WO2020138425A1 - Search gas mixing method - Google Patents

Search gas mixing method Download PDF

Info

Publication number
WO2020138425A1
WO2020138425A1 PCT/JP2019/051444 JP2019051444W WO2020138425A1 WO 2020138425 A1 WO2020138425 A1 WO 2020138425A1 JP 2019051444 W JP2019051444 W JP 2019051444W WO 2020138425 A1 WO2020138425 A1 WO 2020138425A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
inspection
sample
pressure
search
Prior art date
Application number
PCT/JP2019/051444
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 吉良
Original Assignee
株式会社キッツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018246125A external-priority patent/JP2020106423A/en
Priority claimed from JP2018246928A external-priority patent/JP2020106456A/en
Application filed by 株式会社キッツ filed Critical 株式会社キッツ
Publication of WO2020138425A1 publication Critical patent/WO2020138425A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors

Definitions

  • the present invention relates to a method of mixing a search gas used for a pressure test or a leak test of a pressure resistant device such as a valve or a pressure resistant component.
  • pressure-resistant equipment such as valves and various pressure-resistant parts require high pressure resistance and airtightness. Therefore, to confirm strength and leakage before shipment, pressure resistance inspection and leak inspection using search gas are required. Is carried out.
  • a pressure inspection and a leakage inspection are generally performed by supplying the search gas into the work (sample) and detecting the leakage of the gas to the outside of the work with a sensor. For this reason, a diffusible gas whose leak is easily detected by a sensor is used as the search gas, and hydrogen gas is often used as the diffusible gas.
  • high-concentration hydrogen gas is usually diluted.
  • the diluted hydrogen gas is used as a search gas.
  • an inert gas is used as the diluting gas, and nitrogen is generally used as the inert gas for diluting the hydrogen gas.
  • a diluted hydrogen gas generation device of Patent Document 1 As a device for providing a search gas by mixing this type of diffusible gas and an inert gas, for example, a diluted hydrogen gas generation device of Patent Document 1 is disclosed.
  • This apparatus has a hydrogen gas supply passage, a dilution gas supply passage, a mixing tank, and a gas flow rate proportional control means. Then, hydrogen is generated by electrolysis by the hydrogen generation source, and this hydrogen is guided to the mixing tank by the hydrogen gas supply passage.
  • the diluting gas is supplied from the diluting gas supply source, and the nitrogen gas in the diluting gas is guided to the mixing tank by the diluting gas supply passage.
  • the hydrogen gas and nitrogen gas introduced into these mixing tanks are mixed in this mixing tank to generate diluted hydrogen gas (mixed gas).
  • this device mixes hydrogen gas and nitrogen gas in separate mixing tanks to generate a mixed gas, and sends the mixed gas as a search gas to the inside of the work to perform a leak inspection. Is.
  • the gas flow rate proportional control means is composed of a first mass flow controller provided in the hydrogen gas supply passage and a second mass flow controller provided in the dilution gas supply passage. Each flow rate control is performed, and the mixing ratio of the diluted hydrogen gas is set by this flow rate control.
  • the diluted hydrogen gas generator of Patent Document 1 described above generates a search gas by mixing hydrogen gas, which is a diffusible gas, and nitrogen gas, which is an inert gas, but these hydrogen gas and nitrogen gas are mixed.
  • hydrogen gas which is a diffusible gas
  • nitrogen gas which is an inert gas
  • the invention according to claim 1 is a method for inspecting a sample such as a valve using a search gas composed of a diffusible gas and an inert gas, wherein one of the gases has a predetermined concentration. After mixing the sample gas with the pressure according to the above, the other gas is used to increase the pressure inside the sample up to the inspection pressure, so that the leak gas of the pressure equipment can be inspected with the search gas of the specified concentration. Is the way.
  • the invention according to claim 2 is a search gas in which a pressure ratio between a diffusible gas and an inert gas is 2.5:97.5 to 5.5:94.5, and the test gas is enclosed in the sample. It is a method of mixing.
  • the invention according to claim 3 is a search gas mixing method, wherein the diffusible gas is hydrogen gas and the inert gas is nitrogen gas.
  • the invention according to claim 4 is a method for mixing a search gas, which is filled with nitrogen gas and then pressurized to a test pressure with hydrogen gas.
