WO2020140215A1 - 色度帧内预测方法和装置、及计算机存储介质 - Google Patents

色度帧内预测方法和装置、及计算机存储介质 Download PDF

Info

Publication number
WO2020140215A1
WO2020140215A1 PCT/CN2019/070148 CN2019070148W WO2020140215A1 WO 2020140215 A1 WO2020140215 A1 WO 2020140215A1 CN 2019070148 W CN2019070148 W CN 2019070148W WO 2020140215 A1 WO2020140215 A1 WO 2020140215A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
chroma
prediction
decoder
block
Prior art date
Application number
PCT/CN2019/070148
Other languages
English (en)
French (fr)
Inventor
霍俊彦
马彦卓
万帅
杨付正
李新伟
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/CN2019/070148 priority Critical patent/WO2020140215A1/zh
Priority to CN201980062647.8A priority patent/CN112771861A/zh
Priority to KR1020217020179A priority patent/KR20210108389A/ko
Priority to EP19907559.9A priority patent/EP3883243A4/en
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202110646355.8A priority patent/CN113347416B/zh
Priority to JP2021537035A priority patent/JP7309884B2/ja
Priority to MX2021008090A priority patent/MX2021008090A/es
Priority to AU2019419036A priority patent/AU2019419036A1/en
Priority to CN202310393421.4A priority patent/CN116506608A/zh
Publication of WO2020140215A1 publication Critical patent/WO2020140215A1/zh
Priority to US17/361,625 priority patent/US11451792B2/en
Priority to US17/819,175 priority patent/US11924439B2/en
Priority to JP2023109271A priority patent/JP2023123784A/ja
Priority to US18/493,217 priority patent/US20240107030A1/en
Priority to US18/493,496 priority patent/US20240098274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/643Hue control means, e.g. flesh tone control

