WO2020140583A1 - 一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法 - Google Patents

一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法 Download PDF

Info

Publication number
WO2020140583A1
WO2020140583A1 PCT/CN2019/113564 CN2019113564W WO2020140583A1 WO 2020140583 A1 WO2020140583 A1 WO 2020140583A1 CN 2019113564 W CN2019113564 W CN 2019113564W WO 2020140583 A1 WO2020140583 A1 WO 2020140583A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
positive
ground fault
capacitive
negative
Prior art date
Application number
PCT/CN2019/113564
Other languages
English (en)
French (fr)
Inventor
温才权
闫茂华
全杰雄
黄永丰
Original Assignee
中国南方电网有限责任公司超高压输电公司梧州局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南方电网有限责任公司超高压输电公司梧州局 filed Critical 中国南方电网有限责任公司超高压输电公司梧州局
Publication of WO2020140583A1 publication Critical patent/WO2020140583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Definitions

  • the invention relates to DC system fault detection technology, in particular to a detection device and method for distinguishing capacitive and resistive transient ground fault branches.
  • an object of the present invention is to provide a detection device and method for distinguishing a capacitive and resistive DC system transient ground fault branch with high accuracy and high efficiency.
  • a detection device for distinguishing capacitive and resistive transient ground fault branch including insulation monitoring equipment, module monitoring equipment and current transformer; insulation monitoring equipment is connected to the positive bus, negative bus of the DC system and the earth respectively; current transformer There are a plurality of them, which are respectively connected to each branch of the DC system; the insulation monitoring equipment and the current transformer are connected to the module monitoring equipment.
  • the module monitoring device includes a main processor, an off-chip FLASH storage unit, a 16-channel signal amplification processing unit, a 16-channel current transformer acquisition interface unit, a CAN transceiver, a CAN communication interface, an LED indication unit and an address dial Coder;
  • the main processor is connected to the CAN communication interface through the CAN transceiver, and the CAN communication interface is connected to the insulation monitoring device through the CAN bus;
  • the off-chip FLASH storage unit, address dialer and LED indicator unit are all connected to the main processor
  • the main processor is connected to the 16-channel current transformer acquisition interface unit through the 16-channel signal amplification processing unit, and the 16-channel current transformer acquisition interface unit is connected to the current transformer through a signal line.
  • the main processor is provided with an AD acquisition unit, and the 16-channel signal amplification processing unit is connected to the main processor through the AD acquisition unit.
  • a detection method for distinguishing capacitive and resistive instantaneous ground fault branch, based on the detection device described above, is characterized by comprising the following steps:
  • Insulation monitoring equipment performs real-time voltage sampling and measurement on the connected DC system, and calculates the positive-to-earth voltage difference and the negative-to-earth voltage difference before and after the instantaneous ground fault;
  • the insulation monitoring equipment judges whether a transient ground fault occurs in the DC system and the polarity of the ground fault according to the voltage change relationship between the positive pole-to-earth voltage difference and the negative pole-to-earth voltage difference;
  • the insulation monitoring equipment determines that an instantaneous ground fault has occurred, it sends the fault information to the module monitoring equipment.
  • the module monitoring equipment acquires the current data of the current transformers connected to each branch, and according to the acquired The change rule of the current data of each branch locates the branch where the instantaneous ground fault occurs, and distinguishes whether the branch has a capacitive or resistive instantaneous ground fault according to the branch current change direction.
  • step A specifically includes:
  • A4. Subtract the acquired first positive-to-earth voltage and first negative-to-earth voltage to obtain the first positive-to-negative voltage difference; and obtain the second positive-to-earth voltage and the second negative-to-earth voltage The subtraction is performed to obtain the second positive-negative electrode-to-earth voltage difference; the obtained third positive-to-earth voltage is subtracted from the third negative-to-earth voltage to obtain the third positive-negative electrode-to-earth voltage difference.
  • step B specifically includes:
  • step C specifically includes:
  • the module monitoring equipment analyzes the waveform of the current data transmitted by the current transformer. If the first pulse is the peak and the peak value exceeds the threshold of the leakage current mutation, the branch is judged to be a fault branch and the current The direction of change is positive; if the first pulse is a valley, and the valley value reaches the threshold of the leakage current mutation amount, the branch is judged to be a fault branch, and the direction of current change is reverse; if the first pulse is If the peak or valley value does not reach the threshold of the leakage current mutation, the current is considered to be unchanged, and the branch is judged to be a non-fault branch;
