WO2020140732A1 - 微流控基板及其制作方法和微流控芯片 - Google Patents

微流控基板及其制作方法和微流控芯片 Download PDF

Info

Publication number
WO2020140732A1
WO2020140732A1 PCT/CN2019/125198 CN2019125198W WO2020140732A1 WO 2020140732 A1 WO2020140732 A1 WO 2020140732A1 CN 2019125198 W CN2019125198 W CN 2019125198W WO 2020140732 A1 WO2020140732 A1 WO 2020140732A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
columnar structure
dielectric
columnar
Prior art date
Application number
PCT/CN2019/125198
Other languages
English (en)
French (fr)
Inventor
徐闪闪
陈召
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/040,311 priority Critical patent/US20210086181A1/en
Publication of WO2020140732A1 publication Critical patent/WO2020140732A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting

Definitions

  • the present disclosure relates to the field of gene sequencing technology, and in particular, to a microfluidic substrate, a manufacturing method thereof, and a microfluidic chip.
  • Gene sequencing is an important method for sequencing the target DNA and performing various related analyses, which can enable researchers to study organisms from the molecular biological level.
  • a digital microfluidic chip Digital Microfluidic Biochip, abbreviated as DMFB
  • DMFB Digital Microfluidic Biochip
  • the existing digital microfluidic chip can use the microfluidic substrate to control the test liquid, so as to realize the detection of the test liquid.
  • a microfluidic substrate in one aspect, includes an electrode substrate and a dielectric layer disposed on one side of the electrode substrate.
  • the material of the dielectric layer includes a dielectric material, and the molecular structure of the dielectric material has a hydrophobic group.
  • the dielectric layer includes a base layer and a plurality of columnar structures disposed on a surface of the base layer that is away from the electrode substrate.
  • the dielectric layer further includes: a plurality of roughened structures, at least one roughened structure of the plurality of roughened structures is disposed on a cylindrical surface of each of the plurality of columnar structures .
  • the at least one roughened structure extends from the end of the columnar structure away from the base layer to the end of the columnar structure near the base layer, and the at least one roughened structure is along the axial direction of the columnar structure The size of is less than or equal to the axial length of the columnar structure.
  • the dimension of the at least one roughened structure along the axial direction of the columnar structure is 0.25 to 0.5 times the axial length of the columnar structure; and/or, the at least one roughness
  • the dimension of the chemical structure along the radial direction of the columnar structure is 0.06 times to 0.1 times the axial length of the columnar structure.
  • the at least one roughened structure is sequentially arranged along the circumferential direction of the columnar structure where it is located.
  • the orthographic projection of the end surface of the columnar structure away from the substrate layer is connected with 16 to 32 per micron side length Orthographic projection of roughened structure.
  • At least one of the plurality of roughened structures is a protrusion provided on the cylindrical surface of the columnar structure where it is located; and/or, at least one of the plurality of roughened structures A roughened structure is a groove provided on the column surface of the column structure.
  • the plurality of columnar structures are arranged in at least one of the following ways: the plurality of columnar structures are evenly distributed on the surface of the base layer; the orthographic projection of at least one columnar structure among the plurality of columnar structures on the base layer is Orthographic projection at the micron level; 1 ⁇ 1012 to 3 ⁇ 1012 columnar structures are provided on the surface of the substrate layer per square meter; the radial dimension of the columnar structure is greater than or equal to the distance between two adjacent columnar structures; the diameter of the columnar structure The axial dimension is less than or equal to the axial dimension of the columnar structure; the area of the end surface of the columnar structure near the base layer is greater than or equal to the area of the end surface of the columnar structure away from the base layer; the shape of the columnar structure is a truncated cone or a cylinder; the columnar structure The orthographic projection of the end face away from the base layer on the base layer is a circular projection; or, the end face of the columnar structure away from the base layer
  • the thickness of the dielectric layer is:
  • V is the voltage applied to the electrode substrate
  • ⁇ 0 is the vacuum dielectric constant
  • is the dielectric constant of the dielectric material contained in the dielectric layer
  • ⁇ 0 is the initial contact angle of the test liquid on the dielectric layer
  • is the contact angle of the test liquid on the dielectric layer under the action of the applied voltage
  • ⁇ LG is the surface tension of the test liquid at the gas-liquid interface at 25°C.
  • the dielectric constant of the dielectric material contained in the dielectric layer is 2-8.
  • the dielectric material includes at least one of polydimethylsiloxane, polymethylmethacrylate, or fluorosilicone rubber.
  • the hydrophobic group includes at least one of an alkyl group, an ester group, or a halogen.
  • the electrode substrate includes a base substrate and an electrode layer disposed between the base substrate and the dielectric layer; wherein, the electrode layer includes a plurality of driving electrodes arranged in an array, or the electrode layer includes a planar shape Reference electrode.
  • a method for manufacturing a microfluidic substrate which includes: manufacturing an electrode substrate; forming a dielectric layer on one side of the electrode substrate, the dielectric structure of the dielectric material contained in the dielectric layer has a hydrophobic group .
  • the dielectric layer includes a base layer and a plurality of columnar structures disposed on a surface of the base layer away from the electrode substrate; the step of forming the dielectric layer on the side of the electrode substrate includes : Provide a template, the template includes a template body and a plurality of depressions opened on the template body; a surface of the template body with a plurality of depressions and a plurality of depressions are provided with a dielectric material; the dielectric material is cured to obtain a template body And the dielectric layer in contact with the inner surface of the multiple recesses; peel the dielectric layer from the template.
  • the step of forming a surface with a plurality of depressions in the template body and providing a dielectric material in the plurality of depressions includes: coating the surface with a plurality of depressions on the template body and coating the dielectric material; An electrode substrate is provided on the side of the body coated with the dielectric material.
  • the electrode substrate includes a substrate and an electrode layer provided on the side of the base substrate. The electrode layer is in contact with the dielectric material; the electrode substrate is pressed by a pressing roller to make the surface of the template body The coated dielectric material enters the plurality of recesses under the action of the electrode substrate.
  • a plurality of microstructures are provided on the inner sidewall of at least one of the plurality of depressions, and at least one of the plurality of microstructures is a protrusion or a groove.
  • a plurality of microstructures are sequentially arranged along the circumference of the inner sidewall of the recess in which they are located.
  • a microfluidic chip in another aspect, includes a first microfluidic substrate and a second microfluidic substrate that are oppositely arranged, at least one of the first microfluidic substrate and the second microfluidic substrate is as provided in any of the above embodiments
  • a microfluidic substrate is formed between the first microfluidic substrate and the second microfluidic substrate to accommodate a test liquid.
  • FIG. 1 is a structural diagram of a microfluidic substrate provided according to the related art
  • FIG. 2 is a structural diagram of a microfluidic substrate according to some embodiments of the present disclosure.
  • FIG. 3 is a structural diagram of a dielectric layer according to some embodiments of the present disclosure.
  • FIG. 4 is a top view of a columnar structure provided according to some embodiments of the present disclosure.
  • FIG. 5 is a front view of a columnar structure provided according to some embodiments of the present disclosure.
  • FIG. 6 is a top view of a dielectric layer according to some embodiments of the present disclosure.
  • FIG. 7 is a top view of another dielectric layer provided according to some embodiments of the present disclosure.
  • FIG. 11 is a view of a gas-liquid-solid three-phase system according to some embodiments of the present disclosure.
  • FIG. 12 is a flow chart of manufacturing a dielectric layer according to some embodiments of the present disclosure.
  • FIG. 13 is a structural diagram of a template provided according to some embodiments of the present disclosure.
  • FIG. 14 is a flowchart of a method for manufacturing a microfluidic substrate according to some embodiments of the present disclosure
  • 15 is another flowchart of a method for manufacturing a microfluidic substrate according to some embodiments of the present disclosure.
  • 16 is another flow chart of a method for manufacturing a microfluidic substrate according to some embodiments of the present disclosure.
  • 17 is another flowchart of a method for manufacturing a microfluidic substrate according to some embodiments of the present disclosure.
  • FIG. 18 is a structural diagram of a microfluidic chip provided according to some embodiments of the present disclosure.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C” and includes the following combinations of A, B, and C: A only, B only, C only, A, and B Combination, A and C combination, B and C combination, and A, B and C combination.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • Genes refer to DNA or RNA sequences that carry genetic information, also known as genetic factors, and are the basic genetic unit that controls traits. Genes guide the synthesis of proteins to express the genetic information they carry, thereby controlling the performance of individual organisms. Genes have functions to control genetic traits and activity regulation. Genes transfer genetic information to the next generation through replication, and control metabolic processes by controlling the synthesis of enzymes, thereby controlling the individual performance of organisms. Genes can also directly control biological traits by controlling the composition of structural proteins. Therefore, gene sequencing is often used to study and analyze genes in modern biological research.
  • Gene sequencing is a new type of gene detection technology that can analyze and determine the complete sequence of genes from blood or saliva to predict the possibility of suffering from various diseases. The behavioral characteristics and behavior of individuals are reasonable. Gene sequencing technology can lock in individual disease genes and prevent and treat them in advance. It can sequence the base of the target DNA and perform various related analyses. It is one of the important research methods of modern biology and an important driving force for the rapid development of biology.
  • DMFB Digital Microfluidic Biochip
  • a microfluidic substrate 100 ′ in the related art includes an electrode substrate 110, a dielectric film 120 ′ and a hydrophobic layer 130 stacked in this order, wherein the hydrophobic layer 130 is used to contact the test liquid to make the test liquid and the micro
  • the fluidic substrate 100' has a certain contact angle, so that the microfluidic substrate 100' can control the movement of the test liquid; the dielectric film 120' can prevent the microfluidic substrate 100' from being broken during the energization process to protect the microfluidic substrate 100'
  • the fluid control substrate 100' controls the test liquid.
  • a dielectric thin film 120' and a hydrophobic layer 130 are sequentially formed on the electrode substrate 110.
