WO2020140604A1 - 光学成像镜头及成像设备 - Google Patents
光学成像镜头及成像设备 Download PDFInfo
- Publication number
- WO2020140604A1 WO2020140604A1 PCT/CN2019/116133 CN2019116133W WO2020140604A1 WO 2020140604 A1 WO2020140604 A1 WO 2020140604A1 CN 2019116133 W CN2019116133 W CN 2019116133W WO 2020140604 A1 WO2020140604 A1 WO 2020140604A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical imaging
- optical
- imaging lens
- image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/64—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/51—Housings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M1/00—Substation equipment, e.g. for use by subscribers
- H04M1/02—Constructional features of telephone sets
- H04M1/0202—Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
- H04M1/026—Details of the structure or mounting of specific components
- H04M1/0264—Details of the structure or mounting of specific components for a camera module assembly
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04M—TELEPHONIC COMMUNICATION
- H04M2250/00—Details of telephonic subscriber devices
- H04M2250/52—Details of telephonic subscriber devices including functional features of a camera
Definitions
- the present invention relates to the technical field of optical lenses, and more particularly, to an optical imaging lens and imaging equipment.
- the camera lens has become the standard configuration of electronic devices (such as smart phones, cameras), and the camera lens has even become the first indicator that consumers consider when purchasing electronic devices.
- the camera lens has continuously developed toward the direction of small size, light weight and high performance.
- the lens currently configured on the portable electronic device can meet the needs of miniaturization, but it cannot guarantee the imaging quality of the lens in the case of insufficient light.
- the present invention proposes an optical imaging lens, which has the advantages of large aperture and high imaging quality.
- an embodiment of the present invention provides an optical imaging lens, which, in order from the object side to the image side along the optical axis, includes: a first lens with positive refractive power, the object side surface of which is convex, and the image side surface is concave;
- a lens is a glass aspheric lens; a second lens with negative power; a third lens with positive power; a fourth lens with negative power, the object-side surface is concave at the paraxial, image side
- the surface is convex at the paraxial;
- the fifth lens with negative power has a concave surface at the paraxial;
- the optical imaging lens satisfies the conditional expression: 0.7 ⁇ CT 4-i /CT 4 ⁇ 1.2;0.7 ⁇ CT 5-i /CT 5 ⁇ 1.2; where, CT 4-i and CT 5-i are the thicknesses
- the optical imaging lens satisfies a conditional expression: 25 ⁇ (R 9 /CT 5 )+(R 10 /CT 5 ) ⁇ 35; where R 9 is the radius of curvature of the object-side surface of the fifth lens, R 10 is the radius of curvature of the image-side surface of the fifth lens, and CT 5 is the center thickness of the fifth lens.
- the optical imaging lens satisfies the conditional expression: 0 ⁇ R 7 /R 8 ⁇ 0.5; where R 7 is the radius of curvature of the object-side surface of the fourth lens, and R 8 is the image of the fourth lens The radius of curvature of the side surface.
- the optical imaging lens satisfies a conditional expression: 1.0 ⁇ Td/ImgH ⁇ 1.5; where Td is the distance on the optical axis from the object-side surface of the first lens to the image-side surface of the seventh lens, ImgH is the half image height of the optical imaging lens above the imaging surface.
- the optical imaging lens satisfies a conditional expression: 0 ⁇ f 5 /f 4 ⁇ 10; where f 4 is the focal length of the fourth lens, and f 5 is the focal length of the fifth lens.
- the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens, and the seventh lens are all plastic aspheric lenses.
- the optical imaging lens further includes: a diaphragm disposed on the object side of the first lens, and a filter disposed between the seventh lens and the imaging surface.
- an embodiment of the present invention provides an imaging apparatus including the optical imaging lens as described above and an imaging element for converting an optical image formed by the optical imaging lens into an electrical signal.
- FIG. 1 shows a schematic structural diagram of an optical imaging lens provided by a first embodiment of the present invention
- FIG. 2 shows a schematic structural diagram of an imaging device provided by the first embodiment of the present invention
- FIG. 3 shows a field curvature curve diagram of the optical imaging lens provided by the first embodiment of the present invention
- FIG. 5 shows a graph of the spherical aberration on the axis of the optical imaging lens provided by the first embodiment of the present invention
- FIG. 6 shows a lateral chromatic aberration curve diagram of the optical imaging lens provided by the first embodiment of the present invention
- FIG. 7 shows a field curve diagram of the optical imaging lens provided by the second embodiment of the present invention.
- FIG. 11 shows a field curvature curve diagram of an optical imaging lens provided by a third embodiment of the present invention.
- FIG. 13 shows a graph of the spherical aberration on the axis of the optical imaging lens provided by the third embodiment of the present invention.
- FIG. 16 shows a distortion curve diagram of the optical imaging lens provided by the fourth embodiment of the present invention.
- FIG. 17 shows a graph of the spherical aberration on the axis of the optical imaging lens provided by the fourth embodiment of the present invention.
- FIG. 18 shows a lateral chromatic aberration curve diagram of the optical imaging lens provided by the fourth embodiment of the present invention.
- the existing portable electronic devices are mostly used to shoot portraits or close-ups, which also puts forward higher requirements on the sharpness of the imaging lens.
- the larger the aperture of the lens the greater the amount of incoming light, which can effectively increase the shutter speed.
- the better the background blur effect the better the imaging quality when shooting in a dark environment.
- the lenses currently configured on portable electronic devices generally have an aperture number of more than 2.0. Although such lenses can meet the needs of miniaturization, they cannot guarantee the imaging quality of the lens under low light conditions.
- the inventors made researches and proposed the optical imaging lens and the imaging device in the embodiments of the present invention, which have the advantages of miniaturization, large aperture, and high imaging quality.
- FIG. 1 is a schematic structural diagram of an optical imaging lens 100 according to a first embodiment of the present invention.
- the optical imaging lens 100 includes, in order from the object side to the image side along the optical axis A, a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a fifth lens L5, sixth lens L6, and seventh lens L7.
- the first lens L1 has positive refractive power
- the object-side surface S1 is a convex surface
- the image-side surface S2 is a concave surface.
- the second lens L2 has negative power, which can effectively adjust the aberration generated by the first lens L1, and can also control the focusing ability of the working band.
- the third lens L3 has positive refractive power.
- the fourth lens L4 has negative refractive power, and its object-side surface S7 is concave at the paraxial axis, and the image-side surface S8 is convex at the paraxial axis.
- the fifth lens L5 has negative refractive power, and its image-side surface S10 is concave at the paraxial axis.
- the sixth lens L6 has positive refractive power.
- the seventh lens L7 has negative refractive power, and its object-side surface S13 and image-side surface S14 are concave at the paraxial axis, which can effectively correct the aberration of the optical lens, thereby effectively controlling the angle of light exit.
