WO2020140573A1 - Mems麦克风 - Google Patents
Mems麦克风 Download PDFInfo
- Publication number
- WO2020140573A1 WO2020140573A1 PCT/CN2019/113331 CN2019113331W WO2020140573A1 WO 2020140573 A1 WO2020140573 A1 WO 2020140573A1 CN 2019113331 W CN2019113331 W CN 2019113331W WO 2020140573 A1 WO2020140573 A1 WO 2020140573A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diaphragm
- back plate
- mems microphone
- support member
- substrate
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R19/00—Electrostatic transducers
- H04R19/005—Electrostatic transducers using semiconductor materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0002—Arrangements for avoiding sticking of the flexible or moving parts
- B81B3/001—Structures having a reduced contact area, e.g. with bumps or with a textured surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0018—Structures acting upon the moving or flexible element for transforming energy into mechanical movement or vice versa, i.e. actuators, sensors, generators
- B81B3/0021—Transducers for transforming electrical into mechanical energy or vice versa
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R19/00—Electrostatic transducers
- H04R19/04—Microphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/12—Non-planar diaphragms or cones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/16—Mounting or tensioning of diaphragms or cones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2201/00—Specific applications of microelectromechanical systems
- B81B2201/02—Sensors
- B81B2201/0257—Microphones or microspeakers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B2203/00—Basic microelectromechanical structures
- B81B2203/01—Suspended structures, i.e. structures allowing a movement
- B81B2203/0127—Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2201/00—Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
- H04R2201/003—Mems transducers or their use
Definitions
- the utility model relates to the technical field of microphones, in particular to a MEMS microphone with dual diaphragms
- MEMS Micro-Electro-Mechanical System
- MEMS devices have obvious advantages in volume, power consumption, weight and price.
- the main application examples of MEMS devices include pressure sensors, accelerometers and silicon microphones.
- Silicon microphones manufactured using MEMS technology have considerable advantages over ECM in terms of miniaturization, performance, reliability, environmental tolerance, cost, and mass production capacity, and quickly occupy consumer electronics such as mobile phones, PDAs, MP3s, and hearing aids Market.
- Silicon microphones manufactured using MEMS technology usually have a movable diaphragm arranged parallel to the solid backplate, and the diaphragm and the backplate form a variable capacitor. The diaphragm moves in response to incident acoustic energy to change the variable capacitance, and thereby generates an electrical signal representing the incident acoustic energy.
- silicon microphones are required to be smaller in size, lower in cost, and more reliable, while the size of silicon microphones becomes smaller, which leads to a decrease in sensitivity and a decrease in signal-to-noise ratio. How to further improve the signal-to-noise ratio of silicon microphones is an urgent problem to be solved.
- the object of the present invention is to provide a MEMS microphone with high sensitivity and signal-to-noise ratio.
- a MEMS microphone including a substrate with a back cavity and a capacitive system provided on the substrate, the capacitive system includes a back plate and the back plate is opposite to the back plate and is provided on the side of the back plate First vibration A membrane, provided on the other side of the backplane, the first diaphragm and the second diaphragm are spaced apart from the backplane and respectively form a first insulation gap and a second insulation gap, the backplane is provided with a plurality of A through hole, the first diaphragm and the second diaphragm are circular, and the MEMS microphone further includes a first through-hole disposed between the first diaphragm and the second diaphragm A support member, one end of the first support member is connected to the center of the first diaphragm, and the other end is connected to the center of the second diaphragm.
- the MEMS microphone further includes at least two second support members disposed between the first diaphragm and the second diaphragm through the through hole, at least two of the second The support members are evenly arranged on the circumference centered on the first support member.
- first support member and/or the second support member is a cylindrical structure.
- first support and/or the second support are not in contact with the back plate.
- a plurality of protrusions are provided on the upper and lower surfaces of the back plate, and the protrusions are used to prevent adhesion of the first diaphragm and the second diaphragm to the back plate.
