WO2020138710A1 - Process liquid for extreme ultraviolet lithography and pattern forming method using same - Google Patents

Process liquid for extreme ultraviolet lithography and pattern forming method using same Download PDF

Info

Publication number
WO2020138710A1
WO2020138710A1 PCT/KR2019/015262 KR2019015262W WO2020138710A1 WO 2020138710 A1 WO2020138710 A1 WO 2020138710A1 KR 2019015262 W KR2019015262 W KR 2019015262W WO 2020138710 A1 WO2020138710 A1 WO 2020138710A1
Authority
WO
WIPO (PCT)
Prior art keywords
defects
distilled water
weight
photoresist pattern
reducing
Prior art date
Application number
PCT/KR2019/015262
Other languages
French (fr)
Korean (ko)
Inventor
이수진
김기홍
이승훈
이승현
Original Assignee
영창케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영창케미칼 주식회사 filed Critical 영창케미칼 주식회사
Priority to JP2021529048A priority Critical patent/JP7213346B2/en
Priority to EP19904718.4A priority patent/EP3904960A4/en
Priority to US17/294,865 priority patent/US11487208B2/en
Priority to CN201980081913.1A priority patent/CN113196178A/en
Publication of WO2020138710A1 publication Critical patent/WO2020138710A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • G03F7/405Treatment with inorganic or organometallic reagents after imagewise removal
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70033Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • a process solution for improving the decay level and reducing the number of defects in a photoresist pattern containing polyhydroxystyrene (polyhydxoystyrene) and a method for forming a photoresist pattern using the same It is about.
  • semiconductors are manufactured by a lithography process that uses ultraviolet light in the wavelength range of 193nm, 248nm or 365nm as exposure light, and competition for each company to reduce the minimum line width (hereinafter referred to as CD: Critical Dimension) is fierce.
  • CD Critical Dimension
  • a light source of a smaller wavelength band is required.
  • EUV extreme ultraviolet
  • 13.5nm wavelength extreme ultra violet
  • An object of the present invention is to develop a process liquid composition for improving the collapse level of a pattern generated after photoresist development and reducing the number of defects in a fine pattern process using extreme ultraviolet rays and a method for forming a photoresist pattern using the same.
  • tetramethylammonium hydroxide is used at a certain concentration (in most processes, 2.38% by weight of tetramethylammonium hydroxide and 97.62% by weight of water are used in combination). Dilution), and even in the extreme ultraviolet lithography process, tetramethylammonium hydroxide is diluted in pure water and used as a developer.
  • the pattern collapse was confirmed when washed with pure water continuously after development, and even when the process solution containing tetramethylammonium hydroxide in pure water was applied continuously after development or applied continuously after pure water The collapse was confirmed.
  • the present invention is a preferred first embodiment, anionic surfactant 0.0001 to 1% by weight; 0.0001 to 1% by weight of an alkaline substance; And 98 to 99.9998% by weight of water, to provide a process solution for improving the decay level and reducing the number of defects in the photoresist pattern generated during photoresist development.
  • the anionic surfactant according to the embodiment may be selected from the group consisting of polycarboxylate, sulfonate, sulfate ester salt, phosphate ester salt, or mixtures thereof.
  • the alkali material according to the embodiment may be selected from the group consisting of tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide or mixtures thereof.
  • the present invention further comprises: (a) applying a photoresist to a semiconductor substrate and forming a film; (b) exposing and developing the photoresist film to form a pattern; And (c) washing the photoresist pattern with a process solution for improving the decay level and reducing the number of defects in the photoresist pattern.
  • the cause of the pattern collapse is thought to be due to the capillary force generated between the patterns when the pattern is washed with pure water after development, but empirically knows that reducing only the capillary force cannot completely improve the pattern collapse and reduce the number of defects.
  • reducing only the capillary force cannot completely improve the pattern collapse and reduce the number of defects.
  • the pattern may be melted or the number of defects may be increased.
  • the process solution of the present invention exerts an excellent effect on a photoresist using an extreme ultraviolet light source, and in particular, a pattern generated during the development of a photoresist whose main component of the photoresist is polyhydroxystyrene. It has the effect of improving the level of collapse and reducing the number of defects.
  • the process solution of the present invention has an effect of improving the collapse level of a pattern and reducing the number of defects, which is an effect that photoresist alone cannot achieve when forming a pattern using an extreme ultraviolet light source.
  • the method of forming a photoresist pattern included includes an effect of significantly reducing production costs.
  • the present invention developed through numerous studies over a long period of time, is "an alkali material selected from the group consisting of tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide or mixtures thereof 0.0001 to 1 Weight %; 0.0001 to 1% by weight of anionic surfactants selected from the group consisting of polycarboxylates, sulfonic acid salts, sulfate ester salts, phosphate ester salts or mixtures thereof; and photo containing 98 to 99.9998% by weight of water
  • the process pattern for improving the decay level of the resist pattern and reducing the number of defects and the composition components and composition ratios of the process liquids of the present invention are set as Examples 1 to 40 to compare the composition components and composition ratios in contrast thereto. It was set as 1 to Comparative Example 22.
  • a process solution for improving the decay level of the photoresist pattern containing 0.0001% by weight of polyammonium ammonium salt and 0.01% by weight of tetrabutylammonium hydroxide was prepared by the following method.
  • distilled water used as the last cleaning solution in the developing process during the semiconductor device manufacturing process was prepared.
  • Example 1 According to the composition as described in Table 1 to Table 12, a process solution was prepared as in Example 1 for comparison with the Examples.
  • Example 1 to Example 40 and Comparative Example 1 to Comparative Example 22 the pattern collapse level and the number of defects were reduced for the patterned silicon wafer to measure Experimental Example 1 to Experimental Example 40, Comparative Experimental Example 1 to Comparative Experimental Example 22, and the results are shown in Tables 13 and 14.
  • CD-SEM critical dimension-scanning electron microscope
  • Defect number (A) was measured for the photoresist pattern rinsed with each process liquid sample using a surface defect observation device (manufactured by KLA Tencor), and the rinse treatment was performed using pure water only. It was expressed as a percentage (%) of the number of defects (B) in one case, that is, (A/B)X100.
  • the number of defects after treatment with pure water was defined as 100, and the degree of reduction (improvement) or increase (deterioration) compared to the number of defects treated with pure water was expressed as a reduction ratio.
  • the transparency of the prepared process solution was visually confirmed and displayed as transparent or opaque.
  • Example 1 to Example 40 and Comparative Example 1 to Comparative Example 22 the pattern collapse level, the number of defects, and the transparency of the patterned silicon wafer were measured to measure Experimental Examples 1 to 40 and Comparative Experimental Examples 1 to It was shown as Experimental Example 22, and the results are shown in Tables 13 and 14.
  • CD-SEM critical dimension-scanning electron microscope
  • Defect number (A) was measured for the photoresist pattern rinsed with each process liquid sample using a surface defect observation device (manufactured by KLA Tencor), and the rinse treatment was performed using pure water only. It was expressed as a percentage (%) of the number of defects (B) in one case, that is, (A/B)X100.
  • the transparency of the prepared process solution was visually confirmed and displayed as transparent or opaque.
  • anionic surfactants selected from polycarboxylates, sulfonates, sulfate ester salts and phosphate ester salts, which are process solutions corresponding to Experimental Examples 1 to 40; 0.0001 to 1% by weight of an alkali material selected from tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide; And in the case of a process solution containing 98 to 99.9998% by weight of water, when compared with Comparative Experimental Example 1 to Comparative Experimental Example 22, it was confirmed that the pattern collapse level was improved and the number of defects was also improved.
  • Experimental Examples 2 to 4, Experimental Examples 7 to 9, Experimental Examples 12 to 14, Experimental Examples 17 to 19, Experimental Examples 22, 23, Experimental Examples 26, 27, Experimental Examples 30, 31, and Experimental Examples 34 and 35 0.001 to 0.1% by weight of an anionic surfactant selected from polycarboxylate, sulfonate, sulfate ester, and phosphate ester salts, which are the corresponding process solutions; 0.001 to 0.1% by weight of an alkali material selected from tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide; And 99.8 to 99.998% by weight of water; for the process solution for improving the decay level of the photoresist pattern and reducing the number of defects, as well as when compared with comparative experiments, as well as when compared with other experimental examples, Since it was confirmed that the level of pattern collapse was improved and the number of defects was also improved, this concentration range was confirmed to be more desirable.
  • an anionic surfactant selected from poly
  • the number of blocks in which pattern collapse did not occur was measured to be 81.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Detergent Compositions (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The present invention relates to a process liquid for reducing the collapse level of photoresist patterns and the number of defects, which comprises polyhydroxystyrene and is used for an extreme ultraviolet light source. More specifically, the present invention relates to a process liquid for reducing the collapse level of photoresist patterns and the number of defects and a pattern forming method using same, the process liquid comprising 0.0001 to 1 weight% of an alkaline material; 0.0001 to 1 weight% of an anionic surfactant; and 98 to 99.9998 wt% of water.