- the first lens L1 may be a glass aspheric lens, thereby converging the incident light beam from the light source, and providing sufficient positive power to effectively control the overall size of the optical imaging lens 100, and the glass material The imaging resolution of the optical imaging lens 100 can be effectively improved.
- the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6, and the seventh lens L7 may all be plastic aspheric lenses, and the plastic material may be effective reduce manufacturing cost.
- the optical imaging lens 100 may further include an aperture S0 provided on the object side of the first lens L1, and a filter G provided between the seventh lens L7 and the imaging plane P.
- the filter G can be used to selectively filter part of the light, thereby optimizing the imaging effect.
- the imaging plane P may be a plane that is incident on the object side through the optical imaging lens 100 and is clearly imaged on the image side.
- FIG. 2 is a schematic structural diagram of an imaging device 1000 provided by this embodiment.
- the imaging apparatus 1000 includes the above-described optical imaging lens 100 and an imaging element 200 for converting the optical image formed by the optical imaging lens 100 into an electrical signal.
- the imaging element 200 is disposed on the image side of the optical imaging lens 100, and its light-sensing surface (the surface of the imaging element 200 facing the optical imaging lens 100 side) may coincide with the imaging surface P to achieve clear imaging.
- the imaging element 200 may be a CCD (Charge-coupled Device, Charge Coupled Element), CMOS (Complementary Metal Oxide Semiconductor) and other photoelectric sensor devices used for imaging.
- CCD Charge-coupled Device, Charge Coupled Element
- CMOS Complementary Metal Oxide Semiconductor
- the imaging device 1000 can be applied to optical imaging systems such as vehicle imaging systems, surveillance imaging systems, and the like.
- the optical imaging lens 100 satisfies the conditional expression:
- CT 4-i and CT 5-i are the thickness of the normal direction at any position of the fourth lens L4 and the fifth lens L5 respectively (the vertical line of the tangent at any position of the aspheric curve is the normal of the point), CT 4 and CT 5 are the central thickness of the fourth lens L4 and the fifth lens L5, respectively.
- the value of CT 4-i /CT 4 and CT 5-i /CT 5 is greater than 0.7, which is beneficial to the formation of the fourth lens L4 and the fifth lens L5, and it is less prone to high-order aberrations and stable performance for off-axis light;
- the values of CT 4-i /CT 4 and CT 5-i /CT 5 are less than 1.2, which reduces the difficulty of correcting field curvature and coma. That is, when the values of CT 4-i /CT 4 and CT 5-i /CT 5 are within the range of the above conditional expression, the thickness of the fourth lens L4 and the fifth lens L5 at any positions can be made uniform and easy to form.
- the optical imaging lens 100 satisfies the conditional expression:
- R 9 is the radius of curvature of the object-side surface S9 of the fifth lens L5
- R 10 is the radius of curvature of the image-side surface S10 of the fifth lens L5
- CT 5 is the center thickness of the fifth lens L5.
- the optical imaging lens 100 satisfies the conditional expression:
- R 7 is the radius of curvature of the object-side surface S7 of the fourth lens L4, and R 8 is the radius of curvature of the image-side surface S8 of the fourth lens L4.
- the value of R 7 /R 8 is greater than 0, which can effectively avoid the increase of the refractive power of the fourth lens, which is conducive to ensuring the peripheral performance, and can avoid the increase of the decentering sensitivity; the value of R 7 /R 8 is less than 0.5, it is reduced The difficulty of correcting the field song.
- the optical imaging lens 100 satisfies the conditional expression:
- T 12 is the separation distance between the first lens L1 and the second lens L2 on the optical axis A
- T 23 is the separation distance between the second lens L2 and the third lens L3 on the optical axis A
- T 34 is the third lens
- T 45 is the distance between the fourth lens L4 and the fifth lens L5 on the optical axis A
- T 56 is the distance between the fifth lens L5 and the sixth lens L6
- the separation distance on the axis A, T 67 is the separation distance between the sixth lens L6 and the seventh lens L7 on the optical axis A. Satisfying the above conditional expression can effectively shorten the total optical length of the lens and promote the miniaturization of the optical imaging lens 100.
- the optical imaging lens 100 satisfies the conditional expression:
- Td is the distance on the optical axis A from the object-side surface S1 of the first lens L1 to the image-side surface S14 of the seventh lens L7
- ImgH is the half-image height of the optical imaging lens 100 above the imaging plane P. Satisfying the above conditional formula can effectively shorten the total optical length of the lens and promote the miniaturization of the optical imaging lens 100.
- the optical imaging lens 100 satisfies the conditional expression:
- f 1 is the focal length of the first lens L1 and f is the focal length of the optical imaging lens 100.
- the value of f 1 /f is greater than 1.0, which can prevent the refractive power and decentering sensitivity of the first lens L1 from becoming larger;
- the value of f 1 /f is less than 1.5, which can prevent the refractive power of the first lens L1 from becoming smaller, which is beneficial to maintaining optical The miniaturization of the imaging lens 100.
- the optical imaging lens 100 satisfies the following conditional formula:
- f 4 is the focal length of the fourth lens L4, and f 5 is the focal length of the fifth lens L5. If the value of f 5 /f 4 is greater than 0, the field curvature and distortion can be prevented from increasing excessively in the negative direction, thereby reducing the difficulty of correction; if the value of f 5 /f 4 is less than 10, the field curvature and distortion can be avoided to be positive The direction is excessively increased, thereby reducing the difficulty of correction.
- each aspheric surface type of the optical imaging lens 100 may satisfy the following equation:
- z is the height of the aspheric surface along the optical axis A at the height h, the distance from the apex of the aspheric surface is high, c is the paraxial radius of curvature of the surface, k is the conic coefficient conic, and A 2i is the second-order non-uniform Spherical coefficient.
- the optical imaging lens 100 and the imaging device 1000 provided in this embodiment are properly matched with the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, the sixth lens L6 and the seventh lens
- the combination of lens shape and optical power between L7 effectively reduces the overall size of the optical imaging lens 100, and achieves the effect of clear imaging with a large aperture.
- it uses one glass lens and six plastic lenses.
- the lens is small, compact, and has a large aperture, which can provide better optical imaging quality. It is suitable for various portable electronic devices, in-vehicle devices, and monitoring. The application of the device.
- FIG. 3, FIG. 4, FIG. 5 and FIG. 6, the field curvature curve and distortion curve of the optical imaging lens 100 (f in the f- ⁇ distortion in the figure is a percentage, and ⁇ is the field of view Angle), on-axis spherical aberration curve and lateral color difference curve are shown in Figure 3, Figure 4, Figure 5 and Figure 6, respectively. It can be seen from the figure that the field curvature, distortion and chromatic aberration are all well corrected.
