WO2020138860A1 - 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초 - Google Patents

변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초 Download PDF

Info

Publication number
WO2020138860A1
WO2020138860A1 PCT/KR2019/018203 KR2019018203W WO2020138860A1 WO 2020138860 A1 WO2020138860 A1 WO 2020138860A1 KR 2019018203 W KR2019018203 W KR 2019018203W WO 2020138860 A1 WO2020138860 A1 WO 2020138860A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
foundation
support pile
support
annular
Prior art date
Application number
PCT/KR2019/018203
Other languages
English (en)
French (fr)
Inventor
강병관
Original Assignee
(주)더브릿지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)더브릿지 filed Critical (주)더브릿지
Publication of WO2020138860A1 publication Critical patent/WO2020138860A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/52Submerged foundations, i.e. submerged in open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/08Sinking workpieces into water or soil inasmuch as not provided for elsewhere
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D19/00Keeping dry foundation sites or other areas in the ground
    • E02D19/02Restraining of open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/38Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds
    • E02D5/40Concrete or concrete-like piles cast in position ; Apparatus for making same making by use of mould-pipes or other moulds in open water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2200/00Geometrical or physical properties
    • E02D2200/16Shapes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/0061Production methods for working underwater
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/20Miscellaneous comprising details of connection between elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/30Miscellaneous comprising anchoring details