Description

극자외선 리소그래피용 공정액 및 이를 사용한 패턴 형성 방법Process solution for extreme ultraviolet lithography and pattern formation method using same
본원 발명은 광원으로 극자외선을 사용하는 포토레지스트 패턴 공정에 있어서 폴리하이드록시스타이렌(polyhydxoystyrene)을 포함하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액 및 이를 이용한 포토레지스트 패턴 형성 방법에 관한 것이다.In the present invention, in a photoresist pattern process using extreme ultraviolet light as a light source, a process solution for improving the decay level and reducing the number of defects in a photoresist pattern containing polyhydroxystyrene (polyhydxoystyrene) and a method for forming a photoresist pattern using the same It is about.
일반적으로 반도체는 193nm, 248nm 또는 365nm 등의 파장대 자외선을 노광광으로 하는 리소그래피 공정에 의해 제조되며, 각 업체가 최소선폭 (이하 CD : Critical Dimension)을 감소시키기 위한 경쟁이 치열하다.In general, semiconductors are manufactured by a lithography process that uses ultraviolet light in the wavelength range of 193nm, 248nm or 365nm as exposure light, and competition for each company to reduce the minimum line width (hereinafter referred to as CD: Critical Dimension) is fierce.
이에 더 미세한 패턴을 형성하기 위해 더 작은 파장대의 광원을 필요로 하는데, 현재 극자외선 (EUV, extreme ultra violet, 13.5nm 파장) 광원을 이용한 리소그래피 기술이 활발히 이용되고 있으며 이를 이용하여 더 미세한 파장을 구현할 수 있게 되었다.Accordingly, in order to form a finer pattern, a light source of a smaller wavelength band is required. Currently, lithography technology using an extreme ultraviolet (EUV, extreme ultra violet, 13.5nm wavelength) light source is actively used, and a finer wavelength can be realized by using the light source. It became possible.
그러나 극자외선 용 포토레지스트의 에칭(etching) 내성이 여전히 개선되지 못하고 있으므로 종횡비가 큰 포토레지스트 패턴이 계속적으로 필요로 되고 있으며, 이로 인해 현상 중 패턴 붕괴가 쉽게 일어나고 결함수가 증가함으로써 제조 공정에서 공정 마진이 크게 줄어드는 문제가 발생하고 있다.However, since the etch resistance of the photoresist for extreme ultraviolet rays is still not improved, a photoresist pattern having a large aspect ratio is continuously required, and as a result, pattern collapse easily occurs during development and the number of defects increases, thereby increasing the process margin in the manufacturing process. This greatly shrinking problem is occurring.
이에, 미세 패턴 형성 중 발생되는 붕괴 수준을 개선하고 결함수를 감소시키기 위한 기술 개발이 요구되고 있다. 패턴 붕괴 수준을 개선하고 결함수를 감소시키기 위해 포토레지스트의 성능 향상이 최선일 수 있으나 모든 성능을 만족시키는 포토레지스트의 신규 개발이 어려운 현실을 무시할 수 없는 상황이다.Accordingly, there is a need to develop a technique for improving the level of collapse generated during fine pattern formation and reducing the number of defects. In order to improve the pattern collapse level and reduce the number of defects, it may be best to improve the performance of the photoresist, but the development of a photoresist that satisfies all performance is difficult to ignore.
포토레지스트의 신규 개발의 필요성은 남겨 두더라도 다른 방법으로 패턴 붕괴 수준을 개선하고 결함수를 감소시키기 위한 노력이 계속 진행되고 있다.Although the need for new development of photoresist remains, efforts are being made to improve the level of pattern collapse and reduce the number of defects in other ways.
본원 발명의 목적은 극자외선을 이용하는 미세 패턴 공정에서 포토레지스트 현상 후 발생되는 패턴의 붕괴 수준을 개선하고 결함수를 감소시키기 위한 공정액 조성물 및 이를 이용한 포토레지스트 패턴 형성방법의 개발에 있다.An object of the present invention is to develop a process liquid composition for improving the collapse level of a pattern generated after photoresist development and reducing the number of defects in a fine pattern process using extreme ultraviolet rays and a method for forming a photoresist pattern using the same.
현상 공정 중 사용하는 수계 타입의 공정액에는 다양한 계면활성제가 사용되고 있으나, 본원 발명에서는 음이온성 계면활성제를 사용하여 효과적인 공정액을 제조하였다.Various surfactants are used in the aqueous-based process solution used during the development process, but an effective process solution was prepared using an anionic surfactant in the present invention.
초순수를 주로 사용하는 수계 타입의 공정액에 소수성에 가까운 비이온 계면활성제를 사용 할 경우 포토레지스트 벽면의 소수화를 유도하여 패턴의 멜팅(melting) 및 붕괴 감소를 유도할 수 있으나, 비이온 계면활성제끼리 뭉쳐지는 경향이 강하여 공정액의 물성이 균일하게 되지 못하고 사용 중에 오히려 뭉쳐진 비이온성 계면활성제에 의하여 결함(defect)을 유발시킬 가능성이 있다. 즉, 비이온 계면활성제를 사용 할 경우 멜팅 개선을 위해 사용량을 증가 시켜야 하며, 이는 포토레지스트에 손상 (Damage)이 발생될 우려가 있다. 또한 모세관력을 감소시키기 위해 공정액의 표면장력을 낮출 목적으로 부적합한 계면활성제를 과량 사용할 경우 패턴의 멜팅을 유도하여 오히려 패턴 붕괴를 더욱 유발시킬 수 있다.When a non-ionic surfactant that is close to hydrophobicity is used in an aqueous-based process solution mainly using ultrapure water, it is possible to induce hydrophobicity of the photoresist wall surface to induce pattern melting and decay, but non-ionic surfactants There is a possibility that the property of the process liquid is not uniform due to a strong tendency to clump, and a defect may be caused by the clumped nonionic surfactant during use. That is, when using a nonionic surfactant, the amount of use must be increased to improve the melting, which may cause damage to the photoresist. In addition, in case of excessive use of an inappropriate surfactant for the purpose of lowering the surface tension of the process liquid in order to reduce the capillary force, the pattern may be further induced by inducing melting of the pattern.
또한 양이온 계면활성제의 경우 수용액에 있어서 활성기가 양이온으로 해리하는 것으로서 메탈이 보증되는 경우가 드물다. 이는 포토리소그래피 공정에서 심각한 결함을 발생시키는 요인이 될 우려가 있다.In addition, in the case of cationic surfactants, metals are rarely guaranteed as the active groups dissociate into cations in aqueous solutions. This may cause a serious defect in the photolithography process.
본원 발명에서는 음이온 계면활성제를 사용함으로써 패턴 붕괴를 개선하고 결함수를 감소시키는 효과가 뛰어남을 확인하였다. 이는 비이온 계면활성제 대비 친수기 부분이 음이온으로 해리됨으로써, 포토레지스트에 탈 보호된 부분과 미반응하여 + 차지를 가진 부분과 상대적으로 반응이 쉬워서 미세 패턴 형성에 도움이 된 결과로 파악되었다.In the present invention, it was confirmed that by using an anionic surfactant, the effect of improving pattern collapse and reducing the number of defects is excellent. This was found to be a result of being helpful in forming a fine pattern because the hydrophilic part is dissociated as an anion compared to a nonionic surfactant, and thus it is relatively easy to react with a portion having a + charge due to unreacted with the deprotected part in the photoresist.
현재 대부분의 포토 리소그래피 현상 공정에 사용하는 대표적인 현상액으로 순수를 기본으로 하여 테트라메틸암모늄하이드록사이드를 일정 농도(대부분 공정에서는 테트라메틸암모늄하이드록사이드 2.38 중량%에 물 97.62 중량%와 혼용하여 사용하고 있음)로 희석하여 사용하고 있으며, 극자외선 리소그래피 공정에서도 현재 순수에 테트라메틸암모늄하이드록사이드를 희석하여 현상액으로 사용 중에 있다.Currently, a typical developer used in most photolithography development processes. Based on pure water, tetramethylammonium hydroxide is used at a certain concentration (in most processes, 2.38% by weight of tetramethylammonium hydroxide and 97.62% by weight of water are used in combination). Dilution), and even in the extreme ultraviolet lithography process, tetramethylammonium hydroxide is diluted in pure water and used as a developer.
극자외선 리소그래피 공정 중 현상 후 연속으로 순수 단독으로 세정할 경우 패턴 붕괴를 확인 하였으며, 순수에 테트라메틸암모늄하이드록사이드가 포함된 공정액을 현상 후 연속으로 적용 또는 순수 후 연속으로 적용할 경우에도 패턴 무너짐을 확인 하였다.During the extreme ultraviolet lithography process, the pattern collapse was confirmed when washed with pure water continuously after development, and even when the process solution containing tetramethylammonium hydroxide in pure water was applied continuously after development or applied continuously after pure water The collapse was confirmed.
테트라메틸암모늄하이드록사이드가 포함된 공정액의 경우 극자외선으로 노광된 미세 패턴을 약화시키고 모세관력이 크거나 불균일하여 패턴을 무너뜨리는 것으로 추정할 수 있다.In the case of a process solution containing tetramethylammonium hydroxide, it can be estimated that the fine pattern exposed with extreme ultraviolet light is weakened, and the capillary force is large or non-uniform to break the pattern.
그래서 극자외선으로 노광된 패턴의 붕괴를 개선하고 추가적으로 극자외선 공정에서 요구되는 포토레지스트 패턴의 LWR(Line Width Roughness) 및 결함 개선을 위해서는 테트라메틸암모늄하이드록사이드보다 상대적으로 노광된 패턴에 미치는 힘이 약한 알칼리 물질에 대한 검토가 필요하다.Therefore, in order to improve the collapse of the pattern exposed to extreme ultraviolet rays and additionally to improve the line width roughness (LWR) and defects of the photoresist pattern required in the extreme ultraviolet process, the force exerted on the relatively exposed pattern than tetramethylammonium hydroxide is applied. It is necessary to review weak alkaline substances.
본원 발명에서는 알칼리 물질 중 테트라에틸암모늄하이드록사이드, 테트라프로필암모늄하이드록사이드, 테트라부틸암모늄하이드록사이드를 이용할 경우 패턴 붕괴를 비롯하여 LWR이나 결함이 개선됨을 확인 하였다.In the present invention, it was confirmed that when using tetraethylammonium hydroxide, tetrapropylammonium hydroxide, or tetrabutylammonium hydroxide among alkali materials, LWR or defects were improved, including pattern collapse.
이에 본원 발명은 바람직한 제1 구현예로서, 음이온 계면활성제 0.0001 내지 1중량%; 알칼리 물질 0.0001 내지 1중량%; 및 물 98 내지 99.9998중량%를 포함하는 포토레지스트 현상 중 발생되는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액을 제공한다.Accordingly, the present invention is a preferred first embodiment, anionic surfactant 0.0001 to 1% by weight; 0.0001 to 1% by weight of an alkaline substance; And 98 to 99.9998% by weight of water, to provide a process solution for improving the decay level and reducing the number of defects in the photoresist pattern generated during photoresist development.
상기 구현 예에 의한 음이온성 계면활성제는 폴리카르복실산염, 술폰산염, 황산에스테르염, 인산에스테르염 또는 이들의 혼합물로 구성된 군에서 선택되는 것일 수 있다.The anionic surfactant according to the embodiment may be selected from the group consisting of polycarboxylate, sulfonate, sulfate ester salt, phosphate ester salt, or mixtures thereof.
상기 구현 예에 의한 알칼리 물질은 테트라에틸암모늄하이드록사이드, 테트라프로필암모늄하이드록사이드, 테트라부틸암모늄하이드록사이드 또는 이들의 혼합물로 구성된 군에서 선택되는 것일 수 있다.The alkali material according to the embodiment may be selected from the group consisting of tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide or mixtures thereof.
본원 발명은 또한, (a) 반도체 기판에 포토레지스트를 도포하고 막을 형성하는 단계; (b) 상기 포토레지스트 막을 노광한 후 현상하여 패턴을 형성하는 단계; 및 (c) 상기 포토레지스트 패턴을 상기 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액으로 세정하는 단계;를 포함하는 것을 특징으로 하는 포토레지스트 패턴 형성방법을 제공한다.The present invention further comprises: (a) applying a photoresist to a semiconductor substrate and forming a film; (b) exposing and developing the photoresist film to form a pattern; And (c) washing the photoresist pattern with a process solution for improving the decay level and reducing the number of defects in the photoresist pattern.
패턴 붕괴의 원인은 현상 후에 순수로 패턴을 세정할 때 패턴 사이에 발생되는 모세관력에 의한 것으로 생각되고 있지만, 모세관력만 감소시킨다고 패턴 붕괴를 완벽히 개선시키고 결함수를 감소시킬 수 없음을 경험적으로 알 수 있었다.The cause of the pattern collapse is thought to be due to the capillary force generated between the patterns when the pattern is washed with pure water after development, but empirically knows that reducing only the capillary force cannot completely improve the pattern collapse and reduce the number of defects. Could.
모세관력을 감소시키기 위해 공정액의 표면장력을 낮출 목적으로 부적합한 계면활성제를 과량 사용할 경우 패턴의 멜팅을 유도하여 오히려 패턴 붕괴를 더욱 유발시키거나 결함수를 증가시킬 수 있다.In the case of excessive use of an inappropriate surfactant for the purpose of lowering the surface tension of the process liquid to reduce the capillary force, the pattern may be melted or the number of defects may be increased.
패턴 붕괴를 개선시키고 결함수를 감소시키기 위해서는 공정액의 표면장력을 감소시키는 것과 동시에 포토레지스트 패턴의 멜팅을 방지하는 계면활성제의 선택이 중요하다.In order to improve the pattern collapse and reduce the number of defects, it is important to select a surfactant that reduces the surface tension of the process solution and prevents the melting of the photoresist pattern.
본원 발명의 공정액은 극자외선 광원을 이용하는 포토레지스트에 우수한 효과를 발휘하며, 특히 포토레지스트의 주된 성분인 수지(resin)가 폴리하이드록시스타이렌(polyhydroxystyrene)인 포토레지스트의 현상 중 발생되는 패턴의 붕괴 수준 개선시키고 결함수를 감소시키는 효과가 있다.The process solution of the present invention exerts an excellent effect on a photoresist using an extreme ultraviolet light source, and in particular, a pattern generated during the development of a photoresist whose main component of the photoresist is polyhydroxystyrene. It has the effect of improving the level of collapse and reducing the number of defects.
본원 발명의 공정액은, 극자외선 광원을 이용한 패턴 형성 시 포토레지스트 단독으로는 달성할 수 없는 효과인 패턴의 붕괴 수준 개선시키고 결함수를 감소시키는 효과가 있으며, 특히 이러한 공정액으로 세정하는 단계를 포함하는 포토레지스트 패턴 형성방법은 생산 비용을 크게 절감시킬 수 있는 효과를 나타내는 것이다.The process solution of the present invention has an effect of improving the collapse level of a pattern and reducing the number of defects, which is an effect that photoresist alone cannot achieve when forming a pattern using an extreme ultraviolet light source. The method of forming a photoresist pattern included includes an effect of significantly reducing production costs.
이하, 본원 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
장기간의 수많은 연구를 통하여 개발된 본원 발명은, "테트라에틸암모늄하이드록사이드, 테트라프로필암모늄하이드록사이드, 테트라부틸암모늄하이드록사이드 또는 이들의 혼합물로 구성된 군에서 선택되는 것인 알칼리 물질 0.0001 내지 1중량%; 폴리카르복실산염, 술폰산염, 황산에스테르염, 인산에스테르염 또는 이들의 혼합물로 구성된 군에서 선택되는 것인 음이온 계면활성제 0.0001 내지 1중량%; 및 물 98 내지 99.9998중량%를 포함하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액"에 관한 것이며, 이러한 본원 발명의 공정액의 조성성분 및 조성비를 실시예 1 내지 실시예 40으로 설정하여 이와 대비되는 조성성분 및 조성비를 비교예 1 내지 비교예 22로 설정하였다.The present invention, developed through numerous studies over a long period of time, is "an alkali material selected from the group consisting of tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide or mixtures thereof 0.0001 to 1 Weight %; 0.0001 to 1% by weight of anionic surfactants selected from the group consisting of polycarboxylates, sulfonic acid salts, sulfate ester salts, phosphate ester salts or mixtures thereof; and photo containing 98 to 99.9998% by weight of water The process pattern for improving the decay level of the resist pattern and reducing the number of defects", and the composition components and composition ratios of the process liquids of the present invention are set as Examples 1 to 40 to compare the composition components and composition ratios in contrast thereto. It was set as 1 to Comparative Example 22.
이하 본원 발명의 바람직한 실시예 및 이와 비교하기 위한 비교예를 설명한다. 그러나 하기한 실시예는 본원 발명의 바람직한 일 실시예일 뿐 본원 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention and comparative examples for comparison therewith will be described. However, the following examples are only one preferred embodiment of the present invention, and the present invention is not limited to the following examples.
[실시예 1][Example 1]
폴리카르복실산암모늄염 0.0001중량%, 테트라부틸암모늄하이드록사이드 0.01중량%가 포함된, 포토레지스트 패턴의 붕괴 수준을 개선하기 위한 공정액을 아래와 같은 방법으로 제조하였다.A process solution for improving the decay level of the photoresist pattern containing 0.0001% by weight of polyammonium ammonium salt and 0.01% by weight of tetrabutylammonium hydroxide was prepared by the following method.
폴리카르복실산암모늄염 0.0001중량%, 테트라부틸암모늄하이드록사이드 0.01중량%를 잔량의 증류수에 투입하여 5시간 교반한 뒤 미세 고형분 불순물을 제거하기 위해 0.01um 필터에 통과시켜, 포토레지스트 패턴의 붕괴 수준을 개선하기 위한 공정액을 제조하였다.0.0001% by weight of polyammonium ammonium salt and 0.01% by weight of tetrabutylammonium hydroxide were added to the remaining amount of distilled water, stirred for 5 hours, and then passed through a 0.01um filter to remove fine solid impurities, and the level of collapse of the photoresist pattern A process solution was prepared to improve.
[실시예 2 ~ 실시예 40][Example 2 to Example 40]
표 1에서 표 12에 기재된 바와 같은 조성에 따라, 실시예 1과 동일한 포토레지스트 패턴의 결함 수준을 개선하기 위한 공정액을 제조하였다.According to the composition as described in Table 1 to Table 12, a process solution for improving the defect level of the same photoresist pattern as in Example 1 was prepared.
[비교예 1][Comparative Example 1]
일반적으로 반도체 소자 제조공정 중 현상 공정의 마지막 세정액으로 사용되는 증류수를 준비하였다.In general, distilled water used as the last cleaning solution in the developing process during the semiconductor device manufacturing process was prepared.
[비교예 2 ~ 비교예 22][Comparative Example 2 ~ Comparative Example 22]
표 1에서 표 12에 기재된 바와 같은 조성에 따라, 실시예와 비교하기 위해 실시예 1과 같이 공정액을 제조하였다.According to the composition as described in Table 1 to Table 12, a process solution was prepared as in Example 1 for comparison with the Examples.
[실험예 1 ~ 실험예 40, 비교실험예 1 ~ 비교실험예 22][Experimental Example 1 to Experimental Example 40, Comparative Experimental Example 1 to Comparative Experimental Example 22]
실시예 1 ~ 실시예 40 및 비교예 1 ~ 비교예 22에서 패턴이 형성된 실리콘 웨이퍼에 대해 패턴 붕괴 수준 및 결함수 감소비를 측정하여 실험예 1 ~ 실험예 40, 비교실험예 1 ~ 비교실험예 22로 나타냈으며, 그 결과를 표 13 및 표 14에 기재하였다.In Example 1 to Example 40 and Comparative Example 1 to Comparative Example 22, the pattern collapse level and the number of defects were reduced for the patterned silicon wafer to measure Experimental Example 1 to Experimental Example 40, Comparative Experimental Example 1 to Comparative Experimental Example 22, and the results are shown in Tables 13 and 14.
(1) 패턴 붕괴 방지 확인(1) Confirmation of pattern collapse prevention
노광에너지와 포커스를 스플릿 한 후, 크리티칼디멘션-주사전자현미경(CD-SEM, Hitachi)을 이용하여 전체 블록 수 89개 중 패턴이 무너지지 않는 블록(block) 수를 측정하였다.After splitting the exposure energy and focus, the number of blocks in which the pattern does not collapse out of 89 total blocks was measured using a critical dimension-scanning electron microscope (CD-SEM, Hitachi).
(2) 결함수 감소비(2) Defect reduction ratio
표면결함관찰장치[케이 엘 에이(KLA) 텐콜(Tencor)사 제품]를 이용해서 각각의 공정액 시료에 의해 린스 처리한 포토레지스트 패턴에 대해서, 결함수(A)를 계측하고, 순수만으로 린스 처리한 경우의 결함수(B)에 대한 백분율(%), 즉 (A/B)X100으로서 나타냈다.Defect number (A) was measured for the photoresist pattern rinsed with each process liquid sample using a surface defect observation device (manufactured by KLA Tencor), and the rinse treatment was performed using pure water only. It was expressed as a percentage (%) of the number of defects (B) in one case, that is, (A/B)X100.
순수만으로 처리한 후의 결함수를 100으로 정하여 기준으로 하였고, 순수만으로 처리한 결함수보다 감소(개선) 또는 증가(악화)되는 정도를 감소비로 표시하였다.The number of defects after treatment with pure water was defined as 100, and the degree of reduction (improvement) or increase (deterioration) compared to the number of defects treated with pure water was expressed as a reduction ratio.
(3) 투명도(3) Transparency
제조된 공정액의 투명도를 육안으로 확인하여 투명 또는 불투명으로 표시하였다.The transparency of the prepared process solution was visually confirmed and displayed as transparent or opaque.
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예1Example 1 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.00010.0001 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.989999.9899
실시예2Example 2 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.0010.001 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.989099.9890
실시예3Example 3 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예4Example 4 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.10.1 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.890099.8900
실시예5Example 5 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 1One 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 98.990098.9900
비교예1Comparative Example 1 -- -- -- -- 증류수Distilled water 100100
비교예2Comparative Example 2 -- -- 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.990099.9900
비교예3Comparative Example 3 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 22 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 97.990097.9900
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예6Example 6 술폰산염Sulfonate 0.00010.0001 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.989999.9899
실시예7Example 7 술폰산염Sulfonate 0.0010.001 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.989099.9890
실시예8Example 8 술폰산염Sulfonate 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예9Example 9 술폰산염Sulfonate 0.10.1 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.890099.8900
실시예10Example 10 술폰산염Sulfonate 1One 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 98.990098.9900
비교예1Comparative Example 1 -- -- -- -- 증류수Distilled water 100100
비교예2Comparative Example 2 -- -- 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.990099.9900
비교예4Comparative Example 4 술폰산염Sulfonate 22 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 97.990097.9900
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예11Example 11 황산에스테르염Sulfate ester salt 0.00010.0001 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.989999.9899
실시예12Example 12 황산에스테르염Sulfate ester salt 0.0010.001 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.989099.9890
실시예13Example 13 황산에스테르염Sulfate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예14Example 14 황산에스테르염Sulfate ester salt 0.10.1 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.890099.8900
실시예15Example 15 황산에스테르염Sulfate ester salt 1One 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 98.990098.9900
비교예1Comparative Example 1 -- -- -- -- 증류수Distilled water 100100
비교예2Comparative Example 2 -- -- 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.990099.9900
비교예5Comparative Example 5 황산에스테르염Sulfate ester salt 22 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 97.990097.9900
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예16Example 16 인산에스테르염Phosphate ester salt 0.00010.0001 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.989999.9899
실시예17Example 17 인산에스테르염Phosphate ester salt 0.0010.001 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.989099.9890
실시예18Example 18 인산에스테르염Phosphate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예19Example 19 인산에스테르염Phosphate ester salt 0.10.1 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.890099.8900
실시예20Example 20 인산에스테르염Phosphate ester salt 1One 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 98.990098.9900
비교예1Comparative Example 1 -- -- -- -- 증류수Distilled water 100100
비교예2Comparative Example 2 -- -- 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.990099.9900
비교예6Comparative Example 6 인산에스테르염Phosphate ester salt 22 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 97.990097.9900
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예21Example 21 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.00010.0001 증류수Distilled water 99.989999.9899
실시예22Example 22 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.0010.001 증류수Distilled water 99.989099.9890
실시예3Example 3 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예23Example 23 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.10.1 증류수Distilled water 99.890099.8900
실시예24Example 24 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 1One 증류수Distilled water 98.990098.9900
비교예7Comparative Example 7 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 -- -- 증류수Distilled water 99.990099.9900
비교예8Comparative Example 8 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 22 증류수Distilled water 97.990097.9900
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예25Example 25 술폰산염Sulfonate 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.00010.0001 증류수Distilled water 99.989999.9899
실시예26Example 26 술폰산염Sulfonate 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.0010.001 증류수Distilled water 99.989099.9890
실시예8Example 8 술폰산염Sulfonate 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예27Example 27 술폰산염Sulfonate 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.10.1 증류수Distilled water 99.890099.8900
실시예28Example 28 술폰산염Sulfonate 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 1One 증류수Distilled water 98.990098.9900
비교예9Comparative Example 9 술폰산염Sulfonate 0.010.01 -- -- 증류수Distilled water 99.990099.9900
비교예10Comparative Example 10 술폰산염Sulfonate 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 22 증류수Distilled water 97.990097.9900
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예29Example 29 황산에스테르염Sulfate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.00010.0001 증류수Distilled water 99.989999.9899
실시예30Example 30 황산에스테르염Sulfate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.0010.001 증류수Distilled water 99.989099.9890
실시예13Example 13 황산에스테르염Sulfate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예31Example 31 황산에스테르염Sulfate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.10.1 증류수Distilled water 99.890099.8900
실시예32Example 32 황산에스테르염Sulfate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 1One 증류수Distilled water 98.990098.9900
비교예11Comparative Example 11 황산에스테르염Sulfate ester salt 0.010.01 -- -- 증류수Distilled water 99.990099.9900
비교예12Comparative Example 12 황산에스테르염Sulfate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 22 증류수Distilled water 97.990097.9900
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예33Example 33 인산에스테르염Phosphate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.00010.0001 증류수Distilled water 99.989999.9899
실시예34Example 34 인산에스테르염Phosphate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.0010.001 증류수Distilled water 99.989099.9890
실시예18Example 18 인산에스테르염Phosphate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예35Example 35 인산에스테르염Phosphate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.10.1 증류수Distilled water 99.890099.8900
실시예36Example 36 인산에스테르염Phosphate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 1One 증류수Distilled water 98.990098.9900
비교예13Comparative Example 13 인산에스테르염Phosphate ester salt 0.010.01 -- -- 증류수Distilled water 99.990099.9900
비교예14Comparative Example 14 인산에스테르염Phosphate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 22 증류수Distilled water 97.990097.9900
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예3Example 3 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예37Example 37 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라에틸암모늄하이드록사이드Tetraethylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
비교예15Comparative Example 15 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라메틸암모늄하이드록사이드Tetramethylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
비교예16Comparative Example 16 폴리카르복실산암모늄염Polycarboxylic acid ammonium salt 0.010.01 테트라펜틸암모늄하이드록사이드Tetrapentylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예8Example 8 술폰산염Sulfonate 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예38Example 38 술폰산염Sulfonate 0.010.01 테트라에틸암모늄하이드록사이드Tetraethylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
비교예17Comparative Example 17 술폰산염Sulfonate 0.010.01 테트라메틸암모늄하이드록사이드Tetramethylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
비교예18Comparative Example 18 술폰산염Sulfonate 0.010.01 테트라펜틸암모늄하이드록사이드Tetrapentylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예13Example 13 황산에스테르염Sulfate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예39Example 39 황산에스테르염Sulfate ester salt 0.010.01 테트라에틸암모늄하이드록사이드Tetraethylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
비교예19Comparative Example 19 황산에스테르염Sulfate ester salt 0.010.01 테트라메틸암모늄하이드록사이드Tetramethylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
비교예20Comparative Example 20 황산에스테르염Sulfate ester salt 0.010.01 테트라펜틸암모늄하이드록사이드Tetrapentylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
계면활성제Surfactants 알칼리 물질Alkali substance 증류수Distilled water
명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight) 명칭designation 함량(중량%)Content (% by weight)
실시예18Example 18 인산에스테르염Phosphate ester salt 0.010.01 테트라부틸암모늄하이드록사이드Tetrabutylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
실시예40Example 40 인산에스테르염Phosphate ester salt 0.010.01 테트라에틸암모늄하이드록사이드Tetraethylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
비교예21Comparative Example 21 인산에스테르염Phosphate ester salt 0.010.01 테트라메틸암모늄하이드록사이드Tetramethylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
비교예22Comparative Example 22 인산에스테르염Phosphate ester salt 0.010.01 테트라펜틸암모늄하이드록사이드Tetrapentylammonium hydroxide 0.010.01 증류수Distilled water 99.980099.9800
[실험예 1 ~ 실험예 40, 비교실험예 1 ~ 비교실험예 22][Experimental Example 1 to Experimental Example 40, Comparative Experimental Example 1 to Comparative Experimental Example 22]
실시예 1 ~ 실시예 40 및 비교예 1 ~ 비교예 22에서 패턴이 형성된 실리콘 웨이퍼에 대해 패턴 붕괴 수준, 결함수 감소비 및 투명도를 측정하여 실험예 1 ~ 실험예 40, 비교실험예 1 ~ 비교실험예 22로 나타냈으며, 그 결과를 표 13 및 표 14에 기재하였다.In Example 1 to Example 40 and Comparative Example 1 to Comparative Example 22, the pattern collapse level, the number of defects, and the transparency of the patterned silicon wafer were measured to measure Experimental Examples 1 to 40 and Comparative Experimental Examples 1 to It was shown as Experimental Example 22, and the results are shown in Tables 13 and 14.
(1) 패턴 붕괴 수준(1) Pattern collapse level
노광에너지와 포커스를 스플릿 한 후, 크리티칼디멘션-주사전자현미경(CD-SEM, Hitachi)을 이용하여 전체 블록 수 89개 중 패턴이 무너지지 않는 블록(block) 수를 측정하였다.After splitting the exposure energy and focus, the number of blocks in which the pattern does not collapse out of 89 total blocks was measured using a critical dimension-scanning electron microscope (CD-SEM, Hitachi).
(2) 결함수(2) Number of defects
표면결함관찰장치[케이 엘 에이(KLA) 텐콜(Tencor)사 제품]를 이용해서 각각의 공정액 시료에 의해 린스 처리한 포토레지스트 패턴에 대해서, 결함수(A)를 계측하고, 순수만으로 린스 처리한 경우의 결함수(B)에 대한 백분율(%), 즉 (A/B)X100으로서 나타냈다.Defect number (A) was measured for the photoresist pattern rinsed with each process liquid sample using a surface defect observation device (manufactured by KLA Tencor), and the rinse treatment was performed using pure water only. It was expressed as a percentage (%) of the number of defects (B) in one case, that is, (A/B)X100.
(3) 투명도(3) Transparency
제조된 공정액의 투명도를 육안으로 확인하여 투명 또는 불투명으로 표시하였다.The transparency of the prepared process solution was visually confirmed and displayed as transparent or opaque.
패턴 붕괴 없는 블록 수Number of blocks without pattern collapse 결함수 감소비(%)Defect reduction ratio (%) 투명도transparency
실험예1Experimental Example 1 5555 5353 투명Transparency
실험예2Experimental Example 2 6363 4646 투명Transparency
실험예3Experimental Example 3 8181 2525 투명Transparency
실험예4Experimental Example 4 6464 3535 투명Transparency
실험예5Experimental Example 5 6868 8080 투명Transparency
실험예6Experimental Example 6 5353 5252 투명Transparency
실험예7Experimental Example 7 6161 4848 투명Transparency
실험예8Experimental Example 8 7676 3030 투명Transparency
실험예9Experimental Example 9 6565 3636 투명Transparency
실험예10Experimental Example 10 6767 7575 투명Transparency
실험예11Experimental Example 11 5252 5656 투명Transparency
실험예12Experimental Example 12 6464 4747 투명Transparency
실험예13Experimental Example 13 7575 3131 투명Transparency
실험예14Experimental Example 14 6262 3838 투명Transparency
실험예15Experimental Example 15 6666 7272 투명Transparency
실험예16Experimental Example 16 5252 5656 투명Transparency
실험예17Experimental Example 17 6868 5050 투명Transparency
실험예18Experimental Example 18 7676 3333 투명Transparency
실험예19Experimental Example 19 6565 3838 투명Transparency
실험예20Experimental Example 20 6969 7878 투명Transparency
실험예21Experimental Example 21 7070 8181 투명Transparency
실험예22Experimental Example 22 7272 5353 투명Transparency
실험예23Experimental Example 23 7575 3838 투명Transparency
실험예24Experimental Example 24 6666 8484 투명Transparency
실험예25Experimental Example 25 6969 8080 투명Transparency
실험예26Experimental Example 26 7070 5252 투명Transparency
실험예27Experimental Example 27 7171 4040 투명Transparency
실험예28Experimental Example 28 6565 8787 투명Transparency
실험예29Experimental Example 29 7272 7676 투명Transparency
실험예30Experimental Example 30 7070 5050 투명Transparency
실험예31Experimental Example 31 7676 3737 투명Transparency
실험예32Experimental Example 32 6868 8888 투명Transparency
실험예33Experimental Example 33 6767 8080 투명Transparency
실험예34Experimental Example 34 7171 5252 투명Transparency
실험예35Experimental Example 35 7272 4040 투명Transparency
실험예36Experimental Example 36 6666 8686 투명Transparency
실험예37Experimental Example 37 5757 6969 투명Transparency
실험예38Experimental Example 38 5959 7070 투명Transparency
실험예39Experimental Example 39 5555 7171 투명Transparency
실험예40Experimental Example 40 6060 6565 투명Transparency
패턴 붕괴 없는 블록 수Number of blocks without pattern collapse 결함수 감소비(%)Defect reduction ratio (%) 투명도transparency
비교실험예1Comparative Experimental Example 1 4646 100100 투명Transparency
비교실험예2Comparative Experimental Example 2 4040 9595 투명Transparency
비교실험예3Comparative Experimental Example 3 3737 276276 불투명opacity
비교실험예4Comparative Experimental Example 4 3838 269269 불투명opacity
비교실험예5Comparative Experimental Example 5 3636 274274 불투명opacity
비교실험예6Comparative Experimental Example 6 3535 281281 불투명opacity
비교실험예7Comparative Experimental Example 7 5858 127127 투명Transparency
비교실험예8Comparative Experimental Example 8 4141 157157 투명Transparency
비교실험예9Comparative Experimental Example 9 5959 129129 투명Transparency
비교실험예10Comparative Experimental Example 10 3939 160160 투명Transparency
비교실험예11Comparative Experimental Example 11 5757 124124 투명Transparency
비교실험예12Comparative Experimental Example 12 4040 159159 투명Transparency
비교실험예13Comparative Experimental Example 13 5959 120120 투명Transparency
비교실험예14Comparative Experimental Example 14 4242 151151 투명Transparency
비교실험예15Comparative Experimental Example 15 5252 142142 투명Transparency
비교실험예16Comparative Experimental Example 16 5050 9999 투명Transparency
비교실험예17Comparative Experimental Example 17 4949 140140 투명Transparency
비교실험예18Comparative Experimental Example 18 5151 101101 투명Transparency
비교실험예19Comparative Experimental Example 19 5454 138138 투명Transparency
비교실험예20Comparative Experimental Example 20 4949 9797 투명Transparency
비교실험예21Comparative Experimental Example 21 5353 151151 투명Transparency
비교실험예22Comparative Experimental Example 22 5050 9898 투명Transparency
실험예 1 내지 실험예 40과 비교실험예 1 내지 비교실험예 22를 비교한 결과, 비교실험예 1을 기준으로 패턴 붕괴 없는 블록 수가 50개 이상, 결함 수 감소비가 90% 이하이면 개선된 우수한 결과를 나타내는 것을 밝힐 수 있었다.As a result of comparing Experimental Example 1 to Experimental Example 40 and Comparative Experimental Example 1 to Comparative Experimental Example 22, based on Comparative Experimental Example 1, if the number of blocks without pattern collapse is 50 or more and the defect number reduction ratio is 90% or less, the improved excellent result It was able to reveal what it represents.
실험예 1 내지 실험예 40에 해당하는 공정액인 폴리카르복실산염, 술폰산염, 황산에스테르염, 인산에스테르염 중에서 선택된 음이온성 계면활성제 0.0001 내지 1중량%; 테트라에틸암모늄하이드록사이드, 테트라프로필암모늄하이드록사이드, 테트라부틸암모늄하이드록사이드 중에서 선택된 알칼리물질 0.0001 내지 1중량%; 및 물 98 내지 99.9998중량%를 포함하는 공정액의 경우 비교실험예 1 내지 비교실험예 22와 비교했을 때, 패턴 붕괴 수준이 개선된 것을 확인할 수 있었고 결함수 또한 개선된 것을 확인할 수 있었다.0.0001 to 1% by weight of anionic surfactants selected from polycarboxylates, sulfonates, sulfate ester salts and phosphate ester salts, which are process solutions corresponding to Experimental Examples 1 to 40; 0.0001 to 1% by weight of an alkali material selected from tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide; And in the case of a process solution containing 98 to 99.9998% by weight of water, when compared with Comparative Experimental Example 1 to Comparative Experimental Example 22, it was confirmed that the pattern collapse level was improved and the number of defects was also improved.
특히, 실험예 2 내지 4, 실험예 7 내지 9, 실험예 12 내지 14, 실험예 17 내지 19, 실험예 22, 23, 실험예 26, 27, 실험예 30, 31, 실험예 34, 35의 경우 더욱 바람직한 결과를 나타내는 것으로 확인되었다.In particular, Experimental Examples 2 to 4, Experimental Examples 7 to 9, Experimental Examples 12 to 14, Experimental Examples 17 to 19, Experimental Examples 22 and 23, Experimental Examples 26 and 27, Experimental Examples 30 and 31, and Experimental Examples 34 and 35 It was confirmed that the case showed more desirable results.
즉, 실험예 2 내지 4, 실험예 7 내지 9, 실험예 12 내지 14, 실험예 17 내지 19, 실험예 22, 23, 실험예 26, 27, 실험예 30, 31, 실험예 34, 35에 해당하는 공정액인, 폴리카르복실산염, 술폰산염, 황산에스테르염, 인산에스테르염 중에서 선택된 음이온성 계면활성제 0.001 내지 0.1중량%; 테트라에틸암모늄하이드록사이드, 테트라프로필암모늄하이드록사이드, 테트라부틸암모늄하이드록사이드 중에서 선택된 알칼리 물질 0.001 내지 0.1중량%; 및 물 99.8 내지 99.998중량%;를 포함하는 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액의 경우 비교실험예들과 비교했을 때는 물론이고 다른 실험예들과 비교했을 때도, 패턴 붕괴 수준이 개선된 것을 확인할 수 있었고 결함수 또한 개선된 것을 확인 할 수 있었으므로, 이러한 농도범위가 더욱 바람직한 것으로 확인된 것이다.That is, Experimental Examples 2 to 4, Experimental Examples 7 to 9, Experimental Examples 12 to 14, Experimental Examples 17 to 19, Experimental Examples 22, 23, Experimental Examples 26, 27, Experimental Examples 30, 31, and Experimental Examples 34 and 35 0.001 to 0.1% by weight of an anionic surfactant selected from polycarboxylate, sulfonate, sulfate ester, and phosphate ester salts, which are the corresponding process solutions; 0.001 to 0.1% by weight of an alkali material selected from tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide; And 99.8 to 99.998% by weight of water; for the process solution for improving the decay level of the photoresist pattern and reducing the number of defects, as well as when compared with comparative experiments, as well as when compared with other experimental examples, Since it was confirmed that the level of pattern collapse was improved and the number of defects was also improved, this concentration range was confirmed to be more desirable.
실시예 3에 따른 포토레지스트 패턴의 붕괴 수준을 평가한 결과는 패턴 붕괴가 일어나지 않는 구간(block)의 수가 81개로 측정되었다.As a result of evaluating the collapse level of the photoresist pattern according to Example 3, the number of blocks in which pattern collapse did not occur was measured to be 81.
비교실험예 1에 따른 포토레지스트 패턴의 붕괴 수준을 평가한 결과는 패턴 붕괴가 일어나지 않는 구간(block)의 수가 46개로 측정되었다.As a result of evaluating the collapse level of the photoresist pattern according to Comparative Experimental Example 1, the number of blocks in which pattern collapse did not occur was measured to be 46.
이상으로 본원 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본원 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본원 발명의 실질적인 범위는 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, it will be apparent to those skilled in the art that this specific technique is only a preferred embodiment, and the scope of the present invention is not limited thereby. . Therefore, the substantial scope of the present invention will be defined by the claims and their equivalents.

Claims (12)

  1. 광원으로 극자외선을 사용하는 포토레지스트 패턴 공정에 있어서 폴리하이드록시스타이렌(polyhydxoystyrene)을 포함하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액에 있어서,In the process solution for improving the decay level and reducing the number of defects in a photoresist pattern containing polyhydoxystyrene in a photoresist pattern process using extreme ultraviolet light as a light source,
    음이온성 계면활성제 0.0001 내지 1중량%;0.0001 to 1% by weight of anionic surfactant;
    알칼리 물질 0.0001 내지 1중량%; 및0.0001 to 1% by weight of an alkaline substance; And
    물 98 내지 99.9998중량%;를 포함하는 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.98 to 99.9998% by weight; Process solution for improving the decay level and reducing the number of defects of the photoresist pattern, characterized by comprising.
  2. 제1항에 있어서, 상기 음이온성 계면활성제는 폴리카르복실산염, 술폰산염, 황산에스테르염, 인산에스테르염 또는 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.The method of claim 1, wherein the anionic surfactant is selected from the group consisting of polycarboxylates, sulfonate salts, sulfate ester salts, phosphate ester salts, or mixtures thereof. Process solution for reducing water.
  3. 제2항에 있어서, 상기 음이온성 계면활성제는 폴리카르복실산염인 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.The process solution for improving the decay level and reducing the number of defects in a photoresist pattern according to claim 2, wherein the anionic surfactant is polycarboxylate.
  4. 제2항에 있어서, 상기 음이온성 계면활성제는 술폰산염인 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.The process solution for improving the decay level and reducing the number of defects in a photoresist pattern according to claim 2, wherein the anionic surfactant is a sulfonate salt.
  5. 제2항에 있어서, 상기 음이온성 계면활성제는 황산에스테르염인 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.The process solution for improving the collapse level of a photoresist pattern and reducing the number of defects according to claim 2, wherein the anionic surfactant is a sulfate ester salt.
  6. 제1항에 있어서, 상기 음이온성 계면활성제는 인산에스테르염인 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.The process solution for improving the decay level of a photoresist pattern and reducing the number of defects according to claim 1, wherein the anionic surfactant is a phosphate ester salt.
  7. 제1항에 있어서, 상기 알칼리 물질은 테트라에틸암모늄하이드록사이드, 테트라프로필암모늄하이드록사이드, 테트라부틸암모늄하이드록사이드 또는 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.The decay level of the photoresist pattern according to claim 1, wherein the alkali material is selected from the group consisting of tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide or mixtures thereof. Process fluid for improvement and reduction of defects.
  8. 제7항에 있어서, 상기 알칼리 물질은 테트라에틸암모늄하이드록사이드, 테트라부틸암모늄하이드록사이드 또는 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.The process of claim 7, wherein the alkali material is selected from the group consisting of tetraethylammonium hydroxide, tetrabutylammonium hydroxide, or mixtures thereof. liquid.
  9. 제8항에 있어서, 상기 알칼리 물질은 테트라에틸암모늄하이드록사이드인 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.The process solution for improving the decay level of a photoresist pattern and reducing the number of defects according to claim 8, wherein the alkali material is tetraethylammonium hydroxide.
  10. 제8항에 있어서, 상기 알칼리 물질은 테트라부틸암모늄하이드록사이드인 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.The process solution for improving the decay level of a photoresist pattern and reducing the number of defects according to claim 8, wherein the alkali material is tetrabutylammonium hydroxide.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 10,
    음이온성 계면활성제 0.001 내지 0.1중량%;0.001 to 0.1% by weight of anionic surfactant;
    알칼리 물질 0.001 내지 0.1중량%; 및0.001 to 0.1% by weight of an alkaline substance; And
    물 99.8 내지 99.998중량%;를 포함하는 것을 특징으로 하는 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액.99.8 to 99.998% by weight of water; Process solution for improving the decay level and reducing the number of defects of the photoresist pattern, characterized in that it comprises.
  12. (a) 반도체 기판에 포토레지스트를 도포하고 막을 형성하는 단계;(a) applying a photoresist to a semiconductor substrate and forming a film;
    (b) 상기 포토레지스트 막을 극자외선으로 노광한 후 현상하여 패턴을 형성하는 단계; 및(b) exposing the photoresist film to extreme ultraviolet rays and developing the pattern to form a pattern; And
    (c) 상기 포토레지스트 패턴을 제1항 내지 제10항 중 어느 한 항의 포토레지스트 패턴의 붕괴 수준 개선 및 결함수 감소용 공정액으로 세정하는 단계;를 포함하는 것을 특징으로 하는 포토레지스트 패턴 형성방법.(c) washing the photoresist pattern with a process solution for improving the decay level and reducing the number of defects of the photoresist pattern of any one of claims 1 to 10; .
PCT/KR2019/015262 2018-12-28 2019-11-11 Process liquid for extreme ultraviolet lithography and pattern forming method using same WO2020138710A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021529048A JP7213346B2 (en) 2018-12-28 2019-11-11 Process liquid for extreme ultraviolet lithography and pattern forming method using the same
EP19904718.4A EP3904960A4 (en) 2018-12-28 2019-11-11 Process liquid for extreme ultraviolet lithography and pattern forming method using same
US17/294,865 US11487208B2 (en) 2018-12-28 2019-11-11 Process liquid for extreme ultraviolet lithography and pattern forming method using same
CN201980081913.1A CN113196178A (en) 2018-12-28 2019-11-11 Process liquid for extreme ultraviolet lithography and pattern forming method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180171750A KR102011879B1 (en) 2018-12-28 2018-12-28 Pross liquid for extreme ultraviolet lithography and pattern formation mehtod using the same
KR10-2018-0171750 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138710A1 true WO2020138710A1 (en) 2020-07-02