- it further includes an insulating layer provided on the surface of the substrate, and the capacitance system is connected to the substrate through the insulating layer.
- the back cavity penetrates the substrate and the insulating layer.
- the beneficial effects of the present invention are:
- the present invention effectively avoids unnecessary deflection of the diaphragm by providing a support at the center of the diaphragm, thereby improving the overall sensitivity and signal-to-noise ratio of the MEMS microphone.
- the MEMS microphone of this structure also has a high sound pressure protection function, the manufacturing process is not only simple, but also the production cost is low.
- FIG. 1 is a top view of a MEMS microphone according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view in the direction A-A of FIG. 1 of the embodiment of the utility model
- FIG. 3 is a schematic diagram of the array distribution of insulating support members in an embodiment of the present invention.
- FIG. 4 is a schematic diagram of the MEMS microphone deflection due to ambient pressure in an embodiment of the present invention.
- the MEMS microphone 100 includes a substrate 101 and a capacitance system 103 disposed on the substrate 101 and insulated from the substrate 101.
- the material of the substrate 101 is preferably a semiconductor material, such as silicon, which has a back cavity 102, an upper surface, and a lower surface opposite to the upper surface, an insulating layer 112 is provided on the upper surface of the substrate 101, the back cavity 102 penetrates the insulating layer 11
- the back cavity 102 may be formed by bulk silicon process or dry etching.
- the capacitance system 103 includes a backplate 104 and a first diaphragm 105 and a second diaphragm 106 that are opposite to the backplate 104 and disposed on both sides of the backplate 104, between the first diaphragm 105 and the backplate 104, An insulating member 107 is provided between the second diaphragm 106 and the back plate 104, the insulating member 107 separates the first diaphragm 105 and the back plate 104 by a certain distance and forms a first insulating gap 108, The plates 104 are separated by a certain distance and form a second insulating gap 109.
- the second diaphragm 106 is connected to the substrate 101 through the insulating layer 112.
- the back plate 104 has several through holes 11
- the through hole 113 penetrates the first insulating gap 108 and the second insulating gap 109 to form an inner cavity 115.
- the MEMS microphone When the MEMS microphone is powered on, the first diaphragm 105 and the back plate 104, the second diaphragm 106 and the back plate 104 will be charged with opposite polarities, thereby forming a capacitance, when the first diaphragm 105 and the second diaphragm 106 vibrates under the action of sound waves, the distance between the backplate 104 and the first diaphragm 105 and the second diaphragm 106 will change, resulting in a change in the capacitance of the capacitor system, and then converting the sound wave signal into an electrical signal, Realize the corresponding function of the microphone.
- the first support 110 is provided between the bottom surface of the first diaphragm 105 and the surface of the second diaphragm 106.
- the first support 110 is disposed at the center of the bottom surface of the first diaphragm 105 and the top surface of the second diaphragm 106, that is, one end of the first support 110 is connected to the The center of the first diaphragm 105 is connected to the center of the second diaphragm 106 at the other end.
- the first support 110 is, for example, a support column structure.
- at least two second support members 111 may be further included, and at least two of the second support members 111 are evenly arranged on a circumference centered on the first support member 110, as shown in FIG. 3 .
- the first support member 110 and/or the second support member 111 are arranged to pass through the through-hole 113 of the back plate 104 to fixedly connect the first diaphragm 105 and the second diaphragm 106;
- the second support 111 does not contact the back plate 104 and is not affected by the back plate 104.
- the first support 110 and/or the second support 111 may be formed on the top surface of the second diaphragm 106 by various preparation techniques, such as physical vapor deposition, electrochemical deposition, chemical vapor deposition and Molecular beam epitaxy.
- the first support 110 and/or the second support 111 may be composed of a semiconductor material such as silicon or may include a semiconductor material such as silicon.
- a semiconductor material such as silicon or may include a semiconductor material such as silicon.
- It may also be composed of at least one of the following or may include at least one of the following: metal, dielectric material, piezoelectric material, piezoresistive material, and ferroelectric material.