- the design parameters of the optical imaging lens 100 provided in this embodiment are shown in Table 1:
- the aspherical parameters of each lens in the optical imaging lens 100 are shown in Table 2:
- the structural diagram of the optical imaging lens 100 provided by this embodiment is substantially the same as the first embodiment described above, and the biggest difference is that the design parameters are different.
- FIG. 7 Please refer to FIG. 7, FIG. 8, FIG. 9 and FIG. 10, in this embodiment, the field curve curve, distortion curve diagram, on-axis spherical aberration curve diagram and lateral chromatic aberration curve diagram of the optical imaging lens 100 are shown in FIG. 7 respectively , Figure 8, Figure 9 and Figure 10. It can be seen from the figure that the field curvature, distortion and chromatic aberration are all well corrected.
- the design parameters of the optical imaging lens 100 provided in this embodiment are shown in Table 3:
- the aspherical parameters of each lens in the optical imaging lens 100 are shown in Table 4:
- the structural diagram of the optical imaging lens 100 provided by this embodiment is substantially the same as the first embodiment described above, and the biggest difference is that the design parameters are different.
- FIGS. 11, 12, 13 and 14 the field curvature curve, distortion curve, on-axis spherical aberration curve and lateral chromatic aberration curve of the optical imaging lens 100 are shown in FIG. 11, respectively. , Figure 12, Figure 13 and Figure 14. It can be seen from the figure that the field curvature, distortion and chromatic aberration are all well corrected.
- the design parameters of the optical imaging lens 100 provided in this embodiment are shown in Table 5:
- the aspherical parameters of each lens in the optical imaging lens 100 are shown in Table 6:
- the structural diagram of the optical imaging lens 100 provided by this embodiment is substantially the same as the first embodiment described above, and the biggest difference is that the design parameters are different.
- the field curvature curve, distortion curve, on-axis spherical aberration curve, and lateral chromatic aberration curve of the optical imaging lens 100 are shown in FIG. 15, respectively. , Figure 16, Figure 17 and Figure 18. It can be seen from the figure that the field curvature, distortion and chromatic aberration are all well corrected.
- the design parameters of the optical imaging lens 100 provided in this embodiment are shown in Table 7:
- the aspherical parameters of each lens in the optical imaging lens 100 are shown in Table 8:
- Table 9 shows the corresponding optical characteristics of the optical imaging lens 100 in the above four embodiments, including the focal length f of the optical imaging lens 100, the aperture number F#, the total optical length TTL of the lens and the angle of view 2 ⁇ , and The relevant value corresponding to each of the aforementioned conditional expressions.
- the thickness, radius of curvature, and material of each lens in the optical imaging lens 100 are different.
- the above embodiments are only preferred embodiments of the present invention, but the embodiments of the present invention are not limited only by the above embodiments. Any other changes, substitutions, combinations, or simplifications that do not deviate from the innovation of the present invention are It should be regarded as an equivalent replacement method, which is included in the protection scope of the present invention.