  • the invention according to claim 5 is a method of mixing search gas in which hydrogen gas is charged and then pressurized to a test pressure with nitrogen gas.
  • one of the diffusible gas and the inert gas is sealed in the sample at a pressure corresponding to a predetermined concentration, and then the other gas is filled up to the inspection pressure in the sample.
  • the pressure By boosting the pressure, there is no need for tanks for gas mixing, gas flow rate control, and equipment, and the entire facility can be made smaller and simpler, and this facility can safely generate search gas for leak inspection.
  • Highly accurate leak inspection of pressure equipment such as valves by search gas.
  • By only controlling the pressure it is possible to easily and efficiently detect the leakage of the sample by the predetermined concentration and the inspection pressure, and it is possible to suppress the cost required for the search gas manufacturing facility. Since a minimum amount of search gas required for leak inspection can be generated for each sample, wasteful search gas can be prevented from being generated and post-processing after the leak inspection can be quickly performed.
  • the pressure ratio of the diffusible gas and the inert gas is sealed in the sample at a pressure ratio of 2.5:97.5 to 5.5:94.5.
  • the search gas can be generated as a noncombustible high-pressure gas, and the safety of the search gas can be improved, and the accuracy of detection of the search gas by the sensor can be improved to reliably detect the leak.
  • hydrogen gas is used as the diffusible gas, so that it is easier to obtain than other diffusible gases, and exhibits high diffusivity to be easily detected by the sensor.
  • nitrogen gas as the inert gas
  • this nitrogen gas is mixed with hydrogen to generate a search gas at a low cost, and the chemical reactivity of the search gas after generation is kept low to improve safety and diffusion. It is possible to generate search gas with high utility value while maintaining the property.
  • the nitrogen gas which is an inert gas
  • hydrogen gas is added to the atmosphere of the inert state to raise the pressure to the inspection pressure, thereby safely leaking. An inspection can be done.
  • this hydrogen gas when the hydrogen gas accumulated in the cylinder is used, this hydrogen gas can be finely supplied for each sample, so that the hydrogen gas in the cylinder is used to the maximum without being wasted. You can do it. As a result, the running cost for generating the search gas can be reduced.
  • FIG. 1A is a circuit diagram of an inspection line showing a state where nitrogen is pressurized in FIG. 1.
  • B is a circuit diagram of an inspection line showing a state in which hydrogen is pressurized to (a).
  • A) is a circuit diagram of an inspection line showing a state of detecting external leakage of gas.
  • B) is a circuit diagram of an inspection line showing a state of purging residual hydrogen in the circuit.
  • A) is a circuit diagram of an inspection line showing a state in which air is exhausted from the sample.
  • (B) is a circuit diagram of an inspection line showing a processing state after (a).
  • A) is sectional drawing which shows the chamber of a test sample.
  • (B) is a partially cutaway front view showing a test sample. It is a graph which shows the behavior of the sensor to search gas. It is a schematic diagram which shows an example of a withstand voltage inspection apparatus. It is a longitudinal cross-sectional view showing a sample.
  • (A) is a longitudinal sectional view of the cloth.
  • (B) is a longitudinal sectional view of the tee.
  • (C) is a longitudinal sectional view of the elbow.
  • It is a flowchart of a withstand voltage inspection method. It is a partially-omitted schematic diagram which shows the inspection process by the withstand voltage inspection apparatus of FIG. It is a partially-omitted schematic front view which shows the inspection process by the withstand voltage inspection apparatus of FIG. It is a graph showing the voltage transition of the sensor. It is a schematic diagram which showed the other example of the withstand voltage inspection apparatus.
  • the search gas mixing method and the operation thereof according to the present invention will be described below in detail based on the embodiments.
  • the search gas mixing method of the present invention is an inspection method for a sample such as a valve using a search gas composed of a diffusible gas and an inert gas.
  • a search gas composed of a diffusible gas and an inert gas.
  • the sample it is desirable to fill the sample with a pressure ratio of the diffusible gas and the inert gas at a pressure ratio of 2.5:97.5 to 5.5:94.5.
  • hydrogen gas it is desirable to set the concentration of this hydrogen gas to 5% ⁇ 0.5%, that is, 4.5 to 5.5%.
