WO2020140320A1 - 一种适用于内燃机余热回收动力循环的三组元混合工质 - Google Patents

一种适用于内燃机余热回收动力循环的三组元混合工质 Download PDF

Info

Publication number
WO2020140320A1
WO2020140320A1 PCT/CN2019/076813 CN2019076813W WO2020140320A1 WO 2020140320 A1 WO2020140320 A1 WO 2020140320A1 CN 2019076813 W CN2019076813 W CN 2019076813W WO 2020140320 A1 WO2020140320 A1 WO 2020140320A1
Authority
WO
WIPO (PCT)
Prior art keywords
pentane
mass percentage
waste heat
refrigerant
heat recovery
Prior art date
Application number
PCT/CN2019/076813
Other languages
English (en)
French (fr)
Inventor
舒歌群
刘鹏
田华
喻志刚
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US17/044,800 priority Critical patent/US11299660B2/en
Publication of WO2020140320A1 publication Critical patent/WO2020140320A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention belongs to working fluid for power cycle of internal combustion engine waste heat recovery, in particular to a power circulation ternary mixed working fluid containing CO 2 , alkane and traditional refrigerant.
  • Waste heat recovery technology is considered to be a key technology for energy saving and emission reduction of internal combustion engines, and is of great significance for efficient energy use at the national level.
  • the residual heat of the traditional internal combustion engine has the characteristics of large temperature difference and multi-grade.
  • the temperature of the flue gas residual heat is as high as about 500 °C, accounting for about 25% of the combustion heat of the internal combustion engine. Similar to the proportion of flue gas waste heat is the residual heat of the cylinder liner of the internal combustion engine, but the temperature of the cylinder liner water is generally lower than 100°C. Due to the huge difference in temperature characteristics of the two waste heat sources, it is difficult to achieve efficient recovery through the traditional working fluid cycle.
  • the mixed working fluid uses the advantages of the three working fluids to make up for each other, and eventually will form an efficient, environmentally friendly and safe power cycle working fluid suitable for vehicles.
  • the present invention provides a three-component mixed working fluid suitable for the power cycle of internal combustion engine waste heat recovery.
  • the mixed working fluid is safe, environmentally friendly, and efficient, and meets the cooling conditions for vehicles, and has good dynamic thermodynamic properties.
  • the present invention proposes a three-component mixed working fluid suitable for the internal combustion engine waste heat recovery power cycle, which is composed of carbon dioxide, pentane and a refrigerant.
  • the refrigerant has a GWP value lower than 1000 and an ODP value 0 is a highly efficient and environmentally friendly refrigerant, the highly efficient and environmentally friendly refrigerant is any one of difluoromethane, fluoroethane and 1,1-difluoroethane; according to the selected high-efficiency and environmentally friendly refrigerant ,
  • the mass percentage of each component is as follows:
  • the highly efficient and environmentally friendly refrigerant is difluoromethane, the mass percentage of pentane is 10-20, the mass percentage of difluoromethane is 10-60, and the rest is carbon dioxide;
  • the high-efficiency environment-friendly refrigerant is fluoroethane, the mass percentage of pentane is 10-20, the mass percentage of fluoroethane is 10-50, and the rest is carbon dioxide;
  • the high-efficiency environment-friendly refrigerant is 1,1-difluoroethane, the mass percentage of pentane is 10-30, the mass percentage of 1,1-difluoroethane is 10-60, and the rest is carbon dioxide.
  • the mixed working fluid of the present invention is composed of CO 2 and alkane working fluid and another refrigerant working fluid with a GWP value lower than 1000 and an ODP value of 0 (difluoromethane, fluoroethane and 1,1-difluoroethane Any one of alkane) is mixed.
  • the specific alkane working fluid is pentane, which has outstanding thermodynamic properties.
  • the safety performance of the refrigerant used in the above mixed working fluid meets the safety requirements of Class A2 working fluid in the American ANSI/ASHRAE34-2010 standard.
  • the percentage of the mass component of the alkane working fluid is less than 30%. CO 2 has a flame retardant effect, so it has High safety performance.
  • the refrigerant GWP value is lower than 1000, the ODP value is 0, and the GWP and ODP values of CO 2 and pentane are extremely low.
  • the mixed working fluid Under ambient temperature conditions (temperature 298K, pressure 1atm), the mixed working fluid has good safety performance. It has good synergistic recovery ability for engine high and low grade heat sources, namely cylinder liner water and flue gas, cylinder liner water utilization rate reaches 100%, and flue gas utilization rate is greater than 60%.
  • the thermodynamic performance is good, under the given engine waste heat recovery power cycle design conditions, the thermal efficiency is higher than 12%.
  • the circulating heat loss is small.
  • the present invention is a ternary non-azeotropic mixed working medium. There is a temperature slip during the heat exchange process with the cold and heat source, which effectively reduces the irreversible loss in the heat exchange process.
  • each component in the mixed working medium refers to the mass percentage:
  • Example A1 After mixing CO 2 /pentane/R32 in a ratio of 60:20:20, a flush irrigation system.
  • Example A2 After mixing CO 2 /pentane/R32 in a ratio of 70:20:10, the irrigation system is flushed.
  • Example A3 After mixing CO 2 /pentane/R32 in a ratio of 50:20:30, the irrigation system is flushed.
  • Example A4 mixing the CO 2 /pentane/R32 according to the ratio of 30:10:60 to the post-irrigation system.
  • Example B1 After mixing CO 2 /pentane/R161 in a ratio of 70:10:20, the system is flushed and irrigated.
  • Example B2 After mixing CO 2 /pentane/R161 in a ratio of 60:20:20, the system is flushed and irrigated.
  • Example B3 After mixing CO 2 /pentane/R161 in a ratio of 60:10:30, a flush irrigation system is performed.
  • Example B4 After mixing CO 2 /pentane/R161 at a ratio of 30:20:50, a flush irrigation system is performed.
  • Example C1 After mixing CO 2 /pentane/R152a in a ratio of 60:20:20, a flush irrigation system.
  • Example C2 After mixing CO 2 /pentane/R152a in a ratio of 70:20:10, a flush irrigation system.
  • Example C3 After mixing CO 2 /pentane/R152a according to a ratio of 50:10:40, a flush irrigation system.
  • Example C4 After mixing CO 2 /pentane/R152a in a ratio of 40:10:50, a flush irrigation system.
  • Table 1 gives the critical parameters of the ternary mixed working fluid in each embodiment.
  • the specific working conditions of the given waste heat recovery system design are: engine dew point temperature is 120 °C, expander isentropic efficiency is 0.7, working fluid pump isentropic efficiency is 0.8, preheater, gas heater
  • the narrow point temperature difference in the regenerator and condenser is 5K, 30K, 15K and 5K, respectively.
  • the inlet pressure of the turbine is 10MPa and the inlet temperature is 550K.
  • the main indicators of circulation under some embodiments are shown in Table 2.
  • the present invention uses CO 2 , pentane and
  • the ternary mixed working fluid obtained by the refrigerant mixture can efficiently recover the engine flue gas and the residual heat energy of the cylinder liner water at the same time.
  • the flue gas utilization rate is higher than 60%, and the cylinder liner water utilization rate reaches 100%.
  • the thermodynamic performance is excellent, and the system thermal efficiency is higher than 12% under design conditions.
  • the critical temperature of the ternary mixture is significantly higher than that of CO 2 , which relaxes the cooling conditions of the system and satisfies the conditions of the vehicle waste heat recovery system.