- the optical imaging lens and the imaging device provided by the embodiments of the present invention effectively reduce the overall size of the optical imaging lens through the reasonable combination of the lens shape and the power between the lenses, and the miniaturization At the same time, the effect of clear imaging with a large aperture is achieved, which has the advantages of miniaturization, large aperture and high imaging quality. It has good applicability to portable electronic devices and can effectively improve the user's camera experience.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Lenses (AREA)
Abstract
一种光学成像镜头(100)及成像设备,涉及光学镜头技术领域。光学成像镜头(100)沿光轴(A)从物侧到像侧依次包括:具有正光焦度的第一透镜(L1),其物侧表面为凸面,像侧表面为凹面;具有负光焦度的第二透镜(L2);具有正光焦度的第三透镜(L3);具有负光焦度的第四透镜(L4),其物侧表面在近轴处为凹面,像侧表面在近轴处为凸面;具有负光焦度的第五透镜(L5),其像侧表面在近轴处为凹面;具有正光焦度的第六透镜(L6);具有负光焦度的第七透镜(L7),其物侧表面和像侧表面在近轴处均为凹面。光学成像镜头(100)及成像设备,通过合理搭配各透镜之间的镜片形状与光焦度组合,具有大光圈和成像品质高的优点。
Description
本申请要求于2019年1月2日提交中国专利局、申请号为2019100007291、发明名称为“光学成像镜头及成像设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及光学镜头技术领域,更具体地,涉及一种光学成像镜头及成像设备。
目前,摄像镜头已经成为电子设备(如智能手机、相机)的标配,摄像镜头甚至已经成为消费者购买电子设备时首要考虑的指标。近年来,随着设计水平、制造加工技术的不断发展,摄像镜头不断地向着体积小、重量轻以及高性能的方向发展。
然而,目前配置在便携式电子设备上的镜头,由于光圈数较大,虽然能够满足小型化的需求,但却无法在光线不足的情况下保证镜头的成像品质。
发明内容
鉴于上述问题,本发明提出了一种光学成像镜头,具有大光圈和成像品质高的优点。
一方面,本发明实施例提供了一种光学成像镜头,沿光轴从物侧到像侧依次包括:具有正光焦度的第一透镜,其物侧表面为凸面,像侧表面为凹面,第一透镜为玻璃非球面透镜;具有负光焦度的第二透镜;具有正光焦度的第三透镜;具有负光焦度的第四透镜,其物侧表面在近轴处为凹面,像侧表面在近轴处为凸面;具有负光焦度的第五透镜,其像侧表面在近轴处为凹面;具有正光焦度的第六透镜;具有负光焦度的第七透镜,其物侧表面和像侧表面在近轴处均为凹面;所述光学成像镜头满足条件式:0.7<CT
4-i/CT
4<1.2;0.7<CT
5-i/CT
5<1.2;其中,CT
4-i和CT
5-i分别为所述第四透镜和所述第五透镜任意位置处法线方向的厚度,CT
4和CT
5分别为所述第四透镜和所述第五透镜的中心厚度;所述光学成像镜头满足条件式:1.0<f
1/f<1.5;其中,f
1为所述第一透镜的焦距,f为所述光学成像镜头的焦距。
进一步的,所述光学成像镜头满足条件式:25<(R
9/CT
5)+(R
10/CT
5)<35;其中,R
9为所述第五透镜的物侧表面的曲率半径,R
10为所述第五透镜的像侧表面的曲率半径,CT
5为所述第五透镜的中心厚度。
进一步的,所述光学成像镜头满足条件式:0<R
7/R
8<0.5;其中,R
7为所述第四透镜的物侧表面的曲率半径,R
8为所述第四透镜的像侧表面的曲率半径。
进一步的,所述光学成像镜头满足条件式:5.0<(T
12/T
23)+(T
34/T
45)+(T
56/T
67)<7.0;其中,T
12为所述第一透镜与所述第二透镜在光轴上的间隔距离,T
23为所述第二透镜与所述第三透镜在光轴上的间隔距离,T
34为所述第三透镜与所述第四透镜在光轴上的间隔距离,T
45为所述第四透镜与所述第五透镜在光轴上的间隔距离,T
56为所述第五透镜与所述第六透镜在光轴上的间隔距离,T
67为所述第六透镜与所述第七透镜在光轴上的间隔距离。
进一步的,所述光学成像镜头满足条件式:1.0<Td/ImgH<1.5;其中,Td为所述第一透镜的物侧表面到所述第七透镜的像侧表面在光轴上的距离,ImgH为所述光学成像镜头在成像面上面的半像高。
进一步的,所述光学成像镜头满足条件式:0<f
5/f
4<10;其中,f
4为所述第四透镜的焦距,f
5为所述第五透镜的焦距。
进一步的,所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜以及所述第七透镜均为塑胶非球面透镜。
进一步的,所述光学成像镜头还包括:设置于所述第一透镜物侧的光阑,以及设置于所述第七透镜与成像面之间的滤光片。
另一方面,本发明实施例提供了一种成像设备,包括如上所述的光学成像镜头以及用于将所述光学成像镜头形成的光学图像转换为电信号的成像元件。
本发明实施例提供的光学成像镜头及成像设备,通过合理的搭配各透镜之间的镜片形状与光焦度组合,有效的减小了光学成像镜头整体的尺寸大小,且在小型化的同时实现了大光圈清晰成像的效果,具有小型化、大光圈和成像品质高的优点,其对便携式电子设备具有良好的适用性,能够有效提升用户的摄像体验。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明第一实施例提供的光学成像镜头的结构示意图;
图2示出了本发明第一实施例提供的成像设备的结构示意图;
图3示出了本发明第一实施例提供的光学成像镜头的场曲曲线图;
图4示出了本发明第一实施例提供的光学成像镜头的畸变曲线图;
图5示出了本发明第一实施例提供的光学成像镜头的轴上点球差曲线图;
图6示出了本发明第一实施例提供的光学成像镜头的横向色差曲线图;
图7示出了本发明第二实施例提供的光学成像镜头的场曲曲线图;
图8示出了本发明第二实施例提供的光学成像镜头的畸变曲线图;
图9示出了本发明第二实施例提供的光学成像镜头的轴上点球差曲线图;
图10示出了本发明第二实施例提供的光学成像镜头的横向色差曲线图;
图11示出了本发明第三实施例提供的光学成像镜头的场曲曲线图;
图12示出了本发明第三实施例提供的光学成像镜头的畸变曲线图;
图13示出了本发明第三实施例提供的光学成像镜头的轴上点球差曲线图;
图14示出了本发明第三实施例提供的光学成像镜头的横向色差曲线图;
图15示出了本发明第四实施例提供的光学成像镜头的场曲曲线图;
图16示出了本发明第四实施例提供的光学成像镜头的畸变曲线图;
图17示出了本发明第四实施例提供的光学成像镜头的轴上点球差曲线图;
图18示出了本发明第四实施例提供的光学成像镜头的横向色差曲线图。
附图标记:S0-光阑;L1-第一透镜;L2-第二透镜;L3-第三透镜;L4-第四透镜;L5-第五透镜;L6-第六透镜;L7-第七透镜;G-滤光片;P-成像面;A-光轴;S1-第一透镜的物侧表面;S2-第一透 镜的像侧表面;S3-第二透镜的物侧表面;S4-第二透镜的像侧表面;S5-第三透镜的物侧表面;S6-第三透镜的像侧表面;S7-第四透镜的物侧表面;S8-第四透镜的像侧表面;S9-第五透镜的物侧表面;S10-第五透镜的像侧表面;S11-第六透镜的物侧表面;S12-第六透镜的像侧表面;S13-第七透镜的物侧表面;S14-第七透镜的像侧表面;S15-滤光片的物侧表面;S16-滤光片的像侧表面;100-光学成像镜头;200-成像元件;1000-成像设备。
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
目前,随着便携式电子设备(如智能手机、相机)的普及,加上社交、视频、直播类软件的流行,人们对于摄影的喜爱程度越来越高,摄像镜头已经成为了电子设备的标配,摄像镜头甚至已经成为消费者购买电子设备时首要考虑的指标。近年来,随着设计水平、制造加工技术的不断发展,摄像镜头不断地向着体积小、重量轻以及高性能的方向发展。
然而,发明人在对现有摄像镜头的研究中发现,一方面随着人们对像质的要求逐步提高,使用的芯片尺寸会相应加大,导致摄像镜头的体积也会随之加大,这使得镜头在保证成像品质的同时难以继续向小型化的方向迈进。