Definitions

  • Embodiments of the present application relate to intra prediction technology in the field of video coding, and in particular, to a chroma intra prediction method and device, and a computer storage medium.
  • the luminance and chroma are independently divided into blocks for encoding, and one chroma block may correspond to multiple luma blocks.
  • the existing Direct Mode (DM) can only reflect the local texture features of the central area of the current chroma block.
  • a chroma block corresponds to multiple co-located luma blocks
  • using a single DM directly for chroma prediction is Unreasonable, for example, when DM is in direct current (DC) mode or planar Planar mode, the current chroma block can be considered flat and smooth, however, if the corresponding multiple brightness is not flat, then only pass DM chroma intra prediction will greatly reduce the accuracy of intra prediction, thereby reducing the efficiency of codec.
  • there are horizontal and vertical directions as the default options in the chroma prediction mode in this case, there are very few chroma blocks that conform to the horizontal and vertical prediction directions, which wastes the position of the alternative and is not conducive to improving the codec. effectiveness.
  • Embodiments of the present application provide a chroma intra prediction method, a decoder, and a computer storage medium, which can effectively improve the accuracy of intra prediction, and at the same time improve the coding and decoding efficiency.
  • An embodiment of the present application proposes an embodiment of the present application to propose a chroma intra prediction method.
  • the method includes:
  • a set of chroma prediction modes is obtained according to an optimized candidate mode; wherein the set of chroma prediction modes is used for chroma reconstruction of the current chroma block.
  • the decoder includes: an acquisition section,
  • the obtaining part is used to obtain the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block; and if the DM is a DC DC mode or a planar Planar mode, according to the optimized alternative mode, Acquiring a set of chroma prediction modes; wherein the set of chroma prediction modes is used for chroma reconstruction of the current chroma block.
  • An embodiment of the present application provides a decoder.
  • the decoder includes a processor, a memory storing executable instructions of the processor, a communication interface, and a connector for connecting the processor, the memory, and the communication interface
  • the processor implements the chroma intra prediction method as described above.
  • An embodiment of the present application proposes a computer-readable storage medium on which a program is stored and applied to a decoder.
  • the program is executed by a processor, the above-described chroma intra prediction method is implemented.
  • Embodiments of the present application provide a chroma intra prediction method, a decoder, and a computer storage medium.
  • the decoder obtains the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block; if the DM is a DC mode Or the planar Planar mode, the chroma prediction mode set is obtained according to the optimized candidate mode; wherein, the chroma prediction mode set is used for chroma reconstruction of the current chroma block.
  • the chroma prediction mode can be optimized using the alternative mode
  • the collection is constructed, and then the current chroma block is reconstructed according to the chroma prediction mode set, which can solve the problem of low accuracy of chroma intra prediction when the DM is in DC mode or Planar mode, and then can Improve codec efficiency.
  • Figure 1 is a schematic diagram of intra prediction
  • Figure 2 is a schematic diagram of 67 intra prediction modes
  • Figure 3 is a schematic diagram of the intra prediction method
  • FIG. 1 Schematic diagram of vertical prediction
  • Figure 5 is a schematic diagram of horizontal prediction
  • FIG. 6 is a schematic diagram of a set of candidate patterns in a chroma frame
  • FIG. 7 is a schematic diagram 1 of a chroma block and a luma block
  • FIG. 8 is a schematic diagram 2 of a chroma block and a luma block
  • Figure 9 is a schematic diagram of the video encoding process
  • Figure 10 is a schematic diagram of the video decoding process
  • FIG. 11 is a schematic flowchart of an implementation method of a chroma intra prediction method provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram 1 of establishing an optimized alternative mode
  • Figure 13 is a schematic diagram 2 of establishing an optimized alternative mode
  • Figure 14 is a schematic diagram 3 of establishing an optimized alternative mode
  • Figure 15 is a schematic diagram 4 of establishing an optimized alternative mode
  • Figure 16 is a schematic diagram 5 of establishing an optimized alternative mode
  • FIG. 17 is a schematic diagram 1 of the composition structure of a decoder proposed by an embodiment of the present application.
  • FIG. 18 is a second schematic diagram of the structure of the decoder according to an embodiment of the present application.
  • the predicted value of the current processing block is constructed using the existing reconstructed image in space or time, and only the difference between the real value and the predicted value is transmitted to achieve the purpose of reducing the amount of transmitted data.
  • intra prediction utilizes the spatial correlation within the picture or within the picture area.
  • the intra prediction of the current processing block can be performed by pixels in adjacent processing blocks that have already been processed. For example, the previous row and the left column of the current processing block are used to construct the prediction value of the current processing block.
  • Figure 1 shows intra prediction The schematic diagram, as shown in FIG. 1, uses pixels of adjacent processing blocks to predict each pixel of the current processing block.
  • FIG. 2 is a schematic diagram of 67 kinds of intra prediction modes. As shown in FIG. 2, among the 67 kinds of intra prediction modes, specifically include 65 kinds of prediction directions whose index numbers are 2-66, and also include index numbers. Planar mode with 0 and DC mode with index 1.
  • FIG. 3 is a schematic diagram of the intra prediction method. As shown in FIG. 3, when the prediction value of each pixel is constructed with the prediction direction index number 66, the labels are 0-16 The pixels of are the data on the previous line of the current processing block. Each pixel of the current processing block is filled with diagonally upper right pixels.
  • the Planar mode is mainly used in areas where the image texture is relatively smooth and has a relatively gradual transition process.
  • the prediction method is to use the pixel values of the reconstructed adjacent processing blocks corresponding to the current processing block as reference pixel values. Further linear interpolation and averaging calculation.
  • the DC mode is mainly used for areas with flat images, smooth textures, and no too many gradients.
  • the specific prediction method is based on the decoded last row reference pixels above the current processing block and the left side of the current processing block.
  • the decoded rightmost column references pixels for prediction. It can be seen that in intra prediction, the Planar mode and the DC mode are relatively flat construction prediction block methods.
  • the DC mode uses the average value of the reference pixels in the left column of the previous row to fill the entire chroma block.
  • the Planar mode uses a gradient Way to fill the chroma block.
  • a VER mode with a prediction direction index number of 50 that is, vertical prediction
  • a HOR mode with a prediction direction index number of 18 that is, horizontal prediction
  • Fig. 4 is a schematic diagram of vertical prediction
  • Fig. 5 is a schematic diagram of horizontal prediction.
  • the prediction direction is vertical prediction
  • the vertical prediction can be performed based on the pixel values of the pixels corresponding to the vertical in the previous line
  • the prediction direction For horizontal prediction you can perform horizontal prediction based on the pixel values of the pixels corresponding to the horizontal in the left column.
  • the encoding end When performing luma intra-prediction, you can make predictions according to the 0-66 modes in Figure 2 above, and then select the prediction direction that has the smallest difference with the current processing block, that is, the best match, and construct the prediction value.
  • the encoding end writes the difference value and the prediction direction into the code stream.
  • the decoding end obtains the code stream and analyzes it. After obtaining the prediction direction index number, the luminance prediction value can be calculated and added to the difference signal analyzed by the code stream to obtain the luminance reconstruction value.
  • the chroma intra-candidate mode set may include one or more chroma intra prediction modes, for example, linear model prediction (LM, Linear Model Prediction), the left linear model prediction LM_T mode, right The linear model on the side predicts the LM_L mode, DC mode, Planar mode, vertical VER mode, and horizontal HOR mode.
  • LM Linear Model Prediction
  • FIG. 6 is a schematic diagram of a set of candidate modes in a chroma frame. As shown in FIG. 6, different modes may be included in the set of candidate modes in a chroma frame. In the prior art, a color can be selected among different modes.
  • Intra-frame prediction for example, DM can characterize the prediction mode of the corresponding luminance central block, and cross-component calculation model prediction (Cross-component Linear Model Prediction, CCLM) characterizes the use of (a*luminance value +b) to construct a prediction signal.
  • a and b are both natural numbers, and when the DM is any one of the DC mode, Planar mode, VER mode, or HOR mode, the mode can be replaced with the angle mode with the prediction direction index number 66.
  • FIG. 7 is a schematic diagram 1 of the chroma block and the luminance block
  • FIG. 8 is a schematic diagram 2 of the chroma block and the luma block.
  • the luma block in FIG. 8 corresponding to the chroma block in FIG. 7 includes five parts that are individually encoded (by different gray levels). Means).
  • CR under DM can only reflect the local texture characteristics of chroma blocks, when a chroma block corresponds to multiple co-located luma blocks, it is unreasonable to use a single DM prediction directly.
  • the prediction mode is selected as the DC mode or the Planar mode
  • the current block needs to be considered to be flat, however, the current luminance block in FIG. 7 may not be flat.
  • there are horizontal and vertical directions as the default options in the chroma prediction mode in this case, there are very few chroma blocks that conform to the horizontal and vertical prediction directions, which wastes the position of the alternative and is not conducive to improving the codec. effectiveness.
  • the above-mentioned chroma intra prediction method can be applied to the intra prediction part in the video coding hybrid framework.
  • VVC is used for illustrative purposes, but not for limitation.
  • the above chroma intra prediction method can act simultaneously on the encoding end and the decoding end.
  • FIG. 9 is a schematic diagram of a video encoding process. As shown in FIG. 9, video encoding may include multiple specific steps such as intra-frame estimation, intra-frame prediction, and motion compensation. Among them, the chroma intra-frame prediction method proposed in this application may be applied In the intra prediction section; FIG.
  • the video decoding may include multiple specific steps such as filtering, intra prediction, and motion compensation.
  • the chroma intra prediction method proposed in this application It can be applied to the intra prediction part.
  • an embodiment of the present application provides a chroma intra prediction method.
  • FIG. 11 is a schematic diagram of an implementation process of a chroma intra prediction method provided by an embodiment of the present application. As shown in FIG. In the embodiment of the application, the above-mentioned method for the decoder to perform chroma intra prediction may include the following steps:
  • Step 101 Obtain the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block.
  • the decoder may acquire the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block.
  • the decoder may first receive the video bit stream, and then obtain the code stream data corresponding to the current encoding block from the received video bit stream.
  • the decoder may also obtain the residual data corresponding to the current chroma block from the code stream data.
  • the encoder when the encoder performs the luma intra prediction mode selection, the prediction may be performed separately according to multiple modes, for example, according to the 0-66 modes in FIG. 2 above. Prediction, and then select the best matching prediction direction to construct a prediction value.
  • the encoder when the encoder performs chroma intra prediction mode selection, it does not predict all of the above 0-66 modes, but only extracts a part of the prediction direction for prediction and selection. Therefore, after acquiring the code stream data, the decoder can further construct a chroma intra-candidate set corresponding to the current chroma block from the code stream data, that is, a chroma prediction mode set corresponding to the previous chroma block.
  • the chroma prediction mode set may include at least one chroma intra prediction mode.
  • the above chroma prediction mode set may include DM, LM, LM_T, LM_L, DC, Planar, and other directions. Prediction mode and other modes.
  • the current chromaticity block may be a square chromaticity block or a rectangular chromaticity block, which is not specifically limited in the embodiment of the present application.
  • Step 102 If the DM is in the DC mode or the Planar mode, obtain a set of chroma prediction modes according to the optimized candidate mode; wherein, the chroma prediction mode set is used for chroma reconstruction of the current chroma block.
  • the decoder may prepare according to the optimization Select a mode to obtain a set of chroma prediction modes.
  • the foregoing chroma prediction mode set may be used to perform intra-chroma prediction on the current chroma block.
  • the chroma prediction mode set is used for chroma prediction.
  • the decoder can perform chroma prediction on the current chroma block through the chroma prediction mode set, so that Rebuild the chroma corresponding to the current chroma block.
  • the decoder may determine whether the DM is in the DC mode or the Planar mode.
  • the decoder determines that the DM is the DC mode or the Planar mode
  • the above-mentioned encoder can add modes according to the optimized candidate mode, thereby obtaining a set of chroma prediction modes.
  • the decoder may first read and analyze the DM, thereby determining whether the DM is the DC mode or the Planar mode .
  • DM when the brightness center block is selected as DC mode or Planar mode, the brightness can be considered The block is flat.
  • VVC supports separate luminance and chrominance blocks for encoding.
  • One chroma block may correspond to multiple luma blocks, so DM can only reflect the local texture characteristics of the central area, that is, there is The possibility that the brightness block is not flat. That is to say, in the case where the DM is in the Planar mode or the DC mode, it is unreasonable to directly use a single DM for prediction, which will result in reduced accuracy.
  • Table 1 is the initial state of the intra prediction direction design table.
  • Table 1 when the DM is in the DC mode or the Planar mode, the initial state of the prediction direction is the DC mode Or Planar mode;
  • Table 2 is the subsequent state of the intra prediction direction design table.
  • Table 2 when the corresponding brightness center block is Planar mode or DC mode, if the entire brightness block adopts an intra prediction direction, it means that the current The block is likely to be flat. In order to ensure the efficiency of the flat block, another flat pattern will be filled in. Among them, since DM and CCLM are important coding tools, they need to be prioritized.
  • the corresponding chroma block may cover multiple luma block areas, which contain directional texture information, and the directions of these texture information have different probability distributions.
  • the mode can be replaced with the angle mode of the prediction direction index number 66.
  • the prediction direction index number is The diagonal mode of 34, 66 and 2 and the direction mode near it can accurately predict the chroma block with a greater probability.
  • DM can only reflect the local texture characteristics of the chroma block.
  • a single DM is used directly to predict the slope corresponding to the index number 66 corresponding to the horizontal, vertical, and prediction directions. It is unreasonable to use diagonal mode as a supplement to construct a set of chroma prediction modes. Therefore, the decoder needs to optimize and construct the set of chroma prediction modes according to the optimized candidate mode.
  • the oblique diagonal angle mode with prediction direction index numbers 34, 66, and 2 and the nearby directional modes can accurately predict the chroma block with a greater probability, so these prediction directions can be used
  • the mode replaces the original horizontal and vertical prediction direction modes, etc. to further supplement the DM.
  • the decoder may further obtain a set of chroma prediction modes for chroma prediction according to the optimized candidate mode.
  • the decoder may preset at least one mode as an alternative mode, that is, the above-mentioned decoder is preset with an optimized alternative mode.
  • the diagonal direction patterns with the prediction direction index numbers 34, 66, and 2 are more used for prediction in the small blocks of the luminance region corresponding to the current chromaticity. Therefore, the above optimization is prepared
  • the mode with the prediction direction index numbers 34, 66, and 2 can be stored in the selected mode.
  • the decoder is color matching according to the optimized candidate mode
  • the decoder can adjust the mode with the prediction direction index number 2 clockwise and then use it as an optimization Select the mode, for example, adjust to the mode with the prediction direction index number 6.
  • the decoder can also adjust the mode with the prediction direction index number 66 counterclockwise by an angle and then use it as an optimization candidate mode, for example, to the mode with the prediction direction index number 61.
  • the decoder can also adjust the mode with the prediction direction index number 66 and the mode with the prediction direction index number 2 by an angle at the same time, and then use it as an optimization candidate mode.
  • the selected modes may include modes with prediction direction index numbers 32, 64, and 4.
  • the decoder acquires the chroma prediction mode set according to the optimized candidate mode, it can first add the mode with the prediction direction index number 32 to the chroma prediction mode set, and then add the prediction direction index numbers 64 and 4.
  • One of the modes is added to the set of chroma prediction modes.
  • the decoder when establishing the optimized alternative mode, may determine at least one diagonal diagonal angle mode as the optimized alternative mode; it may also determine at least one diagonal diagonal angle mode.
  • the derived angle angle mode is determined as an optimized alternative mode, and at least one diagonal angle mode and at least one diagonal angle mode derived angle mode may also be determined as the optimized alternative mode.
  • the above-mentioned decoder can first determine the derived angle angle, specifically, the above-mentioned decoder can first determine the index number M corresponding to DM, where M is an integer greater than 0; then the above-mentioned decoder can obtain the transformation parameter N, and finally according to M And N further determine the index number corresponding to the derived angle angle mode, so that the derived angle angle mode can be obtained; wherein, N is an integer greater than 0.
  • the decoder when the decoder determines the index number corresponding to the derived angle angle pattern according to M and N, the decoder may perform addition operations on the M and the N, or may perform an addition operation on the M and the N Perform the subtraction operation to finally obtain the index number corresponding to the derived angle angle mode.
  • N can take values of 3, 5, or 7, but is not limited to these values.
  • the decoder can use the angle direction obtained by 1+5 or 1-5 as the index number corresponding to the angle angle mode. Since the prediction mode is generally not represented by negative numbers, a specific mapping method can be used to map the calculated value to the effective representation range. For example, the specific calculation formula may be (M+62-N)%64+2, and the result is 60.
  • one of the modes of the prediction direction index numbers 66 and 2 can be selected as an alternative according to the effective prediction direction range, and the other sequence number is adjusted to correspond Angle as an alternative.
  • the method for the decoder to perform chroma intra prediction may further include the following steps:
  • Step 103 Perform decoding processing according to the chroma prediction mode set to perform chroma reconstruction on the current chroma block.
  • the decoder can perform decoding processing according to the above chroma prediction mode set to perform chroma reconstruction on the current chroma block.
  • the decoder may further decode the current chroma block through the chroma prediction mode set, so that the current chroma block can be reconstructed.
  • the decoder since the decoder obtains the code stream data corresponding to the current encoding block from the received video bit stream and obtains the DM from the code stream data, the decoder It is also possible to obtain the residual data corresponding to the current chroma block from the above code stream data.
  • the decoder after the decoder obtains the chroma prediction mode set according to the optimized candidate mode, and after obtaining the residual data corresponding to the current chroma block from the above-mentioned codestream data, it can be based on the chroma
  • the prediction mode set performs chroma intra prediction decoding on the residual data, so that the current chroma block can be reconstructed.
  • the decoder obtains the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block; if the DM is a DC mode or a planar Planar mode, then Optimize the candidate mode to obtain a set of chroma prediction modes; where the set of chroma prediction modes is used for chroma reconstruction of the current chroma block.
  • the chroma prediction mode can be optimized using the alternative mode
  • the collection is constructed, and then the current chroma block is reconstructed according to the chroma prediction mode set, which can solve the problem of low accuracy of chroma intra prediction when the DM is in DC mode or Planar mode, and then can Improve codec efficiency.
