CN105670566A - 余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷及余热回收方法 - Google Patents
余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷及余热回收方法 Download PDFInfo
- Publication number
- CN105670566A CN105670566A CN201610111322.2A CN201610111322A CN105670566A CN 105670566 A CN105670566 A CN 105670566A CN 201610111322 A CN201610111322 A CN 201610111322A CN 105670566 A CN105670566 A CN 105670566A
- Authority
- CN
- China
- Prior art keywords
- working medium
- heat
- organic working
- enter
- hfc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/02—Materials undergoing a change of physical state when used
- C09K5/04—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
- C09K5/041—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
- C09K5/044—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
- C09K5/045—Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2205/00—Aspects relating to compounds used in compression type refrigeration systems
- C09K2205/22—All components of a mixture being fluoro compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明提供的是一种余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷及余热回收方法。采用带有回热器的有机朗肯循环系统回收柴油机排气余热和中冷器的热量,通过采用所选择的二元混合工质,效果非常明显。通过回收柴油机排气余热能量和中冷器余热能量,将其转化为电能,达到综合回收柴油机余热,显著提高柴油机的热效率,降低燃油耗指标,减少碳排放。
Description
技术领域
本发明涉及的是一种回收柴油机余热的低温朗肯循环系统的二元混合工质。本发明也涉及一种利用二元混合工质的余热回收方法。
背景技术
能源问题己经成为经济发展中一个头等重要问题。柴油机以其经济性和热效率高的优势,广泛应用于工业生产和运输产业的各个领域,但其废热占到燃烧总能量的55%-70%,大部分的能量通过冷却水散热和高温尾气排放到大气中。随着能源供应日益紧张,节能、降耗、提高能源利用率越来越引起人们的重视,所以发动机排气余热的利用是必然趋势。
目前,针对于回收柴油机余热,有机朗肯循环系统采用纯工质,对于纯工质循环动力系统来说,蒸发器的损失最高,限制了循环效率及循环净功的提高,其主要原因在于夹点温差导致纯工质和热源的匹配效果差,夹点温差是蒸发器过程中温差最小的点,它出现在纯工质泡点位置,纯工质的泡点温度和露点温度相同,而混合工质的泡点温度和露点温度不同,存在温度滑移,这对于混合工质与冷热源的匹配有很大的益处。因此,开发环境友好、热力学性能好的新型可靠的工质,对柴油机余热利用系统技术的发展至关重要。
有关柴油机余热利用的混合工质的公开报道也较多,例如“采用非共沸混合工质变组分的低温朗肯循环系统”的专利文件中,采用七氟丙烷和异丁烷混合用于利用地热能,热源为85℃的地热水。循环热效率为9.41%,但其中的异丁烷易燃,安全性能差,不能用于柴油机余热回收;再例如“一种太阳能有机朗肯循环发电系统”的专利文件中,采用二氯一氟乙烷和正丁烷混合用于利用太阳能,但二氯一氟乙烷会破坏臭氧层,正丁烷易燃易爆。
发明内容
本发明的目的在于提供一种适用于回收柴油机排气能量,减少碳排放,保护环境的余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷。本发明的目的还在于提供一种利用余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法。
本发明的余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷是由1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷物理混合而成的二元混合工质,1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷质量百分数为(0.2-0.9):(0.1-0.8),两组元物质质量分数之和等于100%。
本发明的余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的临界压力范围为3408kPa-3504kPa,临界温度范围为89℃-146℃。
本发明的利用余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法之一是:余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷经工质泵8加压后,进入回热器6吸收来自膨胀机4出口的有机工质的热量,接着进入中冷器-有机工质换热器9吸收中冷器的热量,最后进入烟气-有机工质换热器3吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