  • the device of the present invention can automatically and accurately detect the instantaneous ground fault in the DC system without relying on manual operation, thereby reducing the workload of the staff and improving the efficiency of fault detection.
  • the device of the present invention is provided with a current transformer. In the process of positioning the instantaneous ground fault feeder, no additional AC signal is injected, but according to the current change direction of the branch where the instantaneous ground fault occurs and the instantaneous grounding polarity of the system. Fault branch location, distinguish between resistive and capacitive instantaneous ground fault branch, which can greatly improve the safety of DC system work.
  • the method of the present invention is simple and easy to operate, it can automatically and accurately judge the instantaneous ground fault of the DC system, locate the fault branch, and distinguish whether it is a resistive or capacitive instantaneous ground fault, and reduce the instantaneous grounding of the DC system Difficulty in finding faults.
  • FIG. 1 is a structural block diagram of the detection device of the present invention.
  • FIG. 2 is a structural block diagram of the module monitoring device of the present invention.
  • a detection device for distinguishing capacitive and resistive transient ground fault branches includes an insulation monitoring device 1, a module monitoring device 2, and a current transformer 3.
  • the insulation monitoring device 1 is connected to the positive bus (+Km), negative bus (-Km) and earth (GND) of the DC system; there are multiple current transformers 3, which are respectively connected to each branch of the DC system; insulation monitoring equipment 1 and current transformer 3 are connected to module monitoring equipment 2.
  • the module monitoring device 2 includes a main processor 4, an off-chip FLASH storage unit 5, an AD acquisition unit 6, a 16-channel signal amplification processing unit 7, a 16-channel current transformer acquisition interface unit 8, a CAN transceiver 9 , CAN communication interface 10, LED indicator unit 11 and address dialer 12.
  • the off-chip FLASH storage unit 5, AD acquisition unit 6, LED indication unit 11 and address dialer 12 are all connected to the main processor 4.
  • the main processor 4 is connected to the CAN communication interface 10 through the CAN transceiver 9, and the CAN communication interface 10 is connected to the insulation monitoring device 1 through the CAN bus.
  • the main processor 4 is connected to the 16-channel current transformer acquisition interface unit 8 through the AD acquisition unit 6, the 16-channel signal amplification processing unit 7 in turn, and the 16-channel current transformer acquisition interface unit 8 is connected to the current transformers on each branch through the signal line 3 Connect.
  • a detection method for distinguishing capacitive and resistive instantaneous ground fault branch specifically includes the following steps:
  • Insulation monitoring equipment performs real-time voltage sampling and measurement on the connected DC system, and calculates the positive-to-earth voltage difference and the negative-to-earth voltage difference before and after the instantaneous ground fault; specifically including:
  • A4. Subtract the acquired first positive-to-earth voltage and first negative-to-earth voltage to obtain the first positive-to-negative voltage difference; and obtain the second positive-to-earth voltage and the second negative-to-earth voltage The subtraction is performed to obtain the second positive-negative electrode-to-earth voltage difference; the obtained third positive-to-earth voltage is subtracted from the third negative-to-earth voltage to obtain the third positive-negative electrode-to-earth voltage difference.
  • Insulation monitoring equipment determines whether a transient ground fault occurs in the DC system and the polarity of the ground fault according to the voltage change relationship between the positive electrode-to-earth voltage difference and the negative electrode-to-earth voltage difference; specifically including:
  • the insulation monitoring equipment determines that an instantaneous ground fault has occurred, it sends the fault information to the module monitoring equipment.
  • the module monitoring equipment acquires the current data of the current transformers connected to each branch, and according to the acquired
  • the change rule of the current data of each branch locates the branch where the instantaneous ground fault occurs, and distinguishes whether the branch has a capacitive or resistive instantaneous ground fault according to the direction of the branch current change; the specific includes:
  • the module monitoring equipment analyzes the waveform of the current data transmitted by the current transformer. If the first pulse is the peak and the peak value exceeds the threshold of the leakage current mutation, the branch is judged to be a fault branch and the current The direction of change is positive; if the first pulse is a valley, and the valley value reaches the threshold of the leakage current mutation amount, the branch is judged to be a fault branch, and the direction of current change is reverse; if the first pulse is If the peak or valley value does not reach the threshold of the leakage current mutation, the current is considered to be unchanged, and the branch is judged to be a non-fault branch;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Abstract