- first support 110 and/or the second support 111 may be integrally formed with the first diaphragm 105 and the second diaphragm 106, respectively.
- the first diaphragm 105, the second diaphragm 106, and the first support 110 and/or the second support 111 may form an integrated structure of the same material (for example, silicon).
- the first support 110 and/or the second support 111 are preferably provided in the central area of the first diaphragm 105 and the second diaphragm 106.
- the two diaphragm structures are mechanically coupled together, and the displacement and/or deflection of either diaphragm can cause a proportional displacement and/or deflection of the other diaphragm structure, so that the two diaphragm structures Be basically the same structure.
- a plurality of insulating protrusions 114 may also be provided on the surfaces of the back plate 104 close to the first insulating gap 108 and the second insulating gap 109, respectively. The insulating protrusion 114 will not be charged when the MEMS microphone is powered on, so its role is only to prevent each vibration unit from sticking to the back plate during the vibration process.
- the present invention effectively avoids unnecessary deflection of the diaphragm by providing a support at the center of the diaphragm, and at the same time separately divides the first diaphragm and the second diaphragm into at least two vibration units, and these vibration units Both form a capacitor with the backplane, thereby improving the overall sensitivity and signal-to-noise ratio of the MEMS microphone.
- the MEMS microphone of this structure also has a high sound pressure protection function, the manufacturing process is not only simple, but also the production cost is low.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
- Pressure Sensors (AREA)
Abstract
本实用新型提供一种MEMS麦克风,包括具有背腔的基底以及设于所述基底上的电容系统,所述电容系统包括背板以及与所述背板相对且分别设置在所述背板两侧的第一振膜和第二振膜,所述第一振膜和第二振膜与背板间隔设置并分别形成第一绝缘间隙和第二绝缘间隙,所述背板开设有若干个通孔,所述第一振膜和所述第二振膜为圆形,所述MEMS麦克风还包括贯穿所述通孔设置于所述第一振膜与所述第二振膜之间的第一支撑件,所述第一支撑件的一端连接于所述第一振膜的圆心,另一端连接于所述第二振膜的圆心。通过设置支撑件,有效避免了振膜不必要的偏转,提高了MEMS麦克风的整体灵敏度和信噪比。
Description
MEMS麦克风
技术领域
[0001] 本实用新型涉及麦克风技术领域, 特别是涉及一种具有双振膜的 MEMS麦克风 背景技术
