WO2020140563A1 - 一种任意曲面放射治疗床系统 - Google Patents

一种任意曲面放射治疗床系统 Download PDF

Info

Publication number
WO2020140563A1
WO2020140563A1 PCT/CN2019/112874 CN2019112874W WO2020140563A1 WO 2020140563 A1 WO2020140563 A1 WO 2020140563A1 CN 2019112874 W CN2019112874 W CN 2019112874W WO 2020140563 A1 WO2020140563 A1 WO 2020140563A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
module
bed
dimensional
slider
Prior art date
Application number
PCT/CN2019/112874
Other languages
English (en)
French (fr)
Inventor
杨荣骞
鲍凯扬
郑凌翔
李春田
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2020140563A1 publication Critical patent/WO2020140563A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1097Means for immobilizing the patient

Definitions

  • the invention relates to the technical field of medical instruments and equipment, in particular to an arbitrary curved surface radiotherapy bed system.
  • the accuracy and stability of the placement of the treatment bed have a crucial impact on the final radiation treatment effect.
  • the support part of the radiation treatment bed on the market is mostly the entire flat structure, and passed Various pneumatic devices or six-axis parallel mechanical structures are used to realize six-degree-of-freedom control of the arbitrary movement of the support bed in the three-dimensional space, and the precision is good.
  • most treatment beds can control the entire treatment bed to move arbitrarily with the radiation gun in a large or small three-dimensional space, specific to the adjustment of the patient's local posture and the position of the patient when the treatment bed moves during the radiotherapy process The stability is maintained, and ordinary treatment beds are not competent.
  • the present invention has designed a treatment that can produce any curved surface
  • the bed system aims to add more subtle adjustments to the patient's local posture on the basis of the original six-degree-of-freedom treatment bed.
  • the present invention has designed a treatment that can produce any curved surface
  • the bed system aims to add more subtle adjustments to the patient's local posture on the basis of the original six-degree-of-freedom treatment bed.
  • the purpose of the present invention is to overcome the shortcomings of the existing radiotherapy bed, and proposes an arbitrary curved surface radiotherapy bed system that can deform any curved surface according to different three-dimensional volume data, which is used to adjust the local posture of the subject in radiotherapy Stable, adjust the position with the highest irradiation efficiency and the least radiation toxicity to normal tissues of the human body.
  • an arbitrary curved surface radiotherapy bed system including an upper computer software, a lower computer control system, and a treatment bed body, wherein the treatment bed body is composed of a number of lifting motor models
  • the three-dimensional mobile device assembled by the group is controlled by the upper computer software and the lower computer control system, and the top of the treatment bed can be deformed into any curved surface.
  • the host computer software has a graphical user interface for easy operation, and includes the following function modules:
  • the medical image three-dimensional reconstruction display module is used to reconstruct a single medical image slice of the same serial number into a three-dimensional three-dimensional figure, then extract the surface of the three-dimensional figure, and display the body surface in the three-dimensional figure display window;
  • Stereo image posture adjustment module used to adjust the posture of the reconstructed stereo graphics in the stereo image display window.
  • the posture adjustment directions and methods include: ⁇ x-axis, ⁇ y-axis, ⁇ z-axis translation and smoothness around any axis ,Anticlockwise rotation;
  • Motor module ascending path calculation module used to calculate the distance from the geometric center of each motor module in the virtual bed plane to the surface of the three-dimensional solid graphics in the three-dimensional graphics display window, and display each motor model in the graphics window Vertical line segment from the geometric center of the flat top to the surface of the three-dimensional graphic;
  • Serial communication module used to send the distance data from the geometric center of each motor module flat top to the surface of the three-dimensional graphics in the calculated virtual bed plane to the lower computer control system through serial communication;
  • the lower computer control system is placed under the treatment bed and is composed of a switching power supply module, a control circuit module, a linear power supply module and a motor drive circuit module;
  • the switching power supply module can input 220V AC voltage and output 24V DC voltage,
  • This 24V DC voltage is connected to the input end of the linear power module and the motor drive level pin of the motor drive circuit module, respectively, to obtain the 3.3V stable voltage for the main control MCU and the 5V stable voltage for the other chips in the circuit.