另一方面,现有的便携式电子设备多用来拍摄人像或近景,这也对成像镜头的锐利度提出了更高要求。众所周知,镜头的光圈越大,进光量越大,可有效提高快门速度,同时背景虚化效果越好,在昏暗环境下拍摄的成像质量也更好。然而,目前配置在便携式电子设备上的镜头,其光圈数一般在2.0以上,这类镜头虽然能够满足小型化的需求,却无法在光线不足的情况下保证镜头的成像品质。
为了解决上述的问题,发明人经过研究,提出了本发明实施例中的光学成像镜头及成像设备,其具有小型化、大光圈和成像品质高的优点。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
第一实施例
请参照图1,图1是本发明第一实施例提供的光学成像镜头100的结构示意图。
本实施例中,如图1所示,光学成像镜头100沿光轴A从物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7。
其中,第一透镜L1具有正光焦度,其物侧表面S1为凸面,像侧表面S2为凹面。
第二透镜L2具有负光焦度,其可有效的调和第一透镜L1所产生的像差,亦能控制工作波段的聚焦能力。
第三透镜L3具有正光焦度。
第四透镜L4具有负光焦度,其物侧表面S7在近轴处为凹面,像侧表面S8在近轴处为凸面。
第五透镜L5具有负光焦度,其像侧表面S10在近轴处为凹面。
第六透镜L6具有正光焦度。
第七透镜L7具有负光焦度,其物侧表面S13和像侧表面S14在近轴处均为凹面,其可有效修正光学透镜的像差,从而有效的控制光线的出射角度。
作为一种方式,第一透镜L1可以是玻璃非球面透镜,借此汇聚来自光源的入射光束,且可提供足够的正光焦度,以有效的控制光学成像镜头100的整体尺寸大小,且玻璃材质能够有效提高光学成像镜头100的成像解析力。
进一步的,在一些实施方式中,第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7可均为塑胶非球面透镜,塑胶材质可有效降低生产成本。
如图1所示,本实施例中,光学成像镜头100还可以包括设置于第一透镜L1物侧的光阑S0,以及设置于第七透镜L7与成像面P之间的滤光片G。该滤光片G可用于选择性地对部分光进行过滤,从而优化成像效果。
本实施例中,成像面P,可以是由物侧入射的光,经过光学成像镜头100在像侧清晰成像的平面。
请参照图2,图2是本实施例提供的成像设备1000的结构示意图。成像设备1000包括上述的光学成像镜头100以及用于将光学成像镜头100形成的光学图像转换为电信号的成像元件200。作为一种方式,成像元件200设置于光学成像镜头100的像侧,其光感面(成像元件200朝向光学成像镜头100一侧的表面)可以与成像面P重合,以实现清晰成像。在一些实施方式中,成像元件200可以是CCD(Charge-coupled Device,电荷耦合元件)、CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)等用于成像的光电传感器件。
作为一种方式,成像设备1000可以应用于车载成像系统、监控成像系统等光学成像系统中。
进一步的,在一些实施方式中,光学成像镜头100满足条件式:
0.7<CT
4-i/CT
4<1.2;
0.7<CT
5-i/CT
5<1.2;
其中,CT
4-i和CT
5-i分别为第四透镜L4和第五透镜L5任意位置处法线方向的厚度(非球面曲线任意处切线的垂线,即为该点的法线),CT
4和CT
5分别为第四透镜L4和第五透镜L5的中心厚度。CT
4-i/CT
4以及CT
5-i/CT
5的值大于0.7,有利于第四透镜L4和第五透镜L5的成型,其对于轴外光线,不易发生高阶像差,性能稳定;CT
4-i/CT
4以及CT
5-i/CT
5的值小于1.2,则降低了场曲、慧差的修正难度。即CT
4-i/CT
4以及CT
5-i/CT
5的值在上述条件式的范围内时,能够使第四透镜L4、第五透镜L5在任意位置的肉厚均匀易于成型。
进一步的,在一些实施方式中,光学成像镜头100满足条件式:
25<(R
9/CT
5)+(R
10/CT
5)<35;
其中,R
9为第五透镜L5的物侧表面S9的曲率半径,R
10为第五透镜L5的像侧表面S10的曲率半径,CT
5为第五透镜L5的中心厚度。(R
9/CT
5)+(R
10/CT
5)大于25,其对于轴外光线,不易发生高阶相差,性能稳定;(R
9/CT
5)+(R
10/CT
5)小于35,则降低了场曲、慧差的修正难度,有效避免了偏心敏感度的变大。
进一步的,在一些实施方式中,光学成像镜头100满足条件式:
0<R
7/R
8<0.5;
其中,R
7为第四透镜L4的物侧表面S7的曲率半径,R
8为第四透镜L4的像侧表面S8的曲率半径。R
7/R
8的值大于0,可有效避免第四透镜的屈折力变大,有利于确保周边性能,且能够避免偏心敏感度的变大;R
7/R
8的值小于0.5,则降低了场曲的修正难度。
进一步的,在一些实施方式中,光学成像镜头100满足条件式:
5.0<(T
12/T
23)+(T
34/T
45)+(T
56/T
67)<7.0;
其中,T
12为第一透镜L1与第二透镜L2在光轴A上的间隔距离,T
23为第二透镜L2与第三透镜L3在光轴A上的间隔距离,T
34为第三透镜L3与第四透镜L4在光轴A上的间隔距离,T
45为第四透镜L4与第五透镜L5在光轴A上的间隔距离,T
56为第五透镜L5与第六透镜L6在光轴A上的间隔距离,T
67为第六透镜L6与第七透镜L7在光轴A上的间隔距离。满足上述条件式,可以有效缩短镜头的光学总长,促进光学成像镜头100的小型化。
进一步的,在一些实施方式中,光学成像镜头100满足条件式:
1.0<Td/ImgH<1.5;
其中,Td为第一透镜L1的物侧表面S1到第七透镜L7的像侧表面S14在光轴A上的距离,ImgH为光学成像镜头100在成像面P上面的半像高。满足上述条件式,可以有效的缩短镜头的光学总长,促进光学成像镜头100的小型化。
进一步的,在一些实施方式中,光学成像镜头100满足条件式:
1.0<f
1/f<1.5;
其中,f
1为第一透镜L1的焦距,f为光学成像镜头100的焦距。f
1/f的值大于1.0,可避免第一透镜L1的屈折力以及偏心敏感度变大;f
1/f的值小于1.5,可避免第一透镜L1的屈折力变小,有利于维持光学成像镜头100的小型化。
进一步的,在一些实施方式中,光学成像镜头100满足以下条件式:
0<f
5/f
4<10;
其中,f
4为第四透镜L4的焦距,f
5为第五透镜L5的焦距。f
5/f
4的值大于0,则可避免场曲和畸变朝负方向过分增大,从而降低了矫正的难度;f
5/f
4的值小于10,则可避免场曲和畸变朝正方向过分增大,从而降低了矫正的难度。
本实施例中,作为一种方式,当光学成像镜头100中的各个透镜均为非球面透镜时,光学成像镜头100的各个非球面面型可以均满足如下方程式:
其中,z为非球面沿光轴A方向在高度为h的位置时,距离非球面顶点的距离矢高,c为表面的近轴曲率半径,k为圆锥系数conic,A
2i为第2i阶的非球面面型系数。
本实施例提供的光学成像镜头100及成像设备1000通过合理的搭配第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7之间的镜片形状与光焦度组合,有效的减少了光学成像镜头100的整体尺寸大小,且实现了大光圈清晰成像的效果。在一些实施方式中,其采用一片玻璃镜片和六片塑胶镜片,镜头体积小,结构紧凑,且具有大光圈,能够提供更好的光学成像质量,适于各种便携式电子设备、车载设备以及监控设备的应用。
请参照图3、图4、图5以及图6,在本实施例中,光学成像镜头100的场曲曲线图、畸变曲线图(图中f-θ畸变中的f为百分比,θ为视场角)、轴上点球差曲线图以及横向色差曲线图分别 如图3、图4、图5及图6所示。从图中可以看出,场曲、畸变和色差都被良好校正。
具体的,本实施例提供的光学成像镜头100的设计参数如表1所示:
表1
本实施例中,光学成像镜头100中各个透镜的非球面参数如表2所示:
表2-1
面号 | k | A 4 | A 6 | A 8 | A 10 | A 12 | A 14 | A 16 |
S1 | 0.000 | -6.04E-06 | 4.47E-03 | -5.98E-03 | 4.86E-03 | -1.93E-03 | 3.30E-04 | 0.00E+00 |
S2 | 4.261 | -3.19E-02 | 1.52E-02 | -2.50E-02 | 2.14E-02 | -1.03E-02 | 1.97E-03 | 0.00E+00 |
S3 | -8.802 | -6.05E-02 | 2.41E-02 | -7.64E-03 | 1.47E-02 | -1.18E-02 | 3.22E-03 | -2.87E-05 |