Abstract

一种适用于内燃机余热回收动力循环的三组元混合工质,由二氧化碳和戊烷及制冷剂组成,该制冷剂是二氟甲烷、氟乙烷和1,1-二氟乙烷中的任何一种;按照所选取的制冷剂的不同,各组分的质量百分比如下:二氧化碳/戊烷/二氟甲烷的质量百分比为30-70/10-20/10-60;二氧化碳/戊烷/氟乙烷的质量百分比为30-70/10-20/10-50;二氧化碳/戊烷/1,1-二氟乙烷的质量百分比为10-70/10-30/10-60。该三组元混合工质具有良好的环保和安全性及热力学性能,热效率高于12%;可以同时高效回收发动机烟气和缸套水余热能,烟气利用率大于60%,缸套水利用率达100%;较CO2的临界温度明显提高,系统的冷却条件放宽,满足车用余热回收系统要求。

Description

一种适用于内燃机余热回收动力循环的三组元混合工质 技术领域
本发明属于内燃机余热回收动力循环用工质,尤其涉及一种包含CO 2、烷烃和传统制冷剂的动力循环三元混合工质。
背景技术
余热回收技术被认为是实现内燃机节能减排的关键性技术,对国家层面高效能源利用具有重要意义。传统内燃机余热具有大温差,多品位的特点,烟气余热温度高达500℃左右,占内燃机燃烧热的25%左右。与烟气余热比例相似的是内燃机缸套水余热,但是缸套水温度一般低于100℃。由于这两种余热源温度特性差异巨大,很难实现通过传统工质循环实现高效回收。之前的研究表明,有机工质不燃不爆,使用方便,但是对缸套水余热回收效率较低,而且普遍具有较高的全球变暖潜能值(GWP值)和消耗臭氧潜能值(ODP值),对环境具有明显的不利影响。烷烃类工质热力学性能突出,但是同样对缸套水余热回收利用率较低,安全性较差。CO 2具有很好的热力学性能,可以同时高效回收内燃机高低品位的余热源,系统具有小型化优势,同时CO 2属于自然工质,对环境影响很小,应用于高温余热回收领域的潜力巨大。但是CO 2工质由于临界温度过低,冷凝条件严苛,很难利用自然冷源冷却,限制了其在内燃机余热回收领域的应用。如果将上述三种工质按照一定的比例进行混合形成混合工质,混合工质利用三种工质的优势相互弥补,最终将形成高效,环保,安全的适于车用的动力循环工质。
发明内容
针对现有技术,本发明提供一种适用于内燃机余热回收动力循环的三组元混合工质,该混合工质安全、环保、高效,并且满足车用冷却条件,具有良好的动力热力学性能。
为了解决上述技术问题,本发明提出的一种适用于内燃机余热回收动力循环的三组元混合工质,由二氧化碳和戊烷及制冷剂组成,所述制冷剂是GWP值低于1000且ODP值为0的高效环保型制冷剂,所述高效环保型制冷剂是二氟甲烷、氟乙烷和1,1-二氟乙烷中的任何一种;按照所选取的高效环保型制冷剂的不同,各组分的质量百分比如下:
所述高效环保型制冷剂是二氟甲烷,戊烷的质量百分比为10-20,二氟甲烷的质量百分比为10~60,其余为二氧化碳;
所述高效环保型制冷剂是氟乙烷,戊烷的质量百分比为10-20,氟乙烷的质量百分比 为10~50,其余为二氧化碳;
所述高效环保型制冷剂是1,1-二氟乙烷,戊烷的质量百分比为10-30,1,1-二氟乙烷的质量百分比为10~60,其余为二氧化碳。
与现有技术相比,本发明的有益效果是:
由于本发明的混合工质由CO 2和烷烃类工质和另一种GWP值低于1000、ODP值为0的制冷剂工质(二氟甲烷、氟乙烷和1,1-二氟乙烷中的任何一种)混合而成。具体的烷烃类工质为戊烷,其具有突出的热力学性能。以上混合工质中使用的制冷剂安全性能满足美国ANSI/ASHRAE34-2010标准中的A2类工质安全要求,烷烃类工质质量组分百分比小于30%,CO 2具有阻燃作用,因而具有很高的安全性能。上述混合工质中制冷剂GWP值低于1000、ODP值为0,CO 2和戊烷GWP值与ODP值极低。整体的混合工质环保性能良好,即ODP(臭氧消耗潜力值)=0和GWP(温室效应潜力值)<100。
