WO2020140327A1 - 一种保温板原料组合物、保温板及其制作工艺 - Google Patents

一种保温板原料组合物、保温板及其制作工艺 Download PDF

Info

Publication number
WO2020140327A1
WO2020140327A1 PCT/CN2019/077654 CN2019077654W WO2020140327A1 WO 2020140327 A1 WO2020140327 A1 WO 2020140327A1 CN 2019077654 W CN2019077654 W CN 2019077654W WO 2020140327 A1 WO2020140327 A1 WO 2020140327A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
mold
raw material
insulation board
material composition
Prior art date
Application number
PCT/CN2019/077654
Other languages
English (en)
French (fr)
Inventor
刘丙强
刘念界
Original Assignee
上海圣奎塑业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910001705.8A external-priority patent/CN109879654B/zh
Priority claimed from CN201910001725.5A external-priority patent/CN109912285B/zh
Application filed by 上海圣奎塑业有限公司 filed Critical 上海圣奎塑业有限公司
Priority to EP19907772.8A priority Critical patent/EP3907204A4/en
Priority to KR1020217024406A priority patent/KR20210109602A/ko
Priority to JP2021538850A priority patent/JP7254184B2/ja
Publication of WO2020140327A1 publication Critical patent/WO2020140327A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/025Hot pressing, e.g. of ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • C04B24/383Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/10Lime cements or magnesium oxide cements
    • C04B28/12Hydraulic lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0057Polymers chosen for their physico-chemical characteristics added as redispersable powders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the field of building materials, in particular to a thermal insulation board raw material composition, an thermal insulation board and a manufacturing process thereof.
  • the insulation materials used for exterior wall insulation are mainly divided into two categories: inorganic insulation materials and organic insulation materials, but these materials generally have the shortcomings of energy saving and fire protection.
  • Organic materials are poor in heat resistance and flammable. When burning, they release a lot of heat and produce a lot of toxic fumes, which not only accelerates the spread of the fire, but also easily causes casualties for trapped persons and rescuers. In case of fire, it will burn rapidly, and it is very easy to produce dripping and melting, accelerate or spread.
  • Inorganic materials have the overall insulation layer falling off due to low tensile strength, resulting in accidents involving personnel and financial losses.
  • the "modified inorganic non-combustible insulation board exterior insulation system application technology standards" requirement is less than a density 170kg / m 3, the thermal conductivity is less than 0.052W / (m ⁇ K), the combustion performance to stage A2, but such very brittle plate ,
  • the size of the specification is less than 1200mm ⁇ 600mm, otherwise it is easy to break, according to the standard requirements, the tensile strength of the vertical surface only needs to be greater than 0.10MPa, the strength requirement is not high.
  • the technical problem to be solved by the present invention is to overcome the defects that the tensile strength of the thermal insulation board in the prior art is not high enough and the fire rating is not high enough, to provide a high tensile strength, small bending deformation, and not easy to fall off after pasting (tensile strength 0.2MPa or more, compressive strength of 0.3MPa or more, bending deformation of 4mm or more), and good thermal insulation performance (thermal conductivity coefficient of 0.055W/(m ⁇ K) or less at 25°C), the volumetric water absorption rate of the product is 5.5% or less , Insulation board with fire rating of non-combustible (not less than A2 level).
  • a raw material composition for thermal insulation board the components and weight ratio of which include: 60-80 parts of siliceous material, 17-28 parts of binder, 5-8 parts of polystyrene particles and 20-60 parts of water, wherein,
  • the binder includes calcium oxide and/or calcium hydroxide.
  • a raw material composition for thermal insulation board whose components and weight ratio are: 60-80 parts of siliceous material, 17-28 parts of binder, 5-8 parts of polystyrene particles and 20-60 parts of water, wherein,
  • the binder includes calcium oxide and/or calcium hydroxide.
  • Siliceous materials and adhesives can make the insulation board have higher strength and toughness. Specifically, the tensile strength is more than 0.2MPa, the compressive strength is more than 0.3MPa, and the bending deformation is more than 4mm.
  • the polystyrene particles can make the thermal insulation board have good thermal insulation performance, and the specific performance is that the thermal conductivity is below 0.055W/(m ⁇ K) at 25°C.
  • the combination of siliceous material, binder and polystyrene particles can make the insulation board have a lower water absorption rate and a higher fire rating.
  • the specific performance is that the volume water absorption rate is below 5.5%, and the fire rating is not lower than A2 level.
  • the raw material composition of the thermal insulation board further includes additives.
  • the additives include one or more of water reducer, water repellent, redispersible latex powder, cellulose ether, graphite and foaming agent. Additives can further improve the performance of the thermal insulation board. In one or more embodiments, adding a certain amount of water reducing agent and cellulose ether can make the bending deformation reach 6mm or more.
  • the additive includes a water-reducing agent and a cellulose ether, and according to parts by weight, the sum of the weights of the water-reducing agent, the cellulose ether and the polystyrene particles is A, and the siliceous substance
  • the sum of the weights of the binder is B, and B:A is 93:7 to 91:9.
  • B:A is 93:7 to 91:9
  • the performance of the insulation board can be further improved, especially when B:A is 92:8, the compressive strength reaches more than 0.35MPa. Tensile strength reached 0.23MPa or more, and bending deformation reached 7.11mm or more, showing excellent performance.
  • the weight ratio of the siliceous substance to the binder is 8:2 to 7:3.
  • the comprehensive performance of the thermal insulation board can be improved, and the indicators in all aspects can be more balanced and optimized.
  • the weight ratio of the silica and the binder is 7:3, the compressive strength reaches above 0.34MPa, the tensile strength reaches above 0.24MPa, the bending deformation reaches above 6.56mm, and the volumetric water absorption rate reaches 5.12% or less, excellent overall performance.
  • the siliceous material includes one or more of activated silicon fine powder, fine silica powder, fly ash, fine slag powder, quartz powder, kaolin, bentonite, water glass and diatomaceous earth.
  • Conventional siliceous materials can be used in the present invention as long as they can provide silicon elements that can react with calcium oxide and/or calcium hydroxide.
  • the polystyrene particles are also graphite polystyrene particles containing graphite.
  • the addition of graphite and other materials can gradually shorten the initial setting time of the mixture and reduce the fluidity of the mixture.
  • the main function is to improve the bending performance and enhance the compressive strength and bending strength of the finished product. At the same time, reduce the thermal conductivity to enhance the insulation effect.
  • the weight ratio of the polystyrene particles to "raw materials other than the water and the polystyrene particles" is 5.25:94.75, 6.25:93.74, or 7.25:92.75 ;
