WO2020140219A1 - 帧内预测方法、装置及计算机存储介质 - Google Patents

帧内预测方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2020140219A1
WO2020140219A1 PCT/CN2019/070155 CN2019070155W WO2020140219A1 WO 2020140219 A1 WO2020140219 A1 WO 2020140219A1 CN 2019070155 W CN2019070155 W CN 2019070155W WO 2020140219 A1 WO2020140219 A1 WO 2020140219A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction mode
angle prediction
list
angle
replacement
Prior art date
Application number
PCT/CN2019/070155
Other languages
English (en)
French (fr)
Inventor
霍俊彦
马彦卓
杨付正
万帅
柴小燕
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP19907163.0A priority Critical patent/EP3893500A4/en
Priority to JP2021538791A priority patent/JP7437404B2/ja
Priority to CN202110976399.7A priority patent/CN113709459B/zh
Priority to CN201980086353.9A priority patent/CN113228641A/zh
Priority to PCT/CN2019/070155 priority patent/WO2020140219A1/zh
Priority to KR1020217023922A priority patent/KR20210121053A/ko
Publication of WO2020140219A1 publication Critical patent/WO2020140219A1/zh
Priority to US17/365,869 priority patent/US11812057B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • Embodiments of the present application relate to the field of video coding, and in particular, to an intra prediction method, device, and computer storage medium.
  • a list of the most likely prediction modes (MPM, Most Probable Modes) will be constructed and stored The optimal prediction mode of the neighboring upper block and neighboring left block of the current decoded block.
  • MPM Most Probable Modes
  • the optimal prediction mode of the neighboring upper block and neighboring left block of the current decoded block According to the principle of high spatial similarity, a larger probability of the selected prediction mode of the current block will be the same as one of the modes present in the MPM list, so the prediction mode of the current block can be encoded with fewer bits.
  • the obtained prediction mode is the opposite direction of the closest mode of the true prediction direction, and then the intra prediction of the brightness through the MPM list will greatly reduce the accuracy of intra prediction , Thereby reducing codec efficiency.
  • Embodiments of the present application provide an intra prediction method, device, and computer storage medium, which can effectively improve the accuracy of intra prediction, and at the same time improve the coding and decoding efficiency.
  • An intra prediction method includes:
  • the reference decoding block is a decoding block related to the current decoding block
  • the replacement angle prediction mode is an extended angle prediction mode in the wide angle mode
  • the adjusted replacement angle prediction mode construct a prediction mode list of the current decoding block to perform intra prediction on the current decoding block.
  • the adjusting the replacement angle prediction mode to obtain the adjusted replacement angle prediction mode includes:
  • the adjusting the replacement angle prediction mode to obtain the adjusted replacement angle prediction mode includes:
  • An intra-angle prediction mode opposite to the direction of the replacement angle prediction mode is determined to determine the adjusted replacement angle prediction mode.
  • the prediction mode list includes the most probable prediction mode MPM list
  • the constructing the prediction mode list of the current decoding block according to the adjusted replacement angle prediction mode includes:
  • the constructing a prediction mode list of the current decoding block according to the adjusted replacement angle prediction mode includes:
  • the method before constructing the prediction mode list of the current decoding block according to the adjusted replacement angle prediction mode, the method further includes:
  • the initial MPM list is constructed using the MPM list construction rules.
  • the method further includes:
  • the truncated binary code is used to encode the optimal prediction mode of the currently decoded block.
  • the prediction mode list includes a chroma prediction mode list
  • constructing the prediction mode list of the current decoding block according to the adjusted alternative angle prediction mode includes:
  • the adjusted replacement angle prediction mode as the replacement mode in the initial chroma prediction mode list, constructing a chroma prediction mode list corresponding to the current decoding block, the initial chroma prediction mode list according to the preset chroma Intra-frame prediction construction method construction; or, according to the adjusted replacement angle prediction mode, replace the direct mode DM in the initial chroma prediction mode list to construct the chroma prediction mode list.
  • the use of the adjusted replacement angle prediction mode as the replacement mode in the initial chroma prediction mode list includes:
  • the chroma intra prediction mode When the chroma intra prediction mode satisfies the preset prediction mode in the initial chroma prediction mode list, the chroma intra prediction mode is replaced with the adjusted replacement angle prediction mode.
  • the prediction mode list includes a multi-direct mode signal flag MDMS list
  • constructing the prediction mode list of the current decoding block according to the adjusted alternative angle prediction mode includes:
  • the intra prediction device includes:
  • An acquiring section configured to acquire the aspect ratio of the current decoding block and the aspect ratio of the reference decoding block, wherein the reference decoding block is related to the decoding block of the current decoding block;
  • the adjusting part is used to adjust the replacement angle prediction mode corresponding to the reference decoding block when the aspect ratio of the current decoding block and the aspect ratio of the reference decoding block are different to obtain the adjusted replacement angle prediction Mode, the alternative angle prediction mode is an extended angle prediction mode in a wide angle mode;
  • the constructing part is configured to construct a prediction mode list of the current decoding block according to the adjusted alternative angle prediction mode to perform intra prediction on the current decoding block.
  • the intra prediction device further includes: a determining part
  • the determining part is also used to determine the maximum angle prediction mode and the minimum angle prediction mode corresponding to the aspect ratio of the current decoding block from the correspondence between the preset aspect ratio and the angle prediction mode;
  • the adjustment part is also used to obtain an intra-angle prediction adjacent to the replacement angle prediction mode according to the maximum angle prediction mode, the minimum angle prediction mode, and the replacement angle prediction mode corresponding to the reference decoding block Mode to determine the adjusted replacement angle prediction mode.
  • the adjustment part is further used to determine an intra-angle prediction mode opposite to the direction of the replacement angle prediction mode to determine the adjusted replacement angle prediction mode.
  • the prediction mode list includes an MPM list, and the device further includes: an insertion part;
  • the insertion part is configured to use at least one of an intra-angle prediction mode adjacent to the replacement angle prediction mode and an intra-angle prediction mode opposite to the direction of the replacement angle prediction mode as the adjusted The replacement angle prediction mode of the first embodiment; insert the adjusted replacement angle prediction mode into the initial most probable prediction mode MPM list to construct the MPM list.
  • the device further includes: a replacement part
  • the replacement part is configured to replace at least one of the reference decoding block and the adjacent mode of the reference decoding block in the initial MPM list according to the adjusted replacement angle prediction mode to construct the MPM list, the adjacent mode is an angle prediction mode adjacent to the replacement angle prediction mode.
  • the device further includes: a calculation section;
  • the calculation part is used to sequentially calculate the selection evaluation criteria of the preset reference line index of the current decoding block, where the selection evaluation criteria include but are not limited to rate distortion cost;
  • the determining portion is also used to determine the reference line index with the smallest selection evaluation standard from the preset reference line indexes as the first preset reference line index;
  • the acquiring part is also used to acquire the MPM list construction rule corresponding to the first preset reference row index
  • the construction part is also used to construct the initial MPM list by using the MPM list construction rules.
  • the device further includes: a matching part and an encoding part;
  • the matching part is used to match the optimal prediction mode of the current decoding block with the MPM list, and the optimal prediction mode is determined by the encoder according to a preset determination strategy;
  • the encoding part is used to encode the index of the optimal prediction mode of the current decoded block in the MPM list when the matching is successful; when the matching fails, use truncated binary code to encode the The optimal prediction mode of the current decoding block.
  • the prediction mode list includes a chroma prediction mode list
  • the construction part is further used to use at least one of an intra-angle prediction mode adjacent to the replacement angle prediction mode and an intra-angle prediction mode opposite to the direction of the replacement angle prediction mode as the adjustment The replaced alternative angle prediction mode; using the adjusted alternative angle prediction mode as the replacement mode in the initial chroma prediction mode list, constructing a chroma prediction mode list corresponding to the current decoding block, the initial chroma prediction
  • the mode list is constructed according to the preset chroma intra prediction construction method; or, according to the adjusted replacement angle prediction mode, the direct mode DM in the initial chroma prediction mode list is replaced to construct the chroma prediction mode List.
  • the determining part is also used to determine the optimal prediction mode of the current decoding block; derive the chroma intra prediction mode according to the optimal prediction mode;
  • the replacement part is also used to replace the chroma intra prediction mode with the adjusted chroma intra prediction mode when the chroma intra prediction mode satisfies the preset prediction mode in the initial chroma prediction mode list Replace angle prediction mode.
  • the insertion portion is further used to convert at least one of the intra-angle prediction mode adjacent to the replacement angle prediction mode and the intra-angle prediction mode opposite to the direction of the replacement angle prediction mode As the adjusted alternative angle prediction mode; construct the MDMS list before inserting the adjusted alternative angle prediction mode into the existing angle fine-tuning row in the initial MDMS list; or, according to the adjusted replacement
  • the angle prediction mode replaces the DM in the initial MDMS list to construct the MDMS list.
  • An intra prediction device includes a processor, a memory storing executable instructions of the processor, a communication interface, and a device for connecting the processor, the memory, and the communication interface
  • the bus when the instruction is executed, the processor implements the intra prediction method as described in any one of the above when executed.
  • Embodiments of the present application provide an intra prediction method, device, and computer storage medium to obtain the aspect ratio of a current decoding block and the aspect ratio of a reference decoding block, where the reference decoding block is a decoding block related to the current decoding block ;
  • adjust the replacement angle prediction mode corresponding to the reference decoding block to obtain the adjusted replacement angle prediction mode.
  • the replacement angle prediction mode is the wide angle mode Extend the angle prediction mode; construct the prediction mode list of the current decoding block according to the adjusted replacement angle prediction mode to perform intra prediction on the current decoding block.
  • the intra-prediction device when the intra-prediction device determines that the aspect ratio of the current decoded block and the reference decoded block are different, the intra-prediction device will refer to the alternative angle prediction mode of the decoded block Adjust to the nearest direction of the same direction as the true prediction direction of the adjacent adjustment unit, or the opposite direction of the same angle, and add it to the MPM list, thereby improving the accuracy of the prediction angle.
  • the intra-prediction device will greatly improve the accuracy of intra prediction, thereby improving coding efficiency.
  • FIG. 1 is a schematic diagram of an intra prediction mode provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of 67 intra prediction modes supported by VVC provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a wide-angle mode in VTM2.0 provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an exemplary intra prediction mode of a coding block with a width greater than a height
  • VTM3.0 is a schematic diagram of a wide-angle mode in VTM3.0 provided by an embodiment of the present application
  • FIG. 6 is a schematic flowchart of an intra prediction method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of vertical prediction provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of level prediction provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a set of chroma intra-candidate mode provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a chroma block and a luma block provided by an embodiment of this application;
  • FIG. 11 is a structural block diagram of a video encoder provided by an embodiment of this application.
  • FIG. 12 is a structural block diagram of a video decoder provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram of an implementation process of an intra prediction method according to an embodiment of the present application.
  • FIG. 14 is an exemplary existing optimal prediction mode for determining upper neighboring blocks in a wide-angle mode according to an embodiment of the present application.
  • 15 is a schematic structural diagram 1 of a structure of an intra prediction device according to an embodiment of the present application.
  • FIG. 16 is a second schematic structural diagram of a structure of an intra prediction device according to an embodiment of the present application.
  • the predicted value of the current processing block is constructed using the existing reconstructed image in space or time, and only the difference between the real value and the predicted value is transmitted to achieve the purpose of reducing the amount of transmitted data.