一种区分电容性与电阻性瞬时接地故障支路的检测装置,包括绝缘监测设备(1)、模块监测设备(2)和电流互感器(3);绝缘监测设备(1)分别与直流系统的正极母线、负极母线和大地相连;电流互感器(3)连接在直流系统的各支路上;绝缘监测设备(1)和电流互感器(3)均与模块监测设备(2)连接。还公开了一种区分电容性与电阻性瞬时接地故障支路的检测方法,模块监测设备(2)通过对连接在支路上的电流互感器(3)进行电流数据获取,根据其变化规则,对发生瞬时接地故障的支路进行定位,并结合绝缘监测设备(1)的信息,区分出该支路是发生电容性还是电阻性瞬时接地故障。本方案能够快速准确地检测和区分电容性与电阻性瞬时接地故障支路,可广泛应用于电力系统领域。

Description

一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法 技术领域
本发明涉及直流系统故障检测技术,具体涉及一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法。
背景技术
目前,在变电站直流电源系统运行过程中,时常会出现短时接地故障,即瞬时接地故障,从而影响变电站直流电源系统的正常工作。为了保证变电站直流电源系统的可靠工作,检修工作人员很有必要及时的发现和检测出存在故障隐患的支路。
但是,由于发生故障的时间太短,现有的检测方法基本上都是依赖人工操作、蹲守,而且大部分在线绝缘监测装置可能监测不到故障的发生,更谈不上对发生瞬时接地故障支路的判断以及定位。因此,这样不仅会增加工作人员的工作负担,而且效率低。另外,现有的检测方法没法排查故障隐患。
发明内容
为了解决上述技术问题,本发明的目的是提供一种准确性高且效率高的区分电容性和电阻性的直流系统瞬时接地故障支路的检测装置及方法。
为实现上述目的,本发明的技术方案为:
一种区分电容性与电阻性瞬时接地故障支路的检测装置,包括绝缘监测设备、模块监测设备和电流互感器;绝缘监测设备分别与直流系统的正极母线、负极母线和大地相连;电流互感器为多个,分别连接在直流系统的各支路上;绝缘监测设备和电流互感器均与模块监测设备连接。
进一步地,所述的模块监测设备包括主处理器、片外FLASH存储单元、 16路信号放大处理单元、16路电流互感器采集接口单元、CAN收发器、CAN通信接口、LED指示单元和地址拨码器;主处理器通过CAN收发器与CAN通信接口连接,CAN通信接口通过CAN总线与所述的绝缘监测设备连接;片外FLASH存储单元、地址拨码器和LED指示单元均与主处理器连接;主处理器通过16路信号放大处理单元与16路电流互感器采集接口单元连接,16路电流互感器采集接口单元通过信号线与所述的电流互感器连接。
进一步地,所述的主处理器设有AD采集单元,16路信号放大处理单元通过AD采集单元与主处理器连接。
一种区分电容性与电阻性瞬时接地故障支路的检测方法,基于上述的检测装置实现,其特征在于:包括如下步骤:
A、绝缘监测设备对连接的直流系统进行实时电压采样和测量,并计算得到瞬时接地故障前后正极对地电压差值和负极对地电压差值;
B、绝缘监测设备根据正极对地电压差值以及负极对地电压差值之间的电压变化关系,判断直流系统是否发生瞬时接地故障以及接地故障的极性;
C、当绝缘监测设备判断发生瞬时接地故障后,将故障信息发送至模块监测设备,模块监测设备获取此故障信息后,对连接在各支路上的电流互感器进行电流数据获取,并且根据获取的各支路的电流数据的变化规则,对发生瞬时接地故障的支路进行定位,并根据该支路电流变化方向,区分出该支路是发生电容性还是电阻性瞬时接地故障。
进一步地,所述步骤A具体包括:
A1、在故障发生前,获取直流系统的第一正极对地电压和第一负极对地电压;
A2、在故障发生时,获取直流系统的第二正极对地电压和第二负极对地 电压;
A3、在故障发生后,获取直流系统的第三正极对地电压和第三负极对地电压;
A4、将获取的第一正极对地电压与第一负极对地电压进行相减,得到第一正负极对地电压差值;将获取的第二正极对地电压与第二负极对地电压进行相减,得到第二正负极对地电压差值;将获取的第三正极对地电压与第三负极对地电压进行相减,得到第三正负极对地电压差值。
进一步地,所述步骤B具体包括:
B1、判断当第一正负极对地电压差值大于第二正负极对地电压差值时,第二正负极对地电压差值是否小于第三正负极对地电压差值;若是,则判断直流系统发生瞬时接地故障,反之,则判断直流系统不存在瞬时接地故障;
B2、当判断出直流系统发生瞬时接地故障后,如果第二正极对地电压大于第二负极对地电压,则判断直流系统发生负极瞬时接地故障,反之,则判断直流系统发生正极瞬时接地故障。
进一步地,所述步骤C具体包括:
C1、模块监测设备对电流互感器传过来的电流数据的波形进行分析,若第一个脉冲为波峰,且峰值达到的漏电流突变量的门限以上,判断该支路为故障支路,且电流变化方向为正向;若第一个脉冲为波谷,且谷值达到的漏电流突变量的门限以下,判断该支路为故障支路,且电流变化方向为反向;若第一个脉冲的峰值或谷值没有达到漏电流突变量的门限,则认为电流无变化,判断该支路为非故障支路;
C2、当直流系统瞬时接地故障为正极时,如果支路电流变化方向也为正向,即判断该支路为电阻性瞬时接地故障支路,如果支路电流变化方向为反 向,则判断该支路为电容性瞬时接地故障支路;