  • the amount of the water reducing agent is 1 to 2 parts, preferably 1 to 1.5 parts, more preferably 1.4 parts, 1.45 parts, or 1.5 parts;
  • the amount of the cellulose ether is 1 to 5 parts, preferably 2 to 4 parts, more preferably 2 parts, 3 parts, or 4 parts.
  • the amount of the siliceous substance is 70-80 parts;
  • the amount of the binder is 18 to 28 parts;
  • the amount of the polystyrene particles is 7-8 parts;
  • the amount of the water is 20-30 parts.
  • the amount of the siliceous substance is 70 to 75 parts;
  • the amount of the binder is 18-19 parts;
  • the amount of the polystyrene particles is 7-7.5 parts;
  • the amount of the water is 25-30 parts.
  • the amount of the siliceous substance is 72.8 parts, 73.6 parts or 74.4 parts;
  • the amount of the binder is 18.2 parts, 18.4 parts or 18.6 parts;
  • the amount of the polystyrene particles is 7.25 parts;
  • the amount of the water is 29 parts.
  • the raw material composition of the insulation board includes the following parts by weight: 70-80 parts of the siliceous material, 17-19 parts of the calcium oxide and/or calcium hydroxide, and the polystyrene particles 5 to 8 parts, 20 to 30 parts of the water, 2 to 4 parts of the cellulose ether, and 1 to 1.5 parts of the water reducing agent.
  • An insulation board, the raw material of the insulation board is the above-mentioned insulation board raw material composition, and the insulation board is obtained in the following manner I or manner II:
  • Method I In the mold, press the pre-mixed raw material composition of the thermal insulation board, heat it, and solidify it;
  • Method II In the mold, the pre-mixed raw material composition of the thermal insulation board is first pressurized and maintained under pressure, then heated, and then cured and formed.
  • the pre-mixing operation is performed as follows: at 10-30°C, the foamed polystyrene particles and the remaining materials of the raw material composition are mixed evenly can;
  • the pressure after pressurization is 0.3MPa-235MPa; preferably, the pressure after pressurization is 0.3MPa-5MPa.
  • the set temperature of the heating device is 100-150°C.
  • the set temperature of the heating device is 110-130°C.
  • the expanded polystyrene particles are prepared by the following steps: heating the polystyrene particles at 100-120°C to increase the expansion volume thereof, that is, obtained;
  • the heating time of the heating device is 35 minutes or more.
  • a manufacturing process of flexible thermal insulation board using a raw material composition including 60-80 parts of siliceous material, 17-28 parts of binder, 5-8 parts of polystyrene particles and 20-60 parts of water to mix evenly Compound, put the mixture into the mold, press the mold to keep the mold under pressure, heat the mold to make the temperature inside the mixture reach 100-150 °C, so that it is applied to the mold The pressure reaches 0.3MPa-235MPa, keep for more than 35 minutes, demold and maintain.
  • the siliceous material is micro silicon powder, and the dosage is 70-80 parts.
  • the binder is calcium oxide and/or calcium hydroxide in an amount of 18-28 parts.
  • the amount of the polystyrene particles is 7-8 parts.
  • the amount of the water is 20-30 parts.
  • the siliceous material includes one or more of activated silicon fine powder, fine silica powder, slag fine powder, fly ash, quartz powder, kaolin, bentonite, water glass and diatomaceous earth.
  • the polystyrene particles are also graphite polystyrene particles containing graphite.
  • the amount of the siliceous substance is 70-75 parts.
  • the amount of the binder is 18-19 parts.
  • the amount of the polystyrene particles is 7-7.5 parts.
  • the amount of water used is 25-30 parts.
  • the mold includes an upper layer mold and a lower layer mold, and the upper layer mold and the lower layer mold are used to preliminarily shape the mixture, and when the mold enters the pressing platform, until the mixture is in It is compressed by 10-45% in the thickness direction to form and lock the upper layer mold and the lower layer mold.
  • the mixture is formed by 17-38% compression in the thickness direction.
  • multiple sets of molds are sequentially stacked one after another for pressing multiple insulation boards at the same time until the mixture is compressed by 10-45% in the thickness direction to form.
  • the heating temperature applied inside the mixture is 100-120°C.
  • the pressure applied inside the mixture is 0.3MPa-1MPa.
  • the duration of heating and pressurizing the mixture is 35 minutes to 24 hours.
  • the duration of heating and pressurizing the mixture is 35 minutes to 60 minutes.
  • the manufacturing process further includes placing a steel mesh or rib in the mold so that at least one side of the mixture is embedded in the steel mesh or the rib.
  • the mixture before the mixture is stirred, it also includes a primary foaming step of the polystyrene particles.
  • the primary foaming step is: heating and pressurizing the polystyrene particles to foam them That's it.
  • the positive progress effect of the present invention is that the thermal insulation board prepared by the present invention has high tensile strength, small bending deformation, and is not easy to fall off after pasting (tensile strength above 0.2MPa, compressive strength above 0.3MPa, bending deformation above 4mm). It has good thermal insulation performance (thermal conductivity coefficient is less than 0.055W/(m ⁇ K) at 25°C), the volumetric water absorption of the product is less than 5.5%, and the fire rating is non-combustible (not less than A2 level).
  • FIG. 1 is a schematic diagram of the manufacturing process flow of the thermal insulation boards of Examples 1-9 and Comparative Examples 1-11 of the present invention.
  • FIG. 2 is a schematic structural view of a mold in a pressing platform in the manufacturing process of Examples 1-9 and Comparative Examples 1-11 of the present invention.
  • Micro silica fume: 1250 mesh also known as silica fume, purchased from Shanghai Stammui Industrial Development Co., Ltd.
  • Quartz powder 600 mesh (also known as silicon micropowder), purchased from Huzhou Huatian Micropowder Factory
  • Sodium silicate also known as water glass, purchased from Yicheng Jingrui New Material Co., Ltd.
  • Sodium fluorosilicate purchased from Yicheng Jingrui New Materials Co., Ltd.
  • Water-reducing agent HF retarder and high-efficiency water-reducing agent, purchased from Shanghai Dongda Chemical Co., Ltd.
  • Redispersible latex powder purchased from Guangdong Longhu Technology Co., Ltd.
  • Cellulose ether purchased from Ou Jin Chemical
  • Reinforced fiber chopped glass fiber, purchased from Oujin Chemical
  • Calcium oxide also known as quicklime, purchased from Taicang Dongfang Metallurgical Lime Products Factory
  • Blowing agent carbonate or calcium carbonate, purchased from Guangzhou Jiangyan Chemical Co., Ltd.
  • Hydrophobic agent Silicone hydrophobic agent, purchased from Shanghai Xianbang Chemical Co., Ltd.
  • Light burned magnesium oxide remanufactured, purchased from Shandong Jiuzhong Chemical
  • Magnesium sulfate heptahydrate purchased from Shandong Jiuzhong Chemical
  • Polystyrene particles purchased from Wuxi Xingda Foam New Material Co., Ltd.
  • the raw material composition and dosage of the heat preservation board of Examples 1-5 are shown in Table 1 below.
  • the raw material composition and dosage of the heat preservation board of Examples 6-9 are the same as those of Example 2.
  • A refers to the amount of polystyrene particles, cellulose ether and water reducing agent
  • B refers to the amount of micro silicon powder and calcium oxide