  • To drive the 24V DC voltage of the motor considering the large number of motors and the need for independent control, multiple independent PWM wave signals are required, and the resources of one MCU are far from enough; so the control circuit module uses multiple chips to output frequencies.
  • the modulated PWM wave MCU performs control operations and distinguishes between the master and slave MCUs.
  • the master MCU is also responsible for data communication with the PC host computer and serial data communication with the slave MCU.
  • the data communication content is mainly bed deformation
  • the slave MCU is only responsible for data communication with the master and slave MCUs, and the communication method between the PC host computer and the master and slave MCUs is serial communication ,
  • the motor drive circuit module consists of multiple It consists of a motor drive chip.
  • Each drive chip and its peripheral circuit form a motor module drive module.
  • the number of individual drive modules is the same as the number of motor modules. In order to facilitate interface connection, the drive modules are concentrated on the motor module. Directly below, each drive module directly above corresponds to a motor module.
  • the motor module includes a stepper motor, a screw, a push rod, a slider, a support block, and a sliding table with a linear guide
  • the sliding table is vertically installed in an iron frame
  • the screw is installed on the sliding table Parallel to the linear guide rail
  • the slider is set on the screw
  • the stepper motor drives the screw to rotate, which in turn drives the slider to slide up and down on the linear guide.
  • the support block is connected to the slider through the push rod and is located on the slide
  • the top of the block and the top of the iron frame are extended outside, and the displacement of the support block is realized under the driving of the slider, so that the support blocks of all the motor modules of the treatment bed body can form the position required for precise radiation therapy together Curved surface; the motor module can complete 1 degree of freedom high-precision linear motion.
  • multiple motor modules are vertically arranged in an m ⁇ n square matrix And fixed by screws to the mounting holes left on the top surface of the iron frame; where, m is the number of motor modules on the longer side of the treatment bed in plan view, and n is the shorter side of the treatment bed in plan view Number of motor modules;
  • the movement distance of the slider on each motor module is 0mm, so that the whole bed body presents a plane.
  • the lower position The machine control system receives the data and controls the slider of each motor module to rise to a specified distance, thereby forming a positioning surface required for precise radiation therapy.
  • the present invention has the following advantages and beneficial effects:
  • the bed that fits the curved surface of the body can fix the position more stably, and it is not easy to cause position deviation caused by shaking and shaking.
  • the local position and posture can be adjusted to achieve a more accurate positioning effect.
  • the degree of flexion of the joint can be adjusted to expose the target tumor to the shooting field to the maximum extent.
  • Fig. 1 is an operation flowchart of an arbitrary curved surface radiotherapy bed system.
  • Fig. 2 is a structural diagram of a linear motion motor module.
  • Figure 3 is a diagram of the internal structure of the bed.
  • an arbitrary curved surface radiotherapy bed system provided in this embodiment includes an upper computer software 1, a lower computer control system 2 and a treatment bed body 3, wherein the treatment bed body 3 is composed of several After the three-dimensional motorized device assembled by the lifting motor module 31 is controlled by the upper computer software 1 and the lower computer control system 2, the top of the treatment bed 3 can be deformed into any curved surface.
  • the host computer software 1 has a graphical user interface for easy operation, and includes the following function modules:
  • the medical image three-dimensional reconstruction display module is used to reconstruct a single medical image slice of the same serial number into a three-dimensional three-dimensional figure, then extract the surface of the three-dimensional figure, and display the body surface in the three-dimensional figure display window;
  • Stereo image posture adjustment module used to adjust the posture of the reconstructed stereo graphics in the stereo image display window.
  • the posture adjustment directions and methods include: ⁇ x-axis, ⁇ y-axis, ⁇ z-axis translation and smoothness around any axis ,Anticlockwise rotation;
  • Motor module ascending path calculation module used to calculate the distance from the geometric center of each motor module in the virtual bed plane to the surface of the three-dimensional solid graphics in the three-dimensional graphics display window, and display each motor model in the graphics window Vertical line segment from the geometric center of the flat top to the surface of the three-dimensional graphic;