  • the dielectric film 120' is formed on the electrode substrate 110, if a foreign object with a high hardness is attached to the surface of the dielectric film 120' away from the electrode layer 112, after the hydrophobic layer 130 is provided, the foreign object with a higher hardness is easy Piercing the dielectric film 120' causes the dielectric effect of the dielectric film 120' to fail, making the microfluidic substrate 100' unable to work normally, so the production yield of the microfluidic substrate 100' in the related art is relatively low .
  • the hydrophobic layer 130 included in the microfluidic substrate 100' in the related art has a lower surface energy due to the hydrophobic material, which makes the adhesion between the hydrophobic layer 130 and the dielectric film 120' poor.
  • the microfluidic substrate 100 includes an electrode substrate 110 and a dielectric layer 120 provided on one side of the electrode substrate 110.
  • the electrode substrate 110 includes a base substrate 111 and an electrode layer 112 provided on the base substrate.
  • the electrode layer 112 is located between the dielectric layer 120 and the base substrate 111.
  • the electrode layer 112 can be designed according to needs.
  • the electrode layer 112 includes a planar reference electrode; for another example, the electrode layer 112 includes a plurality of driving electrodes arranged in an array. Each driving electrode constitutes a driving electrode layer.
  • the material of the dielectric layer 120 includes a dielectric material, and the molecular structure of the dielectric material has a hydrophobic group.
  • the hydrophobic group includes but is not limited to at least one of an alkyl group, an ester group, or a halogen.
  • This design makes the dielectric layer 120 have both a dielectric function and a certain hydrophobic function. Therefore, in the process of manufacturing the microfluidic substrate 100, there is no need to form a hydrophobic layer 130 on the surface of the dielectric layer 120 away from the electrode substrate 110, which not only simplifies the structure and manufacturing process of the microfluidic substrate 100, but also improves production efficiency. Moreover, the probability of foreign objects piercing the dielectric layer 120 is reduced, and the production yield of the microfluidic substrate 100 is improved.
  • the dielectric layer 120 in the microfluidic substrate 100 has both dielectric and hydrophobic functions, the dielectric layer 120 can be used as a hydrophobic layer and a dielectric layer at the same time, which can also solve the existing microfluidic substrate The problem of poor adhesion between the included hydrophobic layer and the dielectric layer.
  • the dielectric layer 120 includes a base layer 121 and a plurality of columnar structures 122 disposed on a surface of the base layer 121 away from the electrode substrate.
  • the plurality of columnar structures 122 may constitute a specific surface area adjustment unit, that is, the greater the number of columnar structures 122, the greater the specific surface area of the dielectric layer, and the more beneficial it is to reduce the surface energy of the dielectric layer and improve the hydrophobic capacity.
  • the plurality of columnar structures 122 can increase the contact area between the test liquid and the dielectric layer 120 per unit area, and the larger the contact area between the test liquid and the dielectric layer 120 per unit area, the better the hydrophobic performance of the dielectric layer 120 .
  • the number of the columnar structures 122 provided on the base layer 121 can be controlled so that the dielectric layer 120 meets the hydrophobic requirements of the microfluidic substrate 100 for the test liquid. Furthermore, it has been found through testing that such a design makes the dielectric layer 120 reach a contact angle (such as water contact angle) of 135° for the test liquid, and has good hydrophobic properties.
  • the thickness of the dielectric layer 120 is d:
  • V is the voltage applied to the electrode substrate (that is, the voltage applied to the electrode layer included in the electrode substrate. It can be understood that when the electrode layer includes a plurality of driving electrodes, the voltage is the driving voltage; and when the electrode layer When a planar reference electrode is included, the voltage may be a reference voltage equal to the driving voltage), ⁇ 0 is the vacuum dielectric constant, ⁇ is the dielectric constant of the dielectric material contained in the dielectric layer 120, and ⁇ 0 is The initial contact angle of the test liquid on the dielectric layer 120 (that is, the contact angle of the test liquid on the base layer 121 included in the dielectric layer 120 without voltage application), ⁇ is the test under the driving voltage The contact angle of the liquid on the dielectric layer 120 (that is, the contact angle of the test liquid on the base layer 121 included in the dielectric layer 120 under the driving voltage), and the test liquid at the gas-liquid interface when ⁇ LG is 25°C Surface Tension.
  • test liquid is water and the dielectric material is polydimethylsiloxane
  • the thickness of the dielectric layer 120 refers to the sum of the height of the columnar structure and the thickness of the base layer, and the height direction of the columnar structure is the same as the thickness direction of the base layer.
  • the dielectric constant of the dielectric material contained in the dielectric layer 120 can be selected according to actual needs.
  • the dielectric constant of the dielectric material contained in the dielectric layer 120 is 2-8, for example, 2-4, 4-6 or 6-8. Within this range, the dielectric layer 120 has good hydrophobic properties and can effectively prevent the electrode layer from being broken down.
  • the dielectric material contained in the dielectric layer 120 is various, and is not limited to polydimethylsiloxane.
  • the dielectric material contained in the dielectric layer 120 may be at least one of polydimethylsiloxane, polymethyl methacrylate, or fluorine-containing silicone rubber.
  • the plurality of columnar structures 122 included in the dielectric layer 120 may constitute a micro-nano structure, that is, the orthographic projection of each columnar structure 122 on the surface of the base layer 121 is Orthographic projection at the micron level (such as 1 ⁇ m to 10 ⁇ m), which makes the specific surface area of the dielectric layer 120 larger (relative to the specific surface area of the dielectric film without a columnar structure on the surface), therefore, the microfluidics provided by some embodiments of the present disclosure
  • the contact area of the dielectric layer 120 per unit area and the test liquid is larger, and for the dielectric layer 120 per unit area, more hydrophobic groups are in contact with the test liquid, and the hydrophobicity of the dielectric layer 120 Better performance.
  • the dielectric layer 120 since the molecular structure of the dielectric material contained in the above dielectric layer 120 has hydrophobic groups, and the dielectric layer 120 includes a base layer 121 and a plurality of columnar structures 122, this makes the base layer 121 and multiple The columnar structures 122 all have a certain degree of hydrophobicity.
  • the above columnar structure 122 is a columnar structure 122 in a broad sense, that is, the columnar structure 122 includes not only a cylindrical structure and a prismatic structure, but also includes a circular truncated structure and a prism. Platform structure or special-shaped column structure.
  • the columnar structure 122 is a circular truncated cone structure or a truncated pyramid structure, the end surface area of each columnar structure 122 near the base layer 121 is larger than the end surface area of the corresponding columnar structure 122 away from the base layer 121, which is beneficial to increase the unit area.
  • the contact area of the electric layer 120 with the test liquid is beneficial to increase the unit area.
  • a plurality of columnar structures 122 are evenly distributed on the surface of the base layer 121.
  • the plurality of columnar structures 122 are arranged in a matrix form as shown in FIG. 6; for another example, the plurality of columnar structures 122 are arranged periodically as shown in FIG. From the perspective of uniformity of distribution, this can make the hydrophobic properties of the various parts of the dielectric layer 120 relatively uniform.
  • 1 ⁇ 10 12 ⁇ 3 ⁇ 10 12 columnar structures 122 are formed on the surface of the base layer 121 per square meter, and within this range, the distribution density of the columnar structures 122 Reasonably, the dielectric layer 120 has good hydrophobic properties. After the dielectric layer 12 is applied to the microfluidic substrate 100, the microfluidic substrate 100 can better control the test liquid. For example, 1.38 ⁇ 10 12 columnar structures 122 are formed per square meter of the surface of the base layer 121.
  • the radial dimension D of each columnar structure 122 is greater than or equal to the distance r between two adjacent columnar structures 122, so that the surface space of the base layer 121 is utilized by the columnar structures 122 as much as possible. The unnecessary waste of space is reduced, so as to ensure that the column structure 122 is distributed on the surface of the base layer 121 as much as possible, thereby further improving the hydrophobicity of the dielectric layer 120.
  • each columnar structure 122 is smaller than the axial length H of each columnar structure 122, so that two adjacent columnar structures 122 The probability of the presence of trace gas is greater, which is more conducive to the formation of the gas-liquid-solid three-phase system O, so as to further improve the hydrophobic performance of the dielectric layer 120.
  • each columnar structure 122 is a circular truncated cone structure, and the end surface of each columnar structure 122 away from the base layer 121 is defined as an upper end surface, and each columnar structure 122 is opposite to the base layer 121 The end face is the lower end face.
  • the height of each columnar structure 122 (the axial length H of the columnar structure 122) is 1 ⁇ m to 5 ⁇ m
  • the diameter of the upper end surface is 0.5 ⁇ m to 2 ⁇ m
  • the pitch r) of the structure is 0.5 to 0.8 times the diameter of the upper end face.
  • the dielectric layer 120 further includes a plurality of roughened structures 123.
  • the cylindrical surface of each columnar structure 122 is provided with at least one roughening structure 123 among a plurality of roughening structures 123, wherein each roughening structure 123 and the columnar structure 122 where it is located may be an integrated structure or may be Split structure.
  • the material of the roughened structure 123 contains the dielectric material as described above. Since the molecular structure of the dielectric material has hydrophobic groups, the roughened structure 123 also has a very low surface energy, so that the roughened structure 123 also has Has good hydrophobicity.
  • the roughened structure 123 can increase the specific surface area of the columnar structure 122, so that the contact area of the dielectric layer 120 per unit area with the test liquid is further increased, thereby further improving the hydrophobicity of the dielectric layer 120.
  • a plurality of roughened structures 123 extend from the end of the columnar structure 122 away from the base layer 121 toward the end of the columnar structure 122 close to the base layer 121, and each roughened structure 123 is along the The dimension Hc in the axial direction is smaller than the axial length H of the columnar structure 122.
  • the columnar structure 122 is far away from the cylindrical surface of the base layer 121 to prevent the test liquid from moving along the direction of the columnar structure 122 toward the base layer 121.
  • the probability that the cylindrical surface of the columnar structure 122 close to the base layer 121 (that is, the part of the cylindrical surface on which the roughened structure 123 is not formed) and the surface of the base layer 121 contact the test liquid is reduced, thereby further improving the dielectric layer 120 Hydrophobic.
  • the columnar structures 122 are close to the cylindrical surface of the base layer 121 (that is, there is no part of the columnar structure 122 where the roughened structure 123 is formed) Surface) and the surface of the base layer 121 have a relatively low probability of contacting the test liquid, which is also conducive to the formation of the gas-liquid-solid three-phase system O.
  • each of the above roughened structures 123 is along the columnar shape