在环境温度条件(温度298K,压力1atm)下,混合工质安全性能良好。对发动机高低品位热源,即缸套水和烟气的协同回收能力好,缸套水利用率达到100%,烟气利用率大于60%。热力学性能良好,在给定发动机余热回收动力循环设计工况下,热效率高于12%。循环热损失小,本发明为三元非共沸混合工质,在与冷热源换热过程中存在温度滑移,有效减小了换热过程中的不可逆损失。
具体实施方式
下面结合具体实施例对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。
以下实际案例中的混合工质中各组分均指质量百分数:
实施例A1:将CO 2/戊烷/R32按照60:20:20的比例进行混合后冲灌系统。
实施例A2:将CO 2/戊烷/R32按照70:20:10的比例进行混合后冲灌系统。
实施例A3:将CO 2/戊烷/R32按照50:20:30的比例进行混合后冲灌系统。
实施例A4:将CO 2/戊烷/R32按照30:10:60的比例进行混合后冲灌系统。
实施例B1:将CO 2/戊烷/R161按照70:10:20的比例进行混合后冲灌系统。
实施例B2:将CO 2/戊烷/R161按照60:20:20的比例进行混合后冲灌系统。
实施例B3:将CO 2/戊烷/R161按照60:10:30的比例进行混合后冲灌系统。
实施例B4:将CO 2/戊烷/R161按照30:20:50的比例进行混合后冲灌系统。
实施例C1:将CO 2/戊烷/R152a按照60:20:20的比例进行混合后冲灌系统。
实施例C2:将CO 2/戊烷/R152a按照70:20:10的比例进行混合后冲灌系统。
实施例C3:将CO 2/戊烷/R152a按照50:10:40的比例进行混合后冲灌系统。
实施例C4:将CO 2/戊烷/R152a按照40:10:50的比例进行混合后冲灌系统。
表1给出各个实施例中三元混合工质的临界参数。
表1混合工质临界参数
Figure PCTCN2019076813-appb-000001
在目标发动机余热条件下,给定余热回收系统设计的具体工况为:发动机露点温度为120℃,膨胀机等熵效率为0.7,工质泵等熵效率为0.8,预热器,气体加热器,回热器和冷凝器中的窄点温差分别为5K,30K,15K和5K。透平进口压力为10MPa,进口温度为550K。部分实施例下的循环主要指标如表2所示。
表2本发明部分应用实例的性能
Figure PCTCN2019076813-appb-000002
Figure PCTCN2019076813-appb-000003
通过上述实施例及相关计算数据可以得知(本发明实施例中的工质的参数和实施结果均通过本领域技术人员普遍使用和知晓的热力学计算得到),本发明利用CO 2、戊烷和制冷剂剂混合所得到三元混合工质,可以同时高效回收发动机烟气和缸套水余热能,烟气利用率高于60%,缸套水利用率达到100%。在满足环保性要求和安全性要求的情况下,热力学性能优良,设计工况下系统热效率高于12%。三元混合物临界温度较CO 2有明显提高,放宽了系统的冷却条件,满足车用余热回收系统条件。
尽管上面对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (1)