  • the decoder may consider that the set of chroma prediction modes needs to be obtained according to the optimized candidate mode, thereby improving the accuracy of decoding.
  • the method for the decoder to obtain the set of chroma prediction modes according to the optimized candidate mode may specifically include the following steps:
  • Step 201 Fill DM and LM into a set of chroma prediction modes.
  • Step 202 Fill the chroma prediction mode set according to the optimized candidate mode.
  • the decoder may first add DM and LM to the chroma prediction mode set respectively, so that the two modes in the chroma prediction mode set may be determined first. Then, the decoder can continue to fill the chroma prediction mode set according to the optimized candidate mode, and finally obtain the chroma prediction mode set.
  • the decoder when the decoder adds DM and LM to the chroma prediction mode set, it specifically adds the prediction direction index number of the mode corresponding to DM and the prediction direction index of the mode corresponding to LM The number is added to the set of prediction modes. For example, if DM is the DC mode and the prediction direction index number of the mode corresponding to LM is 15, then the decoder can first add the prediction direction index numbers 1 and 15 to the chroma prediction mode set, and then follow the optimization alternative Mode fills the set of chroma prediction modes. Specifically, because the DM is in the DC mode, the decoder will add the prediction direction index number 0 of the Planar mode to the chroma prediction mode set during the process of filling the chroma prediction mode set according to the optimized candidate mode.
  • the decoder when the decoder fills the chroma prediction mode set according to the optimized candidate mode, it may specifically include the following steps:
  • Step 202a When the DM is in the DC mode, the Planar mode and the optimized candidate mode are filled into the chroma prediction mode set.
  • the decoder does not need to modify and replace the Planar mode, so the Planar mode and the optimized alternative mode can be filled into the chroma prediction mode set When the number of allocated bits is the same, they can be in no particular order. .
  • the decoder when the decoder adds the Planar mode and the optimized alternative mode to the chroma prediction mode set, it specifically adds the prediction direction index number corresponding to the Planar mode and other optimized alternative modes The corresponding prediction direction index number is added to the prediction mode set. For example, if the prediction direction index numbers of other optimization candidate modes are 32 and 61, the decoder may add the prediction direction index numbers 0, 132, and 61 to the chroma prediction mode set, respectively.
  • Step 202b When the DM is the Planar mode, fill the DC mode and the optimized candidate mode into the chroma prediction mode set.
  • the decoder does not need to modify and replace the DC mode, so the DC mode and the optimized candidate mode can be filled into the chroma prediction mode set When the number of allocated bits is the same, they can be in no particular order.
  • the decoder when the decoder adds the DC mode and the optimized alternative mode to the chroma prediction mode set, it specifically adds the prediction direction index number corresponding to the DC mode and other optimized alternative modes The corresponding prediction direction index number is added to the prediction mode set. For example, if the other optimization candidate modes correspond to the prediction direction index numbers 2 and 60, the decoder may add the prediction direction index numbers 1, 2, and 60 to the chroma prediction mode set, respectively.
  • the method for the decoder to add the optimized candidate mode to the chroma prediction mode set may include the following steps:
  • Step 301 Determine the priority of optimizing at least one of the candidate modes.
  • the decoder may first determine the priority of optimizing at least one of the candidate modes.
  • the optimization candidate mode may be at least one mode.
  • the prediction direction index numbers of the at least one mode are not the same.
  • the decoder may determine the priority according to the actual use probability of at least one mode.
  • Step 302 Add optimized candidate modes to the chroma prediction mode set in order of priority from high to low.
  • the decoder may further add the optimized alternative modes to the chroma prediction mode set in order of priority from high to low in.
  • the decoder may first add the optimized candidate mode with the highest priority, and then in the order of priority from high to low, Select the next optimized candidate mode to build a set of chroma prediction modes.
  • the decoder when the decoder adds the optimization candidate mode to the chroma prediction mode set, it specifically adds the prediction direction index number corresponding to the optimization candidate mode to the prediction mode set.
  • the decoder can construct the set of chroma prediction modes according to the preset optimized candidate mode, the accuracy of prediction can be improved.
  • the decoder obtains the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block; if the DM is a DC mode or a planar Planar mode, then According to the optimized candidate mode, a set of chroma prediction modes is obtained; wherein, the set of chroma prediction modes is used for chroma reconstruction of the current chroma block.
  • the chroma prediction mode can be optimized using the alternative mode
  • the collection is constructed, and then the current chroma block is reconstructed according to the chroma prediction mode set, which can solve the problem of low accuracy of chroma intra prediction when the DM is in DC mode or Planar mode, and then can Improve codec efficiency.
  • the current chroma block includes a square chroma block and a non-square chroma block.
  • the decoder can determine at least one diagonal diagonal angle mode as an optimized alternative mode, or it can determine the derived angle angle mode of at least one diagonal diagonal angle mode as an optimization
  • the at least one diagonal diagonal angle mode and the derived angular angle mode of the at least one diagonal diagonal angle mode may also be determined as the optimized alternative mode. .
  • the decoder may determine at least one diagonal diagonal mode as an optimized candidate mode. Specifically, if the current chroma block is a square chroma block, that is, the diagonal diagonal angle mode of the current chroma block is a mode with prediction direction index numbers 34, 66, and 2, and the prediction direction index numbers are 34, 66, and 2 The diagonal angle mode is more used for prediction.
  • FIG. 12 is a schematic diagram 1 of establishing an optimized alternative mode. As shown in FIG.
  • the decoder may first determine a prediction mode with a diagonal angle, that is, a mode with a prediction direction index number of 34 as the optimized alternative mode, and then Any one of the modes of another diagonal diagonal angle direction and prediction direction index numbers 66 and 2 is determined as the above-mentioned optimized candidate mode.
  • the decoder may also determine the derived angle angle mode of the at least one diagonal diagonal angle mode as the optimized candidate mode. Specifically, if the current chroma block is a square chroma block, that is, the diagonal diagonal angle mode of the current chroma block is a mode with prediction direction index numbers 34, 66, and 2, except that the diagonal diagonal angle mode is more In addition to prediction, other derivation angles near the diagonal angle mode are also used for prediction.
  • FIG. 13 is a second schematic diagram of establishing an optimized alternative mode. As shown in FIG.
  • the decoder may first determine a prediction mode with a derivation angle, that is, a mode with a prediction direction index number of 32 as the optimized alternative mode, and then may Any one of the modes whose prediction direction index numbers are 66 and 2 is determined as the above-mentioned optimization candidate mode.
  • the decoder may first determine at least one derived angle angle mode. Specifically, the decoder may first determine the index number M corresponding to DM, where M is an integer greater than 0; then the decoder may Obtain the transformation parameter N, and finally determine the index number corresponding to the derived angle angle mode according to M and N, so that the derived angle angle mode can be obtained; where N is an integer greater than 0.
  • the decoder when the decoder determines the index number corresponding to the derived angle angle pattern according to M and N, the decoder may perform addition operations on the M and the N, or may perform an addition operation on the M and the N Perform the subtraction operation to finally obtain the index number corresponding to the derived angle angle mode.
  • N can take the value of 3, 5 or 7.
  • the decoder when the index number M corresponding to DM is 0 (that is, the DM is in the Planar mode), the decoder can use the angle direction obtained by 0+5 or 0-5 as the index number corresponding to the angle angle mode.
  • the prediction mode is generally not represented by negative numbers
  • a specific mapping method can be used to map the calculated value to the effective representation range.
  • the specific calculation formula may be (M+62-N)%64+2, and the result is 60. That is, at this time, the derived angle angle mode can be obtained as the predicted direction angle 5 mode and the predicted direction angle 60 mode.
  • FIG. 14 is a schematic diagram 3 for establishing an optimized alternative mode.
  • the decoder adjusts the mode with the prediction direction index number 2 to the mode with the prediction direction index number 6.
  • the decoder can also adjust the prediction direction index number 66 by an angle counterclockwise and use it as an optimization candidate mode.
  • FIG. 15 is a schematic diagram 4 for establishing an optimization candidate mode. As shown in FIG.
  • the decoder will predict The mode with direction index number 66 is adjusted to the mode with prediction direction index number 61. Further, the decoder can also simultaneously adjust the mode of the prediction direction index number 66 and the mode of the prediction direction index number 2 by one angle and then use it as an optimization candidate mode.
  • FIG. 16 is a schematic diagram 5 of establishing an optimization candidate mode. As shown in FIG. 16, the decoder adjusts the mode whose prediction direction index number is 66 to the mode whose prediction direction index number is B, and adjusts the mode whose prediction direction index number is 2 to the mode whose prediction direction index number is A.
  • the diagonal diagonal angle mode and the derivative angular angle mode can be freely combined, for example, if necessary
  • the decoder when the decoder constructs the chroma prediction mode set according to the optimized candidate mode, it can add the prediction direction angle mode 6, 61, 66 to the chroma prediction mode set, or it can add the prediction direction angle mode 6, 61 , 34 is added to the chroma prediction mode set, and the prediction direction angle modes 6, 61, and 40 can also be added to the chroma prediction mode set, which is not specifically limited in the embodiments of the present application.
  • one of the modes of the prediction direction index numbers 66 and 2 may be selected as an alternative according to its effective prediction direction range, and the other sequence number may be adjusted Angle as an alternative.
  • the decoder obtains the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block; if the DM is a DC mode or a planar Planar mode, it is prepared according to the optimization Select a mode to obtain a set of chroma prediction modes; where the set of chroma prediction modes is used for chroma reconstruction of the current chroma block.
  • the chroma prediction mode can be optimized using the alternative mode
  • the collection is constructed, and then the current chroma block is reconstructed according to the chroma prediction mode set, which can solve the problem of low accuracy of chroma intra prediction when the DM is in DC mode or Planar mode, and then can Improve codec efficiency.
  • FIG. 17 is a schematic diagram 1 of the composition structure of the decoder proposed by the embodiment of the present application.
  • the decoder 1 proposed by the embodiment of the present application may include acquisition Section 11, decoding section 12, establishment section 13, and reception section 14.
  • the acquiring section 11 is configured to acquire the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block; and if the DM is a DC DC mode or a planar Planar mode, then follow the optimized alternative mode To obtain a chroma prediction mode set; wherein the chroma prediction mode set is used for chroma reconstruction of the current chroma block.
  • the obtaining section 11 is further configured to obtain the linear mode LM corresponding to the current chroma block from the code stream data before obtaining the chroma prediction mode set according to the optimized candidate mode .
  • the obtaining section 11 is specifically configured to fill the DM and the LM into the chroma prediction mode set; and fill the chroma prediction according to the optimized candidate mode Pattern collection.
  • the acquiring section 11 is further specifically configured to fill the Planar mode and the optimized candidate mode to the chroma prediction mode set when the DM is the DC mode Medium; and when the DM is the Planar mode, filling the DC mode and the optimized candidate mode into the chroma prediction mode set.
  • the optimization candidate mode includes at least one mode; wherein, the prediction direction index numbers of the at least one mode are different.
  • the establishing section 13 is configured to establish the optimized candidate mode before acquiring the chroma prediction mode set according to the optimized candidate mode.
  • the establishing section 13 is specifically configured to determine at least one diagonal diagonal angle mode as the optimized candidate mode; or, derive the angle of the at least one diagonal diagonal angle mode
  • the mode is determined to be the optimized candidate mode or, the at least one diagonal diagonal angle mode and the derived angular angle mode of the at least one diagonal diagonal angle mode are determined as the optimized candidate mode.
  • the acquiring section 11 is further used to determine the index number M corresponding to the DM before establishing the optimization candidate mode; wherein, M is an integer greater than 0; and acquiring transformation Parameter N, and determine the index number corresponding to the derived angle angle mode according to the M and the N to obtain the derived angle angle mode; wherein, N is an integer greater than 0.
  • the obtaining section 11 is specifically configured to perform an addition operation on the M and the N to obtain the index number corresponding to the derived angle angle mode; or, on the M and the N performs a subtraction operation to obtain the index number corresponding to the derived angle angle pattern.
  • the N includes 3, 5, or 7.
  • the current chroma block includes a square chroma block and a non-square chroma block.
  • the receiving section 14 is configured to receive a video bitstream to obtain the code stream data before acquiring the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block .
  • the decoding part 12 is configured to perform a decoding process according to the chroma prediction mode set after obtaining the chroma prediction mode set according to the optimized candidate mode, to process the current chroma block Perform chroma reconstruction.
  • the acquiring section 11 is further used to perform decoding processing according to the chroma prediction mode set to perform chroma reconstruction on the current chroma block from the stream data Acquire residual data corresponding to the current chroma block.
  • the decoding section 12 is specifically configured to perform chroma intra prediction decoding on the residual data based on the chroma prediction mode set to perform chroma on the current chroma block Degree reconstruction.
  • the acquiring section 11 is further configured to, after receiving the video bitstream to acquire the code stream data, if in the prediction mode corresponding to the current chroma block obtained from the code stream data If the same prediction mode exists, the chroma prediction mode set is obtained according to the optimized candidate mode, so as to perform chroma reconstruction on the current chroma block.
  • FIG. 18 is a second schematic diagram of the composition structure of the decoder proposed by the embodiment of the present application.
  • the decoder 1 proposed by the embodiment of the present application may further include a processor 15 and a memory 16 storing executable instructions of the processor 15 , A communication interface 17, and a bus 18 for connecting the processor 15, the memory 16, and the communication interface 17.
  • the processor 15 may be an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a digital signal processor (Digital Signal Processor, DSP), a digital signal processing device (Digital Signal Processing Device, DSPD ), programmable logic device (ProgRAMmable Logic Device, PLD), field programmable gate array (Field ProgRAMmable Gate Array, FPGA), central processing unit (Central Processing Unit, CPU), controller, microcontroller, microprocessor At least one. Understandably, for different devices, there may be other electronic devices for realizing the above-mentioned processor functions, which are not specifically limited in the embodiments of the present application.
  • the device 1 may further include a memory 16, which may be connected to the processor 15, wherein the memory 16 is used to store executable program code, and the program code includes computer operation instructions.
  • the memory 16 may include a high-speed RAM memory, or may also include Non-volatile memory, for example, at least two disk memories.
  • the bus 18 is used to connect the communication interface 17, the processor 15, the memory 16, and the mutual communication between these devices.
  • the memory 16 is used to store instructions and data.
  • the above processor 15 is configured to acquire the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block; if the DM is a DC mode or a plane In the Planar mode, a set of chroma prediction modes is obtained according to the optimized candidate mode; wherein the set of chroma prediction modes is used for chroma reconstruction of the current chroma block.
  • the above-mentioned memory 16 may be a volatile first memory (volatile memory), such as a random access first memory (Random-Access Memory, RAM); or a non-volatile first memory (non-volatile memory) ), such as read-only memory (Read-Only Memory, ROM), flash first memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or the above types Of the first memory and provide instructions and data to the processor 15.
  • volatile first memory such as a random access first memory (Random-Access Memory, RAM); or a non-volatile first memory (non-volatile memory) ), such as read-only memory (Read-Only Memory, ROM), flash first memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or the above types Of the first memory and provide instructions and data to the processor 15.
  • volatile first memory such as a random access first memory
  • each functional module in this embodiment may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software function module.
  • the integrated unit is implemented as a software function module and is not sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of this embodiment is essentially or right Part of the existing technology or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to make a computer device (which can be an individual) A computer, a server, or a network device, etc.) or a processor (processor) executes all or part of the steps of the method of this embodiment.
  • the foregoing storage media include various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read-only memory (Read Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read-only memory (Read Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk, or an optical disk.
  • the decoder obtains the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block; if the DM is a DC mode or a planar Planar mode, the alternative mode is optimized To obtain a set of chroma prediction modes; where the set of chroma prediction modes is used for chroma reconstruction of the current chroma block.
  • the chroma prediction mode can be optimized using the alternative mode
  • the collection is constructed, and then the current chroma block is reconstructed according to the chroma prediction mode set, which can solve the problem of low accuracy of chroma intra prediction when the DM is in DC mode or Planar mode, and then can Improve codec efficiency.
  • An embodiment of the present application provides a first computer-readable storage medium on which a program is stored, and when the program is executed by a processor, the chroma intra prediction method described above is implemented.
  • the program instructions corresponding to a chroma intra prediction method in this embodiment may be stored on a storage medium such as an optical disc, a hard disk, or a USB flash drive.
  • a storage medium such as an optical disc, a hard disk, or a USB flash drive.
  • the chroma prediction mode set is obtained according to the optimized alternative mode
  • the chroma prediction mode set is used for chroma reconstruction of the current chroma block.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage media including but not limited to disk storage and optical storage, etc.
  • each flow and/or block in the flow diagram and/or block diagram and a combination of the flow and/or block in the flow diagram and/or block diagram can be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device A device for realizing the functions specified in one block or multiple blocks of a block diagram or a block diagram of a block diagram.
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in the implementation flow diagram one flow or multiple flows and/or the block diagram one block or multiple blocks.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to generate computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flow diagram.
  • Embodiments of the present application provide a chroma intra prediction method, a decoder, and a computer storage medium.
  • the decoder obtains the DM corresponding to the current chroma block from the code stream data corresponding to the current chroma block; if the DM is a DC mode Or the planar Planar mode, the chroma prediction mode set is obtained according to the optimized candidate mode; wherein, the chroma prediction mode set is used for chroma reconstruction of the current chroma block.
  • the chroma prediction mode can be optimized using the alternative mode
  • the collection is constructed, and then the current chroma block is reconstructed according to the chroma prediction mode set, which can solve the problem of low accuracy of chroma intra prediction when the DM is in DC mode or Planar mode, and then can Improve codec efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