Definitions

  • the present invention relates to an annular foundation and its construction method, and more particularly, to a construction method and an foundation of the annular foundation using a cross-section angle tube with improved strength through a change in structure.
  • the place where the water depth is low is constructed by constructing a road and a shaft with soil, so there is no major obstacle to construction.
  • the road and tunnel are difficult, so the water foundation method is used for the construction of the lower foundation.
  • a fermented well foundation and a direct foundation are applied, and when the soil layer is deep, a pile foundation and a immersion type well are applied.
  • a steel formwork is generally used to block the water.
  • the steel pile pile method and the PC HOUSE method are mainly applied.
  • the steel cladding method is a method of constructing a steel well formwork on the ground higher than the water depth and transporting it to the water surface and depositing it in a basic position.
  • This is a method of constructing a foundation slab installed on the top of the pile under land conditions by blocking the internal inflow of the side and bottom by driving the steel pile on the ground as much as the required depth on the barge, and the PC house method so that the top of the pile is exposed above the water surface. Therefore, it is mainly applied to the sea where there are many differences in tidal waves as a method to make foundation slab construction work on land.
  • the diameter of the entire cylindrical pile is inevitably influenced by the thickness of the plate. That is, the diameter of the entire cylindrical pile and the thickness of the plate material are proportional to each other. Therefore, the thickness of the plate material is affected by the diameter of the entire cylindrical pile.
  • the present invention has been devised to solve the above problems, and the problem to be solved by the present invention is to process the inner side in the process of pumping out the water inside the clamshell after completing the installation of the individual cross-section angle tube files. And to provide a construction method and the basis of the annular foundation using the cross-section angle tube to form a stable and bound by the hydraulic pressure acting on the cylindrical clam wall by the outer water surface difference.
  • annular clamshell in the water, the worker enters the interior to create an environment that allows safe underwater work, improving workability, preventing safety accidents such as submersibles, and reducing the time and cost. It is to provide a construction method of an annular foundation and its foundation.
  • a plurality of square cross-section pipes are used, and a plurality of square cross-section pipes are joined through a surface to increase the thickness of the plate while maintaining the width (corresponding to the diameter of a cylindrical file) of the entire square-shaped square cross-section. It is possible to provide a construction method of an annular foundation using a cross-section angle tube and a foundation therefor.
  • the present invention was created to improve the problems of the prior art as described above, and is a construction method of an annular foundation that is installed in water to provide a space for a water barrier construction, and is manufactured by a rectangular cross-section of a cross section having a trapezoidal cross section.
  • a support pile connecting step of forming a base body while connecting the supported support piles with a connector ;
  • a pumping step of discharging soil or water from the sealing portion formed through the foundation body forming step to the outside of the foundation body.
  • the inclined angle of the edge of the pile may be formed differently.
  • the step of placing the sealing portion to fill the empty space by reinforcing the reinforcing bars and pouring concrete into the sealing portion may be further included.
  • step of placing the sealing portion can be made by further including; supporting file dismantling step of removing the foundation body surrounding the sealing portion reinforced concrete is poured.
  • the support pile pouring step of pouring concrete to fill the hollow portion of the support pile may be made to include more.
  • the support pile fixing step of fixing the lower portion of the support pile using an anchor member may be further included.
  • the lower portion of the base body can be manufactured in a shape corresponding to the terrain to be installed.
  • the connector is formed along a longitudinal direction on one surface of the support pile, the cross-section is rectangular, T-shaped, and a trapezoidal one of the trapezoidal shape; And a coupling groove formed along the longitudinal direction on the other surface of the support pile in correspondence with each coupling protrusion.
  • the connector the protruding from both sides of one side of the support pile, each of which is formed to be bent outward; And a seating portion protruding from both ends of a corresponding surface to which the support file engages in response to the locking portion to be coupled while the respective locking portions are seated.
  • the anchor member, the fitting portion formed on the top to be fitted to the bottom of one of the plurality of support piles; And an anchor portion formed to extend to the fitting portion with a set length, and having a smaller cross-sectional area toward the bottom and having a cross-sectional area of the upper portion wider than that of the fitting portion.
  • the binding member for binding the support files constituting the base body further comprising, the binding member, the fixing ring is installed on a portion of the inner surface of the support file forming the base body; And steel wires connecting the support piles while penetrating the fixing ring to strengthen the binding force of the support piles.
  • it may further include; a water expansion index material is fitted through a receiving hole formed corresponding to each of a portion of the side to which the support files are coupled.
  • the foundation body pumped inside through the pumping step as a clamshell, it is possible to install a foundation on the rock or ground inside the foundation body and pour pillars on the foundation.
  • a base body installed in the water; including, the base body, to form an outer shape and the cross section is formed in a trapezoidal shape
  • At least one support pile made of a rectangular cross-section of a cross-section
  • a connector installed on a part of the side surface of the support pile to closely couple the side surface of the support pile, wherein the base body has an inclined side surface of a part of the support pile and a square side of the support pile Formed differently, it is possible to form a closed portion that is a closed space therein while forming a closed annular structure by coupling through the connector.
  • the connector is formed along a longitudinal direction on one surface of the support pile, the cross-section is rectangular, T-shaped, and a trapezoidal one of the trapezoidal shape; And a coupling groove formed along the longitudinal direction on the other surface of the support pile in correspondence with each coupling protrusion.
  • the connector the protruding from both sides of one side of the support pile, each of which is formed to be bent outward; And a seating part protruding from both ends of a corresponding surface to which the support file engages in response to the hooking part and being coupled while the respective hooking parts are seated.
  • the foundation body may be used as a peer by filling concrete by pouring concrete into the hollow portion of the support pile, reinforcing steel bars in the sealing portion and pouring concrete into the empty space.
  • the support pile surrounding the sealing portion in which concrete is poured can be disassembled and used as a peer.
  • the anchor member is fitted to the lower end of the support pile; including, the anchor member, the fitting portion formed on the upper end to be fitted to the bottom of one of the plurality of support piles; And an anchor portion extending to the fitting portion with a set length and having a smaller cross-sectional area toward the bottom and having a cross-sectional area of the upper portion wider than that of the fitting portion.
  • the binding member for binding the support files constituting the base body further comprising, the binding member, the fixing ring is installed on a portion of the inner surface of the support file forming the structural body; And a steel wire penetrating the fixing ring and connecting the support files to strengthen the binding force of the support files.
  • the lower portion of the base body can be manufactured in a shape corresponding to the terrain to be installed.
  • the hydraulic pressure acts on the cylindrical annular foundation wall by the inner and outer water surface differences.
  • the actual annular foundation wall is composed of individual support piles, but as the pumping-out progresses, a greater compressive force acts on the wall due to the action of a constant water pressure acting in the center direction of the annular foundation, thereby forming a structure for binding and stability. Can be achieved.
  • the base body forms an annular base while forming an annular base in the water, and through pumping out, the worker enters the sealing part to create an environment that allows safe underwater work, improves workability, prevents safety accidents such as submarines, and Cost savings are possible.
  • FIG. 1 is a conceptual diagram of a conventional clamshell installation structure and method.
  • Figure 2 is a first flow chart showing the construction method of the annular foundation using a cross-section angle tube according to an embodiment of the present invention.
  • FIG. 3 is a second flow chart showing the construction method of the annular base.
  • FIG. 4 is a third flow chart showing the construction method of the annular base.
  • FIG. 5 is a fourth flow chart showing the construction method of the annular base.
  • FIG. 6 is a fifth flow chart showing the construction method of the annular base.
  • FIG. 7 is a view showing a state in which the base body is used as a clamshell.
  • FIG 8 is a perspective view of an annular base using a cross-section angle tube according to an embodiment of the present invention.
  • FIG. 9 is a view showing another embodiment of the annular base.
  • FIG 10 is a view showing a state in which the annular base body is removed (another embodiment of).
  • FIG. 11 is a view showing a state in which the base body is removed from FIG. 9.
  • 13 is a view showing an embodiment of the connector.
  • FIG. 14 is a view showing another embodiment of the connector.
  • 15 is a view showing a state in which the anchor member is coupled to the support pile.
  • 16 is a view showing a state in which the annular base is reinforced by the binding member.
  • 17 is a view showing a state in which the water-expanding index material is provided on the engaging surface of the support pile.
  • first and second are for distinguishing one component from other components, and the scope of rights should not be limited by these terms.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • first component When a component is said to be “connected” to another component, it may be understood that other components may exist in the middle, although it may be directly connected to the other component.
  • second component when a component is said to be “directly connected” to another component, it should be understood that no other component exists in the middle.
  • other expressions describing the relationship between the components that is, “between” and “immediately between” or “adjacent to” and “directly neighboring to” should be interpreted similarly.
  • FIG. 1 is a conceptual diagram of a conventional clamshell installation structure and method.
  • the conventional water filming method has a problem of generating a lot of construction cost and work air, and the steel pile method requires a driving cost and a lot of work time because the steel pile must be inserted into the soil layer from the water surface.
  • the cost of construction is expensive due to the use of unnecessary steel formwork in the immersion-type water well, and in the PC house method, the pile foundation of the steel pile method is embedded in the ground to resist the horizontal displacement, while the pile foundation of the PC house method Since it is exposed to the water surface and has no effect on the horizontal resistance of the ground, it is necessary to drive more piles than the number of piles in the steel pile method, so the foundation scale is greater than necessary and there is a problem that the aesthetics are not good due to the exposure of the foundation.
  • FIG. 2 is a first flow chart showing a construction method of an annular foundation using a cross-section angle tube according to an embodiment of the present invention
  • FIG. 3 is a second flow chart showing a construction method of the annular foundation
  • FIG. 4 is the annular foundation 3 is a third flow chart showing the construction method of the annular foundation