本发明的利用余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法之二是:余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷经工质泵8加压后,进入回热器6吸收来自膨胀机出口的有机工质的热量,进入烟气-有机工质换热器3吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
本发明的利用余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法之三是:余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷经工质泵8加压后,进入回热器6吸收来自膨胀机4出口的有机工质的热量,接着进入中冷器-有机工质换热器9吸收中冷器的热量,最后进入水或导热油-有机工质换热器10吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体;其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器3,在烟气-水或导热油换热器3中的水或导热油由烟气加热。
本发明的利用余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法之四是:余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷经工质泵8加压后,进入回热器6吸收来自膨胀机出口的有机工质的热量,进入水或导热油-有机工质换热器10吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体;其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器3,在烟气-水或导热油换热器3中的水或导热油由烟气加热。
本发明基于解决能源问题及温室效应引起的环境问题,充分考虑柴油机排气的特点,综合提高柴油机余热利用潜力,通过二元混合工质有机朗肯系统,回收柴油机排气能量,减少碳排放,保护环境。
本发明总体方案的指导思想是:通过研究发现,临界温度相差70℃的工质混合后表现出很高的热效率,在此范围内筛选出冷却水温度为25℃时,热源温度为200℃柴油机排气温度条件下,热效率超过20%的工质配比。
本发明的二元混合工质有机朗肯循环系统,包括中冷器-有机工质预热器、烟气-有机工质换热器、膨胀机、回热器、冷凝器、工质泵。
本发明的二元混合工质有机朗肯循环系统循环工质选用1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷物理混合为二元混合工质,1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷质量百分数为(0.2-0.9):(0.1-0.8)。两组元物质质量分数之和等于100%,两组元物质的基本参数如表1所示。
表1二元混合工质中所含组元的基本参数
Tc:临界温度,Pc:临界压力,ODP:臭氧损耗潜能值(半经验数值),GWP:全球温室效应潜能值(累计时间基准100年)
本系统所采用的两种二元混合工质其临界压力相近,相变时滑移温度大,符合环保要求,循环性能优良,本发明在环境温度25℃柴油机额定工况下的朗肯循环效率大于20%,循环热效率高,回热循环效率相对于目前其他混合工质及纯工质都要高,产生这种效果的原因在于采用该配比在回热时,高压回热出口可跨越过高压下的泡点温度,低压回热出口可跨越低压下的露点温度。避免了纯工质朗肯循环的温度夹点问题,有利于循环效率的提高。
采用上述技术方案具有如下显著优点:
(1)采用二元混合工质作为有机朗肯循环的工质,能够有效地回收柴油机余热,采用1,1,1,3,3-五氟丙烷/1,1,1-三氟乙烷的混合方式相对于其他的混合物有更高的热效率,有效地降低柴油机的排气。其原因在于采用这种配比,回热时,高压回热出口可跨越过高压下的泡点温度,低压回热出口可跨越低压下的露点温度。
(2)通过中冷器-有机工质预热器可以有效地利用中冷器的热量,提高工质进入烟气-有机工质换热器的温度,工质自中冷器-有机工质预热器出来后进入烟气-有机工质换热器继续升温,成为饱和蒸汽。通过中冷器-有机工质预热器和烟气-有机工质换热器联合传热,可以增大有机工质的流量,提高输出轴功。
(3)二元混合工质经由烟气-有机工质换热器后成为高温高压的蒸汽,进入膨胀机中膨胀做功,膨胀机出口的有机工质通过回热器将热量传递给工质泵出口的有机工质,提高热效率。
附图说明
图1至图4为本发明的四种二元混合工质有机朗肯循环装置结构示意图。
图5为亚临界温熵图。
图6为跨临界温熵图。
具体实施方式
以下结合附图举例对本发明作进一步详细描述。
结合图1,本发明的利用余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法之一所涉及的系统由1-柴油机、2-排气管、3-烟气-有机工质换热器、4-膨胀机、5-功率传递设备、6-回热器、7-冷凝器、8-工质泵和9-中冷器-有机工质预热器组成。二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机4出口的有机工质的热量,接着进入中冷器-有机工质换热器9吸收中冷器的热量,最后进入烟气-有机工质换热器3吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
结合图2,本发明的利用余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法之二所涉及的系统由1-柴油机、2-排气管、3-烟气-有机工质换热器、4-膨胀机、5-功率传递设备、6-回热器、7-冷凝器和8-工质泵组成。二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机出口的有机工质的热量,进入烟气-有机工质换热器3吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
结合图3,本发明的利用余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法之三所涉及的系统由1-柴油机、2-排气管、3-烟气-水或导热油换热器、4-膨胀机、5-功率传递设备、6-回热器、7-冷凝器、8-工质泵、9-中冷器-有机工质预热器和10-水-有机工质换热器组成。该实施方案属于间接换热方案,采用水或导热油作为传导介质,将烟气的热量传递给混合工质,二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机4出口的有机工质的热量,接着进入中冷器-有机工质换热器9吸收中冷器的热量,最后进入水或导热油-有机工质换热器10吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器3,在烟气-水或导热油换热器3中的水或导热油由烟气加热。