S4 | -5.579 | -1.65E-02 | -1.15E-02 | 3.43E-02 | -3.52E-02 | 2.27E-02 | -5.40E-03 | -1.73E-04 |
S5 | 4.781 | -1.74E-02 | 1.91E-03 | -2.18E-02 | 5.52E-03 | 1.14E-02 | -4.58E-03 | -1.14E-05 |
S6 | 19.877 | -8.22E-03 | 1.14E-02 | -1.70E-02 | 2.29E-03 | 2.27E-02 | -2.15E-02 | 6.90E-03 |
S7 | 68.594 | -4.98E-02 | -4.49E-02 | 5.47E-02 | -7.44E-02 | 5.58E-02 | -1.95E-02 | 1.96E-03 |
S8 | 100.003 | -8.50E-02 | 1.29E-02 | -1.60E-02 | -5.57E-03 | 7.83E-03 | -3.81E-04 | -1.08E-04 |
S9 | -99.705 | -7.52E-02 | 4.69E-02 | -2.78E-02 | 8.82E-04 | 6.58E-04 | 1.22E-03 | -1.76E-04 |
S10 | -81.558 | -7.45E-02 | 4.24E-02 | -1.76E-02 | 3.64E-03 | -4.79E-04 | 4.97E-05 | 1.25E-06 |
S11 | -76.733 | -5.77E-03 | -8.09E-03 | -1.94E-03 | 9.26E-04 | -1.01E-04 | -1.30E-06 | -9.21E-08 |
S12 | -2.606 | 9.06E-02 | -3.14E-02 | 3.07E-03 | 1.06E-04 | -1.47E-05 | -3.42E-06 | -1.07E-07 |
S13 | -6.698 | -2.05E-02 | 6.33E-03 | -4.90E-04 | -1.20E-05 | 1.91E-06 | 1.53E-07 | -2.97E-09 |
S14 | 0.212 | -6.70E-02 | 1.99E-02 | -5.40E-03 | 9.60E-04 | -1.03E-04 | 5.59E-06 | -6.77E-08 |
表2-2
面号 | A 18 | A 20 | A 22 | A 24 |
S1 | — | — | — | — |
S2 | — | — | — | — |
S3 | — | — | — | — |
S4 | — | — | — | — |
S5 | — | — | — | — |
S6 | — | — | — | — |
S7 | -1.01E-03 | 1.28E-03 | -1.80E-04 | 2.00E-05 |
S8 | -3.44E-04 | -1.83E-04 | 1.64E-04 | 2.48E-06 |
S9 | -3.56E-04 | 9.69E-05 | -1.04E-06 | 1.39E-06 |
S10 | 9.82E-07 | -4.38E-07 | -2.44E-09 | -5.35E-09 |
S11 | 1.54E-07 | 5.55E-08 | 5.39E-09 | -2.44E-09 |
S12 | 2.39E-08 | 5.18E-08 | -1.40E-08 | 1.09E-09 |
S13 | 1.48E-11 | -1.95E-10 | -3.57E-12 | 1.29E-12 |
S14 | -1.94E-09 | -1.49E-10 | -9.73E-12 | 9.37E-13 |
第二实施例
本实施例提供的光学成像镜头100的结构图与上述第一实施例大致相同,其最大的不同之处在于设计参数不同。
请参照图7、图8、图9以及图10,在本实施例中,光学成像镜头100的场曲曲线图、畸变曲线图、轴上点球差曲线图以及横向色差曲线图分别如图7、图8、图9及图10所示。从图中可以看出,场曲、畸变和色差都被良好校正。
具体的,本实施例提供的光学成像镜头100的设计参数如表3所示:
表3
本实施例中,光学成像镜头100中各个透镜的非球面参数如表4所示:
表4-1
表4-2
面号 | A 18 | A 20 | A 22 | A 24 |
S1 | — | — | — | — |
S2 | — | — | — | — |
S3 | — | — | — | — |
S4 | — | — | — | — |
S5 | — | — | — | — |
S6 | — | — | — | — |
S7 | -3.33E-04 | 1.05E-03 | -1.89E-04 | 0.00E+00 |
S8 | -2.56E-04 | -1.77E-04 | 1.41E-04 | 0.00E+00 |
S9 | -2.63E-04 | 7.33E-05 | 0.00E+00 | 0.00E+00 |
S10 | 2.79E-07 | -2.48E-07 | 0.00E+00 | 0.00E+00 |
S11 | 5.95E-08 | 3.27E-08 | 5.32E-09 | -1.21E-09 |
S12 | 3.06E-08 | 5.15E-08 | -1.38E-08 | 1.00E-09 |
S13 | -7.55E-10 | -1.10E-10 | -3.99E-12 | 9.03E-13 |
S14 | -1.66E-09 | -1.06E-10 | -5.74E-12 | 6.31E-13 |
第三实施例
本实施例提供的光学成像镜头100的结构图与上述第一实施例大致相同,其最大的不同之处在于设计参数不同。
请参照图11、图12、图13以及图14,在本实施例中,光学成像镜头100的场曲曲线图、畸变曲线图、轴上点球差曲线图以及横向色差曲线图分别如图11、图12、图13及图14所示。从图中可以看出,场曲、畸变和色差都被良好校正。
具体的,本实施例提供的光学成像镜头100的设计参数如表5所示:
表5
本实施例中,光学成像镜头100中各个透镜的非球面参数如表6所示:
表6-1
表6-2
第四实施例
本实施例提供的光学成像镜头100的结构图与上述第一实施例大致相同,其最大的不同之处在于设计参数不同。
请参照图15、图16、图17以及图18,在本实施例中,光学成像镜头100的场曲曲线图、畸变曲线图、轴上点球差曲线图以及横向色差曲线图分别如图15、图16、图17及图18所示。从图中可以看出,场曲、畸变和色差都被良好校正。
具体的,本实施例提供的光学成像镜头100的设计参数如表7所示:
表7
本实施例中,光学成像镜头100中各个透镜的非球面参数如表8所示:
表8-1
表8-2
面号 | A 18 | A 20 | A 22 | A 24 |
S1 | — | — | — | — |
S2 | — | — | — | — |
S3 | — | — | — | — |
S4 | — | — | — | — |
S5 | — | — | — | — |
S6 | — | — | — | — |
S7 | -1.01E-03 | 1.27E-03 | -1.84E-04 | 1.18E-05 |
S8 | -3.37E-04 | -1.89E-04 | 1.60E-04 | 9.83E-07 |
S9 | -3.51E-04 | 9.79E-05 | -1.07E-06 | 1.18E-06 |
S10 | 9.89E-07 | -4.26E-07 | -6.82E-10 | -5.98E-09 |
S11 | 1.53E-07 | 5.54E-08 | 5.32E-09 | -2.47E-09 |
S12 | 2.50E-08 | 5.19E-08 | -1.40E-08 | 1.09E-09 |
S13 | 5.88E-12 | -1.95E-10 | -3.50E-12 | 1.33E-12 |
S14 | -1.99E-09 | -1.51E-10 | -9.60E-12 | 1.00E-12 |
请参阅表9,表9为上述四个实施例中的光学成像镜头100分别对应的光学特性,包括光学成像镜头100的焦距f、光圈数F#、镜头的光学总长TTL和视场角2θ,以及与前述的每个条件式对应的相关数值。
表9
在以上每个实施例中,光学成像镜头100中的各个透镜的厚度、曲率半径、材质部分有所不同,具体不同可参见各实施例中的参数表。上述的实施例仅为本发明的较佳实施方式,但本发明的实施方式并不仅仅受上述实施例的限制,其他的任何未背离本发明创新点所作的改变、替代、组合或简化,都应视为等效的置换方式,都包含在本发明的保护范围之内。