C3、当直流系统瞬时接地故障为负极时,如果支路电流变化方向也为反向,即判断该支路为电阻性瞬时接地故障支路,如果支路电流变化方向为正向,则判断该支路为电容性瞬时接地故障支路。
与现有技术相比,本发明的有益效果是:
1、本发明的装置能够自动准确地对直流系统发生瞬时接地故障进行检测,无需依赖人工操作,从而减轻工作人员的工作负担,提高故障检测的效率。
2、本发明的装置设有电流互感器,在进行瞬时接地故障馈线定位过程中,无需额外交流信号的注入,而是根据发生瞬时接地故障支路的电流变化方向和系统瞬时接地极性,进行故障支路定位,区分电阻性与电容性瞬时接地故障支路,这样能够大大提高直流系统工作的安全性。
3、本发明的方法简单而且易于操作,能够自动准确地对直流系统发生瞬时接地故障进行判断,定位出故障支路,并区分出是电阻性还是电容性瞬时接地故障,降低直流系统发生瞬时接地故障的查找难度。
附图说明
图1是本发明检测装置的结构框图;
图2是本发明模块监测设备的结构框图;
附图标记说明:1-绝缘监测设备;2-模块监测设备;3-电流互感器;4-主处理器;5-片外FLASH存储单元;6-AD采集单元;7-16路信号放大处理单元;8-16路电流互感器采集接口单元;9-CAN收发器;10-CAN通信接口;11-LED指示单元;12-地址拨码器;+Km-直流系统的正极母线;-Km-直流系统的负极母线。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种区分电容性与电阻性瞬时接地故障支路的检测装置,包括绝缘监测设备1、模块监测设备2和电流互感器3。绝缘监测设备1分别与直流系统的正极母线(+Km)、负极母线(-Km)和大地(GND)相连;电流互感器3为多个,分别连接在直流系统的各支路上;绝缘监测设备1和电流互感器3均与模块监测设备2连接。
如图2所示,模块监测设备2包括主处理器4、片外FLASH存储单元5、AD采集单元6、16路信号放大处理单元7、16路电流互感器采集接口单元8、CAN收发器9、CAN通信接口10、LED指示单元11和地址拨码器12。片外FLASH存储单元5、AD采集单元6、LED指示单元11和地址拨码器12均与主处理器4连接。主处理器4通过CAN收发器9与CAN通信接口10连接,CAN通信接口10通过CAN总线与绝缘监测设备1连接。主处理器4依次通过AD采集单元6、16路信号放大处理单元7与16路电流互感器采集接口单元8连接,16路电流互感器采集接口单元8通过信号线与各支路上的电流互感器3连接。
一种区分电容性与电阻性瞬时接地故障支路的检测方法,基于上述的检测装置实现,具体包括如下步骤:
A、绝缘监测设备对连接的直流系统进行实时电压采样和测量,并计算得到瞬时接地故障前后正极对地电压差值和负极对地电压差值;具体包括:
A1、在故障发生前,获取直流系统的第一正极对地电压和第一负极对地电压;
A2、在故障发生时,获取直流系统的第二正极对地电压和第二负极对地电压;
A3、在故障发生后,获取直流系统的第三正极对地电压和第三负极对地电压;
A4、将获取的第一正极对地电压与第一负极对地电压进行相减,得到第一正负极对地电压差值;将获取的第二正极对地电压与第二负极对地电压进行相减,得到第二正负极对地电压差值;将获取的第三正极对地电压与第三负极对地电压进行相减,得到第三正负极对地电压差值。
B、绝缘监测设备根据正极对地电压差值以及负极对地电压差值之间的电压变化关系,判断直流系统是否发生瞬时接地故障以及接地故障的极性;具体包括:
B1、判断当第一正负极对地电压差值大于第二正负极对地电压差值时,第二正负极对地电压差值是否小于第三正负极对地电压差值;若是,则判断直流系统发生瞬时接地故障,反之,则判断直流系统不存在瞬时接地故障;
B2、当判断出直流系统发生瞬时接地故障后,如果第二正极对地电压大于第二负极对地电压,则判断直流系统发生负极瞬时接地故障,反之,则判断直流系统发生正极瞬时接地故障。
C、当绝缘监测设备判断发生瞬时接地故障后,将故障信息发送至模块监测设备,模块监测设备获取此故障信息后,对连接在各支路上的电流互感器进行电流数据获取,并且根据获取的各支路的电流数据的变化规则,对发生瞬时接地故障的支路进行定位,并根据该支路电流变化方向,区分出该支路是发生电容性还是电阻性瞬时接地故障;具体包括:
C1、模块监测设备对电流互感器传过来的电流数据的波形进行分析,若 第一个脉冲为波峰,且峰值达到的漏电流突变量的门限以上,判断该支路为故障支路,且电流变化方向为正向;若第一个脉冲为波谷,且谷值达到的漏电流突变量的门限以下,判断该支路为故障支路,且电流变化方向为反向;若第一个脉冲的峰值或谷值没有达到漏电流突变量的门限,则认为电流无变化,判断该支路为非故障支路;
C2、当直流系统瞬时接地故障为正极时,如果支路电流变化方向也为正向,即判断该支路为电阻性瞬时接地故障支路,如果支路电流变化方向为反向,则判断该支路为电容性瞬时接地故障支路;
C3、当直流系统瞬时接地故障为负极时,如果支路电流变化方向也为反向,即判断该支路为电阻性瞬时接地故障支路,如果支路电流变化方向为正向,则判断该支路为电容性瞬时接地故障支路。
特别说明:电阻性瞬时接地故障支路才认为是故障支路,电容性瞬时接地故障支路则认为是干扰。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (7)