  • intra prediction utilizes the spatial correlation within the picture or within the picture area.
  • the intra prediction of the current processing block can be performed by pixels in adjacent processing blocks that have already been processed. For example, the previous row and the left column of the current processing block are used to construct the prediction value of the current processing block.
  • Figure 1 shows intra prediction The schematic diagram, as shown in FIG. 1, uses pixels of adjacent processing blocks to predict each pixel of the current processing block.
  • FIG. 2 shows the 67 intra-prediction modes supported by VVC. As shown in Figure 2, the 67 intra-prediction modes include 65 prediction directions with prediction direction index numbers 2-66, and also include index numbers. Planar mode with 0 and DC mode with index number 1.
  • the prediction directions of the 65 angle prediction modes are defined in the clockwise direction between -135 degrees (mode 2) and 45 degrees (mode 66), such
  • the angle range is defined to be compatible with the direction specified by the video compression standard (HEVC, High Efficiency, Video Coding), and does not take into account the quadtree binary tree division (QTBT) added to the next-generation video coding standard (VVC, Versatile Video Coding). , Quadtree Plus Binary Tree) structure. Due to the introduction of the QTBT structure, some non-square blocks will be generated. For the non-square blocks, a wide-angle mode was proposed in the K0500 proposal of the Kth meeting of the Joint Video Experts Group (JVET, Joint Video Experts Team).
  • JVET Joint Video Experts Team
  • the wide angle mode is only applicable to non-square blocks, as follows:
  • the angle can exceed 45 degrees in the upper right direction
  • the angle can exceed 45 degrees in the lower left direction.
  • an extended wide-angle mode will be used instead of several traditional angle prediction modes (ie, mode 2-mode 66).
  • the number of traditional angle modes that need to be replaced is related to the ratio of the long and short sides of the decoded block. The larger the ratio, the more traditional angle modes that need to be replaced with wide angle modes, as shown in Table 1.
  • W represents the width of the decoded block
  • H represents the height of the decoded block.
  • W represents the width of the decoded block
  • H represents the height of the decoded block.
  • the angle in the lower left direction needs to be replaced with the wide angle mode in the upper right direction exceeding 45 degrees.
  • the aspect ratio is 2, the modes 2, 3, 4, 5, 6, 7 will be replaced accordingly.
  • Wide-angle mode 67, 68, 69, 70, 71, 72; when the aspect ratio is greater than 2, modes 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 will be replaced by wide angle accordingly Modes 67, 68, 69, 70, 71, 72, 73, 74, 75, 76.
  • the angle in the upper right direction needs to be replaced with the wide angle mode in the lower left direction exceeding 45 degrees.
  • the modes 61, 62, 63, 64, 65, 66 will be replaced accordingly Wide-angle mode -6, -5, -4, -3, -2, -1; when the aspect ratio is greater than 2, modes 57, 58, 59, 60, 61, 62, 63, 64, 65, 66 will be Correspondingly, it must be replaced by the wide angle mode -10, -9, -8, -7, -6, -5, -4, -3, -2, -1.
  • Each wide-angle prediction direction is associated with a traditional prediction direction.
  • the wide-angle mode uses the opposite prediction direction to the corresponding traditional prediction mode, so the reference samples used by the wide-angle mode and the corresponding traditional prediction mode are not on the same side (left column or top row).
  • Figure 4 takes an intra prediction mode of an encoding block with a width greater than the height as an example.
  • Mode 2 is replaced with Mode 67
  • mode 3 is replaced with mode 68
  • mode 4 is replaced with mode 69.
  • the number of modes that need to be replaced with a wide-angle mode depends on the aspect ratio of the decoded block.
  • the extended mode 67 and the traditional mode 3 are in opposite directions.
  • Mode 3 uses the reference samples on the left
  • mode 67 uses the reference samples on the upper side.
  • mode 68 and traditional mode 4 are in opposite directions
  • mode 69 and traditional mode 5 are in opposite directions.
  • VTM3.0 a unified wide-angle mode proposed by the L0279 proposal is adopted.
  • VTM2.0.1 there are 85 angle modes, PLAnar and DC modes, of which 20 modes have a direction beyond the range between 45 degrees and -135 degrees, which is the wide angle mode.
  • a total of 65 angle modes from mode 2 to mode 66 are designed for the prediction angle mode of square blocks.
  • the diagonal directions of all square blocks (modes 2, 34 and 66) are included in the prediction mode.
  • the prediction mode of a non-square block does not necessarily cover its diagonal direction.
  • the angular direction of the square block starts from the diagonal direction of the lower left to the diagonal direction of the upper right, but not the angular direction of the non-square block.
  • the unified method proposed in the L0279 proposal modifies the number of traditional modes that need to be replaced with wide-angle modes, so that the angle range after extending the wide angle is just between the diagonal direction of the lower left and the diagonal direction of the upper right, as shown in Table 2. Show. At the same time, the method also modifies the direction of the extended wide-angle mode and the traditional angle mode that needs to be replaced so that it includes the diagonal direction of the decoded block.
  • FIG. 2 and FIG. 6 are schematic diagrams of the intra prediction method.
  • the label As shown in FIG. 3, when constructing the prediction value of each pixel with the prediction direction index number of 66, the label The pixels from 0 to 16 are the data on the previous line of the current processing block. Each pixel of the current processing block is filled with diagonally upper right pixels.
  • the PLANAR mode is mainly used in areas where the image texture is relatively smooth and has a relatively gradual transition process.
  • the prediction method is to use pixels of adjacent processing blocks in four directions of up, down, left, and right corresponding to the current processing block. The value is used as a reference pixel value for further linear interpolation and averaging calculation; compared to PLAnar mode, DC mode is mainly used for areas where the image is flat, the texture is smooth, and there are not too many gradients.
  • the specific prediction method is based on the current processing block The decoded reference pixels in the last row above are predicted with the decoded reference pixels in the rightmost column on the left side of the current processing block.
  • PLANER mode and DC mode are relatively flat ways of constructing prediction blocks.
  • the DC mode is to fill the entire chroma block with the average value of the reference pixels in the left column of the previous row.
  • the PLANA mode uses gradient Way to fill the chroma block.
  • FIG. 2 there are also two special direction modes, namely a VER mode with a direction index number of 50 and a HOR mode with a prediction direction index number of 18, namely vertical prediction and horizontal prediction.
  • Figure 7 is a schematic diagram of vertical prediction
  • Figure 5 is a schematic diagram of horizontal prediction. As shown in Figures 7 and 8, if the prediction direction is vertical prediction, then vertical prediction can be performed according to the pixel value above; if the prediction direction is horizontal prediction, then it can be based on The pixel values on the left are used for horizontal prediction.
  • the encoding end When performing luma intra-prediction, you can make predictions in accordance with the 0-66 modes in Figure 2 above, and then select the prediction mode with the smallest difference between the current processing block, that is, the best match, to construct the prediction value.
  • the encoding end writes the difference value and the prediction direction into the code stream.
  • the decoding end obtains the code stream and analyzes it. After obtaining the prediction mode index number, the luminance prediction value can be calculated and added to the difference signal parsed from the code stream to obtain the luminance reconstruction value.
  • the chroma intra candidate mode set includes multiple chroma intra prediction modes, for example, linear model prediction (LM, Linear Model Prediction), the upper linear model predicts the LM_T mode, and the left linear The model predicts LM_L mode, DC mode, PLANER mode, vertical VER mode and horizontal HOR mode.
  • LM linear model prediction
  • PLANER mode PLANER mode
  • vertical VER mode vertical VER mode
  • horizontal HOR mode horizontal HOR mode
  • FIG. 9 is a schematic diagram of a set of chroma intra-candidate modes. As shown in FIG. 9, different modes may be included in the set of chroma intra-candidate modes.
  • chroma intra prediction may be performed through different modes.
  • the direct mode (DM, Direct) can represent the prediction mode of the corresponding brightness center block
  • the cross-component calculation model prediction (Cross-component Linear Model Prediction (CCLM)) represents the use of (a * brightness value + b) to construct the prediction Signal, where a and b are both natural numbers, and when DM is any one of DC mode, PLANER mode, VER mode, or HOR mode, the mode can be replaced with the angle mode whose prediction direction index number is 66.
  • FIG. 10 is the luminance block and color corresponding to the current block in the embodiment of the present application Schematic diagram of the arrangement of degrees. As shown in FIG. 10, the square 70 on the left is the chroma block corresponding to the current chroma block, and the square 71 on the right is the current chroma block. When performing intra prediction on the current chroma block, The prediction direction of the center block using the chroma block 71 is the CR luminance block 701 in the square 70 on the right side of FIG. 10.
  • the above-mentioned intra-frame prediction method can be applied to the intra-frame prediction part in the video coding hybrid framework. Specifically, the above-mentioned intra-frame prediction method can act on both the encoding side and the decoding side.
  • FIG. 8 is a schematic diagram of a video encoding process, as shown in FIG. 11, which shows an example of a block diagram of a composition of a video encoding system provided by an embodiment of the present application; the video encoding system 200 includes a transform and quantization unit 201, and an intraframe.
  • Estimation unit 202 intra prediction unit 203, motion compensation unit 204, motion estimation unit 205, inverse transform and inverse quantization unit 206, filter control analysis unit 207, filtering unit 208, decoding block 209, decoded image buffer unit 210, etc.
  • the filtering unit 208 can implement deblocking filtering and sample adaptive indentation (SAO) filtering
  • the decoding block 209 can implement header information encoding and context-based adaptive binary arithmetic encoding (Context-based Adaptive Binary Arithmatic Coding , CABAC).
  • a video coding block can be obtained by dividing the coding tree block (CTU), and then the residual pixel information obtained after intra-frame or inter-frame prediction is converted by the transform and quantization unit 201.
  • Transforming the video coding block includes transforming the residual information from the pixel domain to the transform domain, and quantizing the resulting transform coefficients to further reduce the bit rate;
  • the intra-estimation unit 202 and the intra-prediction unit 203 are used to Intra prediction of the video coding block; specifically, the intra estimation unit 202 and the intra prediction unit 203 are used to determine the intra prediction mode to be used to encode the video coding block;
  • the motion compensation unit 204 and the motion estimation unit 205 is used to perform inter-prediction encoding of the received video encoding block relative to one or more blocks in one or more reference frames to provide temporal prediction information;
  • the motion estimation performed by the motion estimation unit 205 is to generate motion vectors Process, the motion vector can estimate the motion of the video encoding block, and then the motion compensation unit
  • the contextual content may be based on adjacent coding blocks, which may be used to encode information indicating the determined intra prediction mode, and output the code stream of the video signal; and the decoded image buffer unit 210 is used to store the reconstructed video coding block for Forecast reference. As the video image encoding proceeds, new reconstructed video encoding blocks will be continuously generated, and these reconstructed video encoding blocks will be stored in the decoded image buffer unit 210.
  • the video decoding system 300 includes a decoding unit 301, an inverse transform and inverse quantization unit 302, an intra prediction unit 303, and motion compensation The unit 304, the filtering unit 305, the decoded image buffer unit 306, etc., wherein the decoding unit 301 can implement header information decoding and CABAC decoding, and the filtering unit 305 can implement deblocking filtering and SAO filtering.
  • the decoding unit 301 can implement header information decoding and CABAC decoding
  • the filtering unit 305 can implement deblocking filtering and SAO filtering.
  • the code stream of the video signal is output; the code stream is input to the video decoding system 300 and first passes through the decoding unit 301 to obtain the decoded transform coefficient;
  • the inverse transform and inverse quantization unit 302 processes to generate a residual block in the pixel domain;
  • the intra prediction unit 303 can be used to generate based on the determined intra prediction mode and data from the previously decoded block of the current frame or picture The prediction data of the current video decoding block;
  • the motion compensation unit 304 determines the prediction information for the video decoding block by analyzing the motion vector and other associated syntax elements, and uses the prediction information to generate the predictiveness of the video decoding block being decoded Block; by summing the residual block from the inverse transform and inverse quantization unit 302 and the corresponding predictive block generated by the intra prediction unit 303 or the motion compensation unit 304 to form a decoded video block; the decoded video signal Through the filtering unit 305 in order to remove blockiness artifacts, the video quality can be improved; then the decode
  • FIG. 13 is a schematic flowchart of an intra prediction method according to an embodiment of the present application.
  • the method may include:
  • An intra prediction method provided by an embodiment of the present application is applicable to a scenario where an intra prediction device performs luma intra prediction or chroma intra prediction on a video stream.
  • the intra prediction device exists in the encoder and the decoder, and is specifically selected according to the actual situation.
  • the embodiment of the present application does not specifically limit.
  • the encoder divides the input video frame into decoded blocks according to a preset division rule, and adds the divided decoded blocks to the code stream, and transmits them to the decoder.
  • intra prediction The apparatus separately obtains the aspect ratio of the current decoding block and the aspect ratio of the reference decoding block, where the reference decoding block is a decoding block related to the current decoding block, and the reference decoding block includes but is not limited to the adjacent and left adjacent to the current decoding block
  • the adjacent reference decoding block or the reference decoding block corresponding to the chroma block corresponding to the luma region division block is specifically selected according to actual conditions, and is not specifically limited in this embodiment of the present application.
  • the intra prediction device divides the width and height of the decoded block to obtain the aspect ratio of the decoded block.
  • this is not limited to decoding blocks, as long as the unit that subdivides the largest coding block according to different division rules is applicable here, and also includes prediction units, which are not specifically limited here.
  • the intra prediction device After the intra prediction device obtains the aspect ratio of the current decoded block and the reference decoded block, the intra prediction device must determine that the aspect ratio of the current decoded block and the reference decoded block are different , Adjust the replacement angle prediction mode corresponding to the reference decoding block to obtain the adjusted replacement angle prediction mode.
  • the intra prediction apparatus compares the aspect ratio of the current decoded block with the aspect ratio of the reference decoded block, and when the aspect ratio of the current decoded block and the reference decoded block are different, characterizes the acquisition
  • the corresponding replacement angle prediction mode of the reference decoding block of may be invalid for the current decoding block.
  • the intra prediction device needs to adjust the replacement angle prediction mode, where the replacement angle prediction mode is an extended angle prediction mode in the wide angle mode .
  • the upper side is the neighboring block
  • the lower side is the current block.
  • the optimal prediction mode selected by the neighboring block is mode 67
  • it is replaced by the traditional mode 2 and transmitted in the bit stream in mode 2.
  • Mode 2 directly put Mode 2 into the MPM list. Since the width and height of the current block are equal, the wide angle mode 67 replaced by the conventional mode 2 of the adjacent block is invalid for the current block.
  • the reverse direction of mode 67 is mode 3, and the prediction mode 2 closest to the reverse direction of the prediction mode that is included in the current block is actually selected and added to the MPM list.
  • Mode 67 uses the upper reference line
  • Mode 2 uses the left reference line, which shows that the current block does not inherit the prediction direction of the adjacent block well.
  • the intra prediction device obtains the intra angle prediction mode corresponding to the reference decoded block; after that, the intra prediction device determines from the correspondence between the traditional intra mode and the wide angle mode, the corresponding Replace angle prediction mode.
  • the replacement angle prediction mode corresponding to the reference decoding block is adjusted, and the adjusted replacement angle prediction mode includes: the intra prediction device determines the current decoding block from the correspondence between the preset aspect ratio and the angle prediction mode The maximum angle prediction mode and the minimum angle prediction mode corresponding to the aspect ratio of the; afterwards, the intra prediction device obtains the phase prediction mode corresponding to the replacement angle prediction mode according to the maximum angle prediction mode, the minimum angle prediction mode, and the replacement angle prediction mode corresponding to the reference decoding block The neighboring intra-angle prediction mode; finally, the intra-prediction device will determine the intra-angle prediction mode adjacent to the replacement angle prediction mode as the adjusted replacement angle prediction mode.
  • the correspondence relationship between the preset aspect ratio and the angle prediction mode is shown in Table 3, and then the range of the angle preset mode corresponding to the aspect ratio of the current decoding block can be determined using Table 3 to determine the maximum angle Prediction mode and minimum angle prediction mode.
  • Aspect ratio The range of angle prediction modes available for this decoding block 1 Mode 2-66 2 Mode 8-72 4 Mode 12-76 8 Mode 14-78 16 Mode 16-80
  • dir_W represents the intra-angle prediction mode adjacent to the replacement angle prediction mode
  • minM C represents the minimum angle prediction mode
  • maxM C represents the maximum angle prediction mode
  • dir represents the replacement angle prediction mode corresponding to the reference decoding block.
  • the replacement angle prediction mode corresponding to the reference decoding block is adjusted to obtain the adjusted replacement angle prediction mode, and further includes: the intra prediction device determines the intra angle prediction mode opposite to the direction of the replacement angle prediction mode; The intra prediction device determines the intra angle prediction mode opposite to the direction of the replacement angle prediction mode as the adjusted replacement angle prediction mode.
  • Mode 67 is invalid for the current block.
  • it is adjusted to the prediction mode 66 that is closest to the prediction mode in the same direction as the current decoding block can include.
  • the references used in mode 67 and mode 66 are the upper reference lines, so that the current decoding block can better inherit the prediction direction of the neighboring block.
  • the intra prediction device adjusts the wide-angle mode to the opposite direction of the prediction direction according to the aspect ratio of the reference decoding block and the aspect ratio of the current decoding block.
  • the true prediction mode of the reference decoded block is mode 67. If the current decoding block does not support this mode, and since the reverse direction of mode 67 is mode 3, we will adjust the obtained mode 2 to mode 3, and add it to the MPM list according to the MPM list construction method proposed above , And so on, the reverse direction of 68 is 4,...
  • the intra prediction device When the intra prediction device adjusts the replacement angle prediction mode corresponding to the reference decoding block to obtain the adjusted replacement angle prediction mode, the intra prediction device constructs the MPM list of the current decoding block according to the adjusted replacement angle prediction mode. This completes the intra prediction process for the current decoded block.
  • the preset mode list includes an MPM list
  • the prediction mode list of the current decoding block is constructed according to the adjusted replacement angle prediction mode, including: the intra prediction device will compare the intra angle adjacent to the replacement angle prediction mode At least one of the prediction mode and the intra-angle prediction mode opposite to the direction of the replacement-angle prediction mode is used as the adjusted replacement-angle prediction mode; the intra-frame prediction device then inserts the adjusted replacement-angle prediction mode into the initial MPM list To construct an MPM list; or, the intra prediction device replaces at least one of the reference decoding block in the initial MPM list and the adjacent mode of the reference decoding block according to the adjusted replacement angle prediction mode to construct an MPM list,
  • the adjacent mode is an angle prediction mode adjacent to the replacement angle prediction mode.
  • the process of constructing the initial MPM list by the intra prediction device is as follows: the intra prediction device sequentially calculates the selection evaluation criteria of the preset reference line index of the current decoding block, where the selection evaluation criteria include but are not limited to rate distortion cost; intra The prediction device determines the reference line index with the smallest evaluation criterion from the preset reference line index as the first preset reference line index; the intra-frame prediction device obtains the MPM list construction rule corresponding to the first preset reference line index; the subsequent frame The intra prediction device constructs an initial MPM list using MPM list construction rules.
  • the construction rule of the initial MPM list is as follows:
  • the construction rules of the initial MPM list are as follows:
  • the specific rules for the intra prediction device to add the adjusted replacement angle prediction mode to the MPM list are as follows.
  • the MPM list is constructed in the following order until it contains 6 different MPM modes.
  • the reference line index used by the current decoding block is 0:
  • the reference row index used by the current block is 1 or 3
  • dir_W can be placed behind the pattern PLANARR/DC, in front of the adjacent pattern; or, dir_W can be placed before the pattern PLANERR/DC; or, dir_W can be placed Behind the adjacent mode; or using dir_W to replace at least one of the adjacent modes of dir and dir, specifically select according to the actual situation, and the embodiments of the present application do not make specific limitations.
  • the intra prediction device after the intra prediction device constructs the MPM list of the current decoding block according to the adjusted replacement angle prediction mode, the intra prediction device matches the optimal prediction mode of the current decoding block with the MPM list; When successful, the context model is used to encode the index of the optimal prediction mode of the currently decoded block in the MPM list; when the match fails, the truncated binary code is used to encode the optimal prediction mode of the currently decoded block.
  • the encoder determines the optimal prediction mode of the current decoding block according to a preset selection strategy, and transmits the optimal prediction mode of the current decoding block to the decoder through the code stream.
  • the prediction mode list includes a chroma prediction mode list
  • the intra prediction device constructs a prediction mode list of the current decoding block according to the adjusted replacement angle prediction mode, including: At least one of the adjacent intra-angle prediction mode and the intra-angle prediction mode opposite to the direction of the replacement angle prediction mode is used as the adjusted replacement angle prediction mode; the intra prediction device will then adjust the adjusted replacement angle prediction mode As a replacement mode in the initial chroma prediction mode list, construct a chroma prediction mode list corresponding to the current decoding block, or, the intra prediction device replaces the DM in the initial chroma prediction mode list according to the adjusted replacement angle prediction mode , Construct a list of prediction modes of brilliance; specifically select according to the actual situation, and the embodiments of the present application do not make specific limitations.
  • the initial chroma prediction mode list is constructed according to a preset chroma intra prediction construction method.
  • the initial chroma prediction mode list is shown in FIG. 9, wherein the replacement mode in the initial chroma prediction mode list is 66.
  • the intra prediction device uses the adjusted replacement angle prediction mode as the replacement mode in the initial chroma prediction mode list, including: the intra prediction device determines the optimal prediction mode of the current decoding block; and then intra prediction The device derives the chroma intra prediction mode according to the optimal prediction mode; when the chroma intra prediction mode meets the preset prediction mode in the initial chroma prediction mode list, the intra prediction device replaces the chroma intra prediction mode with the adjustment The replacement angle prediction mode afterwards; wherein, the preset prediction mode includes any one of a DC DC mode, a planar PLAnar mode, a vertical VER mode, and a horizontal HOR mode.
  • the intra prediction device when the intra prediction device judges that the chroma intra prediction mode satisfies any one of the DC DC mode, the planar PLAnar mode, the vertical VER mode, and the horizontal HOR mode, the intra prediction device is replaced with chroma intra Forecast mode.
  • the intra prediction device constructs a prediction mode list of the current decoding block according to the adjusted replacement angle prediction mode, including: the intra prediction device inserts the adjusted replacement angle prediction mode into the signal of the initial multi-direction mode Mark (MDMS, Multiple Direct Mode) before the existing angle fine-tuning type, and construct an MDMS list, or, the intra prediction device replaces the DM in the initial MDMS list according to the adjusted replacement angle prediction mode to construct
  • MDMS list is specifically selected according to actual conditions, and the embodiments of the present application are not specifically limited.
  • the intra-frame prediction device inserts a row before a row of fine-tuning the existing angle mode in the initial MDMS list, and this behavior adjusts the replacement angle prediction mode; or replaces the DM line according to the adjusted replacement angle prediction mode, specifically
  • the selection is based on the actual situation, and the embodiments of the present application do not make specific limitations.
  • the intra prediction device determines that the aspect ratio of the current decoded block and the reference decoded block are different, the intra prediction device adjusts the replacement angle prediction mode of the reference decoded block to the adjacent adjustment unit
  • the true prediction direction of is the closest direction in the same direction, or the opposite direction of the same angle, and it is added to the MPM list, thereby improving the accuracy of the prediction angle.
  • FIG. 15 is a schematic structural diagram 1 of the composition of the intra prediction device proposed by the embodiment of the present application.