一种色度帧内预测方法、解码器及计算机存储介质,该色度帧内预测方法包括:从当前色度块对应的码流数据中获取当前色度块对应的DM(101);若DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,色度预测模式集合用于对当前色度块进行色度重建(102)。

Description

色度帧内预测方法和装置、及计算机存储介质 技术领域
本申请实施例涉及视频编码领域的帧内预测技术,尤其涉及一种色度帧内预测方法和装置、及计算机存储介质。
背景技术
在下一代视频编码标准H.266或多功能视频编码(Versatile Video Coding,VVC)中,支持亮度和色度独立划分块进行编码,一个色度块可能对应多个亮度块。然而现有的直接模式(Direct Mode,DM)仅能反映当前色度块中心区域的局部纹理特征,在一个色度块对应多个同位置亮度块时,直接使用单一的DM进行色度预测是不合理的,例如,当DM为直流(Direct Current,DC)模式或平面Planar模式时,可以认为当前色度块为平坦光滑的,然而,如果对应的多个亮度快并不平坦,那么仅通过DM进行色度帧内预测,就会大大降低帧内预测的准确性,从而降低编解码效率。尽管在色度预测模式中还有水平、垂直方向作为默认备选,但是这种情况下整体符合水平、垂直预测方向的色度块也极少,从而浪费了备选项位置,不利于提高编解码效率。
发明内容
本申请实施例提供一种色度帧内预测方法、解码器及计算机存储介质,能够有效地提高帧内预测的准确性,同时提高编解码效率。
本申请实施例的技术方案是这样实现的:
本申请实施例提出本申请实施例提出一种色度帧内预测方法,所述方法包括:
从当前色度块对应的码流数据中获取所述当前色度块对应的直接模式DM;
若所述DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,所述色度预测模式集合用于对所述当前色度块进行色度重建。
本申请实施例提出一种解码器,所述解码器包括:获取部分,
所述获取部分,用于从当前色度块对应的码流数据中获取所述当前色度块对应的DM;以及若所述DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,所述色度预测模式集合用于对所述当前色度块进行色度重建。
本申请实施例提出一种解码器,所述解码器包括处理器、存储有所述处理器可执行指令的存储器、通信接口,和用于连接所述处理器、所述存储器以及所述通信接口的总线,当所述指令被执行时,所述处理器执行时实现如上所述的色度帧内预测方法。
本申请实施例提出一种计算机可读存储介质,其上存储有程序,应用于解码器中,所述程序被处理器执行时实现如上所述的色度帧内预测方法。
本申请实施例提供了一种色度帧内预测方法、解码器及计算机存储介质,解码器从当前色度块对应的码流数据中获取当前色度块对应的DM;若DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,色度预测模式集合用于对当前色度块进行色度重建。由此可见,在本申请的实施例中,解码器在从当 前色度块的码流数据中获取DM之后,如果DM为DC模式或者Planar模式,便可以利用优化备选模式对色度预测模式集合进行构建,然后再根据色度预测模式集合进行当前色度块的重建,从而可以解决在DM为DC模式或Planar模式时,所存在的色度帧内预测准确性较低的问题,进而可以提高编解码效率。
附图说明
图1为帧内预测示意图;
图2为67种帧内预测模式示意图;
图3为帧内预测方法示意图;
图4位垂直预测示意图;
图5为水平预测示意图;
图6为色度帧内候选模式集合的示意图;
图7为色度块和亮度块的示意图一;
图8为色度块和亮度块的示意图二;
图9为视频编码流程示意图;
图10为视频解码流程示意图;
图11本申请实施例提出的一种色度帧内预测方法的实现流程示意图;
图12为建立优化备选模式示意图一;
图13为建立优化备选模式示意图二;
图14为建立优化备选模式示意图三;
图15为建立优化备选模式示意图四;
图16为建立优化备选模式示意图五;
图17为本申请实施例提出的解码器的组成结构示意图一;
图18为本申请实施例提出的解码器的组成结构示意图二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅仅用于解释相关申请,而非对该申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关申请相关的部分。
视频编码中利用空间或时间上已有的重建图像构造当前处理块的预测值,仅将真实值和预测值的差值传输,以达到减少传输数据量的目的。其中,帧内预测利用了图片内或者图片区域内的空间相关性。当前处理块的帧内预测可以依靠已经被处理过的相邻处理块中的像素来执行,例如,利用当前处理块的上一行和左一列构造当前处理块的预测值,图1为帧内预测示意图,如图1所示,利用相邻处理块的像素对当前处理块的每个像素点进行预测。
在进行帧内预测时,预测方向的选取也很重要。具体地,在利用邻近编码块的像素构造当前处理块的预测值时,可以采用多种预测方向。例如,图2为67种帧内预测模式示意图,如图2所示,在67种帧内预测模式中,具体包括有预测方向索引号为2-66的65种预测方向,还包括有索引号为0的Planar模式和索引号为1的DC模式。
在本申请的实施例中,基于上述图2,图3为帧内预测方法示意图,如图3所示,在以预测方向索引号为66构造每个像素点预测值时,标号为0-16的像素点为当前处理 块的上一行数据。当前处理块的每个像素按照右上对角线的像素进行填充。
在本申请的实施例中,Planar模式主要用于图像纹理相对平滑而且有相对渐变过程的区域,其预测方法是使用与当前处理块对应的已重建的相邻处理块像素值作为参考像素值,进一步进行线性插值和求平均计算。
相较于Planar模式,DC模式则主要用于图像平坦,纹理平滑,且没有太多渐变的区域,具体地预测方法为根据当前处理块上方已解码的最后行参考像素与当前处理块左侧已解码的最右列参考像素进行预测。可见,在帧内预测中,Planar模式和DC模式均为比较平坦的构造预测块方式,分别是DC模式是利用上一行左一列参考像素的平均值填充整个色度块,Planar模式是采用渐变的方式填充色度块。
在上述图2中,存在两种特殊的方向模式,即预测方向索引号为50的VER模式(即垂直预测)和预测方向索引号为18的HOR模式(即水平预测)。
图4为垂直预测示意图,图5为水平预测示意图,如图4和5所示,如果预测方向为垂直预测,那么可以根据上一行中垂直对应的像素点的像素值进行垂直预测;如果预测方向为水平预测,那么可以根据左一列中水平对应的像素点的像素值进行水平预测。
在进行亮度帧内预测时,可以按照上述图2中的0-66种模式分别进行预测,然后选取与当前处理块差值最小,即最匹配的预测方向,构造预测值。编码端将差值和预测方向写入码流。解码端获取码流后进行解析,得到预测方向索引号后便可计算出亮度预测值,与码流解析出的差值信号相加,即可得到亮度的重建值。
然而,色度帧内预测与亮度帧内预测模式不同,为了减少编解码的复杂度,在进行色度帧内预测时,仅提取部分预测方向进行处理。例如,在VVC中,色度帧内候选模式集合中可以包括一个或者多个色度帧内预测模式,例如,线性模型预测(LM,Linear Model Prediction),左侧的线性模型预测LM_T模式,右侧的线性模型预测LM_L模式,DC模式,Planar模式,垂直VER模式以及水平HOR模式等。
图6为色度帧内候选模式集合的示意图,如图6所示,在色度帧内候选模式集合中可以包括有不同的模式,现有技术可以通过在不同的模式间选择一种进行色度帧内预测,例如,DM可以表征对应亮度中心块的预测模式,分量间计算模型预测(Cross-component Linear Model Prediction,CCLM)则表征利用(a*亮度值+b)的方案构造预测信号,其中,a和b均为自然数,而当DM为DC模式、Planar模式、VER模式或者HOR模式中的任一种模式时,可以将该模式替换为预测方向索引序号为66的角度模式。
进一步地,如果编解码框架支持亮度和色度的单独划分,即两者划分可以不一致,因此存在一个色度块可能对应多个亮度块的现象,图7为色度块和亮度块的示意图一,图8为色度块和亮度块的示意图二,如图7和8所示,图7中的色度块对应的图8中的亮度块包括5个部分单独编码(通过不同的灰度进行表示)。由于DM下的CR只能够反映色度块的局部纹理特征,当色度块对应多个同位亮度块时,直接使用单一DM预测是不合理的,例如所示图7中,当亮度中心块的预测模式选为DC模式或Planar模式时,需要认为当前块是平坦的,然而图7中的当前的亮度块可能并不平坦。尽管在色度预测模式中还有水平、垂直方向作为默认备选,但是这种情况下整体符合水平、垂直预测方向的色度块也极少,从而浪费了备选项位置,不利于提高编解码效率。
在本申请的实施例中,上述色度帧内预测方法可以应用于视频编码混合框架中的帧内预测部分,除了可以应用于VVC中,还可以应用于其他任意视频编码混合框架中,本申请以VVC进行示例性说明,但并不进行限制。具体地,上述色度帧内预测方法可以对编码端和解码端同时作用。例如,图9为视频编码流程示意图,如图9所示,视频编码可以包括帧内估计、帧内预测以及运动补偿等多个具体步骤,其中,本申请提出的色度帧内预测方法可以应用于帧内预测部分;图10为视频解码流程示意图,如图10所 示,视频解码可以包括滤波、帧内预测以及运动补偿等多个具体步骤,其中,本申请提出的色度帧内预测方法可以应用于帧内预测部分。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在一实施例中,本申请实施例提供了一种色度帧内预测方法,图11本申请实施例提出的一种色度帧内预测方法的实现流程示意图,如图11所示,在本申请的实施例中,上述解码器进行色度帧内预测的方法可以包括以下步骤:
步骤101、从当前色度块对应的码流数据中获取当前色度块对应的DM。
在本申请的实施例中,解码器可以从当前色度块对应的码流数据中获取上述当前色度块对应的DM。
需要说明的是,在本申请的实施例中,解码器可以先接收视频比特流,然后从接收到的视频比特流中获取当前编码块对应的码流数据。
在本申请的实施中,解码器在获取当前编码块对应的码流数据之后,还可以从上述码流数据中获取当前色度块对应的残差数据。
需要说明的是,在本申请的实施例中,在编码器进行亮度帧内预测模式选择时,可以按照多种模式分别进行预测,例如,可以按照上述图2中的0-66种模式分别进行预测,然后选取最匹配的预测方向,构造预测值。然而,在编码器进行色度帧内预测模式选择时,并不会对上述0-66种模式全部进行预测,而是仅仅提取部分预测方向进行预测和选择。因此,解码器在获取上述码流数据之后,便可以从上述码流数据中进一步构建当前色度块对应的一个色度帧内候选集合,即上述前色度块对应的色度预测模式集合。
在本申请的实施例中,色度预测模式集合可以包括至少一个色度帧内预测模式,例如,上述色度预测模式集合可以包括DM,LM,LM_T,LM_L,DC,Planar,以及其他方向性预测模式等模式。
在本申请的实施例中,当前色度块可以为正方形的色度块,也可以为长方形的色度块,本申请实施例不作具体限制。
步骤102、若DM为DC模式或者Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,色度预测模式集合用于对当前色度块进行色度重建。
在本申请的实施例中,解码器在从当前色度块对应的码流数据中获取上述当前色度块对应的DM之后,如果上述DM为DC模式或者Planar模式,那么解码器可以按照优化备选模式,获取色度预测模式集合。其中,上述色度预测模式集合可以用于对上述当前色度块进行帧内色度预测。
需要说明的是,在本申请的实施例中,色度预测模式集合用于进行色度的预测,具体地,解码器可以通过色度预测模式集合对当前色度块进行色度预测,从而可以重建上述当前色度块对应的色度。
在本申请的实施例中,解码器在从当前色度块对应的码流数据中获取上述当前色度块对应的DM之后,上述解码器可以确定上述DM是否为DC模式或者Planar模式。
需要说明的是,在本申请的实施例中,如果解码器确定DM为DC模式或者Planar模式,那么上述编码器便可以按照优化备选模式进行模式的添加,从而可以获得色度预测模式集合。
在本申请的实施例中,解码器在从上述码流数据中确定出当前色度块对应的DM之后,可以先对上述DM进行读取分析,从而可以确定上述DM是否为DC模式或者Planar模式。
需要说明的是,在本申请的实施中,由于Planar模式和DC模式均为比较平坦的构造预测块方式,因此在DM时,当亮度中心块选为DC模式或Planar模式时,可以认为 该亮度块是平坦的。然而实际情况并不是这样,例如,VVC中支持亮度和色度独立划分块进行编码,一个色度块可能对应多个亮度块,因此DM仅能反映中心区域的局部纹理特征,也就是说,存在该亮度块并不平坦的可能性。也就是说,在DM为Planar模式或者DC模式的情况下,如果直接使用单一的DM进行预测是不合理的,会导致准确性降低。尽管在色度预测模式中还有水平、垂直方向作为默认备选,但是这种情况下整体符合水平、垂直预测方向的色度块也极少,从而浪费了备选项位置,不利于提高编解码效率。