  1. 一种区分电容性与电阻性瞬时接地故障支路的检测装置,其特征在于:
    包括绝缘监测设备、模块监测设备和电流互感器;
    绝缘监测设备分别与直流系统的正极母线、负极母线和大地相连;
    电流互感器为多个,分别连接在直流系统的各支路上;绝缘监测设备和电流互感器均与模块监测设备连接。
  2. 根据权利要求1所述的一种区分电容性与电阻性瞬时接地故障支路的检测装置,其特征在于:
    所述的模块监测设备包括主处理器、片外FLASH存储单元、16路信号放大处理单元、16路电流互感器采集接口单元、CAN收发器、CAN通信接口、LED指示单元和地址拨码器;
    主处理器通过CAN收发器与CAN通信接口连接,CAN通信接口通过CAN总线与所述的绝缘监测设备连接;
    片外FLASH存储单元、地址拨码器和LED指示单元均与主处理器连接;
    主处理器通过16路信号放大处理单元与16路电流互感器采集接口单元连接,16路电流互感器采集接口单元通过信号线与所述的电流互感器连接。
  3. 根据权利要求1所述的一种区分电容性与电阻性瞬时接地故障支路的检测装置,其特征在于:
    所述的主处理器设有AD采集单元,16路信号放大处理单元通过AD采集单元与主处理器连接。
  4. 一种区分电容性与电阻性瞬时接地故障支路的检测方法,基于权利要求1至3任一所述的检测装置实现,其特征在于:
    包括如下步骤:
    A、绝缘监测设备对连接的直流系统进行实时电压采样和测量,并计算得到瞬时接地故障前后正极对地电压差值和负极对地电压差值;
    B、绝缘监测设备根据正极对地电压差值以及负极对地电压差值之间的电压变化关系,判断直流系统是否发生瞬时接地故障以及接地故障的极性;
    C、当绝缘监测设备判断发生瞬时接地故障后,将故障信息发送至模块监测设备,模块监测设备获取此故障信息后,对连接在各支路上的电流互感器进行电流数据获取,并且根据获取的各支路的电流数据的变化规则,对发生瞬时接地故障的支路进行定位,并根据该支路电流变化方向,区分出该支路是发生电容性还是电阻性瞬时接地故障。
  5. 根据权利要求4所述的一种区分电容性与电阻性瞬时接地故障支路的检测装置的检测方法,其特征在于:
    所述步骤A具体包括:
    A1、在故障发生前,获取直流系统的第一正极对地电压和第一负极对地电压;
    A2、在故障发生时,获取直流系统的第二正极对地电压和第二负极对地电压;
    A3、在故障发生后,获取直流系统的第三正极对地电压和第三负极对地电压;
    A4、将获取的第一正极对地电压与第一负极对地电压进行相减,得到第一正负极对地电压差值;将获取的第二正极对地电压与第二负极对地电压进行相减,得到第二正负极对地电压差值;将获取的第三正极对地电压与第三负极对地电压进行相减,得到第三正负极对地电压差值。
  6. 根据权利要求5所述的一种区分电容性与电阻性瞬时接地故障支路的检测装置的检测方法,其特征在于:
    所述步骤B具体包括:
    B1、判断当第一正负极对地电压差值大于第二正负极对地电压差值时,第二正负极对地电压差值是否小于第三正负极对地电压差值;若是,则判断直流系统发生瞬时接地故障,反之,则判断直流系统不存在瞬时接地故障;
    B2、当判断出直流系统发生瞬时接地故障后,如果第二正极对地电压大于第二负极对地电压,则判断直流系统发生负极瞬时接地故障,反之,则判断直流系统发生正极瞬时接地故障。
  7. 根据权利要求6所述的一种区分电容性与电阻性瞬时接地故障支路的检测装置的检测方法,其特征在于:
    所述步骤C具体包括:
    C1、模块监测设备对电流互感器传过来的电流数据的波形进行分析,若第一个脉冲为波峰,且峰值达到的漏电流突变量的门限以上,判断该支路为故障支路,且电流变化方向为正向;若第一个脉冲为波谷,且谷值达到的漏电流突变量的门限以下,判断该支路为故障支路,且电流变化方向为反向;若第一个脉冲的峰值或谷值没有达到漏电流突变量的门限,则认为电流无变化,判断该支路为非故障支路;
    C2、当直流系统瞬时接地故障为正极时,如果支路电流变化方向也为正向,即判断该支路为电阻性瞬时接地故障支路,如果支路电流变化方向为反向,则判断该支路为电容性瞬时接地故障支路;
    C3、当直流系统瞬时接地故障为负极时,如果支路电流变化方向也为反向,即判断该支路为电阻性瞬时接地故障支路,如果支路电流变化方向为正 向,则判断该支路为电容性瞬时接地故障支路。
PCT/CN2019/113564 2019-01-04 2019-10-28 一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法 WO2020140583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910008400.X 2019-01-04
CN201910008400.XA CN109725229B (zh) 2019-01-04 2019-01-04 一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法