  • FIG. 6 is a fifth flow chart showing the construction method of the annular foundation
  • FIG. 7 is the fifth flow chart showing the construction method of the annular foundation It is a drawing showing the state used as a curtain.
  • the present invention is a support pile connecting step (S100), the base body forming step (S200) and pumping step It may be made, including (S300).
  • the supporting pile connecting step (S100) is a step of forming a base body while connecting a supporting pile made of a rectangular square tube having a cross-section having a trapezoidal shape with a connector.
  • the foundation body forming step (S200) is a step of forming a foundation body in which a closed portion, which is an enclosed space, is formed while forming a closed annular structure with the support piles 110 connected through a support pile connecting step.
  • the pumping step (S300) is a step of discharging soil or water from the sealing portion formed through the step of forming the base body to the outside of the base body.
  • a part of the supporting pile 110 may have different angles at which the inclined sides of the square supporting pile 110 are inclined.
  • Construction method of the annular foundation using the cross-section angle pipe may be further comprises a sealing part pouring step (S400), support file disassembly step (S500) and support file placing step (S600). .
  • the sealing part pouring step (S400) is a step of reinforcing the rebar in the sealing part 30 and pouring concrete to fill the empty space.
  • the supporting pile dismantling step (S500) is a step of removing the foundation body 100 surrounding the sealing portion 30 in which the reinforced concrete is poured through the sealing portion pouring step (S400).
  • the supporting pile placing step (S600) is a step of pouring concrete into the hollow portion 50 of the supporting pile 110 to fill it.
  • the inside of the hollow portion 50 of the support pile 110 can be reinforced by reinforcing the reinforcement with concrete.
  • the support pile placing step (S600) and the sealing part pouring step (S400) can be reinforced to further strengthen the strength of the annular base 10 by being constructed independently or simultaneously.
  • the annular foundation 10 may be used as a formwork, and concrete may be poured by digging soil into the sealing portion 30. And the support file 110 can be recovered or killed. In addition, by digging the soil in the sealing portion 30 of the annular base 10, it is possible to further strengthen the strength by additionally installing a strip and a strut.
  • the lower portion of the base body 100 may be manufactured in a shape corresponding to the installed terrain.
  • the foundation body 100 formed by the support pile 110 may be constructed from the ground and settled in water to be used as a caisson foundation. That is, it is possible to secure the support force to the bedrock layer by surveying the topography of the water depth, transporting and transporting the support pile 110 and installing it with a crane.
  • the lower end of the support pile 110 is easily made to fill the soil, it is lifted by a crane and seated on the lower floor, and the support pile 110 can be driven.
  • the connector 120 may be installed on a part of the side surface of the support pile 110 to closely bond the side surface of the support pile 110.
  • the connector 120 may include an engaging projection 122 and an engaging groove 124.
  • the engaging projection 122 is formed along the longitudinal direction on one surface of the support pile 110, and the cross section may be one of a rectangular shape, a T-shape, and a trapezoidal shape.
  • the engaging groove 124 may be formed along the longitudinal direction on the other surface of the support pile 110 in correspondence with each engaging protrusion 122.
  • a plurality of side cross-section square support pile 110 is assembled by the combination of the engaging projection 122 and the engaging groove 124, the longer side of the two sides parallel to the trapezoid is disposed on the outside, the short side is inside Can be placed on.
  • the connector 120 may include a locking portion 126 and a seating portion 128.
  • the locking portions 126 may protrude from both sides of one side of the support pile 110 and be bent outwardly, respectively.
  • the seating portion 128 is formed to protrude at both ends from the corresponding surface to which the supporting file 110 is coupled corresponding to the locking portion 126, so that each locking portion 126 may be seated and coupled.
  • the compression force pr acts in the direction along the wall axis on the circular cylinder wall where the constant water pressure p acts.
  • the coupling protrusions 122 formed on each of the plurality of side cross-section square support piles 110 are fitted into the coupling grooves 124 corresponding to the coupling grooves 124 because the coupling grooves 124 serve as a guide when engaging by themselves. Convenience is increased in construction, and after joining, a rigid joint structure can be maintained to improve the rigidity of the entire structure, whereby excellent support can be secured.
  • the connector 120 may have a cross-section of the engaging projection 122 in a T-shape, and the engaging groove 124 may be formed to correspond to the engaging projection 122.
  • the supporting force between the supporting piles 110 may be further improved.
  • the cross section of the engaging projection 122 is formed in the form of a step, and the engaging groove 124 is formed to correspond thereto, so that the engaging structure may be formed.
  • the cross-section of the engaging projection 122 may be formed in a bent form that extends once in the form of a staircase, and the engaging groove 124 may be formed to correspond thereto to form a bonding structure.
  • the cross section of the engaging projection 122 may be formed in a bent form extending twice from the step shape, and the engaging groove 124c may be formed to correspond to this, thereby forming a bonding structure.
  • the support pile 110 having a plurality of side cross-section square shapes may be combined by welding four flat plates.
  • the anchor member 130 may be fitted to the lower end of the support pile 110.
  • the anchor member 130 may include a fitting portion 132 and an anchor portion 134.
  • the fitting portion 132 may be formed at the top to be fitted to the bottom of one of the plurality of support piles 110.
  • the anchor portion 134 is formed to extend to the fitting portion 132 at a set length, and the cross-sectional area becomes smaller as it goes toward the lower end, and the cross-sectional area of the upper portion can be formed to be wider than that of the fitting portion 132.
  • the method of constructing the temporary cladding of the present invention may further include a binding member 140.
  • the binding member 140 may include a fixing ring 142 and a steel wire 144.
  • the fixing ring 142 may be installed on a portion of the inner surface of the support pile 110 forming the base body 100.
  • the steel wire 144 may be provided with a tension force to connect the support piles 110 while penetrating the fixing ring 142 to strengthen the binding force of the support piles 110.
  • the method of constructing the cladding of the present invention may further include a water expansion index material 150.
  • the water inflation index material 150 may be fitted through a receiving hole formed corresponding to a portion of a side surface to which the support piles 110 are coupled. Specifically, the water-expandable index material 150 is installed to prevent leakage through a construction joint by applying a principle of rapidly expanding when it comes into contact with water such as special rubber or betonite. It is provided on the side to prevent water from penetrating into the coupling gap, thereby improving water tightness.
  • the construction method of the present invention uses the foundation body 100 pumped through the pumping step (S300) as a clamshell, and the foundation or the peer is rocked inside the foundation body 100. It can be installed while perforating in or on the ground, and pillars can be poured with reinforced concrete on the foundation.
  • the support pile 110 is made of concrete, and a water-repellent resin is attached to and coupled to the coupling portion of the support pile 110 to increase the rigidity and improve water tightness.
  • FIG. 8 is a perspective view of an annular base using a cross-section angle tube according to an embodiment of the present invention
  • FIG. 9 is a view showing another embodiment of the annular base
  • FIG. 10 shows a state in which the annular base body is removed
  • FIG. 11 is a view showing a state in which the base body is removed from FIG. 10
  • FIG. 12 is a plan view of the annular base
  • FIG. 13 is a view showing an embodiment of the connector
  • Figure 14 is a view of the connector Another embodiment, Figure 15 is a view showing a state in which the anchor member is coupled to the support pile, Figure 16 is a view showing a state in which the annular base is reinforced by the binding member, Figure 17 is It is a view showing a state in which the water-expandable index material is provided on the engaging surface of the support pile.
  • the present invention may include a base body 100.
  • the base body 100 may be installed underwater.
  • the base body 100 may include a support pile 110 and a connector 120.
  • the support pile 110 may be formed of at least one or more square cross-sections having an outer shape and a cross-section having a trapezoidal shape.
  • the connector 120 may be installed on a part of the side surface of the support pile 110 to closely bond the side surface of the support pile 110.
  • the connector 120 may include an engaging projection 122 and an engaging groove 124.
  • the engaging projection 122 is formed along the longitudinal direction on one surface of the support pile 110, and the cross section may be one of a rectangular shape, a T-shape, and a trapezoidal shape.
  • the engaging groove 124 may be formed along the longitudinal direction on the other surface of the support pile 110 in correspondence with each engaging projection 122.
  • a plurality of side cross-section square support pile 110 is assembled by the combination of the engaging projection 122 and the engaging groove 124, the longer side of the two sides parallel to the trapezoid is disposed on the outside, the short side is inside Can be placed on.
  • the connector 120 may include a locking portion 126 and a seating portion 128.
  • the locking portions 126 may protrude from both sides of one side of the support pile 110 and be bent outwardly, respectively.
  • the seating portion 128 is formed to protrude at both ends from the corresponding surface to which the supporting file 110 is coupled corresponding to the locking portion 126, so that each locking portion 126 may be seated and coupled.
  • the base body 100 is formed with a different angle of inclination of the front end face of a part of the support pile 110 and the square end face of the support pile 110, forming a closed annular structure by coupling through the connector 120
  • a sealed portion which is a sealed space therein, may be formed.
  • the annular base 10 of the present invention can be filled by pouring concrete into the hollow portion 50 of the support pile 110.
  • the reinforcing bar may be reinforced to the sealing part 30 and concrete may be poured to fill the empty space.
  • the base body 100 can be used as a peer by pouring concrete into the hollow part 50 of the support pile 110, reinforcing the reinforcing bar in the sealing part 30 and filling the empty space by pouring concrete. .
  • the support pile 110 surrounding the sealing portion 30 in which the concrete is poured can be disassembled and used as a peer.
  • the anchor member 130 may be fitted to the lower end of the support pile 110.
  • the anchor member 130 may include a fitting portion 132 and an anchor portion 134.
  • the fitting portion 132 may be formed at the top to be fitted to the bottom of one of the plurality of support piles 110.
  • the anchor portion 134 is formed to extend to the fitting portion 132 at a set length, and the cross-sectional area becomes smaller as it goes toward the lower end, and the cross-sectional area of the upper portion can be formed to be wider than that of the fitting portion 132.
  • the annular base 10 of the present invention may further include a binding member 140.
  • the binding member 140 may include a fixing ring 142 and a steel wire 144.
  • the fixing ring 142 may be installed on a portion of the inner surface of the support pile 110 forming the structural body 100.
  • the steel wire 144 may be provided with a tension force to connect the support piles 110 while penetrating the fixing ring 142 to strengthen the binding force of the support piles 110.
  • the annular base 10 of the present invention further includes a guide member fitted to one of the plurality of support piles 110, and the guide member is fitted to one of the plurality of support piles 110. It may include a guide portion formed extending in the horizontal direction of the coupling portion and the fitting portion.