需要说明的是,在本申请的实施中,表1为帧内预测方向设计表的初始状态,如表1所示,当DM为DC模式或Planar模式时,预测方向的初始状态即为DC模式或Planar模式;表2为帧内预测方向设计表的后续状态,如表2所示,当对应亮度中心块为Planar模式或者DC模式时,若整个亮度块采用一个帧内预测方向,则说明当前块很可能是平坦的,为了保证平坦块的效率,会将另一种平坦模式填入。其中,由于DM和CCLM是重要的编码工具,需要优先排序。
表1
Figure PCTCN2019070148-appb-000001
表2
Figure PCTCN2019070148-appb-000002
由于目前通过亮度块只能获得DC模式或Planar模式的平坦信息。而实际上,这时对应的色度块可能覆盖多个亮度块区域,其中包含带方向的纹理信息,而这些纹理信息的方向是具有不同概率分布的。
另一方面,现有技术中,当DM为DC模式、Planar模式、VER模式或者HOR模式中的任一种模式时,可以将该模式替换为预测方向索引序号66的角度模式。
但是,在实际应用时,预测方向索引号为18、50的VER模式和HOR模式虽然占比很多,但是贯穿整个色度块的纹理的概率却很小,相比之下,预测方向索引号为34,66以及2的斜对角角度模式及其附近的方向模式可以在更大概率上对色度块进行准确预测。
因此,正是由于DM只能够反映色度块的局部纹理特征,当色度块对应多个同位亮度块时,直接使用单一DM预测并以水平、垂直,以及预测方向索引号为66对应的斜对角模式作为补充来构造色度预测模式集合是不合理的,因此,解码器需要按照优化备选模式来对色度预测模式集合进行优化构造。同时,由于在实际应用中,预测方向索引号为34,66以及2的斜对角角度模式及其附近的方向模式可以在更大概率上对色度块进行准确预测,因此可以利用这些预测方向模式替代原来的水平、垂直预测方向模式等,进一步对DM进行补充。
在本申请的实施例中,如果DM为DC模式或者Planar模式,那么解码器便可以按照优化备选模式,进一步获得用于进行色度预测的色度预测模式集合。
需要说明的是,在本申请的实施例中,解码器可以预先设置至少一个模式作为备选模式,即上述解码器预先设置有优化备选模式。
在本申请的实施例中,预测方向索引号为34,66以及2的斜对角角度模式在当前色度对应的亮度区域的小块中更多的被用于进行预测,因此,上述优化备选模式中可以存储有预测方向索引号为34,66以及2的模式。例如,如果当前色度块为正方形的色 度块,即当前色度块的斜对角角度模式为预测方向索引号为34,66以及2的模式,那么解码器在根据优化备选模式对色度预测模式集合进行获取时,可以先将预测方向索引号为34的模式添加至色度预测模式集合,然后将另一斜对角角度方向,预测方向索引号为66和2的模式中的一个添加至色度预测模式集合。
在本申请的实施例中,由于预测方向索引号为66和2的模式同属于一个斜率的两个方向,因此解码器可以将预测方向索引号为2的模式顺时针调整一个角度再作为优化备选模式,例如调整为预测方向索引号为6的模式。同时,解码器也可以将预测方向索引号为66的模式逆时针调整一个角度再作为优化备选模式,例如调整为预测方向索引号为61的模式。进一步地,解码器还可以同时将预测方向索引号为66的模式和预测方向索引号为2的模式调整一个角度再作为优化备选模式。
在本申请的实施例中,除了斜对角角度模式更多的被用于进行预测以外,斜对角角度模式附近的其他推衍角度也较多的被用于进行预测,因此,上述优化备选模式中可以包括预测方向索引号为32,64以及4的模式。例如,解码器在根据优化备选模式对色度预测模式集合进行获取时,可以先将预测方向索引号为32的模式添加至色度预测模式集合,然后将预测方向索引号为64和4的模式中的一个模式添加至色度预测模式集合。
综上所述,在本申请的实施例中,解码器在建立优化备选模式时,可以将至少一个斜对角角度模式确定为优化备选模式;也可以将至少一个斜对角角度模式的衍生角角度模式确定为优化备选模式,还可以将至少一个斜对角角度模式和至少一个斜对角角度模式的衍生角角度模式确定为所述优化备选模式。其中,上述解码器可以先确定衍生角角度,具体地,上述解码器可以先确定DM对应的索引号M,其中,M为大于0的整数;然后上述解码器可以获取变换参数N,最后根据M和N进一步确定衍生角角度模式对应的索引号,从而便可以获得衍生角角度模式;其中,所述N为大于0的整数。
在本申请的实施例中,解码器在根据M和N确定衍生角角度模式对应的索引号时,既可以对所述M和所述N进行加法运算,也可以对所述M和所述N进行减法运算,最终获得衍生角角度模式对应的索引号。其中,N可以取值为3、5或者7,但不限于这些取值。例如,DM对应的索引号M为1(即DM为DC模式),那么解码器可以将1+5或者1-5获得的角度方向最为衍生角角度模式对应的索引号。由于预测模式一般不会用负数表示,可以用特定的映射方法将计算所得的值映射到有效表示范围内。例如,具体的计算公式可以为(M+62-N)%64+2,得到的是60。
在本申请的实施例中,针对非方形块的宽角度模式,还可以根据其有效预测方向范围选择预测方向索引号为66和2的模式中的一个方向作为备选,而调整另一个序号对应角度作为备选。
在本申请的实施例中,解码器在按照优化备选模式,获取色度预测模式集合之后,即步骤102之后,解码器进行色度帧内预测的方法还可以包括以下步骤:
步骤103、根据色度预测模式集合进行解码处理,以对当前色度块进行色度重建。
在本申请的实施例中,解码器在按照优化备选模式,获得色度预测模式集合之后,便可以根据上述色度预测模式集合进行解码处理,以对当前色度块进行色度重建。
在本申请的实施例中,解码器在获得色度预测模式集合之后,可以进一步通过上述色度预测模式集合对上述当前色度块进行解码处理,从而便可以重建获得上述当前色度块。
需要说明的是,在本申请的实施例中,由于解码器在从接收到的视频比特流中获取当前编码块对应的码流数据,并从上述码流数据中获取DM的同时,上述解码器还可以从上述码流数据中获取当前色度块对应的残差数据。
在本申请的实施例中,解码器在按照优化备选模式获取色度预测模式集合之后,同时在从上述码流数据中获取当前色度块对应的残差数据之后,便可以基于上述色度预测模式集合,对上述残差数据进行色度帧内预测解码,从而便可以重建上述当前色度块。
本申请实施例提出的一种色度帧内预测方法,解码器从当前色度块对应的码流数据中获取当前色度块对应的DM;若DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,色度预测模式集合用于对当前色度块进行色度重建。由此可见,在本申请的实施例中,解码器在从当前色度块的码流数据中获取DM之后,如果DM为DC模式或者Planar模式,便可以利用优化备选模式对色度预测模式集合进行构建,然后再根据色度预测模式集合进行当前色度块的重建,从而可以解决在DM为DC模式或Planar模式时,所存在的色度帧内预测准确性较低的问题,进而可以提高编解码效率。
基于上述实施例,在本申请的另一实施例中,解码器在从当前色度块对应的码流数据中获取上述当前色度块对应的DM之后,如果上述DM中的DM为DC模式或者Planar模式时,那么上述解码器可以认为需要按照优化备选模式获取色度预测模式集合,从而提高解码的准确性。
需要说明的是,在本申请的实施中,由于Planar模式和DC模式均为比较平坦的构造预测块方式,因此在DM时,当亮度中心块选为DC模式或Planar模式时,可以认为该亮度块是平坦的。然而实际情况并不是这样,VVC中支持亮度和色度独立划分块进行编码,一个色度块可能对应多个亮度块,因此DM仅能反映中心区域的局部纹理特征,也就是说,存在该亮度块并不平坦的可能性。也就是说,在DM为Planar模式或者DC模式的情况下,如果直接使用单一的DM进行预测是不合理的,会导致准确性降低。尽管在色度预测模式中还有水平、垂直方向作为默认备选,但是这种情况下整体符合水平、垂直预测方向的色度块也极少,从而浪费了备选项位置,不利于提高编解码效率。因此需要按照优化备选模式,获取色度预测模式集合。具体地,解码器在按照优化备选模式,获取色度预测模式集合之前,还需要从码流数据中获取当前色度块对应的线性模式LM。
在本申请的实施中,解码器按照优化备选模式,获取色度预测模式集合的方法可以具体包括以下步骤:
步骤201、将DM和LM填充至色度预测模式集合中。
步骤202、按照优化备选模式填充色度预测模式集合。
在本申请的实施例中,解码器可以先将DM和LM分别添加至色度预测模式集合中,从而可以先确定上述色度预测模式集合中的两个模式。然后,上述解码器可以再按照优化备选模式继续对上述色度预测模式集合进行填充,最终获得色度预测模式集合。
需要说明的是,在本申请的实施例中,解码器在将DM和LM添加至色度预测模式集合时,具体是将DM对应的模式的预测方向索引号和LM对应的模式的预测方向索引号加入至预测模式集合中。例如,如果DM为DC模式,LM对应的模式的预测方向索引号为15,那么,解码器可以先分别将预测方向索引号1和15添加至色度预测模式集合中,然后再按照优化备选模式填充色度预测模式集合。具体地,正是由于DM为DC模式,因此,解码器在按照优化备选模式填充色度预测模式集合的过程中,会将Planar模式的预测方向索引号0补充至色度预测模式集合中。
需要说明的是,在本申请的实施例中,解码器在按照优化备选模式填充所述色度预测模式集合时,具体可以包括以下步骤:
步骤202a、当DM为DC模式时,将Planar模式和优化备选模式填充至色度预测模式集合中。
在本申请的实施例中,如果当前色度块对应的DM为DC模式,那么解码器不需要 对Planar模式进行修改替换,因此可以将Planar模式和优化备选模式填充至色度预测模式集合中,当分配比特个数相同时,可不分先后。。
需要说明的是,在本申请的实施例中,解码器在将Planar模式和优化备选模式添加至色度预测模式集合时,具体是将Planar模式对应的预测方向索引号和其他优化备选模式对应的预测方向索引号加入至预测模式集合中。例如,如果其他优化备选模式对应预测方向索引号为32和61,那么,解码器可以分别将预测方向索引号0、132以及61添加至色度预测模式集合中。
步骤202b、当DM为Planar模式时,将DC模式和优化备选模式填充至色度预测模式集合中。
在本申请的实施例中,如果当前色度块对应的DM为Planar模式,那么解码器不需要对DC模式进行修改替换,因此可以将DC模式和优化备选模式填充至色度预测模式集合中,当分配比特个数相同时,可不分先后。
需要说明的是,在本申请的实施例中,解码器在将DC模式和优化备选模式添加至色度预测模式集合时,具体是将DC模式对应的预测方向索引号和其他优化备选模式对应的预测方向索引号加入至预测模式集合中。例如,如果其他优化备选模式对应预测方向索引号为2和60,那么,解码器可以分别将预测方向索引号1、2以及60添加至色度预测模式集合中。
在本申请的实施例中,进一步地,解码器将优化备选模式添加至色度预测模式集合的方法可以包括以下步骤:
步骤301、确定优化备选模式中至少一个模式的优先级。
在本申请的实施例中,解码器可以先确定优化备选模式中至少一个模式的优先级。
需要说明的是,在本申请的实施例中,优化备选模式可以为至少一个模式,具体地,上述至少一个模式的预测方向索引号均不相同。
需要说明的是,在本申请的实施例中,解码器可以按照至少一个模式的实际使用概率的大小进行优先级的确定。
步骤302、按照优先级由高至低的顺序,将优化备选模式分别添加至色度预测模式集合。
在本申请的实施例中,解码器在确定优化备选模式中至少一个模式的优先级之后,便可以按照优先级由高至低的顺序,进一步将优化备选模式添加至色度预测模式集合中。
在本申请的实施例中,解码器在将优化备选模式添加至色度预测模式集合的过程中,可以先添加优先级最高的优化备选模式,然后按照优先级由高至低的顺序,选择下一个优化备选模式进行色度预测模式集合的构建。
需要说明的是,在本申请的实施例中,解码器在将优化备选模式添加至色度预测模式集合时,具体是将优化备选模式对应的预测方向索引号加入至预测模式集合中。
也就是说,如果解码器可以按照预设优化备选模式对色度预测模式集合进行构建,便可以提高预测的准确性。
本申请实施例中提出的一种色度帧内预测方法,解码器从当前色度块对应的码流数据中获取当前色度块对应的DM;若DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,色度预测模式集合用于对当前色度块进行色度重建。由此可见,在本申请的实施例中,解码器在从当前色度块的码流数据中获取DM之后,如果DM为DC模式或者Planar模式,便可以利用优化备选模式对色度预测模式集合进行构建,然后再根据色度预测模式集合进行当前色度块的重建,从而可以解决在DM为DC模式或Planar模式时,所存在的色度帧内预测准确性较低的问题,进而可以提高编解码效率。
在本申请的实施例中,当前色度块包括正方形色度块和非正方形色度块。在此基础上,解码器在建立优化备选模式时,既可以将至少一个斜对角角度模式确定为优化备选模式,也可以将至少一个斜对角角度模式的衍生角角度模式确定为优化备选模式,还可以将所述至少一个斜对角角度模式和所述至少一个斜对角角度模式的衍生角角度模式确定为所述优化备选模式。。