Family

ID=67807553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015262 WO2020138710A1 (en) 2018-12-28 2019-11-11 Process liquid for extreme ultraviolet lithography and pattern forming method using same

Country Status (7)

Country Link
US (1) US11487208B2 (en)
EP (1) EP3904960A4 (en)
JP (1) JP7213346B2 (en)
KR (1) KR102011879B1 (en)
CN (1) CN113196178A (en)
TW (1) TWI718754B (en)
WO (1) WO2020138710A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102011879B1 (en) 2018-12-28 2019-08-20 영창케미칼 주식회사 Pross liquid for extreme ultraviolet lithography and pattern formation mehtod using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080009970A (en) * 2006-07-25 2008-01-30 삼성전자주식회사 Photoresist developer and method for forming a photoresist pattern using the same
KR20090017129A (en) * 2007-08-14 2009-02-18 주식회사 이엔에프테크놀로지 Composition for rinsing photoresist and method for forming photoresist pattern using the same
KR20090095604A (en) * 2006-12-06 2009-09-09 후지필름 일렉트로닉 머티리얼스 유.에스.에이., 아이엔씨. Device manufacturing process utilizing a double patterning process
KR20130123164A (en) * 2012-05-02 2013-11-12 영창케미칼 주식회사 Process solution composition for improving lwr of photoresist pattern
WO2017169834A1 (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Treatment liquid for semiconductor production and pattern formation method
KR102011879B1 (en) * 2018-12-28 2019-08-20 영창케미칼 주식회사 Pross liquid for extreme ultraviolet lithography and pattern formation mehtod using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232452A (en) * 1985-08-06 1987-02-12 Tokyo Ohka Kogyo Co Ltd Developing solution for improved positive type photoresist
JP2589408B2 (en) * 1990-11-30 1997-03-12 東京応化工業株式会社 Developer composition for resist
JP3104939B2 (en) * 1992-10-01 2000-10-30 東京応化工業株式会社 Resist developer composition for semiconductor device production
DE4419166A1 (en) * 1994-06-01 1995-12-07 Hoechst Ag Developer for photoresist layers
TW536734B (en) * 2000-07-31 2003-06-11 Clariant Int Ltd Process for manufacturing a microelectronic device
US6451510B1 (en) 2001-02-21 2002-09-17 International Business Machines Corporation Developer/rinse formulation to prevent image collapse in resist
JP2004347985A (en) 2003-05-23 2004-12-09 Fuji Photo Film Co Ltd Method for forming positive resist pattern
US8367312B2 (en) * 2006-01-11 2013-02-05 Tokyo Ohka Kogyo Co., Ltd. Detergent for lithography and method of forming resist pattern with the same
CN102929109A (en) 2012-11-15 2013-02-13 杭州格林达化学有限公司 Negative photoresist developing solution and application thereof
JPWO2016190261A1 (en) * 2015-05-25 2018-03-08 日産化学工業株式会社 Resist pattern coating composition
TWI612108B (en) * 2015-10-31 2018-01-21 Rohm And Haas Electronic Materials Llc Block copolymers and pattern treatment compositions and methods
WO2017175856A1 (en) * 2016-04-08 2017-10-12 富士フイルム株式会社 Process liquid, method for manufacturing same, pattern formation method, and method for manufacturing electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080009970A (en) * 2006-07-25 2008-01-30 삼성전자주식회사 Photoresist developer and method for forming a photoresist pattern using the same
KR20090095604A (en) * 2006-12-06 2009-09-09 후지필름 일렉트로닉 머티리얼스 유.에스.에이., 아이엔씨. Device manufacturing process utilizing a double patterning process
KR20090017129A (en) * 2007-08-14 2009-02-18 주식회사 이엔에프테크놀로지 Composition for rinsing photoresist and method for forming photoresist pattern using the same
KR20130123164A (en) * 2012-05-02 2013-11-12 영창케미칼 주식회사 Process solution composition for improving lwr of photoresist pattern
WO2017169834A1 (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Treatment liquid for semiconductor production and pattern formation method
KR102011879B1 (en) * 2018-12-28 2019-08-20 영창케미칼 주식회사 Pross liquid for extreme ultraviolet lithography and pattern formation mehtod using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904960A4 *

Also Published As

Publication number Publication date
US20220011673A1 (en) 2022-01-13
JP2022507938A (en) 2022-01-18
TW202026410A (en) 2020-07-16
JP7213346B2 (en) 2023-01-26
EP3904960A4 (en) 2022-11-23
CN113196178A (en) 2021-07-30
US11487208B2 (en) 2022-11-01
TWI718754B (en) 2021-02-11
KR102011879B1 (en) 2019-08-20
EP3904960A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
KR20070054185A (en) Micro pattern forming material, method of forming micro resist pattern and electronic device
KR101222449B1 (en) Method for fine pattern formation
KR101617169B1 (en) Cleaning composition for photolithography and method for forming photoresist pattern using the same
KR100825657B1 (en) Method for forming resist pattern
WO2022055128A1 (en) Process solution composition for extreme ultraviolet photolithography and pattern forming method using same
KR100770551B1 (en) A process for forming a resist pattern having reduced development defect and a development defect reducing composition therefor
WO2020032398A1 (en) Organic-inorganic hybrid photoresist processing liquid composition
WO2019240398A1 (en) Process solution composition for extreme ultraviolet lithography, and method for forming pattern by using same
WO2021060672A1 (en) Process liquid composition for photolithography and pattern forming method using same
WO2020138710A1 (en) Process liquid for extreme ultraviolet lithography and pattern forming method using same
WO2019240397A1 (en) Process liquid composition for extreme ultraviolet lithography and pattern forming method using same
WO2021010609A1 (en) Process liquid composition for lithography and pattern forming method using same
WO2007108186A1 (en) Cleaning treatment liquid
WO2018190529A1 (en) Euv developer composition for forming photosensitive photoresist micropattern
WO2017191929A1 (en) Method and composition for improving lwr in patterning step using negative tone photoresist
KR102547094B1 (en) Rinse composition for extreme ultraviolet photolithography and pattern formation method using the same
WO2019146935A1 (en) Developer composition, for euv light source, for forming photosensitive photoresist micropattern
WO2020184904A1 (en) Novel etching pattern forming method in semiconductor manufacturing process
WO2010151041A2 (en) Composition for a water-soluble coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529048

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019904718

Country of ref document: EP

Effective date: 20210728