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,包括:在所述RRM测量周期内,每当出现一个被所述网络设备指示苏醒的DRX周期时,将计数器的计数值R的值减L2,L2等于所述被指示苏醒的DRX周期的激活期的RRM测量次数,所述计数器的计数值R的初始值为所述RRM测量周期内的RRM测量次数;当所述RRM测量周期内未到达的倒数G个DRX周期中的RRM测量次数之和等于或大于R的值,且倒数G-1个DRX周期中的RRM测量次数之和等于或小于R的取值时,在所述倒数G个DRX周期的激活期均进行RRM测量,所述倒数G个DRX周期中包括被所述网络设备指示休眠的DRX周期。
可选地,在本实现方式中,计数器的计数值R的初始值等于满足RRM测量精度的最小测量次数。
在本申请中,可以在较大程度满足RRM测量精度的情况下,还可以降低终端设备的能耗。
结合第一方面,在第一方面的一种可能的实现方式中,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,包括:当所述RRM测量周期中已被所述网络设备指示休眠的DRX周期的数目达到阈值时,在所述RRM测量周期内未到达的所述网络设备指示休眠的DRX周期的激活期均进行RRM测量。
结合第一方面,在第一方面的一种可能的实现方式中,所述RRM测量方法还包括:在所述RRM测量周期的最后一个DRX周期,向所述网络设备上报RRM测量的测量结果或者向所述网络设备发送资源调度请求。
第二方面,提供一种装置,所述装置包括用于实现第一方面或第一方面的任一种可能的实现方式的单元。
第三方面,提供一种装置,所述装置包括:存储器,用于存储计算机程序;处理器,用于执行所述存储器存储的计算机程序,当所述计算机程序被执行时,所述处理器用于执行第一方面或第一方面的任一种可能实现方式提供的方法。
可选地,第三方面提供的装置为终端设备或设置于终端设备上的芯片或集成电路。
第四方面,提供一种芯片,所述芯片用于执行第一方面或第一方面的任一种可能实现方式提供的方法。
第五方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算上运行时,使得所述计算机执行第一方面或第一方面的任一种可能实现方式提供的方法。
第六方面,提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第一方面或第一方面的任一种可能实现方式提供的方法。
附图说明
图1为DRX机制的示意图;
图2为在DRX机制中引入功率节省信号WUS的示意图;
图3为本申请实施例的应用场景的示意图;
图4为本申请实施例的RRM配置方法的示意性流程图;
图5为本申请实施例的RRM配置方法的另一示意性流程图;
图6为本申请实施例的RRM配置方法的另一示意性流程图;
图7为本申请实施例的RRM配置方法的另一示意图;
图8为本申请实施例的RRM配置方法的另一示意图;
图9为本申请实施例的RRM配置方法的再一示意性流程图;
图10为本申请实施例的装置的示意性框图;
图11为本申请实施例的装置的另一示意性框图;
图12为本申请实施例的装置的再一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th Generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指下列中任一种:用户设备(use equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在描述本申请实施例之前,下文首先描述DRX机制、功率节省信号、以及RRM测量的概念。
1、DRX机制
基于包的数据流通常是突发性的,在没有数据传输的时候,可以通过关闭终端设备的接收电路来降低功耗,从而提升终端设备的电池使用时间。这就是,不连续接收(discontinuous reception,DRX)机制的由来。
DRX机制的示意图如图1所示,在时域上,时间被分成一个个连续的DRX周期(DRX cycle)。DRX周期包括激活期(on duration)和休眠期(opportunity for DRX)。在激活期,终端设备监听并接收下行信号(例如,物理下行控制信道(PDCCH)),在休眠期,终端设备不监听也不接收下行信号,以节省功耗。
现有技术中,DRX机制的工作状态分为空闲态DRX(Idle-DRX)和连接态DRX(Connected-DRX),空闲态DRX指的是,为处于空闲态的终端设备配置DRDX周期,连接态DRX指的是,为处于连接态的终端设备配置DRX周期。本申请仅涉及连接态DRX。为了描述的简洁,本文中将连接态DRX简称为DRX,换言之,下文提及的DRX均指连接态DRX。
2、功率节省信号
为了进一步降低终端设备的功耗,有人提出将功率节省信号引入DRX。功率节省信号是网络设备基于PDCCH的测量需求配置到终端设备上的。例如,在终端设备需要在下一个DRX周期的激活期(或者该激活期中的部分时间)监听PDCCH时,网络设备通过功率节省信号指示终端设备在下一个DRX周期的激活期(或者该激活期中的部分时间)监听PDCCH;在终端设备不需要在下一个DRX周期的激活期监听PDCCH时,网络设备通过功率节省信号指示终端设备在下一个DRX周期的激活期进行休眠。
功率节省信号的配置方式可以包括如下两种。
功率节省信号的配置方式一:网络设备通过功率节省信号的不同状态值来指示终端设备在下一个DRX周期的激活期是否休眠。
例如,功率节省信号具有两个状态值“0”和“1”,当功率节省信号的状态值为“0”时表示终端设备在下一个DRX周期的激活期进行休眠,当功率节省信号的状态值为“1”时表示终端设备在下一个DRX周期的激活期监听PDCCH。可以通过一直存在的功率节省信号来指示终端设备在下一个DRX周期的激活期是否休眠。
配置方式一还可描述为:网络设备通过一直存在的功率节省信号来指示终端设备在下一个DRX周期的激活期是否休眠。换言之,无论终端设备是否需要在下一个DRX周期的激活期监听PDCCH,网络设备均会为终端设备配置功率节省信号。
功率节省信号的配置方式二:网络设备通过是否配置功率节省信号来指示终端设备在下一个DRX周期的激活期是否休眠。
例如,当终端设备需要在下一个DRX周期的激活期监听PDCCH时,网络设备为终端设备配置功率节省信号,当终端设备不需要在下一个DRX周期的激活期监听PDCCH时,网络设备不为终端设备配置功率节省信号。终端设备也知道这种指示方式。即在终端设备侧,当检测到功率节省信号时,在下一个DRX周期的激活期监听PDCCH,当在下一个DRX周期到来之前未检测到功率节省信号,在下一个DRX周期的激活期进行休眠。或者,也可以将上述例子描述的情形反过来。
配置方式二还可描述为:网络设备通过间断存在的功率节省信号来指示终端设备在下 一个DRX周期的激活期是否休眠。
网络设备可以通过如下信令中的任一种向终端设备通知功率节省信号的配置方式:无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制控制元素(Media Access Control-Control element,MAC-CE)信令、下行控制信息(Downlink Control Information,DCI)信令、或系统信息(System Information,SI)。
功率节省信号可以为苏醒信号(Wake-up signal,WUS),也可以为睡眠信号(go-to-sleep signal,DTS)。功率节省信号还可以为其它信号,例如,功率节省信号为下列信号中的任一种:信道状态信息参考信号(channel state information reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)、跟踪参考信号(tracking reference signals,TRS)或同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH block)。
功率节省信号可以是序列信号,也可以是数据信号。当功率节省信号为数据信号时,功率节省信号可以为下列中的任一种:DCI、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、MAC-CE或RRC。
为序列信号。功率节省信号还可以为PDCCH。或者,功率节省信号还可以为
网络设备可以配置功率节省信号为序列信号或者PDCCH。
网络设备可以通过下列信令中的任一种来向终端设备发送功率节省信号:RRC信令、MAC-CE信令。
在DRX机制中引入功率节省信号的方案中,可选地,DRX机制与功率节省信号之间的关联关系,可以由网络设备配置,下发给终端设备。例如,该配置信息可以承载于下列中的任一种:物理广播信道(physical broadcast channel,PBCH)、剩余最小系统信息(remaining minimum system information,RMSI)、系统信息块(system information block,SIB)1、SIB2、SIB3、媒体接入控制控制元素(media access control-control element,MAC-CE)、下行控制信息(down link control information,DCI)、无线资源控制(radio resource control,RRC)以及系统信息。