[0002] MEMS(Micro-Electro-Mechanical System, 微机电系统)技术近年来已经获得广 泛应用, 它采用先进的半导体制造工艺, 实现传感器、 驱动器等器件的批量制 造, 与对应的传统器件相比, MEMS器件在体积、 功耗、 重量以及价格方面有十 分明显的优势。 市场上, MEMS器件的主要应用实例包括压力传感器、 加速度计 及硅麦克风等。
[0003] 采用 MEMS技术制造的硅麦克风在小型化、 性能、 可靠性、 环境耐受性、 成本 及量产能力上与 ECM比都有相当优势, 迅速占领手机、 PDA、 MP3及助听器等 消费电子产品市场。 采用 MEMS技术制造的硅麦克风通常具有与固态背板平行地 布置的可移动膜片, 膜片和背板形成可变电容器。 膜片响应于入射的声能而移 动, 以改变可变电容, 并且由此产生用于表示入射声能的电信号。
[0004] 随着电容式微硅麦克风的技术发展, 要求硅麦克风尺寸更小、 成本更低、 可靠 性更高, 而硅麦克风尺寸变小, 会导致灵敏度下降, 信噪比下降。 如何进一步 提高硅麦克风的信噪比是目前亟待解决的问题。
发明概述
技术问题
[0005] 本实用新型的目的在于提供一种具有高灵敏度和信噪比的 MEMS麦克风。
问题的解决方案
技术解决方案
[0006] 其具体方案如下:
[0007] 一种 MEMS麦克风, 包括具有背腔的基底以及设于所述基底上的电容系统, 所 述电容系统包括背板以及与所述背板相对且分别设置在所述背板一侧的第一振
膜、 设置于所述背板另一侧的, 所述第一振膜和第二振膜与背板间隔设置并分 别形成第一绝缘间隙和第二绝缘间隙, 所述背板开设有若干个通孔, 所述第一 振膜和所述第二振膜为圆形, 所述 MEMS麦克风还包括贯穿所述通孔设置于所述 第一振膜与所述第二振膜之间的第一支撑件, 所述第一支撑件的一端连接于所 述第一振膜的圆心, 另一端连接于所述第二振膜的圆心。
[0008] 进一步地, 所述 MEMS麦克风还包括至少两个贯穿所述通孔设置于所述第一振 膜与所述第二振膜之间的第二支撑件, 至少两个所述第二支撑件均匀设置于以 所述第一支撑件为圆心的圆周上。
[0009] 进一步地, 所述第一支撑件和 /或所述第二支撑件为圆柱结构。
[0010] 进一步地, 所述第一支撑件和 /或所述第二支撑件不与所述背板接触。
[0011] 进一步地, 所述背板的上、 下表面设有若干凸起, 所述凸起用于防止所述第一 振膜、 所述第二振膜与所述背板发生粘附。
[0012] 进一步地, 还包括设置在所述基底表面的绝缘层,所述电容系统通过该绝缘层与 所述基底相连。
[0013] 进一步地, 所述背腔贯通所述基底以及所述绝缘层。
发明的有益效果
有益效果
[0014] 本实用新型的有益效果在于: 本实用新型通过在振膜的中心位置设置支撑件, 有效避免了振膜不必要的偏转, 进而提高了 MEMS麦克风的整体灵敏度和信噪比 。 同时这种结构的 MEMS麦克风还兼具高声压保护功能, 制作工艺不仅简单, 而 且生产成本低廉。
对附图的简要说明
附图说明
[0015] 图 1为本实用新型实施例的一种 MEMS麦克风的俯视图;
[0016] 图 2为本实用新型实施例图 1中 A-A方向的剖视图;
[0017] 图 3为本实用新型实施例中绝缘支撑件的阵列分布示意图;
[0018] 图 4为本实用新型实施例中的 MEMS麦克风由于环境压力产生偏转的示意图。
发明实施例
具体实施方式
[0019] 为使本实用新型的上述目的、 特征和优点能够更加明显易懂, 下面结合附图及 具体实施方式对本实用新型做详细说明, 使本实用新型的上述及其它目的、 特 征和优势将更加清晰。
[0020] 如图 1和图 2所示, MEMS麦克风 100包括基底 101以及设置在基底 101上并与基 底 101绝缘相连的电容系统 103。
[0021] 基底 101的材质优选为半导体材料, 例如硅, 其具有背腔 102、 上表面以及与上 表面相对的下表面, 基底 101的上表面上设有绝缘层 112, 背腔 102贯通绝缘层 11
2、 及基底 101的上、 下表面。 其中背腔 102可以通过体硅工艺或干法腐蚀形成。
[0022] 电容系统 103包括背板 104以及与背板 104相对且分别设置在背板 104两侧的第一 振膜 105和第二振膜 106, 第一振膜 105和背板 104之间、 第二振膜 106和背板 104 之间均设有绝缘件 107, 绝缘件 107将第一振膜 105和背板 104分隔一定距离并形 成第一绝缘间隙 108 , 将第二振膜 106和背板 104分隔一定距离并形成第二绝缘间 隙 109。 第二振膜 106通过绝缘层 112与基底 101相连。 背板 104具有若干个通孔 11
3。 通孔 113将第一绝缘间隙 108和第二绝缘间隙 109贯通形成内腔 115。 在 MEMS 麦克风通电工作时, 第一振膜 105与背板 104、 第二振膜 106与背板 104会带上极 性相反的电荷, 从而形成电容, 当第一振膜 105和第二振膜 106在声波的作用下 产生振动, 背板 104与第一振膜 105和第二振膜 106之间的距离会发生变化, 从而 导致电容系统的电容发生改变, 进而将声波信号转化为了电信号, 实现麦克风 的相应功能。