Abstract

본 발명은 수중에 설치되어 물막이 공사를 위한 공간을 제공하는 환형 기초의 시공방법으로서, 단면이 사다리꼴 형태로 형성되는 변단면 사각형 각관으로 제작된 지지파일을 커넥터로 연결하면서 기초 몸체를 형성하는 지지파일 연결단계; 상기 지지파일 연결단계를 통해 연결된 상기 지지파일들로 폐쇄된 환형의 구조를 이루면서 내부에 밀폐된 공간인 밀폐부가 마련되는 기초 몸체를 형성하는 기초 몸체 형성단계; 및 상기 기초 몸체 형성단계를 통해 형성된 상기 밀폐부에서 토사나 물을 상기 기초 몸체의 외부로 배출시키는 펌핑단계;를 포함하여 이루어지고, 상기 지지파일 연결단계에서 상기 지지파일 중 일부의 변단면 사각형 지지파일의 변단면이 기울어진 각도가 다르게 형성되는 것을 특징으로 한다.

Description

변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초
본 발명은 환형 기초 및 그 시공방법에 관한 것으로, 보다 상세하게는 구조의 변화를 통해 강도를 향상시킨 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초에 관한 것이다.
일반적으로 육상조건에서 건설되는 교량보다 강이나 바다를 횡단하는 교량은 수상에서 공사를 하여야 함으로 작업에 제약조건이 많고, 하부기초의 수중공사가 불가피하여 공사비가 고가이다.
또한, 최근에는 수중공사를 줄이기 위해 교각간의 길이를 장경간화함으로써 하부기초 규모가 커짐으로 하부기초의 형식 및 가설공법에 따라 많은 공사비 차이를 보이고 있다.
일반적으로 수심이 낮은 곳은 흙으로 가도와 축도를 축조하여 하부를 시공하므로 공사에 큰 지장이 없으나, 수심이 깊은 강이나 바다에서는 가도와 축도가 어려워 하부기초의 시공에는 물막이공법을 병행한다.
구체적으로, 암반층이 바로 존재하는 경우는 거치식 우물통기초와 직접기초가 적용되며, 토사층이 깊이 존재하는 경우에는 말뚝기초와 침설식 우물통이 적용된다.
거치식 및 침설식 우물통기초에는 일반적으로 강재거푸집을 이용하여 물막이를 하며, 말뚝기초인 경우는 강널말뚝공법과 피씨하우스(PC HOUSE)공법이 주로 적용된다.
강재거푸집을 이용하는 물막이는 수심보다 높게 육상에서 강재 우물통 거푸집을 제작하여 수상 운반 및 기초위치에 침설 거친시킨 후 거푸집 내부에 콘크리트를 타설하여 시공하는 공법으로 강재 거푸집은 사장시키는 것이며, 강널말뚝공법은 바지선 위에서 강널말뚝을 소요깊이만큼 지반에 박아 측면 및 하부의 내부유입수를 차단하여 말뚝의 상단에 설치되는 기초슬래브를 육상조건에서 시공하는 공법이며, 피씨하우스공법은 말뚝의 상단이 수면위로 노출이 되도록 하여 기초슬래브 시공이 육상작업이 되도록 하는 공법으로 조수간만의 차가 많이 발생하는 바다에 주로 적용한다.
또한, 종래의 환형 기초를 시공하는 기술 중 하나로, 원통형의 파일을 다수 개를 이용하여 가물막이를 시공하는 방법이 있으나, 원통형 파일은 판재를 말아서 가공하는 공정을 통해 제작되기 때문에 그 두께의 제한이 있는 문제점이 있다.
구체적으로, 원통형 파일은 판재를 말아서 제작되기 때문에 원통형 파일 전체의 직경은 판재의 두께에 영향을 받을 수밖에 없다. 즉 원통형 파일 전체의 직경과 판재의 두께는 서로 비례 관계에 있게 된다. 따라서 판재의 두께는 원통형 파일 전체의 직경에 영향을 받게 된다.
가령 측압이 높은 지역에서 원통형 파일을 이용하여 환형 기초를 시공하는 경우에는 높은 측압에 의해 높은 지지력의 확보가 필요하며, 높은 지지력을 확보하기 위해 판재의 두께가 두꺼울 필요성이 있다. 그런데 판재의 두께가 뚜꺼워지면 원통형 파일 전체의 직경이 커지기 때문에 시공이 어려워질 뿐만 아니라 환형 기초의 벽체가 필요 이상으로 두꺼워져 내부에 확보되는 공간이 오히려 작아질 수 있는 문제점이 발생한다.
또한, 이러한 종래의 물막이공법은 많은 건설비용이 들고, 작업공기가 길어지며, 특히, 수중에서 가물막이 작업이나 환형 기초의 설치작업을 하는 경우에 비용과 공기 뿐만아니라 수압에 따른 기압차에 의한 작업자의 잠수병이나 기타 안전사고가 발생하는 문제점이 있었다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 해결하고자 하는 과제는 개개의 변단면 각관 파일의 설치를 완료한 이후로 가물막이 내측의 물을 펌핑 아웃하는 과정에서 내측 및 외측 수면차이에 의하여 원통형 가물막이 벽체에는 수압이 작용하여 결속되고 안정을 이루는 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초를 제공하는 것이다.
또한, 수중에서 환형의 가물막이를 형성하여 작업자가 내부로 들어가서 안전하게 수중작업이 가능한 환경을 조성하여 시공성이 향상되고 잠수병 등의 안전사고의 사전 예방 및 시간과 비용의 절감이 가능한 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초를 제공하는 것이다.
또한, 다수 개의 변단면 사각형 각관을 이용하며, 다수 개의 변단면 사각형 각관은 면을 통해 결합시켜서 변단면 사각형 각관 전체의 폭(원통형 파일의 직경에 대응됨)은 그대로 유지하면서도 판재의 두께를 두껍게 하는 것이 가능한 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초를 제공하는 것이다.
다만, 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명은 상기와 같은 종래기술의 문제점을 개선하기 위하여 창출된 것으로, 수중에 설치되어 물막이 공사를 위한 공간을 제공하는 환형 기초의 시공방법으로서, 단면이 사다리꼴 형태로 형성되는 변단면 사각형 각관으로 제작된 지지파일을 커넥터로 연결하면서 기초 몸체를 형성하는 지지파일 연결단계; 상기 지지파일 연결단계를 통해 연결된 상기 지지파일들로 폐쇄된 환형의 구조를 이루면서 내부에 밀폐된 공간인 밀폐부가 마련되는 기초 몸체를 형성하는 기초 몸체 형성단계; 및 상기 기초 몸체 형성단계를 통해 형성된 상기 밀폐부에서 토사나 물을 상기 기초 몸체의 외부로 배출시키는 펌핑단계;를 포함하여 이루어지고, 상기 지지파일 연결단계에서 상기 지지파일 중 일부의 변단면 사각형 지지파일의 변단면이 기울어진 각도가 다르게 형성될 수 있다.
또한, 상기 밀폐부에 철근을 배근하고 콘크리트를 타설하여 빈 공간을 채우는 밀폐부 타설단계;를 더 포함하여 이루어질 수 있다.
또한, 상기 밀폐부 타설단계를 통해 철근 콘크리트가 타설된 상기 밀폐부를 둘러싸고 있는 상기 기초 몸체를 제거하는 지지파일 해체단계;를 더 포함하여 이루어질 수 있다.
또한, 상기 지지파일의 중공부에 콘크리트를 타설하여 채우는 지지파일 타설단계;를 더 포함하여 이루어질 수 있다.
또한, 상기 지지파일의 하부를 앵커부재를 이용하여 고정하는 지지파일 고정단계;를 더 포함하여 이루어질 수 있다.
또한, 상기 기초 몸체의 하부를 설치되는 지형에 맞추어서 대응하는 형상으로 제작할 수 있다.
또한, 상기 커넥터는, 상기 지지파일의 일면에 길이 방향을 따라 형성되며, 단면이 직사각형, T자 형태, 및 사다리꼴 형태 중에서 하나인 결합 돌기; 및 상기 각각의 결합 돌기에 대응하여 상기 지지파일의 타면에 길이 방향을 따라 형성된 결합 홈;을 포함하여 이루어질 수 있다.
또한, 상기 커넥터는, 상기 지지파일의 일측면의 양측에서 돌출되어 각각 외측으로 절곡 형성되는 걸림부; 및 상기 걸림부에 대응하여 상기 지지파일이 결합하는 대응면에서 양단으로 돌출 형성되어 상기 각각의 걸림부가 안착되면서 결합되는 안착부;를 포함하여 이루어질 수 있다.
또한, 상기 앵커부재는, 상기 다수 개의 지지파일 중 하나의 하단에 끼움 결합되도록 상단에 형성되는 끼움부; 및 설정된 길이로 상기 끼움부에 연장 형성되며 하단으로 갈수록 단면적이 작아지며 상단의 단면적이 상기 끼움부의 단면적보다 넓게 형성되는 앵커부;를 포함하여 이루어질 수 있다.
또한, 상기 기초 몸체를 이루는 상기 지지파일들을 결속시키는 결속부재;를 더 포함하고, 상기 결속부재는, 상기 기초 몸체를 형성하는 지지파일의 내측면 일부분에 설치되는 고정고리; 및 상기 고정고리를 관통하면서 상기 지지파일들을 연결하여 상기 지지파일들의 결속력을 강화하는 강선;을 포함하여 이루어질 수 있다.
또한, 상기 지지파일들이 결합되는 측면의 일부분에 각각 대응하여 형성된 수용홀을 통해서 끼움 결합되는 수팽창 지수재;를 더 포함할 수 있다.
또한, 상기 펌핑단계를 통해서 내부가 펌핑된 상기 기초 몸체를 가물막이로 이용하여, 상기 기초 몸체의 내부에서 기초를 암반이나 지반에 타공하면서 설치하고 상기 기초 위에 기둥을 타설할 수 있다.
본 발명의 다른 실시예에 따른 수중에 설치되어 물막이 공사를 위한 공간을 제공하는 환형 기초로서, 수중에 설치되는 기초 몸체;를 포함하고, 상기 기초 몸체는, 외형을 이루고 단면이 사다리꼴 형태로 형성되는 변단면 사각형 각관으로 제작되는 적어도 하나의 지지파일; 및 상기 지지파일의 측면의 일부분에 설치되어 상기 지지파일의 측면을 밀착 결합시키는 커넥터;를 포함하며, 상기 기초 몸체는, 상기 지지파일 중 일부의 변단면 사각형 지지파일의 변단면이 기울어진 각도가 다르게 형성되어, 상기 커넥터를 통한 결합에 의해 폐쇄된 환형의 구조를 이루면서 내부에 밀폐된 공간인 밀폐부를 형성시킬 수 있다.
또한, 상기 커넥터는, 상기 지지파일의 일면에 길이 방향을 따라 형성되며, 단면이 직사각형, T자 형태, 및 사다리꼴 형태 중에서 하나인 결합 돌기; 및 상기 각각의 결합 돌기에 대응하여 상기 지지파일의 타면에 길이 방향을 따라 형성된 결합 홈;을 포함할 수 있다.
또한, 상기 커넥터는, 상기 지지파일의 일측면의 양측에서 돌출되어 각각 외측으로 절곡 형성되는 걸림부; 및 상기 걸림부에 대응하여 상기 지지파일이 결합하는 대응면에서 양단으로 돌출 형성되어 상기 각각의 걸림부가 안착되면서 결합되는 안착부;를 포함할 수 있다.
또한, 상기 지지파일의 중공부에 콘크리트를 타설하여 채울 수 있다.
또한, 상기 밀폐부에 철근을 배근하고 콘크리트를 타설하여 빈 공간을 채울 수 있다.
또한, 상기 기초 몸체는, 상기 지지파일의 중공부에 콘크리트를 타설하여 채우고, 상기 밀폐부에 철근을 배근하고 콘크리트를 타설하여 빈 공간을 채워서 피어로 이용될 수 있다.
또한, 콘크리트가 타설된 상기 밀폐부를 둘러싸고 있는 상기 지지파일을 해체하여 피어로 이용할 수 있다.