可选地,DRX机制与功率节省信号之间的关联关系也可以由标准规定,或者由网络设备和终端设备预先约定。
图2为在DRX机制中引入功率节省信号的示意图,在图2中,以功率节省信号为WUS为例。如图2所示,当配置了WUS时,终端设备在DRX周期内对应的时间上进行盲检,如果检测到WUS,唤醒PDCCH检测模块,在DRX周期的激活期进行PDCCH的检测;如果没有检测到WUS,终端设备重新睡眠,直到下一个DRX周期的激活期到达。
作为示例,当功率节省信号与DRX周期的激活期的偏移值(offset)之间的值是固定时,该offset的值可以根据一些情况确定是否发送。
可选地,可以根据上下行数据的传输确定否发送该offset的值。
例如,当功率节省信号遇到上行信号的传输时机时,可以不发送。
可选地,也可以根据与必须传输的下行信号是否冲突确定是否发送功率节省信号。
例如,当与SSB冲突的时候,确定是否发送功率节省信号。当与SSB冲突的时候,可以不发送功率节省信号。当终端设备没有收到功率节省信号的时候,终端设备则需要检测下一个DRX周期的激活期中的数据信号或下一个DRX周期中的数据。
应理解,这样可以避免终端设备遗漏网络设备的调度数据。
或者网络设备不发送功率节省信号,终端设备也不在下一个DRX周期的激活期中检测数据信号,或在下一个DRX周期中检测数据信号。
功率节省信号与DRX周期的激活期之间的偏移值,或者功率节省信号的位置,或者DRX周期中的激活期的位置也可以是变化的。
作为示例,一种变化方式为,根据功率节省信号的存在与否确定;或者根据当功率节省信号与DRX周期的激活期的偏移值(offset)随功率节省信号的指示进行变化;或根据Pre-wake-up window的存在进行变化。
第一种变化的方式是功率节省信号的位置是固定的,DRX周期的起始位置或偏移位置与功率节省信号的位置的相对偏移是变化的,激活期(onDuration)的起始时间与功率节省信号的位置的相对偏移是变化的,DRX周期的起始位置与激活期的起始位置之间可以没有偏移。
第二种变化的方式是功率节省信号的位置是固定的,DRX周期的起始位置是固定的,激活期的起始时间与功率节省信号的位置的相对偏移是变化的。当功率节省信号指示终端设备需要进行测量或进行同步的时候,offset值为offset1;当功率节省信号指示终端设备不需要进行测量或进行同步的时候,offset值为offset2;Offset1=offset2+Delta_offset。Delta_offset的值可以是配置的,也可以与测量的参考信号持续时间的长度相同。Delta_offset的值可以是配置的。offset2或offset1或Delta offset的值也可以是网络设备配置的,或者协议规定的或者是根据参数推导出来的。网络设备配置的值可以是基于时隙或者基于符号或者是基于子帧或者是基于帧的。该offset1或offset2或Delta的值可以为1~19中全部整数的部分或全部。该偏移值的单位可以为帧,子帧,时隙或符号中的任意一种。
功率节省信号的位置可以有K2个。K2的值可以为1~64中的全部整数中的部分或全部。
例如,网络设备可以配置K2的值为8,其中8为MAC-CE激活的PDSCH的传输配置指示数目。
再例如,K2的值可以与网络设备通过RRC信令配置的PDCCH或者PDSCH的传输配置数目的指示数目相同。
可选地,网络设备可以在配置的每一个功率节省信号的位置发送功率节省信号,也可以在一个或多个配置的功率节省信号的位置不进行发送功率节省信号。
发送功率节省信号的位置可以由网络设备配置。例如,网络设备可以为终端设备配置发送功率节省信号的位置的索引。
这些功率节省信号的位置的配置方式可以有多种。
例如,直接配置功率节省信号的位置。
再例如,间接配置功率节省信号的位置,例如,可以通过时间偏移来配置功率节省信号的位置,该时间偏移可以是相对于不同时隙、不同帧、不同符号的位置的偏移;或者,该时间偏移可以是相对于不同时隙、相同帧、不同符号的位置的偏移;或者,该时间偏移可以是相对于相同时隙、相同帧、不同符号的位置的偏移。该时间偏移的值可以相同,也可以是不同的。该时间偏移可以随着功率节省信号的配置进行配置,配置的参数可以包含配置信号的索引,周期和偏移。该时间偏移也可以相对于相同的一个激活期或DRX周期 的起始位置进行配置。网络设备可以同时与终端设备配置多个激活的功率节省信号位置或者配置多个发送功率节省信号的位置。网络设备可以设置一个或多个主信号,用于指示该终端设备是否在下一个DRX周期中的激活期进行睡眠,其他功率节省信号用于该终端设备的测量。
本申请实施例中提及的网络设备配置可以是通过下列中任一项实现:通过RRC信令进行配置、通过MAC-CE信令进行配置、通过DCI信令进行配置、通过MAC-CE信令和RRC信令进行配置、通过MAC-CE信令和DCI进行配置、通过RRC信令和DCI信令进行配置、通过RRC信令和MAC-CE信令以及DCI信令进行配置。
3、RRM测量
为了满足无线资源管理(RRM)的目的,网络设备配置终端设备进行无线资源测量,这个测量称为RRM测量。
RRM测量中需要测量的测量量可以包括同步信号块的参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信号与干扰和噪声的比值(signal to interference plus noise ratio,SINR)或参考信号强度指示(reference signal strength indicator,RSSI)等。或者,该测量量可以包括信道状态信息参考信号(channel state information-reference signal,CSI-RS)的RSRP、RSRQ、SINR或RSSI等。或者,该测量量可以是其参考信号的RSRP、RSRQ、SINR或RSSI等。或者,该测量量可以是其他测量量,例如信道状态信息(channel status information,CSI)、信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)、预编码类型指示(precoding type indicator,PTI)、分集指示(rank indication,RI)和CSI-RS资源索引(CSI-RS index,CRI)中的至少一项。
其中,同步信号块也可以称为同步信号/物理广播信道(synchronization signal/physical broadcast channel block,SS/PBCH)块。同步信号块中可以包括如下中至少一个:PBCH,主同步信号(primary synchronization signal,PSS),辅同步信号(secondary synchronization signal,SSS)。同步信号块也可以称为SSB或SS/PBCH block或SS block。
终端设备在进行RRM测量之后,当满足报告标准时,会将测量结果报告给网络设备。例如,当SSB的RSRP/RSRQ值大于由网络设备配置的阈值时,终端设备可以出发测量报告。
作为示例而非限定,在连接态的终端设备的RRM测量中,RAN4(负责LTE无线接入网的标准化工作的一个工作组)规定的RRM测量周期如表1和表2所示。如表1所示,针对频段FR1,当没有设置DRX周期或者DRX周期小于320ms时,RRM测量周期的最小值为200ms。如表2所示,针对频段FR2,当没有设置DRX周期或者DRX周期小于320ms时,RRM测量周期的最小值为400ms。
表1-同频测量的RRM测量周期(频率FR1)
Figure PCTCN2019129918-appb-000001
Figure PCTCN2019129918-appb-000002
在表1中,max()表示求最大值函数,f()表示向上取整函数或向下取整函数,例如f()为floor()或ceil(),K p表示根据频率确定的常数。基于同步信号块的RRM测量时间配置(SS block based RRM measurement timing configuration,SMTC)周期表示基于RRM的同步信号/物理广播信道块测量定时配置(SS/PBCH Block Measurement Timing Configuration,SMTC)的周期。
NOTE 1表示,如果为不同小区配置了不同的SMTC周期,则max()中的SMTC周期指的是所识别的小区的SMTC周期。
表2-同频测量的RRM测量周期(频率FR2)
Figure PCTCN2019129918-appb-000003
在表2中,max()表示求最大值函数,f()表示向上取整函数或向下取整函数,例如f()为floor()或ceil(),K p表示根据频率确定的常数,M meas_period_w/o_gaps表示根据功率类型确定的常数,K RLM表示根据测量间隙确定的常数。NOTE 1表示,如果为不同小区配置了不同的SMTC周期,则max()中的SMTC周期指的是所识别的小区的SMTC周期。