  • C refers to the amount of calcium oxide
  • D refers to the micro The amount of silicon powder.
  • the data in Table 1 are all divided by 10 to obtain the share value, each of which represents 10Kg. Table 1 is only a specific embodiment, and those skilled in the art can appropriately select the weight value represented by each part according to the actual situation.
  • the expanded volume of the polystyrene particles is increased to obtain polystyrene particles that are expanded once.
  • the steam pressure was set to 0.2 MPa
  • the temperature was set to 100°C
  • the time was set to 30 seconds
  • the pressure was kept for 10 seconds
  • the pressure was reduced for 3 seconds.
  • the stirring speed needs to be set at 100 rpm, and the stirring time is 5 minutes. If the speed is too fast or the stirring time is too long, the polystyrene particles will shrink and deform.
  • the bulk density of the added polystyrene material can be adjusted according to the bulk density of actual needs.
  • the stirred mixture (containing expanded polystyrene particles) is input into the mold 1 (the vertical height of the mold can be adjusted under pressure until it reaches the set height, and the mold 1 is lined with 1mm thick cellophane, (Easy to demold later).
  • the mold 1 includes an upper layer mold 2 and a lower layer mold 3.
  • the upper layer mold 2 and the lower layer mold 3 are used to preliminarily shape the raw material composition.
  • the mold 1 is squeezed until the raw material composition is at a thickness Compress in the direction of 10-45% to form, and lock the upper mold 2 and the lower mold 3.
  • the height of the material level meter needs to be adjusted to 6-9cm with the product thickness of 5cm as an example, and the shrinkage ratio is 10-45%.
  • the internal pressure of the raw material composition is maintained at 0.3 MPa or more.
  • the transmission speed should be set at the ratio of 1m per minute for the best.
  • the temperature of the oil temperature machine Before the mold enters the pressing platform 4, set the temperature of the oil temperature machine to be between 100-150 °C to preheat the pressing platform. When the temperature reaches the set value, push the mold 1 in, press it for more than 35 minutes, and let it cool down naturally. In the process of heating and pressurizing, the polystyrene particles undergo secondary foaming in the mold, which further improves the density and the tensile strength.
  • the cured products are cured in the curing room.
  • the curing room needs to be dry and ventilated.
  • the curing time is generally about 5-10 days, depending on the temperature and humidity.
  • Example 6 The specific parameter settings of the manufacturing process of the thermal insulation board of Examples 1-9 are shown in Table 2.
  • Example 6 a steel mesh is placed in the mold so that both sides of the raw material composition are embedded in the steel mesh.
  • Example 9 a rib is placed in the mold so that both sides of the raw material composition are embedded in the rib.
  • the pressure in the above table is the pressure exerted on the mixture.
  • the compression ratio is the reduction in the thickness of the mixture compared to the initial thickness of the mixture.
  • the time is the time for the mixture to be heated under pressure. After more than 60 minutes, it has little effect on the performance of the insulation board. From an economic point of view, the heating should not exceed 24 hours, preferably within 60 minutes.
  • the temperature is the time the mixture is heated.
  • A refers to the amount of polystyrene particles, cellulose ether and water reducing agent
  • B refers to the amount of micro silicon powder and calcium oxide
  • C refers to the amount of calcium oxide
  • D refers to the micro The amount of silicon powder.
  • the data in Table 1 are all divided by 10 to obtain the share value, each of which represents 10Kg. Table 1 is only a specific embodiment, and those skilled in the art can appropriately select the weight value represented by each part according to the actual situation.
  • the parameters in the manufacturing process of the heat preservation board of Comparative Examples 5-15 are shown in Table 4 below.
  • the raw material composition is the same as that in Example 2, and the remaining parameters are the same as in Example 2.
  • the performance of the samples prepared in the above Examples 1-9 and Comparative Examples 1-15 was tested.
  • the testing standards are as follows: the compressive strength is tested according to GB/T 5486-2008 "Test Method for Inorganic Hard Insulation Products", and the test is vertical according to GB/T 29906-2013 "Molded Polystyrene Board Thin Plastering Exterior Wall Exterior Insulation System Materials”
  • the burning performance level is tested according to GB8624-2012 "Burning Performance Classification of Building Materials and Products”
  • the bending deformation is tested according to GB/T 10801.1 "Molded Polystyrene Foam for Thermal Insulation", according to GB/T T1034-2008 "Determination of water absorption of plastics” test volumetric water absorption.
  • the flexural load, impact strength, and elastic modulus are tested with a universal testing machine.
  • Examples 1-5 are not limited, only the pressure of Examples 1-5 is randomly set above 0.3MPa, the compression ratio is randomly set between 10%-45%, and the time is randomly set For more than 35 minutes, the temperature is randomly set between 100-150°C, then the mechanical performance parameters of Examples 1-5 are shown in Table 5.
  • the weight fraction of the siliceous substance in Comparative Example 1 exceeds 80 parts. As a result, the tensile strength is less than 0.2 MPa, and the volumetric water absorption rate is higher than 6.7%.
  • the weight part of the siliceous material in Comparative Example 2 was less than 60 parts, and as a result, the thermal conductivity was higher than 0.055 W/(m ⁇ K) at 25°C.
  • the weight fraction of polystyrene particles in Comparative Example 3 is less than 5 parts, and as a result, the thermal conductivity is higher than 0.055 W/(m ⁇ K) at 25°C.
  • the weight fraction of polystyrene particles in Comparative Example 4 exceeded 8 parts, and as a result, the fire rating was B.
  • Comparative Examples 6-11 because the pressure is less than 0.3 MPa, the compressive strength is less than 0.3 MPa. Comparative Example 5 because the temperature is less than 100 °C, the compressive strength is less than 0.25MPa, the tensile strength is less than 0.19MPa, the volumetric water absorption rate is greater than 8%. Comparative Example 12 due to the heating temperature exceeding 150°C, as a result, the compressive strength was less than 0.29MPa, and the thermal conductivity coefficient exceeded 0.055W/(m ⁇ K) at 25°C.
  • Comparative Example 13 the heating time was less than 30 minutes, and as a result, the compressive strength was less than 0.16 MPa, the tensile strength was less than 0.13 MPa, the thermal conductivity was more than 0.055 W/(m ⁇ K) at 25°C, and the volumetric water absorption was more than 9%.
  • Comparative Example 14 has no compression, and as a result, the compressive strength is less than 0.25 MPa, the tensile strength is less than 0.15 MPa, the thermal conductivity at 25°C exceeds 0.055 W/(m ⁇ K), and the volumetric water absorption rate exceeds 7%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Building Environments (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种保温板原料组合物、保温板及其制作工艺,保温板原料组合物的组分及重量配比包括:硅质物60~80份、粘结剂17~28份、聚苯乙烯颗粒5~8份和水20-60份,其中,粘结剂包括氧化钙和/或氢氧化钙。制备的保温板抗拉强度0.2MPa以上、抗压强度0.3MPa以上,弯曲变形4mm以上,导热系数在25℃下0.055W/(m·K)以下,体积吸水率在5.5%以下,防火等级为不燃即不低于A2级。