  • the serial communication module is used to send the distance data from the calculated geometric center of each motor module flat top to the surface of the three-dimensional solid graphics in the virtual bed plane to the lower computer control system through serial communication.
  • the lower computer control system is placed under the treatment bed and is composed of a switching power supply module (the specific power value depends on the number of motor modules), a control circuit module, a linear power supply module, and a motor drive circuit module; the switching power supply module can Input 220V AC voltage and output 24V DC voltage. This 24V DC voltage is connected to the input end of the linear power module and the motor drive level pin of the motor drive circuit module respectively.
  • the 3.3V stable voltage and the circuit for the main control MCU are obtained
  • the control circuit module uses multiple MCUs capable of outputting PWM waves with adjustable frequency for control operations, and distinguishes between the master and slave MCUs.
  • the master MCU is also responsible for data communication with the PC-side host computer and the serial port with the slave MCU Data communication, the content of data communication is mainly the movement distance of the slider on each motor module required for the bed deformation; the slave MCU is only responsible for data communication with the master and slave MCU, the PC-side host computer and the master and slave
  • the communication mode between the MCUs is serial communication.
  • the motor drive circuit module is composed of multiple motor drive chips, each drive chip and its peripheral circuit form a drive module of a motor module, the number of single drive modules is the same as the number of motor modules, and for convenience of interface Connected, the drive modules are laid out directly under the motor module, and each drive module directly corresponds to a motor module.
  • the motor module 31 includes a stepper motor 311, a screw 312, a push rod 313, a slider 314, a support block 315, and a slide table 316 with a linear guide, the slide table 316 is vertically installed in the iron frame 32, The screw 312 is installed on the sliding table 316 and is parallel to the linear guide rail. The slider 314 is sleeved on the screw 312.
  • the stepping motor 311 drives the screw 312 to rotate, which in turn drives the slider 314 to slide up and down on the linear guide rail ,
  • the support block 315 is connected to the slider 314 through the push rod 313, is located above the slider 314, and extends outwardly from the top of the iron frame 32, the displacement of the support block 315 is driven by the slider 314, thereby making
  • the support blocks 315 of all the motor modules 31 of the treatment bed 3 can together form the positioning curved surface required for precise radiation therapy; the motor modules can complete a 1 degree of freedom high-precision (in millimeters) linear movement, in order to make the treatment bed
  • the body forms an arbitrary curved surface with as high a degree of fit as possible.
  • the movement distance of the slider on each motor module is 0mm, so that the whole bed body presents a plane.
  • the lower position The machine control system receives the data and controls the slider of each motor module to rise to a specified distance, thereby forming a positioning surface required for precise radiation therapy.
  • Operate the upper computer software graphical user interface first obtain the medical image data, and then click the 3D reconstruction function button to reconstruct the image in three dimensions; after the stereo image is reconstructed and displayed in the graphic display window, operate the posture adjustment slider to adjust the stereo image posture Located directly above the plane of the virtual bed; then click the ascending path calculation button of the motor module to calculate the ascending distance of the slider of each motor module; continue to operate and click the serial communication function button to send the calculated motion path data to Lower computer.
  • the lower computer control system After the lower computer control system is connected to the 220V AC voltage of the city power, it outputs 24V DC voltage.
  • This 24V DC voltage is connected to the input terminal of the linear power module and the motor drive level pin of the motor drive circuit, respectively, to obtain the 3.3V power supply for the MCU.
  • the master and slave MCU respectively output multiple independent PWM wave signals corresponding to each motor module to the input signal pins of the drive circuit chips in several drive circuit modules. So far, the interface left at the output level of each drive circuit module will generate a level that drives the stepper motor to rotate normally.
  • the output port of the above-mentioned motor drive circuit is connected to the input port of the motor module in the treatment bed.
  • the lower computer receives The data and control the slider of each motor module to rise to the specified distance, the entire bed body is formed by a plane in the initial state to form the positioning surface required for precise radiation therapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