通常,RRM测量要求一定的测量精度,本文中将其称为RRM测量精度。RRM测量精度与RRM测量周期内的测量样本的数量有关。例如,RRM测量精度可以表示为,测量波动幅度不超过一定值,测量波动幅度指的是测量功率的波动幅度。例如,RRM测量精度表示测量波动幅度不超过+-4dB、+-6dB或+-9dB。其中,一个RRM测量周期内的测量样本的数量越大,测量波动幅度越小,RRM测量精度越高,反之亦然。因此,可以认为一定的RRM测量精度对应RRM测量周期内一定数量的测量样本。例如,要满足RRM测量精度,在320ms的RRM测量周期内,需要测量5个测量样本。
可以满足RRM测量精度的,一个RRM测量周期内的测量样本的数量,可以被称为满足RRM测量精度的最小测量次数。
测量样本表示一个或多个信号进行RRM测量得到的结果。例如,一个信号进行RRM测量得到的结果可以看作是一个测量样本。或者,多个信号进行RRM测量得到的结果可以看作是一个测量样本。再例如,一个CSI-RS集合中所有CSI-RS进行RRM测量得到的结果可以算做一个测量样本。再例如,半帧内所有SSB进行RRM测量得到的结果可以算做一个测量样本。
例如,RRM测量精度可以根据RRM测量中的测量量(如前文所述)的测量精度进行确定。
上述可知,为了满足RRM测量精度,在一个RRM测量周期内,终端设备需要在该RRM测量周期中进行一定数量的测量样本。
前文已述,使用功率节省信号时,会使终端设备在一个RRM测量周期中睡眠次数增多,这可能会导致,终端设备在需要进行RRM测量的DRX周期进行休眠的情形。这种情形会降低RRM测量的测量精度。
作为示例,如图3所示,假设DRX周期为40ms,SMTC周期为40ms,RRM测量周期为320ms,RRM测量周期内包括8个DRX周期。根据测量精度的要求,需要在RRM测量周期内进行5次测量。由于功率节省信号的指示,终端设备在5个DRX周期进行休眠,只在3个DRX周期内醒来进行监听和测量,即终端设备在RRM测量周期内只进行了3次测量,如图3所示。因此,图3所示的RRM测量降低了RRM测量的测量精度。
针对上述问题,本申请实施例提出一种RRM测量方案,可以在兼顾终端设备的能耗的同时,在一定程度上提高RRM测量的测量精度。
应理解,图1至图3,以及上文结合图1至图3的描述,均是为了更好地理解本申请实施例而给出的示例性描述,对本申请实施例没有限定。
图4为本申请实施例提供的RRM测量方法400的示意性流程图。该方法400的执行主体可以为终端设备或芯片或集成电路。该方法400包括如下步骤。
410,在RRM测量周期内,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量。
在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,表示,在一个或多个被网络设备指示休眠的DRX周期的激活期进行RRM测量。例如,终端设备可以在选择任一个或多个被网络设备指示休眠的DRX周期的激活期进行RRM测量。
网络设备根据监听PDCCH的需求来指示终端设备是否在DRX周期的激活期进行休眠。例如,网络设备在不需要监听PDCCH时,指示终端设备在DRX周期的激活期休眠,在需要监听PDCCH时,指示终端设备在DRX周期的激活期苏醒。
网络设备可以通过功率节省信号指示终端设备在DRX周期的激活期进行休眠或苏醒。
可选地,如图1所示,该方法400还包括:420,接收网络设备发送的功率节省信号。
该功率节省信号可以包括苏醒信号(WUS)或者睡眠信号(GTS)或者序列信号。关于功率节省信号以及功率节省信号的配置方式的描述,详见前文,这里不再赘述。
网络设备指示在DRX周期的激活期休眠表示,指示终端设备在DRX周期的激活期不监听PDCCH,网络设备指示在DRX周期的激活期苏醒表示,指示终端设备在DRX周期的激活期监听并接收PDCCH。
现有技术中,终端设备在被网络设备指示休眠的所有DRX周期的激活期进行休眠,如果在一个RRM测量周期内,终端设备休眠的DRX周期的数目较多,则进行RRM测量的次数较少,可能会导致RRM测量的测量精度降低。
在本申请实施例中,通过在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,相比于现有技术,可以增加RRM测量周期内的RRM测量次数,从而有利于提高RRM测量的测量精度。
本申请实施例中的RRM测量周期,可以由网络设备配置。例如,网络设备可以通过下列中任一种为终端设备配置RRM测量周期:无线资源控制(radio resource control,RRC)信令、媒体接入控制控制元素(media access control-control element,MAC-CE)信令、系 统信息进行配置。
RRM测量周期的大小可以根据DRX周期的大小确定。例如,RRM测量周期的大小通过前文结合表1或表2描述的方式确定。
RRM测量周期还可以是配置参数推导出来的倍数。例如,配置参数推导的一种方式为M1*N1*4*T,其中T表示的DRX周期,M1和N1表示常数。再例如,RRM测量周期的最大值可以不超过10.24s。
该倍数的值可以由网络设备配置。例如该倍数的值可以为整数1~32中部分值或全部值中的任意一个整数。作为示例,网络设备可以根据终端设备的速度配置该倍数的值。
网络设备也可以配置终端设备在RRM测量周期内测量的样本数目,可以配置的值为1,2,3,4,5,6,7,8中的部分或者全部的值。
网络设备在配置该倍数的值和/或样本数目的时候,可以通过测量目标进行配置。例如,网络设备将该倍数的值和/或样本数目与SSB的频率进行一起配置。
本申请实施例中的DRX周期的激活期,表示DRX周期的计时期间。对于长DRX周期,DRX周期的激活期可以表示为On duration Time,对于短DRX周期,DRX周期的激活期可以表示Inactive Time。
本申请实施例中的RRM测量,如前文描述的RRM测量,这里不再赘述。
可选地,在一些实施例中个,步骤410包括:在X个被网络设备指示休眠的DRX周期的激活期进行RRM测量,X的取值使得,在RRM测量周期内的RRM测量次数不小于满足RRM测量精度的最小测量次数。
RRM测量周期内的RRM测量次数,指的是,RRM测量周期内的测量样本的数量。下文将描述的DRX周期的激活期内的RRM测量次数,指的是,DRX周期的激活期内的测量样本的数量。其中,测量样本表示一个或多个信号进行RRM测量得到的结果。例如,一个信号进行RRM测量得到的结果可以看作是一个测量样本。或者,多个信号进行RRM测量得到的结果可以看作是一个测量样本。再例如,一个CSI-RS集合中所有CSI-RS进行RRM测量得到的结果可以算做一个测量样本。再例如,半帧内所有SSB进行RRM测量得到的结果可以算做一个测量样本。
满足RRM测量精度的最小测量次数,指的是,为了满足RRM测量精度,在RRM测量周期内需要测量的测量样本的最小数量。如前文描述,RRM测量精度可以根据RRM测量的测量量的测量精度进行确定。
满足RRM测量精度的最小测量次数可以由网络设备预配置,也可以通过协议规定。例如,满足RRM测量精度的最小测量次数为8、7、6、5、4、3、2或1中的任一种。
下文提及的最小测量次数均指满足RRM测量精度的最小测量次数。
可选地,在本实施例中,X的取值也根据具体需求确定。
本申请实施例,通过在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,使得在RRM测量周期内的RRM测量次数不小于满足RRM测量精度的最小测量次数,从而可以有效提高RRM测量的测量精度。
可选地,在一些实施例中,步骤410包括:在RRM测量周期内,在所有被网络设备指示休眠的DRX周期的激活期均进行RMM测量。
本申请实施例,可以在较大程度上提高RRM测量的测量精度。
可选地,如图5所示,在一些实施例中,该方法400包括如下步骤。
410,在RRM测量周期内,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量。
430,在该RRM测量周期内,在至少一个DRX周期之外的其它被网络设备指示休眠的DRX周期的激活期进行休眠。
换言之,在本申请实施例中,终端设备在一部分被网络设备指示休眠的DRX周期的激活期进行休眠,在另一部分被网络设备指示休眠的DRX周期的激活期进行RRM测量。
在本申请实施例中,通过在一部分被网络设备指示休眠的DRX周期的激活期进行RRM测量,相比于现有技术,可以增加一个RRM测量周期内的RRM测量次数,从而可以在一定程度上提高RRM测量的测量精度;此外,通过在另一部分被网络设备指示休眠的DRX周期的激活期进行休眠,可以降低终端设备的能耗。
在本申请实施例中,可以采用多种方式实现,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量。
可选地,作为第一种实现方式,如图6所示,步骤410包括如下步骤411a和412a。
411a,在RRM测量周期内,每当出现一个被网络设备指示苏醒的DRX周期,将计数器的计数值K减L1,L1为整数。
计数值K的初始值小于或等于RRM测量周期内包括的DRX周期的数目。例如,RRM测量周期内包括8个DRX周期,则计数值K的初始值可以为5或6或7。