  • the axial dimension Hc of the structure 122 is 0.25 times to 0.5 times the axial length H of the columnar structure 122. Within this range, the hydrophobicity of the dielectric layer 120 can be effectively improved.
  • each roughened structure 123 along the radial direction of the columnar structure 122 is 0.06 times to 0.1 times the axial length H of the columnar structure 122 to avoid roughness
  • the structure 123 affects the center of gravity of the columnar structure 122, so that the stability of the columnar structure 122 is poor.
  • the length of the roughened structure 123 along the radial direction of the columnar structure 122 is 100 nm to 300 nm.
  • a plurality of roughened structures 123 are sequentially formed on the cylindrical surface of the columnar structure 122.
  • the orthographic projection of the end surface of the columnar structure 122 away from the base layer 121 is connected with 16 to 32 per micron side length Orthographic projection of the roughened structure 123.
  • each columnar structure 122 will not have the problem of unstable center of gravity due to the excessive roughening structure 123 or uneven distribution.
  • the end surface of the columnar structure 122 away from the base layer 121 is parallel to the base layer 121, which can better solve the above problem of unstable center of gravity.
  • At least one roughened structure 123 of the plurality of roughened structures is a protrusion provided on the cylindrical surface of the columnar structure 122 where it is located.
  • the specific form of the protrusion is various, for example: the protrusion may be a tapered structure provided on the cylindrical surface of the columnar structure 122, and the tip of the tapered structure is along the radial direction of the columnar structure 122 Far from the cylindrical surface of the cylindrical structure 122, the cone bottom of the tapered structure is combined with the cylindrical surface of the cylindrical structure 122.
  • At least one roughening structure 123 among the plurality of roughening structures is a groove provided on the cylindrical surface of the columnar structure 122 where it is located.
  • the specific forms of the trench are various.
  • the trench is opened on the cylindrical surface of the columnar structure 122, and approaches the columnar structure 122 from the end of the cylindrical surface of the columnar structure 122 away from the base layer 121 One end of the base layer 121 extends.
  • the dimension of the groove along the axial direction of the columnar structure 122 is smaller than the axial length of the columnar structure 122, and there is a gap between the groove and the base layer.
  • the specific effect can be referred to the effect description of the roughened structure 123 mentioned above.
  • microfluidic substrate 100 there are various methods for manufacturing the above-mentioned microfluidic substrate 100.
  • FIG. 2 As shown in FIG. 2, FIG. 3 and FIG. 14, some embodiments of the present disclosure also provide a manufacturing method of the microfluidic substrate 100.
  • the manufacturing method of the microfluidic substrate 100 includes the following steps:
  • the electrode substrate 110 is produced.
  • a dielectric layer 120 is formed on one side of the electrode substrate 110, and the molecular structure of the dielectric material contained in the dielectric layer 120 has a hydrophobic group.
  • the dielectric layer 120 has both a dielectric function and a certain hydrophobic function. In this way, in the process of manufacturing the microfluidic substrate 100, there is no need to form a hydrophobic layer 130 on the surface of the dielectric layer 120 away from the electrode substrate 110, which not only simplifies the structure and manufacturing process of the microfluidic substrate 100, but also improves production efficiency. Moreover, the probability of foreign objects piercing the dielectric layer 120 is reduced, and the production yield of the microfluidic substrate 100 is improved.
  • the dielectric layer 120 in the microfluidic substrate 100 has both dielectric and hydrophobic functions, the dielectric layer 120 can be used as a hydrophobic layer and a dielectric layer at the same time, which can also solve the existing microfluidic substrate The problem of poor adhesion between the included hydrophobic layer and the dielectric layer.
  • the steps of forming the above-mentioned dielectric layer 120 include:
  • Step S21' stamping the dielectric material in a liquid state by stamping
  • Step S22' curing the imprinted dielectric material to obtain the dielectric layer 120 formed on the surface of the electrode substrate 110.
  • the dielectric layer 120 includes a base layer 121 and a plurality of columnar structures 122 disposed on the surface of the base layer 121 on the side away from the electrode substrate.
  • S2 includes S21 to S24.
  • the template 300 includes a template body 310 and a plurality of depressions 320 opened on the template body 310. It can be understood that the plurality of recesses 320 are configured to form the plurality of columnar structures 122 described above. Illustratively, each depression 320 is a microwell structure.
  • the surface of the template body with a plurality of recesses and the plurality of recesses are provided with the dielectric material 400 as described above. As shown in FIG. 12, it should be noted that the dielectric material 300 is in a liquid state at this time.
  • the curing method may be determined by the properties of the dielectric material 400.
  • the curing method may be an ultraviolet curing method.
  • the dielectric layer is stripped from the template.
  • the dielectric layer 120 includes a base layer 121 and a plurality of columnar structures 122 disposed on a surface of the base layer 121 on a side away from the electrode substrate 110.
  • the plurality of columnar structures 122 can increase the contact area between the test liquid and the dielectric layer 120 per unit area. The larger the contact area between the test liquid and the dielectric layer 120 per unit area, the better the hydrophobic performance of the dielectric layer 120. Therefore, the number of the columnar structures 122 provided on the base layer 121 can be controlled so that the dielectric layer 120 meets the hydrophobic requirements of the microfluidic substrate 100 for the test liquid.
  • FIG. 17 Exemplarily, as shown in FIG. 2, FIG. 12, and FIG. 13, refer to FIG. 17.
  • the above S22 includes the following steps:
  • Step S221 coating a dielectric material on the surface of the template body 310 with a plurality of recesses
  • Step S222 An electrode substrate 110 is provided on the side of the template body coated with the dielectric material 400.
  • the electrode substrate 110 includes a base substrate 111 and an electrode layer 112 provided on the side of the base substrate 111.
  • the electrode layer 112 and the dielectric material phase contact.
  • Step S223 The electrode substrate 110 is pressed by the pressing roller 600, so that the dielectric material 400 coated on the surface of the template body enters the plurality of recesses under the action of the electrode substrate 110.
  • the electrode substrate 110 can isolate the pressing roller 600 and the dielectric material 400 to prevent the liquid imprinting material caused by the direct contact between the pressing roller 600 and the dielectric material 400 Pollution, and after obtaining the dielectric layer 120 attached to the surface of the template body and the inner walls of the plurality of depressions, there is no need to remove the separator 500 (ie, the electrode substrate 110), and the dielectric layer 120 is directly removed from the surface of the template body After peeling off the inner walls of the multiple recesses, the obtained structure is the microfluidic substrate 100. It can be seen that when the electrode substrate 110 is used as the separator 500, the manufacturing process of the microfluidic substrate 100 can be simplified.
  • a plurality of microstructures are provided on the inner side wall of at least one of the plurality of depressions, and at least one microstructure of the plurality of microstructures is a protrusion (such as a protruding mother provided on the inner side wall) Plate) or groove (such as a pit master on the inner wall).
  • a protrusion such as a protruding mother provided on the inner side wall
  • groove such as a pit master on the inner wall
  • the plurality of microstructures are sequentially arranged along the circumferential direction of the inner sidewall of the recess in which they are located. Designed in such a way that a plurality of roughened structures on the cylindrical surface of the formed columnar structure can be sequentially arranged along the circumferential direction of the columnar structure, which makes each columnar structure 122 not unstable due to excessive roughening structure 123 The problem. Moreover, the hydrophobic effect on each side of each columnar structure 122 can be made close.
  • the microfluidic chip 200 includes a first microfluidic substrate 210 and a second microfluidic substrate 220 that are oppositely disposed, and at least one of the first microfluidic substrate 210 and the second microfluidic substrate 220 The microfluidic substrate 100 provided for some embodiments described above.
  • An accommodating space for accommodating the test liquid is formed between the first microfluidic substrate 210 and the second microfluidic substrate 220.
  • microfluidic chip 200 provided by some embodiments of the present disclosure has all the beneficial effects of the above microfluidic substrate, which will not be repeated here.
  • the first microfluidic substrate 210 includes a first base substrate 211, a reference electrode layer 212, and a first dielectric layer 213 formed on the surface of the reference electrode layer 212, the reference electrode layer 212 as a whole Faceted.
  • the second microfluidic substrate 220 includes a second base substrate 221, a driving electrode array 222 (that is, a plurality of driving electrodes arranged in an array), and a second dielectric layer 223 formed on the surface of the driving electrode array 222.
  • An accommodating space for accommodating the test liquid is formed between the first dielectric layer 213 and the second dielectric layer 223.
  • a plurality of driving electrodes included in the driving electrode array 222 are provided with a driving voltage, and the voltage of each driving electrode is controlled according to actual conditions, so that the liquid level of the test droplet (ie, the test liquid)
  • the left side position and the right side position have different contact angles, thereby controlling the test droplets to roll in the accommodation space between the first microfluidic substrate 210 and the second microfluidic substrate 220.
  • the liquid surface of the test droplet is divided into a left liquid surface L and a right liquid surface R according to the orientation, and the input voltage of the driving electrode is used to control the test droplet and the first micro
  • the contact angle of the surface of the fluidic substrate 210 or the second microfluidic substrate 220 is reduced. Due to the hysteresis of the change of the contact angle, the test droplet is on the surface of the first microfluidic substrate 210 or the second microfluidic substrate 220 scroll.
  • the radius of curvature of the liquid surface of the right liquid surface R perpendicular to the direction of the first microfluidic substrate 210 or the second microfluidic substrate 220 increases, the left liquid surface L is perpendicular to the first microfluidic substrate 210 or the second The radius of curvature of the liquid surface in the direction of the two microfluidic substrates 220 has not changed. At this time, the radius of curvature of the liquid surface on the left side of the liquid surface L is perpendicular to the direction of the first microfluidic substrate 210 or the second microfluidic substrate 220.
  • the right liquid surface R is perpendicular to the direction of the first microfluidic substrate 210 or the second microfluidic substrate 220 and the left liquid surface L has a different radius of curvature, so that the first microfluidic substrate 210 or the second microfluidic can be made
  • the additional pressure of the control substrate 220 to the right liquid surface R is reduced, while the additional pressure of the first microfluidic substrate 210 or the second microfluidic substrate 220 to the left liquid surface L does not change, so that the test droplet can be made Roll on the surface of the first microfluidic substrate 210 or the second microfluidic substrate 220.