本发明公开了一种任意曲面放射治疗床系统,包括上位机软件、下位机控制系统和治疗床体,其中,所述治疗床体是由若干升降电机模组拼装而成的立体机动装置,经上位机软件和下位机控制系统联合控制后,该治疗床体顶部能够形变出任意曲面。本发明用于放射治疗中受治疗者局部位姿的调整和稳定,调整出照射效率最高,对人体正常组织放射毒性最小的位姿。

Description

一种任意曲面放射治疗床系统 技术领域
本发明涉及医疗器械设备的技术领域,尤其是指一种任意曲面放射治疗床系统。
背景技术
对在放射治疗系统中,治疗床摆位的精准稳定与否,对最终的放射治疗效果有着至关重要的影响,目前市场上的放射治疗床的托床部分多是整个的平板结构,并通过各种不同的气动装置或者六轴并联的机械结构来实现托床在三维空间内任意移动的六自由度控制,且精度良好。虽然大多治疗床已经可以控制整个治疗床在或大或小的三维空间内配合射线照射枪任意移动,但是具体到受治疗者局部位姿的调整与放射治疗过程中治疗床移动时对病人位姿的稳定保持,普通的治疗床并不能胜任。由于对病人局部位姿的调整与稳定可以让放射枪更好的锁定照射靶区,减少对正常组织的放射毒性(尤其是被人体关节夹、挡住的肿瘤,对该区域需要更长时间的照射,才能对里面的肿瘤有良好的治疗效果,这就不得不对正常组织造成了过多的放射毒性)和更多的提高射线枪的照射效率,本发明设计出了一种可以产生任意曲面的治疗床系统,以期在原来的六自由度治疗床的基础上,再加入更细微的对病人局部位姿的调整。
技术问题
虽然,目前市场上大多治疗床已经可以控制整个治疗床在或大或小的三维空间内配合射线照射枪任意移动,但是具体到受治疗者局部位姿的调整与放射治疗过程中治疗床移动时对病人位姿的稳定保持,普通的治疗床并不能胜任。由于对病人局部位姿的调整与稳定可以让放射枪更好的锁定照射靶区,减少对正常组织的放射毒性(尤其是被人体关节夹、挡住的肿瘤,对该区域需要更长时间的照射,才能对里面的肿瘤有良好的治疗效果,这就不得不对正常组织造成了过多的放射毒性)和更多的提高射线枪的照射效率,本发明设计出了一种可以产生任意曲面的治疗床系统,以期在原来的六自由度治疗床的基础上,再加入更细微的对病人局部位姿的调整。
技术解决方案
本发明的目的在于克服现有放射治疗床的不足,提出了一种可以根据不同三维体数据形变出任意曲面的任意曲面放射治疗床系统,用于放射治疗中受治疗者局部位姿的调整和稳定,调整出照射效率最高,对人体正常组织放射毒性最小的位姿。
为实现上述目的,本发明所提供的技术方案为:一种任意曲面放射治疗床系统,包括上位机软件、下位机控制系统和治疗床体,其中,所述治疗床体是由若干升降电机模组拼装而成的立体机动装置,经上位机软件和下位机控制系统联合控制后,该治疗床体顶部能够形变出任意曲面。
进一步,所述上位机软件具有图形用户界面,方便操作,其包括以下功能模块:
医学图像三维重建显示模块,用于将同一序列号的单张医学图像切片重建成三维立体图形,然后提取该立体图形的表面,并将体表面显示于立体图形显示窗口;
立体图像位姿调整模块,用于在立体图像显示窗口内调整重建好的立体图形位姿,位姿调整方向及方式包括:±x轴、±y轴、±z轴平移以及绕任意轴的顺、逆时针旋转;
电机模组上升路径计算模块,用于计算立体图形显示窗口中虚拟床体平面中每台电机模组平顶的几何中心到三维立体图形表面的距离,并在图形窗口中显示出每台电机模组平顶的几何中心到三维立体图形表面的垂线段;
串口通讯模块,用于将计算好的虚拟床体平面中每台电机模组平顶的几何中心到三维立体图形表面的距离数据通过串口通信方式发送给下位机控制系统;
通过软件的图形用户界面提示操作鼠标,依次行使上述软件功能,即可将医学图像数据三维可视化显示出来和计算出治疗床体形变所需的相关数据并下发给下位机控制系统。