  1. 一种适用于内燃机余热回收动力循环的三组元混合工质,其特征在于:由二氧化碳和戊烷及制冷剂组成,所述制冷剂是GWP值低于1000且ODP值为0的高效环保型制冷剂,所述高效环保型制冷剂是二氟甲烷、氟乙烷和1,1-二氟乙烷中的任何一种;按照所选取的高效环保型制冷剂的不同,各组分的质量百分比如下:
    所述高效环保型制冷剂是二氟甲烷,戊烷的质量百分比为10-20,二氟甲烷的质量百分比为10~60,其余为二氧化碳;
    所述高效环保型制冷剂是氟乙烷,戊烷的质量百分比为10-20,氟乙烷的质量百分比为10~50,其余为二氧化碳;
    所述高效环保型制冷剂是1,1-二氟乙烷,戊烷的质量百分比为10-30,1,1-二氟乙烷的质量百分比为10~60,其余为二氧化碳。
PCT/CN2019/076813 2018-12-30 2019-03-04 一种适用于内燃机余热回收动力循环的三组元混合工质 WO2020140320A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/044,800 US11299660B2 (en) 2018-12-30 2019-03-04 Three-component mixed working fluid for internal combustion engine waste heat recovery power cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811648235.6A CN109609103B (zh) 2018-12-30 2018-12-30 一种适用于内燃机余热回收动力循环的三组元混合工质
CN201811648235.6 2018-12-30

Publications (1)

Publication Number Publication Date
WO2020140320A1 true WO2020140320A1 (zh) 2020-07-09

Family

ID=66016008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076813 WO2020140320A1 (zh) 2018-12-30 2019-03-04 一种适用于内燃机余热回收动力循环的三组元混合工质

Country Status (3)