综上,本发明实施例提供的光学成像镜头及成像设备,通过合理的搭配各透镜之间的镜片形状与光焦度组合,有效的减小了光学成像镜头整体的尺寸大小,且在小型化的同时实现了大光圈清晰成像的效果,具有小型化、大光圈和成像品质高的优点,其对便携式电子设备具有良好的适用性,能够有效提升用户的摄像体验。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (9)
- 一种光学成像镜头,其特征在于,沿光轴从物侧到像侧依次包括:具有正光焦度的第一透镜,所述第一透镜的物侧表面为凸面,像侧表面为凹面,所述第一透镜为玻璃非球面透镜;具有负光焦度的第二透镜;具有正光焦度的第三透镜;具有负光焦度的第四透镜,所述第四透镜的物侧表面在近轴处为凹面,像侧表面在近轴处为凸面;具有负光焦度的第五透镜,所述第五透镜的像侧表面在近轴处为凹面;具有正光焦度的第六透镜;具有负光焦度的第七透镜,所述第七透镜的物侧表面和像侧表面在近轴处为凹面;所述光学成像镜头满足条件式:0.7<CT 4-i/CT 4<1.2;0.7<CT 5-i/CT 5<1.2;其中,CT 4-i和CT 5-i分别为所述第四透镜和所述第五透镜任意位置处法线方向的厚度,CT 4和CT 5分别为所述第四透镜和所述第五透镜的中心厚度;所述光学成像镜头满足条件式:1.0<f 1/f<1.5;其中,f 1为所述第一透镜的焦距,f为所述光学成像镜头的焦距。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:25<(R 9/CT 5)+(R 10/CT 5)<35;其中,R 9为所述第五透镜的物侧表面的曲率半径,R 10为所述第五透镜的像侧表面的曲率半径,CT 5为所述第五透镜的中心厚度。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:0<R 7/R 8<0.5;其中,R 7为所述第四透镜的物侧表面的曲率半径,R 8为所述第四透镜的像侧表面的曲率半径。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:5.0<(T 12/T 23)+(T 34/T 45)+(T 56/T 67)<7.0;其中,T 12为所述第一透镜与所述第二透镜在光轴上的间隔距离,T 23为所述第二透镜与所述第三透镜在光轴上的间隔距离,T 34为所述第三透镜与所述第四透镜在光轴上的间隔距离,T 45为所述第四透镜与所述第五透镜在光轴上的间隔距离,T 56为所述第五透镜与所述第六透镜在光轴上的间隔距离,T 67为所述第六透镜与所述第七透镜在光轴上的间隔距离。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:1.0<Td/ImgH<1.5;其中,Td为所述第一透镜的物侧表面到所述第七透镜的像侧表面在光轴上的距离,ImgH为所述光学成像镜头在成像面上面的半像高。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述光学成像镜头满足条件式:0<f 5/f 4<10;其中,f 4为所述第四透镜的焦距,f 5为所述第五透镜的焦距。
- 根据权利要求1所述的光学成像镜头,其特征在于,所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜以及所述第七透镜均为塑胶非球面透镜。
- 根据权利要求1至7中任一项所述的光学成像镜头,其特征在于,所述光学成像镜头还包括:设置于所述第一透镜物侧的光阑,以及设置于所述第七透镜与成像面之间的滤光片。
- 一种成像设备,其特征在于,包括如权利要求1至8中任一项所述的光学成像镜头以及用于将所述光学成像镜头形成的光学图像转换为电信号的成像元件。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19907109.3A EP3876020A4 (en) | 2019-01-02 | 2019-11-07 | OPTICAL IMAGING LENS AND IMAGING DEVICE |
US16/858,581 US11294151B2 (en) | 2019-01-02 | 2020-04-25 | Optical imaging lens, camera module and mobile phone |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910000729.1A CN109324398B (zh) | 2019-01-02 | 2019-01-02 | 光学成像镜头及成像设备 |
CN201910000729.1 | 2019-01-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/858,581 Continuation US11294151B2 (en) | 2019-01-02 | 2020-04-25 | Optical imaging lens, camera module and mobile phone |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020140604A1 true WO2020140604A1 (zh) | 2020-07-09 |
Family
ID=65257087
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/116133 WO2020140604A1 (zh) | 2019-01-02 | 2019-11-07 | 光学成像镜头及成像设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11294151B2 (zh) |
EP (1) | EP3876020A4 (zh) |
CN (1) | CN109324398B (zh) |
WO (1) | WO2020140604A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109324398B (zh) * | 2019-01-02 | 2019-04-02 | 江西联益光学有限公司 | 光学成像镜头及成像设备 |
CN109597188B (zh) * | 2019-02-13 | 2024-04-12 | 浙江舜宇光学有限公司 | 摄像镜头组 |
CN109870787B (zh) * | 2019-03-20 | 2020-11-17 | 江西联益光学有限公司 | 一种光学成像镜头 |
CN110376721B (zh) * | 2019-08-29 | 2024-04-05 | 浙江舜宇光学有限公司 | 光学成像系统 |
CN113885171B (zh) * | 2019-11-01 | 2024-07-30 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN111897110B (zh) * | 2020-08-14 | 2023-01-10 | 玉晶光电(厦门)有限公司 | 光学成像镜头 |
CN112629669B (zh) * | 2020-12-24 | 2021-12-31 | 西安中科立德红外科技有限公司 | 双波段共口径大靶面的光学无热化红外镜头及光学系统 |
CN113109929B (zh) * | 2021-06-16 | 2021-09-10 | 江西联创电子有限公司 | 光学成像镜头及成像设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4597641A (en) * | 1983-09-08 | 1986-07-01 | Asahi Kogaku Kogyo Kabushiki Kaisha | Variable-power copying lens |
CN204028445U (zh) * | 2013-06-21 | 2014-12-17 | 康达智株式会社 | 摄像镜头 |
CN106950681A (zh) * | 2017-05-22 | 2017-07-14 | 浙江舜宇光学有限公司 | 摄像镜头 |
JP2017156570A (ja) * | 2016-03-02 | 2017-09-07 | 株式会社リコー | 結像レンズ、カメラ装置、及びセンシング装置 |
CN206594355U (zh) * | 2017-03-14 | 2017-10-27 | 桂林电子科技大学 | 一种用于机器视觉检测的固液混合型复消色差连续变焦镜头 |