  • the intra prediction device proposed by the embodiment of the present application 1 may include an acquisition section 11, an adjustment section 12, a construction section 13, a determination section 14, an insertion section 15, a replacement section 16, a calculation section 17, a matching section 18, and an encoding section 19.
  • the acquiring section 11 is configured to acquire the aspect ratio of the current decoding block and the aspect ratio of the reference decoding block, where the reference decoding block is a decoding block related to the current decoding block;
  • the adjusting part 12 is configured to adjust the replacement angle prediction mode corresponding to the reference decoding block when the aspect ratio of the current decoding block and the aspect ratio of the reference decoding block are different, to obtain an adjusted A replacement angle prediction mode, which is an extended angle prediction mode in a wide angle mode;
  • the construction section 13 is configured to construct a prediction mode list of the current decoding block according to the adjusted replacement angle prediction mode to perform intra prediction on the current decoding block.
  • the intra prediction device further includes: a determining section 14;
  • the determining unit 14 is further configured to determine the maximum angle prediction mode and the minimum angle prediction mode corresponding to the aspect ratio of the current decoding block from the correspondence between the preset aspect ratio and the angle prediction mode;
  • the adjusting section 12 is further used to obtain an intra-angle adjacent to the replacement angle prediction mode according to the maximum angle prediction mode, the minimum angle prediction mode, and the replacement angle prediction mode corresponding to the reference decoding block A prediction mode to determine the adjusted replacement angle prediction mode.
  • the adjustment part 12 is further used to determine an intra-angle prediction mode opposite to the direction of the replacement angle prediction mode to determine the adjusted replacement angle Forecast mode.
  • the prediction mode list includes an MPM list
  • the device further includes: an insertion part 15;
  • the insertion section 15 is configured to use at least one of an intra-angle prediction mode adjacent to the replacement angle prediction mode and an intra-angle prediction mode opposite to the direction of the replacement angle prediction mode as the adjustment The replacement angle prediction mode; insert the adjusted replacement angle prediction mode into the initial most probable prediction mode MPM list to construct the MPM list.
  • the device further includes: a replacement part 16;
  • the replacement section 16 is configured to replace at least one of the reference decoding block in the initial MPM list and the adjacent mode of the reference decoding block according to the adjusted replacement angle prediction mode to construct a
  • the adjacent mode is an angle prediction mode adjacent to the replacement angle prediction mode.
  • the device further includes: a calculation section 17; the calculation section 17 is used to sequentially calculate the selection evaluation criteria of the preset reference line index of the current decoding block, the selection evaluation Criteria include but are not limited to rate-distortion cost; the determining part 14 is also used to determine the reference line index with the smallest selection evaluation criterion from the preset reference line indexes as the first preset reference line index; the obtaining Part 11 is also used to obtain an MPM list construction rule corresponding to the first preset reference row index; and the construction part 13 is also used to construct the initial MPM list using the MPM list construction rule. Further, in the implementation of the present application, the device further includes: a matching part 18 and an encoding part 19;
  • the matching part 18 is configured to match the optimal prediction mode of the current decoding block with the MPM list
  • the encoding part 19 is used to encode the index of the optimal prediction mode of the current decoded block in the MPM list when the matching is successful; when the matching fails, the truncated binary code is used to encode The optimal prediction mode of the current decoding block is described.
  • the prediction mode list includes a chroma prediction mode list
  • the construction section 13 is further configured to use at least one of an intra-angle prediction mode adjacent to the replacement angle prediction mode and an intra-angle prediction mode opposite to the direction of the replacement angle prediction mode as the An adjusted replacement angle prediction mode; using the adjusted replacement angle prediction mode as a replacement mode in the initial chroma prediction mode list, constructing a chroma prediction mode list corresponding to the current decoding block, the initial chroma
  • the prediction mode list is constructed according to a preset chroma intra prediction construction method; or, according to the adjusted replacement angle prediction mode, the direct mode DM in the initial chroma prediction mode list is replaced to construct the chroma prediction Mode list.
  • the determining part 14 is also used to determine the optimal prediction mode of the current decoding block; deriving the chroma intra prediction mode according to the optimal prediction mode;
  • the replacement part 16 is also used to replace the chroma intra prediction mode with the adjusted chroma intra prediction mode when the chroma intra prediction mode satisfies the preset prediction mode in the initial chroma prediction mode list Angle prediction mode.
  • the insertion portion 15 is also used to divide the intra-angle prediction mode adjacent to the replacement angle prediction mode and the intra-frame angle opposite to the direction of the replacement angle prediction mode At least one of the prediction modes is used as the adjusted replacement angle prediction mode; before inserting the adjusted replacement angle prediction mode into the existing angle fine-tuning line in the initial MDMS list, an MDMS list is constructed; or, according to The adjusted replacement angle prediction mode replaces the DM in the initial MDMS list to construct the MDMS list.
  • FIG. 16 is a second schematic diagram of the composition structure of the intra prediction device proposed by the embodiment of the present application.
  • the intra prediction device 1 proposed by the embodiment of the present application may further include a processor 110, which is stored and executable by the processor 110.
  • the processor 110 may be an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a digital signal processor (Digital Signal Processor, DSP), a digital signal processing device (Digital Signal Processing Device, DSPD ), programmable logic device (ProgRAMmable Logic Device, PLD), field programmable gate array (Field ProgRAMmable Gate Array, FPGA), central processing unit (Central Processing Unit, CPU), controller, microcontroller, microprocessor At least one. Understandably, for different devices, there may be other electronic devices for realizing the above-mentioned processor functions, which are not specifically limited in the embodiments of the present application.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD programmable logic device
  • FPGA field programmable gate array
  • CPU Central Processing Unit
  • controller microcontroller
  • microprocessor At least one. Understandably, for different devices, there may be other electronic devices for realizing the above-mentioned processor functions, which are not specifically limited in the
  • the device 1 may further include a memory 111, which may be connected to the processor 110, wherein the memory 111 is used to store executable program code, and the program code includes computer operation instructions.
  • the memory 111 may include a high-speed RAM memory, or may also include Non-volatile memory, for example, at least two disk memories.
  • the bus 113 is used to connect the communication interface 112, the processor 110, the memory 111, and the mutual communication between these devices.
  • the memory 111 is used to store instructions and data.
  • the above processor 110 is configured to acquire the aspect ratio of the current decoding block and the aspect ratio of the reference decoding block, where the reference decoding block is related to the current decoding block The decoded block; when the aspect ratio of the current decoded block and the reference decoded block are different, adjust the replacement angle prediction mode corresponding to the reference decoded block to obtain the adjusted replacement angle prediction mode ,
  • the replacement angle prediction mode is an extended angle prediction mode in a wide angle mode; according to the adjusted replacement angle prediction mode, a prediction mode list of the current decoding block is constructed to intra-frame the current decoding block prediction.
  • the above-mentioned memory 111 may be a volatile first memory (volatile memory), such as a random access first memory (Random-Access Memory, RAM); or a non-volatile first memory (non-volatile memory) ), such as read-only memory (Read-Only Memory, ROM), flash first memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or the above types
  • volatile first memory such as a random access first memory (Random-Access Memory, RAM); or a non-volatile first memory (non-volatile memory) ), such as read-only memory (Read-Only Memory, ROM), flash first memory (flash memory), hard disk (Hard Disk Drive, HDD) or solid-state drive (Solid-State Drive, SSD); or the above types
  • ROM read-only memory
  • flash memory flash memory
  • HDD Hard Disk Drive
  • SSD solid-state drive
  • each functional module in this embodiment may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software function module.
  • the integrated unit is implemented as a software function module and is not sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of this embodiment is essentially or right Part of the existing technology or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions to make a computer device (which can be an individual) A computer, a server, or a network device, etc.) or a processor (processor) executes all or part of the steps of the method of this embodiment.
  • the foregoing storage media include various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read-only memory (Read Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read-only memory (Read Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk, or an optical disk.
  • the intra prediction apparatus obtains the aspect ratio of the current decoding block and the aspect ratio of the reference decoding block, where the reference decoding block is a decoding block related to the current decoding block; when the current decoding When the aspect ratio of the block and the aspect ratio of the reference decoding block are different, the intra prediction device adjusts the replacement angle prediction mode corresponding to the reference decoding block to obtain the adjusted replacement angle prediction mode, and the replacement angle prediction mode is the wide angle mode The extended angle prediction mode; the intra prediction device constructs a prediction mode list of the current decoding block according to the adjusted replacement angle prediction mode to perform intra prediction on the current decoding block.
  • the intra-prediction device when the intra-prediction device determines that the aspect ratio of the current decoded block and the reference decoded block are different, the intra-prediction device will refer to the alternative angle prediction mode of the decoded block Adjust to the nearest direction of the same direction as the true prediction direction of the adjacent adjustment unit, or the opposite direction of the same angle, and add it to the MPM list, thereby improving the accuracy of the prediction angle.
  • the intra-prediction device will greatly improve the accuracy of intra prediction, thereby improving coding efficiency.
  • An embodiment of the present application provides a computer-readable storage medium on which a program is stored, and when the program is executed by a processor, the intra prediction method described above is implemented.
  • the program instructions corresponding to an intra prediction method in this embodiment may be stored on a storage medium such as an optical disk, a hard disk, or a U disk.
  • a storage medium such as an optical disk, a hard disk, or a U disk.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage media including but not limited to disk storage and optical storage, etc.
  • each flow and/or block in the flow diagram and/or block diagram and a combination of the flow and/or block in the flow diagram and/or block diagram can be implemented by computer program instructions.
  • These computer program instructions can be provided to the processor of a general-purpose computer, special-purpose computer, embedded processing machine, or other programmable data processing device to produce a machine that enables the generation of instructions executed by the processor of the computer or other programmable data processing device A device for realizing the functions specified in one block or multiple blocks of a block diagram or a block diagram of a block diagram.
  • These computer program instructions may also be stored in a computer readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in the implementation flow diagram one flow or multiple flows and/or the block diagram one block or multiple blocks.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to generate computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flow diagram.
  • Embodiments of the present application provide an intra prediction method, device, and computer storage medium.
  • the intra prediction device obtains the aspect ratio of the current decoding block and the aspect ratio of the reference decoding block, where the reference decoding block is the same as the current decoding block Related decoding blocks; when the aspect ratio of the current decoding block and the reference decoding block are different, the intra prediction device adjusts the replacement angle prediction mode corresponding to the reference decoding block to obtain the adjusted replacement angle prediction mode,
  • the replacement angle prediction mode is an extended angle prediction mode in the wide angle mode; the intra prediction device constructs a prediction mode list of the current decoding block according to the adjusted replacement angle prediction mode to perform intra prediction on the current decoding block.
  • the intra prediction device uses the replacement angle of the reference decoded block to predict The mode is adjusted to the nearest direction of the same direction as the true prediction direction of the adjacent adjustment unit, or the opposite direction of the same angle, and it is added to the MPM list, thereby improving the accuracy of the prediction angle.
  • the accuracy of intra prediction will be greatly improved, thereby improving coding efficiency.