在本申请的实施例中,解码器可以将至少一个斜对角角度模式确定为优化备选模式。具体地,如果当前色度块为正方形的色度块,即当前色度块的斜对角角度模式为预测方向索引号为34,66以及2的模式,预测方向索引号为34,66以及2的斜对角角度模式更多的被用于进行预测。图12为建立优化备选模式示意图一,如图12所示,解码器可以先将一个斜对角角度的预测模式,即预测方向索引号为34的模式确定为上述优化备选模式,然后可以将另一斜对角角度方向,预测方向索引号为66和2的模式中的任意一个确定为上述优化备选模式。
在本申请的实施例中,解码器还可以将至少一个斜对角角度模式的衍生角角度模式确定为优化备选模式。具体地,如果当前色度块为正方形的色度块,即当前色度块的斜对角角度模式为预测方向索引号为34,66以及2的模式,除了斜对角角度模式更多的被用于进行预测以外,斜对角角度模式附近的其他推衍角度也较多的被用于进行预测。图13为建立优化备选模式示意图二,如图13所示,解码器可以先将一个推衍角度的预测模式,即预测方向索引号为32的模式确定为上述优化备选模式,然后可以将预测方向索引号为66和2的模式中的任意一个确定为上述优化备选模式。
在本申请的实施例中,解码器可以先确定至少一个衍生角角度模式,具体地,上述解码器可以先确定DM对应的索引号M,其中,M为大于0的整数;然后上述解码器可以获取变换参数N,最后根据M和N进一步确定衍生角角度模式对应的索引号,从而便可以获得衍生角角度模式;其中,所述N为大于0的整数。
在本申请的实施例中,解码器在根据M和N确定衍生角角度模式对应的索引号时,既可以对所述M和所述N进行加法运算,也可以对所述M和所述N进行减法运算,最终获得衍生角角度模式对应的索引号。其中,N可以取值为3、5或者7。例如,基于上述图2,当DM对应的索引号M为0(即DM为Planar模式),那么解码器可以将0+5或者0-5获得的角度方向最为衍生角角度模式对应的索引号。由于预测模式一般不会用负数表示,可以用特定的映射方法将计算所得的值映射到有效表示范围内。例如,具体的计算公式可以为(M+62-N)%64+2,得到的是60。即此时可以获得衍生角角度模式为预测方向角度5模式和预测方向角度60模式。
在本申请的实施例中,由于预测方向索引号为66和2的模式同属于一个斜率的两个方向,因解码器可以将预测方向索引号为2的模式顺时针调整一个角度再作为优化备选模式,例如,图14为建立优化备选模式示意图三,如图14所示,解码器将预测方向索引号为2的模式调整为预测方向索引号为6的模式。同时,解码器也可以将预测方向索引号为66的模式逆时针调整一个角度再作为优化备选模式,例如,图15为建立优化备选模式示意图四,如图15所示,解码器将预测方向索引号为66的模式调整为预测方向索引号为61的模式。进一步地,解码器还可以同时将预测方向索引号为66的模式和预测方向索引号为2的模式各自调整一个角度再作为优化备选模式,例如,图16为建立优化备选模式示意图五,如图16所示,解码器将预测方向索引号为66的模式调整为预测方向索引号为B的模式,将预测方向索引号为2的模式调整为预测方向索引号为A的模式。
需要说明的是,在本申请的实施例中,解码器在按照优化备选模式对色度预测模式集合构造时,可以将斜对角角度模式和衍生角角度模式进行自由组合,例如,如果需要 通过3个优化备选模式构造色度预测模式集合,那么既可以将1个斜对角角度模式和2个衍生角角度模式以此添加至色度预测模式集合中,也可以将2个斜对角角度模式和1个衍生角角度模式以此添加至色度预测模式集合中,或将三个衍生角角度模式添加至色度预测模式集合中,还可以将三个斜对角角度模式添加至色度预测模式集合中。例如,,解码器在按照优化备选模式对色度预测模式集合构造时,可以将预测方向角度模式6、61、66添加至色度预测模式集合中,也可以将预测方向角度模式6、61、34添加至色度预测模式集合中,还可以将预测方向角度模式6、61、40添加至色度预测模式集合中,本申请实施例不作具体限定。
在本申请的实施例中,针对长形块的宽角度模式,还可以根据其有效预测方向范围选择预测方向索引号为66和2的模式中的一个方向作为备选,而调整另一个序号对应角度作为备选。
本申请提出的一种色度帧内预测方法,解码器从当前色度块对应的码流数据中获取当前色度块对应的DM;若DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,色度预测模式集合用于对当前色度块进行色度重建。由此可见,在本申请的实施例中,解码器在从当前色度块的码流数据中获取DM之后,如果DM为DC模式或者Planar模式,便可以利用优化备选模式对色度预测模式集合进行构建,然后再根据色度预测模式集合进行当前色度块的重建,从而可以解决在DM为DC模式或Planar模式时,所存在的色度帧内预测准确性较低的问题,进而可以提高编解码效率。
基于上述实施例,在本申请的又一实施例中,图17为本申请实施例提出的解码器的组成结构示意图一,如图17所示,本申请实施例提出的解码器1可以包括获取部分11,解码部分12,建立部分13以及接收部分14。
所述获取部分11,用于从当前色度块对应的码流数据中获取所述当前色度块对应的DM;以及若所述DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,所述色度预测模式集合用于对所述当前色度块进行色度重建。
在本申请的实施例中,所述获取部分11,还用于按照优化备选模式,获取色度预测模式集合之前,从所述码流数据中获取所述当前色度块对应的线性模式LM。
在本申请的实施例中,所述获取部分11,具体用于将所述DM和所述LM填充至所述色度预测模式集合中;以及按照所述优化备选模式填充所述色度预测模式集合。
在本申请的实施例中,所述获取部分11,还具体用于当所述DM为所述DC模式时,将所述Planar模式和所述优化备选模式填充至所述色度预测模式集合中;以及当所述DM为所述Planar模式时,将所述DC模式和所述优化备选模式填充至所述色度预测模式集合中。
在本申请的实施例中,所述优化备选模式包括至少一个模式;其中,所述至少一个模式的预测方向索引号不相同。
在本申请的实施例中,所述建立部分13,用于按照优化备选模式,获取色度预测模式集合之前,建立所述优化备选模式。
在本申请的实施例中,所述建立部分13,具体用于将至少一个斜对角角度模式确定为所述优化备选模式;或者,将所述至少一个斜对角角度模式的衍生角角度模式确定为所述优化备选模式或者,将所述至少一个斜对角角度模式和所述至少一个斜对角角度模式的衍生角角度模式确定为所述优化备选模式。
在本申请的实施例中,所述获取部分11,还用于建立所述优化备选模式之前,确定所述DM对应的索引号M;其中,所述M为大于0的整数;以及获取变换参数N,并 根据所述M和所述N确定衍生角角度模式对应的索引号,以获得所述衍生角角度模式;其中,所述N为大于0的整数。
在本申请的实施例中,所述获取部分11,具体用于对所述M和所述N进行加法运算,获得所述衍生角角度模式对应的索引号;或者,对所述M和所述N进行减法运算,获得所述衍生角角度模式对应的索引号。
在本申请的实施例中,所述N包括3、5或者7。
在本申请的实施例中,所述当前色度块包括正方形色度块和非正方形色度块。
在本申请的实施例中,所述接收部分14,用于从当前色度块对应的码流数据中获取所述当前色度块对应的DM之前,接收视频比特流以获取所述码流数据。
在本申请的实施例中,所述解码部分12,用于按照优化备选模式,获取色度预测模式集合之后,根据所述色度预测模式集合进行解码处理,以对所述当前色度块进行色度重建。
在本申请的实施例中,所述获取部分11,还用于根据所述色度预测模式集合进行解码处理,以对所述当前色度块进行色度重建之前,从所述码流数据中获取所述当前色度块对应的残差数据。
在本申请的实施例中,所述解码部分12,具体用于基于所述色度预测模式集合,对所述残差数据进行色度帧内预测解码,以对所述当前色度块进行色度重建。
在本申请的实施例中,所述获取部分11,还用于接收视频比特流以获取所述码流数据之后,若从所述码流数据获得的所述当前色度块对应的预测模式中存在相同的预测模式,则按照所述优化备选模式,获取色度预测模式集合,以对所述当前色度块进行色度重建。
图18为本申请实施例提出的解码器的组成结构示意图二,如图18所示,本申请实施例提出的解码器1还可以包括处理器15、存储有处理器15可执行指令的存储器16、通信接口17,和用于连接处理器15、存储器16以及通信接口17的总线18。
在本申请的实施例中,上述处理器15可以为特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(ProgRAMmable Logic Device,PLD)、现场可编程门阵列(Field ProgRAMmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本申请实施例不作具体限定。装置1还可以包括存储器16,该存储器16可以与处理器15连接,其中,存储器16用于存储可执行程序代码,该程序代码包括计算机操作指令,存储器16可能包含高速RAM存储器,也可能还包括非易失性存储器,例如,至少两个磁盘存储器。
在本申请的实施例中,总线18用于连接通信接口17、处理器15以及存储器16以及这些器件之间的相互通信。
在本申请的实施例中,存储器16,用于存储指令和数据。
进一步地,在本申请的实施例中,上述处理器15,用于从当前色度块对应的码流数据中获取所述当前色度块对应的DM;若所述DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,所述色度预测模式集合用于对所述当前色度块进行色度重建。
在实际应用中,上述存储器16可以是易失性第一存储器(volatile memory),例如随机存取第一存储器(Random-Access Memory,RAM);或者非易失性第一存储器(non-volatile memory),例如只读第一存储器(Read-Only Memory,ROM),快闪第 一存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者上述种类的第一存储器的组合,并向处理器15提供指令和数据。
另外,在本实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提出的一种装置,该解码器从当前色度块对应的码流数据中获取当前色度块对应的DM;若DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,色度预测模式集合用于对当前色度块进行色度重建。由此可见,在本申请的实施例中,解码器在从当前色度块的码流数据中获取DM之后,如果DM为DC模式或者Planar模式,便可以利用优化备选模式对色度预测模式集合进行构建,然后再根据色度预测模式集合进行当前色度块的重建,从而可以解决在DM为DC模式或Planar模式时,所存在的色度帧内预测准确性较低的问题,进而可以提高编解码效率。
本申请实施例提供第一计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现如上所述的色度帧内预测方法。
具体来讲,本实施例中的一种色度帧内预测方法对应的程序指令可以被存储在光盘,硬盘,U盘等存储介质上,当存储介质中的与一种色度帧内预测方法对应的程序指令被一电子设备读取或被执行时,包括如下步骤:
从当前色度块对应的码流数据中获取所述当前色度块对应的DM;
若所述DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;
其中,所述色度预测模式集合用于对所述当前色度块进行色度重建。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的实现流程示意图和/或方框图来描述的。应理解可由计算机程序指令实现流程示意图和/或方框图中的每一流程和/或方框、以及实现流程示意图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指 令装置的制造品,该指令装置实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例提供了一种色度帧内预测方法、解码器及计算机存储介质,解码器从当前色度块对应的码流数据中获取当前色度块对应的DM;若DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,色度预测模式集合用于对当前色度块进行色度重建。由此可见,在本申请的实施例中,解码器在从当前色度块的码流数据中获取DM之后,如果DM为DC模式或者Planar模式,便可以利用优化备选模式对色度预测模式集合进行构建,然后再根据色度预测模式集合进行当前色度块的重建,从而可以解决在DM为DC模式或Planar模式时,所存在的色度帧内预测准确性较低的问题,进而可以提高编解码效率。