Description

一种保温板原料组合物、保温板及其制作工艺
本申请要求申请日为2019年1月2日的中国专利申请CN201910001705.8的优先权以及申请日为2019年1月2日的中国专利申请CN201910001725.5的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及建筑材料领域,特别涉及一种保温板原料组合物、保温板及其制作工艺。
背景技术
目前外墙保温所用的保温材料主要分为无机保温材料与有机保温材料两大类,但这些材料普遍存在节能与防火不能兼顾的缺点。有机材料耐热差、易燃烧,而且在燃烧时释放大量热量、产生大量有毒烟气,不仅会加速大火蔓延、而且容易造成被困人员及救援人员伤亡。一旦遇火就会迅速燃烧,并极易产生滴熔的情况,加速或是蔓延。无机材料则存在抗拉强度不高所导致的保温层整体脱落,由此造成人员、财务损失的事故。
目前现有技术中有两种聚苯乙烯改性的保温板,一种是采用发泡酚醛树脂作为连续相混合物和作为分散相的发泡聚苯乙烯颗粒混合,采用加温、加压、发泡、固化后再切割而成,这类板材根据DG/TJ08-2212-2016《热固改性聚苯板保温系统应用技术规程》中的要求,密度要求为35~55kg/m 3,导热系数要求小于0.039W/(m·K),但是其燃烧性只能达到B级(难燃);另一种保温板采用无机胶凝材料、石墨聚苯乙烯颗粒以及多种添加剂通过混合搅拌、灌模加压成型、自然养护或蒸汽养护等工艺,经切割制成的保温板。根据《无机改性不燃保温板外墙保温系统应用技术标准》其密度要求小于170kg/m 3,导热系数小于0.052W/(m·K),燃烧性能达到A2级,但是此类板材脆性很大,规格尺寸小于1200mm×600mm,否则容易断裂,根据标准要 求,其垂直表面的抗拉强度仅需大于0.10MPa,强度要求不高。
发明内容
本发明要解决的技术问题是为了克服现有技术中的保温板抗拉强度不够高,防火等级不够高的缺陷,提供一种抗拉强度高、弯曲变形小、粘贴后不易脱落(抗拉强度0.2MPa以上、抗压强度0.3MPa以上,弯曲变形4mm以上),兼具有良好保温性能(导热系数在25℃下0.055W/(m·K)以下),产品的体积吸水率在5.5%以下,防火等级为不燃(不低于A2级)的保温板。
本发明是通过下述技术方案来解决上述技术问题:
一种保温板原料组合物,其组分及重量配比包括:硅质物60~80份、粘结剂17~28份、聚苯乙烯颗粒5~8份和水20-60份,其中,所述粘结剂包括氧化钙和/或氢氧化钙。
一种保温板原料组合物,其组分及重量配比为:硅质物60~80份、粘结剂17~28份、聚苯乙烯颗粒5~8份和水20-60份,其中,所述粘结剂包括氧化钙和/或氢氧化钙。硅质物和粘结剂能够让保温板具备较高的强度和韧性,具体表现为抗拉强度0.2MPa以上、抗压强度0.3MPa以上,弯曲变形4mm以上。聚苯乙烯颗粒能够使保温板具备良好的保温性能,具体表现为导热系数在25℃下0.055W/(m·K)以下。硅质物、粘结剂和聚苯乙烯颗粒三者的配合作用能够让保温板具备较低的吸水率和较高的防火等级,具体表现为体积吸水率在5.5%以下,防火等级不低于A2级。
优选地,所述保温板原料组合物还包括添加剂。所述添加剂包括减水剂、防水剂、可再分散乳胶粉、纤维素醚、石墨和发泡剂中的一种或多种。添加剂能够使保温板的性能进一步提升,在一个或多个实施例中,添加一定量的减水剂和纤维素醚能够使弯曲变形达到6mm以上。
优选地,所述添加剂包括减水剂和纤维素醚,按照重量份数,所述减水剂、所述纤维素醚与所述聚苯乙烯颗粒的重量之和为A,所述硅质物与所述 粘结剂的重量之和为B,B:A为93:7至91:9。通过筛选优选的无机物与有机物的重量比为93:7至91:9,能够使保温板的性能进一步提升,尤其是当B:A为92:8时,抗压强度达到0.35MPa以上,抗拉强度达到0.23MPa以上,弯曲变形达到7.11mm以上,表现出优异的性能。
优选地,所述硅质物与所述粘结剂的重量份数比为8:2至7:3。当硅质物与所述粘结剂的重量份数比为8:2至7:3时,能够提升保温板的综合性能,使各方面指标更加均衡优化。尤其是当硅质物与所述粘结剂的重量份数比为7:3时,抗压强度达到0.34MPa以上,抗拉强度达到0.24MPa以上,弯曲变形达到6.56mm以上,体积吸水率达到5.12%以下,综合性能优异。
优选地,所述硅质物包括活性硅微粉、微硅粉、粉煤灰、矿渣微粉、石英粉、高岭土、膨润土、水玻璃和硅藻土中的一种或多种。常规的硅质物中,只要能够提供能够与氧化钙和/或氢氧化钙反应的硅元素,都可以被本发明所采用。
优选地,所述聚苯乙烯颗粒还为含有石墨的石墨聚苯乙烯颗粒。石墨等材料的加入,可使混合物初凝时间逐渐缩短,降低混合物流动性,主要作用为提升弯曲性能,增强成品抗压强度与抗弯折强度。同时,降低导热系数增强保温效果。
优选地,所述保温板原料组合物中,所述聚苯乙烯颗粒与“除所述水和所述聚苯乙烯颗粒以外的原料”的重量比为5.25:94.75、6.25:93.74或7.25:92.75;
优选地,所述减水剂的用量为1~2份,较佳地为1~1.5份,更佳地1.4份、1.45份、或1.5份;
优选地,所述纤维素醚的用量为1~5份,较佳地为2~4份,更佳地2份、3份、或4份。
优选地,所述硅质物的用量为70~80份;
优选地,所述粘结剂的用量为18~28份;
优选地,所述聚苯乙烯颗粒的用量为7~8份;
优选地,所述水的用量为20~30份。
优选地,所述硅质物的用量为70~75份;
优选地,所述粘结剂的用量为18~19份;
优选地,所述聚苯乙烯颗粒的用量为7~7.5份;
优选地,所述水的用量为25~30份。
优选地,所述硅质物的用量为72.8份、73.6份或74.4份;
优选地,所述粘结剂的用量为18.2份、18.4份或18.6份;
优选地,所述聚苯乙烯颗粒的用量为7.25份;
优选地,所述水的用量为29份。