  • the nitrogen gas and nitrogen gas are enclosed in the sample at a pressure ratio of 4.5:95.5 to 5.5:94.5.
  • the diffusible gas may be hydrogen gas, the inert gas may be nitrogen gas, and the diffusible gas may be a gas other than hydrogen gas as long as it has a property of having a small specific gravity and diffusing, for example, Various gases such as helium gas and methane gas can be used. When helium gas is used as the search gas, it has a high diffusivity like a mixed gas containing hydrogen. As the inert gas, a gas other than nitrogen gas may be used as long as it is a gas having low reactivity and inertness.
  • the nitrogen gas When mixing the search gas, it is advisable to fill the nitrogen gas and then increase the pressure up to the inspection pressure with hydrogen gas. Alternatively, after filling the hydrogen gas, the pressure may be increased to the inspection pressure with nitrogen gas.
  • FIG. 1 shows an example of a circuit diagram of an inspection line 11 of a leakage inspection equipment 10 for performing a leakage inspection of the sample 1 by the search gas mixing method of the present invention. A method of mixing the search gas according to 10 will be described.
  • FIGS. 2 to 4 show circuit diagrams of respective steps when the search gas is generated by the inspection line 11 of FIG.
  • the solid line shows the open state of the flow path (circuit) of the inspection line 11, and shows the state in which gas can flow inside.
  • the alternate long and two short dashes line shows the closed state of the flow path, and represents the state in which the gas does not flow inside.
  • the first flow path 20 is a flow path for supplying nitrogen gas, and in this first flow path 20, a nitrogen gas supply source 21, a first regulator 22, and a first solenoid valve 23 are provided from the primary side. It will be established continuously.
  • the second flow passage 30 is a flow passage for supplying hydrogen gas, and the hydrogen gas supply source 31, the second regulator 32, and the second electromagnetic valve 33 are continuously provided in the second flow passage 30 from the primary side.
  • the third flow passage 40 is a flow passage for supplying compressed air, and an air supply source 41 and a third electromagnetic valve 42 are continuously provided in the third flow passage 40 from the primary side.
  • a commercially available 100% nitrogen gas cylinder is used as the nitrogen gas supply source 21
  • a commercially available 100% hydrogen gas cylinder is used as the hydrogen gas supply source 31
  • an air compressor is used as the air supply source 41.
  • the above-mentioned first flow path 20, second flow path 30, and third flow path 40 are connected so as to join the sample 1 at the primary-side flow path 50, and the nitrogen gas from the nitrogen gas supply source 21 Either the hydrogen gas from the hydrogen gas supply source 31 or the compressed air from the air supply source 41 is switched by the first solenoid valve 23, the second solenoid valve 33, and the third solenoid valve 42 to switch the flow passage on the primary side flow passage. It is possible to flow from 50 to DUT 1.
  • the solenoid valves include fourth to sixth solenoid valves, which will be described later, in addition to the first, second and third solenoid valves 23, 33 and 42. The solenoid valves of these first to sixth solenoid valves are provided.
  • the entire flow path (circuit) can be opened/closed by the opening/closing control.
  • the first regulator 22 is provided so that the nitrogen gas from the nitrogen gas supply source 21 can be adjusted
  • the second regulator 32 is provided so that the pressure of the hydrogen gas from the hydrogen gas supply source 31 can be adjusted. After adjusting the hydrogen gas to a pressure of 1.0 MPa by the second regulator 32 at 95 MPa, it is sent to the first electromagnetic valve 23 side and the second electromagnetic valve 33 side, respectively.
  • the primary side flow path 50 is provided so as to be connectable to the upstream side opening 1a of the sample (valve) 1 which is detachably mounted in the chamber 51 which is a housing part of the sample 1,
  • a secondary side flow passage 52 is provided so as to be connectable to the downstream side opening portion 1b of the first unit 1.
  • a branch passage 53 is provided in the primary passage 50, and the branch passage 53 is connected to an exhaust unit (exhaust port) 55 capable of exhausting to the outside via a fourth electromagnetic valve 54.
  • the secondary passage 52 is connected to the exhaust unit 55 via a pressure sensor 56 and a fifth solenoid valve 57.