Abstract

一种微流控基板(100),包括电极基板(110)和设置于电极基板(110)一侧的介电层(120),介电层(120)的材料包括介电材料(400),介电材料(400)的分子结构中具有疏水基团。

Description

微流控基板及其制作方法和微流控芯片
本申请要求于2019年01月03日提交的、申请号为201910005343.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及基因测序技术领域,尤其涉及一种微流控基板及其制作方法和微流控芯片。
背景技术
基因测序是一种对目标DNA进行碱基的序列测定,并进行各种相关分析的重要手段,其可使得而研究人员从分子生物学水平上对生物进行研究。
在基因测序过程中经常使用到数字微流控芯片(Digital Microfluidic Biochip,缩写为DMFB)对基因进行研究分析。现有数字微流控芯片可利用微流控基板对测试液体进行控制,以实现对测试液体的检测。
发明内容
一方面,提供一种微流控基板。所述微流控基板包括电极基板和设置于电极基板一侧的介电层,所述介电层的材料包括介电材料,该介电材料的分子结构中具有疏水基团。
在一些实施例中,介电层包括基体层和设置于基体层的远离电极基板一侧的表面上的多个柱状结构。
在一些实施例中,介电层还包括:多个粗糙化结构,所述多个柱状结构中的每个柱状结构的柱面上设置有所述多个粗糙化结构中的至少一个粗糙化结构。所述至少一个粗糙化结构从其所在的柱状结构的远离基体层的一端向该柱状结构的靠近基体层的一端延伸,并且所述至少一个粗糙化结构沿着其所在的柱状结构的轴向方向的尺寸小于或等于该柱状结构的轴向长度。
在一些实施例中,所述至少一个粗糙化结构沿着其所在的柱状结构的轴向方向的尺寸是该柱状结构的轴向长度的0.25倍~0.5倍;和/或,所述至少一个粗糙化结构沿着其所在的柱状结构的径向方向的尺寸是该柱状结构的轴向长度的0.06倍~0.1倍。
在一些实施例中,所述至少一个粗糙化结构沿着其所在的柱状结构的周向方向依次设置。
在一些实施例中,所述至少一个粗糙化结构及其所在的柱状结构在基体层上的正投影中,柱状结构远离基体层的端面的正投影的每微米边长连接有16个~32个粗糙化结构的正投影。
在一些实施例中,所述多个粗糙化结构中的至少一个粗糙化结构为设置于其所在的柱状结构的柱面上的凸起;和/或,所述多个粗糙化结构中的至少一个粗糙化结构为设置于其所在的柱状结构的柱面上的沟槽。在一些实施例中,
在一些实施例中,多个柱状结构按照以下至少一种方式设置:多个柱状结构均匀地分布在所述基体层的表面;多个柱状结构中的至少一个柱状结构在基体层的正投影为微米级的正投影;每平米基体层的表面上设置有1×1012个~3×1012个的柱状结构;柱状结构的径向尺寸大于或等于相邻两个柱状结构的间距;柱状结构的径向尺寸小于或等于所述柱状结构的轴向尺寸;柱状结构靠近基体层的端面的面积大于或等于该柱状结构远离基体层的端面的面积;柱状结构的形状呈圆台状或圆柱状;柱状结构远离基体层的端面在基体层上的正投影为圆形投影;或者,柱状结构远离基体层的端面与基体层平行。
在一些实施例中,介电层的厚度为:
Figure PCTCN2019125198-appb-000001
其中,V为施加在电极基板上的电压,ε 0为真空介电常数,ε为介电层所含有的介电材料的介电常数,θ 0为测试液体在介电层上的初始接触角,θ为在所施加的电压的作用下测试液体在介电层上的接触角,γ LG为25℃时测试液体在气液界面的表面张力。
在一些实施例中,介电层所含有的介电材料的介电常数为2~8。
在一些实施例中,介电材料包括聚二甲基硅氧烷、聚甲基丙烯酸甲酯或含氟硅橡胶中的至少一种。
在一些实施例中,疏水基团包括烷基、酯基或卤素中的至少一种。
在一些实施例中,电极基板包括衬底基板和设置于衬底基板和介电层之间的电极层;其中,电极层包括阵列式布置的多个驱动电极,或者,电极层包括呈面状的参考电极。
另一方面,提供一种微流控基板的制作方法,包括:制作电极基板;在电极基板的一侧形成介电层,该介电层所含有的介电材料的分子结构中具有 疏水基团。
在一些实施例中,介电层包括基体层以及设置于基体层的远离电极基板一侧的表面上的多个柱状结构;所述在所述电极基板的一侧形成介电层的步骤,包括:提供模板,模板包括模板主体以及开设在模板主体上的多个凹陷;在模板主体开设有多个凹陷的表面和多个凹陷内设置介电材料;将介电材料进行固化,获得与模板主体的表面及多个凹陷的内壁接触的介电层;将介电层从模板上剥离。
在一些实施例中,所述在模板主体开设有多个凹陷的表面和多个凹陷内设置介电材料的步骤,包括:在模板主体开设有多个凹陷的表面涂覆介电材料;在模板主体涂覆有介电材料的一侧设置电极基板,电极基板包括基板及设置于衬底基板一侧的电极层,电极层与介电材料相接触;利用压辊按压电极基板,使模板主体表面涂覆的介电材料在电极基板的作用下进入多个凹陷内。
在一些实施例中,所述多个凹陷中的至少一个凹陷的内侧壁上设置有多个微结构,所述多个微结构中的至少一个微结构为凸起或者沟槽。
在一些实施例中,多个微结构沿其所在的凹陷的内侧壁的周向依次布置。
再一方面,提供一种微流控芯片。所述微流控芯片包括相对设置的第一微流控基板和第二微流控基板,第一微流控基板和第二微流控基板中的至少一个为如上述任一实施例提供的微流控基板,第一微流控基板和第二微流控基板之间形成有用于容纳测试液体的容纳空间。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程等的限制。
图1为根据相关技术提供的一种微流控基板的结构图;
图2为根据本公开一些实施例提供的一种微流控基板的结构图;
图3为根据本公开一些实施例提供的一种介电层的结构图;
图4为根据本公开一些实施例提供的一种柱状结构的俯视图;
图5为根据本公开一些实施例提供的一种柱状结构的主视图;
图6为根据本公开一些实施例提供的一种介电层的俯视图;
图7为根据本公开一些实施例提供的另一种介电层的俯视图;
图8为根据本公开一些实施例提供的介电层的电镜图;
图9为根据本公开一些实施例提供的柱状结构的电镜图;
图10为根据本公开一些实施例提供的粗糙化结构的电镜图;
图11为根据本公开一些实施例提供的气液固三相体系视图;
图12为根据本公开一些实施例提供的介电层的一个制作流程图;
图13为根据本公开一些实施例提供的一种模板的结构图;
图14为根据本公开一些实施例提供的微流控基板的制作方法的一个流程图;
图15为根据本公开一些实施例提供的微流控基板的制作方法的另一个流程图;
图16为根据本公开一些实施例提供的微流控基板的制作方法的再一个流程图;
图17为根据本公开一些实施例提供的微流控基板的制作方法的又一个流程图;
图18为根据本公开一些实施例提供的微流控芯片的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。“A和/或B”,包括以 下三种组合:仅A,仅B,及A和B的组合。
基因是指携带有遗传信息的DNA或RNA序列,也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。基因有控制遗传性状和活性调节的功能。基因通过复制把遗传信息传递给下一代,并通过控制酶的合成来控制代谢过程,从而控制生物的个体性状表现。基因还可以通过控制结构蛋白的成分,直接控制生物性状。因此,现代生物学研究过程中经常应用基因测序对基因进行研究和分析。
基因测序是一种新型基因检测技术,能够从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性,个体的行为特征及行为合理。基因测序技术能锁定个人病变基因,提前预防和治疗。它可对目标DNA进行碱基的序列测定,并进行各种相关分析,是现代生物学的重要研究手段之一,同时也是推动生物学迅猛发展的重要动力。
在基因测序过程中经常使用到数字微流控芯片(Digital Microfluidic Biochip,缩写为DMFB)对基因进行研究分析,其凭借试剂用量小、可配置、可并行处理和易实现自动化等优势在生物、医药、化学和检测等领域展现出良好的应用前景。数字微流控芯片可利用微流控基板对测试液体进行控制,以实现对测试液体的检测。参见图1,相关技术中的微流控基板100'包括依次层叠设置的电极基板110、介电薄膜120'和疏水层130,其中,疏水层130用于与测试液体接触,使测试液体与微流控基板100'之间具有一定的接触角,从而使微流控基板100'可控制测试液体运动;介电薄膜120'可防止微流控基板100'通电过程中被击穿,以保护微流控基板100'对测试液体进行控制。