进一步,所述下位机控制系统置于治疗床体下方,由开关电源模块、控制电路模块、线性电源模块以及电机驱动电路模块组成;所述开关电源模块能够输入220V交流电压,输出24V直流电压,此24V直流电压分别接入线性电源模块的输入端和电机驱动电路模块的电机驱动电平引脚,获得为主控MCU供电的3.3V稳定电压和为电路中其它芯片供电的5V稳定电压以及用来驱动电机的24V直流电压;考虑到电机数量多,且要独立控制,需要多路独立PWM波信号,一片MCU的资源远远不够用;于是所述控制电路模块采用了多片能够输出频率可调的PWM波的MCU进行控制操作,并区分主、从部MCU,主部MCU同时负责与PC端上位机的数据通信和与从部MCU间的串口数据通信,数据通信内容主要是床体形变所需的每台电机模组上的滑块运动距离;从部MCU只负责和主、从部MCU间的数据通信,PC端上位机与主、从部MCU之间的通信方式皆为串口通信,将MCU的多路PWM波输出信道接入每一台电机模组对应的电机驱动芯片的输入信号引脚,从而实现对每一台电机模组的独立控制;所述电机驱动电路模块由多块电机驱动芯片构成,每一块驱动芯片及其外围电路构成一台电机模组的驱动模块,单个驱动模块数量与电机模组数量一致,且为了方便接口连接,驱动模块集中布局于电机模组的正下方,每个驱动模块正上方即对应一台电机模组。
进一步,所述电机模组包括步进电机、螺杆、推杆、滑块、支撑块及带有直线导轨的滑台,所述滑台垂直安装在铁质框架中,所述螺杆安装在滑台上,并与直线导轨平行,所述滑块套装在螺杆上,由步进电机带动螺杆旋转,进而带动滑块在直线导轨上上下滑动,所述支撑块通过推杆与滑块连接,位于滑块的上方,并外伸出铁质框架顶部,在滑块的带动下实现支撑块的位移变化,进而使得治疗床体的所有电机模组的支撑块能够一起形成精准放射治疗所需的摆位曲面;所述电机模组能够完成1自由度的高精度直线运动,为使治疗床体形成贴合度尽可能高的任意曲面,将多个电机模组按 m×n方阵竖直整齐排列,并通过螺丝固定于铁质框架内部的顶面留有的装配孔上;其中,m为治疗床体俯视图中较长一边的电机模组个数,n为治疗床体俯视图中较短一边的电机模组个数;
初始状态时,每台电机模组上的滑块运动距离均为0mm,从而整个床体呈现出一个平面,待上位机软件调整设置好并计算出每台电机模组需要运动的距离后,下位机控制系统接收数据并控制每台电机模组的滑块上升到指定的距离,由此形成精准放射治疗所需的摆位曲面。
有益效果
本发明与现有技术相比,具有如下优点与有益效果:
1、贴合身体曲面的床体可以更稳地固定体位,不易出现摇晃、抖动造成的位置偏差。
2、可以调整局部位姿,从而达到更精确的摆位效果。
3、对于关节处的肿瘤,可以调整关节的屈弓程度来使目标肿瘤最大范围的暴露在射野。
附图说明
图1是任意曲面放射治疗床系统操作流程图。
图2是直线运动电机模组结构图。
图3是床体内部结构图。
本发明的实施方式
下面结合具体实施例对本发明作进一步说明。
参见图1至图3所示,本实施例所提供的任意曲面放射治疗床系统,包括上位机软件1、下位机控制系统2和治疗床体3,其中,所述治疗床体3是由若干升降电机模组31拼装而成的立体机动装置,经上位机软件1和下位机控制系统2联合控制后,该治疗床体3顶部能够形变出任意曲面。
所述上位机软件1具有图形用户界面,方便操作,其包括以下功能模块:
医学图像三维重建显示模块,用于将同一序列号的单张医学图像切片重建成三维立体图形,然后提取该立体图形的表面,并将体表面显示于立体图形显示窗口;
立体图像位姿调整模块,用于在立体图像显示窗口内调整重建好的立体图形位姿,位姿调整方向及方式包括:±x轴、±y轴、±z轴平移以及绕任意轴的顺、逆时针旋转;
电机模组上升路径计算模块,用于计算立体图形显示窗口中虚拟床体平面中每台电机模组平顶的几何中心到三维立体图形表面的距离,并在图形窗口中显示出每台电机模组平顶的几何中心到三维立体图形表面的垂线段;
串口通讯模块,用于将计算好的虚拟床体平面中每台电机模组平顶的几何中心到三维立体图形表面的距离数据通过串口通信方式发送给下位机控制系统。
通过软件的图形用户界面提示操作鼠标,依次行使上述软件功能,即可将医学图像数据三维可视化显示出来和计算出治疗床体形变所需的相关数据并下发给下位机控制系统。