  • the pressure sensor 56 can detect the pressure value inside the DUT 1, and the pressure sensor 56 measures the pressure, and the pressure of hydrogen gas or nitrogen gas can be adjusted by the regulator described above.
  • the third flow path 40 is provided with an air supply path 60 that branches from before the third electromagnetic valve 42 and is connected to the chamber 51.
  • the air supply path 60 branches in the middle and is provided at two locations of the chamber 51.
  • the air from the air supply source 41 can be supplied into the chamber 51 and the fluid in the chamber 51 can be exhausted through the air supply path 60.
  • the air supply path 60 is provided with a sixth electromagnetic valve 61 and a vacuum part 62 capable of sucking air in the chamber 51.
  • the vacuum part 62 has an exhaust part (exhaust port) 63 capable of discharging the sucked gas to the outside. It is connected.
  • the chamber 51 is provided inside with a volume large enough to accommodate the sample 1, and a sensor 70 for detecting gas leaking from the sample 1 is attached to the chamber 51.
  • the chamber 51 has an inspection space having a space in which the search gas supplied to the DUT 1 can diffuse, and the inspection space is isolated from the outside.
  • the inspection space does not necessarily have to be sealed, and may be provided in a semi-sealed state as long as the gas leaked from the sample 1 can be detected by the sensor 70.
  • the inspection volume is preferably as small as possible in order to make it easier to detect the leaked gas from the sample 1.
  • the sensor 70 is composed of a hydrogen gas sensor capable of detecting hydrogen gas, which makes it possible to reliably detect hydrogen in a mixed gas of hydrogen and nitrogen, which is a diffusible gas leaked from the sample 1. There is.
  • the sensor 70 is mounted at a position where hydrogen can be detected in the chamber 51 by an arbitrary number, but may be mounted movably so that the position can be adjusted.
  • a gas heat conduction type sensor may be used as the sensor.
  • the sensor 70 is composed of a module that outputs a voltage according to the concentration of leaked hydrogen when a predetermined voltage is applied. Before the leak inspection, it is advisable to change the output voltage by the resistance adjusting volume and finely adjust the sensitivity according to the warm-up state of the sensor 70 and the change of the hydrogen concentration in the atmosphere.
  • the sensor 70 a commercially available semiconductor sensor that can output an analog signal (0-5V) is used, and for example, a hot wire semiconductor hydrogen sensor is used.
  • the hydrogen sensor 70 is a sensor that utilizes a change in electric conductivity due to adsorption of hydrogen gas on the surface of a metal oxide semiconductor such as stannic oxide (SnO 2 ). In this case, the output voltage becomes logarithmic with respect to the gas concentration, and high-sensitivity output is possible even at low concentration.
  • a control unit including a CPU central processing unit
  • the control unit includes a sensor 70, electromagnetic valves 23, 33, 42, 54, 57, 61, and regulators 22.
  • 32, nitrogen gas supply source 21, hydrogen gas supply source 31, air supply source 41, etc. are electrically connected.
  • the control section stores a table (installation data) set based on the nominal pressure, nominal diameter, valve type, etc. of the sample 1, and the operation of each section is controlled based on this table.
  • the control unit is equipped with a digital display unit, and when hydrogen leaks from the DUT, it outputs to this digital display unit as a voltage according to the hydrogen gas concentration via the signal processing unit provided in the control unit. To be done.
  • the digital display unit has an LCD (liquid crystal display), and the output voltage of each sensor 70 is displayed as an indicator on this LCD.
  • Specimen 1 is composed of piping parts such as valves and pipe fittings, and a ball valve is used in this example.
  • the sample (ball valve) has a nominal diameter of 1/2 to 2 inches, and the inspected volume for pressure resistance inspection is about 12 to 236 mL.
  • the sample 1 may be other than the ball valve, and may be, for example, various valves such as a gate valve, or a housing of a pneumatic actuator (not shown) used for opening and closing the ball valve.
  • the volume to be inspected for the pressure resistance inspection of the housing is about 150 to 610 mL.
  • the volume of the sample to be mounted in the chamber 51 is preferably less than 1000 mL, for example.
  • the sample 1 including the ball valve of this example is connected between the primary side flow passage 50 and the secondary side flow passage 52 by a joint having appropriate pressure resistance.
  • FIG. 1 shows an initial state when performing a leak test with a search gas.