制作微流控基板100'过程中,在电极基板110上依次形成介电薄膜120'和疏水层130。然而,在电极基板110上形成介电薄膜120'后,如果介电薄膜120'的远离电极层112的表面附着有硬度较高的异物,则在设置疏水层130后,硬度较高的异物容易刺穿介电薄膜120',导致介电薄膜120'所具有的介电作用失效,使得微流控基板100'无法正常工作,因此相关技术中的微流控基板100'的生产良率比较低。同时,相关技术中的微流控基板100'所包括的疏水层130因含有疏水材料而导致具有较低的表面能,这使得疏水层130与介电薄膜120'之间的附着力较差。
本公开一些实施例提供了一种微流控基板。如图2所示,微流控基板100包括电极基板110和设置于电极基板110一侧的介电层120。示例性地,电极基板110包括衬底基板111和设置于衬底基板上的电极层112,电极层112位 于介电层120与衬底基板111之间。需要说明的是,电极层112可以根据需要进行设计,例如,电极层112包括呈面状的参考电极;又例如,电极层112包括阵列式布置的多个驱动电极,此时,相互独立的多个驱动电极组成驱动电极层。
介电层120的材料包括介电材料,介电材料的分子结构中具有疏水基团。示例性地,疏水基团包括但不限于烷基、酯基或卤素中的至少一种。
这样设计,使得介电层120既具有介电功能又具有一定的疏水功能。因此在制作微流控基板100的过程中,无需在介电层120的远离电极基板110的表面形成疏水层130,这不仅简化了微流控基板100的结构以及制作工艺,提高了生产效率,而且还降低了异物刺穿介电层120的机率,提高了微流控基板100的生产良率。
此外,由于上述微流控基板100中的介电层120具有介电和疏水两种功能,使得介电层120可同时作为疏水层和介电层使用,这样还能解决现有微流控基板所包括的疏水层和介电层之间附着力差的问题。
在一些实施例中,参见图3,介电层120包括基体层121和设置于基体层121的远离电极基板一侧表面上的多个柱状结构122。多个柱状结构122可构成比表面积调节单元,也就是说,柱状结构122的数量越多,介电层的比表面积越大,越有利于降低介电层的表面能,提高疏水能力。换言之,多个柱状结构122可增加测试液体与单位面积的介电层120的接触面积,而测试液体与单位面积的介电层120的接触面积越大,那么介电层120的疏水性能越好。因此,可以通过控制形成在基体层121上设置的柱状结构122的数量,使得介电层120满足微流控基板100对于测试液体的疏水要求。而且经测试发现,这样设计,使得该介电层120对于测试液体接触角(比如水接触角)可以达到135°,具有良好的疏水性能。
为了使得上述微流控基板100可控制测试液体运动,在一些实施例中,介电层120的厚度为d:
Figure PCTCN2019125198-appb-000002
其中,V为施加在电极基板上的电压(也即施加在电极基板所包括的电极层上的电压。可以理解,当电极层包括多个驱动电极时,该电压为驱动电压;而当电极层包括呈面状的参考电极时,该电压可以为与驱动电压相等的参考电压),ε 0为真空介电常数,ε为介电层120所含有的介电材料的介电常数,θ 0为测试液体在介电层120上的初始接触角(也即在没有施加电压的情况下, 测试液体在介电层120所包括的基体层121上的接触角),θ为在驱动电压作用下测试液体在介电层120上的接触角(也即在驱动电压作用下测试液体在介电层120所包括的基体层121上的接触角),γ LG为25℃时测试液体在气液界面的表面张力。
例如:当测试液体为水,介电材料为聚二甲基硅氧烷时,ε 0=8.854×10 -12F/m,ε=2.8,θ 0=112°,θ=90°,γ LG=0.07N/m,d=3.5416*10 -10V 2
可以理解的是,上述介电层120的厚度是指柱状结构的高度和基体层的厚度之和,柱状结构的高度方向与基体层的厚度方向相同。
需要说明的是,上述介电层120所含有的介电材料的介电常数可根据实际需要选择。示例性地,上述介电层120所含有的介电材料的介电常数为2~8,例如,2~4、4~6或6~8。在该范围内,介电层120既具有较好的疏水性能,又可有效地防止电极层被击穿。
上述介电层120所含有的介电材料多种多样,不仅限于聚二甲基硅氧烷。例如:上述介电层120所含有的介电材料可以为聚二甲基硅氧烷、聚甲基丙烯酸甲酯或含氟硅橡胶中的至少一种。
在一些实施例中,如图3~图9所示,上述介电层120所包括的多个柱状结构122可构成微纳结构,即每个柱状结构122在基体层121所在面的正投影为微米级(比如1μm~10μm)的正投影,这样使得介电层120的比表面积更大(相对于表面没有柱状结构的介电薄膜的比表面积),因此,本公开一些实施例提供的微流控基板100中,单位面积的介电层120与测试液体的接触面积更大,而且对于单位面积的介电层120,具有更多的疏水基团与测试液体相接触,介电层120的疏水性能更好。
可以理解的是,由于上述介电层120所含有的介电材料的分子结构中具有疏水基团,而介电层120包括基体层121和多个柱状结构122,这使得基体层121和多个柱状结构122均具有一定的疏水性。
参见图11,如果相邻两个柱状结构122之间存在微量气体,就容易使得测试液体、微量气体与介电层120所包括的基体层121和柱状结构122形成气液固三相体系O,这将使得上述介电层120的疏水性能更好。
需要说明的是,如图3、图6和图7所示,上述柱状结构122为广义上的柱状结构122,即柱状结构122不仅包括圆柱状结构、棱柱状结构,还包括圆台状结构、棱台状结构或异形柱状结构等。当上述柱状结构122为圆台状结构或棱台状结构时,每个柱状结构122靠近基体层121的端面面积大于对应柱状结构122远离基体层121的端面面积,这样有利于增大单位面积的介电 层120与测试液体的接触面积。
在一些实施例中,多个柱状结构122均匀的分布在基体层121的表面。例如,多个柱状结构122采用如图6所示的矩阵形式排列;又例如,多个柱状结构122采用如图7所示的周期性排列。从分布均匀性的角度来说,这样可以使上述介电层120各个部分的疏水性能比较均匀。
在一些实施例中,参见图3、图8和图9,每平米基体层121的表面形成1×10 12~3×10 12个的柱状结构122,在这个范围内,柱状结构122的分布密度合理,介电层120具有良好的疏水性能。将该介电层12应用于微流控基板100后,可使得微流控基板100更好的控制测试液体。例如,每平米基体层121的表面形成1.38×10 12个的柱状结构122。
在一些实施例中,如图3所示,每个柱状结构122的径向尺寸D大于或等于相邻两个柱状结构122的间距r,使得基体层121表面空间尽量被柱状结构122利用,以减少不必要的空间浪费,这样就可以保证柱状结构122在基体层121表面的分布数量尽量多,从而进一步提高上述介电层120的疏水性。
在一些实施例中,如图3、图5和图11所示,每个柱状结构122的径向尺寸D小于每个柱状结构122的轴向长度H,以使得相邻两个柱状结构122之间存在微量气体的机率更大,从而更有利于形成上述气液固三相体系O,以进一步提高介电层120的疏水性能。
示例性地,如图3和图5所示,每个柱状结构122为圆台结构,每个柱状结构122的远离基体层121的端面定义为上端面,每个柱状结构122的与基体层121相对的端面为下端面。此时,每个柱状结构122的高度(柱状结构122的轴向长度H)为1μm~5μm,上端面的直径为0.5μm-2μm,相邻两个圆台的间距(也即相邻两个柱状结构的间距r)是上端面直径的0.5倍~0.8倍。
在一些实施例中,如图4、图5、图9和图10所示,介电层120还包括多个粗糙化结构123。示例性地,每个柱状结构122的柱面设有多个粗糙化结构123中的至少一个粗糙化结构123,其中,各粗糙化结构123与其所在的柱状结构122可以为一体结构,也可以为分体结构。而且粗糙化结构123的材料含有如上所述的介电材料,由于该介电材料的分子结构中具有疏水基团,因此使得粗糙化结构123也具有很低的表面能,这样粗糙化结构123也具有较好的疏水性。而且粗糙化结构123可增加柱状结构122的比表面积,使得单位面积的介电层120与测试液体的接触面积进一步提高,从而进一步提高介电层120的疏水性。