[0023] 在本实施例中, 第一振膜 105和第二振膜
106是圆形的或者椭圆形, 第一支撑件 110被设置在第一振膜 105的底表面与第二 振膜 106的表面之间。
[0024] 优选地, 该第一支撑件 110为设置在第一振膜 105的底表面以及第二振膜 106的 顶表面的中心位置, 即所述第一支撑件 110的一端连接于所述第一振膜 105的圆 心, 另一端连接于所述第二振膜 106的圆心。
[0025] 该第一支撑件 110例如为支撑柱结构。
[0026] 优选地, 还可以包括至少两个第二支撑件 111, 至少两个所述第二支撑件 111均 匀设置于以所述第一支撑件 110为圆心的圆周上, 如图 3所示。
[0027] 该第一支撑件 110和 /或第二支撑件 111设置为穿过背板 104的通孔 113将第一振 膜 105和第二振膜 106固定连接; 即第一支撑件 110和 /或第二支撑件 111不与背板 1 04接触, 不受背板 104的影响。
[0028] 该第一支撑件 110和 /或第二支撑件 111可以通过各种制备技术被形成在第二振 膜 106的顶表面之上, 例如物理蒸汽沉积、 电化学沉积、 化学蒸汽沉积和分子束 外延。
[0029] 该第一支撑件 110和 /或第二支撑件 111可以由诸如硅之类的半导体材料组成或 者可以包括例如硅之类的半导体材料。 比如锗、 硅锗、 碳化硅、 氮化镓、 铟、 氮化铟镓、 砷化铟镓、 氧化铟镓锌、 或其他元素和 /或化合物半导体(:例如, 例如 砷化镓或磷化铟之类的 III- V化合物半导体、 或 II- VI化合物半导体、 或三元化合 物半导体、 或四元化合物半导体)。 也可以由如下各项中的至少一种组成或者可 以包括如下各项中的至少一种: 金属、 电介质材料、 压电材料、 压阻材料和铁 电材料。
[0030] 根据各个实施例, 该第一支撑件 110和 /或第二支撑件 111可以分别与第一振膜 1 05和第二振膜 106—体成型。
[0031] 根据各个实施例, 第一振膜 105、 第二振膜 106和第一支撑件 110和 /或第二支撑 件 111可以形成相同材料(例如, 硅)的一体结构。
[0032] 如图 4所示, 由于绝缘间隙 108和 109组成的内腔 115中为真空和 /或低压, 第一 振膜 105和第二振膜 106由于环境压力 AP的加载, 会导致振膜朝着腔室内发生偏 转, 通过第一支撑件 110和 /或第二支撑件 111可以尽可能避免不必要的偏转, 但 是同时也要注意, 过多的支撑结构也可能导致灵敏度降低, 因此, 本实用新型 优选在第一振膜 105和第二振膜 106的中心区域设置第一支撑件 110和 /或第二支撑 件 111。
[0033] 此外, 两个振膜结构机械耦合在一起, 其中任一个振膜的位移和 /或偏转都可 以引起另一振膜结构的成比例的位移和 /或偏转, 使得两个振膜结构成为基本相 同的结构。
[0034] 此外, 为了防止各振动单元在振动过程中与背板 104吸附, 还可以在背板 104分 别靠近第一绝缘间隙 108和第二绝缘间隙 109的表面上设置了若干个绝缘凸起 114 , 绝缘凸起 114在 MEMS麦克风通电工作时并不会带电, 因此它起到的作用仅仅 是防止各振动单元在振动过程中与背板粘接而已。
[0035] 本实用新型通过在振膜的中心位置设置支撑件, 有效避免了振膜不必要的偏转 , 同时分别将第一振膜和第二振膜分成了至少两个振动单元, 这些振动单元均 与背板形成电容, 进而提高了 MEMS麦克风的整体灵敏度和信噪比。 同时这种 结构的 MEMS麦克风还兼具高声压保护功能, 制作工艺不仅简单, 而且生产成本 低廉。
Claims
[权利要求 1] 一种 MEMS麦克风, 包括具有背腔的基底以及设于所述基底上的电容 系统, 所述电容系统包括背板以及与所述背板相对且设置在所述背板 一侧的第一振膜、 设置于所述背板另一侧的第二振膜, 所述第一振膜 和第二振膜与背板间隔设置并分别形成第一绝缘间隙和第二绝缘间隙 , 所述背板开设有若干个通孔, 其特征在于: 所述第一振膜和所述第 二振膜为圆形, 所述 MEMS麦克风还包括贯穿所述通孔设置于所述第 振膜与所述第二振膜之间的第一支撑件, 所述第一支撑件的一端连 接于所述第一振膜的圆心, 另一端连接于所述第二振膜的圆心。
[权利要求 2] 根据权利要求 1所述的 MEMS麦克风, 其特征在于, 所述 MEMS麦克 风还包括至少两个贯穿所述通孔设置于所述第一振膜与所述第二振膜 之间的第二支撑件, 至少两个所述第二支撑件均匀设置于以所述第一 支撑件为圆心的圆周上。
[权利要求 3] 根据权利要求 1或 2所述的 MEMS麦克风, 其特征在于, 所述第一支撑 件和 /或所述第二支撑件为圆柱结构。
[权利要求 4] 根据权利要求 3所述的 MEMS麦克风, 其特征在于, 所述第一支撑件 和 /或所述第二支撑件不与所述背板接触。
[权利要求 5] 根据权利要求 1所述的 MEMS麦克风, 其特征在于, 所述背板的上、 下表面设有若干凸起, 所述凸起用于防止所述第一振膜、 所述第二振 膜与所述背板发生粘附。