  • the first, second, third electromagnetic valves 23, 33, 42, and the sixth electromagnetic valve 61 are closed, and the first, second, third flow paths 20, 30, 40, and the air supply path 60 are connected.
  • the flow path of is blocked.
  • the nitrogen gas from the nitrogen gas supply source 21 is controlled by the first regulator 22 and the pressure of the hydrogen gas from the hydrogen gas supply source 31 is controlled by the second regulator 32, respectively, so that each gas having a predetermined pressure is supplied.
  • the ball valve as the sample 1 is in a fully closed state, and before pressurization in FIG. 2, the ball valve 1 is in a half-opened state.
  • the search gas leak inspection shown in FIG. 3 is performed in this half-opened state.
  • the pressure ratio between the hydrogen gas and the nitrogen gas after pressurization is adjusted.
  • the ratio is 5:95, and the hydrogen-nitrogen mixed gas having a pressure of 1.0 Ma is mixed inside the sample 1 according to the ratio of the pressure ratio, and the pressure resistance leak test is performed at this pressure value.
  • the fourth solenoid valve 54 and the fifth solenoid valve 57 are maintained in the open state. In the following description, the open/closed state is maintained unless each solenoid valve is operated.
  • FIG. 2(a) shows a state in which the inside of the sample 1 is pressurized with nitrogen gas.
  • the first solenoid valve 23 is opened and the fourth solenoid valve 54 and the fifth solenoid valve 57 are closed.
  • the first flow path 20, the primary-side flow path 50, and the secondary-side flow path 52 communicate with each other.
  • the sample 1 is first pressurized with nitrogen gas, and the pressure is increased to 0.95 MPa described above.
  • the pressure is also confirmed by the pressure sensor 56, and the measured value of the pressure is measured by the pressure sensor 56 in this way to obtain the gas with the accurate pressure. Supply is possible.
  • pressurizing with nitrogen gas first a safe leak inspection work is possible.
  • FIG. 2B shows a state in which the inside of the sample 1 is continuously pressurized with hydrogen gas.
  • the first solenoid valve 23 is closed and the second solenoid valve 33 is opened.
  • hydrogen gas is supplied from the second flow path 30 to pressurize the sample 1 while the supply of nitrogen gas from the first flow path 20 is stopped.
  • the pressure of the hydrogen gas at this time is 1.00 MPa described above, and the pressure of the hydrogen gas is raised to 1.0 MPa in a state where the hydrogen gas and the nitrogen gas are mixed.
  • a mixed gas of about 5% hydrogen is formed in the sample 1 with the ratio of hydrogen gas and nitrogen gas being 5:95 as described above, and the search gas of this predetermined concentration is used as a pressure device. Perform a leak inspection of sample 1.
  • FIG. 3A shows a state in which the second electromagnetic valve 33 is closed, and in this state, the sensor 70 set in the chamber 51 detects the leak of the search gas from the sample 1. At this time, the search gas leaked from the sample 1 is accurately detected by the sensor 70 in a state where the chamber 51 prevents the diffusion of the search gas to the surroundings. According to the measurement result of the leak inspection, it becomes possible to judge the pass/fail of the sample 1 as a product.
  • Fig. 3(b) shows a state in which residual hydrogen in the circuit is purged with air after performing a leak test.
  • the fourth solenoid valve 54 and the fifth solenoid valve 57 are opened to exhaust from the exhaust unit 55, and then the fourth solenoid valve 54 is closed to the third solenoid valve 42 and the fifth solenoid valve 57.
  • the third flow path 40 communicates with the exhaust part 55 of the secondary flow path 52 through the primary flow path 50.
  • the residual hydrogen in the circuit including the inside of the DUT 1 is discharged from the exhaust unit 55 by air.
  • FIG. 4A shows a state in which the third solenoid valve 42 is operated in the open state, and then the DUT 1 is operated in the valve open state by the drive device (not shown). As a result, the DUT 1 can be disconnected from the circuit and the internal pressure can be exhausted.
  • FIG. 4B shows a state in which the upstream side opening 1a and the downstream side opening 1b of the sample 1 are removed from the primary side flow path 50 and the secondary side flow path 52, respectively, and unclamped from the circuit.