Claims (29)

  1. 一种色度帧内预测方法,所述方法包括:
    从当前色度块对应的码流数据中获取所述当前色度块对应的直接模式DM;
    若所述DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,所述色度预测模式集合用于对所述当前色度块进行色度重建。
  2. 根据权利要求1所述的方法,其中,所述按照优化备选模式,获取色度预测模式集合之前,所述方法还包括:
    从所述码流数据中获取所述当前色度块对应的线性模式LM。
  3. 根据权利要求2所述的方法,其中,所述按照优化备选模式,获取色度预测模式集合,包括:
    将所述DM和所述LM填充至所述色度预测模式集合中;
    按照所述优化备选模式填充所述色度预测模式集合。
  4. 根据权利要求3所述的方法,其中,当所述DM为所述DC模式时,所述按照所述优化备选模式填充所述色度预测模式集合,包括:
    将所述Planar模式和所述优化备选模式填充至所述色度预测模式集合中。
  5. 根据权利要求3所述的方法,其中,当所述DM为所述Planar模式时,所述按照所述优化备选模式填充所述色度预测模式集合,包括:
    将所述DC模式和所述优化备选模式填充至所述色度预测模式集合中。
  6. 根据权利要求1所述的方法,其中,所述优化备选模式包括至少一个模式;其中,所述至少一个模式的预测方向索引号不相同。
  7. 根据权利要求1所述的方法,其中,所述按照优化备选模式,获取色度预测模式集合之前,所述方法还包括:
    建立所述优化备选模式。
  8. 根据权利要求7所述的方法,其中,所述建立所述优化备选模式,包括:
    将至少一个斜对角角度模式确定为所述优化备选模式;或者,
    将所述至少一个斜对角角度模式的衍生角角度模式确定为所述优化备选模式;或者,
    将所述至少一个斜对角角度模式和所述至少一个斜对角角度模式的衍生角角度模式确定为所述优化备选模式。
  9. 根据权利要求8所述的方法,其中,所述建立所述优化备选模式之前,所述方法还包括:
    确定所述DM对应的索引号M;其中,所述M为大于0的整数;
    获取变换参数N,并根据所述M和所述N确定衍生角角度模式对应的索引号,以获得所述衍生角角度模式;其中,所述N为大于0的整数。
  10. 根据权利要求9所述的方法,其中,所述据所述M和所述N确定衍生角角度模式对应的索引号,包括:
    对所述M和所述N进行加法运算,获得所述衍生角角度模式对应的索引号;或者,
    对所述M和所述N进行减法运算,获得所述衍生角角度模式对应的索引号。
  11. 根据权利要求10所述的方法,其中,所述N包括3、5或者7。
  12. 根据权利要求1至11所述的任一项方法,其中,所述当前色度块包括正方形色度块和非正方形色度块。
  13. 根据权利要求1至12所述的任一项方法,其中,所述从当前色度块对应的码流数据中获取所述当前色度块对应的DM之前,所述方法还包括:
    接收视频比特流以获取所述码流数据。
  14. 根据权利要求13所述的方法,其中,所述按照优化备选模式,获取色度预测模式集合之后,所述方法还包括:
    根据所述色度预测模式集合进行解码处理,以对所述当前色度块进行色度重建。
  15. 根据权利要求14所述的方法,其中,所述根据所述色度预测模式集合进行解码处理,以对所述当前色度块进行色度重建之前,所述方法还包括:
    从所述码流数据中获取所述当前色度块对应的残差数据。
  16. 根据权利要求15所述的方法,其中,所述根据所述色度预测模式集合进行解码处理,以对所述当前色度块进行色度重建,包括:
    基于所述色度预测模式集合,对所述残差数据进行色度帧内预测解码,以对所述当前色度块进行色度重建。
  17. 根据权利要求13所述的方法,其中,所述接收视频比特流以获取所述码流数据之后,所述方法还包括:
    若从所述码流数据获得的所述当前色度块对应的预测模式中存在相同的预测模式,则按照所述优化备选模式,获取色度预测模式集合,以对所述当前色度块进行色度重建。
  18. 一种解码器,其中,所述解码器包括:获取部分,
    所述获取部分,用于从当前色度块对应的码流数据中获取所述当前色度块对应的DM;以及若所述DM为直流DC模式或者平面Planar模式,则按照优化备选模式,获取色度预测模式集合;其中,所述色度预测模式集合用于对所述当前色度块进行色度重建。
  19. 根据权利要求18所述的解码器,其中,
    所述获取部分,还用于按照优化备选模式,获取色度预测模式集合之前,从所述码流数据中获取所述当前色度块对应的线性模式LM。
  20. 根据权利要求19所述的解码器,其中,
    所述获取部分,具体用于将所述DM和所述LM填充至所述色度预测模式集合中;以及按照所述优化备选模式填充所述色度预测模式集合;
    所述获取部分,还具体用于当所述DM为所述DC模式时,将所述Planar模式和所述优化备选模式填充至所述色度预测模式集合中;以及当所述DM为所述Planar模式时,将所述DC模式和所述优化备选模式填充至所述色度预测模式集合中。
  21. 根据权利要求18所述的解码器,其中,所述优化备选模式包括至少一个模式;其中,所述至少一个模式的预测方向索引号不相同。
  22. 根据权利要求18所述的解码器,其中,所述解码器还包括:建立部分,
    所述建立部分,用于按照优化备选模式,获取色度预测模式集合之前,建立所述优化备选模式;
    所述建立部分,具体用于将至少一个斜对角角度模式确定为所述优化备选模式;或者,将所述至少一个斜对角角度模式的衍生角角度模式确定为所述优化备选模式;或者,将所述至少一个斜对角角度模式和所述至少一个斜对角角度模式的衍生角角度模式确定为所述优化备选模式。。
  23. 根据权利要求22所述的解码器,其中,
    所述获取部分,还用于建立所述优化备选模式之前,确定所述DM对应的索引号M;其中,所述M为大于0的整数;以及获取变换参数N,并根据所述M和所述N确定衍生角角度模式对应的索引号,以获得所述衍生角角度模式;其中,所述N为大于0的整数;
    所述获取部分,具体用于对所述M和所述N进行加法运算,获得所述衍生角角度 模式对应的索引号;或者,对所述M和所述N进行减法运算,获得所述衍生角角度模式对应的索引号。
  24. 根据权利要求23所述的解码器,其中,所述N包括3、5或者7。
  25. 根据权利要求18至24所述的解码器,其中,所述当前色度块包括正方形色度块和非正方形色度块。
  26. 根据权利要求18至25所述的解码器,其中,所述解码器还包括:接收部分和解码部分,
    所述接收部分,用于从当前色度块对应的码流数据中获取所述当前色度块对应的DM之前,接收视频比特流以获取所述码流数据;
    所述解码部分,用于按照优化备选模式,获取色度预测模式集合之后,根据所述色度预测模式集合进行解码处理,以对所述当前色度块进行色度重建;
    所述获取部分,还用于根据所述色度预测模式集合进行解码处理,以对所述当前色度块进行色度重建之前,从所述码流数据中获取所述当前色度块对应的残差数据;
    所述解码部分,具体用于基于所述色度预测模式集合,对所述残差数据进行色度帧内预测解码,以对所述当前色度块进行色度重建。
  27. 根据权利要求26所述的解码器,其中,
    所述获取部分,还用于接收视频比特流以获取所述码流数据之后,若从所述码流数据获得的所述当前色度块对应的预测模式中存在相同的预测模式,则按照所述优化备选模式,获取色度预测模式集合,以对所述当前色度块进行色度重建。
  28. 一种解码器,其中,所述解码器包括处理器、存储有所述处理器可执行指令的存储器、通信接口,和用于连接所述处理器、所述存储器以及所述通信接口的总线,当所述指令被执行时,所述处理器执行时实现如权利要求1-17任一项所述的方法。
  29. 一种计算机可读存储介质,其上存储有程序,应用于解码器中,其中,所述程序被处理器执行时实现如权利要求1-17任一项所述的方法。
PCT/CN2019/070148 2019-01-02 2019-01-02 色度帧内预测方法和装置、及计算机存储介质 WO2020140215A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2021537035A JP7309884B2 (ja) 2019-01-02 2019-01-02 クロマイントラ予測方法および装置、並びにコンピュータ記憶媒体
KR1020217020179A KR20210108389A (ko) 2019-01-02 2019-01-02 크로마 인트라 예측 방법, 장치 및 컴퓨터 저장 매체
EP19907559.9A EP3883243A4 (en) 2019-01-02 2019-01-02 METHOD AND DEVICE FOR INTRAFRAME CHROMATICITY PREDICTION AND COMPUTER STORAGE MEDIUM
AU2019419036A AU2019419036A1 (en) 2019-01-02 2019-01-02 Intra-frame chromaticity prediction method and device, and computer storage medium
CN202110646355.8A CN113347416B (zh) 2019-01-02 2019-01-02 色度帧内预测方法和装置、及计算机存储介质
CN201980062647.8A CN112771861A (zh) 2019-01-02 2019-01-02 色度帧内预测方法和装置、及计算机存储介质
MX2021008090A MX2021008090A (es) 2019-01-02 2019-01-02 Metodo y dispositivo de intraprediccion de color y medio de almacenamiento por computadora.
PCT/CN2019/070148 WO2020140215A1 (zh) 2019-01-02 2019-01-02 色度帧内预测方法和装置、及计算机存储介质
CN202310393421.4A CN116506608A (zh) 2019-01-02 2019-01-02 色度帧内预测方法和装置、及计算机存储介质
US17/361,625 US11451792B2 (en) 2019-01-02 2021-06-29 Chroma intra prediction method and device
US17/819,175 US11924439B2 (en) 2019-01-02 2022-08-11 Chroma intra prediction method and device
JP2023109271A JP2023123784A (ja) 2019-01-02 2023-07-03 クロマイントラ予測方法および装置、並びにコンピュータ記憶媒体
US18/493,217 US20240107030A1 (en) 2019-01-02 2023-10-24 Chroma intra prediction method and device
US18/493,496 US20240098274A1 (en) 2019-01-02 2023-10-24 Chroma intra prediction method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070148 WO2020140215A1 (zh) 2019-01-02 2019-01-02 色度帧内预测方法和装置、及计算机存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/361,625 Continuation US11451792B2 (en) 2019-01-02 2021-06-29 Chroma intra prediction method and device