优选地,所述保温板原料组合物包括以下重量份数的组分:所述硅质物70~80份、所述氧化钙和/或氢氧化钙17~19份、所述聚苯乙烯颗粒5~8份、所述水20~30份、所述纤维素醚2~4份和所述减水剂1~1.5份。
一种保温板,该保温板的原料为上述的保温板原料组合物,所述保温板通过下述方式I或方式II获得:
方式I:在模具内,将预混合后的保温板原料组合物加压,加温,固化成型即可;
方式II:在模具内,将预混合后的保温板原料组合物先加压、保持压力后,再加温,固化成型即可。
优选地,方式I或方式II中,所述预混合的操作按下述步骤进行:在10-30℃下,将发泡后的聚苯乙烯颗粒与所述原料组合物的剩余物料混合均匀即可;
优选地,方式I或方式II中,所述加压后的压力为0.3MPa-235MPa;优选地,加压后的压力为0.3MPa-5MPa。
优选地,方式I或方式II中,所述加温时,加热装置的设定温度为100-150℃。优选地,加热装置的设定温度为110-130℃。
优选地,所述发泡后的聚苯乙烯颗粒通过下述步骤制得:在100-120℃下加热所述聚苯乙烯颗粒,使其膨胀体积增加,即得;
优选地,方式I或方式II中,加热装置的加热时间为35分钟以上。
一种柔性保温板的制作工艺,采用包括硅质物60-80份、粘结剂17-28份、聚苯乙烯颗粒5-8份和水20-60份的原料组合物混合均匀,得拌合物,将所述的拌合物输入模具内,对模具加压后使模具保持压力,对模具加热,使所述拌合物内部的温度达到100-150℃,使施加在所述模具上的压力达到0.3MPa-235MPa,保持35分钟以上,脱模,养护即可。
优选地,所述硅质物为微硅粉,用量为70-80份。
优选地,所述粘结剂为氧化钙和/或氢氧化钙,用量为18-28份。
优选地,所述聚苯乙烯颗粒的用量为7-8份。
优选地,所述水的用量为20-30份。
优选地,所述硅质物包括活性硅微粉、微硅粉、矿渣微粉、粉煤灰、石英粉、高岭土、膨润土、水玻璃和硅藻土中的一种或多种。
优选地,所述聚苯乙烯颗粒还为含有石墨的石墨聚苯乙烯颗粒。
优选地,所述硅质物的用量为70-75份。
优选地,所述粘结剂的用量为18-19份。
优选地,所述聚苯乙烯颗粒的用量为7-7.5份。
优选地,所述水的用量为25-30份。
优选地,所述模具包括上层模和下层模,采用所述上层模和所述下层模将所述拌合物初步定型,当所述模具进入所述压平台后,直至所述拌合物在厚度方向上压缩10-45%成型,锁合上层模和下层模。
优选地,所述拌合物在厚度方向上压缩17-38%成型。
优选地,多组模具依次重复叠置,用于同时压制多个保温板,直至所述拌合物在厚度方向上压缩10-45%成型。
优选地,施加在所述拌合物内部的加热温度为100-120℃。
优选地,施加在所述拌合物内部的压力为0.3MPa-1MPa。
优选地,对所述拌合物的加热和加压的持续时间为35分钟至24小时。
优选地,对所述拌合物的加热和加压的持续时间为35分钟至60分钟。
优选地,所述制作工艺还包括在模具内放置钢网或筋条,使所述拌合物的至少一侧埋入所述钢网或所述筋条。
优选地,所述拌合物搅拌之前,还包括所述聚苯乙烯颗粒的一次发泡步骤,所述一次发泡步骤为:对所述聚苯乙烯颗粒加热和加压处理,使其发泡即可。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明制备的保温板抗拉强度高、弯曲变形小、粘贴后不易脱落(抗拉强度0.2MPa以上、抗压强度0.3MPa以上,弯曲变形4mm以上),兼具有良好保温性能(导热系数在25℃下0.055W/(m·K)以下),产品的体积吸水率在5.5%以下,防火等级为不燃(不低于A2级)。
附图说明
图1为本发明实施例1-9及对比例1-11的保温板的制作工艺流程示意图。
图2为本发明实施例1-9及对比例1-11的制作工艺中模具在压平台中的结构示意图。
附图标记说明:
模具1
上层模2
下层模3
压平台4
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
本发明各个实施例和对比例可以使用的材料具体说明如下:
微硅粉:1250目(又称硅灰),购自上海维特锐实业发展有限公司
石英粉:600目(又称硅微粉),购自湖州华天微粉厂
水泥:525#,购自上海协庆实业有限公司
粉煤灰:C类高钙灰,购自上海市商品粉煤灰产品有限公司
硅酸钠:又称水玻璃,购自宜城晶瑞新材料有限公司
氟硅酸钠:购自宜城晶瑞新材料有限公司
减水剂:HF缓凝高效减水剂,购自上海东大化工有限公司
可再分散乳胶粉:购自广东龙湖科技股份有限公司
纤维素醚:购自欧锦化工
增强纤维:短切玻璃纤维,购自欧锦化工
石墨:购自辽阳兴旺石墨制品有限公司
氧化钙:又称生石灰,购自太仓市东方冶金石灰制品厂
发泡剂:碳酸盐或碳酸钙,购自广州江盐化工有限公司
憎水剂:有机硅憎水剂,购自上海仙邦化工有限公司
轻烧氧化镁:重制,购自山东九重化工
七水硫酸镁:购自山东九重化工
聚苯乙烯颗粒:购自无锡兴达泡塑新材料股份有限公司
实施例1-5的保温板的原料组合物及用量见下表1。实施例6-9的保温板的原料组合物及用量与实施例2相同。
表1
Figure PCTCN2019077654-appb-000001
Figure PCTCN2019077654-appb-000002
注:表1中,A是指的聚苯乙烯颗粒、纤维素醚和减水剂的用量,B是指的微硅粉、氧化钙的用量;C是指氧化钙的用量,D是指微硅粉的用量。表1中的数据全都除以10即得份数值,其中每一份代表10Kg,表1仅仅为具体的实施例,本领域技术人员可以根据实际情况适当选择每一份数代表的重量值。
实施例1-9和对比例1-15的保温板的制备方法如1所示。
首先,通过加热,使聚苯乙烯颗粒膨胀体积增加,得一次发泡的聚苯乙烯颗粒。通过设定蒸汽压力,使其密度发生相应的变化,从而达到所需密度要求。蒸汽压力设定为0.2MPa,温度设定100℃,时间设定为30秒,保压10秒,减压3秒。