Publications (1)

Publication Number Publication Date
WO2020140583A1 true WO2020140583A1 (zh) 2020-07-09

Family

ID=66299580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113564 WO2020140583A1 (zh) 2019-01-04 2019-10-28 一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法

Country Status (2)

Country Link
CN (1) CN109725229B (zh)
WO (1) WO2020140583A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113359003A (zh) * 2021-04-26 2021-09-07 中国南方电网有限责任公司超高压输电公司梧州局 直流寄生回路检测系统和方法
CN114325213A (zh) * 2021-11-17 2022-04-12 国网江苏省电力有限公司盐城供电分公司 一种直流输电系统故障检测方法
CN117233532A (zh) * 2023-09-21 2023-12-15 中科智寰(北京)科技有限公司 直流电网接地故障在线定位与保护系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109725229B (zh) * 2019-01-04 2023-09-29 中国南方电网有限责任公司超高压输电公司梧州局 一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法
CN110208719A (zh) * 2019-05-30 2019-09-06 国网辽宁省电力有限公司电力科学研究院 一种直流系统寄生回路的检测装置及方法
JP7094918B2 (ja) * 2019-06-04 2022-07-04 矢崎総業株式会社 地絡検出装置
CN111025182A (zh) * 2019-11-21 2020-04-17 国网河南省电力公司商丘供电公司 一种基于stm32f103t6设计的瞬间接地故障查找仪
CN111474403A (zh) * 2020-04-21 2020-07-31 上能电气股份有限公司 一种漏电流检测方法、装置及光伏逆变系统
CN112034283B (zh) * 2020-08-19 2023-04-07 重庆尚翔电气技术有限公司 检测和定位铝电解槽接地故障的装置及其系统和工艺
CN113311298A (zh) * 2021-05-26 2021-08-27 石家庄通合电子科技股份有限公司 一种多段母线输入的分屏支路绝缘检测的方法
CN116559611A (zh) * 2023-07-06 2023-08-08 深圳市云帆自动化技术有限公司 低压绝缘监测及故障定位系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737765A (en) * 1971-06-21 1973-06-05 Hubbell Inc Harvey Isolated power ground fault detector system
DE19525417A1 (de) * 1995-07-12 1997-01-16 Starkstrom Geraetebau Gmbh Anordnung zur Erdschluß-Stromkompensation eines mehrphasigen elektrischen Leitungsnetzes
US20070008666A1 (en) * 2005-07-11 2007-01-11 Nissan Motor Co., Ltd. Ground fault detector for vehicle
CN101682188A (zh) * 2007-05-04 2010-03-24 艾利森电话股份有限公司 用于对位于远处的负载进行电力传输的电力站
EP2306609A2 (en) * 2009-09-24 2011-04-06 General Electric Company Ground fault detection device
EP2386439A2 (en) * 2002-02-19 2011-11-16 BAE Systems Controls Inc. Ground fault detection system and method
CN103558506A (zh) * 2013-10-25 2014-02-05 国家电网公司 非注入式直流系统接地故障查找方法及其装置
CN107064733A (zh) * 2017-03-15 2017-08-18 长沙理工大学 配电网柔性接地装置单相接地故障选线与消弧方法
CN107436394A (zh) * 2016-05-25 2017-12-05 田京涛 一种区域接地故障检测方法、装置和系统
CN109725229A (zh) * 2019-01-04 2019-05-07 中国南方电网有限责任公司超高压输电公司梧州局 一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080641A (en) * 1976-07-12 1978-03-21 Rca Corporation Ground fault detector