可选地,计数器的计数值K的初始值等于最小测量次数所需的DRX周期的个数。
下面将描述计数器的计数值K的初始值的获取方式,以及L1的取值的确定方式。
记计数值K的初始值为N,可以通过如下步骤计算N的取值。
步骤1),获取RRM测量周期中每个DRX周期内的平均测量次数S。
当RRM测量周期中每个DRX周期的测量次数相同时,S等于RRM测量周期中任一个DRX周期的测量次数。
当RRM测量周期中不同DRX周期的测量次数不同时,可以估计RRM测量周期内的平均测量次数S。
例如,将RRM测量周期中Y个DRX周期的平均测量次数作为S的值,Y小于RRM测量周期包括的所有DRX周期的总数目。例如,根据如下公式确定S的取值。
S=f1(M1/Y),
其中,M1表示Y个DRX周期的总测量次数。f1(M1/Y)可以为如下函数中的任一个:floor(M1/Y)、ceil(M1/Y)、或M1/Y。函数floor()表示向下取整,或者说向下舍入,即floor(M1/Y)表示,不大于M1与Y的商的最大整数。函数ceil()表示向上取整,即ceil(M1/Y)表示,不小于M1与Y1的商的最小整数。应理解,在M1与Y可以整除的情形下,f1(M1/Y)可以为M1/Y,否则,应该为floor(M1/Y)或ceil(M1/Y)。
例如,Y个DRX周期可以为RRM测量周期中最后Y个DRX周期,或者,也可以为RRM测量周期中其它位置上的Y个DRX周期。再例如,Y等于1。
步骤2),根据最小测量次数与平均测量次数,计算N的取值。其中,最小测量次数可以由网络配置给终端设备,也可以通过协议规定。
例如,根据如下公式确定N的取值。
N=f(M/S),
其中,M表示最小测量次数。f(M/S)可以为如下函数中的任一个:floor(M/S)、ceil(M/S)、或M/S。函数floor()表示向下取整,或者说向下舍入,即floor(M/S)表示,不大于M与S的商的最大整数。函数ceil()表示向上取整,即ceil(M/S)表示,不小于M与S的商的最小整数。应理解,在M与S可以整除的情形下,f(M/S)可以为M/S,否则,应该为floor(M/S)或ceil(M/S)。
上面描述了通过计算的方式确定N的取值。
可选地,还可以根据经验值确定N的取值,例如,假设一个RRM测量周期内包括8个DRX周期,按照经验,规定需要在5个DRX周期的激活期进行RRM测量,即N等于5。
可选地,当RRM测量周期中每个DRX周期的测量次数相同时,可以采用计算的方式确定N的取值;当RRM测量周期中不同DRX周期的测量次数不同时,可以按照经验值的方式确定N的取值。
N的值可以由终端设备上报给网络设备。或者,N的值可以由网络设备配置给终端设备。
L1的取值根据如下情况而定。
情况一,当RRM测量周期中每个DRX周期的激活期的RRM测量次数相同,L1等于1。
情况二,当RRM测量周期内不同DRX周期的激活期的RRM测量次数不同,L1的值根据被网络设备指示苏醒的DRX周期的激活期的RRM测量次数,与RRM测量周期中倒数第K个DRX周期的激活期的RRM测量次数确定。
在情况二中,当被指示苏醒的DRX周期的激活期的RRM测量次数小于倒数第K个DRX周期的激活期的RRM测量次数时,L1等于0;当被指示苏醒的DRX周期的激活期的RRM测量次数等于或大于倒数第K个DRX周期的激活期的RRM测量次数时,L1等于1,或者L1为大于1的整数。
例如,记倒数第K个DRX周期内的RRM测量次数为a1,倒数第K-1个DRX周期内的RRM测量次数为a2,倒数第K-2个DRX周期内的RRM测量次数为a3,记被网络设备指示苏醒的DRX周期的RRM测量次数为b。当b小于a1时,L1等于0。当b等于a1时,L1等于1。当b大于a1时,L1等于或大于1。再例如,在b大于a1的情况下,当b小于a1与a2之和时,L1等于1;当b等于a1与a2之和时,L1可以等于2;当b大于a1和a2之和时,L1可以等于或大于2。再例如,在b大于a1与a2之和的情况下,当b小于a1、a2和a3之和时,L1等于2;当b等于a1、a2和a3之和时,L1等于3;当b大于a1、a2和a3之和时,L1可以等于或大于3。以此类推,不再枚举。
可选地,在情况二中,确定L1的取值的另一种实现方式为,根据被指示醒来的DRX周期内的RRM测量次数b与倒数K个DRX周期中的平均测量次数c,确定L1的取值。当b小于c时,L1等于0。当b等于c时,L1等于1。当b大于c时,L1大于1,例如,L1等于floor(b/c),floor(b/c)表示对b与c的商向下取整。
412a,当RRM测量周期内未到达的DRX周期的数目与K的值相等时,在RRM测量周期的倒数K个DRX周期的激活期均进行RRM测量,倒数K个DRX周期中包括被网 络设备指示休眠的DRX周期。
应理解,在完成步骤412a之后,RRM测量周期中倒数K个DRX周期内的RRM测量次数与倒数第K个DRX周期之前的DRX周期内的RRM测量次数等于或大于最小测量次数。
在完成步骤412a之后,RRM测量周期中倒数K个DRX周期可以包括下列中的任一种或多种:被网络设备指示休眠的DRX周期,被网络设备指示醒来的DRX周期,未被网络设备指示休眠或醒来的DRX周期。RRM测量周期中倒数第K个DRX周期之前的DRX周期中进行RRM测量的DRX周期均为被网络设备指示苏醒的DRX周期。
图7为图6所示实施例的一个具体例子。在图7中,RRM测量周期中每个DRX周期的RRM测量次数相同。RRM测量周期等于320ms,DRX周期等于40ms,一个RRM测量周期包括8个DRX周期,每个DRX周期的RRM测量次数均为1。网络设备通过功率节省信号指示终端设备在DRX周期的激活期进行休眠或苏醒,如图7所示,标有“休眠”标识的DRX周期表示被功率节省信号指示休眠的DRX周期。假设计数值K的初始值N等于5,实现在RRM测量周期的倒数K个DRX周期的激活期均进行RRM测量的方式如下:
第1个DRX周期被指示醒来,将K的值减1更新为4;第2个DRX周期被指示休眠,将K的取值维持为4;第3个DRX周期被指示休眠,将K的取值维持为4;第4个DRX周期被指示醒来,将K的取值减1更新为3;第5个DRX周期被指示休眠,将K的取值维持为3,这时,RRM测量周期中未到达的DRX周期的个数为3,即等于K的取值,则在RRM测量周期的最后3个DRX周期内均进行RRM测量。
如图7中,在本实施例中,虽然第6个和第8个DRX周期是被指示为休眠,但是,终端设备会在第6个和第8个DRX周期的激活期进行RRM测量。
图7所示实施例,在满足RRM测量精度的情况下,还可以降低终端设备的能耗。
图8为图6所示实施例的另一个具体例子。在图8中,RRM测量周期等于320ms,DRX周期等于40ms,一个RRM测量周期内包括8个DRX周期。不同DRX周期的RRM测量次数不完全相同,第1、3、5和7个DRX周期中的测量次数为2,第2、4、6和8个DRX周期中的测量次数为1。网络设备通过功率节省信号指示终端设备在DRX周期的激活期进行休眠或苏醒,如图8所示,标有“休眠”标识的DRX周期表示被功率节省信号指示休眠的DRX周期。假设计数值K的初始值N等于5,实现在RRM测量周期的倒数K个DRX周期的激活期均进行RRM测量的方式如下:
第1个DRX周期被指示醒来,该醒来的DRX周期的激活期的测量次数为2,倒数第K(这时K的值为5)个DRX周期的测量次数为1,倒数第K-1个DRX周期的测量次数为1,这时,可以将K的值减去2,即K的值更新为3。此时,RRM测量周期中未处理的DRX周期的个数为7。
第2个DRX周期被指示休眠,K的取值维持为3,此时,RRM测量周期中未处理的DRX周期的个数为6。第3个DRX周期被指示休眠,K的取值维持为3,RRM测量周期中未处理的DRX周期的个数为5。
第4个DRX周期被指示醒来,该醒来的DRX周期的激活期的测量次数为1,倒数第K(这时K的值为3)个DRX周期的测量次数为1,这时,可以将K的值减1,即K的 值更新为2,此时,RRM测量周期中未处理的DRX周期的个数为4。
第5个DRX周期被指示休眠,K的取值维持为2,此时,RRM测量周期中未处理的DRX周期的个数为3。
第6个DRX周期被指示休眠,K的取值维持为2,此时,RRM测量周期中未处理的DRX周期的个数为2,即RRM测量周期中未处理的DRX周期的个数等于K的值,这种情况下,确定在RRM测量周期的最后2个DRX周期内均进行RRM测量。
如图8中,在本实施例中,虽然第8个DRX周期是被指示为休眠,但是,终端设备会在第8个DRX周期的激活期进行RRM测量。
图8所示实施例,在满足RRM测量精度的情况下,还可以降低终端设备的能耗。
因此,本申请实施例,在较大程度上保证RRM测量的测量精度的情况下,还可以降低终端设备的能耗。
有些情况下,在RRM测量周期的最后一个DRX周期,不进行RRM测量。针对这种情况下,在图6所示实施例的步骤412a可以替换为:当RRM测量周期内除最后一个DRX周期之外、未到达的DRX周期的数目与K的值相等时,在RRM测量周期的倒数第K+1个DRX周期至倒数第二个DRX周期的激活期均进行RRM测量。例如,倒数第K+1个DRX周期至倒数第二个DRX周期中包括被网络设备指示休眠的DRX周期。
可选地,作为第二种实现方式,如图9所示,步骤410包括如下步骤411b和412b。