Abstract

一种帧内预测方法、装置及计算机存储介质,该帧内预测方法包括:获取当前解码块的宽高比和参考解码块的宽高比,其中,参考解码块为与所述当前解码块相关的解码块(S101);当当前解码块的宽高比和参考解码块的宽高比不同时,对参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,替换角度预测模式为宽角度模式下扩展的角度预测模式(S102);根据调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,以对所述当前解码块进行帧内预测(S103)。

Description

帧内预测方法、装置及计算机存储介质 技术领域
本申请实施例涉及视频编码领域,尤其涉及一种帧内预测方法、装置及计算机存储介质。
背景技术
在下一代视频编码标准H.266或多功能视频编码(Versatile Video Coding,VVC)的亮度预测过程中,为了减少熵编码的会构造一个最可能的预测模式(MPM,Most Probable Modes)列表,存储与当前解码块的相邻上块和相邻左块的最优预测模式。根据空间相似度高的原理,当前块选中的预测模式较大概率会与MPM列表中存在的某一种模式相同,因此可以用更少的比特数编码当前块的预测模式。然而由于非方形块宽角度模式的模式,导致获取到的预测模式是真实预测方向的最接近模式的反方向,进而通过MPM列表进行亮度帧内预测时,就会大大降低帧内预测的准确性,从而降低编解码效率。
发明内容
本申请实施例提供一种帧内预测方法、装置及计算机存储介质,能够有效地提高帧内预测的准确性,同时提高编解码效率。
本申请实施例的技术方案是这样实现的:
一种帧内预测方法,所述方法包括:
获取当前解码块的宽高比和参考解码块的宽高比,其中,所述参考解码块为与所述当前解码块相关的解码块;
当所述当前解码块的宽高比和所述参考解码块的宽高比不同时,对所述参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,所述替换角度预测模式为宽角度模式下扩展的角度预测模式;
根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,以对所述当前解码块进行帧内预测。
在上述方法中,所述对所述替换角度预测模式进行调整,得到调整后的所述替换角度预测模式,包括:
从预设宽高比与角度预测模式的对应关系中,确定出所述当前解码块的宽高比对应的最大角度预测模式和最小角度预测模式;
根据所述最大角度预测模式、所述最小角度预测模式和所述参考解码块对应的替换角度预测模式,得到与所述替换角度预测模式相邻的帧内角度预测模式,以确定为所述调整后的替换角度预测模式。
在上述方法中,所述对所述替换角度预测模式进行调整,得到调整后的所述替换角度预测模式,包括:
确定出与所述替换角度预测模式的方向相反的帧内角度预测模式,以确定为所述调整后的所述替换角度预测模式。
在上述方法中,所述预测模式列表包括最可能的预测模式MPM列表,所述根据所 述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,包括:
将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;
将所述调整后的替换角度预测模式,插入初始最可能的预测模式MPM列表中,构造出所述MPM列表。
在上述方法中,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,包括:
根据所述调整后的替换角度预测模式替换初始MPM列表中的所述参考解码块和所述参考解码块的相邻模式中的至少一种,构造出所述MPM列表,所述相邻模式为与所述替换角度预测模式相邻的角度预测模式。
在上述方法中,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表之前,所述方法还包括:
依次计算所述当前解码块的预设参考行索引的选择评价标准,所述选择评价标准包括但不限于率失真代价;
从所述预设参考行索引中,确定出选择评价标准最小的参考行索引作为第一预设参考行索引;
获取所述第一预设参考行索引对应的MPM列表构造规则;
利用所述MPM列表构造规则构造出所述初始MPM列表。
在上述方法中,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表之后,所述方法还包括:
将所述当前解码块的最优预测模式与所述MPM列表进行匹配;
当匹配成功时,使用上下文模型来编码所述当前解码块的最优预测模式在所述MPM列表中的索引;
当匹配失败时,使用截断二元码来编码所述当前解码块的最优预测模式。
在上述方法中,所述预测模式列表包括色度预测模式列表,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,包括:
将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;
将所述调整后的替换角度预测模式作为初始色度预测模式列表中的替换模式,构造出所述当前解码块对应的色度预测模式列表,所述初始色度预测模式列表按照预设色度帧内预测构造方法构造;或者,根据所述调整后的替换角度预测模式,替换所述初始色度预测模式列表中的直接模式DM,构造出所述色度预测模式列表。
在上述方法中,所述将所述调整后的替换角度预测模式作为初始色度预测模式列表中的替换模式,包括:
确定所述当前解码块的最优预测模式;
根据所述最优预测模式推导出色度帧内预测模式;
当所述色度帧内预测模式满足所述初始色度预测模式列表中的预设预测模式时,将所述色度帧内预测模式替换为所述调整后的替换角度预测模式。
在上述方法中,所述预测模式列表包括多直接模式的信号标记MDMS列表,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,包括:
将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;
将所述调整后的替换角度预测模式,插入初始MDMS列表中的已有角度微调行之前,构造出MDMS列表;或者,根据所述调整后的替换角度预测模式,替换所述初始 MDMS列表中的DM,构造出所述MDMS列表。
一种帧内预测装置,所述帧内预测装置包括:
获取部分,用于获取当前解码块的宽高比和参考解码块的宽高比,其中,所述参考解码块与所述当前解码块相关的解码块;
调整部分,用于当所述当前解码块的宽高比和所述参考解码块的宽高比不同时,对所述参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,所述替换角度预测模式为宽角度模式下扩展的角度预测模式;
构造部分,用于根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,以对所述当前解码块进行帧内预测。
在上述装置中,所述帧内预测装置还包括:确定部分;
所述确定部分,还用于从预设宽高比与角度预测模式的对应关系中,确定出所述当前解码块的宽高比对应的最大角度预测模式和最小角度预测模式;
所述调整部分,还用于根据所述最大角度预测模式、所述最小角度预测模式和所述参考解码块对应的替换角度预测模式,得到与所述替换角度预测模式相邻的帧内角度预测模式,以确定为所述调整后的替换角度预测模式。
在上述装置中,所述调整部分,还用于确定出与所述替换角度预测模式的方向相反的帧内角度预测模式,以确定为所述调整后的所述替换角度预测模式。
在上述装置中,所述预测模式列表包括MPM列表,所述装置还包括:插入部分;
所述插入部分,用于将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;将所述调整后的替换角度预测模式,插入初始最可能的预测模式MPM列表中,构造出所述MPM列表。
在上述装置中,所述装置还包括:替换部分;
所述替换部分,用于根据所述调整后的替换角度预测模式替换所述初始MPM列表中的所述参考解码块和所述参考解码块的相邻模式中的至少一种,构造出所述MPM列表,所述相邻模式为与所述替换角度预测模式相邻的角度预测模式。
在上述装置中,所述装置还包括:计算部分;
所述计算部分,用于依次计算所述当前解码块的预设参考行索引的选择评价标准,所述选择评价标准包括但不限于率失真代价;
所述确定部分,还用于从所述预设参考行索引中,确定出选择评价标准最小的参考行索引作为第一预设参考行索引;
所述获取部分,还用于获取所述第一预设参考行索引对应的MPM列表构造规则;
所述构造部分,还用于利用所述MPM列表构造规则构造出所述初始MPM列表。
在上述装置中,所述装置还包括:匹配部分和编码部分;
所述匹配部分,用于将所述当前解码块的最优预测模式与所述MPM列表进行匹配,所述最优预测模式为编码器根据预设确定策略确定出的;
所述编码部分,用于当匹配成功时,使用上下文模型来编码所述当前解码块的最优预测模式在所述MPM列表中的索引;当匹配失败时,使用截断二元码来编码所述当前解码块的最优预测模式。
在上述装置中,所述预测模式列表包括色度预测模式列表,
所述构造部分,还用于将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;将所述调整后的替换角度预测模式作为初始色度预测模式列表中的替换模式,构造出所述当前解码块对应的色度预测模式列表,所述初始色度预测模式列 表按照预设色度帧内预测构造方法构造;或者,根据所述调整后的替换角度预测模式,替换所述初始色度预测模式列表中的直接模式DM,构造出所述色度预测模式列表。
在上述装置中,所述确定部分,还用于确定所述当前解码块的最优预测模式;根据所述最优预测模式推导出色度帧内预测模式;
所述替换部分,还用于当所述色度帧内预测模式满足所述初始色度预测模式列表中的预设预测模式时,将所述色度帧内预测模式替换为所述调整后的替换角度预测模式。
在上述装置中,所述插入部分,还用于将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;将所述调整后的替换角度预测模式,插入初始MDMS列表中的已有角度微调行之前,构造出MDMS列表;或者,根据所述调整后的替换角度预测模式,替换所述初始MDMS列表中的DM,构造出所述MDMS列表。
一种帧内预测装置,所述帧内预测装置包括处理器、存储有所述处理器可执行指令的存储器、通信接口,和用于连接所述处理器、所述存储器以及所述通信接口的总线,当所述指令被执行时,所述处理器执行时实现如上述任一项所述的帧内预测方法。
一种计算机可读存储介质,其上存储有程序,应用于帧内预测装置中,其中,所述程序被处理器执行时实现如上述任一项所述的帧内预测方法。
本申请实施例提供了一种帧内预测方法、装置及计算机存储介质,获取当前解码块的宽高比和参考解码块的宽高比,其中,参考解码块为与当前解码块相关的解码块;当当前解码块的宽高比和参考解码块的宽高比不同时,对参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,替换角度预测模式为宽角度模式下扩展的角度预测模式;根据调整后的替换角度预测模式,构造当前解码块的预测模式列表,以对当前解码块进行帧内预测。由此可见,在本申请的实施例中,帧内预测装置在判断出当前解码块的宽高比和参考解码块的宽高比不同时,帧内预测装置将参考解码块的替换角度预测模式调整成与相邻调整单元的真实预测方向为同向的最近方向,或相同角度的相反方向,并将其加入MPM列表中,进而提高了预测角度的准确性,在通过MPM列表进行亮度帧内预测时,就会大大提高帧内预测的准确性,从而提高编码效率。
附图说明
图1为本申请实施例提供的帧内预测模式的示意图;
图2为本申请实施例提供的VVC支持的67种帧内预测模式的示意图;
图3为本申请实施例提供的VTM2.0中的宽角度模式的示意图;
图4为示例性的宽大于高的编码块的帧内预测模式的示意图;
图5为本申请实施例提供的VTM3.0中的宽角度模式的示意图;
图6为本申请实施例提供的帧内预测方法的流程示意图;
图7为本申请实施例提供的垂直预测的示意图;
图8为本申请实施例提供的水平预测的示意图;
图9为本申请实施例提供的色度帧内候选模式集合的示意图;
图10为本申请实施例提供的色度块和亮度块的示意图;
图11为本申请实施例提供的视频编码器的结构框图;
图12为本申请实施例提供的视频解码器的结构框图;
图13为本申请实施例提出的一种帧内预测方法的实现流程示意图;
图14为本申请实施例提供的一种示例性的现有的宽角度模式下的确定上相邻块的最优预测模式;
图15为本申请实施例提出的帧内预测装置的组成结构示意图一;
图16为本申请实施例提出的帧内预测装置的组成结构示意图二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅仅用于解释相关申请,而非对该申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关申请相关的部分。
视频编码中利用空间或时间上已有的重建图像构造当前处理块的预测值,仅将真实值和预测值的差值传输,以达到减少传输数据量的目的。其中,帧内预测利用了图片内或者图片区域内的空间相关性。当前处理块的帧内预测可以依靠已经被处理过的相邻处理块中的像素来执行,例如,利用当前处理块的上一行和左一列构造当前处理块的预测值,图1为帧内预测示意图,如图1所示,利用相邻处理块的像素对当前处理块的每个像素点进行预测。
在进行帧内预测时,预测方向的选取也很重要。具体地,在利用邻近编码块的像素构造当前处理块的预测值时,可以采用多种预测方向。图2为VVC支持的67种帧内预测模式,如图2所示,在67种帧内预测模式中,具体包括有预测方向索引号为2-66的65种预测方向,还包括有索引号为0的PLANAR模式和索引号为1的DC模式。
一方面,在本申请实施例中,基于上述图2,由于65种角度预测模式的预测方向在顺时针方向上定义为-135度(模式2)至45度(模式66)之间,这样的角度范围定义是为了与视频压缩标准(HEVC,High Efficiency Video Coding)指定方向兼容而进行的,并没有考虑到下一代视频编码标准(VVC,Versatile Video Coding)中加入的四叉树二叉树划分(QTBT,Quadtree Plus Binary Tree)结构。由于QTBT结构的引入,会产生一些非方形块,针对非方形块,在联合视频专家组(JVET,Joint Video Experts Team)第K次会议的K0500提案中提出了宽角度模式。
其中,宽角度模式仅适用于非方形块,如下所示:
如果解码块的宽大于高,则角度在右上方向可以超过45度;
如果解码块的高大于宽,则角度在左下方向可以超过45度。
具体的,对于非方形块,将会使用扩充的宽角度模式代替几种传统的角度预测模式(即模式2—模式66)。需要被替换的传统角度模式的数量与解码块长边短边比有关,比例越大,需要替换成宽角度模式的传统角度模式越多,如表1所示。
表1 K0500中需要被替换成宽角度模式的传统帧内模式
Figure PCTCN2019070155-appb-000001
表1中,W表示解码块的宽,H表示解码块的高。当宽大于高时,需要将位于左下方向的角度替换成右上超过45度方向的宽角度模式,宽高比为2时模式2,3,4,5,6,7将会被相应得替换成宽角度模式67,68,69,70,71,72;宽高比大于2时模式2,3,4,5,6,7,8,9,10,11将会被相应得替换成宽角度模式67,68,69,70,71,72, 73,74,75,76。当高大于宽时,需要将位于右上方向的角度替换成左下超过45度方向的宽角度模式,高宽比为2时模式61,62,63,64,65,66将会被相应得替换成宽角度模式-6,-5,-4,-3,-2,-1;高宽比大于2时模式57,58,59,60,61,62,63,64,65,66将会被相应得替换成宽角度模式-10,-9,-8,-7,-6,-5,-4,-3,-2,-1。
如图3所示,在VTM2.0的宽角度模式中,共有85个角度方向模式以及PLANAR和DC模式,其中模式-10—-1和模式67—76超出45度和-135度之间的范围,即宽角度模式。在顺时针方向上的45度(模式66)至-135度(模式2)内的角度方向被设计用于方形块。