所述下位机控制系统置于治疗床体下方,由开关电源模块(具体功率数值依电机模组数量而定)、控制电路模块、线性电源模块以及电机驱动电路模块组成;所述开关电源模块能够输入220V交流电压,输出24V直流电压,此24V直流电压分别接入线性电源模块的输入端和电机驱动电路模块的电机驱动电平引脚,获得为主控MCU供电的3.3V稳定电压和为电路中其它芯片供电的5V稳定电压以及用来驱动电机的24V直流电压;考虑到电机数量较多,且要独立控制,需要多路独立PWM波信号,一片MCU的资源远远不够用;于是所述控制电路模块采用了多片能够输出频率可调的PWM波的MCU进行控制操作,并区分主、从部MCU,主部MCU同时负责与PC端上位机的数据通信和与从部MCU间的串口数据通信,数据通信内容主要是床体形变所需的每台电机模组上的滑块运动距离;从部MCU只负责和主、从部MCU间的数据通信,PC端上位机与主、从部MCU之间的通信方式皆为串口通信,将MCU的多路PWM波输出信道接入每一台电机模组对应的电机驱动芯片的输入信号引脚,从而实现对每一台电机模组的独立控制;所述电机驱动电路模块由多块电机驱动芯片构成,每一块驱动芯片及其外围电路构成一台电机模组的驱动模块,单个驱动模块数量与电机模组数量一致,且为了方便接口连接,驱动模块集中布局于电机模组的正下方,每个驱动模块正上方即对应一台电机模组。
所述电机模组31包括步进电机311、螺杆312、推杆313、滑块314、支撑块315及带有直线导轨的滑台316,所述滑台316垂直安装在铁质框架32中,所述螺杆312安装在滑台316上,并与直线导轨平行,所述滑块314套装在螺杆312上,由步进电机311带动螺杆312旋转,进而带动滑块314在直线导轨上进行上下滑动,所述支撑块315通过推杆313与滑块314连接,位于滑块314的上方,并外伸出铁质框架32顶部,在滑块314的带动下实现支撑块315的位移变化,进而使得治疗床体3的所有电机模组31的支撑块315能够一起形成精准放射治疗所需的摆位曲面;电机模组能够完成1自由度的高精度(单位为毫米)直线运动,为使治疗床体形成贴合度尽可能高的任意曲面,将多个电机模组按m×n(m为治疗床体俯视图(矩形)中较长一边的电机模组个数,n为治疗床体俯视图(矩形)中较短一边的电机模组个数)方阵竖直整齐排列,并通过螺丝固定于铁质框架内部的顶面留有的装配孔上。
初始状态时,每台电机模组上的滑块运动距离均为0mm,从而整个床体呈现出一个平面,待上位机软件调整设置好并计算出每台电机模组需要运动的距离后,下位机控制系统接收数据并控制每台电机模组的滑块上升到指定的距离,由此形成精准放射治疗所需的摆位曲面。
下面为本实施例上述任意曲面放射治疗床系统的操作方法,具体如下:
操作上位机软件图形用户界面,先获取到医学图像数据,然后点击三维重建功能按钮,将图像进行三维重建;立体图像重建好显示在图形显示窗口后,操作位姿调整滑动条调整立体图像位姿位于虚拟床体平面正上方;然后点击电机模组上升路径计算按钮,计算出每台电机模组的滑块上升距离;继续操作,点击串口通讯功能按钮,将计算好的运动路径数据下发给下位机。
下位机控制系统接入市电220V交流电压后,输出24V直流电压,此24V直流电压分别接入线性电源模块输入端和电机驱动电路的电机驱动电平引脚,获得为MCU供电的3.3V稳定电压和为电路中其他芯片供电的5V稳定电压以及用来驱动电机的24V直流电压;供电系统正常后,下位机控制系统的主部MCU开始接受上位机发送的数据,接收数据完毕后,分配数据给从部MCU,主、从部MCU分别输出多路独立且与每台电机模组一一对应的PWM波信号至若干驱动电路模块中驱动电路芯片的输入信号引脚。至此,每一个驱动电路模块的输出电平处留有的接口会产生驱动步进电机正常转动的电平。
最后,上述电机驱动电路的输出端口接入与治疗床体中的电机模组的输入端口相连接,待上位机软件调整设置好并计算出每台电机模组需要运动的距离后,下位机接收数据并控制每台电机模组的滑块上升到指定的距离,整个床体由初始状态时的一个平面形成精准放射治疗所需的摆位曲面。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (4)