结合图4,本发明的利用余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法之四所涉及的系统由1-柴油机、2-排气管、3-烟气-水或导热油换热器、4-膨胀机、5-功率传递设备、6-回热器、7-冷凝器、8-工质泵和10-水或导热油-有机工质换热器组成。该实施方案属于间接换热方案,采用水或导热油作为中间传递介质,将烟气的热量传递给混合工质,二元混合工质经工质泵8加压后,进入回热器6吸收来自膨胀机出口的有机工质的热量,进入水或导热油-有机工质换热器10吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器6将一部分能量传递给工质泵8出口的有机工质,之后进入冷凝器7冷凝成饱和液体。其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器3,在烟气-水或导热油换热器3中的水或导热油由烟气加热。
上述四种实施方式中:柴油机余热为排气余热和中冷器余热。排气作为热源温度范围为200℃-350℃,与二元混合工质通过换热器直接进行换热,或柴油机余热产生温度范围100℃-170℃的热水与二元混合工质通过中间换热器进行间接换热。冷却水温度为10℃到36℃之间。冷凝压力为二元混合工质临界压力的大约10%到47%之间,冷凝器温度滑移为13℃到30℃之间。冷凝温度比冷凝压力下的泡点温度低0℃到5℃之间,即过冷度为0℃到5℃之间。有机朗肯循环采用亚临界循环或者跨临界循环之中的一种循环。所述亚临界循环,对于二元混合工质通过换热器直接进行换热,蒸发压力为二元混合工质临界压力的大约45%到100%之间,蒸发滑移温度在5到18℃之间;对于二元混合工质通过中间换热器进行间接换热,蒸发压力为二元混合工质临界压力的大约12%到100%之间,蒸发滑移温度在5到28℃之间。跨临界循环,蒸发压力为工作流体混合物临界压力的大约1.01到1.3之间,循环最高温度比临界温度高5℃到71℃之间。
图5为亚临界温熵图,具体表示出循环工质的做功过程,与图6的区别在于其蒸发压力低于临界压力。过程3-4:凝结后的有机工质经工质泵8后压力提高,饱和液态有机工质经工质泵8的升压过程可视为定熵压缩过程。过程4-a:有机工质经回热器6吸收热量,回收了部分热量。过程a-1:有机工质在中冷器-有机工质预热器9、烟气-有机工质换热器3中吸热,由未饱和态变为过热或饱和有机工质蒸汽。过程中工质与外界无技术功交换。忽略了工质流动过程的阻力,该过程为定压吸热过程。过程1-2:过热或饱和的有机工质蒸汽在膨胀机4中膨胀并对外输出功。在膨胀机4出口工质达到低压状态,主要由饱和的蒸汽组成,称为乏汽。忽略工质的摩擦与散热,该过程为等熵膨胀过程。过程2-b:膨胀机4出口的有机工质进入回热器6把热量传递给过冷态的有机工质。过程b-1:在冷凝器7中乏汽放热给冷却水,凝结成为冷凝器乏汽压力下的饱和液态或过冷态的有机工质。该过程可视为定压放热过程。由该T-S图可以明显看出高压回热出口a点跨越过高压下的泡点温度点5,低压回热出口b点可跨越低压下的露点温度点7。温度夹点出现在蒸发器和冷凝器的进出口端。这也是该种混合物相对于其他朗肯循环工质的优势。
图6为跨临界温熵图,具体表示出循环工质的做功过程,过程3-4:凝结后的有机工质经工质泵8后压力提高,饱和液态有机工质经工质泵8的升压过程可视为定熵压缩过程。过程4-a:有机工质经回热器6吸收热量,回收了部分热量。过程a-1:有机工质在中冷器-有机工质预热器9、烟气-有机工质换热器3中吸热,由未饱和态变为过热或饱和有机工质蒸汽。过程中工质与外界无技术功交换。忽略了工质流动过程的阻力,该过程为定压吸热过程。过程1-2:过热或饱和的有机工质蒸汽在膨胀机4中膨胀并对外输出功。在膨胀机4出口工质达到低压状态,主要由饱和的蒸汽组成,称为乏汽。忽略工质的摩擦与散热,该过程为等熵膨胀过程。过程2-b:膨胀机4出口的有机工质进入回热器6把热量传递给过冷态的有机工质.过程b-1:在冷凝器7中乏汽放热给冷却水,凝结成为冷凝器乏汽压力下的饱和液态或过冷态的有机工质。该过程可视为定压放热过程。由该T-S图可以明显看低压回热出口b点可跨越低压下的露点温度点7。这也是该种混合物相对于其他朗肯循环工质的优势。
Claims (6)
1.一种余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷,其特征是:是由1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷物理混合而成的二元混合工质,1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷质量百分数为(0.2-0.9):(0.1-0.8),两组元物质质量分数之和等于100%。
2.根据权利要求1所述的余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷,其特征是:临界压力范围为3408kPa-3504kPa,临界温度范围为89℃-146℃。
3.一种利用权利要求1所述的余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法,其特征是:余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷经工质泵(8)加压后,进入回热器(6)吸收来自膨胀机(4)出口的有机工质的热量,接着进入中冷器-有机工质换热器(9)吸收中冷器的热量,最后进入烟气-有机工质换热器(3)吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机4膨胀做功,膨胀完的有机工质进入回热器(6)将一部分能量传递给工质泵(8)出口的有机工质,之后进入冷凝器7冷凝成饱和液体。