每个宽角度预测方向与一个传统的预测方向相关联。宽角度模式使用与之对应的传统预测模式相反的预测方向,故该宽角度模式使用的参考样本和与之对应的传统预测模式不在同一侧(左列或顶行)。
图4以一个宽大于高的编码块的帧内预测模式为例,在预测过程中会将左下的一些角度去掉,替换成右上超过45度方向的宽角度模式:模式2替换成模式67,模式3替换成模式68,模式4替换成模式69。需要替换成宽角度模式的模式数量与解码块的宽高比有关。具体的,扩展出的模式67与传统模式3互为反方向,模式3使用左侧的参考样本,模式67使用上侧的参考样本。以此类推,模式68与传统模式4互为反方向,模式69与传统模式5互为反方向
在最新的VVC参考软件VTM3.0中采纳了L0279提案提出的一种统一化的宽角度模式。在VTM2.0.1中有85个角度模式,PLANAR和DC模式,其中20个模式的方向超出45度和-135度之间的范围,即宽角度模式。模式2增至模式66的总共65个角度模式被设计用于方形块的预测角度模式。所有方形块的对角线方向(模式2,34和66)都包括在预测模式内。但是,非方形块的预测模式不一定覆盖其对角线方向。另外,方形块的角度方向是从左下对角线方向开始到右上对角线方向的,而非方形块的角度方向并不是如此。
L0279提案提出的统一方法修改了需要被替换成宽角度模式的传统模式的个数,使得扩展宽角度之后的角度范围刚好在左下对角线方向到右上对角线方向之间,如表2所示。同时该方法还适当修改了扩展出的宽角度模式以及需要被替换的传统角度模式的方向,使得其包含解码块的对角线方向。
表2.L0279中需要被替换成宽角度模式的传统帧内模式
Figure PCTCN2019070155-appb-000002
在非方形块中,长边短边比为2时,有6个模式需要被替换;长边短边比为4时,有10个模式需要被替换;长边短边比为8时,有12个模式需要被替换;长边短边比为16时,有14个模式需要被替换。如图5所示,共有93个角度模式以及PLANAR和DC模式,其中28个角度模式的方向超出-135度和45度之间的范围,即宽角度模式。
另一方面,在本申请的实施例中,基于上述图2,图6为帧内预测方法示意图,如图3所示,在以预测方向索引号为66构造每个像素点预测值时,标号为0-16的像素点为当前处理块的上一行数据。当前处理块的每个像素按照右上对角线的像素进行填充。
进一步地,在本申请的实施例中,PLANAR模式主要用于图像纹理相对平滑而且有相对渐变过程的区域,其预测方法是使用与当前处理块对应的上下左右四个方向的相邻处理块像素值作为参考像素值,进一步进行线性插值和求平均计算;相较于PLANAR模式,DC模式则主要用于图像平坦,纹理平滑,且没有太多渐变的区域,具体地预测方法为根据当前处理块上方已解码的最后一行参考像素与当前处理块左侧已解码的最右一列参考像素进行预测。可见,在帧内预测中,PLANAR模式和DC模式均为比较平坦的构造预测块方式,分别是DC模式是利用上一行左一列参考像素的平均值填充整个色度块,PLANAR模式是采用渐变的方式填充色度块。
在上述图2中,还存在两种特殊的方向模式,即方向索引号为50的VER模式和预测方向索引号为18的HOR模式,即垂直预测和水平预测。图7位垂直预测示意图,图5为水平预测示意图,如图7和8所示,如果预测方向为垂直预测,那么可以根据上方的像素值进行垂直预测;如果预测方向为水平预测,那么可以根据左侧的像素值进行水平预测。
在进行亮度帧内预测时,可以按照上述图2中的0-66种模式依次进行预测,然后选取与当前处理块差值最小,即最匹配的预测模式,构造预测值。编码端将差值和预测方向写入码流。解码端获取码流后进行解析,得到预测模式索引号后便可计算出亮度预测值,与码流解析出的差值信号相加,即可得到亮度的重建值。
然而,色度帧内预测与亮度帧内预测模式不同,这是由于为了减少编解码的复杂度,在进行色度帧内预测时,仅提取部分预测模式,与跨分量线性模型预测模式组合成为备选模式集合,并在集合中选择一种模式进行帧内预测。其中,在VVC中,色度帧内候选模式集合中包括多个色度帧内预测模式,例如,线性模型预测(LM,Linear Model Prediction),上侧的线性模型预测LM_T模式,左侧的线性模型预测LM_L模式,DC模式,PLANAR模式,垂直VER模式以及水平HOR模式等。
图9为色度帧内候选模式集合的示意图,如图9所示,在色度帧内候选模式集合中可以包括有不同的模式,现有技术可以通过不同的模式进行色度帧内预测,例如,直接模式(DM,Direct Mode)可以表征对应亮度中心块的预测模式,分量间计算模型预测(Cross-component Linear Model Prediction,CCLM)则表征利用(a*亮度值+b)的方案构造预测信号,其中,a和b均为自然数,而当DM为DC模式、PLANAR模式、VER模式或者HOR模式中的任一种模式时,可以将该模式替换为预测方向索引序号为66的角度模式。
进一步地,VVC支持亮度和色度的单独划分,即两者划分可以不一致,因此存在一个色度块可能对应多个亮度块的现象,图10为本申请实施例当前块对应的亮度块和色度的排布示意图,如图10所示,左侧的正方形70为当前色度块对应的色度块,右侧的正方形71为当前色度块,进行当前色度块的帧内预测时,利用色度块71的中心块的预测方向,即为图10的右侧正方形70中CR亮度块701。
在本申请的实施例中,上述帧内预测方法可以应用于视频编码混合框架中的帧内预测部分,具体地,上述帧内预测方法可以对编码端和解码端同时作用。例如,图8为视 频编码流程示意图,如图11所示,其示出了本申请实施例提供的一种视频编码系统的组成框图示例;该视频编码系统200包括变换与量化单元201、帧内估计单元202、帧内预测单元203、运动补偿单元204、运动估计单元205、反变换与反量化单元206、滤波器控制分析单元207、滤波单元208、解码块209和解码图像缓存单元210等,其中,滤波单元208可以实现去方块滤波及样本自适应缩进(Sample Adaptive 0ffset,SAO)滤波,解码块209可以实现头信息编码及基于上下文的自适应二进制算术编码(Context-based Adaptive Binary Arithmatic Coding,CABAC)。针对输入的原始视频信号,通过编码树块(Coding Tree Unit,CTU)的划分可以得到一个视频编码块,然后对经过帧内或帧间预测后得到的残差像素信息通过变换与量化单元201对该视频编码块进行变换,包括将残差信息从像素域变换到变换域,并对所得的变换系数进行量化,用以进一步减少比特率;帧内估计单元202和帧内预测单元203是用于对该视频编码块进行帧内预测;明确地说,帧内估计单元202和帧内预测单元203用于确定待用以编码该视频编码块的帧内预测模式;运动补偿单元204和运动估计单元205用于执行所接收的视频编码块相对于一或多个参考帧中的一或多个块的帧间预测编码以提供时间预测信息;由运动估计单元205执行的运动估计为产生运动向量的过程,所述运动向量可以估计该视频编码块的运动,然后由运动补偿单元204基于由运动估计单元205所确定的运动向量执行运动补偿;在确定帧内预测模式之后,帧内预测单元203还用于将所选择的帧内预测数据提供到解码块209,而且运动估计单元205将所计算确定的运动向量数据也发送到解码块209;此外,反变换与反量化单元206是用于该视频编码块的重构建,在像素域中重构建残差块,该重构建残差块通过滤波器控制分析单元207和滤波单元208去除方块效应伪影,然后将该重构残差块添加到解码图像缓存单元210的帧中的一个预测性块,用以产生经重构建的视频编码块;解码块209是用于编码各种编码参数及量化后的变换系数,在基于CABAC的编码算法中,上下文内容可基于相邻编码块,可用于编码指示所确定的帧内预测模式的信息,输出该视频信号的码流;而解码图像缓存单元210是用于存放重构建的视频编码块,用于预测参考。随着视频图像编码的进行,会不断生成新的重构建的视频编码块,这些重构建的视频编码块都会被存放在解码图像缓存单元210中。
参见图12,其示出了本申请实施例提供的一种视频解码系统的组成框图示例;该视频解码系统300包括解码单元301、反变换与反量化单元302、帧内预测单元303、运动补偿单元304、滤波单元305和解码图像缓存单元306等,其中,解码单元301可以实现头信息解码以及CABAC解码,滤波单元305可以实现去方块滤波以及SAO滤波。输入的视频信号经过图2的编码处理之后,输出该视频信号的码流;该码流输入视频解码系统300中,首先经过解码单元301,用于得到解码后的变换系数;针对该变换系数通过反变换与反量化单元302进行处理,以便在像素域中产生残差块;帧内预测单元303可用于基于所确定的帧内预测模式和来自当前帧或图片的先前经解码块的数据而产生当前视频解码块的预测数据;运动补偿单元304是通过剖析运动向量和其他关联语法元素来确定用于视频解码块的预测信息,并使用该预测信息以产生正被解码的视频解码块的预测性块;通过对来自反变换与反量化单元302的残差块与由帧内预测单元303或运动补偿单元304产生的对应预测性块进行求和,而形成解码的视频块;该解码的视频信号通过滤波单元305以便去除方块效应伪影,可以改善视频质量;然后将经解码的视频块存储于解码图像缓存单元306中,解码图像缓存单元306存储用于后续帧内预测或运动补偿的参考图像,同时也用于视频信号的输出,即得到了所恢复的原始视频信号。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在一实施例中,本申请实施例提供了一种帧内预测方法,图13本申请实施例提出的一种帧内预测方法的实现流程示意图,该方法可以包括:
S101、获取当前解码块的宽高比和参考解码块的宽高比,其中,参考解码块与当前解码块相关的解码块。
本申请实施例提供的一种帧内预测方法适用于帧内预测装置对视频码流进行亮度帧内预测或者色度帧内预测的场景下。
本申请实施例中,帧内预测装置存在于编码器和解码器中,具体的根据实际情况进行选择,本申请实施例不做具体的限定。
本申请实施例中,编码器根据预设划分规则,将输入的视频帧划分为各个解码块,并将划分出的各个解码块添加至码流中,并传输给解码器,之后,帧内预测装置分别获取当前解码块的宽高比和参考解码块的宽高比,其中,参考解码块为与当前解码块相关的解码块,参考解码块包括但不限于与当前解码块上相邻和左相邻的参考解码块,或色度块对应亮度区域分割块的参考解码块,具体的根据实际情况进行选择,本申请实施例不做具体的限定。
需要说明的是,帧内预测装置将解码块的宽度和高度进行相除,得到解码块的宽高比。
本申请实施例中,此处不仅限于解码块,只要是按照不同的划分规则将最大编码块进行细分的单元在此处均适用,还包括预测单元等,此处不做具体的限定。
S102、当当前解码块的宽高比和参考解码块的宽高比不同时,对参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,替换角度预测模式为宽角度模式下扩展的角度预测模式。
当帧内预测装置获取到当前解码块的宽高比和参考解码块的宽高比之后,帧内预测装置就要在判断出当前解码块的宽高比和参考解码块的宽高比不同时,对参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式。
本申请实施例中,帧内预测装置将当前解码块的宽高比和参考解码块的宽高比进行比较,当当前解码块的宽高比和参考解码块的宽高比不同时,表征获取的参考解码块的对应的替换角度预测模式对当前解码块可能无效,此时,帧内预测装置需要对替换角度预测模式进行调整,其中,替换角度预测模式为宽角度模式下扩展的角度预测模式。
示例性的,如图14所示,以获取上相邻块的帧内预测模式作为参考为例,上侧为相邻块,下侧为当前块。若相邻块所选的最优预测模式为模式67,但其是由传统模式2替换得到的,并且以模式2在比特流中传输。按照现有MPM列表构建方案,直接将模式2放入MPM列表中。由于当前块宽高相等,相邻块的传统模式2替换的宽角度模式67对于当前块是无效的。而模式67的反方向为模式3,实际选择了当前块能包括的距离该预测模式反方向最近的预测模式2加入了MPM列表。模式67使用的是上方参考行,模式2使用的是左侧参考行,由此可见当前块并没有很好的继承相邻块的预测方向。
本申请实施例中,帧内预测装置获取参考解码块对应的帧内角度预测模式;之后,帧内预测装置从传统帧内模式和宽角度模式对应关系中,确定出帧内角度预测模式对应的替换角度预测模式。
具体的,对参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式包括:帧内预测装置从预设宽高比与角度预测模式的对应关系中,确定出当前解码块的宽高比对应的最大角度预测模式和最小角度预测模式;之后,帧内预测装置根据最大角度预测模式、最小角度预测模式和参考解码块对应的替换角度预测模式,得到与替换角度预测模式相邻的帧内角度预测模式;最后,帧内预测装置将与替换角度预测模式相邻的帧内角度预测模式,以确定为调整后的替换角度预测模式。
示例性的,预设宽高比与角度预测模式的对应关系如表3所示,则可利用表3确定出当前解码块的宽高比对应的角度预设模式的范围,进而确定出最大角度预测模式和最小角度预测模式。
表3.不同形状解码块可使用的角度预测模式的范围(经过宽角度模式替换后的)
宽高比 该解码块可使用的角度预测模式的范围
1 模式2—66
2 模式8—72
4 模式12—76
8 模式14—78
16 模式16—80
本申请实施例中,将最大角度预测模式、最小角度预测模式和参考解码块对应的替换角度预测模式输入公式(1)中,得到调整的替换角度预测模式,其中,公式(1)为:
dir_W=Clip(minM C,maxM C,dir)        (1)
其中,dir_W表示与替换角度预测模式相邻的帧内角度预测模式,minM C表示最小角度预测模式,maxM C表示最大角度预测模式,dir表示获取参考解码块对应的替换角度预测模式。
具体的,对参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,还包括:帧内预测装置确定出与替换角度预测模式的方向相反的帧内角度预测模式;之后帧内预测装置将与替换角度预测模式的方向相反的帧内角度预测模式,以确定为调整后的替换角度预测模式。
示例性的,对于获取参考解码块为模式2,但实际预测模式67时,由于当前解码块宽高相等,模式67对于当前块无效。此时将其调整为当前解码块能包括的距离该预测模式同方向最近的预测模式66。模式67和模式66使用的参考都是上参考行,使得当前解码块能更好得继承相邻块的预测方向。
本申请实施例中,帧内预测装置根据参考解码块的宽高比和当前解码块的宽高比,将宽角度模式调整为其预测方向的反方向。
示例性的,如果参考解码块的宽大于高,获取到的预测模式为2时,则参考解码块的真实预测模式是模式67。若当前解码块不支持该模式,而由于模式67的反方向是模式3,此时我们将获取到的模式2调整为模式3,并将其按照上述提出的MPM列表构造方法将其加入MPM列表,依此类推,68的反方向是4,…。
S103、根据调整后的替换角度预测模式,构造当前解码块的预测模式列表,以对当前解码块进行帧内预测。
当帧内预测装置对参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式之后,帧内预测装置根据调整后的替换角度预测模式,构造当前解码块的MPM列表,此时就完成了对当前解码块的帧内预测的过程。
本申请实施例中,预设模式列表包括MPM列表,根据调整后的替换角度预测模式,构造当前解码块的预测模式列表,包括:帧内预测装置将与替换角度预测模式相邻的帧内角度预测模式和与替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为调整后的替换角度预测模式;之后帧内预测装置将调整后的替换角度预测模式,插入初始MPM列表中,构造出MPM列表;或者,帧内预测装置根据调整后的替换角度预测模式,替换初始MPM列表中的参考解码块和参考解码块的相邻模式中的至少一种,以构造出MPM列表,其中相邻模式为与替换角度预测模式相邻的角度预测模式。
需要说明的是,MPM列表中存在多个不同的模式,例如,与VTM3.0中一样,选 取6个不同的模式。