또한, 상기 지지파일의 하단에 끼움 결합되는 앵커부재;를 포함하고, 상기 앵커부재는, 상기 다수 개의 지지파일 중 하나의 하단에 끼움 결합되도록 상단에 형성되는 끼움부; 및 설정된 길이로 상기 끼움부에 연장 형성되며 하단으로 갈수록 단면적이 작아지며 상단의 단면적이 상기 끼움부의 단면적보다 넓게 형성되는 앵커부;를 포함할 수 있다.
또한, 상기 기초 몸체를 이루는 상기 지지파일들을 결속시키는 결속부재;를 더 포함하고, 상기 결속부재는, 상기 구조믈 몸체를 형성하는 지지파일의 내측면 일부분에 설치되는 고정고리; 및 상기 고정고리를 관통하면서 상기 지지파일들을 연결하여 상기 지지파일들의 결속력을 강화하는 강선;을 포함할 수 있다.
또한, 상기 기초 몸체의 하부를 설치되는 지형에 맞추어서 대응하는 형상으로 제작할 수 있다.
본 발명의 일실시예에 따르면, 개개의 변단면 지지파일의 설치를 완료한 이후로 환형 기초 내측의 물을 펌핑 아웃하는 과정에서 내측 및 외측 수면차이에 의하여 원통형 환형 기초 벽체에는 수압이 작용하게 된다.
따라서, 실제 환형 기초 벽체는 개개 지지파일로 구성되지만, 펌핑 아웃이 진행될수록 환형 기초의 중심 방향으로 작용하는 일정 수압의 작용으로 인하여 벽체에는 더욱 큰 압축력이 작용하게 되어, 결속되고 안정을 이루는 구조를 이룰 수 있다.
또한, 수중에서 기초 몸체가 환형을 이루면서 환형 기초를 형성하여 펌핑 아웃을 통해, 작업자가 밀폐부에 들어가서 안전하게 수중작업이 가능한 환경을 조성하여 시공성이 향상되고 잠수병 등의 안전사고의 사전 예방 및 시간과 비용의 절감이 가능하다.
또한, 지지파일들을 커넥터를 통해서 결속하므로 케이블 및 띠장을 사용하지 않아도 벽체의 변형 및 벌어짐을 방지할 수 있게 되는 장점이 있다.
따라서, 측압이 높은 지역에서 종래의 원통형 파일을 이용하는 것보다 훨씬 더 시공이 간편하면서도 환형 기초 내부의 공간을 충분히 확보 가능하다.
다만, 본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래의 가물막이 설치구조 및 그 방법에 관한 개념도이다.
도 2는 본 발명의 일실시예에 따른 변단면 각관을 이용한 환형 기초의 시공방법을 나타내는 제 1순서도이다.
도 3은 상기 환형 기초의 시공방법을 나타내는 제 2순서도이다.
도 4는 상기 환형 기초의 시공방법을 나타내는 제 3순서도이다.
도 5는 상기 환형 기초의 시공방법을 나타내는 제 4순서도이다.
도 6은 상기 환형 기초의 시공방법을 나타내는 제 5순서도이다.
도 7은 상기 기초 몸체를 가물막이로 이용한 모습을 나타낸 도면이다.
도 8은 본 발명의 일실시예에 따른 변단면 각관을 이용한 환형 기초의 사시도이다.
도 9는 상기 환형 기초의 다른 실시예를 나타낸 도면이다.
도 10은 상기 환형 기초 몸체가 제거되는 모습을(의 또 다른 실시예를) 나타낸 도면이다.
도 11은 도 9에서 상기 기초 몸체가 제거된 모습을 나타낸 도면이다.
도 12는 상기 환형 기초의 평면도이다.
도 13은 상기 커넥터의 실시예를 나타낸 도면이다.
도 14는 상기 커넥터의 다른 실시예를 나타낸 도면이다.
도 15는 상기 앵커부재가 상기 지지파일에 결합되는 모습을 나타낸 도면이다.
도 16은 상기 환형 기초가 상기 결속부재에 의해서 보강된 모습을 나타낸 도면이다.
도 17은 상기 지지파일의 결합면에 상기 수팽창 지수재가 구비된 모습을 나타낸 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시 예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시 예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시 예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
본 발명에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다.
"제1", "제2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로, 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결될 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다고 언급된 때에는 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 한편, 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이며, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.
도 1은 종래의 가물막이 설치구조 및 그 방법에 관한 개념도이다.
도 1에 도시된 바와 같이, 종래의 물막이공법은 많은 건설비용과 작업공기가 발생하는 문제점이 있는 것인바, 강널말뚝공법은 수상에서 토사층에 강널말뚝을 근입시켜야 하므로 항타비용과 많은 작업시간이 소요되는 문제점이 있었고, 침설식 우물통은 불필요한 강재거푸집 사용으로 공사비가 고가이며, 피씨하우스공법은 강널말뚝공법의 말뚝기초가 지반에 매입되어 지반이 수평변위에 저항하는 반면, 피씨하우스공법의 말뚝기초는 수면에 노출이 되어 지반의 수평저항에 효과가 없어 강널말뚝공법의 말뚝개수보다 더 많은 말뚝을 박아야 하므로 기초규모가 필요 이상으로 비대하며 기초의 노출로 미관이 좋지 않다는 문제점이 있었다.
도 2는 본 발명의 일실시예에 따른 변단면 각관을 이용한 환형 기초의 시공방법을 나타내는 제 1순서도이고, 도 3은 상기 환형 기초의 시공방법을 나타내는 제 2순서도이며, 도 4는 상기 환형 기초의 시공방법을 나타내는 제 3순서도이고, 도 5는 상기 환형 기초의 시공방법을 나타내는 제 4순서도이며, 도 6은 상기 환형 기초의 시공방법을 나타내는 제 5순서도이고, 도 7은 상기 기초 몸체를 가물막이로 이용한 모습을 나타낸 도면이다.
도 2 내지 7에 도시된 바와 같이, 수중에 설치되어 물막이 공사를 위한 공간을 제공하는 환형 기초의 시공방법으로서, 본 발명은 지지파일 연결단계(S100), 기초 몸체 형성단계(S200) 및 펌핑단계(S300)를 포함하여 이루어질 수 있다.
지지파일 연결단계(S100)는 단면이 사다리꼴 형태로 형성되는 변단면 사각형 각관으로 제작된 지지파일을 커넥터로 연결하면서 기초 몸체를 형성하는 단계이다.
기초 몸체 형성단계(S200)는 지지파일 연결단계를 통해 연결된 상기 지지파일(110)들로 폐쇄된 환형의 구조를 이루면서 내부에 밀폐된 공간인 밀폐부가 마련되는 기초 몸체를 형성하는 단계이다.
펌핑단계(S300)는 기초 몸체 형성단계를 통해 형성된 상기 밀폐부에서 토사나 물을 상기 기초 몸체의 외부로 배출하는 단계이다.
지지파일 연결단계(S10)에서 지지파일(110) 중 일부의 변단면 사각형 지지파일(110)의 변단면이 기울어진 각도가 다르게 형성될 수 있다.
본 발명의 일실시예에 따른 변단면 각관을 이용한 환형 기초의 시공방법은 밀폐부 타설단계(S400), 지지파일 해체단계(S500) 및 지지파일 타설단계(S600)를 더 포함하여 이루어 질 수 있다.
밀폐부 타설단계(S400)는 밀폐부(30)에 철근을 배근하고 콘크리트를 타설하여 빈 공간을 채우는 단계이다.
지지파일 해체단계(S500)는 밀폐부 타설단계(S400)를 통해 철근 콘크리트가 타설된 밀폐부(30)를 둘러싸고 있는 기초 몸체(100)를 제거하는 단계이다.
지지파일 타설단계(S600)는 지지파일(110)의 중공부(50)에 콘크리트를 타설하여 채우는 단계이다. 구체적으로, 지지파일(110)의 중공부(50) 내부를 철근 배근하여 콘크리트로 타설하여 강도를 강화할 수 있다.
상기 지지파일 타설단계(S600)와 밀폐부 타설단계(S400)는 각각 독립적으로 시공되거나 한꺼번에 같이 시공되어 환형 기초(10)의 강도를 한층더 보강 할 수 있다.
구체적으로, 환형 기초(10)을 거푸집으로 활용할 수 있는데, 밀폐부(30)에 토사를 파서 콘크리트 타설할 수 있다. 그리고 지지파일(110)을 회수하거나 사장시킬 수 있다. 또한, 환형 기초(10)의 밀폐부(30)에 있는 토사를 파서 띠장 및 스트럿을 추가로 설치하여 강도를 강화할 수 있다.
기초 몸체(100)의 하부를 설치되는 지형에 맞추어서 대응하는 형상으로 제작할 수 있다. 구체적으로, 지지파일(110)이 형성하는 기초 몸체(100)를 지상에서 시공하여 수중에 침강시켜 케이슨 기초로 활용할 수 있다. 즉, 수심 하상의 지형을 측량하고, 지지파일(110)을 운송, 운반하여 크레인으로 설치하며, 하상에 안착 후 지지파일(110)을 항타 실시하여, 기반암층까지 지지력을 확보할 수 있다. 또한, 지지파일(110)의 하단을 토사 주입이 용이하게 뽀죡하게 만들어, 크레인으로 양중하여 하상에 안착후 지지파일(110)을 항타 실시할 수 있다.
커넥터(120)는 지지파일(110)의 측면의 일부분에 설치되어 지지파일(110)의 측면을 밀착 결합시킬 수 있다.
커넥터(120)는 결합 돌기(122) 및 결합 홈(124)을 포함할 수 있다.
결합 돌기(122)는 지지파일(110)의 일면에 길이 방향을 따라 형성되며, 단면이 직사각형, T자 형태, 및 사다리꼴 형태 중에서 하나일 수 있다.
결합 홈(124)은 각각의 결합 돌기(122)에 대응하여 지지파일(110)의 타면에 길이 방향을 따라 형성될 수 있다.
다수 개의 변단면 사각형 지지파일(110)은 결합 돌기(122) 및 결합 홈(124)의 결합에 의해 조립되고, 사다리꼴에서 평행인 두 변 중 길이가 긴 변이 외측에 배치되고, 길이가 짧은 변이 내측에 배치될 수 있다.
커넥터(120)는 걸림부(126) 및 안착부(128)를 포함할 수 있다.
걸림부(126)는 지지파일(110)의 일측면의 양측에서 돌출되어 각각 외측으로 절곡 형성될 수 있다.
안착부(128)는 걸림부(126)에 대응하여 지지파일(110)이 결합하는 대응면에서 양단으로 돌출 형성되어 각각의 걸림부(126)가 안착되면서 결합될 수 있다.
이와 같은 단면이 사다리꼴 형태인 변단면 사각형 지지파일을 이용함으로써, 변단면 사각형 지지파일 사이에 분력(압축력)이 작용하도록 하는 아치 구조를 채용하여 지지력이 크게 향상되는 효과가 있다.
[규칙 제91조에 의한 정정 02.03.2020] 
수심 h 위치에서 원통형 실린더 벽체에 작용하는 부재력을 계산하기 위하여 원통형 실린더의 1/2 및 1/4 단면을 도 18과 같이 이상화 한다.