示例性地,如图5所示,多个粗糙化结构123从柱状结构122远离基体 层121的一端向柱状结构122靠近基体层121的一端延伸,每个粗糙化结构123沿着柱状结构122的轴向方向的尺寸Hc小于柱状结构122的轴向长度H,此时沿着柱状结构的轴向方向,柱状结构的表面并不是全部设置有粗糙化结构123,即粗糙化结构123位于柱状结构的远离基体层121的柱面上(也即侧草花结构123与基体层121之间具有间隙),这使得柱状结构的远离基体层121的柱面的疏水性比较好,使得柱状结构远离基体层121的柱面与测试液体的接触性比较差。因此,当测试液体开始沿着柱状结构的柱面靠近基体层121时,柱状结构122远离基体层121的柱面可阻止测试液体沿着柱状结构122的柱面向基体层121所在方向移动,这样就减少了柱状结构122的靠近基体层121的柱面(即柱状结构122上没有形成粗糙化结构123的部分柱面)和基体层121的表面接触测试液体的机率,从而进一步提高介电层120的疏水性。
同时,如图5和图11所示,如果相邻两个柱状结构122内存在微量气体时,柱状结构122靠近基体层121的柱面(即柱状结构122上没有形成粗糙化结构123的部分柱面)和基体层121的表面接触测试液体的机率比较低,也有利于气液固三相体系O的形成。
示例性地,如图5所示,当每个粗糙化结构123沿着柱状结构122的轴向方向的尺寸Hc小于柱状结构122的轴向长度H时,上述每个粗糙化结构123沿着柱状结构122的轴向方向的尺寸Hc是柱状结构122的轴向长度H的0.25倍~0.5倍,在这个范围内,可有效的提高介电层120的疏水性。
示例性地,如图4和图5所示,每个粗糙化结构123沿着柱状结构122的径向方向的尺寸d是柱状结构122的轴向长度H的0.06倍~0.1倍,以避免粗糙化结构123影响柱状结构122的重心,使得柱状结构122的稳定性差。例如,当柱状结构122的轴向长度为1μm~5μm时,粗糙化结构123沿着柱状结构122的径向方向的长度为100nm~300nm。
示例性地,如图4、图5、图9和图10所示,沿着柱状结构122的周向方向,多个粗糙化结构123依次形成在所述柱状结构122的柱面。每个柱状结构122及其柱面上的所有粗糙化结构123在基体层121上的正投影中,柱状结构122远离基体层121的端面的正投影的每微米边长连接有16个~32个的粗糙化结构123的正投影。例如,当远离基体层121的端面在基体层121的正投影为圆形投影,圆形投影的直径为0.5μm~2μm时,上述粗糙化结构123的数量为50个~100个。此时,每个柱状结构122不会因为粗糙化结构123过多或分布不均而出现重心不稳的问题。
示例性地,柱状结构122远离基体层121的端面与基体层121平行,这样可以更好的解决上述重心不稳的问题。
在一些实施例中,如图10所示,上述多个粗糙化结构中的至少一个粗糙化结构123为设置于其所在的柱状结构122的柱面上的凸起。需要说明的是,该凸起的具体形式多种多样,例如:该凸起可以是设在柱状结构122柱面上的锥形结构,该锥形结构的尖端沿着柱状结构122的径向方向远离柱状结构122的柱面,该锥形结构的锥底与柱状结构122的柱面结合在一起。
在一些实施例中,如图9所示,上述多个粗糙化结构中的至少一个粗糙化结构123为设置于其所在的柱状结构122柱面上的沟槽。需要说明的是,该沟槽的具体形式多种多样,例如:该沟槽开设在柱状结构122的柱面上,并且从柱状结构122的柱面远离基体层121的一端开始向柱状结构122靠近基体层121的一端延伸。示例性地,该沟槽沿着柱状结构122的轴向方向的尺寸小于柱状结构122的轴向长度,且该沟槽与基体层之间具有间隙。具体效果可参见前文对于粗糙化结构123的效果描述。
制作上述微流控基板100的方法多种多样,下面结合附图对本公开一些实施例提供的微流控基板100的制作方法进行说明。
如图2、图3和图14所示,本公开一些实施例还提供了一种微流控基板100的制作方法,该微流控基板100的制作方法包括以下步骤:
S1,制作电极基板110。
S2,在电极基板110的一侧形成介电层120,该介电层120所含有的介电材料的分子结构中具有疏水基团。
通过上述步骤制作出的微流控基板100中,介电层120既具有介电功能又具有一定的疏水功能。这样在制作微流控基板100的过程中,无需在介电层120的远离电极基板110的表面形成疏水层130,这不仅简化了微流控基板100的结构以及制作工艺,提高了生产效率,而且还降低了异物刺穿介电层120的机率,提高了微流控基板100的生产良率。
此外,由于上述微流控基板100中的介电层120具有介电和疏水两种功能,使得介电层120可同时作为疏水层和介电层使用,这样还能解决现有微流控基板所包括的疏水层和介电层之间附着力差的问题。
示例性地,如图15所示,形成上述介电层120的步骤包括:
步骤S21':采用压印的方式压印呈液体状的介电材料;
步骤S22':将压印后的介电材料进行固化,获得形成在电极基板110表面的介电层120。
在另一些实施例中,参见图2和图3,介电层120包括基体层121以及设置于基体层121的远离电极基板一侧的表面上的多个柱状结构122。此时,如图16所示,S2包括S21~S24。
S21,提供模板300。该模板300的制作方法比较多,如:可以采用电子束曝光的方式制作而成。参见图13,该模板300包括模板主体310以及开设在模板主310上的多个凹陷320。可以理解,多个凹陷320配置为用于形成上述多个柱状结构122。示例性地,各凹陷320为微米井结构。
S22,在模板主体开设有多个凹陷的表面和多个凹陷内设置如上所述的介电材料400。如图12所示,需要说明的是,此时介电材料300呈液体状。
S23,将介电材料进行固化,获得与模板主体的表面及多个凹陷的内壁接触的介电层。其中,固化方法可以由介电材料400的性质决定,例如:当液体介电材料400为聚二甲基硅氧烷时,固化方法可选择紫外光固化方法。
S24,将介电层从模板上剥离。
通过上述步骤制作出的微流控基板100中,介电层120包括基体层121和设置于基体层121的远离电极基板110一侧表面上的多个柱状结构122。多个柱状结构122可增加测试液体与单位面积的介电层120的接触面积,而测试液体与单位面积的介电层120的接触面积越大,那么介电层120的疏水性能越好。因此,可以通过控制形成在基体层121上设置的柱状结构122的数量,使得介电层120满足微流控基板100对于测试液体的疏水要求。
示例性地,如图2、图12、图13参见图17,上述S22包括以下步骤:
步骤S221:在模板主体310开设有多个凹陷的表面涂覆介电材料;
步骤S222:在模板主体涂覆介电材料400的一侧设置电极基板110,电极基板110包括衬底基板111和设置于衬底基板111一侧的电极层112,电极层112与介电材料相接触。
步骤S223:利用压辊600按压电极基板110,使模板主体表面涂覆的介电材料400在电极基板110的作用下进入多个凹陷内。
由上可知,当电极基板110可以作为隔离板500使用时,电极基板110可隔离压辊600与介电材料400,以防止压辊600与介电材料400直接接触所导致的液体压印材料的污染,而且在获得与模板主体的表面和多个凹陷的内壁贴覆在一起的介电层120后,无需去除隔离板500(即电极基板110),将介电层120直接从模板主体的表面和多个凹陷的内壁剥离,所获得的结构即为微流控基板100,可见,当电极基板110作为隔离板500使用时,可简化微流控基板100的制作过程。
示例性地,多个凹陷中的至少一个凹陷的内侧壁上设置有多个微结构,并且所述多个微结构中的至少一个微结构为凸起(比如设在内侧壁上的凸起母版)或者沟槽(比如设在内侧壁上的凹坑母版)。这样设计,使得所形成的柱状结构的柱面上可以形成如上所述的粗糙化结构123(如图4和图5所示),粗糙化结构123也是由具有疏水基团的介电材料形成的,因此粗糙化结构123也具有较好的疏水性。此外,粗糙化结构123还可以增加柱状结构122的比表面积,使得单位面积的介电层120与测试液体的接触面积进一步提高,从而进一步提高介电层120的疏水性。
示例性地,所述多个微结构沿其所在的凹陷的内侧壁的周向依次布置。这样设计,使得所形成的柱状结构的柱面上的多个粗糙化结构可以沿柱状结构的周向依次布置,这使得每个柱状结构122不会因为粗糙化结构123过多而出现重心不稳的问题。而且,可以使得每个柱状结构122各侧的疏水效果相接近。
本公开一些实施例还提供了一种微流控芯片。如图18所示,微流控芯片200包括相对设置的第一微流控基板210和第二微流控基板220,第一微流控基板210和第二微流控基板220中的至少一个为上述一些实施例所提供的微流控基板100。第一微流控基板210和第二微流控基板220之间形成有用于容纳测试液体的容纳空间。
本公开一些实施例提供的微流控芯片200,具有上述微流控基板的全部有益效果,在此不做赘述。