然后,在10-30℃下将水、微硅粉、氧化钙、纤维素醚以及减水剂混合搅拌均匀(搅拌时间根据温度变化进行相应调整,搅拌机转速设定为300转/分钟),使其全部搅拌均匀成为预拌胶凝材料。
接着,在搅拌缸中加入一次发泡的聚苯乙烯颗粒,开动搅拌机后放入预拌凝胶材料进行混合搅拌,充分使其均匀混合。经过多次反复试验,搅拌转速需设定在100转/分钟,搅拌5分钟,转速过快或搅拌时间过长会使聚苯乙烯颗粒收缩、变形。另可根据实际需求的容重调整所加入的聚苯乙烯材料容重。
再将搅拌后的拌合物(含有已发泡的聚苯乙烯颗粒)输入模具1内(模 具垂直高度可在施压状态下调节,直到达到设定的高度,模具1内垫1mm厚玻璃纸,便于后期脱模)。如图2所示,模具1包括上层模2和下层模3,采用上层模2和下层模3将原料组合物初步定型,当模具1进入压平台后挤压模具1,直至原料组合物在厚度方向上压缩10-45%成型,锁合上层模2和下层模3。由于材料加热加压后会产生一定比例收缩,经过多次试验后发现,按产品厚度5cm为例,料位计的高度需调整到6-9cm,收缩比例为10-45%。原料组合物内部压力维持在0.3MPa以上。且为保证混合物输入模具过程中避免不均匀现象产生,传动速度应设定在1分钟1m的比例为最佳。
当模具进入压平台4前,将油温机温度设定为100-150℃之间进行压平台预热。当温度达到设定值后将模具1推入,加压35分钟以上成型后让其自然冷却出模。在加温加压过程中,聚苯乙烯颗粒在模具中进行二次发泡,使得密实度进一步提高,抗拉强度也得到提高。
最后,对出模后的产品进行养护室养护,养护室需干燥、通风,养护时间一般在5-10天左右,根据温度、湿度而定。
实施例1-9的保温板的制作工艺的具体参数设置如表2。其中实施例6中,在模具内放置钢网,使原料组合物的两侧均埋入钢网,实施例9中,在模具内放置筋条,使原料组合物的两侧埋入筋条。
表2
Figure PCTCN2019077654-appb-000003
注:上表中的压力为施加在拌合物上的压力。压缩比为拌合物在厚度上的减少量比拌合物的初始厚度。时间为拌合物加压加热的时间,超过60分钟以后,对保温板的性能影响很小,从经济性角度,加热不宜超过24小时,最好为60分钟以内。温度为拌合物加热 的时间。
对比例1-4
对比例1-4的制作工艺中的参数与实施例2相同(请发明人确认),保温板的原料组合物及用量见表3。
表3
Figure PCTCN2019077654-appb-000004
注:表1中,A是指的聚苯乙烯颗粒、纤维素醚和减水剂的用量,B是指的微硅粉、氧化钙的用量;C是指氧化钙的用量,D是指微硅粉的用量。表1中的数据全都除以10即得份数值,其中每一份代表10Kg,表1仅仅为具体的实施例,本领域技术人员可以根据实际情况适当选择每一份数代表的重量值。
对比例5-15
对比例5-15的保温板的制作工艺中的参数见下表4,原料组合物与实施例2相同,其余参数与实施例2相同。
表4
Figure PCTCN2019077654-appb-000005
Figure PCTCN2019077654-appb-000006
效果实施例
针对上述实施例1-9和对比例1-15制得的样品进行性能检测。检测标准如下:根据GB/T 5486—2008《无机硬质绝热制品试验方法》测试抗压强度,根据GB/T 29906-2013《模塑聚苯板薄抹灰外墙外保温系统材料》测试垂直于板面的抗拉强度,根据GB 8624-2012《建筑材料及制品燃烧性能分级》测试燃烧性能级别,根据GB/T 10801.1《绝热用模塑聚苯乙烯泡沫塑料》测试弯曲变形,根据GB/T 1034-2008《塑料吸水性的测定》测试体积吸水率。其中,抗弯荷载、抗冲击强度、弹性模量采用万能试验机进行测试。
若不限定实施例1-5的工艺参数特定值,而仅仅使实施例1-5的压力随机设定在0.3MPa以上,压缩比随机设定在10%-45%之间,时间随机设定在35分钟以上,温度随机设定在100-150℃之间,那么实施例1-5的力学性能参数如表5。
表5
Figure PCTCN2019077654-appb-000007
若按照表2对实施例1-9中的每个实施例的压力、压缩比、时间和温度均进行具体限定,则检测结果见下表6。
表6
Figure PCTCN2019077654-appb-000008
对比例1-4的样品的检测结果见下表7。
表7
Figure PCTCN2019077654-appb-000009
针对对比例5-15制得的保温板样品进行性能检测,检测结果见下表8。
表8
Figure PCTCN2019077654-appb-000010
结合实施例1-9以及对比例1-15可以看出,对比例1中的硅质物的重量份数超过了80份,结果抗拉强度低于0.2MPa,体积吸水率高于6.7%。对比例2中的硅质物的重量份数不足60份,结果导热系数在25℃下高于0.055W/(m·K)。对比例3中的聚苯乙烯颗粒的重量份数不足5份,结果导热系数在25℃下高于0.055W/(m·K)。对比例4中的聚苯乙烯颗粒的重量份数超过了8份,结果防火等级为B级。
对比例6-11由于压力不足0.3MPa,结果抗压强度均不及0.3MPa。对比例5由于温度不足100℃,结果抗压强度不及0.25MPa,抗拉强度不及0.19MPa,体积吸水率大于8%。对比例12由于加热温度超过150℃,结果抗压强度不及0.29MPa,导热系数在25℃下超过0.055W/(m·K)。对比例13由于加热时间不及30分钟,结果抗压强度不及0.16MPa,抗拉强度不及0.13MPa,导热系数在25℃下超过0.055W/(m·K),体积吸水率超过9%。对 比例14由于没有压缩,结果抗压强度不及0.25MPa,抗拉强度不及0.15MPa,导热系数在25℃下超过0.055W/(m·K),体积吸水率超过7%。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (11)