411b,在RRM测量周期内,每当出现一个被网络设备指示苏醒的DRX周期时,将计数器的计数值R的值减L2,L2等于被指示苏醒的DRX周期的激活期的RRM测量次数,计数器的计数值R的初始值为RRM测量周期内的RRM测量次数。
可选地,计数器的计数值R的初始值等于满足RRM测量精度的最小测量次数。
412b,当RRM测量周期内未到达的倒数G个DRX周期中的RRM测量次数之和等于或大于R的值,且倒数G-1个DRX周期中的RRM测量次数之和等于或小于R的取值时,在倒数G个DRX周期的激活期均进行RRM测量,倒数G个DRX周期中包括被网络设备指示休眠的DRX周期。
应理解,在完成步骤412b之后,RRM测量周期中倒数G个DRX周期内的RRM测量次数与倒数第G个DRX周期之前的DRX周期内的RRM测量次数等于或大于最小测量次数。
在完成步骤412b之后,RRM测量周期中倒数G个DRX周期可以包括下列中的一种或多种:被网络设备指示休眠的DRX周期,被网络设备指示醒来的DRX周期,未被网络设备指示休眠或醒来的DRX周期。RRM测量周期中倒数第G个DRX周期之前的DRX周期中进行RRM测量的DRX周期均为被网络设备指示苏醒的DRX周期。
本实施例,可以在较大程度满足RRM测量精度的情况下,还可以降低终端设备的能耗。
应理解,无论RRM测量周期内各个DRX周期的RRM测量次数是否相同,都可以通过第二种实现方式实现步骤410。
有些情况下,在RRM测量周期的最后一个DRX周期,不进行RRM测量。针对这种情况下,在图9所示实施例的步骤412b可以替换为:当RRM测量周期内除最后一个DRX周期之外、未到达的倒数第G+1个至倒数第二个DRX周期中的RRM测量次数之和等于 或大于R的值,且倒数第G个至倒数第二个DRX周期中的RRM测量次数之和等于或小于R的取值时,在倒数第G+1个至倒数第二个DRX周期的激活期均进行RRM测量。例如,倒数第G+1个至倒数第二个DRX周期中包括被网络设备指示休眠的DRX周期。
可选地,作为另一种实现方式,步骤410包括:当RRM测量周期中已被网络设备指示休眠的DRX周期的数目达到阈值时,在RRM测量周期内未到达的网络设备指示休眠的DRX周期的激活期均进行RRM测量。
该阈值小于RRM测量周期内包括的所有DRX周期的总数量。例如,RRM测量周期内包括的所有DRX周期的总数量为8,该阈值可以为2或3。
该阈值可以预配置,也可以根据具体需求而定。
该阈值可以由网络设备配置给终端设备,也可以由终端设备上报给网络设备。
有些情况下,在RRM测量周期的最后一个DRX周期,不进行RRM测量。针对这种情况下,在本实施例中,步骤410可以替换为:当RRM测量周期中已被网络设备指示休眠的DRX周期的数目达到阈值时,在RRM测量周期内除最后一个DRX周期之外、未到达的网络设备指示休眠的DRX周期的激活期均进行RRM测量。
应理解,当终端设备进行RRM测量的测量结果满足一定事件时,终端设备可以向网络设备上报测量结果。在终端设备准备上报测量结果时,如果有可用的上行资源,则可以利用该上行资源上报测量结果,如果没有可用的上行资源,则终端设备向网络设备发送调度请求(scheduling request,SR)以请求上行资源。
本申请实施例中的RRM测量可以包括下列中至少一种:RRM测量、测量结果上报和参考信号的配置。
作为示例,本申请实施例中的RRM测量包括测量结果上报。
可选地,在一些实施例中,本申请实施例提供的方法400还包括:在RRM测量周期的倒数第K个DRX周期中的激活期或者其他时间,上报测量结果。
本实施例中,K的值可以为1,2,3,4,5,6,7,8,9,10中的任意一个或全部。K的值可以是配置的,也可以是协议规定的,或者是根据一定的参数推导出来的。
作为示例,假设K的值为1,终端设备在RRM测量周期的倒数第一个(即最后一个)DRX周期的激活期进行上报测量结果。该DRX周期中的激活期向网络设备上报RRM测量的测量结果或者向网络设备发送资源调度请求,用于上报测量结果。其中DRX周期中的激活期可以为DRX周期中的OndurationTimer计时期,也可以是InactiveTimer计时期,也可以是DRX周期中采用其它方式定义的一段时间。
当终端设备完成RRM测量之后,当进行最后一次RRM测量的DRX周期为被网络设备指示不休眠的DRX周期,终端设备可以在该DRX周期的激活期上进行上报测量结果。
当终端设备完成RRM测量之后,当进行最后一次RRM测量的DRX周期为被网络设备指示休眠的DRX周期,终端设备可以在该DRX周期的激活期进行上报测量结果,也可以在下一个DRX周期的激活期进行上报,还可以在RRM测量周期内的倒数第K个DRX周期的激活期进行上报测量结果,也可以在下一个测量周期内的DRX周期中进行上报或下一个测量周期内终端设备苏醒的时间进行上报,也可以在完成最后一次RRM测量之后任意一次苏醒的DRX周期的激活期进行上报。终端设备上报的DRX周期或在DRX周期内上报的时间可以由网络设备配置,也可以由终端设备推导出来,还可以由协议规定。
在终端设备准备上报测量结果时,如果有可用的上行资源,则终端设备向网络设备上报RRM测量的测量结果。在终端设备准备上报测量结果时,如果没有可用的上行资源,向网络设备上报调度请求(scheduling request,SR)以请求上行资源。
可选地,网络设备可以在终端设备上报测量结果的DRX周期上配置上行资源,用于进行上报测量结果,或者配置上行控制资源,用于调度请求的申请。
该上行资源的时域位置可以是在上报的DRX周期的激活期,也可以是该DRX周期内的其它单独的一段时间。
本实施例中的DRX周期可以是被网络设备指示在激活期休眠的DRX周期,也可以是被网络设备指示在激活期不休眠的DRX周期。
本实施例中的上行资源可以是PUSCH资源,也可以是PUCCH资源,还可以是RACH资源。
可选地,终端设备在上报测量结果的时候,可以将终端设备的速度与测量的结果一起上报。终端设备也可以将测量的样本数目与测量结果一起进行上报。
可选地,一种上报的方式为在测量量的测量结果中上报。作为示例,如下所示。
Figure PCTCN2019129918-appb-000004
可选地,另一种上报的方式为随着参考信号进行上报。作为示例,如下所示。
Figure PCTCN2019129918-appb-000005
可选地,再一种上报的方式为随着测量小区标识进行上报。作为示例,如下所示。
Figure PCTCN2019129918-appb-000006
Figure PCTCN2019129918-appb-000007
前文提及的终端设备的速度的范围(也可称为终端设备的速度范围)(UESpeed-Range)可以为下列数值中的部分或全部:
0、1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、105、110、115、120、125、130或135等数值。
其中,0表示静止,3~7表示步行的速度,10~20表示骑行的速度,而30~120表示汽车的速度,而120以上表示高铁或火车的速度。
其中,终端设备的速度的单位可以为千米/小时,也可以为米/秒。
可选地,终端设备也可以上报在RRM测量周期内的测量次数。例如,该测量次数的数值可以为下列中任一种:1,2,3,4,5,6,7,8。
终端设备上报测量次数的方式可以与前文描述的上报终端设备的速度的方式相同。
可选地,终端设备也可以上报进行RRM测量的周期。该周期可以是终端设备当前使 用的RRM测量周期的1倍,2倍,3倍,4倍,5倍,6倍,7倍,8倍,9倍,10倍,11倍,12倍,13倍,14倍,15倍,16倍中部分或者全部的值。
终端设备上报该周期的方式可以与前文描述的上报终端设备的速度的方式相同。
网络设备可以为终端设备配置SR资源或随机接入信道(Random Access Channel,RACH)资源进行调度资源请求。
例如,该SR资源或RACH资源可以根据终端设备在RRM测量周期内进行休眠的DRX周期的数目进行激活。例如,当终端设备在RRM测量周期内进行休眠的DRX周期的数目大于预设阈值时,则终端设备可以在RRM测量周期的最后一个DRX周期的激活期内激活该SR资源或RACH资源。例如,RRM测量周期的最后一个DRX周期的激活期可以用来配置上报资源、或发送上报请求、或发送上行调度请求。
可选地,网络设备也可以配置终端设备进行上报的DRX周期的索引,该索引为RRM测量周期内的索引。换言之,网络设备可以通过RRM测量周期内的索引,指示终端设备在RRM测量周期的某个DRX周期的激活期上报测量结果或上报调度请求。例如,网络设备通过RRM测量周期内的索引,指示终端设备在RRM测量周期的最后一个DRX周期的激活期上报测量结果。
可选地,网络设备可以在DRX周期中增加参考信号,以便于终端设备进行RRM测量。
例如,可以在RRM测量周期的最后一个或最后K个DRX周期中增加参考信号,当终端设备在该最后一个或最后K个DRX周期进行RRM测量时,可以增加RRM测量次数。
在本申请实施例中,网络设备通过在DRX周期中增加参考信号的数量,可以增加终端设备进行RRM测量的测量次数。
在本申请实施例中,RRM测量的测量量可以是SMTC中的SSB,也可以是CSI-RS。