  1. 一种任意曲面放射治疗床系统,包括上位机软件、下位机控制系统和治疗床体,其特征在于:所述治疗床体是由若干升降电机模组拼装而成的立体机动装置,经上位机软件和下位机控制系统联合控制后,该治疗床体顶部能够形变出任意曲面。
  2. 根据权利要求1所述的一种任意曲面放射治疗床系统,其特征在于:所述上位机软件具有图形用户界面,方便操作,其包括以下功能模块:
    医学图像三维重建显示模块,用于将同一序列号的单张医学图像切片重建成三维立体图形,然后提取该立体图形的表面,并将体表面显示于立体图形显示窗口;
    立体图像位姿调整模块,用于在立体图像显示窗口内调整重建好的立体图形位姿,位姿调整方向及方式包括:±x轴、±y轴、±z轴平移以及绕任意轴的顺、逆时针旋转;
    电机模组上升路径计算模块,用于计算立体图形显示窗口中虚拟床体平面中每台电机模组平顶的几何中心到三维立体图形表面的距离,并在图形窗口中显示出每台电机模组平顶的几何中心到三维立体图形表面的垂线段;
    串口通讯模块,用于将计算好的虚拟床体平面中每台电机模组平顶的几何中心到三维立体图形表面的距离数据通过串口通信方式发送给下位机控制系统;
    通过软件的图形用户界面提示操作鼠标,依次行使上述软件功能,即可将医学图像数据三维可视化显示出来和计算出治疗床体形变所需的相关数据并下发给下位机控制系统。
  3. 根据权利要求1所述的一种任意曲面放射治疗床系统,其特征在于:所述下位机控制系统置于治疗床体下方,由开关电源模块、控制电路模块、线性电源模块以及电机驱动电路模块组成;所述开关电源模块能够输入220V交流电压,输出24V直流电压,此24V直流电压分别接入线性电源模块的输入端和电机驱动电路模块的电机驱动电平引脚,获得为主控MCU供电的3.3V稳定电压和为电路中其它芯片供电的5V稳定电压以及用来驱动电机的24V直流电压;考虑到电机数量多,且要独立控制,需要多路独立PWM波信号,一片MCU的资源远远不够用;于是所述控制电路模块采用了多片能够输出频率可调的PWM波的MCU进行控制操作,并区分主、从部MCU,主部MCU同时负责与PC端上位机的数据通信和与从部MCU间的串口数据通信,数据通信内容主要是床体形变所需的每台电机模组上的滑块运动距离;从部MCU只负责和主、从部MCU间的数据通信,PC端上位机与主、从部MCU之间的通信方式皆为串口通信,将MCU的多路PWM波输出信道接入每一台电机模组对应的电机驱动芯片的输入信号引脚,从而实现对每一台电机模组的独立控制;所述电机驱动电路模块由多块电机驱动芯片构成,每一块驱动芯片及其外围电路构成一台电机模组的驱动模块,单个驱动模块数量与电机模组数量一致,且为了方便接口连接,驱动模块集中布局于电机模组的正下方,每个驱动模块正上方即对应一台电机模组。
  4. 根据权利要求1所述的一种任意曲面放射治疗床系统,其特征在于:所述电机模组包括步进电机、螺杆、推杆、滑块、支撑块及带有直线导轨的滑台,所述滑台垂直安装在铁质框架中,所述螺杆安装在滑台上,并与直线导轨平行,所述滑块套装在螺杆上,由步进电机带动螺杆旋转,进而带动滑块在直线导轨上上下滑动,所述支撑块通过推杆与滑块连接,位于滑块的上方,并外伸出铁质框架顶部,在滑块的带动下实现支撑块的位移变化,进而使得治疗床体的所有电机模组的支撑块能够一起形成精准放射治疗所需的摆位曲面;所述电机模组能够完成1自由度的高精度直线运动,为使治疗床体形成贴合度尽可能高的任意曲面,将多个电机模组按m×n方阵竖直整齐排列,并通过螺丝固定于铁质框架内部的顶面留有的装配孔上;其中,m为治疗床体俯视图中较长一边的电机模组个数,n为治疗床体俯视图中较短一边的电机模组个数;
    初始状态时,每台电机模组上的滑块运动距离均为0mm,从而整个床体呈现出一个平面,待上位机软件调整设置好并计算出每台电机模组需要运动的距离后,下位机控制系统接收数据并控制每台电机模组的滑块上升到指定的距离,由此形成精准放射治疗所需的摆位曲面。
     