US4796144A (en) * 1987-08-24 1989-01-03 Federal Pioneer Limited Ground fault detector
CN102411120B (zh) * 2011-11-28 2013-08-07 天津市电力公司 一种变电站直流系统接地选线装置
CN103809070B (zh) * 2012-11-15 2017-11-17 施耐德电器工业公司 基于三相电流变化进行的方向接地故障检测方法和装置
CN103135038B (zh) * 2013-02-01 2015-08-05 广州优维电子科技有限公司 直流系统交流串电及绝缘故障监测选线方法
CN203673002U (zh) * 2013-11-25 2014-06-25 国家电网公司 一种直流系统接地故障查找设备
CN205195251U (zh) * 2015-10-30 2016-04-27 河南平芝高压开关有限公司 与gis设备配套使用的汇控柜
CN105510773B (zh) * 2016-01-28 2018-09-21 广州优维电子科技有限公司 一种直流系统接地故障检测装置
CN105938175B (zh) * 2016-05-31 2019-03-12 贵阳英纳瑞电气有限公司 基于dsp的直流系统瞬间接地在线监测方法及装置制造
CN107607839A (zh) * 2017-09-08 2018-01-19 国网山东省电力公司淄博供电公司 单臂不平衡电桥绝缘监测装置
CN209992644U (zh) * 2019-01-04 2020-01-24 中国南方电网有限责任公司超高压输电公司梧州局 一种区分电容性与电阻性瞬时接地故障支路的检测装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737765A (en) * 1971-06-21 1973-06-05 Hubbell Inc Harvey Isolated power ground fault detector system
DE19525417A1 (de) * 1995-07-12 1997-01-16 Starkstrom Geraetebau Gmbh Anordnung zur Erdschluß-Stromkompensation eines mehrphasigen elektrischen Leitungsnetzes
EP2386439A2 (en) * 2002-02-19 2011-11-16 BAE Systems Controls Inc. Ground fault detection system and method
US20070008666A1 (en) * 2005-07-11 2007-01-11 Nissan Motor Co., Ltd. Ground fault detector for vehicle
CN101682188A (zh) * 2007-05-04 2010-03-24 艾利森电话股份有限公司 用于对位于远处的负载进行电力传输的电力站
EP2306609A2 (en) * 2009-09-24 2011-04-06 General Electric Company Ground fault detection device
CN103558506A (zh) * 2013-10-25 2014-02-05 国家电网公司 非注入式直流系统接地故障查找方法及其装置
CN107436394A (zh) * 2016-05-25 2017-12-05 田京涛 一种区域接地故障检测方法、装置和系统
CN107064733A (zh) * 2017-03-15 2017-08-18 长沙理工大学 配电网柔性接地装置单相接地故障选线与消弧方法
CN109725229A (zh) * 2019-01-04 2019-05-07 中国南方电网有限责任公司超高压输电公司梧州局 一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU HAIYAN ; WANG NIANCHUN ; HU YULIN: "Discussion on Insulation Test of Low Voltage Distribution Network", THE 10TH ANNIVERSARY CELEBRATION OF JIANGSU ELECTROTECHNICAL SOCIETY AND THE 2004 ACADEMIC ANNUAL CONFERENCE, 31 December 2004 (2004-12-31), pages 89 - 93, XP009521862 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113359003A (zh) * 2021-04-26 2021-09-07 中国南方电网有限责任公司超高压输电公司梧州局 直流寄生回路检测系统和方法
CN113359003B (zh) * 2021-04-26 2024-04-02 中国南方电网有限责任公司超高压输电公司梧州局 直流寄生回路检测系统和方法
CN114325213A (zh) * 2021-11-17 2022-04-12 国网江苏省电力有限公司盐城供电分公司 一种直流输电系统故障检测方法
CN117233532A (zh) * 2023-09-21 2023-12-15 中科智寰(北京)科技有限公司 直流电网接地故障在线定位与保护系统
CN117233532B (zh) * 2023-09-21 2024-02-09 中科智寰(北京)科技有限公司 直流电网接地故障在线定位与保护系统