[규칙 제91조에 의한 정정 02.03.2020] 
[삭제]
[규칙 제91조에 의한 정정 02.03.2020] 
[삭제]
[규칙 제91조에 의한 정정 02.03.2020] 
도 18과 같이 미소길이 ds(=rdθ)에 작용하는 수압 p의 x방향 및 y방향 하중성분을 고려하여 θ=0~π/2 구간에 대하여 적분하면,
Figure PCTKR2019018203-appb-img-000002
Figure PCTKR2019018203-appb-img-000003
이다.
[규칙 제91조에 의한 정정 02.03.2020] 
[삭제]
[규칙 제91조에 의한 정정 02.03.2020] 
[삭제]
[규칙 제91조에 의한 정정 02.03.2020] 
이를 고려한 도 19의 1/2 자유물체의 평형으로부터
Figure PCTKR2019018203-appb-img-000005
Figure PCTKR2019018203-appb-img-000006
Figure PCTKR2019018203-appb-img-000007
식 (1), (2)로부터
Figure PCTKR2019018203-appb-img-000008
이다.
[규칙 제91조에 의한 정정 02.03.2020] 
[삭제]
[규칙 제91조에 의한 정정 02.03.2020] 
[삭제]
[규칙 제91조에 의한 정정 02.03.2020] 
또한, 도 20의 1/4 자유물체의 평형으로부터
Figure PCTKR2019018203-appb-img-000010
Figure PCTKR2019018203-appb-img-000011
Figure PCTKR2019018203-appb-img-000012
즉, 일정 수압 p가 작용하는 원형 실린더 벽체에는 벽체 축선을 따르는 방향으로 압축력 pr이 작용한다.
다수 개의 변단면 사각형 지지파일(110) 각각에 형성되는 결합 돌기(122)가 이에 대응되는 결합 홈(124)에 끼움 결합되는데, 이때 결합 홈(124)은 그 자체로 결합 시 가이드 역할을 하기 때문에 시공에 있어 편의성이 증대되며, 결합 후에는 단단한 결합 구조를 유지하여 구조물 전체의 강성을 향상시킬 수 있고, 이로써 우수한 지지력을 확보할 수 있다.
구체적으로, 커넥터(120)는 결합 돌기(122)의 단면이 T자 형태로 형성되고, 결합 홈(124)이 결합 돌기(122)에 대응되도록 형성될 수 있다.
이와 같은 경우 지지파일(110)들 사이의 지지력이 더욱 향상될 수 있다.
결합 돌기(122)가 내입되도록 길이 방향을 따라 결합 홈(124)이 형성될 때, 결합 돌기(122)의 단면이 사다리꼴 형태로 형성되고, 결합 홈(124)이 결합 돌기(122)에 대응되도록 형성될 수 있다.
또한, 결합 돌기(122)를 단면이 계단 형태로 형성되고, 결합 홈(124)가 이에 대응되도록 형성되어 결합 구조가 형성될 수 있다.
또한, 결합 돌기(122)의 단면이 계단 형태에서 한번 연장 절곡된 형태로 형성될 수 있고, 결합 홈(124)가 이에 대응되도록 형성되어 결합 구조가 형성될 수 있다.
또한, 결합 돌기(122)의 단면이 계단 형태에서 두번 연장 절곡된 형태로 형성될 수 있고, 결합 홈(124c)가 이에 대응되도록 형성되어 결합 구조가 형성될 수 있다.
또한, 본 발명의 일 실시예에 따른 환형 기초 시공방법(10)은 다수 개의 변단면 사각형 형상의 지지파일(110)은 4개의 평평한 판재의 용접에 의해 결합될 수 있다.
앵커부재(130)는 지지파일(110)의 하단에 끼움 결합될 수 있다.
앵커부재(130)는 끼움부(132) 및 앵커부(134)를 포함할 수 있다.
끼움부(132)는 다수 개의 지지파일(110) 중 하나의 하단에 끼움 결합되도록 상단에 형성될 수 있다.
앵커부(134)는 설정된 길이로 끼움부(132)에 연장 형성되며 하단으로 갈수록 단면적이 작아지며 상단의 단면적이 끼움부(132)의 단면적보다 넓게 형성될 수 있다.
본 발명의 가물막이 시공방법은 결속부재(140)를 더 포함할 수 있다.
결속부재(140)는 고정고리(142) 및 강선(144)을 포함할 수 있다.
고정고리(142)는 기초 몸체(100)를 형성하는 지지파일(110)의 내측면 일부분에 설치될 수 있다.
강선(144)은 긴장력이 구비되어 고정고리(142)를 관통하면서 지지파일(110)들을 연결하여 지지파일(110)들의 결속력을 강화할 수 있다.
또한, 본 발명의 가물막이 시공방법은 수팽창 지수재(150)를 더 포함할 수 있다.
수팽창 지수재(150)는 지지파일(110)들이 결합되는 측면의 일부분에 각각 대응하여 형성된 수용홀을 통해서 끼움 결합될 수 있다. 구체적으로, 수팽창 지수재(150)는 특수한 고무나 베토나이트 등 물과 접했을 때 급속하게 팽창하는 원리를 적용하여 시공조인트 등을 통한 누수를 방지하기 위해서 설치하는 것으로 지지파일(110)들의 결합 측면에 구비되어 결합 틈새로 물이 침투하는 것을 방지하여 수밀성을 향상시킬 수 있다.
도 7에 도시된 바와 같이, 본 발명의 시공방법은 펌핑단계(S300)를 통해서 내부가 펌핑된 기초 몸체(100)를 가물막이로 이용하여, 기초 몸체(100)의 내부에서 기초나 피어를 암반이나 지반에 타공하면서 설치하고 기초 위에 철근 콘크리트로 기둥을 타설할 수 있다.
또한, 본 발명의 가물막이 시공방법에서 지지파일(110)은 콘크리트로 제작되며, 지지파일(110)의 결합부위에는 차수용 수지를 부착하여 결합시켜 강성의 증가와 수밀성을 향상시킬 수 있다.
도 8은 본 발명의 일실시예에 따른 변단면 각관을 이용한 환형 기초의 사시도이고, 도 9는 상기 환형 기초의 다른 실시예를 나타낸 도면이며, 도 10은 상기 환형 기초 몸체가 제거되는 모습을 나타낸 도면이고, 도 11은 도 10에서 상기 기초 몸체가 제거된 모습을 나타낸 도면이며, 도 12는 상기 환형 기초의 평면도이고, 도 13은 상기 커넥터의 실시예를 나타낸 도면이며, 도 14는 상기 커넥터의 다른 실시예를 나타낸 도면이고, 도 15는 상기 앵커부재가 상기 지지파일에 결합되는 모습을 나타낸 도면이며, 도 16은 상기 환형 기초가 상기 결속부재에 의해서 보강된 모습을 나타낸 도면이고, 도 17은 상기 지지파일의 결합면에 상기 수팽창 지수재가 구비된 모습을 나타낸 도면이다.
도 8내지 도 17에 도시된 바와 같이, 수중에 설치되어 물막이 공사를 위한 공간을 제공하는 환형 기초로서, 본 발명은 기초 몸체(100)를 포함할 수 있다.
기초 몸체(100)는 수중에 설치될 수 있다.
기초 몸체(100)는 지지파일(110) 및 커넥터(120)를 포함할 수 있다.
지지파일(110)은 적어도 하나 이상으로 구성되어 외형을 이루고 단면이 사다리꼴 형태로 형성되는 변단면 사각형 각관으로 제작될 수 있다.
커넥터(120)는 지지파일(110)의 측면의 일부분에 설치되어 지지파일(110)의 측면을 밀착 결합시킬 수 있다.
커넥터(120)는 결합 돌기(122) 및 결합 홈(124)을 포함할 수 있다.
결합 돌기(122)는 지지파일(110)의 일면에 길이 방향을 따라 형성되며, 단면이 직사각형, T자 형태, 및 사다리꼴 형태 중에서 하나일 수 있다.
결합 홈(124)은 각각의 결합 돌기(122)에 대응하여 지지파일(110)의 타면에 길이 방향을 따라 형성될 수 있다.
다수 개의 변단면 사각형 지지파일(110)은 결합 돌기(122) 및 결합 홈(124)의 결합에 의해 조립되고, 사다리꼴에서 평행인 두 변 중 길이가 긴 변이 외측에 배치되고, 길이가 짧은 변이 내측에 배치될 수 있다.
커넥터(120)는 걸림부(126) 및 안착부(128)를 포함할 수 있다.
걸림부(126)는 지지파일(110)의 일측면의 양측에서 돌출되어 각각 외측으로 절곡 형성될 수 있다.
안착부(128)는 걸림부(126)에 대응하여 지지파일(110)이 결합하는 대응면에서 양단으로 돌출 형성되어 각각의 걸림부(126)가 안착되면서 결합될 수 있다.
기초 몸체(100)는 지지파일(110) 중 일부의 변단면 사각형 지지파일(110)의 변단면이 기울어진 각도가 다르게 형성되어, 커넥터(120)를 통한 결합에 의해 폐쇄된 환형의 구조를 이루면서 내부에 밀폐된 공간인 밀폐부를 형성시킬 수 있다.
본 발명의 환형 기초(10)는 지지파일(110)의 중공부(50)에 콘크리트를 타설하여 채울 수 있다.
또한, 밀폐부(30)에 철근을 배근하고 콘크리트를 타설하여 빈 공간을 채울 수 있다.
또한, 기초 몸체(100)는 지지파일(110)의 중공부(50)에 콘크리트를 타설하여 채우고, 밀폐부(30)에 철근을 배근하고 콘크리트를 타설하여 빈 공간을 채워서 피어로 이용될 수 있다.
또한, 콘크리트가 타설된 밀폐부(30)를 둘러싸고 있는 지지파일(110)을 해체하여 피어로 이용할 수 있다.
앵커부재(130)는 지지파일(110)의 하단에 끼움 결합될 수 있다.
앵커부재(130)는 끼움부(132) 및 앵커부(134)를 포함할 수 있다.
끼움부(132)는 다수 개의 지지파일(110) 중 하나의 하단에 끼움 결합되도록 상단에 형성될 수 있다.
앵커부(134)는 설정된 길이로 끼움부(132)에 연장 형성되며 하단으로 갈수록 단면적이 작아지며 상단의 단면적이 끼움부(132)의 단면적보다 넓게 형성될 수 있다.
본 발명의 환형 기초(10)는 결속부재(140)를 더 포함할 수 있다.
결속부재(140)는 고정고리(142) 및 강선(144)을 포함할 수 있다.
고정고리(142)는 구조믈 몸체(100)를 형성하는 지지파일(110)의 내측면 일부분에 설치될 수 있다.
강선(144)은 긴장력이 구비되어 고정고리(142)를 관통하면서 지지파일(110)들을 연결하여 지지파일(110)들의 결속력을 강화할 수 있다.
본 발명의 환형 기초(10)는 다수 개의 지지파일(110) 중 하나의 상단에 끼움 결합되는 가이드 부재를 더 포함하고, 가이드 부재는 다수 개의 지지파일(110) 중 하나의 상단에 끼움 결합되는 끼움 결합부 및 끼움 결합부의 수평 방향으로 연장 형성되는 가이드부를 포함할 수 있다.
이하, 본 발명의 일실시예에 따른 환형 기초의 시공방법의 구성요소들의 상세한 설명은 전술한 바와 같다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 본 발명의 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 예를 들어, 당업자는 상술한 실시 예들에 기재된 각 구성을 서로 조합하는 방식으로 이용할 수 있다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.