4.一种利用权利要求1所述的余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法,其特征是:余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷经工质泵(8)加压后,进入回热器(6)吸收来自膨胀机出口的有机工质的热量,进入烟气-有机工质换热器(3)吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机(4)膨胀做功,膨胀完的有机工质进入回热器(6)将一部分能量传递给工质泵(8)出口的有机工质,之后进入冷凝器(7)冷凝成饱和液体。
5.一种利用权利要求1所述的余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法,其特征是:余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷经工质泵(8)加压后,进入回热器(6)吸收来自膨胀机(4)出口的有机工质的热量,接着进入中冷器-有机工质换热器(9)吸收中冷器的热量,最后进入水或导热油-有机工质换热器(10)吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机(4)膨胀做功,膨胀完的有机工质进入回热器(6)将一部分能量传递给工质泵(8)出口的有机工质,之后进入冷凝器(7)冷凝成饱和液体;其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器(3),在烟气-水或导热油换热器(3)中的水或导热油由烟气加热。
6.一种利用权利要求1所述的余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷的余热回收方法,其特征是:余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷经工质泵(8)加压后,进入回热器(6)吸收来自膨胀机出口的有机工质的热量,进入水或导热油-有机工质换热器(10)吸收柴油机排气的热量,成为高温高压的饱和蒸汽或过热蒸汽进入膨胀机(4)膨胀做功,膨胀完的有机工质进入回热器(6)将一部分能量传递给工质泵(8)出口的有机工质,之后进入冷凝器(7)冷凝成饱和液体;其中水或导热油-有机工质换热器的热源水来自烟气-水或导热油换热器(3),在烟气-水或导热油换热器(3)中的水或导热油由烟气加热。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610111322.2A CN105670566A (zh) | 2016-02-29 | 2016-02-29 | 余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷及余热回收方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610111322.2A CN105670566A (zh) | 2016-02-29 | 2016-02-29 | 余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷及余热回收方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105670566A true CN105670566A (zh) | 2016-06-15 |
Family
ID=56306212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610111322.2A Pending CN105670566A (zh) | 2016-02-29 | 2016-02-29 | 余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷及余热回收方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105670566A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113932472A (zh) * | 2020-07-10 | 2022-01-14 | 天津城建大学 | 一种基于燃气机热泵和有机朗肯循环耦合系统的运行方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1563254A (zh) * | 2004-04-05 | 2005-01-12 | 天津大学 | 一组含有HFCs的中高温热泵混合工质 |
CN101597484A (zh) * | 2009-07-02 | 2009-12-09 | 天津大学 | 含有hfe-143(ch2fochf2)的有机朗肯循环混合工质 |
CN102127397A (zh) * | 2011-01-19 | 2011-07-20 | 天津大学 | 用于螺杆膨胀机的有机工质朗肯循环系统的混合工质 |
CN102816555A (zh) * | 2012-08-31 | 2012-12-12 | 天津大学 | 含HFC-227ea的低温有机朗肯循环系统混合工质 |
CN102900562A (zh) * | 2012-09-28 | 2013-01-30 | 北京工业大学 | 变蒸发器面积的发动机排气余热回收有机朗肯循环系统 |
CN104762065A (zh) * | 2015-03-10 | 2015-07-08 | 光大环保(中国)有限公司 | 有机朗肯循环混合工质及其制备方法 |
CN104879177A (zh) * | 2015-04-21 | 2015-09-02 | 同济大学 | 一种有机朗肯循环与热泵循环的耦合系统 |
-
2016
- 2016-02-29 CN CN201610111322.2A patent/CN105670566A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1563254A (zh) * | 2004-04-05 | 2005-01-12 | 天津大学 | 一组含有HFCs的中高温热泵混合工质 |
CN101597484A (zh) * | 2009-07-02 | 2009-12-09 | 天津大学 | 含有hfe-143(ch2fochf2)的有机朗肯循环混合工质 |
CN102127397A (zh) * | 2011-01-19 | 2011-07-20 | 天津大学 | 用于螺杆膨胀机的有机工质朗肯循环系统的混合工质 |