Publications (1)

Publication Number Publication Date
WO2020140215A1 true WO2020140215A1 (zh) 2020-07-09

Family

ID=71406528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070148 WO2020140215A1 (zh) 2019-01-02 2019-01-02 色度帧内预测方法和装置、及计算机存储介质

Country Status (8)

Country Link
US (4) US11451792B2 (zh)
EP (1) EP3883243A4 (zh)
JP (2) JP7309884B2 (zh)
KR (1) KR20210108389A (zh)
CN (3) CN116506608A (zh)
AU (1) AU2019419036A1 (zh)
MX (1) MX2021008090A (zh)
WO (1) WO2020140215A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115695786A (zh) * 2019-01-02 2023-02-03 Oppo广东移动通信有限公司 预测方向的确定方法、解码器以及计算机存储介质
WO2020192180A1 (zh) * 2019-03-25 2020-10-01 Oppo广东移动通信有限公司 图像分量的预测方法、编码器、解码器及计算机存储介质
WO2023132590A1 (ko) * 2022-01-04 2023-07-13 엘지전자 주식회사 영상 부호화/복호화 방법, 비트스트림을 전송하는 방법 및 비트스트림을 저장한 기록 매체
US20230217030A1 (en) * 2022-01-04 2023-07-06 Alibaba (China) Co., Ltd. Decoder-side chroma intra prediction mode gradient-based derivation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820546A (zh) * 2009-02-27 2010-09-01 源见科技(苏州)有限公司 帧内预测方法
CN107211121A (zh) * 2015-01-22 2017-09-26 联发科技(新加坡)私人有限公司 色度分量的视频编码方法
CN108540810A (zh) * 2011-03-06 2018-09-14 Lg 电子株式会社 使用亮度采样的色度块的内部预测方法以及使用其的装置
WO2018236031A1 (ko) * 2017-06-21 2018-12-27 엘지전자(주) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101503269B1 (ko) 2010-04-05 2015-03-17 삼성전자주식회사 영상 부호화 단위에 대한 인트라 예측 모드 결정 방법 및 장치, 및 영상 복호화 단위에 대한 인트라 예측 모드 결정 방법 및 장치
US10021384B2 (en) 2010-12-23 2018-07-10 Samsung Electronics Co., Ltd. Method and device for encoding intra prediction mode for image prediction unit, and method and device for decoding intra prediction mode for image prediction unit
MX2013013523A (es) 2011-06-17 2014-02-27 Mediatek Inc Metodo y aparato para codificacion de modo de intra predicion.
CN104683805B (zh) 2013-11-30 2019-09-17 同济大学 图像编码、解码方法及装置
WO2017034331A1 (ko) * 2015-08-27 2017-03-02 엘지전자 주식회사 영상 코딩 시스템에서 크로마 샘플 인트라 예측 방법 및 장치
US11039147B2 (en) * 2016-05-28 2021-06-15 Mediatek Inc. Method and apparatus of palette mode coding for colour video data
US10368107B2 (en) 2016-08-15 2019-07-30 Qualcomm Incorporated Intra video coding using a decoupled tree structure
US10326986B2 (en) 2016-08-15 2019-06-18 Qualcomm Incorporated Intra video coding using a decoupled tree structure
WO2018062699A1 (ko) * 2016-09-30 2018-04-05 엘지전자 주식회사 영상 코딩 시스템에서 영상 디코딩 방법 및 장치
CN109845261B (zh) * 2016-10-07 2021-11-09 联发科技股份有限公司 图像和视频编解码中帧内色度编解码的方法及装置
US11025903B2 (en) * 2017-01-13 2021-06-01 Qualcomm Incorporated Coding video data using derived chroma mode
EP3410708A1 (en) * 2017-05-31 2018-12-05 Thomson Licensing Method and apparatus for intra prediction with interpolation
KR20200047563A (ko) * 2017-09-26 2020-05-07 삼성전자주식회사 크로스-성분 예측에 의한 비디오 복호화 방법 및 장치, 크로스-성분 예측에 의한 비디오 부호화 방법 및 장치
US11166045B2 (en) * 2017-10-11 2021-11-02 Lg Electronics Inc. Method for image coding on basis of separable transform and apparatus therefor
US11284108B2 (en) * 2017-10-24 2022-03-22 Wilus Institute Of Standards And Technology Inc. Video signal processing method and apparatus
WO2019112394A1 (ko) * 2017-12-07 2019-06-13 한국전자통신연구원 채널들 간의 선택적인 정보 공유를 사용하는 부호화 및 복호화를 위한 방법 및 장치
US10567801B2 (en) * 2018-03-07 2020-02-18 Tencent America LLC Method and apparatus for video coding with primary and secondary transforms
US10609402B2 (en) * 2018-05-02 2020-03-31 Tencent America LLC Method and apparatus for prediction and transform for small blocks
US10701358B2 (en) * 2018-07-09 2020-06-30 Tencent America LLC Mode dependent primary and secondary transforms
MX2021002093A (es) * 2018-08-24 2021-04-28 Samsung Electronics Co Ltd Metodo y aparato de decodificacion de videos y metodo y aparato de codificacion de video.
US11284093B2 (en) * 2019-05-09 2022-03-22 Qualcomm Incorporated Affine linear weighted intra prediction in video coding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820546A (zh) * 2009-02-27 2010-09-01 源见科技(苏州)有限公司 帧内预测方法
CN108540810A (zh) * 2011-03-06 2018-09-14 Lg 电子株式会社 使用亮度采样的色度块的内部预测方法以及使用其的装置
CN107211121A (zh) * 2015-01-22 2017-09-26 联发科技(新加坡)私人有限公司 色度分量的视频编码方法
WO2018236031A1 (ko) * 2017-06-21 2018-12-27 엘지전자(주) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3883243A4 *

Also Published As

Publication number Publication date
US20240098274A1 (en) 2024-03-21
EP3883243A1 (en) 2021-09-22
JP2022520922A (ja) 2022-04-04
KR20210108389A (ko) 2021-09-02
US11451792B2 (en) 2022-09-20
JP7309884B2 (ja) 2023-07-18
AU2019419036A1 (en) 2021-07-15
EP3883243A4 (en) 2021-12-01
US20240107030A1 (en) 2024-03-28
CN113347416B (zh) 2023-06-02
US20210329259A1 (en) 2021-10-21
US20220394275A1 (en) 2022-12-08
CN116506608A (zh) 2023-07-28
CN112771861A (zh) 2021-05-07
MX2021008090A (es) 2021-08-11
JP2023123784A (ja) 2023-09-05
US11924439B2 (en) 2024-03-05
CN113347416A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2020140215A1 (zh) 色度帧内预测方法和装置、及计算机存储介质
TWI685244B (zh) 用於重構的基於投影的幀的適應性環路濾波方法
TWI536811B (zh) 影像處理方法與系統、解碼方法、編碼器與解碼器
ES2647514T3 (es) Codificación adaptativa de particiones
CN106134191B (zh) 用于低延迟亮度补偿处理以及基于深度查找表的编码的方法
CN111819854A (zh) 用于协调多符号位隐藏和残差符号预测的方法和装置
KR102320733B1 (ko) 디블로킹 필터 방법 및 장치
WO2016054975A1 (zh) 预测块的划分方法、编码设备和解码设备
BR112021004124A2 (pt) método de decodificação de vídeo e decodificador de vídeo
JP2015080207A (ja) 拡張予測モードを有する簡易深度符号化の方法と装置
US10542277B2 (en) Video encoding
CN110495178A (zh) 3d视频编码的装置和方法
US20230063062A1 (en) Hardware codec accelerators for high-performance video encoding
WO2014048242A1 (zh) 预测图像生成方法和装置
ES2905572T3 (es) Método y aparato para filtración de imagen con coeficientes multiplicadores adaptativos
JP2024054290A (ja) イントラ予測方法及び装置、コンピュータ可読記憶媒体
BR112020019587A2 (pt) Dispositivo de processamento de imagem e método para realizar desbloqueio eficiente
WO2015196860A1 (zh) 一种图像处理方法、装置及系统
WO2022077490A1 (zh) 一种帧内预测方法、编码器、解码器及存储介质
BR112021000569A2 (pt) Método e dispositivo de interpolação de amostra de referência de intrapredição bidirecional
WO2013067942A1 (zh) 一种帧内预测方法和装置
WO2020140219A1 (zh) 帧内预测方法、装置及计算机存储介质
RU2776160C1 (ru) Способ и устройство внутреннего предсказания цветности и компьютерный носитель данных
CN104350748A (zh) 使用低分辨率深度图的视图合成
WO2020000487A1 (zh) 变换方法、反变换方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537035

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019907559

Country of ref document: EP

Effective date: 20210615

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019419036

Country of ref document: AU

Date of ref document: 20190102

Kind code of ref document: A