Claims (23)

  1. 수중에 설치되어 물막이 공사를 위한 공간을 제공하는 환형 기초의 시공방법으로서,
    단면이 사다리꼴 형태로 형성되는 변단면 사각형 각관으로 제작된 지지파일을 커넥터로 연결하면서 기초 몸체를 형성하는 지지파일 연결단계;
    상기 지지파일 연결단계를 통해 연결된 상기 지지파일들로 폐쇄된 환형의 구조를 이루면서 내부에 밀폐된 공간인 밀폐부가 마련되는 기초 몸체를 형성하는 기초 몸체 형성단계; 및
    상기 기초 몸체 형성단계를 통해 형성된 상기 밀폐부에서 토사나 물을 상기 기초 몸체의 외부로 배출시키는 펌핑단계;를 포함하여 이루어지고,
    상기 지지파일 연결단계에서 상기 지지파일 중 일부의 변단면 사각형 지지파일의 변단면이 기울어진 각도가 다르게 형성되는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  2. 청구항 1에 있어서,
    상기 밀폐부에 철근을 배근하고 콘크리트를 타설하여 빈 공간을 채우는 밀폐부 타설단계;를 더 포함하여 이루어지는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  3. 청구항 2에 있어서,
    상기 밀폐부 타설단계를 통해 철근 콘크리트가 타설된 상기 밀폐부를 둘러싸고 있는 상기 기초 몸체를 제거하는 지지파일 해체단계;를 더 포함하여 이루어지는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  4. 청구항 1에 있어서,
    상기 지지파일의 중공부에 콘크리트를 타설하여 채우는 지지파일 타설단계;를 더 포함하여 이루어지는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  5. 청구항 1에 있어서,
    상기 지지파일의 하부를 앵커부재를 이용하여 고정하는 지지파일 고정단계;를 더 포함하여 이루어지는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초 시공방법.
  6. 청구항 1에 있어서,
    상기 기초 몸체의 하부를 설치되는 지형에 맞추어서 대응하는 형상으로 제작하는 것을 특징으로 하는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초 시공방법.
  7. 청구항 1에 있어서,
    상기 커넥터는,
    상기 지지파일의 일면에 길이 방향을 따라 형성되며, 단면이 직사각형, T자 형태, 및 사다리꼴 형태 중에서 하나인 결합 돌기; 및
    상기 각각의 결합 돌기에 대응하여 상기 지지파일의 타면에 길이 방향을 따라 형성된 결합 홈;을 포함하여 이루어지는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  8. 청구항 1에 있어서,
    상기 커넥터는,
    상기 지지파일의 일측면의 양측에서 돌출되어 각각 외측으로 절곡 형성되는 걸림부; 및
    상기 걸림부에 대응하여 상기 지지파일이 결합하는 대응면에서 양단으로 돌출 형성되어 상기 각각의 걸림부가 안착되면서 결합되는 안착부;를 포함하여 이루어지는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  9. 청구항 5에 있어서,
    상기 앵커부재는,
    상기 다수 개의 지지파일 중 하나의 하단에 끼움 결합되도록 상단에 형성되는 끼움부; 및
    설정된 길이로 상기 끼움부에 연장 형성되며 하단으로 갈수록 단면적이 작아지며 상단의 단면적이 상기 끼움부의 단면적보다 넓게 형성되는 앵커부;를 포함하여 이루어지는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  10. 청구항 1에 있어서,
    상기 기초 몸체를 이루는 상기 지지파일들을 결속시키는 결속부재;를 더 포함하고,
    상기 결속부재는,
    상기 기초 몸체를 형성하는 지지파일의 내측면 일부분에 설치되는 고정고리; 및
    상기 고정고리를 관통하면서 상기 지지파일들을 연결하여 상기 지지파일들의 결속력을 강화하는 강선;을 포함하여 이루어지는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  11. 청구항 1에 있어서,
    상기 지지파일들이 결합되는 측면의 일부분에 각각 대응하여 형성된 수용홀을 통해서 끼움 결합되는 수팽창 지수재;를 더 포함하여 이루어지는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  12. 청구항 1에 있어서,
    상기 펌핑단계를 통해서 내부가 펌핑된 상기 기초 몸체를 가물막이로 이용하여,
    상기 기초 몸체의 내부에서 기초를 암반이나 지반에 타공하면서 설치하고 상기 기초 위에 기둥을 타설하는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  13. 청구항 1에 있어서,
    상기 지지파일은 콘크리트로 제작되며, 상기 지지파일의 결합부위에는 차수용 수지를 부착하여 결합시키는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초의 시공방법.
  14. 수중에 설치되어 물막이 공사를 위한 공간을 제공하는 환형 기초로서,
    수중에 설치되는 기초 몸체;를 포함하고,
    상기 기초 몸체는,
    외형을 이루고 단면이 사다리꼴 형태로 형성되는 변단면 사각형 각관으로 제작되는 적어도 하나의 지지파일; 및
    상기 지지파일의 측면의 일부분에 설치되어 상기 지지파일의 측면을 밀착 결합시키는 커넥터;를 포함하며,
    상기 기초 몸체는,
    상기 지지파일 중 일부의 변단면 사각형 지지파일의 변단면이 기울어진 각도가 다르게 형성되어, 상기 커넥터를 통한 결합에 의해 폐쇄된 환형의 구조를 이루면서 내부에 밀폐된 공간인 밀폐부를 형성시키는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초.
  15. 청구항 14에 있어서,
    상기 커넥터는,
    상기 지지파일의 일면에 길이 방향을 따라 형성되며, 단면이 직사각형, T자 형태, 및 사다리꼴 형태 중에서 하나인 결합 돌기; 및
    상기 각각의 결합 돌기에 대응하여 상기 지지파일의 타면에 길이 방향을 따라 형성된 결합 홈;을 포함하는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초.
  16. 청구항 14에 있어서,
    상기 커넥터는,
    상기 지지파일의 일측면의 양측에서 돌출되어 각각 외측으로 절곡 형성되는 걸림부; 및
    상기 걸림부에 대응하여 상기 지지파일이 결합하는 대응면에서 양단으로 돌출 형성되어 상기 각각의 걸림부가 안착되면서 결합되는 안착부;를 포함하는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초.
  17. 청구항 14에 있어서,
    상기 지지파일의 중공부에 콘크리트를 타설하여 채우는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초.
  18. 청구항 14에 있어서,
    상기 밀폐부에 철근을 배근하고 콘크리트를 타설하여 빈 공간을 채우는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초.
  19. 청구항 14에 있어서,
    상기 기초 몸체는,
    상기 지지파일의 중공부에 콘크리트를 타설하여 채우고, 상기 밀폐부에 철근을 배근하고 콘크리트를 타설하여 빈 공간을 채워서 피어로 이용되는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초.
  20. 청구항 14에 있어서,
    콘크리트가 타설된 상기 밀폐부를 둘러싸고 있는 상기 지지파일을 해체하여 피어로 이용하는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초.
  21. 청구항 14에 있어서,
    상기 지지파일의 하단에 끼움 결합되는 앵커부재;를 포함하고,
    상기 앵커부재는,
    상기 다수 개의 지지파일 중 하나의 하단에 끼움 결합되도록 상단에 형성되는 끼움부; 및
    설정된 길이로 상기 끼움부에 연장 형성되며 하단으로 갈수록 단면적이 작아지며 상단의 단면적이 상기 끼움부의 단면적보다 넓게 형성되는 앵커부;를 포함하는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초.
  22. 청구항 14에 있어서,
    상기 기초 몸체를 이루는 상기 지지파일들을 결속시키는 결속부재;를 더 포함하고,
    상기 결속부재는,
    상기 기초 몸체를 형성하는 지지파일의 내측면 일부분에 설치되는 고정고리; 및
    상기 고정고리를 관통하면서 상기 지지파일들을 연결하여 상기 지지파일들의 결속력을 강화하는 강선;을 포함하는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초.
  23. 청구항 14에 있어서,
    상기 기초 몸체의 하부를 설치되는 지형에 맞추어서 대응하는 형상으로 제작하는 하는 것을 특징으로 하는 변단면 각관을 이용한 환형 기초.
PCT/KR2019/018203 2018-12-27 2019-12-20 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초 WO2020138860A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180169987A KR102011321B1 (ko) 2018-12-27 2018-12-27 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초
KR10-2018-0169987 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138860A1 true WO2020138860A1 (ko) 2020-07-02