示例性地,如图18所示,第一微流控基板210包括第一衬底基板211、参考电极层212以及形成在参考电极层212表面的第一介电层213,参考电极层212整体呈面状。第二微流控基板220包括第二衬底基板221外,还包括驱动电极阵列222(也即阵列式布置的多个驱动电极)以及形成在驱动电极阵列222表面的第二介电层223。在第一介电层213与第二介电层223之间形成有容纳测试液体的容纳空间。
通过向参考电极层212提供参考电压,向驱动电极阵列222所包括的多个驱动电极提供驱动电压,各个驱动电极的电压大小根据实际情况控制,以使得测试液滴(即测试液体)的液面的左侧位置和右侧位置具有不同的接触角,从而控制测试液滴在第一微流控基板210和第二微流控基板220之间的容纳空间滚动。具体而言,对于一个测试液滴来说,将测试液滴的液面按照方位划分为左侧液面L和右侧液面R,利用驱动电极的输入电压分别控制测试液滴与第一微流控基板210或第二微流控基板220的表面的接触角减小, 由于接触角变化的滞后性,使得测试液滴在第一微流控基板210或第二微流控基板220的表面滚动。例如:右侧液面R垂直于第一微流控基板210或第二微流控基板220的方向的液面曲率半径增加时,左侧液面L垂直于第一微流控基板210或第二微流控基板220的方向的液面曲率半径还没有发生变化,此时左侧液面L垂直于第一微流控基板210或第二微流控基板220的方向的液面曲率半径与右侧液面R垂直于第一微流控基板210或第二微流控基板220的方向的左侧液面L曲率半径不同,这样就可以使得第一微流控基板210或第二微流控基板220对右侧液面R的附加压强减小,而第一微流控基板210或第二微流控基板220对左侧液面L的附加压强没有变化,这样就能够使得测试液滴在第一微流控基板210或第二微流控基板220的表面滚动。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种微流控基板,包括:
    电极基板;
    设置于所述电极基板一侧的介电层,所述介电层的材料包括介电材料,所述介电材料的分子结构中具有疏水基团。
  2. 根据权利要求1所述的微流控基板,其中,所述介电层包括:
    基体层;和,
    设置于所述基体层的远离所述电极基板一侧的表面上的多个柱状结构。
  3. 根据权利要求2所述的微流控基板,其中,所述介电层还包括:
    多个粗糙化结构,所述多个柱状结构中的每个柱状结构的柱面上设置有所述多个粗糙化结构中的至少一个粗糙化结构;
    所述至少一个粗糙化结构从其所在的柱状结构的远离所述基体层的一端向该柱状结构的靠近所述基体层的一端延伸,并且所述至少一个粗糙化结构沿着其所在的柱状结构的轴向方向的尺寸小于或等于该柱状结构的轴向长度。
  4. 根据权利要求3所述的微流控基板,其中,
    所述至少一个粗糙化结构沿着其所在的柱状结构的轴向方向的尺寸是该柱状结构的轴向长度的0.25倍~0.5倍;和/或,
    所述至少一个粗糙化结构沿着其所在的柱状结构的径向方向的尺寸是该柱状结构的轴向长度的0.06倍~0.1倍。
  5. 根据权利要求3所述的微流控基板,其中,所述至少一个粗糙化结构沿着其所在的柱状结构的周向方向依次设置。
  6. 根据权利要求5所述的微流控基板,其中,所述至少一个粗糙化结构及其所在的柱状结构在所述基体层上的正投影中,所述柱状结构远离所述基体层的端面的正投影的每微米边长连接有16个~32个粗糙化结构的正投影。
  7. 根据权利要求3~6中任一项所述的微流控基板,其中,
    所述多个粗糙化结构中的至少一个粗糙化结构为设置于其所在的柱状结构的柱面上的凸起;和/或,
    所述多个粗糙化结构中的至少一个粗糙化结构为设置于其所在的柱状结构的柱面上的沟槽。
  8. 根据权利要求2~7中任一项所述的微流控基板,其中,所述多个柱状结构按照以下至少一种方式设置:
    所述多个柱状结构均匀地分布在所述基体层的表面;
    所述多个柱状结构中的至少一个柱状结构在所述基体层的正投影为微米 级的正投影;
    每平米所述基体层的表面上设置有1×10 12个~3×10 12个的柱状结构;
    所述柱状结构的径向尺寸大于或等于相邻两个所述柱状结构的间距;
    所述柱状结构的径向尺寸小于或等于所述柱状结构的轴向尺寸;
    所述柱状结构靠近所述基体层的端面的面积大于或等于该柱状结构远离所述基体层的端面的面积;
    所述柱状结构的形状呈圆台状或圆柱状;
    所述柱状结构远离所述基体层的端面在所述基体层上的正投影为圆形投影;或者,
    所述柱状结构远离所述基体层的端面与所述基体层平行。
  9. 根据权利要求1~8中任一项所述的微流控基板,其中,所述介电层的厚度为:
    Figure PCTCN2019125198-appb-100001
    其中,V为施加在所述电极基板上的电压,ε 0为真空介电常数,ε为所述介电层所含有的介电材料的介电常数,θ 0为测试液体在所述介电层上的初始接触角,θ为在所施加的电压的作用下所述测试液体在所述介电层上的接触角,γ LG为25℃时所述测试液体在气液界面的表面张力。
  10. 根据权利要求1~9中任一项所述的微流控基板,其中,所述介电层所含有的介电材料的介电常数为2~8。
  11. 根据权利要求1~10任一项所述的微流控基板,其中,所述介电材料包括聚二甲基硅氧烷、聚甲基丙烯酸甲酯或含氟硅橡胶中的至少一种。
  12. 根据权利要求1~11任一项所述的微流控基板,其中,所述疏水基团包括烷基、酯基或卤素中的至少一种。
  13. 根据权利要求1~12任一项所述的微流控基板,其中,所述电极基板包括:
    衬底基板;和,
    设置于所述衬底基板和所述介电层之间的电极层;其中,所述电极层包括阵列式布置的多个驱动电极,或者,所述电极层包括呈面状的参考电极。
  14. 一种微流控基板的制作方法,包括:
    制作电极基板;
    在所述电极基板的一侧形成介电层,所述介电层所含有的介电材料的分 子结构中具有疏水基团。
  15. 根据权利要求14所述的制作方法,其中,所述介电层包括基体层以及设置于所述基体层的远离所述电极基板一侧的表面上的多个柱状结构;
    所述在所述电极基板的一侧形成介电层的步骤,包括:
    提供模板,所述模板包括模板主体以及开设在所述模板主体上的多个凹陷;
    在所述模板主体开设有所述多个凹陷的表面和所述多个凹陷内设置所述介电材料;
    将所述介电材料进行固化,获得与所述模板主体的表面及所述多个凹陷的内壁接触的介电层;
    将所述介电层从所述模板上剥离。
  16. 根据权利要求15所述的制作方法,其中,所述在所述模板主体开设有所述多个凹陷的表面和所述多个凹陷内设置介电材料,包括:
    在所述模板主体开设有所述多个凹陷的表面涂覆所述介电材料;
    在所述模板主体涂覆有所述介电材料的一侧设置所述电极基板,所述电极基板包括衬底基板及设置于所述衬底基板一侧的电极层,所述电极层与所述介电材料相接触;
    利用压辊按压所述电极基板,使所述模板主体表面涂覆的介电材料在所述电极基板的作用下进入所述多个凹陷内。
  17. 根据权利要求15或16所述的制作方法,其中,所述多个凹陷中的至少一个凹陷的内侧壁上设置有多个微结构,所述多个微结构中的至少一个微结构为凸起或者沟槽。
  18. 根据权利要求17所述的制作方法,其中,所述多个微结构沿其所在的凹陷的内侧壁的周向依次布置。
  19. 一种微流控芯片,包括:
    相对设置的第一微流控基板和第二微流控基板,所述第一微流控基板和所述第二微流控基板中的至少一个为如权利要求1~13中任一项所述微流控基板;
    所述第一微流控基板和所述第二微流控基板之间形成有用于容纳测试液体的容纳空间。
PCT/CN2019/125198 2019-01-03 2019-12-13 微流控基板及其制作方法和微流控芯片 WO2020140732A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/040,311 US20210086181A1 (en) 2019-01-03 2019-12-13 Microfluidic substrate and manufacturing method therefor, and microfluidic chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910005343.X 2019-01-03
CN201910005343.XA CN109652287B (zh) 2019-01-03 2019-01-03 一种微控基板及其制作方法和微流控芯片