  • the sixth solenoid valve 61 is operated to open so that the third flow passage 40 and the air supply passage 60 are communicated with each other, thereby purging the chamber 51 with air through the air supply passage 60.
  • the residual hydrogen in the air supply path 60 is vacuumed by the vacuum section 62, and the vacuumed residual hydrogen is discharged from the exhaust section 63.
  • the leak inspection of one sample 1 is completed, and the inspection line 11 of the leak inspection facility 10 is continuously set to the initial state of FIG. 1 to perform the leak inspection of another sample 1. It will be possible to do.
  • the first regulator 22 and the first solenoid valve 23 are provided in the first flow passage 20 and the second regulator 32 is provided in the second flow passage 30 in the inspection line 11 of the leak inspection equipment 10. Since the second solenoid valve 33 is provided, the first regulator 22 sets the nitrogen gas from the nitrogen gas supply source 21 to 0.95 MPa, and the second regulator 32 sets the hydrogen gas from the hydrogen gas supply source 31 to 1.00 MPa. It is possible to regulate the pressure and supply each gas of these predetermined pressures into the test valve 1 with high accuracy by opening/closing the first solenoid valve 23 and the second solenoid valve 33.
  • hydrogen gas can be supplied to accurately increase the pressure to 1.0 Ma, which is a predetermined inspection pressure.
  • a 5% mixed gas having a concentration of 5:95 can be provided as a leak inspection search gas, and this search gas can be used as a leak inspection gas for the sample 1.
  • a search gas having a concentration of about 5% that is safe and suitable for detection can be provided in the sample 1, there is no need to provide a tank or equipment for mixing the search gas outside, and the entire leak inspection facility 10 can be provided. It is possible to carry out an accurate leak inspection in a short time while achieving a compact size.
  • the pressure ratio of the hydrogen gas and the nitrogen gas after pressurization is 5%. It is also possible that the hydrogen-nitrogen mixed gas having a pressure of 1.0 MPa is mixed inside the test sample 1 according to this mixing ratio, and the pressure resistance leak test is performed at this pressure value. As a result, the hydrogen gas in the cylinder can be used up to 0.05 MPa, and the hydrogen gas in the cylinder can be used up to the maximum without being wasted.
  • FIG. 5B shows an experimental sample (experimental jig) 80.
  • the experimental sample 80 is made by imitating a ball valve having a nominal diameter of 2 inches. Was formed into a substantially cylindrical shape. Regarding the dimensions of the hollow portion 81 inside the test sample 80, the inner diameter ⁇ d was 50 mm and the length was 120 mm.
  • FIG. 5A shows a chamber 82 for accommodating the experimental sample 80 in a state of being clamped by the clamp jigs 90 and 91, and the axial length of the chamber 82 is the experimental sample. It is formed slightly longer than the length of the sample. Gas sensors 83 are provided at six places in the chamber 82, and the gas leaked from the test sample 80 can be detected by these gas sensors 83. In the figure, the search gas was made to flow from the “front” clamp jig 90 side toward the “rear” clamp jig 91 side.
  • the experimental sample 80 was stored in the chamber 82, and this was connected to the inspection line of the leakage inspection equipment to measure the amount of leakage. At this time, three types of search gases were supplied to the sample, and the behavior of the gas sensor 83 was measured through a constant flow rate device with a leak rate of 0.3 mL/min.
  • the initial voltage output from the gas sensor 83 is set to 2.0V, and when the initial voltage reaches 105%, that is, when the voltage rises from 2.0V to 2.1V or more, a gas leak is detected. I decided to do it.
  • the three types of search gas were (1) a commercially available mixed gas, and (2) and (3) a gas mixed in a local leak inspection facility by the search gas mixing method of the present invention.
  • (1) a commercially available mixed gas, a mixed gas containing 5% hydrogen and 95% nitrogen was used.
  • As the on-site mixed gas of (2) after supplying nitrogen gas 1.14 MPa into the experimental sample 80, hydrogen gas is supplied to set the pressure in the experimental sample 80 to 1.20 MPa, that is, hydrogen gas.
  • the pressure ratio of nitrogen gas to nitrogen gas was set to 5:95, so that a mixed gas of about 5% hydrogen and about 95% nitrogen was provided in the experimental sample 80.