PCT/CN2019/112874 2019-01-02 2019-10-23 一种任意曲面放射治疗床系统 WO2020140563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910001501.4 2019-01-02
CN201910001501.4A CN109621234B (zh) 2019-01-02 2019-01-02 一种任意曲面放射治疗床系统

Publications (1)

Publication Number Publication Date
WO2020140563A1 true WO2020140563A1 (zh) 2020-07-09

Family

ID=66056662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112874 WO2020140563A1 (zh) 2019-01-02 2019-10-23 一种任意曲面放射治疗床系统

Country Status (2)

Country Link
CN (1) CN109621234B (zh)
WO (1) WO2020140563A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109621234B (zh) * 2019-01-02 2020-11-24 华南理工大学 一种任意曲面放射治疗床系统
CN112972904B (zh) * 2021-02-22 2022-06-07 四川大学华西医院 一种模块化的led灯光动力治疗仪
CN113995966B (zh) * 2021-12-14 2023-12-01 洛阳新区人民医院 一种儿科用舒适且易于定位的皮肤科激光治疗配合装置及使用方法
CN115364391B (zh) * 2022-10-21 2023-01-24 四川省中能医疗科技发展有限公司 Sbrt放疗体位固定系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138302A (en) * 1998-11-10 2000-10-31 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus and method for positioning patient
CN206120967U (zh) * 2016-07-07 2017-04-26 广州医科大学附属肿瘤医院 可移动式躺卧姿势可调的放疗科医师专用放疗固定装置
CN106714905A (zh) * 2016-08-01 2017-05-24 深圳市奥沃医学新技术发展有限公司 一种放射治疗设备以及射束成像方法
CN106964076A (zh) * 2017-03-06 2017-07-21 广州医科大学附属肿瘤医院 一种基于三维扫描的放疗体位固定装置制作方法及系统
CN109621234A (zh) * 2019-01-02 2019-04-16 华南理工大学 一种任意曲面放射治疗床系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669599A (zh) * 2004-03-16 2005-09-21 上海英迈吉东影图像设备有限公司 三维适形放射治疗剂量计划方法
CN100586507C (zh) * 2004-07-23 2010-02-03 吴大可 三维适形近距离放射治疗集成系统
CN101862205A (zh) * 2010-05-25 2010-10-20 中国人民解放军第四军医大学 一种结合术前影像的术中组织跟踪方法
CN104173073B (zh) * 2013-11-19 2015-09-30 上海联影医疗科技有限公司 一种三维定位的方法
CN106178288B (zh) * 2016-08-09 2019-07-23 山东大学齐鲁医院 一种适用于放射治疗的u型梁三维移动定位床
CN108853753B (zh) * 2016-09-30 2022-02-18 上海联影医疗科技股份有限公司 肿瘤实时监控装置、放射治疗系统
CN108159575A (zh) * 2016-12-07 2018-06-15 上海东软医疗科技有限公司 辅助摆位的方法、系统和身形记忆床垫

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138302A (en) * 1998-11-10 2000-10-31 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus and method for positioning patient
CN206120967U (zh) * 2016-07-07 2017-04-26 广州医科大学附属肿瘤医院 可移动式躺卧姿势可调的放疗科医师专用放疗固定装置
CN106714905A (zh) * 2016-08-01 2017-05-24 深圳市奥沃医学新技术发展有限公司 一种放射治疗设备以及射束成像方法
CN106964076A (zh) * 2017-03-06 2017-07-21 广州医科大学附属肿瘤医院 一种基于三维扫描的放疗体位固定装置制作方法及系统
CN109621234A (zh) * 2019-01-02 2019-04-16 华南理工大学 一种任意曲面放射治疗床系统

Also Published As

Publication number Publication date
CN109621234B (zh) 2020-11-24
CN109621234A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020140563A1 (zh) 一种任意曲面放射治疗床系统
CN105286998B (zh) 一种由呼吸引起的人体胸腹腔运动模拟装置
CN104307113A (zh) 放射治疗系统
CN104464475B (zh) 一种医用模拟呼吸系统
JP2016512349A (ja) 標認点非対称性を評価するための電動骨格模型のマルチステーションシステム
CN203662778U (zh) 数字口腔全景x射线成像设备
CN207871110U (zh) 自动康复设备及康复机
CN110152203A (zh) 一种肿瘤内科临床用的放疗定位装置
CN111859579A (zh) 颞下颌关节运动仿真装置
CN204890968U (zh) 一种医用放射治疗装置
CN208954366U (zh) 一种医学影像用教学装置
CN111513847A (zh) 磁场系统、磁导航系统及导管运动的控制方法
CN110101970A (zh) 一种基于并联机器人的tms自动治疗仪
CN216725149U (zh) 穿戴式下肢外骨骼机器人及其髋关节调节装置
CN211132759U (zh) 一种经颅超声治疗仪
CN109224324A (zh) 一种基于堆叠式串行运动学结构的六自由度动态验证装置
CN111724667A (zh) 颞下颌关节运动仿真的姿态控制装置
CN203634184U (zh) Dr系统及其控制系统
CN207455532U (zh) 一种无线遥控医用激光灯定位装置
CN112890975A (zh) 一种整形美容颌面部固定装置
CN209204507U (zh) 一种可3d位移的双面塑形放射治疗头架
Hou et al. Design of a holistic thoracoabdominal phantom for respiration tracking test in robotic radiosurgery
CN2836840Y (zh) 妇科肿瘤近距离放疗定位治疗多用平移床
CN212966735U (zh) 颞下颌关节运动仿真的姿态控制装置
CN109432610B (zh) 一种用于激光引导的共面机构及其控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19907575

Country of ref document: EP

Kind code of ref document: A1