当RRM测量的测量量是SMTC中的SSB时,网络设备对该SMTC的配置可以是基于小区的,也可以是基于频率的,还可以基于波束的,还可以同时基于前三者或者基于前三者中的两者。当SMTC是基于小区的时候,可以基于小区配置整个SMTC,也可以基于小区配置SMTC的offset,也可以基于小区配置SMTC的周期,也可以基于小区配置SMTC的持续时间,还可以基于小区配置SMTC中的周期和偏移,还可以基于小区配置SMTC的偏移和持续时间,也可以基于小区配置SMTC的周期和持续时间。基于小区配置的含义是,每一个小区有一个或一组单独的配置参数或者每一个小区分组有一个或一组单独的配置参数。一种配置的方法为[PCI1,SMTC offset1,SMTC duration1]。其中PCI1表示物理小区ID或其他小区ID。ID为标识。可以在InterFreqNeighCellInfo或IntraFreqNeighCellInfo中加入SMTC的配置参数。该配置参数可以是上面举例的任意一种。
当RRM测量的测量量为CSI-RS时,网络设备也可以配置CSI-RS的测量窗口。该测量窗口可以包含CSI-RS的持续时间,周期和偏移。持续时间可以为1ms,2ms,3ms,4ms,5ms中的任意一个。该测量窗的周期可以为4ms,5ms,10ms,20ms,40ms,80ms,160ms中的任意一种。该CSI-RS的窗口也可以是基于小区进行配置的,也可以是基于频率进行配置的,还可以是基于波束进行配置的。基于频率进行配置的,可以是基于ARFCN的粒度进行配置的。
上述可知,本申请实施例,通过在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,相对于现有技术,可以增加RRM测量的测量次数,从而可以提高RRM测量的测量精度,同时也可以降低终端设备的能耗。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
上文描述了本申请的方法实施例,下文将描述上文方法实施例对应的装置实施例。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见前面方法实施例,为了简洁,这里不再赘述。
如图10所示,本申请实施例提供一种装置1000,该装置1000包括如下单元。
处理单元1010,用于在无线资源管理RRM测量周期内,在至少一个被网络设备指示休眠的非连续接收DRX周期的激活期进行RRM测量。
在本申请实施例中,通过在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,相比于现有技术,可以增加RRM测量周期内的RRM测量次数,从而有利于提高RRM测量的测量精度。
可选地,在一些实施例中,网络设备在不需要监听物理下行控制信道PDCCH时,指示在DRX周期的激活期休眠,在需要监听PDCCH时,指示在DRX周期的激活期苏醒。
可选地,在一些实施例中,网络设备通过功率节省信号指示在DRX周期的激活期进行休眠或苏醒。例如,该装置1000还包括接收单元1020,用于接收网络设备发送的功率节省信号。
可选地,在一些实施例中,处理单元1010用于,在X个被网络设备指示休眠的DRX周期的激活期进行RRM测量,X的取值使得,在RRM测量周期内的RRM测量次数不小于满足RRM测量精度的最小测量次数。
可选地,在一些实施例中,处理单元1010还用于,在RRM测量周期内,在至少一个DRX周期之外的其它被网络设备指示休眠的DRX周期的激活期进行休眠。
可选地,在一些实施例中,处理单元1010用于:在RRM测量周期内,每当出现一个被网络设备指示苏醒的DRX周期,将计数器的计数值K减L1,L1为整数,计数值K的初始值小于或等于RRM测量周期内包括的DRX周期的数目;当RRM测量周期内未到达的DRX周期的数目与K的值相等时,在RRM测量周期的倒数K个DRX周期的激活期均进行RRM测量,倒数K个DRX周期中包括被网络设备指示休眠的DRX周期。
可选地,在一些实施例中,RRM测量周期中每个DRX周期的激活期的RRM测量次数相同,L1等于1。
可选地,在一些实施例中,RRM测量周期内不同DRX周期的激活期的RRM测量次数不同,L1的值根据被网络设备指示苏醒的DRX周期的激活期的RRM测量次数,与RRM测量周期中倒数第K个DRX周期的激活期的RRM测量次数确定。
当被指示苏醒的DRX周期的激活期的RRM测量次数小于倒数第K个DRX周期的激活期的RRM测量次数时,L1等于0;当被指示苏醒的DRX周期的激活期的RRM测量次数等于或大于倒数第K个DRX周期的激活期的RRM测量次数时,L1等于1,或者L1为大于1的整数。
可选地,在一些实施例中,计数器的计数值K的初始值等于满足RRM测量精度的最 小测量次数所需的DRX周期的个数。
可选地,在一些实施例中,处理单元1010用于:在RRM测量周期内,每当出现一个被网络设备指示苏醒的DRX周期时,将计数器的计数值R的值减L2,L2等于被指示苏醒的DRX周期的激活期的RRM测量次数,计数器的计数值R的初始值为RRM测量周期内的RRM测量次数;当RRM测量周期内未到达的倒数G个DRX周期中的RRM测量次数之和等于或大于R的值,且倒数G-1个DRX周期中的RRM测量次数之和等于或小于R的取值时,在倒数G个DRX周期的激活期均进行RRM测量,倒数G个DRX周期中包括被网络设备指示休眠的DRX周期。
可选地,在一些实施例中,处理单元1010用于,当RRM测量周期中已被网络设备指示休眠的DRX周期的数目达到阈值时,在RRM测量周期内未到达的网络设备指示休眠的DRX周期的激活期均进行RRM测量。
可选地,在一些实施例中,处理单元1010用于,在RRM测量周期内,在所有被网络设备指示休眠的DRX周期的激活期均进行RMM测量。
可选地,在一些实施例中,装置1000还包括:发送单元1020,用于在RRM测量周期的最后一个DRX周期,向网络设备上报RRM测量的测量结果或者向网络设备发送资源调度请求。
应理解,处理单元1010可以采用处理器或处理器相关电路来实现。接收单元1020可以由接收器或接收器相关电路实现。发送单元1030可以由发送器或发送器相关电路实现。
如图11所示,本申请实施例还提供一种装置1100,该装置1100包括处理器1110,存储器1120与收发器1130,其中,存储器1120中存储指令或程序,处理器1110用于执行存储器1120中存储的指令或程序。存储器1120中存储的指令或程序被执行时,该处理器1110用于执行上述实施例中处理单元1010执行的操作,收发器1130用于执行上述实施例中发送单元1030执行的操作。
应理解,本申请实施例提供的装置1000或装置1100可对应于上文方法实施例中的终端设备,并且终端设备装置或装置1100中的各个模块的操作和/或功能分别为了实现上文描述的各个方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种装置,该装置可以是终端设备也可以是集成电路或芯片。该装置可以用于执行上述方法实施例中由终端设备所执行的动作。
当该装置为终端设备时,图12示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图12中,终端设备以手机作为例子。如图12所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带 信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图12所示,终端设备包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1210用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1220用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,处理单元1220,用于执行图4中的步骤410,和/或处理单元1220还用于执行本申请实施例中终端设备侧的其他处理步骤。收发单元1210还用于执行图4中的步骤420,和/或收发单元1210还用于本申请实施例中终端设备侧的其他收发步骤。
例如,在另一种实现方式中,处理单元1220,用于执行图5中的步骤,和/或处理单元1220还用于执行本申请实施例中终端设备侧的其他处理步骤。收发单元1210还用于执行本申请实施例中终端设备侧的其他收发步骤。
例如,在又一种实现方式中,处理单元1220,用于执行图6中的步骤,和/或处理单元1220还用于执行本申请实施例中终端设备侧的其他处理步骤。收发单元1210还用于执行本申请实施例中终端设备侧的其他收发步骤。
例如,在又一种实现方式中,处理单元1220,用于执行图9中的步骤,和/或处理单元1220还用于执行本申请实施例中终端设备侧的其他处理步骤。收发单元1210还用于执行本申请实施例中终端设备侧的其他收发步骤。
当该装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本发明实施例的范围。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种无线资源管理RRM测量方法,其特征在于,包括:
    在RRM测量周期内,在至少一个被网络设备指示休眠的非连续接收DRX周期的激活期进行RRM测量。
  2. 根据权利要求1所述的RRM测量方法,其特征在于,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,包括:
    在X个被所述网络设备指示休眠的DRX周期的激活期进行RRM测量,X的取值使得,在所述RRM测量周期内的RRM测量次数不小于满足RRM测量精度的最小测量次数。
  3. 根据权利要求1或2所述的RRM测量方法,其特征在于,所述方法还包括:
    在所述RRM测量周期内,在所述至少一个DRX周期之外的其它被所述网络设备指示休眠的DRX周期的激活期进行休眠。
  4. 根据权利要求1至3中任一项所述的RRM测量方法,其特征在于,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,包括:
    在所述RRM测量周期内,每当出现一个被所述网络设备指示苏醒的DRX周期,将计数器的计数值K减L1,L1为整数,所述计数值K的初始值小于或等于所述RRM测量周期内包括的DRX周期的数目;
    当所述RRM测量周期内未到达的DRX周期的数目与K的值相等时,在所述RRM测量周期的倒数K个DRX周期的激活期均进行RRM测量,所述倒数K个DRX周期中包括被所述网络设备指示休眠的DRX周期。
  5. 根据权利要求4所述的RRM测量方法,其特征在于,所述RRM测量周期中每个DRX周期的激活期的RRM测量次数相同,L1等于1。
  6. 根据权利要求4所述的RRM测量方法,其特征在于,所述RRM测量周期内不同DRX周期的激活期的RRM测量次数不同,L1的值根据被所述网络设备指示苏醒的DRX周期的激活期的RRM测量次数,与所述RRM测量周期中倒数第K个DRX周期的激活期的RRM测量次数确定,其中,
    当所述被指示苏醒的DRX周期的激活期的RRM测量次数小于所述倒数第K个DRX周期的激活期的RRM测量次数时,L1等于0;
    当所述被指示苏醒的DRX周期的激活期的RRM测量次数等于或大于所述倒数第K个DRX周期的激活期的RRM测量次数时,L1等于1,或者L1为大于1的整数。
  7. 根据权利要求4至6中任一项所述的RRM测量方法,其特征在于,所述计数器的计数值K的初始值等于满足RRM测量精度的最小测量次数所需的DRX周期的个数。
  8. 根据权利要求1至3中任一项所述的RRM测量方法,其特征在于,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,包括:
    在所述RRM测量周期内,每当出现一个被所述网络设备指示苏醒的DRX周期时,将计数器的计数值R的值减L2,L2等于所述被指示苏醒的DRX周期的激活期的RRM测量次数,所述计数器的计数值R的初始值为所述RRM测量周期内的RRM测量次数;
    当所述RRM测量周期内未到达的倒数G个DRX周期中的RRM测量次数之和等于 或大于R的值,且倒数G-1个DRX周期中的RRM测量次数之和等于或小于R的取值时,在所述倒数G个DRX周期的激活期均进行RRM测量,所述倒数G个DRX周期中包括被所述网络设备指示休眠的DRX周期。
  9. 根据权利要求3所述的RRM测量方法,其特征在于,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,包括:
    当所述RRM测量周期中已被所述网络设备指示休眠的DRX周期的数目达到阈值时,在所述RRM测量周期内未到达的所述网络设备指示休眠的DRX周期的激活期均进行RRM测量。
  10. 根据权利要求1或2所述的RRM测量方法,其特征在于,在至少一个被网络设备指示休眠的DRX周期的激活期进行RRM测量,包括:
    在所述RRM测量周期内,在所有被所述网络设备指示休眠的DRX周期的激活期均进行RMM测量。
  11. 根据权利要求1至10中任一项所述的RRM测量方法,其特征在于,所述RRM测量方法还包括:
    在所述RRM测量周期的最后一个DRX周期,向所述网络设备上报RRM测量的测量结果或者向所述网络设备发送资源调度请求。
  12. 根据权利要求1至11中任一项所述的RRM测量方法,其特征在于,所述网络设备在不需要监听物理下行控制信道PDCCH时,指示在DRX周期的激活期休眠,在需要监听PDCCH时,指示在DRX周期的激活期苏醒。
  13. 根据权利要求1至12中任一项所述的RRM测量方法,其特征在于,所述网络设备通过功率节省信号指示在DRX周期的激活期进行休眠或苏醒,所述功率节省信号包括苏醒信号WUS或者睡眠信号GTS或者序列信号。
  14. 一种装置,其特征在于,包括:
    处理单元,用于在无线资源管理RRM测量周期内,在至少一个被网络设备指示休眠的非连续接收DRX周期的激活期进行RRM测量。
  15. 根据权利要求14所述的装置,其特征在于,所述处理单元用于,在X个被所述网络设备指示休眠的DRX周期的激活期进行RRM测量,X的取值使得,在所述RRM测量周期内的RRM测量次数不小于满足RRM测量精度的最小测量次数。
  16. 根据权利要求14或15所述的装置,其特征在于,所述处理单元还用于,在所述RRM测量周期内,在所述至少一个DRX周期之外的其它被所述网络设备指示休眠的DRX周期的激活期进行休眠。
  17. 根据权利要求14至16中任一项所述的装置,其特征在于,所述处理单元用于:
    在所述RRM测量周期内,每当出现一个被所述网络设备指示苏醒的DRX周期,将计数器的计数值K减L1,L1为整数,所述计数值K的初始值小于或等于所述RRM测量周期内包括的DRX周期的数目;
    当所述RRM测量周期内未到达的DRX周期的数目与K的值相等时,在所述RRM测量周期的倒数K个DRX周期的激活期均进行RRM测量,所述倒数K个DRX周期中包括被所述网络设备指示休眠的DRX周期。
  18. 根据权利要求17所述的装置,其特征在于,所述RRM测量周期中每个DRX周 期的激活期的RRM测量次数相同,L1等于1。
  19. 根据权利要求18所述的装置,其特征在于,所述RRM测量周期内不同DRX周期的激活期的RRM测量次数不同,L1的值根据所述被所述网络设备指示苏醒的DRX周期的激活期的RRM测量次数,与所述RRM测量周期中倒数第K个DRX周期的激活期的RRM测量次数确定,其中,
    当所述被指示苏醒的DRX周期的激活期的RRM测量次数小于所述倒数第K个DRX周期的激活期的RRM测量次数时,L1等于0;
    当所述被指示苏醒的DRX周期的激活期的RRM测量次数等于或大于所述倒数第K个DRX周期的激活期的RRM测量次数时,L1等于1,或者L1为大于1的整数。
  20. 根据权利要求17至19中任一项所述的装置,其特征在于,所述计数器的计数值K的初始值等于满足RRM测量精度的最小测量次数所需的DRX周期的个数。
  21. 根据权利要求14至16中任一项所述的装置,其特征在于,所述处理单元用于:
    在所述RRM测量周期内,每当出现一个被所述网络设备指示苏醒的DRX周期时,将计数器的计数值R的值减L2,L2等于所述被指示苏醒的DRX周期的激活期的RRM测量次数,所述计数器的计数值R的初始值为所述RRM测量周期内的RRM测量次数;
    当所述RRM测量周期内未到达的倒数G个DRX周期中的RRM测量次数之和等于或大于R的值,且倒数G-1个DRX周期中的RRM测量次数之和等于或小于R的取值时,在所述倒数G个DRX周期的激活期均进行RRM测量,所述倒数G个DRX周期中包括被所述网络设备指示休眠的DRX周期。
  22. 根据权利要求16所述的装置,其特征在于,所述处理单元用于,当所述RRM测量周期中已被所述网络设备指示休眠的DRX周期的数目达到阈值时,在所述RRM测量周期内未到达的所述网络设备指示休眠的DRX周期的激活期均进行RRM测量。
  23. 根据权利要求14或15所述的装置,其特征在于,所述处理单元用于,在所述RRM测量周期内,在所有被所述网络设备指示休眠的DRX周期的激活期均进行RMM测量。
  24. 根据权利要求14至23中任一项所述的装置,其特征在于,所述装置还包括:
    发送单元,用于在所述RRM测量周期的最后一个DRX周期,向所述网络设备上报RRM测量的测量结果或者向所述网络设备发送资源调度请求。
  25. 根据权利要求14至24中任一项所述的装置,其特征在于,所述网络设备在不需要监听物理下行控制信道PDCCH时,指示在DRX周期的激活期休眠,在需要监听PDCCH时,指示在DRX周期的激活期苏醒。
  26. 根据权利要求14至25中任一项所述的装置,其特征在于,所述网络设备通过功率节省信号指示在DRX周期的激活期进行休眠或苏醒,所述功率节省信号包括苏醒信号WUS或者睡眠信号GTS或者序列信号。
  27. 一种装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器存储的计算机指令,当所述计算机指令被执行时,使得所述处理器实现利要求1至13中任一项所述的RRM测量方法。
  28. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程 序被计算机执行时使得所述计算机实现利要求1至13中任一项所述的RRM测量方法。