  1. 一种保温板原料组合物,其组分及重量配比包括:硅质物60~80份、粘结剂17~28份、聚苯乙烯颗粒5~8份和水20-60份,其中,所述粘结剂包括氧化钙和/或氢氧化钙。
  2. 一种保温板原料组合物,其组分及重量配比为:硅质物60~80份、粘结剂17~28份、聚苯乙烯颗粒5~8份和水20-60份,其中,所述粘结剂包括氧化钙和/或氢氧化钙。
  3. 如权利要求1或2所述的保温板原料组合物,其特征在于,所述保温板原料组合物还包括添加剂;所述添加剂包括减水剂、防水剂、可再分散乳胶粉、纤维素醚、石墨和发泡剂中的一种或多种。
  4. 如权利要求1或2所述的保温板原料组合物,其特征在于,所述硅质物的用量为70~80份;
    和/或,所述粘结剂的用量为18~28份;
    和/或,所述聚苯乙烯颗粒的用量为7~8份;
    和/或,所述水的用量为20~30份。
  5. 如权利要求1或2所述的保温板原料组合物,其特征在于,所述硅质物的用量为70~75份;
    和/或,所述粘结剂的用量为18~19份;
    和/或,所述聚苯乙烯颗粒的用量为7~7.5份;
    和/或,所述水的用量为25~30份。
  6. 如权利要求3所述的保温板原料组合物,其特征在于,所述原料组合物包括以下重量份数的组分:所述硅质物70~80份、所述氧化钙和/或氢氧化钙17~19份、所述聚苯乙烯颗粒5~8份、所述水20~30份、所述纤维素醚2~4份和所述减水剂1~1.5份。
  7. 一种保温板,该保温板的原料为如权利要求1~6任一项所述的保温 板原料组合物,所述保温板通过下述方式I或方式II获得:
    方式I:在模具内,将预混合后的保温板原料组合物加压,加温,固化成型即可;
    方式II:在模具内,将预混合后的保温板原料组合物先加压、保持压力后,再加温,固化成型即可。
  8. 一种柔性保温板的制作工艺,其特征在于,采用包括硅质物60-80份、粘结剂17-28份、聚苯乙烯颗粒5-8份和水20-60份的原料组合物混合均匀,得拌合物,将所述拌合物输入模具内,对模具加压后使模具保持压力,对模具加热,使所述拌合物内部的温度达到100-150℃,使施加在所述模具上的压力达到0.3MPa-235MPa,保持35分钟以上,脱模,养护即可。
  9. 如权利要求8所述的保温板的制作工艺,其特征在于,所述模具包括上层模和下层模,采用所述上层模和所述下层模将所述拌合物初步定型,压缩所述模具,直至所述拌合物在厚度方向上压缩10-45%成型,锁合所述上层模和所述下层模。
  10. 如权利要求8所述的保温板的制作工艺,其特征在于,施加在所述拌合物内部的加热温度为100-120℃。
  11. 如权利要求8至10中任意一项所述的保温板的制作工艺,其特征在于,施加在所述拌合物内部的压力为0.3MPa-1MPa。
PCT/CN2019/077654 2019-01-02 2019-03-11 一种保温板原料组合物、保温板及其制作工艺 WO2020140327A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19907772.8A EP3907204A4 (en) 2019-01-02 2019-03-11 RAW MATERIAL COMPOSITION FOR THERMAL INSULATION PANELS, THERMAL INSULATION PANELS AND PROCESS FOR THE MANUFACTURE OF THERMAL INSULATION PANELS
KR1020217024406A KR20210109602A (ko) 2019-01-02 2019-03-11 보온 플레이트 원료 조성물, 보온 플레이트 및 이의 제조 공정
JP2021538850A JP7254184B2 (ja) 2019-01-02 2019-03-11 保温プレート原料組成物、保温プレート及びその製造工程