[权利要求 6] 根据权利要求 1所述的 MEMS麦克风, 其特征在于, 还包括设置在所 述基底表面的绝缘层,所述电容系统通过该绝缘层与所述基底相连。
[权利要求 7] 根据权利要求 6所述的 MEMS麦克风, 其特征在于, 所述背腔贯通所 述基底以及所述绝缘层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201822278387.3 | 2018-12-31 | ||
CN201822278387.3U CN209897223U (zh) | 2018-12-31 | 2018-12-31 | Mems麦克风 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020140573A1 true WO2020140573A1 (zh) | 2020-07-09 |
Family
ID=68990778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/113331 WO2020140573A1 (zh) | 2018-12-31 | 2019-10-25 | Mems麦克风 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11057717B2 (zh) |
CN (1) | CN209897223U (zh) |
WO (1) | WO2020140573A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023539967A (ja) | 2021-08-11 | 2023-09-21 | 深▲セン▼市韶音科技有限公司 | マイクロフォン |
CN113709641A (zh) * | 2021-08-27 | 2021-11-26 | 歌尔微电子股份有限公司 | 一种麦克风 |
CN115334434B (zh) * | 2022-10-13 | 2022-12-20 | 苏州敏芯微电子技术股份有限公司 | 麦克风组件及电子设备 |
CN115334389B (zh) * | 2022-10-13 | 2022-12-30 | 苏州敏芯微电子技术股份有限公司 | 一种麦克风组件及电子设备 |
CN115334431B (zh) * | 2022-10-13 | 2022-12-20 | 苏州敏芯微电子技术股份有限公司 | 麦克风组件、封装结构及电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103686570A (zh) * | 2013-12-31 | 2014-03-26 | 瑞声声学科技(深圳)有限公司 | Mems麦克风 |
CN103702268A (zh) * | 2013-12-31 | 2014-04-02 | 瑞声声学科技(深圳)有限公司 | Mems麦克风 |
CN103716743A (zh) * | 2013-12-31 | 2014-04-09 | 瑞声声学科技(深圳)有限公司 | Mems麦克风 |
US20150001647A1 (en) * | 2013-06-28 | 2015-01-01 | Infineon Technologies Ag | MEMS Microphone with Low Pressure Region Between Diaphragm and Counter Electrode |
CN107835477A (zh) * | 2017-11-24 | 2018-03-23 | 歌尔股份有限公司 | 一种mems麦克风 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9438979B2 (en) * | 2014-03-06 | 2016-09-06 | Infineon Technologies Ag | MEMS sensor structure for sensing pressure waves and a change in ambient pressure |
-
2018
- 2018-12-31 CN CN201822278387.3U patent/CN209897223U/zh active Active
-
2019
- 2019-10-25 WO PCT/CN2019/113331 patent/WO2020140573A1/zh active Application Filing
- 2019-12-09 US US16/708,378 patent/US11057717B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150001647A1 (en) * | 2013-06-28 | 2015-01-01 | Infineon Technologies Ag | MEMS Microphone with Low Pressure Region Between Diaphragm and Counter Electrode |