进一步地,帧内预测装置构造初始MPM列表的过程为:帧内预测装置依次计算当前解码块的预设参考行索引的选择评价标准,其中,选择评价标准包括但不限于率失真代价;帧内预测装置从预设参考行索引中,确定出选择评价标准最小的参考行索引作为第一预设参考行索引;帧内预测装置获取第一预设参考行索引对应的MPM列表构造规则;之后帧内预测装置利用MPM列表构造规则构造出初始MPM列表。
本申请实施例中,当第一预设参考行索引为0时,初始MPM列表的构造规则如下:
1、左相邻参考解码块的替换角度预测模式dirA和上相邻参考解码块的替换角度预测模式dirB;
2、PLANAR/DC;
3、dirA,dirB的相邻模式;
4、模式50,18,50-4,50+4。
当第一预设参考行索引为1或3时,初始MPM列表的构造规则如下:
1、左相邻参考解码块的替换角度预测模式dirA和上相邻参考解码块的替换角度预测模式dirB;
2、dirA,dirB的相邻模式;
3、模式2,34,66,26。
示例性的,帧内预测装置将调整后的替换角度预测模式加入到MPM列表的具体规则如下所示,按照下列顺序构造MPM列表直到包含6个不同的MPM模式。
a.当前解码块使用的参考行索引为0:
1、左相邻参考解码块的替换角度预测模式dirA和上相邻参考解码块的替换角度预测模式dirB;
2、PLANAR/DC;
3、dirA,dirB调整后的替换角度预测模式dirA_W,dirB_W;
4、dirA,dirB的相邻模式;
5、模式50,18,50-4,50+4。
b.当前块使用的参考行索引为1或者3
1、左相邻参考解码块的替换角度预测模式dirA和上相邻参考解码块的替换角度预测模式dirB;
2、dirA,dirB调整后的替换角度预测模式dirA_W,dirB_W;
3、dirA,dirB的相邻模式;
4、模式2,34,66,26。
需要说明的是,在MPM列表的构建过程中,可以将dir_W放在模式PLANARR/DC的后面,相邻模式的前面;或者,将dir_W放在模式PLANARR/DC的前面;或者,将dir_W放在相邻模式的后面;或者利用dir_W替换dir和dir的相邻模式中的至少一种,具体的根据实际情况进行选择,本申请实施例不做具体的限定。
本申请实施例中,在帧内预测装置根据调整后的替换角度预测模式出构造当前解码块的MPM列表之后,帧内预测装置将当前解码块的最优预测模式与MPM列表进行匹配;当匹配成功时,使用上下文模型来编码当前解码块的最优预测模式在MPM列表中的索引;当匹配失败时,使用截断二元码来编码当前解码块的最优预测模式。
本申请实施例中,编码器根据预设选择策略确定出当前解码块的最优预测模式,并通过码流将当前解码块的最优预测模式传输至解码器。
本申请实施例中,预测模式列表包括色度预测模式列表,帧内预测装置根据调整后的替换角度预测模式,构造当前解码块的预测模式列表,包括:帧内预测装置将与替换 角度预测模式相邻的帧内角度预测模式和与替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为调整后的替换角度预测模式;之后帧内预测装置将调整后的替换角度预测模式作为初始色度预测模式列表中的替换模式,构造出当前解码块对应的色度预测模式列表,或者,帧内预测装置根据调整后的替换角度预测模式,替换初始色度预测模式列表中的DM,构造出色度预测模式列表;具体的根据实际情况进行选择,本申请实施例不做具体的限定。
本申请实施例中,初始色度预测模式列表按照预设色度帧内预测构造方法构造,初始色度预测模式列表,如图9所示,其中,初始色度预测模式列表中的替换模式为66。
本申请实施例中,帧内预测装置将调整后的替换角度预测模式作为初始色度预测模式列表中的替换模式,包括:帧内预测装置确定当前解码块的最优预测模式;之后帧内预测装置根据最优预测模式推导出色度帧内预测模式;当色度帧内预测模式满足初始色度预测模式列表中的预设预测模式时,帧内预测装置将色度帧内预测模式替换为调整后的替换角度预测模式;其中,预设预测模式包括直流DC模式、平面PLANAR模式、垂直VER模式和水平HOR模式中的任一种。
本申请实施例中,帧内预测装置判断出色度帧内预测模式满足直流DC模式、平面PLANAR模式、垂直VER模式和水平HOR模式中的任一种时,帧内预测装置替换为色度帧内预测模式。
本申请实施例中,帧内预测装置根据调整后的替换角度预测模式,构造当前解码块的预测模式列表,包括:帧内预测装置将调整后的替换角度预测模式,插入初始多直接模式的信号标记(MDMS,Multiple Direct Mode Signalling)列表中的已有角度微调型之前,并构造出MDMS列表,或者,帧内预测装置根据调整后的替换角度预测模式,替换初始MDMS列表中的DM,构造出MDMS列表,具体的根据实际情况进行选择,本申请实施例不做具体的限定。
本申请实施例中,初始MDMS列表的构造方法如表4:
表4 初始MDMS列表的构造方法
Figure PCTCN2019070155-appb-000003
本申请实施例中,帧内预测装置在初始MDMS列表中的已有角度模式微调一行之前插入一行,该行为调整后的替换角度预测模式;或者根据调整后的替换角度预测模式替换DM行,具体的根据实际情况进行选择,本申请实施例不做具体的限定。
可以理解的是,帧内预测装置在判断出当前解码块的宽高比和参考解码块的宽高比不同时,帧内预测装置将参考解码块的替换角度预测模式调整成与相邻调整单元的真实预测方向为同向的最近方向,或相同角度的相反方向,并将其加入MPM列表中,进而 提高了预测角度的准确性,在通过MPM列表进行亮度帧内预测时,以及通过色度预测模式列表进行色度帧内预测时,就会大大提高帧内预测的准确性,从而提高编码效率。
基于上述实施例,在本申请的又一实施例中,图15为本申请实施例提出的帧内预测装置的组成结构示意图一,如图15所示,本申请实施例提出的帧内预测装置1可以包括获取部分11、调整部分12,构造部分13,确定部分14,插入部分15、替换部分16、计算部分17、匹配部分18和编码部分19。
所述获取部分11,用于获取当前解码块的宽高比和参考解码块的宽高比,其中,所述参考解码块为与所述当前解码块相关的解码块;
所述调整部分12,用于当所述当前解码块的宽高比和所述参考解码块的宽高比不同时,对所述参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,所述替换角度预测模式为宽角度模式下扩展的角度预测模式;
所述构造部分13,用于根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,以对所述当前解码块进行帧内预测。
进一步地,在本申请的实施中,所述帧内预测装置还包括:确定部分14;
所述确定单元14,还用于从预设宽高比与角度预测模式的对应关系中,确定出所述当前解码块的宽高比对应的最大角度预测模式和最小角度预测模式;
所述调整部分12,还用于根据所述最大角度预测模式、所述最小角度预测模式和所述参考解码块对应的替换角度预测模式,得到与所述替换角度预测模式相邻的帧内角度预测模式,以确定为所述调整后的替换角度预测模式。
进一步地,在本申请的实施中,所述调整部分12,还用于确定出与所述替换角度预测模式的方向相反的帧内角度预测模式,以确定为所述调整后的所述替换角度预测模式。
进一步地,在本申请的实施中,所述预测模式列表包括MPM列表,所述装置还包括:插入部分15;
所述插入部分15,用于将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;将所述调整后的替换角度预测模式,插入初始最可能的预测模式MPM列表中,构造出所述MPM列表。
进一步地,在本申请的实施中,所述装置还包括:替换部分16;
所述替换部分16,用于根据所述调整后的替换角度预测模式替换所述初始MPM列表中的所述参考解码块和所述参考解码块的相邻模式中的至少一种,构造出所述MPM列表,所述相邻模式为与所述替换角度预测模式相邻的角度预测模式。
进一步地,在本申请的实施中,所述装置还包括:计算部分17;所述计算部分17,用于依次计算所述当前解码块的预设参考行索引的选择评价标准,所述选择评价标准包括但不限于率失真代价;所述确定部分14,还用于从所述预设参考行索引中,确定出选择评价标准最小的参考行索引作为第一预设参考行索引;所述获取部分,11还用于获取所述第一预设参考行索引对应的MPM列表构造规则;所述构造部分13,还用于利用所述MPM列表构造规则构造出所述初始MPM列表。进一步地,在本申请的实施中,所述装置还包括:匹配部分18和编码部分19;
所述匹配部分18,用于将所述当前解码块的最优预测模式与所述MPM列表进行匹配;
所述编码部分19,用于当匹配成功时,使用上下文模型来编码所述当前解码块的最优预测模式在所述MPM列表中的索引;当匹配失败时,使用截断二元码来编码所述当前解码块的最优预测模式。
进一步地,在本申请的实施中,所述预测模式列表包括色度预测模式列表,
所述构造部分13,还用于将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;将所述调整后的替换角度预测模式作为初始色度预测模式列表中的替换模式,构造出所述当前解码块对应的色度预测模式列表,所述初始色度预测模式列表按照预设色度帧内预测构造方法构造;或者,根据所述调整后的替换角度预测模式,替换所述初始色度预测模式列表中的直接模式DM,构造出所述色度预测模式列表。
进一步地,在本申请的实施中,所述确定部分14,还用于确定所述当前解码块的最优预测模式;根据所述最优预测模式推导出色度帧内预测模式;
所述替换部分16,还用于当所述色度帧内预测模式满足所述初始色度预测模式列表中的预设预测模式时,将所述色度帧内预测模式替换为所述调整后的替换角度预测模式。
进一步地,在本申请的实施中,所述插入部分15,还用于将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;将所述调整后的替换角度预测模式,插入初始MDMS列表中的已有角度微调行之前,构造出MDMS列表;或者,根据所述调整后的替换角度预测模式,替换所述初始MDMS列表中的DM,构造出所述MDMS列表。
图16为本申请实施例提出的帧内预测装置的组成结构示意图二,如图16所示,本申请实施例提出的帧内预测装置1还可以包括处理器110、存储有处理器110可执行指令的存储器111、通信接口112,和用于连接处理器110、存储器111以及通信接口112的总线113。
在本申请的实施例中,上述处理器110可以为特定用途集成电路(Application Specific Integrated Circuit,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理装置(Digital Signal Processing Device,DSPD)、可编程逻辑装置(ProgRAMmable Logic Device,PLD)、现场可编程门阵列(Field ProgRAMmable Gate Array,FPGA)、中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本申请实施例不作具体限定。装置1还可以包括存储器111,该存储器111可以与处理器110连接,其中,存储器111用于存储可执行程序代码,该程序代码包括计算机操作指令,存储器111可能包含高速RAM存储器,也可能还包括非易失性存储器,例如,至少两个磁盘存储器。
在本申请的实施例中,总线113用于连接通信接口112、处理器110以及存储器111以及这些器件之间的相互通信。
在本申请的实施例中,存储器111,用于存储指令和数据。
进一步地,在本申请的实施例中,上述处理器110,用于获取当前解码块的宽高比和参考解码块的宽高比,其中,所述参考解码块为与所述当前解码块相关的解码块;当所述当前解码块的宽高比和所述参考解码块的宽高比不同时,对所述参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,所述替换角度预测模式为宽角度模式下扩展的角度预测模式;根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,以对所述当前解码块进行帧内预测。
在实际应用中,上述存储器111可以是易失性第一存储器(volatile memory),例如随机存取第一存储器(Random-Access Memory,RAM);或者非易失性第一存储器(non-volatile memory),例如只读第一存储器(Read-Only Memory,ROM),快闪第一存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者上述种类的第一存储器的组合,并向处理器110提供指令和数据。
另外,在本实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
集成的单元如果以软件功能模块的形式实现并非作为独立的产品进行销售或使用时,可以存储在一个计算机可读取存储介质中,基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或processor(处理器)执行本实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提出的一种装置,该帧内预测装置获取当前解码块的宽高比和参考解码块的宽高比,其中,参考解码块为与当前解码块相关的解码块;当当前解码块的宽高比和参考解码块的宽高比不同时,帧内预测装置对参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,替换角度预测模式为宽角度模式下扩展的角度预测模式;帧内预测装置根据调整后的替换角度预测模式,构造当前解码块的预测模式列表,以对当前解码块进行帧内预测。由此可见,在本申请的实施例中,帧内预测装置在判断出当前解码块的宽高比和参考解码块的宽高比不同时,帧内预测装置将参考解码块的替换角度预测模式调整成与相邻调整单元的真实预测方向为同向的最近方向,或相同角度的相反方向,并将其加入MPM列表中,进而提高了预测角度的准确性,在通过MPM列表进行亮度帧内预测时,就会大大提高帧内预测的准确性,从而提高编码效率。
本申请实施例提供计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现如上所述的帧内预测方法。
具体来讲,本实施例中的一种帧内预测方法对应的程序指令可以被存储在光盘,硬盘,U盘等存储介质上,当存储介质中的与一种帧内预测方法对应的程序指令被一电子设备读取或被执行时,实现如上述任一项所述的帧内预测方法。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的实现流程示意图和/或方框图来描述的。应理解可由计算机程序指令实现流程示意图和/或方框图中的每一流程和/或方框、以及实现流程示意图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算 机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在实现流程示意图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。
工业实用性
本申请实施例提供了一种帧内预测方法、装置及计算机存储介质,帧内预测装置获取当前解码块的宽高比和参考解码块的宽高比,其中,参考解码块为与当前解码块相关的解码块;当当前解码块的宽高比和参考解码块的宽高比不同时,帧内预测装置对参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,替换角度预测模式为宽角度模式下扩展的角度预测模式;帧内预测装置根据调整后的替换角度预测模式,构造当前解码块的预测模式列表,以对当前解码块进行帧内预测。由此可见,在本申请的实施例中,帧内预测装置在判断出当前解码块的宽高比和参考解码块的宽高比不同时,帧内预测装置利用将参考解码块的替换角度预测模式调整成与相邻调整单元的真实预测方向为同向的最近方向,或相同角度的相反方向,并将其加入MPM列表中,进而提高了预测角度的准确性,在通过MPM列表进行亮度帧内预测时,就会大大提高帧内预测的准确性,从而提高编码效率。