Country Link
US (1) US11299660B2 (zh)
CN (1) CN109609103B (zh)
WO (1) WO2020140320A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755137B (zh) * 2021-08-27 2024-02-20 澳宏(太仓)环保材料有限公司 一种三元环保制冷剂及其制备方法
CN113789154B (zh) * 2021-09-14 2023-06-27 天津大学合肥创新发展研究院 一种含有二氧化碳及氟乙烷的三元混合工质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688817A (zh) * 2007-06-21 2010-03-31 纳幕尔杜邦公司 用于热传递系统的渗漏检测的方法
CN103013450A (zh) * 2012-12-10 2013-04-03 天津大学 含有甲苯的有机朗肯循环混合工质
JP5435859B2 (ja) * 2007-11-26 2014-03-05 Jx日鉱日石エネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
CN105062426A (zh) * 2015-07-17 2015-11-18 天津大学 适用于内燃机高温排气余热回收的有机朗肯循环混合工质
CN105102905A (zh) * 2013-03-29 2015-11-25 松下健康医疗控股株式会社 二元制冷装置
CN108716435A (zh) * 2018-04-03 2018-10-30 天津大学 一种集成余热回收的内燃机增压系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120067049A1 (en) * 2010-09-17 2012-03-22 United Technologies Corporation Systems and methods for power generation from multiple heat sources using customized working fluids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688817A (zh) * 2007-06-21 2010-03-31 纳幕尔杜邦公司 用于热传递系统的渗漏检测的方法
JP5435859B2 (ja) * 2007-11-26 2014-03-05 Jx日鉱日石エネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
CN103013450A (zh) * 2012-12-10 2013-04-03 天津大学 含有甲苯的有机朗肯循环混合工质
CN105102905A (zh) * 2013-03-29 2015-11-25 松下健康医疗控股株式会社 二元制冷装置
CN105062426A (zh) * 2015-07-17 2015-11-18 天津大学 适用于内燃机高温排气余热回收的有机朗肯循环混合工质
CN108716435A (zh) * 2018-04-03 2018-10-30 天津大学 一种集成余热回收的内燃机增压系统

Also Published As

Publication number Publication date
US20210317354A1 (en) 2021-10-14
CN109609103B (zh) 2020-05-19
US11299660B2 (en) 2022-04-12
CN109609103A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN112760081B (zh) 一种混合工质及其应用
CN107323217B (zh) 一种余热驱动吸收式制冷辅助过冷的co2汽车空调
WO2020140320A1 (zh) 一种适用于内燃机余热回收动力循环的三组元混合工质
CN103808068A (zh) 一种制冷系统
CN103571437A (zh) 一种含氨的混合制冷剂
WO2018018967A1 (zh) 一种结合空压系统与热泵系统的复合系统
CN101929361B (zh) 一种带吸收器的低温动力循环系统
Bravo et al. State of art of simple and hybrid jet compression refrigeration systems and the working fluid influence
CN105713576A (zh) 柴油机余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和五氟乙烷及余热回收方法
WO2017012167A1 (zh) 适用于内燃机高温排气余热回收的有机朗肯循环混合工质
US2714289A (en) System for producing thermal power
CN105041396A (zh) 联合循环供能系统
CN206953941U (zh) 一种余热驱动吸收式制冷辅助过冷的co2汽车空调
CN107364564B (zh) 吸收式与热电制冷协同辅助过冷的co2船用制冷系统
CN112409993B (zh) 一种适用于lng冷能利用的安全高效混合工质
CN104989472A (zh) 联合循环供能系统
CN111117571B (zh) 一种富含二氧化碳的混合制冷剂及其制备方法与应用
CN113187621A (zh) 基于lng冷却的跨临界co2循环内燃机余热发电系统及方法
Kshirsagar et al. Combined vapour compression-ejector refrigeration system: a review
CN105670566A (zh) 余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷及余热回收方法
CN101486893A (zh) 适用于高温环境制冷空调装置的混合制冷剂
CN109705814A (zh) 一种内燃机余热回收动力循环用环保高效型混合工质
CN205373191U (zh) 采用两级换热的用lng冷能制备普通冰和臭氧冰的装置
CN105694818A (zh) 柴油机余热回收朗肯循环混合工质六氟丙烷和五氟乙烷及余热回收方法
CN114507508B (zh) 一种热泵混合工质的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906671

Country of ref document: EP

Kind code of ref document: A1