CN102816555A (zh) * | 2012-08-31 | 2012-12-12 | 天津大学 | 含HFC-227ea的低温有机朗肯循环系统混合工质 |
CN102900562A (zh) * | 2012-09-28 | 2013-01-30 | 北京工业大学 | 变蒸发器面积的发动机排气余热回收有机朗肯循环系统 |
CN104762065A (zh) * | 2015-03-10 | 2015-07-08 | 光大环保(中国)有限公司 | 有机朗肯循环混合工质及其制备方法 |
CN104879177A (zh) * | 2015-04-21 | 2015-09-02 | 同济大学 | 一种有机朗肯循环与热泵循环的耦合系统 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113932472A (zh) * | 2020-07-10 | 2022-01-14 | 天津城建大学 | 一种基于燃气机热泵和有机朗肯循环耦合系统的运行方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liao et al. | Advanced exergy analysis for Organic Rankine Cycle-based layout to recover waste heat of flue gas | |
Shengjun et al. | Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation | |
Li et al. | Hydrocarbon working fluids for a Rankine cycle powered vapor compression refrigeration system using low-grade thermal energy | |
Dai et al. | Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery | |
Wang et al. | Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation | |
David et al. | Waste heat recovery projects using Organic Rankine Cycle technology–Examples of biogas engines and steel mills applications | |
Li et al. | Comparative analysis of series and parallel geothermal systems combined power, heat and oil recovery in oilfield | |
Li et al. | Selection of organic Rankine cycle working fluids in the low-temperature waste heat utilization | |
Bao et al. | Exergy analysis and parameter study on a novel auto-cascade Rankine cycle | |
Li et al. | A novel geothermal system combined power generation, gathering heat tracing, heating/domestic hot water and oil recovery in an oilfield | |
Yang et al. | Economic research of the transcritical Rankine cycle systems to recover waste heat from the marine medium-speed diesel engine | |
CN102518491A (zh) | 一种利用二氧化碳及作为循环工质的热力循环系统 | |
CN104762065A (zh) | 有机朗肯循环混合工质及其制备方法 | |
CN105713576A (zh) | 柴油机余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和五氟乙烷及余热回收方法 | |
Sharma et al. | Review and preliminary analysis of organic rankine cycle based on turbine inlet temperature | |
Arjunan et al. | Selection of working fluids for solar organic Rankine cycle—a review | |
CN101929361A (zh) | 一种带吸收器的低温动力循环系统 | |
Sajwan et al. | Performance evaluation of two medium-grade power generation systems with CO2 based transcritical rankine cycle (CTRC) | |
CN102635416B (zh) | 一种带喷射器的低品位热驱动朗肯发电装置 | |
CN103937459A (zh) | 以co2为主要组元新型动力循环混合工质及其系统和方法 | |
CN105670566A (zh) | 余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷及余热回收方法 | |
CN109609103B (zh) | 一种适用于内燃机余热回收动力循环的三组元混合工质 | |
CN105694818A (zh) | 柴油机余热回收朗肯循环混合工质六氟丙烷和五氟乙烷及余热回收方法 | |
Mocarski et al. | Selected aspects of operation of supercritical (transcritical) organic Rankine cycle | |
CN105062426A (zh) | 适用于内燃机高温排气余热回收的有机朗肯循环混合工质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160615 |