Also Published As

Publication number Publication date
CN109725229A (zh) 2019-05-07
CN109725229B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2020140583A1 (zh) 一种区分电容性与电阻性瞬时接地故障支路的检测装置及方法
CN103558506B (zh) 非注入式直流系统接地故障查找方法及其装置
CN103323674A (zh) 光伏并网逆变器的对地绝缘阻抗的实时检测电路和检测方法
CN103439625A (zh) 一种电缆系统故障定位及负荷监控方法
CN204495898U (zh) 一种变压器过电压在线监测系统
CN110673001A (zh) 基于断路器位置状态监测的绝缘监测装置及绝缘监测方法
CN204330962U (zh) 一种电力电缆局部放电信号的定位测量装置
CN103592569B (zh) 一种基于高频量衰减特性的特高压直流输电线路故障测距方法
CN203350349U (zh) 变电站母线相电压越限报警系统
CN104090211B (zh) 一种配电线路高阻接地故障的在线检测方法
CN203249968U (zh) 光伏并网逆变器的对地绝缘阻抗的实时检测电路
CN109375035A (zh) 一种基于沿线电压分布的t接线路不对称接地故障区段判别方法
CN209992644U (zh) 一种区分电容性与电阻性瞬时接地故障支路的检测装置
CN105242167A (zh) 变电站常规采样仪用互感器二次回路断线在线检测方法
CN108649893A (zh) 一种光伏系统接地故障阻值检测和定位方法
CN204166058U (zh) 一种市电波动快速检测电路
CN203811747U (zh) 一种小电流接地选线系统
CN202837385U (zh) 一种过零检测电路
CN203535127U (zh) 一种氧化锌避雷器在线监测仪
CN204374371U (zh) 一种直流绝缘监测装置检测电桥的故障报警电路
CN103197201B (zh) 输电线路低中高电阻接地故障类型识别方法
CN104198888B (zh) 一种单相接地故障判定方法
CN202837471U (zh) 小电流接地系统单相接地故障线的判别装置
CN107727970B (zh) 一种埋地钢制管道交流排流装置的检测方法和系统
CN110082644A (zh) 继电保护线路ct断线识别方法及输电线路故障测距方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907765

Country of ref document: EP

Kind code of ref document: A1