PCT/CN2019/129918 2019-01-03 2019-12-30 无线资源管理测量方法与装置 WO2020140868A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910004585.7A CN111405643B (zh) 2019-01-03 2019-01-03 无线资源管理测量方法与装置
CN201910004585.7 2019-01-03

Publications (1)

Publication Number Publication Date
WO2020140868A1 true WO2020140868A1 (zh) 2020-07-09

Family

ID=71407006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129918 WO2020140868A1 (zh) 2019-01-03 2019-12-30 无线资源管理测量方法与装置

Country Status (2)

Country Link
CN (1) CN111405643B (zh)
WO (1) WO2020140868A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556706B (zh) * 2020-04-24 2023-09-05 维沃移动通信有限公司 无线资源管理测量方法、终端设备和网络设备
US20240088966A1 (en) * 2021-01-13 2024-03-14 Beijing Xiaomi Mobile Software Co., Ltd. Information processing method and apparatus, communication device, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103843415A (zh) * 2011-08-01 2014-06-04 英特尔公司 无线装置的扩展不连续接收循环
CN106105330A (zh) * 2014-03-21 2016-11-09 华为技术有限公司 无线通信网络中的方法及网络节点
WO2017173303A1 (en) * 2016-04-01 2017-10-05 Intel IP Corporation Measurement enhancement in high speed communication
CN107852631A (zh) * 2015-07-20 2018-03-27 联发科技股份有限公司 Lte系统的测量增强

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483446B (zh) * 2008-01-08 2014-07-30 株式会社Ntt都科摩 动态控制不连续接收的方法和装置
WO2012137295A1 (ja) * 2011-04-04 2012-10-11 京セラ株式会社 移動通信方法及び無線端末
WO2016072787A1 (en) * 2014-11-06 2016-05-12 Samsung Electronics Co., Ltd. Method and system for enabling discontinuous reception (drx) over an unlicensed band in cellular networks
CN106256145B (zh) * 2015-04-10 2020-07-10 诸暨易和项目投资有限公司 异系统的测量方法、相关装置及测量系统
EP3324674B1 (en) * 2015-08-13 2021-06-02 Huawei Technologies Co., Ltd. Configuration of suitable rrm parameters for communications in a high-speed mobility scenario
WO2017146535A1 (en) * 2016-02-26 2017-08-31 Samsung Electronics Co., Ltd. System and method connected mode discontinuous operation in beamformed system
US10531384B2 (en) * 2016-04-05 2020-01-07 Qualcomm Incorporated Scheduling request collection after a discontinuous reception period

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103843415A (zh) * 2011-08-01 2014-06-04 英特尔公司 无线装置的扩展不连续接收循环
CN106105330A (zh) * 2014-03-21 2016-11-09 华为技术有限公司 无线通信网络中的方法及网络节点
CN107852631A (zh) * 2015-07-20 2018-03-27 联发科技股份有限公司 Lte系统的测量增强
WO2017173303A1 (en) * 2016-04-01 2017-10-05 Intel IP Corporation Measurement enhancement in high speed communication

Also Published As

Publication number Publication date
CN111405643B (zh) 2023-10-20
CN111405643A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
EP3540979A1 (en) Power saving for channel state information reference signal reception
WO2021184200A1 (zh) 通信方法、装置及设备
US20180242243A1 (en) User device, network node, method and computer program product
US11178618B2 (en) Adaptation of power parameter values in discontinuous reception
CN112470415B (zh) 在不连续传输操作中节能的系统和方法
US11515913B2 (en) Sounding reference signal antenna switching in a dual connectivity mode
CN111989959B (zh) 一种信息发送、接收方法及装置
CN111934830B (zh) 一种通信方法及设备
CN110856235A (zh) 信息发送、接收方法与通信设备
US20210014786A1 (en) Signal transmission method and device
WO2021017603A1 (zh) 一种节能信号的传输方法、基站及终端设备
TWI729490B (zh) 非連續接收中的信道狀態信息參考資源的獲取方法和裝置
US11089555B2 (en) Dynamic configuration of operation power parameters
KR20210111775A (ko) 절전 관련 사용자 장비
CN113747577B (zh) 通信方法及装置
WO2020140868A1 (zh) 无线资源管理测量方法与装置
CN111436095B (zh) 一种通信方法及通信装置
WO2021114917A1 (zh) 资源配置方法、网络设备及计算机存储介质
WO2020187133A1 (zh) 一种非连续接收的配置方法和装置
WO2020221346A1 (zh) 一种通信方法以及通信装置
US20230074206A1 (en) Communication method, apparatus, and system
US10531391B2 (en) Apparatus, system and method for power saving between a scheduling request and grant using self-learning
CN110049571A (zh) 一种信道质量传输方法、终端及基站
WO2020088455A1 (zh) 通信方法和通信装置
CN102130713B (zh) 非连续接收模式下的信道质量指示的报告方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906733

Country of ref document: EP

Kind code of ref document: A1