Family

ID=68460099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018203 WO2020138860A1 (ko) 2018-12-27 2019-12-20 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초

Country Status (2)

Country Link
KR (1) KR102011321B1 (ko)
WO (1) WO2020138860A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117027024A (zh) * 2023-10-08 2023-11-10 中国土木工程集团有限公司 一种复杂施工环境下的海岸线水下承台施工装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101959691B1 (ko) * 2018-10-24 2019-03-18 강병관 변단면 각관을 이용한 환형 가물막이 및 터파기 공사 가시설 구조물 그리고 시공 방법
KR102011321B1 (ko) * 2018-12-27 2019-10-21 (주)더브릿지 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초
CN113323001A (zh) * 2021-06-08 2021-08-31 核工业西南勘察设计研究院有限公司 拱桥推力基础结构和拱桥推力基础结构的浇筑方法
KR102599844B1 (ko) * 2022-05-20 2023-11-08 주식회사 더브릿지 해안바닥에 해상기둥을 설치하는 방법
KR102577843B1 (ko) * 2022-06-30 2023-09-13 김민혁 기성품 파일을 이용한 가물막이 구조물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121908A (ja) * 1997-07-03 1999-01-26 Ohbayashi Corp 仮締切工法および仮締切構造体
KR20120014448A (ko) * 2010-08-09 2012-02-17 (주)부광엔지니어링 도로 구조물 고정용 앵커
KR101118734B1 (ko) * 2009-10-07 2012-03-12 김준성 조립식 가물막이
KR20180084411A (ko) * 2017-01-17 2018-07-25 이신원 Pcc 구조를 이용한 교각 우물통기초 시공구조
KR101898449B1 (ko) * 2018-07-27 2018-10-04 주식회사 에코해양건설 2중 구조인 조립식 강재 가물막이 및 이를 이용한 물막이 시공방법
KR102011321B1 (ko) * 2018-12-27 2019-10-21 (주)더브릿지 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857772B1 (ko) 2008-04-02 2008-09-09 최승희 조립식 강널말뚝 우물통 가물막이 설치구조 및 그 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121908A (ja) * 1997-07-03 1999-01-26 Ohbayashi Corp 仮締切工法および仮締切構造体
KR101118734B1 (ko) * 2009-10-07 2012-03-12 김준성 조립식 가물막이
KR20120014448A (ko) * 2010-08-09 2012-02-17 (주)부광엔지니어링 도로 구조물 고정용 앵커
KR20180084411A (ko) * 2017-01-17 2018-07-25 이신원 Pcc 구조를 이용한 교각 우물통기초 시공구조
KR101898449B1 (ko) * 2018-07-27 2018-10-04 주식회사 에코해양건설 2중 구조인 조립식 강재 가물막이 및 이를 이용한 물막이 시공방법
KR102011321B1 (ko) * 2018-12-27 2019-10-21 (주)더브릿지 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117027024A (zh) * 2023-10-08 2023-11-10 中国土木工程集团有限公司 一种复杂施工环境下的海岸线水下承台施工装置
CN117027024B (zh) * 2023-10-08 2024-02-06 中国土木工程集团有限公司 一种复杂施工环境下的海岸线水下承台施工装置

Also Published As

Publication number Publication date
KR102011321B1 (ko) 2019-10-21

Similar Documents

Publication Publication Date Title
WO2020138860A1 (ko) 변단면 각관을 이용한 환형 기초의 시공방법 및 그 기초
US7530765B2 (en) Structure of intermediate wall of three arch excavated tunnel and method for constructing the same
WO2018221933A1 (ko) 지반 굴착기용 케이싱 가이드 장치 및 이를 이용한 굴착방법
WO2019054703A1 (ko) Cip벽체 형성장치 및 이를 이용한 시공방법
WO2020145483A1 (ko) 구조물 시공방법
KR100819624B1 (ko) 수밀형 오픈케이슨 조립체 및 이를 이용한 현장타설콘크리트기초공법
WO2012157829A1 (ko) 시트파일을 이용한 일괄설치형 수중 대구경 케이싱 가설구조물 및 그 시공방법
CN114319396A (zh) 一种适用于水下复杂地质情况的无底套箱围堰的施工方法
WO2011059145A1 (ko) 강관 말뚝을 이용한 구조물
WO2016208934A1 (ko) 2열 에이치 빔과 고강도강판을 이용한 자립식 흙막이 구조 및 이의 시공방법
WO2021045440A1 (ko) 수중 콘크리트 블록 구조물 및 그 시공 방법
KR20200084183A (ko) 내진보강말뚝과 변위제어슬래브를 이용한 파일 서포트 취수탑 및 취수탑 내진보강공법
KR100476839B1 (ko) 콘크리트 지하구조물의 시공방법
JPH03228999A (ja) コンクリート製ボックスカルバートの敷設工法
JP3218518B2 (ja) 地中連続壁工法における掘削機のガイドウォール
KR970002571B1 (ko) 흙막이 말뚝을 아취형으로 배열시킨 지하실 흙막이 공법
KR200251408Y1 (ko) 접합플랜지 조립식 강재틀을 이용한 교각기초 흙막이 구조
KR200219236Y1 (ko) 철근콘크리트 보 시공을 위한 거푸집 구조체
CN112796316B (zh) 一种人工挖孔环形基桩土芯回填薄钢模板体系及施工方法
JP3168197B2 (ja) ケーソンのアンカー構造及びその施工方法
JP3030622B2 (ja) トンネルの構築方法
WO2024063292A1 (ko) 지하 연속벽 누수방지를 위한 수팽창지수재 시공방법 및 시공구조
KR102664851B1 (ko) 시트파일을 이용한 기존 건축물의 지하층 철거공법
CN115354739B (zh) 一种永临结合地下室结构及其施工方法
CN215630142U (zh) 模块化组合预制电力工作井

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902362

Country of ref document: EP

Kind code of ref document: A1