  • the on-site mixed gas of (3) after supplying nitrogen gas of 1.17 MPa into the experimental sample 80, hydrogen gas is supplied so that the pressure inside the experimental sample 80 is 1.20 MPa, that is, hydrogen gas.
  • the pressure ratio of nitrogen gas to nitrogen gas was 2.5:97.5, so that a mixed gas of approximately 2.5% hydrogen and approximately 97.5% nitrogen was provided in the experimental sample 80.
  • the gas sensor 83 is used for the pseudo-leakage (0.3 mL/min) generated through the constant flow rate device by pressurizing the inside of the experimental sample 80 with the above three kinds of search gases (1) to (3).
  • the graphs in FIG. 6 show how each of these reacts.
  • the on-site mixed gas of (3) a voltage increase was confirmed by the gas sensor 83 approximately 20 seconds after the start of the inspection, and a leak was detected. From this, it can be said that even if the concentration of hydrogen gas is about 4.5%, it can be said that the safe inspection can be completed within a predetermined time (for example, within the cycle time of the processing process which is a pre-process of the leak inspection). .. From these, it can be said that the mixed gas prepared by the search gas mixing method of the present invention can be sufficiently used as a substitute for a commercially available mixed gas. In that case, the concentration of the mixed search gas (hydrogen gas) can also be controlled by controlling the pressure of each gas. It was confirmed that even a low-concentration search gas can be detected, so even if the hydrogen gas concentration is lowered in consideration of safety, it can be used as a search gas for a pressure test or a leak test.
  • the mixed search gas hydrogen gas
  • the present invention can be applied as a search gas for inspecting a valve seat such as a ball valve or a globe valve.
  • a valve seat such as a ball valve or a globe valve.
  • the present invention can be applied as a search gas for inspecting a valve seat such as a ball valve or a globe valve.
  • a predetermined inspection time that is, a pressure resistance inspection
  • the ball valve Prior to the air purging in (1), the ball valve is fully closed and the search gas is sealed in the cavity of the valve, so that it can be applied to the leak inspection from the valve seat within a predetermined inspection time.
  • a flow sensor (not shown) connected to the primary side flow passage 50 or the secondary side flow passage 52 is used.
  • the present invention can be applied as a search gas for valves other than ball valves such as globe valves and gate valves, and can perform pressure resistance inspection of various pressure devices such as housings of pneumatic actuators, including piping devices other than valves. It can be applied to leak inspection.
  • a pressure resistance inspection using a search gas is carried out before shipment to confirm strength and leakage.
  • a pressure test is performed on a work (test sample) such as a piping component
  • a test called a pressure change method may be performed.
  • prepare a leak-free standard product (master) pressurize the work and master simultaneously, and use the differential pressure sensor to determine the pressure change in the work due to leakage Leakage is detected by detecting the difference as a change.
  • a pressure resistance test may be performed by detecting leakage of fluid from the inside of the work to the outside.
  • air may be used as a search fluid in a pressure resistance test of a valve having a small nominal diameter (for example, a nominal diameter of 50 A or less).
  • a pressure resistance test by detecting such gas leakage For example, a hydrogen leak test may be used. In this case, hydrogen/nitrogen mixed gas is applied to the work, and the leak is judged by detecting the leak of gas to the outside with a gas sensor.
  • reference 1 discloses a submersible pressure leak inspection device. This leak inspection device is designed to inspect a work for pressure leak by filling a work to be inspected with a fluid having a predetermined pressure and observing the presence or absence of bubbles in the work in a state of being submerged in a water tank. ing.
  • the withstand pressure inspection using a search gas capable of continuously and quickly performing the withstand pressure inspection of the sample under a short time and capable of easily and accurately detecting the leak is provided.
  • a device is provided.
  • This specific example is a pressure resistance inspection device 101 using a search gas such as hydrogen, and includes an opening/closing plate 111 for opening and closing the inspection space S, a sensor 112 attached to the opening/closing plate 111 for detecting the search gas, and a sensor 112 for detecting the search gas.
  • the DUT 102 in which the sensor 112 is arranged in the inspection space S is brought close to or provided with a proximity withdrawal means for withdrawing the opening/closing plate 111 from the inspection space S after the inspection is completed.
  • the withstand voltage inspection device 101 uses the search gas in which the influence of the search gas leaked when the sample 102 is unclamped is reduced.