CN107817581A (zh) * | 2017-10-19 | 2018-03-20 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN109324398A (zh) * | 2019-01-02 | 2019-02-12 | 江西联益光学有限公司 | 光学成像镜头及成像设备 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106950631A (zh) | 2017-05-09 | 2017-07-14 | 华中科技大学 | 一种基于介质微柱阵列的红外吸波体及制备方法 |
WO2019007045A1 (zh) * | 2017-07-06 | 2019-01-10 | 浙江舜宇光学有限公司 | 光学成像镜头 |
JP6372905B1 (ja) * | 2017-10-19 | 2018-08-15 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | 撮像光学レンズ |
JP6363783B1 (ja) * | 2017-10-19 | 2018-07-25 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | 撮像光学レンズ |
JP6363782B1 (ja) * | 2017-10-19 | 2018-07-25 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | 撮像光学レンズ |
JP6377234B1 (ja) * | 2017-10-19 | 2018-08-22 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | 撮像光学レンズ |
JP6360958B1 (ja) * | 2017-10-19 | 2018-07-18 | エーエーシー テクノロジーズ ピーティーイー リミテッドAac Technologies Pte.Ltd. | 撮像光学レンズ |
CN107817501B (zh) | 2017-10-27 | 2021-07-13 | 广东电网有限责任公司机巡作业中心 | 一种可变扫描频率的点云数据处理方法 |
WO2019100768A1 (zh) * | 2017-11-22 | 2019-05-31 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN108318998B (zh) * | 2018-03-13 | 2020-09-18 | 瑞声光学解决方案私人有限公司 | 摄像光学镜头 |
CN115755349A (zh) * | 2018-05-29 | 2023-03-07 | 三星电机株式会社 | 光学成像系统 |
CN109031628B (zh) * | 2018-10-29 | 2023-08-04 | 浙江舜宇光学有限公司 | 光学成像镜片组 |
-
2019
- 2019-01-02 CN CN201910000729.1A patent/CN109324398B/zh active Active
- 2019-11-07 EP EP19907109.3A patent/EP3876020A4/en active Pending
- 2019-11-07 WO PCT/CN2019/116133 patent/WO2020140604A1/zh unknown
-
2020
- 2020-04-25 US US16/858,581 patent/US11294151B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4597641A (en) * | 1983-09-08 | 1986-07-01 | Asahi Kogaku Kogyo Kabushiki Kaisha | Variable-power copying lens |
CN204028445U (zh) * | 2013-06-21 | 2014-12-17 | 康达智株式会社 | 摄像镜头 |
JP2017156570A (ja) * | 2016-03-02 | 2017-09-07 | 株式会社リコー | 結像レンズ、カメラ装置、及びセンシング装置 |
CN206594355U (zh) * | 2017-03-14 | 2017-10-27 | 桂林电子科技大学 | 一种用于机器视觉检测的固液混合型复消色差连续变焦镜头 |
CN106950681A (zh) * | 2017-05-22 | 2017-07-14 | 浙江舜宇光学有限公司 | 摄像镜头 |
CN107817581A (zh) * | 2017-10-19 | 2018-03-20 | 瑞声科技(新加坡)有限公司 | 摄像光学镜头 |
CN109324398A (zh) * | 2019-01-02 | 2019-02-12 | 江西联益光学有限公司 | 光学成像镜头及成像设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3876020A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3876020A4 (en) | 2022-01-26 |
CN109324398A (zh) | 2019-02-12 |
EP3876020A1 (en) | 2021-09-08 |
CN109324398B (zh) | 2019-04-02 |
US20200257087A1 (en) | 2020-08-13 |
US11294151B2 (en) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020140604A1 (zh) | 光学成像镜头及成像设备 | |
TWI440922B (zh) | 光學取像透鏡組 | |
WO2021238648A1 (zh) | 光学成像镜头及成像设备 | |
KR101412627B1 (ko) | 왜곡이 보정된 광각 촬영 렌즈 시스템 | |
CN109839726B (zh) | 摄像光学镜头 | |
WO2020140788A1 (zh) | 长焦镜头及移动终端 | |
WO2021208277A1 (zh) | 光学镜头及成像设备 | |
WO2021087669A1 (zh) | 光学系统、取像装置及电子装置 | |
TW201431373A (zh) | 攝像裝置及電子機器 | |
TW201310057A (zh) | 成像用光學透鏡組 | |
WO2020062476A1 (zh) | 微型摄像镜头 | |
CN110967805B (zh) | 光学摄像镜头组、取像模组及电子装置 | |
CN112505902B (zh) | 广角镜头及成像设备 | |
CN113391430A (zh) | 光学系统、镜头模组和电子设备 | |
CN112612122A (zh) | 光学成像镜头 | |
CN112987256A (zh) | 光学系统、摄像模组及电子设备 | |
CN113433674A (zh) | 光学镜头及成像设备 | |
CN210775999U (zh) | 光学系统、镜头模组和电子设备 | |
WO2021035758A1 (zh) | 光学系统、镜头模组和电子设备 | |
WO2022056934A1 (zh) | 光学成像系统、取像模组和电子装置 | |
CN114740604B (zh) | 光学系统、摄像模组和电子设备 | |
CN114740599B (zh) | 光学系统、摄像模组和电子设备 | |
CN114594577B (zh) | 光学系统、摄像模组及电子设备 | |
CN114326019B (zh) | 光学系统、取像模组及电子设备 | |
CN113433652B (zh) | 光学系统、镜头模组和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19907109 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019907109 Country of ref document: EP Effective date: 20210603 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |