WO2020138544A1 - 지중관로의 위치탐사 및 심도측정방법 - Google Patents

지중관로의 위치탐사 및 심도측정방법 Download PDF

Info

Publication number
WO2020138544A1
WO2020138544A1 PCT/KR2018/016768 KR2018016768W WO2020138544A1 WO 2020138544 A1 WO2020138544 A1 WO 2020138544A1 KR 2018016768 W KR2018016768 W KR 2018016768W WO 2020138544 A1 WO2020138544 A1 WO 2020138544A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
depth
measurement
underground
ground
Prior art date
Application number
PCT/KR2018/016768
Other languages
English (en)
French (fr)
Inventor
홍종경
Original Assignee
홍종경
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍종경 filed Critical 홍종경
Priority to PCT/KR2018/016768 priority Critical patent/WO2020138544A1/ko
Publication of WO2020138544A1 publication Critical patent/WO2020138544A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications

Definitions

  • the present invention relates to a method for detecting the depth and depth of an underground pipeline, and more specifically, the location of the underground pipeline to measure the location and depth of the underground burial using a trajectory measured by a device having a simple configuration and operating structure. It relates to a method of exploration and depth measurement.
  • underground pipelines where underground water pipes, gas supply pipes or electricity or information and communication cables are buried underground can prevent damage or accidents that may occur during excavation at the construction site. It is important to grasp, etc.
  • the conventional method of detecting the depth or measuring the depth of the underground buried is explained as follows.
  • the ground current receiver senses the signal current flowing through the conductor and grounds it. It is intended to detect the location and damage point of the pipeline, but even in this case, it is very cumbersome to connect the display tape on the pipeline, and measurement reliability may be deteriorated due to interference with signals by other conductors underground.
  • the present invention is to solve the problems as described above, the present invention is the location and depth of the underground buried by substituting with the coordinate value of the surveying equipment or reference using the trajectory obtained by the apparatus for directly moving the underground pipeline Is to provide a method for location detection and depth measurement of underground pipelines that can measure and thereby increase the reliability of measurement while providing convenience in measurement work.
  • the starting point and the end point of the underground pipeline 12 are measured by coordinates on the ground by the ground measuring device 20;
  • the trajectory of the pipeline is measured by the coordinates of a certain unit point by the pipeline input device 30 directly input on the underground pipeline 12;
  • the coordinate value measured by the ground measuring device 20 is substituted into the coordinate value measured by the pipeline input device 30 and measured by coordinates displayed as the GRS80 coordinate system is substituted;
  • the altitude value Z1 of the surface layer is measured by placing the ground measuring device 20 on a point where depth is required among the coordinates of the unit point measured by the pipeline input device 30, and the pipeline input device 30
  • a method for detecting location and depth of an underground pipeline characterized in that it is measured by a difference between an elevation value (Z2) of the ground and an elevation value (Z1) of the surface layer.
  • the pipeline input device 30 is equipped with an acceleration sensor 35 and a gyroscope 36 capable of three-dimensional measurement, and rotates the zero point of the gyroscope 36 at the time of measurement.
  • a method for detecting the depth and depth of a underground pipeline characterized in that the pipeline input device 30 is set on the underground pipeline 12 to wait for a certain period of time to be corrected to match the speed.
  • the error of the gyroscope 36 is an error distance obtained by comparing the measured value of the ground measurement device 20 and the coordinate value by the gyroscope 36 and the error distance.
  • a method for detecting the depth and depth of an underground pipeline characterized in that the used error angle is corrected with a tangent value.
  • the ground measuring device 20 when the coordinate value by the ground measuring device 20 is substituted into the coordinate value measured by the pipeline input device 30 to measure the location of the underground pipeline 12, the There is provided a method for detecting the depth and depth of an underground pipeline, characterized by using coordinate values corrected for measurement errors by the acceleration sensor 35 and the gyroscope 36.
  • the ground measurement device 20 is a satellite receiver provided on the pole 21 and the upper pole 21 Containing (22)
  • the pipe insertion device 30 is towed by a traction wire 37
  • the camera module 32 to be photographed inside the pipe
  • the cable 31 through the rear of the camera module 32
  • the link-type skid (38) is provided with a position detection and depth measurement device for underground pipelines, which comprises a tube diameter measurement unit (33b) that is resiliently mounted.
  • the present invention after measuring the coordinates on the ground by the ground measuring device 20, after directly measuring the coordinates for the trajectory by inserting the pipeline input device 30 directly on the underground pipeline (12). , By substituting the coordinate values by each device and substituting the GRS80 coordinate system to measure the location of the underground pipeline 12, and measuring the depth by the difference between the surface layer and the elevation values (Z1, Z2) by each device. In the process of directly moving the underground pipeline 12 by the pipeline input device 30, the coordinate values are obtained, and the reliability of the data is very high, as well as the simple conversion and replacement of the data values. There is an advantage that can provide convenience in measurement.
  • the present invention uses a pipeline input device 30 using an acceleration sensor 35 and a gyroscope 36 capable of three-dimensional measurement, and corrects errors according to the operating characteristics of the configuration itself by a simple calculation method and a measurement method. This has the advantage of increasing the accuracy of the measurement.
  • FIG. 1A is a configuration diagram of a ground measuring device according to an embodiment of the present invention
  • Figure 1b is a configuration diagram of the pipeline injection apparatus according to the embodiment
  • FIG. 2 is a block diagram showing the detailed configuration of the pipeline injection device of the embodiment
  • Figure 3 is an exemplary view showing a measurement method according to Figure 1 (b)
  • FIG. 4 is a block diagram of a measuring method according to an embodiment of the present invention.
  • FIG. 5 is a block diagram of another measurement method according to an embodiment of the present invention.
  • FIG. 6 is an exemplary view showing a measurement method according to an embodiment of the present invention
  • the present invention uses a ground measuring device 20 for measuring coordinates on the ground and a pipeline input device 30 directly input on the underground pipeline 12 to measure the trajectory of the pipeline. It relates to a method for measuring the position and depth of the underground pipeline 12 using the coordinate values measured by each device.
  • the ground measuring device 20 is provided with a satellite receiver 22, etc. on the pole 21, it is possible to use a conventional VRS equipment and the like to measure the coordinates in a virtual reference point method
  • a VRS (Virtual Reference Station) survey is a method of determining an accurate location by correcting an error using a network formed in a reference station after generating a weather reference station using a GPS station or a reference station in the network.
  • the pipeline input device 30 is inserted into the underground pipeline 12 to provide coordinate information for measuring position and depth as it measures the trajectory of the pipeline. By photographing the internal state of the tube, it is possible to determine the defect state or location, or to measure the inner diameter or curvature of the tube.
  • the constitution of the pipe introduction device 30 is equipped with a camera module 32 for photographing the inside of the pipe 31 at the front end of the cable 31, and measures the pipe diameter, trajectory, and location at the rear end of the camera module 32.
  • the inspection unit 33 includes an acceleration sensor 35 and a gyroscope 36, which will be described schematically with reference to FIGS. 2 and 3 as follows.
  • the acceleration sensor 35 and the gyroscope 36 are arranged in a three-axis direction orthogonal to each other in a state embedded in the inspection body 34, so that the orientation or After measuring posture or speed, it is possible to measure the trajectory including the radius of curvature of the underground pipeline 12 as it is converted to a constant standard.
  • the acceleration sensor 35 and the gyroscope 36 On the inspection body 34, three-axis accelerometers 35a to 35c and three-axis gyroscopes 36a to 36c, which are arranged in a three-axis direction, are mounted.
  • the acceleration sensor 35 and the gyroscope 36 detect the respective acceleration and angular velocity in the three-axis direction, and calculate the curvature radius by obtaining the inclination angle in the horizontal plane state by obtaining the posture angle, the azimuth angle, and the speed using this.
  • three points (A, B, C) in a short section of the trajectory of the underground pipeline 12 are obtained by an inclination angle in a horizontal plane state.
  • the present invention is used to measure the position of the underground pipeline 12 using coordinate values of each unit point measured by the acceleration sensor 35 and the gyroscope 36.
  • the method of measuring the position of the underground pipeline 12 measures the coordinates of the measurement starting point and the end point of the underground pipeline 12 by the ground measuring device 20, the After measuring the coordinates of the trajectory of the pipeline by the pipeline input device 30, the coordinate value measured by the ground measuring device 20 is substituted for the coordinate value measured by the pipeline input device 30 to the GRS80 coordinate system. Measurement becomes possible by substitution.
  • the method of measuring the depth of the underground pipeline 12 measures the coordinates of the measurement starting point and the end point of the underground pipeline 12 by the ground measuring device 20, the After measuring the coordinates of the trajectory of the pipeline by the pipeline injection device 30, the elevation value of the ground (Z2) by the pipeline injection device 30 and the elevation value of the surface layer by the ground measurement device 20 ( Z1).
  • FIG. 6 A specific example of the measuring method of the present invention will be described with reference to FIG. 6 as follows.
  • the lid of the manhole 10 and 11 is opened.
  • the state of the underground pipe 12 of the measurement target located between the manhole 10 and the manhole 11 at the end point of the preceding operation such as the pumping operation and the start point is measured.
  • the task of grasping is performed in advance.
  • the horizontal distance (H) from the center point of the manhole (10,11) lid at the starting point and end point to the starting point and ending point of the underground pipeline (12) is measured.
  • the ground measuring device 20 By moving the ground measuring device 20 corresponding to the horizontal distance (H) to measure the coordinates.
  • the ground measurement device 20 measures the coordinates of the plane and the altitude in three directions in the three-axis direction, and then vertically from the cap of the manholes 10 and 11 to the starting point of the underground pipeline 12.
  • the numerical value corresponding to the vertical distance (V) is corrected from the measured coordinate values as described above to correct errors in the coordinates in the Z-axis direction.
  • the pipeline input device 30 is ready to operate the program while connected to a PC or the like, and at the same time, the pipeline input device 30 itself is positioned on the underground pipeline 12.
  • the pipeline injecting device 30 starts operation after having a waiting time of about 30 seconds in a fixed position on the underground pipeline 12. This is to correct the zero point of each sensor to match the rotation speed of the earth in consideration of the fact that the acceleration sensor 35 and the gyroscope 36 are affected by the rotation of the earth and have a certain error. The same is done at the end point of the manhole 11, where the movement of the input device 30 is completed.
  • the position of the underground pipeline 12 in the program of the PC is shown in three dimensions by using the coordinate values at each unit point measured by the pipeline input device 30 as data by substituting it with the GRS80 coordinate system. Since the coordinate system is a common reference coordinate system based on the center of an ellipsoid determined by an international standard, the reliability of the present invention can be improved by displaying the coordinate values measured by the method described above by substituting them for reference coordinates.
  • the altitude value Z2 at a specific point is measured as the three-dimensional trajectory of the pipeline is obtained by the pipeline input device 30 as described above.
  • the depth at a desired position is obtained by using this.
  • the ground measuring device 20 is positioned on a measuring point among coordinates of a unit point measured by the pipeline input device 30, The altitude value Z1 at that location is measured by the ground measuring device 20.
  • the coordinates of the Z-axis direction measured by the ground measuring device 20 represent the altitude value Z1 of the surface layer, and the altitude value Z1 of the surface layer and the ground level by the pipeline introduction device 30 at the position. It is to measure the depth of the underground pipeline 12 by obtaining the difference between the altitude values of Z2.
  • FIG. 7 is a view showing an apparatus for location detection and depth measurement of an underground pipeline according to another embodiment of the present invention.
  • the ground measuring device 20 for measuring coordinates on the ground and a pipeline introducing device 30 that is directly input on the underground pipeline 12 to measure the trajectory of the pipeline.
  • the ground measuring device 20 includes a pole 21 and a satellite receiver 22 provided on the pole 21.
  • the pipe insertion device 30 is towed by a traction wire 37, the camera module 32 is arranged to photograph the pipe in the front, the rear of the camera module 32 through the cable 31 It is connected and an inertial measurement unit (33a) for measuring the trajectory and position, including the acceleration sensor 35 and the gyroscope (36) is disposed.
  • the rear diameter of the inertial measurement unit (33a) is a link type skid 38 on the outer circumferential surface is connected to the tube diameter measurement unit (33b) is resiliently mounted through another cable (39).
  • the skid 38 is stretched in a link type and brought into contact with the inner diameter portion of the pipe, thereby measuring the inner diameter of the pipe by calculating the expansion radius of the skid 38 by a predetermined calculation formula.
  • the pipeline input device 30 is divided into three parts, the camera module 32, the inertial measurement unit 33a, and the diameter measurement unit 33b, and the cable 31 can be bent and By taking the structure connected by the cable 39, it is possible to pass smoothly and flexibly and smoothly when passing through a narrow and narrow pipe, so that it can progress smoothly even under various pipe conditions including a curved and narrow pipe. This makes effective measurements possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

본 발명은 간단한 구성과 작동구조를 갖는 장치에 의해 측정된 궤적을 이용하여 지하매설물의 위치와 심도를 측정하도록 된 지중관로의 위치탐사 및 심도측정방법에 관한 것이다. 본 발명에 따르면, 지중관로(12)의 측정시점과 종점을 지상측정장치(20)에 의해 지상에서 좌표를 측정하고; 상기 지중관로(12) 상에 직접적으로 투입되는 관로투입장치(30)에 의해 관로의 궤적을 일정한 단위 지점의 좌표로 측정하며; 상기 지중관로(12)의 위치는 상기 관로투입장치(30)에 의해 측정된 좌표값에 상기 지상측정장치(20)에 의해 좌표값을 대입하여 GRS80 좌표계로 치환함에 따라 표시되는 좌표로 측정하며; 상기 지중관로(12)의 심도는 상기 관로투입장치(30)에 의해 측정된 단위 지점의 좌표 중에서 심도가 필요한 지점 상에 상기 지상측정장치(20)를 위치시켜 표층의 고도값(Z1)을 측정하고, 상기 관로투입장치(30)에 의한 지중의 고도값(Z2)과 표층의 고도값(Z1)의 차이에 의해 측정하도록 된 지중관로의 위치탐사 및 심도측정방법이 제공된다.

Description

지중관로의 위치탐사 및 심도측정방법
본 발명은 지중관로의 위치탐사 및 심도측정방법에 관한 것으로, 보다 상세하게는 간단한 구성과 작동구조를 갖는 장치에 의해 측정된 궤적을 이용하여 지하매설물의 위치와 심도를 측정하도록 된 지중관로의 위치탐사 및 심도측정방법에 관한 것이다.
일반적으로 급수관이나 가스공급관 또는 전기나 정보통신용 케이블 등을 지하에 매설한 지중관로는 공사현장의 굴착과정 중에 발생될 수 있는 손상이나 사고 등을 미연에 방지할 수 있도록 관로의 매설위치나 깊이(심도) 등을 파악하는 것이 중요한데, 이러한 지하매설물의 위치를 탐지하거나 심도를 측정하는 종래의 방법을 일례에 의해 설명하면 다음과 같다.
종래에는 교류 신호를 송출하는 발신기를 케이블에 연결한 후에, 케이블을 선통대의 단부에 부착하여 관로 속으로 밀어 넣으면서 지상에서 수신기로 신호레벨을 탐지하는 방법을 사용하는데, 이는 지중관로 상에 선통대를 밀어 넣는 작업이 상당히 불편할 뿐만 아니라 작업시간이 오래 소요되어 작업 효율성이 떨어지는 문제점이 있는 것이다.
일부에서는 이러한 문제점을 해결하기 위해 도전성 도체가 내부에 삽입된 경고용 표시테이프에 발신기를 연결하여 약정된 주파수의 교류신호를 도체에 공급하게 되면, 지상의 수신기로 도체에 흐르는 신호전류를 감지하여 지중관로의 매설위치 및 손상 지점을 탐지하도록 된 것이나, 이러한 경우에도 표시테이프를 관로 상에 연결하는 작업이 매우 번거로울 뿐만 아니라 지하의 다른 도체에 의한 신호간섭 등으로 인해 측정 신뢰성이 떨어질 수 있는 것이다.
본 발명은 전술한 바와 같은 문제점을 해결하기 위한 것으로, 본 발명은 지중관로를 직접적으로 이동하는 장치에 의해 획득한 궤적을 이용하여 측량장비나 기준의 좌표값으로 치환함에 따라 지하매설물의 위치와 심도를 측정하고, 이에 따라 측정작업 상의 편리함을 제공함과 동시에 측정 신뢰성을 높일 수 있는 지중관로의 위치탐사 및 심도측정방법을 제공하는 것이다.
본 발명의 특징에 따르면, 지중관로(12)의 측정시점과 종점을 지상측정장치(20)에 의해 지상에서 좌표를 측정하고;
상기 지중관로(12) 상에 직접적으로 투입되는 관로투입장치(30)에 의해 관로의 궤적을 일정한 단위 지점의 좌표로 측정하며;
상기 지중관로(12)의 위치는
상기 관로투입장치(30)에 의해 측정된 좌표값에 상기 지상측정장치(20)에 의해 좌표값을 대입하여 GRS80 좌표계로 치환함에 따라 표시되는 좌표로 측정하며;
상기 지중관로(12)의 심도는
상기 관로투입장치(30)에 의해 측정된 단위 지점의 좌표 중에서 심도가 필요한 지점 상에 상기 지상측정장치(20)를 위치시켜 표층의 고도값(Z1)을 측정하고, 상기 관로투입장치(30)에 의한 지중의 고도값(Z2)과 표층의 고도값(Z1)의 차이에 의해 측정하도록 된 것을 특징으로 하는 지중관로의 위치탐사 및 심도측정방법이 제공된다.
본 발명의 다른 특징에 따르면, 상기 관로투입장치(30)는 3차원 측정이 가능한 가속도센서(35)와 자이로스코프(36)가 장착되되, 측정시점에서 상기 자이로스코프(36)의 영점을 지구의 자전 속도에 일치되게 보정하도록 상기 관로투입장치(30)를 지중관로(12) 상에 세팅한 상태에서 일정 시간 동안 대기하는 것을 특징으로 하는 지중관로의 위치탐사 및 심도측정방법이 제공된다.
본 발명의 또 다른 특징에 따르면, 상기 자이로스코프(36)의 오차는 상기 지상측정장치(20)의 측량값과 상기 자이로스코프(36)에 의한 좌표값을 비교하여 구해진 오차거리 및 이 오차거리를 이용한 오차각을 탄젠트값으로 보정하는 것을 특징으로 하는 지중관로의 위치탐사 및 심도측정방법이 제공된다.
본 발명 또 다른 특징에 따르면, 상기 지중관로(12)의 위치를 측정하기 위해 상기 관로투입장치(30)에 의해 측정된 좌표값에 상기 지상측정장치(20)에 의해 좌표값을 대입할 때에는 상기 가속도센서(35)와 자이로스코프(36)에 의한 측정오차를 보정한 좌표값을 사용하는 것을 특징으로 하는 지중관로의 위치탐사 및 심도측정방법이 제공된다.
본 발명의 또 다른 특징에 따르면, 지상에서 좌표를 측정하는 지상측정장치(20)와 지중관로(12) 상에 직접적으로 투입되어 관로의 궤적을 측정하는 관로투입장치(30)를 이용하여 각 장치에 의해 측정된 좌표값을 이용하여 지중관로(12)의 위치 및 심도를 측정하는 장치에 있어서, 상기 지상측정장치(20)는 폴대(21)와 상기 폴대(21)의 상부에 구비되는 위성수신기(22)를 포함하고, 상기 관로투입장치(30)는 견인와이어(37)에 의해 견인되며 관내를 촬영하도록 된 카메라모듈(32)과, 케이블(31)을 통해 상기 카메라모듈(32)의 후방에 연결되며 가속도센서(35)와 자이로스코프(36)를 포함하여 궤적 및 위치를 측정하는 관성측정유닛(33a)과, 케이블(39)을 통해 상기 관성측정유닛(33a)의 후방에 연결되며 외주면에 링크식 스키드(38)가 신축가능하게 장착된 관경측정유닛(33b)을 포함하는 것을 특징으로 하는 지중관로의 위치탐사 및 심도측정장치가 제공된다.
이상에서와 같이 본 발명에 의하면, 지상측정장치(20)에 의해 지상에서 좌표를 측정하고, 관로투입장치(30)를 지중관로(12) 상에 직접적으로 투입하여 궤적에 대한 좌표를 측정한 후에, 각 장치에 의해 좌표값을 대입 및 GRS80 좌표계로 치환하여 지중관로(12)의 위치를 측정함과 동시에 각 장치에 의한 표층과 지중의 고도값(Z1,Z2)의 차이에 의해 심도를 측정함으로써, 관로투입장치(30)에 의해 지중관로(12)를 직접적으로 이동하는 과정에서 좌표값을 획득하여 데이터의 신뢰성이 매우 높을 뿐만 아니라 그 데이터값을 대입 및 치환하는 방법에 의해 간단하게 변환 처리하여 측정상의 편리함을 제공할 수 있는 장점이 있다.
또한 본 발명은 3차원 측정이 가능한 가속도센서(35)와 자이로스코프(36)를 사용한 관로투입장치(30)를 사용하고, 간단한 계산방법과 측정방법에 의해 구성 자체의 작동특성에 따른 오차를 보정함에 따라 측정상의 정확도를 높일 수 있는 장점이 있다.
도 1a는 본 발명의 일 실시예에 따른 지상측정장치의 구성도
도 1b는 상기 실시예에 따른 관로투입장치의 구성도
도 2는 상기 실시예의 관로투입장치의 세부구성을 도시한 구성도
도 3은 도 1의 (b)에 따른 측정방법을 도시한 예시도
도 4는 본 발명의 일 실시예에 따른 측정방법의 블록도
도 5는 본 발명의 일 실시예에 따른 다른 측정방법의 블록도
도 6은 본 발명의 일 실시예에 따른 측정방법을 도시한 예시도
도 7은 본 발명의 다른 실시예의 구성도
상술한 본 발명의 목적, 특징들 및 장점은 다음의 상세한 설명을 통하여 보다 분명해질 것이다. 이하, 본 발명의 바람직한 실시예를 첨부한 도면에 의거하여 설명하면 다음과 같다.
도 1 내지 도 6은 본 발명의 바람직한 실시예를 도시한 것이다. 도 1에 도시된 바와 같이, 본 발명은 지상에서 좌표를 측정하는 지상측정장치(20)와 지중관로(12) 상에 직접적으로 투입되어 관로의 궤적을 측정하는 관로투입장치(30)를 이용하여 각 장치에 의해 측정된 좌표값을 이용하여 지중관로(12)의 위치 및 심도를 측정하는 방법에 관한 것이다.
도 1a에 도시된 바와 같이, 상기 지상측정장치(20)는 폴대(21) 상에 위성수신기(22) 등이 구비되어 가상기준점 방식으로 좌표를 측정할 수 있는 통상의 VRS장비 등을 사용할 수 있는 것으로, 통상의 VRS(Virtual Reference Station) 측량은 GPS 상시관측소나 네트워크 내의 기준국을 이용하여 기상기준국을 생성한 후에, 기준국에 형성된 네트워크를 이용해 오차를 보정하여 정확한 위치를 결정하는 방식이다.
또한 도 1b에 도시된 바와 같이, 상기 관로투입장치(30)는 지중관로(12)의 내부에 삽입되어 관로의 궤적을 측정함에 따라 위치와 심도를 측정하기 위한 좌표정보를 제공할 수 있을 뿐만 아니라 관의 내부상태를 촬영하여 결함상태나 위치를 파악하거나 관의 내경 또는 곡률을 측정할 수 있도록 된 것이다.
이러한 관로투입장치(30)의 구성은 케이블(31)의 선단측에 관내를 촬영하기 위한 카메라모듈(32)이 장착되고, 상기 카메라모듈(32)의 후단에 관경이나 궤적 및 위치 등을 측정하기 위한 검사유닛(33)이 장착되며, 이 검사유닛(33)은 가속도센서(35)와 자이로스코프(36)을 포함하게 되는데, 이를 도 2와 도 3를 참조하여 개략적으로 설명하면 다음과 같다.
도 2와 도 3에 도시된 바와 같이, 상기 가속도센서(35)와 자이로스코프(36)는 검사본체(34)에 내장된 상태로 상호 직교하는 3축 방향으로 배치되어 장치의 측정과정에서 방위나 자세 또는 속도 등을 측정한 후에, 이를 일정한 기준으로 변환함에 따라 지중관로(12)의 곡률반경 등을 포함한 궤적을 측정할 수 있게 되는데, 구체적으로 상기 가속도센서(35)와 자이로스코프(36)는 검사본체(34) 상에 3축 방향으로 배치되는 통상의 3축형 가속도센서(35a~35c)와 3축형 자이로스코프(36a~36c)를 장착하게 된다.
이러한 상기 가속도센서(35)와 자이로스코프(36)는 3축 방향에서 각각의 가속도와 각속도를 검출하고, 이를 이용하여 자세각과 방위각 및 속도 등을 구하여 수평면 상태에서의 경사각을 구하여 곡률반경을 계산하는 데에 사용되는데, 이러한 곡률반경을 구하는 과정에서는 수평면 상태에서의 경사각에 의해 지중관로(12)의 궤적의 단구간에서의 3개의 지점(A,B,C)을 사용하여 구하게 된다.
구체적으로는, 선분AB(=a)와 선분BC(=b) 간의 거리가 같은 지점(a=b)을 이용한 다음과 같은 공식으로
Figure PCTKR2018016768-appb-I000001
계산하는 것이고, 본 발명에서는 상기 가속도센서(35)와 자이로스코프(36)에 의해 측정되는 각 단위 지점의 좌표값을 이용하여 지중관로(12)의 위치를 측정하는 데에 사용하게 된다.
도 4에 도시된 바와 같이, 본 발명에 의한 지중관로(12)의 위치를 측정하는 방법은 상기 지상측정장치(20)에 의해 지중관로(12)의 측정시점과 종점의 좌표를 측정하고, 상기 관로투입장치(30)에 의해 관로의 궤적에 관한 좌표를 측정한 후에, 상기 관로투입장치(30)에 의해 측정된 좌표값에 상기 지상측정장치(20)에 의해 좌표값을 대입하여 GRS80 좌표계로 치환함에 따라 측정이 가능하게 된다.
도 5에 도시된 바와 같이, 본 발명에 의한 지중관로(12)의 심도를 측정하는 방법은 상기 지상측정장치(20)에 의해 지중관로(12)의 측정시점과 종점의 좌표를 측정하고, 상기 관로투입장치(30)에 의해 관로의 궤적에 관한 좌표를 측정한 후에, 상기 관로투입장치(30)에 의한 지중의 고도값(Z2)과 상기 지상측정장치(20)에 의한 표층의 고도값(Z1)의 차이에 의해 측정하게 된다.
이와 같은 본 발명의 측정방법에 대한 구체적인 예를 도 6에 의해 설명하면 다음과 같다. 도 6에 도시된 바와 같이, 맨홀(10)과 맨홀(11) 사이에 연장 형성되는 지중관로(12)의 곡률형상이나 방향 등을 포함한 위치를 측정하기 위해서는 맨홀(10,11)의 뚜껑을 개방하여 내부의 유해 가스나 산소 농도 등을 측정함과 동시에 양수작업 등의 선행작업과 시점의 맨홀(10)과 종점의 맨홀(11) 사이에 위치된 측정대상의 지중관로(12)에 대한 상태를 파악하는 작업을 미리 행하게 된다.
이러한 준비작업이 완료되면 실제적인 측량작업을 행하게 되는데, 먼저 시점과 종점에서의 맨홀(10,11) 뚜껑의 중심지점에서 지중관로(12)의 시점과 종점까지의 수평거리(H)를 측정하고, 그 수평거리(H)에 상응하여 상기 지상측정장치(20)를 이동하여 그 좌표를 측량하게 된다. 이때에 지상측정장치(20)에 의해서는 평면상의 좌표 및 고도의 좌표를 3축 방향에서 입체적으로 측정하게 되며, 이후에는 맨홀(10,11)의 뚜껑으로부터 지중관로(12)의 시점까지의 수직거리(V)를 측정하여 전술된 바와 같이 측정된 좌표값에서 수직거리(V)에 상응한 수치를 보정하여 Z축 방향의 좌표에 대한 오차를 수정하게 된다.
또한 상기 관로투입장치(30)는 PC 등에 연결한 상태로 프로그램의 작동을 준비함과 동시에 관로투입장치(30) 자체를 지중관로(12) 상에 정위치시키게 되는데. 이때에 관로투입장치(30)는 지중관로(12) 상에 정위치된 상태에서 대략 30초 정도의 대기시간을 가진 후에 그 작동이 시작되게 된다. 이는 상기 가속도센서(35)와 자이로스코프(36)의 작동 특성상 지구의 자전에 영향을 받아 일정한 오차를 가지는 것을 감안하여 각 센서의 영점을 지구의 자전 속도에 일치되게 보정하는 것이며, 이러한 대기동작은 상기 관로투입장치(30)의 이동이 완료되는 맨홀(11)의 종점에서도 동일하게 이루어지게 된다.
이러한 관로투입장치(30)의 측정이 완료되면 그에 연결된 프로그램에 의해 각 센서에 의해 획득한 소정의 단위 지점의 좌표값에 대한 데이터를 연산 처리하게 되고, 그 과정에서는 상기 관로투입장치(30)에 의한 좌표값의 시점과 종점에 상기 지상측정장치(30)의 좌표값을 대입하여 관로의 3차원 궤적을 구하게 된다.
또한 상기 관로투입장치(30)의 좌표값에 지상측정장치(20)의 좌표값을 대입하는 과정에서는 상기 가속도센서(35)와 자이로스코프(36)의 오차를 보정한 좌표값을 사용하게 된다. 이는 상기 지상측정장치(20)의 좌표값에 비교하여 상기 관로투입장치(30)의 좌표값의 벗어난 정도(방향 및 거리)를 구하게 되는데, 각 장치의 종점 좌표값(x,X)의 벗어난 거리를 Xy 값이라 하면, 오차(A°)는 tan(A˚) = Xy/X 의 수식으로 구하고, 각 단위 지점마다 그 오차각에 상응한 수치를 보정하게 된다.
이후에는 GRS80 좌표계로 치환하여 상기 관로투입장치(30)에 의해 측정된 각 단위 지점에서의 좌표값을 데이터로 하여 PC의 프로그램에서 지중관로(12)의 위치를 3차원으로 도시하게 되는데, 상기 GRS80 좌표계는 국제적인 표준으로 정해진 타원체의 중심을 원점으로 한 통상의 기준 좌표계이므로, 전술된 바와 같은 방법에 의해 측정된 좌표값을 기준좌표로 치환하여 표시함에 따라 본 발명의 신뢰성을 높일 수 있게 된다.
한편 본 발명에 의한 지중관로(12)의 심도를 측정하기 위해서는 전술된 바와 같이 상기 관로투입장치(30)에 의해 관로의 궤적으로 3차원으로 구함에 따라 특정 지점에서의 고도값(Z2)이 측정된 상태이고, 이를 이용하여 원하는 위치에서의 심도를 구하게 되는데, 이를 위해서는 상기 관로투입장치(30)에 의해 측정된 단위 지점의 좌표 중에서 측정 지점 상에 상기 지상측정장치(20)를 위치시킨 후에, 상기 지상측정장치(20)에 의해 그 위치에서의 고도값(Z1)을 측정하게 된다.
이러한 지상측정장치(20)에 의해 측정된 Z축 방향의 좌표는 표층의 고도값(Z1)을 나타낸 것으로, 이 표층의 고도값(Z1)과 그 위치에서 상기 관로투입장치(30)에 의한 지중의 고도값(Z2)의 차이를 구하여 지중관로(12)의 심도를 측정하는 것이다.
도 7은 본 발명의 다른 실시예에 따른 지중관로의 위치탐사 및 심도측정 장치를 보여준다. 본 실시예에서는 도시된 바와 같이, 지상에서 좌표를 측정하는 지상측정장치(20)와 지중관로(12) 상에 직접적으로 투입되어 관로의 궤적을 측정하는 관로투입장치(30)로 구성된다. 상기 지상측정장치(20)는 폴대(21)와 상기 폴대(21)의 상부에 구비되는 위성수신기(22)를 포함한다. 그리고 상기 관로투입장치(30)는 견인와이어(37)에 의해 견인되며 관내를 촬영하도록 된 카메라모듈(32)이 전방에 배치되고, 그 후방에는 케이블(31)을 통해 상기 카메라모듈(32)에 연결되며 가속도센서(35)와 자이로스코프(36)를 포함하여 궤적 및 위치를 측정하는 관성측정유닛(33a)이 배치된다. 그리고 이 관성측정유닛(33a)의 후방에는 외주면에 링크식 스키드(38)가 신축가능하게 장착된 관경측정유닛(33b)이 또 다른 케이블(39)을 통해 연결된다.
상기 스키드(38)는 링크식으로 신축되어 관로의 내경부에 접촉됨으로써, 소정의 계산식에 의해 스키드(38)의 확장반경을 산출함으로써 관로의 내경을 측정하게 된다.
이와 같이 본 실시예 따르면, 관로투입장치(30)가 카메라모듈(32)과 관성측정유닛(33a) 및 관경측정유닛(33b)의 세 부분으로 분할제작되어 각각 휘어질 수 있는 케이블(31)과 케이블(39)에 의해 연결된 구조를 취함에 따라, 굴곡지고 좁은 관로를 통과할 때 더욱 유연하게 휘어지면서 원활하게 관로를 통과할 수 있어서, 굴곡지고 좁은 관로를 포함하는 다양한 관로조건에서도 무리없이 전진할 수 있어서 효과적인 측정이 가능하다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.

Claims (5)

  1. 지중관로(12)의 측정시점과 종점을 지상측정장치(20)에 의해 지상에서 좌표를 측정하고;
    상기 지중관로(12) 상에 직접적으로 투입되는 관로투입장치(30)에 의해 관로의 궤적을 일정한 단위 지점의 좌표로 측정하며;
    상기 지중관로(12)의 위치는
    상기 관로투입장치(30)에 의해 측정된 좌표값에 상기 지상측정장치(20)에 의해 좌표값을 대입하여 GRS80 좌표계로 치환함에 따라 표시되는 좌표로 측정하며;
    상기 지중관로(12)의 심도는
    상기 관로투입장치(30)에 의해 측정된 단위 지점의 좌표 중에서 심도가 필요한 지점 상에 상기 지상측정장치(20)를 위치시켜 표층의 고도값(Z1)을 측정하고, 상기 관로투입장치(30)에 의한 지중의 고도값(Z2)과 표층의 고도값(Z1)의 차이에 의해 측정하도록 된 것을 특징으로 하는 지중관로의 위치탐사 및 심도측정방법.
  2. 제1항에 있어서, 상기 관로투입장치(30)는 3차원 측정이 가능한 가속도센서(35)와 자이로스코프(36)가 장착되되, 측정시점에서 상기 자이로스코프(36)의 영점을 지구의 자전 속도에 일치되게 보정하도록 상기 관로투입장치(30)를 지중관로(12) 상에 세팅한 상태에서 일정 시간 동안 대기하는 것을 특징으로 하는 지중관로의 위치탐사 및 심도측정방법.
  3. 제2항에 있어서, 상기 자이로스코프(36)의 오차는 상기 지상측정장치(20)의 측량값과 상기 자이로스코프(36)에 의한 좌표값을 비교하여 구해진 오차거리 및 이 오차거리를 이용한 오차각을 탄젠트값으로 보정하는 것을 특징으로 하는 지중관로의 위치탐사 및 심도측정방법.
  4. 제2항에 있어서, 상기 지중관로(12)의 위치를 측정하기 위해 상기 관로투입장치(30)에 의해 측정된 좌표값에 상기 지상측정장치(20)에 의해 좌표값을 대입할 때에는 상기 가속도센서(35)와 자이로스코프(36)에 의한 측정오차를 보정한 좌표값을 사용하는 것을 특징으로 하는 지중관로의 위치탐사 및 심도측정방법.
  5. 지상에서 좌표를 측정하는 지상측정장치(20)와 지중관로(12) 상에 직접적으로 투입되어 관로의 궤적을 측정하는 관로투입장치(30)를 이용하여 각 장치에 의해 측정된 좌표값을 이용하여 지중관로(12)의 위치 및 심도를 측정하는 장치에 있어서, 상기 지상측정장치(20)는 폴대(21)와 상기 폴대(21)의 상부에 구비되는 위성수신기(22)를 포함하고, 상기 관로투입장치(30)는 견인와이어(37)에 의해 견인되며 관내를 촬영하도록 된 카메라모듈(32)과, 케이블(31)을 통해 상기 카메라모듈(32)의 후방에 연결되며 가속도센서(35)와 자이로스코프(36)를 포함하여 궤적 및 위치를 측정하는 관성측정유닛(33a)과, 케이블(39)을 통해 상기 관성측정유닛(33a)의 후방에 연결되며 외주면에 링크식 스키드(38)가 신축가능하게 장착된 관경측정유닛(33b)을 포함하는 것을 특징으로 하는 지중관로의 위치탐사 및 심도측정장치.
PCT/KR2018/016768 2018-12-27 2018-12-27 지중관로의 위치탐사 및 심도측정방법 WO2020138544A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/016768 WO2020138544A1 (ko) 2018-12-27 2018-12-27 지중관로의 위치탐사 및 심도측정방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/016768 WO2020138544A1 (ko) 2018-12-27 2018-12-27 지중관로의 위치탐사 및 심도측정방법

Publications (1)

Publication Number Publication Date
WO2020138544A1 true WO2020138544A1 (ko) 2020-07-02

Family

ID=71126524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016768 WO2020138544A1 (ko) 2018-12-27 2018-12-27 지중관로의 위치탐사 및 심도측정방법

Country Status (1)

Country Link
WO (1) WO2020138544A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543634A (zh) * 2022-02-17 2022-05-27 陕西机勘工程检测咨询有限公司 一种市政道路地下排水管线探测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030091458A (ko) * 2002-05-28 2003-12-03 주식회사 케이티 지하 시설물의 위치 탐지방법 및 이 방법에 사용되는 장치
KR200353726Y1 (ko) * 2004-03-16 2004-06-22 김철암 다기능 도통측정기
KR20130060867A (ko) * 2011-11-30 2013-06-10 김철암 지하 매설물에 대한 정보 획득 방법 및 장치
KR101556389B1 (ko) * 2014-12-15 2015-10-01 (주)파이브텍 무선통신을 기반으로 이루어진 관로분석제어모듈과 스마트 관로로봇 사이의 무선데이터송수신장치
KR101860262B1 (ko) * 2017-05-22 2018-06-27 홍종경 지중관로의 위치탐사 및 심도측정방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030091458A (ko) * 2002-05-28 2003-12-03 주식회사 케이티 지하 시설물의 위치 탐지방법 및 이 방법에 사용되는 장치
KR200353726Y1 (ko) * 2004-03-16 2004-06-22 김철암 다기능 도통측정기
KR20130060867A (ko) * 2011-11-30 2013-06-10 김철암 지하 매설물에 대한 정보 획득 방법 및 장치
KR101556389B1 (ko) * 2014-12-15 2015-10-01 (주)파이브텍 무선통신을 기반으로 이루어진 관로분석제어모듈과 스마트 관로로봇 사이의 무선데이터송수신장치
KR101860262B1 (ko) * 2017-05-22 2018-06-27 홍종경 지중관로의 위치탐사 및 심도측정방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543634A (zh) * 2022-02-17 2022-05-27 陕西机勘工程检测咨询有限公司 一种市政道路地下排水管线探测方法
CN114543634B (zh) * 2022-02-17 2023-10-20 陕西机勘工程检测咨询有限公司 一种市政道路地下排水管线探测方法

Similar Documents

Publication Publication Date Title
CN105066917B (zh) 一种小型管道地理信息系统测量装置及其测量方法
WO2021103697A1 (zh) 基于磁矢量数据的海缆三维路由测量方法及测量仪
KR101860262B1 (ko) 지중관로의 위치탐사 및 심도측정방법
US10323941B2 (en) Offshore positioning system and method
CA2024429A1 (en) Borehole deviation monitor
JP6202559B2 (ja) 埋設管路の計測装置、及び、埋設管路の計測方法
WO2015111713A1 (ja) 地中掘削位置を計測する方法及び地中掘削位置計測装置
US7386942B2 (en) Method and apparatus for mapping the trajectory in the subsurface of a borehole
CN110927801B (zh) 基于磁矢量数据的海缆路由自导航巡线方法及导航探测仪
WO2020138544A1 (ko) 지중관로의 위치탐사 및 심도측정방법
CN106855410A (zh) 一种基于惯性技术的地下管道定位测量设备
CN102288221A (zh) 管道普查设备
AU2012101210A4 (en) Drill hole orientation apparatus
KR101821652B1 (ko) 지중관로 내부 측정장치 및 방법
CN107219335B (zh) 基于复连续小波变换的管道连接器检测方法
WO2013047966A1 (en) Apparatus and method for detecting heading change in mobile terminal
JP7308294B2 (ja) 精密ライン測位器、地下ラインの位置を正確に決定する方法
CN109839109B (zh) 基于图像识别和多传感器融合的掘进机绝对位姿检测方法
JP5060382B2 (ja) 管路埋設位置計測システム、管路埋設位置計測方法
KR20160141574A (ko) 지하 매설물 경로 탐지 장치 및 지하 매설물의 위치정보를 제공하기 위한 서버
JPH10318748A (ja) 位置測定方法および装置
KR102275670B1 (ko) 지중관로 주변 4 방향의 지질 탐사와 동시에 지중관로의 궤적을 산출하는 장치
JP2007205956A (ja) 内部検査装置
CN113959417A (zh) 一种针对地下非开挖牵引管的精确三维坐标数据采集的方法
KR101846314B1 (ko) 다수의 3축 회전 센서를 이용한 3차원 지중관로 측량 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944538

Country of ref document: EP

Kind code of ref document: A1