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910001705.8A CN109879654B (zh) 2019-01-02 2019-01-02 保温板原料组合物及保温板
CN201910001705.8 2019-01-02
CN201910001725.5 2019-01-02
CN201910001725.5A CN109912285B (zh) 2019-01-02 2019-01-02 一种柔性保温板的制作工艺

Publications (1)

Publication Number Publication Date
WO2020140327A1 true WO2020140327A1 (zh) 2020-07-09

Family

ID=71407278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077654 WO2020140327A1 (zh) 2019-01-02 2019-03-11 一种保温板原料组合物、保温板及其制作工艺

Country Status (4)

Country Link
EP (1) EP3907204A4 (zh)
JP (1) JP7254184B2 (zh)
KR (1) KR20210109602A (zh)
WO (1) WO2020140327A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908946A (zh) * 2020-07-23 2020-11-10 山东芳林昊天钢结构工程有限公司 一种硅酸钙板聚苯颗粒混泡沫混凝土的制造工艺
CN112174605A (zh) * 2020-09-30 2021-01-05 安徽省贝安居建筑节能材料科技有限公司 一种外墙板用的石墨防火保温芯材及其制备方法
CN113336518A (zh) * 2021-07-13 2021-09-03 亚士创能科技(上海)股份有限公司 一种匀质板及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023513724A (ja) * 2020-02-10 2023-04-03 上海聖奎塑業有限公司 耐火保温材及びその製造工程

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941822A (zh) * 2010-08-26 2011-01-12 无锡吉兴汽车声学部件科技有限公司 一种保温板
CN102344268A (zh) * 2011-06-22 2012-02-08 新疆生产建设兵团第五建筑安装工程公司 粉煤灰泡沫塑料颗粒保温防水材料及制作方法
CN102718450A (zh) * 2012-06-08 2012-10-10 青岛科瑞新型环保材料有限公司 一种墙体保温芯板及其加工方法
CN102875083A (zh) * 2012-06-08 2013-01-16 青岛科瑞新型环保材料有限公司 一种墙体保温芯板及其生产方法
CN103059435A (zh) * 2013-01-15 2013-04-24 河南铝城聚能实业有限公司 聚苯乙烯复合保温材料及保温板的制备方法
CN107793102A (zh) * 2017-11-21 2018-03-13 安徽省贝安居建筑节能材料科技有限公司 一种聚苯乙烯颗粒保温板材及其制备工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8503127A (nl) * 1985-11-13 1987-06-01 Aardelite Holding Bv Werkwijze voor het vervaardigen van bouwmateriaal op basis van kolenas.
JPH06305854A (ja) * 1993-04-23 1994-11-01 Toyo Tire & Rubber Co Ltd 軽量ケイ酸カルシウム成形体
DE102010027325A1 (de) * 2010-07-06 2012-01-12 Quick-Mix Gruppe Gmbh & Co. Kg Neue Baustoffmischungen
CN103664092B (zh) * 2012-09-06 2017-05-31 上海圣奎塑业有限公司 一种胶粉料、胶粉聚苯颗粒、保温材料及其制备方法
CN103058705B (zh) * 2013-01-28 2015-01-07 邓正凯 一种复合型蒸压加气混凝土自保温砌块
FR3004177B1 (fr) * 2013-04-04 2015-11-20 Saint Gobain Weber Composition de mortier isolant
CN106866063A (zh) * 2016-12-30 2017-06-20 上海墙特节能材料有限公司 一种阻燃型无机复合eps保温板及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101941822A (zh) * 2010-08-26 2011-01-12 无锡吉兴汽车声学部件科技有限公司 一种保温板
CN102344268A (zh) * 2011-06-22 2012-02-08 新疆生产建设兵团第五建筑安装工程公司 粉煤灰泡沫塑料颗粒保温防水材料及制作方法
CN102718450A (zh) * 2012-06-08 2012-10-10 青岛科瑞新型环保材料有限公司 一种墙体保温芯板及其加工方法
CN102875083A (zh) * 2012-06-08 2013-01-16 青岛科瑞新型环保材料有限公司 一种墙体保温芯板及其生产方法
CN103059435A (zh) * 2013-01-15 2013-04-24 河南铝城聚能实业有限公司 聚苯乙烯复合保温材料及保温板的制备方法
CN107793102A (zh) * 2017-11-21 2018-03-13 安徽省贝安居建筑节能材料科技有限公司 一种聚苯乙烯颗粒保温板材及其制备工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3907204A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908946A (zh) * 2020-07-23 2020-11-10 山东芳林昊天钢结构工程有限公司 一种硅酸钙板聚苯颗粒混泡沫混凝土的制造工艺
CN112174605A (zh) * 2020-09-30 2021-01-05 安徽省贝安居建筑节能材料科技有限公司 一种外墙板用的石墨防火保温芯材及其制备方法
CN113336518A (zh) * 2021-07-13 2021-09-03 亚士创能科技(上海)股份有限公司 一种匀质板及其制备方法和应用

Also Published As

Publication number Publication date
EP3907204A1 (en) 2021-11-10
JP2022516303A (ja) 2022-02-25
JP7254184B2 (ja) 2023-04-07
KR20210109602A (ko) 2021-09-06
EP3907204A4 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
WO2020140327A1 (zh) 一种保温板原料组合物、保温板及其制作工艺
CN109879654B (zh) 保温板原料组合物及保温板
CN109879643B (zh) 保温板原料组合物、速凝保温板及其制作方法
Yang et al. Production and properties of foamed reservoir sludge inorganic polymers
WO2021159912A1 (zh) 一种防火保温材料及其制备工艺
CN109879652A (zh) 一种含聚苯乙烯的原料组合物及保温板
CN102603245A (zh) 一种复合发泡水泥保温板材料
CN111689789A (zh) 一种无机胶结聚苯乙烯泡沫保温板及其制备方法
CN109912285B (zh) 一种柔性保温板的制作工艺
CN113816671A (zh) 一种a级防火石墨复合保温板材料及其制备方法
CN109956726A (zh) 一种硅墨烯原料组合物及柔性硅墨烯保温板
CN106007524B (zh) 一种孔隙率梯度可控的地聚物外墙保温板材及其制备方法
CN111170675B (zh) 一种楼地面防火保温材料及其制作工艺
CN114075060A (zh) 一种模压无机胶苯颗粒保温板及其制备方法
CN106082884B (zh) 一种含有固废煤渣的轻质保温墙板及制备工艺
CN104446103A (zh) 一种基于水性聚酯树脂改性发泡保温材料及其制备方法
CN110698223A (zh) 一种自强度梯度泡沫混凝土材料及其制备方法
CN115959865B (zh) 一种橡胶粉、塑料粉、耐磨超大应变新型绿色工程水泥基复合材料及其制备方法
CN110950617B (zh) 保温材料及保温板
CN112010625A (zh) 一种防火保温材料及其制备工艺
CN104402510A (zh) 一种轻质建筑板材制造方法
CN111285657B (zh) 一种保温墙体材料及其制作工艺
CN107827424B (zh) 防水型自保温蒸压加气混凝土砌块及其制备方法
CN112174605A (zh) 一种外墙板用的石墨防火保温芯材及其制备方法
CN110194645B (zh) 超细粉煤灰蒸压加气自保温砌块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217024406

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019907772

Country of ref document: EP

Effective date: 20210802