Publications (1)

Publication Number Publication Date
WO2020140732A1 true WO2020140732A1 (zh) 2020-07-09

Family

ID=66118423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125198 WO2020140732A1 (zh) 2019-01-03 2019-12-13 微流控基板及其制作方法和微流控芯片

Country Status (3)

Country Link
US (1) US20210086181A1 (zh)
CN (1) CN109652287B (zh)
WO (1) WO2020140732A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3759045A4 (en) * 2018-03-02 2021-11-24 National Research Council of Canada POLYMERIC MICROFLUIDIC VALVE
CN109652287B (zh) * 2019-01-03 2021-04-30 京东方科技集团股份有限公司 一种微控基板及其制作方法和微流控芯片
WO2021174471A1 (en) * 2020-03-05 2021-09-10 Boe Technology Group Co., Ltd. Microfluidic chip and fabricating method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090075838A1 (en) * 2002-09-16 2009-03-19 The Board Of Trustees Of The Leland Stanford Junior University Biological Analysis Arrangement and Approach Therefor
CN102500436A (zh) * 2011-09-28 2012-06-20 复旦大学 基于电润湿的单面二维驱动数字微流控芯片
CN102967932A (zh) * 2011-08-30 2013-03-13 台达电子工业股份有限公司 电切换调光单元与其形成方法、调光元件与其形成方法、立体显示装置、图像显示系统
CN106291911A (zh) * 2016-08-10 2017-01-04 华南师范大学 复合层结构的疏水性介电层、其制备方法和电润湿器件
CN107249743A (zh) * 2014-12-31 2017-10-13 雅培制药有限公司 数字微流控稀释设备、系统及相关方法
CN107754962A (zh) * 2017-11-22 2018-03-06 南方科技大学 一种数字微流控液滴驱动装置及驱动方法
CN109092379A (zh) * 2018-09-05 2018-12-28 仲恺农业工程学院 微流反应芯片及其液滴定位控制系统和控制方法
CN109652287A (zh) * 2019-01-03 2019-04-19 京东方科技集团股份有限公司 一种微控基板及其制作方法和微流控芯片

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2890875B1 (fr) * 2005-09-22 2008-02-22 Commissariat Energie Atomique Fabrication d'un systeme diphasique liquide/liquide ou gaz en micro-fluidique
US20070225800A1 (en) * 2006-03-24 2007-09-27 Sahatjian Ronald A Methods and devices having electrically actuatable surfaces
ES2639183T3 (es) * 2007-09-19 2017-10-25 The Charles Stark Draper Laboratory, Inc. Estructuras microfluídicas con sección transversal circular
EP2947453B1 (en) * 2013-01-17 2018-09-05 Hitachi High-Technologies Corporation Biomolecule measuring device
CN104388299B (zh) * 2014-10-30 2016-03-16 东南大学 一种用于细胞捕获的微流控芯片
CN105505742A (zh) * 2015-12-25 2016-04-20 中国科学院深圳先进技术研究院 一种液滴阵列芯片及其制备方法
CN106540762B (zh) * 2016-11-09 2018-05-25 太原理工大学 一种常温下聚苯乙烯微流控芯片的制备方法
CN106770294B (zh) * 2016-12-26 2019-04-16 中国科学院长春光学精密机械与物理研究所 一种离心式微流控芯片、制作方法及其应用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090075838A1 (en) * 2002-09-16 2009-03-19 The Board Of Trustees Of The Leland Stanford Junior University Biological Analysis Arrangement and Approach Therefor
CN102967932A (zh) * 2011-08-30 2013-03-13 台达电子工业股份有限公司 电切换调光单元与其形成方法、调光元件与其形成方法、立体显示装置、图像显示系统
CN102500436A (zh) * 2011-09-28 2012-06-20 复旦大学 基于电润湿的单面二维驱动数字微流控芯片
CN107249743A (zh) * 2014-12-31 2017-10-13 雅培制药有限公司 数字微流控稀释设备、系统及相关方法
CN106291911A (zh) * 2016-08-10 2017-01-04 华南师范大学 复合层结构的疏水性介电层、其制备方法和电润湿器件
CN107754962A (zh) * 2017-11-22 2018-03-06 南方科技大学 一种数字微流控液滴驱动装置及驱动方法
CN109092379A (zh) * 2018-09-05 2018-12-28 仲恺农业工程学院 微流反应芯片及其液滴定位控制系统和控制方法
CN109652287A (zh) * 2019-01-03 2019-04-19 京东方科技集团股份有限公司 一种微控基板及其制作方法和微流控芯片

Also Published As

Publication number Publication date
US20210086181A1 (en) 2021-03-25
CN109652287B (zh) 2021-04-30
CN109652287A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
WO2020140732A1 (zh) 微流控基板及其制作方法和微流控芯片
Rettig et al. Large-scale single-cell trapping and imaging using microwell arrays
Chandra et al. Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces
CN108660068B (zh) 生物反应芯片及其制备方法
CN109536590B (zh) 一种基于微孔阵列芯片的单细胞基因检测方法
Kim et al. Fracture-based micro-and nanofabrication for biological applications
US20080279727A1 (en) Polymeric Fluid Transfer and Printing Devices
WO2007049576A1 (ja) 細胞培養容器及び細胞培養方法
US9962701B2 (en) Flowcells with microretainers and particle separators for discrete seeding microspots
TW200404735A (en) Nanoneedle chips and the production thereof
US20040238484A1 (en) Method of manufacturing a microfluidic structure, in particular a biochip, and structure obtained by said method
US9623394B2 (en) Device and method for the generation of molecular microarrays
JPWO2007105418A1 (ja) 細胞培養容器およびその製造方法
EP3336170B1 (en) Chip and application thereof
Li et al. Electrically modulated microtransfer molding for fabrication of micropillar arrays with spatially varying heights
JP2012157267A (ja) 微細パターンを有するプレート部材
Yen et al. Self-Assembled Pico-Liter Droplet Microarray for Ultrasensitive Nucleic Acid Quantification
US11254910B2 (en) Method for producing different populations of molecules or fine particles with arbitrary distribution forms and distribution densities simultaneously and in quantity, and masking
EP1854537A1 (en) Apparatus and method for printing biomolecular droplet on substrate
US20070238870A1 (en) Hybridization Device and Hybridization Method
Kim et al. Stretching and immobilization of DNA for studies of protein–DNA interactions at the single-molecule level
WO2021115047A1 (zh) 一种微流控芯片及基于微流控芯片的全血分离方法
CN103060194A (zh) 一种微流控细胞培养芯片及其制备方法
CN104437690A (zh) 一种用于生化分析的微孔板、金属镍模具及其制备方法
Wu et al. Modelling and hydrostatic analysis of contact printing microarrays by quill pins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907133

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19907133

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)