Claims (22)

  1. 一种帧内预测方法,其中,所述方法包括:
    获取当前解码块的宽高比和参考解码块的宽高比,其中,所述参考解码块为与所述当前解码块相关的解码块;
    当所述当前解码块的宽高比和所述参考解码块的宽高比不同时,对所述参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,所述替换角度预测模式为宽角度模式下扩展的角度预测模式;
    根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,以对所述当前解码块进行帧内预测。
  2. 根据权利要求1所述的方法,其中,所述对所述替换角度预测模式进行调整,得到调整后的所述替换角度预测模式,包括:
    从预设宽高比与角度预测模式的对应关系中,确定出所述当前解码块的宽高比对应的最大角度预测模式和最小角度预测模式;
    根据所述最大角度预测模式、所述最小角度预测模式和所述参考解码块对应的替换角度预测模式,得到与所述替换角度预测模式相邻的帧内角度预测模式,以确定为所述调整后的替换角度预测模式。
  3. 根据权利要求1所述的方法,其中,所述对所述替换角度预测模式进行调整,得到调整后的所述替换角度预测模式,包括:
    确定出与所述替换角度预测模式的方向相反的帧内角度预测模式,以确定为所述调整后的所述替换角度预测模式。
  4. 根据权利要求1所述的方法,其中,所述预测模式列表包括最可能的预测模式MPM列表,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,包括:
    将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;
    将所述调整后的替换角度预测模式,插入初始MPM列表中,构造出所述MPM列表。
  5. 根据权利要求4所述的方法,其中,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,包括:
    根据所述调整后的替换角度预测模式替换所述初始MPM列表中的所述参考解码块和所述参考解码块的相邻模式中的至少一种,构造出所述MPM列表,所述相邻模式为与所述替换角度预测模式相邻的角度预测模式。
  6. 根据权利要求5所述的方法,其中,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表之前,所述方法还包括:
    依次计算所述当前解码块的预设参考行索引的选择评价标准,所述选择评价标准包括但不限于率失真代价;
    从所述预设参考行索引中,确定出选择评价标准最小的参考行索引作为第一预设参考行索引;
    获取所述第一预设参考行索引对应的MPM列表构造规则;
    利用所述MPM列表构造规则构造出所述初始MPM列表。
  7. 根据权利要求4所述的方法,其中,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表之后,所述方法还包括:
    将所述当前解码块的最优预测模式与所述MPM列表进行匹配;
    当匹配成功时,使用上下文模型来编码所述当前解码块的最优预测模式在所述MPM列表中的索引;
    当匹配失败时,使用截断二元码来编码所述当前解码块的最优预测模式。
  8. 根据权利要求1所述的方法,其中,所述预测模式列表包括色度预测模式列表,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,包括:
    将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;
    将所述调整后的替换角度预测模式作为初始色度预测模式列表中的替换模式,构造出所述当前解码块对应的色度预测模式列表,所述初始色度预测模式列表按照预设色度帧内预测构造方法构造;或者,根据所述调整后的替换角度预测模式,替换所述初始色度预测模式列表中的直接模式DM,构造出所述色度预测模式列表。
  9. 根据权利要求8所述的方法,其中,所述将所述调整后的替换角度预测模式作为初始色度预测模式列表中的替换模式,包括:
    确定所述当前解码块的最优预测模式;
    根据所述最优预测模式推导出色度帧内预测模式;
    当所述色度帧内预测模式满足所述初始色度预测模式列表中的预设预测模式时,将所述色度帧内预测模式替换为所述调整后的替换角度预测模式。
  10. 根据权利要求1所述的方法,其中,所述预测模式列表包括多直接模式的信号标记MDMS列表,所述根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,包括:
    将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;
    将所述调整后的替换角度预测模式,插入初始MDMS列表中的已有角度微调行之前,构造出MDMS列表;或者,根据所述调整后的替换角度预测模式,替换所述初始MDMS列表中的DM,构造出所述MDMS列表。
  11. 一种帧内预测装置,所述帧内预测装置包括:
    获取部分,用于获取当前解码块的宽高比和参考解码块的宽高比,其中,所述参考解码块为与所述当前解码块相关的解码块;
    调整部分,用于当所述当前解码块的宽高比和所述参考解码块的宽高比不同时,对所述参考解码块对应的替换角度预测模式进行调整,得到调整后的替换角度预测模式,所述替换角度预测模式为宽角度模式下扩展的角度预测模式;
    构造部分,用于根据所述调整后的替换角度预测模式,构造所述当前解码块的预测模式列表,以对所述当前解码块进行帧内预测。
  12. 根据权利要求11所述的装置,其中,所述帧内预测装置还包括:确定部分;
    所述确定部分,还用于从预设宽高比与角度预测模式的对应关系中,确定出所述当前解码块的宽高比对应的最大角度预测模式和最小角度预测模式;
    所述调整部分,还用于根据所述最大角度预测模式、所述最小角度预测模式和所述参考解码块对应的替换角度预测模式,得到与所述替换角度预测模式相邻的帧内角度预测模式,以确定为所述调整后的替换角度预测模式。
  13. 根据权利要求12所述的装置,其中,
    所述调整部分,还用于确定出与所述替换角度预测模式的方向相反的帧内角度预测模式,以确定为所述调整后的所述替换角度预测模式。
  14. 根据权利要求11所述的装置,其中,所述预测模式列表包括MPM列表,所 述装置还包括:插入部分;
    所述插入部分,用于将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;将所述调整后的替换角度预测模式,插入初始MPM列表中,构造出所述MPM列表。
  15. 根据权利要求14所述的装置,其中,所述装置还包括:替换部分;
    所述替换部分,用于根据所述调整后的替换角度预测模式替换所述初始MPM列表中的所述参考解码块和所述参考解码块的相邻模式中的至少一种,构造出所述MPM列表,所述相邻模式为与所述替换角度预测模式相邻的角度预测模式。
  16. 根据权利要求12或15所述的装置,其中,所述装置还包括:计算部分;
    所述计算部分,用于依次计算所述当前解码块的预设参考行索引的选择评价标准,所述选择评价标准包括但不限于率失真代价;
    所述确定部分,还用于从所述预设参考行索引中,确定出选择评价标准最小的参考行索引作为第一预设参考行索引;
    所述获取部分,还用于获取所述第一预设参考行索引对应的MPM列表构造规则;
    所述构造部分,还用于利用所述MPM列表构造规则构造出所述初始MPM列表。
  17. 根据权利要求16所述的装置,其中,所述装置还包括:匹配部分和编码部分;
    所述匹配部分,用于将所述当前解码块的最优预测模式与所述MPM列表进行匹配;
    所述编码部分,用于当匹配成功时,使用上下文模型来编码所述当前解码块的最优预测模式在所述MPM列表中的索引;当匹配失败时,使用截断二元码来编码所述当前解码块的最优预测模式。
  18. 根据权利要求11所述的装置,其中,所述预测模式列表包括色度预测模式列表,
    所述构造部分,还用于将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;将所述调整后的替换角度预测模式作为初始色度预测模式列表中的替换模式,构造出所述当前解码块对应的色度预测模式列表,所述初始色度预测模式列表按照预设色度帧内预测构造方法构造;或者,根据所述调整后的替换角度预测模式,替换所述初始色度预测模式列表中的直接模式DM,构造出所述色度预测模式列表。
  19. 根据权利要求12或18所述的装置,其中,
    所述确定部分,还用于确定所述当前解码块的最优预测模式;根据所述最优预测模式推导出色度帧内预测模式;
    所述替换部分,还用于当所述色度帧内预测模式满足所述初始色度预测模式列表中的预设预测模式时,将所述色度帧内预测模式替换为所述调整后的替换角度预测模式。
  20. 根据权利要求14或18所述的装置,其中,
    所述插入部分,还用于将与所述替换角度预测模式相邻的帧内角度预测模式和与所述替换角度预测模式的方向相反的帧内角度预测模式中的至少一种作为所述调整后的替换角度预测模式;将所述调整后的替换角度预测模式,插入初始MDMS列表中的已有角度微调行之前,构造出MDMS列表;或者,根据所述调整后的替换角度预测模式,替换所述初始MDMS列表中的DM,构造出所述MDMS列表。
  21. 一种帧内预测装置,其中,所述帧内预测装置包括处理器、存储有所述处理器可执行指令的存储器、通信接口,和用于连接所述处理器、所述存储器以及所述通信接口的总线,当所述指令被执行时,所述处理器执行时实现如权利要求1-10任一项所述的方法。
  22. 一种计算机可读存储介质,其上存储有程序,应用于帧内预测装置中,其中,所述程序被处理器执行时实现如权利要求1-10任一项所述的方法。
PCT/CN2019/070155 2019-01-02 2019-01-02 帧内预测方法、装置及计算机存储介质 WO2020140219A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19907163.0A EP3893500A4 (en) 2019-01-02 2019-01-02 METHOD AND DEVICE FOR INTRAPREDICTION AND COMPUTER STORAGE MEDIUM
JP2021538791A JP7437404B2 (ja) 2019-01-02 2019-01-02 イントラ予測方法、装置およびコンピュータ記憶媒体
CN202110976399.7A CN113709459B (zh) 2019-01-02 2019-01-02 帧内预测方法、装置及计算机存储介质
CN201980086353.9A CN113228641A (zh) 2019-01-02 2019-01-02 帧内预测方法、装置及计算机存储介质
PCT/CN2019/070155 WO2020140219A1 (zh) 2019-01-02 2019-01-02 帧内预测方法、装置及计算机存储介质
KR1020217023922A KR20210121053A (ko) 2019-01-02 2019-01-02 인트라 예측 방법, 장치 및 컴퓨터 저장 매체
US17/365,869 US11812057B2 (en) 2019-01-02 2021-07-01 Intra prediction method and device, and computer storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070155 WO2020140219A1 (zh) 2019-01-02 2019-01-02 帧内预测方法、装置及计算机存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/365,869 Continuation US11812057B2 (en) 2019-01-02 2021-07-01 Intra prediction method and device, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2020140219A1 true WO2020140219A1 (zh) 2020-07-09

Family

ID=71406945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070155 WO2020140219A1 (zh) 2019-01-02 2019-01-02 帧内预测方法、装置及计算机存储介质

Country Status (6)

Country Link
US (1) US11812057B2 (zh)
EP (1) EP3893500A4 (zh)
JP (1) JP7437404B2 (zh)
KR (1) KR20210121053A (zh)
CN (2) CN113709459B (zh)
WO (1) WO2020140219A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044618A1 (zh) * 2021-09-22 2023-03-30 深圳市大疆创新科技有限公司 编解码方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107155108A (zh) * 2017-06-19 2017-09-12 电子科技大学 一种基于亮度变化的帧内预测方法
US20170272745A1 (en) * 2016-03-18 2017-09-21 Mediatek Inc. Method and Apparatus of Intra Prediction in Image and Video Processing
WO2018030599A1 (ko) * 2016-08-08 2018-02-15 엘지전자(주) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2018127624A1 (en) * 2017-01-03 2018-07-12 Nokia Technologies Oy Video and image coding with wide-angle intra prediction
CN108353185A (zh) * 2015-08-28 2018-07-31 株式会社Kt 用于处理视频信号的方法和设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101739987B1 (ko) * 2010-12-28 2017-05-26 에스케이 텔레콤주식회사 주변블록의 특징벡터를 이용한 영상 부호화/복호화 방법 및 장치
JP5995448B2 (ja) * 2012-01-19 2016-09-21 シャープ株式会社 画像復号装置、および画像符号化装置
WO2016200242A1 (ko) * 2015-06-11 2016-12-15 한양대학교 산학협력단 적응적인 디블록킹 필터링을 이용하는 영상 부호화 방법과 영상 복호화 방법 및 장치
CN117499650A (zh) * 2016-04-29 2024-02-02 英迪股份有限公司 图像解码方法、图像编码方法和用于发送比特流的方法
WO2018117891A1 (en) * 2016-12-23 2018-06-28 Huawei Technologies Co., Ltd. An intra-prediction apparatus for removing a directional intra-prediction mode from a set of predetermined directional intra-prediction modes
CN107071416B (zh) * 2017-01-06 2020-04-07 华南理工大学 一种hevc帧内预测模式快速选择方法
JP7043616B2 (ja) * 2017-10-24 2022-03-29 ウィルス インスティテュート オブ スタンダーズ アンド テクノロジー インコーポレイティド ビデオ信号処理方法及び装置
AU2019269346B2 (en) * 2018-05-14 2023-07-27 Interdigital Vc Holdings, Inc. Block shape adaptive intra prediction directions for quadtree-binary tree
US10567752B2 (en) * 2018-07-02 2020-02-18 Tencent America LLC Method and apparatus for intra prediction for non-square blocks in video compression
US10382772B1 (en) 2018-07-02 2019-08-13 Tencent America LLC Method and apparatus for video coding
US10404980B1 (en) * 2018-07-10 2019-09-03 Tencent America LLC Intra prediction with wide angle mode in video coding
US10630979B2 (en) 2018-07-16 2020-04-21 Tencent America LLC Reference sample padding and filtering for intra prediction in video compression
CN109040754A (zh) * 2018-11-06 2018-12-18 深圳市网心科技有限公司 一种hevc的帧内预测模式确定方法、设备、系统及介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108353185A (zh) * 2015-08-28 2018-07-31 株式会社Kt 用于处理视频信号的方法和设备
US20170272745A1 (en) * 2016-03-18 2017-09-21 Mediatek Inc. Method and Apparatus of Intra Prediction in Image and Video Processing
WO2018030599A1 (ko) * 2016-08-08 2018-02-15 엘지전자(주) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2018127624A1 (en) * 2017-01-03 2018-07-12 Nokia Technologies Oy Video and image coding with wide-angle intra prediction
CN107155108A (zh) * 2017-06-19 2017-09-12 电子科技大学 一种基于亮度变化的帧内预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO XIAO CHAI: "H.266 intra-frame wide-angle intra prediction (WAIP)", 7 November 2018 (2018-11-07), pages 1 - 4, XP055716236, Retrieved from the Internet <URL:https://blog.csdn.net/cxy19931018/article/details/83832558> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044618A1 (zh) * 2021-09-22 2023-03-30 深圳市大疆创新科技有限公司 编解码方法及装置

Also Published As

Publication number Publication date
CN113709459A (zh) 2021-11-26
US20210329297A1 (en) 2021-10-21
JP2022521366A (ja) 2022-04-07
CN113709459B (zh) 2023-06-23
CN113228641A (zh) 2021-08-06
EP3893500A1 (en) 2021-10-13
US11812057B2 (en) 2023-11-07
KR20210121053A (ko) 2021-10-07
JP7437404B2 (ja) 2024-02-22
EP3893500A4 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US11190799B2 (en) Intra-prediction mode-based image processing method and apparatus therefor
KR102287414B1 (ko) 손실 비디오 코딩을 위한 저복잡도 혼합 도메인 협력 인-루프 필터
CN108886621B (zh) 非本地自适应环路滤波方法
JP2018078611A (ja) サンプルアダプティブオフセット制御
US11659174B2 (en) Image encoding method/device, image decoding method/device and recording medium having bitstream stored therein
JP2022542210A (ja) 画像コーデック方法、エンコーダ、デコーダおよび記憶媒体
KR20130085392A (ko) 인트라 예측 처리 속도 향상을 위한 비디오의 부호화 방법 및 장치, 비디오의 복호화 방법 및 장치
JP7481426B2 (ja) 4:4:4の彩度形式でのビデオ符号化の方法および装置
CN110944179B (zh) 一种视频数据解码方法及装置
WO2022116113A1 (zh) 一种帧内预测方法、装置及解码器和编码器
WO2020140219A1 (zh) 帧内预测方法、装置及计算机存储介质
CN113273194A (zh) 图像分量预测方法、编码器、解码器以及存储介质
AU2019357929A1 (en) Video image component prediction method and apparatus, and computer storage medium
WO2022178686A1 (zh) 编解码方法、编解码设备、编解码系统以及计算机可读存储介质
WO2022077490A1 (zh) 一种帧内预测方法、编码器、解码器及存储介质
US10764577B2 (en) Non-MPM mode coding for intra prediction in video coding
CN113395520B (zh) 解码预测方法、装置及计算机存储介质
WO2022140905A1 (zh) 预测方法、编码器、解码器以及存储介质
US11831882B2 (en) Methods for intra prediction, encoder and decoder
WO2022188114A1 (zh) 帧内预测方法、编码器、解码器以及存储介质
JP6357133B2 (ja) イントラ予測処理装置、イントラ予測処理方法、イントラ予測処理プログラム、画像符号化装置及び画像復号装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019907163

Country of ref document: EP

Effective date: 20210709