CN103686570A (zh) * | 2013-12-31 | 2014-03-26 | 瑞声声学科技(深圳)有限公司 | Mems麦克风 |
CN103702268A (zh) * | 2013-12-31 | 2014-04-02 | 瑞声声学科技(深圳)有限公司 | Mems麦克风 |
CN103716743A (zh) * | 2013-12-31 | 2014-04-09 | 瑞声声学科技(深圳)有限公司 | Mems麦克风 |
CN107835477A (zh) * | 2017-11-24 | 2018-03-23 | 歌尔股份有限公司 | 一种mems麦克风 |
Also Published As
Publication number | Publication date |
---|---|
US20200213774A1 (en) | 2020-07-02 |
CN209897223U (zh) | 2020-01-03 |
US11057717B2 (en) | 2021-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020140573A1 (zh) | Mems麦克风 | |
US11617042B2 (en) | Acoustic transducers with a low pressure zone and diaphragms having enhanced compliance | |
CN107666645B (zh) | 具有双振膜的差分电容式麦克风 | |
CN109511067B (zh) | 电容式麦克风 | |
US20220388105A1 (en) | Support structure and method of forming a support structure | |
CN102728534B (zh) | 机电换能器及其制造方法 | |
US9820058B2 (en) | Capacitive MEMS microphone with insulating support between diaphragm and back plate | |
US8549715B2 (en) | Piezoelectric microspeaker and method of fabricating the same | |
US10158951B2 (en) | Silicon microphone with suspended diaphragm and system with the same | |
CN101835079B (zh) | 一种电容式微型硅麦克风及其制备方法 | |
KR20170094428A (ko) | Mems 마이크, 압력 센서 집적 구조 및 그 제조 방법 | |
US20190222940A1 (en) | Piezoelectric transducer | |
CN101346014A (zh) | 微机电系统麦克风及其制备方法 | |
CN105792084B (zh) | Mems麦克风及其制造方法 | |
US9221675B2 (en) | Chip with integrated circuit and micro-silicon condenser microphone integrated on single substrate and method for making the same | |
CN202444620U (zh) | 电容式微型硅麦克风 | |
US11310606B2 (en) | MEMS microphone | |
EP2281398A1 (en) | Acoustic-electric transducer with adjustable air gap, electronic device, method and computer program product | |
CN103402161A (zh) | 微硅麦克风及其制作方法 | |
CN201699978U (zh) | 一种电容式微型硅麦克风 | |
CN114866936A (zh) | 差分电容式mems麦克风及其制造方法 | |
CN209897224U (zh) | 一种mems麦克风 | |
CN114598979B (zh) | 一种双振膜mems麦克风及其制造方法 | |
CN113556657B (zh) | Mems麦克风 | |
CN114014254A (zh) | 一种mems结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19907480 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19907480 Country of ref document: EP Kind code of ref document: A1 |