  • the proximity withdrawing means 113 is a rotating mechanism using a servomotor 130 or the like, and in the withstand voltage inspection device 101 using a search gas, the opening/closing plate 111 is withdrawn from the inspection space S by this rotating mechanism. is there.
  • the proximity retraction means 151 is a slide mechanism that uses a cylinder 152 and the like, and is a pressure resistance inspection device 150 that uses search gas to retract the opening/closing plate 153 from the inspection space S by this slide mechanism.
  • another aspect of this specific example is a pressure resistance inspection method using a search gas such as hydrogen, in which the inspection space S is opened and closed by the opening/closing plate 111 and the sample 102 is arranged in the inspection space S.
  • the search gas is detected while the sensor 112 attached to the opening/closing plate 111 is brought close to the DUT 102 by the proximity retreating means, and after the inspection by the search gas is completed, the opening/closing plate 111 is removed from the inspection space S by the proximity retreating means.
  • This is a withstand voltage inspection method using a search gas in which the influence of the search gas leaked when the sample 102 is unclamped is reduced by evacuating the sensor 112 and exposing the sensor 112 to the outside air.
  • the gas diffusion means such as the fan 140 is used to perform forced intake or forced exhaust in the vicinity of the sensor 112. This is a withstand voltage inspection method using a search gas that reduces the influence of the search gas leaked during the unclamping of the sample 102 and allows the next sample 102 to be inspected early.
  • the opening/closing plate 111 is retracted from the inspection space S by the proximity retraction means 113, the sensor 112 is exposed to the outside air, and the influence of the search gas leaked when the sample 102 is unclamped is influenced.
  • the search gas around the sensor 112 can be removed after the inspection is completed, and the influence of the search gas remaining in the inspection space S can be suppressed early to shorten the processing time after the breakdown voltage inspection. Therefore, the time required for the withstand voltage inspection of each sample 102 can be shortened, and the next sample 102 can be set in a state capable of withstanding voltage inspection to continuously and quickly inspect the sample 102.
  • the sensor 112 is brought into proximity to the sample 102 by the proximity retracting means 113 in the state where the sample 102 is arranged in the inspection space S, it is possible to easily open and close by using this one proximity retracting means 113.
  • the plate 111 can be brought close to or retracted from the DUT 102, and the sensor 112 attached to the opening/closing plate 111 can be arranged at a predetermined position of the DUT 102 to accurately detect a leak.
  • the above-mentioned functions are stably exhibited, and in addition to the piping parts such as the joints, the sample 102 of all aspects can be quickly subjected to the pressure resistance test. Can be implemented. Since the search gas is used as the inspection fluid, post-treatment is easy and the load on the environment is small.
  • the proximity retracting means 113 is a rotating mechanism using the servo motor 130 and the like, and the opening/closing plate 111 is retracted from the inspection space S by this rotating mechanism.
  • the sensor 112 is less susceptible to the influence of the search gas in the inspection space S because the opening/closing plate 111 is rotated in a direction away from the inspection space S to be in an open state by making contact with the.
  • the proximity retracting means 151 is a slide mechanism using a cylinder 152 or the like, and since the opening/closing plate 153 is retracted from the inspection space S by this sliding mechanism, the sensor 112 can be quickly moved to the atmosphere when the opening/closing plate 153 is retracted.
  • the influence of the search gas can be reduced early by contacting the. Since the open/close plate 153 slides in the direction away from the inspection space S to be in the open state, the sensor 112 is less likely to be affected by the search gas in the inspection space S, and further, the slide amount of the open/close plate 153 is increased to perform the inspection. By increasing the distance of the sensor 112 from the space S, the influence of the search gas on the sensor 112 can be further suppressed.
  • the influence of the search gas remaining near the sensor 112 can be reduced early to shorten the processing time after the breakdown voltage inspection. Therefore, the time required for the withstand voltage inspection of each sample 102 can be shortened, and the sample 102 can be inspected continuously in a short time in a state where the next sample 102 can be quickly subjected to the withstand voltage inspection. Moreover, the opening/closing plate can be easily brought close to or retracted from the DUT by one proximity retreat means, and the sensor 112 attached to the opening/closing plate can be arranged at a predetermined position of the DUT 102 to accurately detect the leak. Become.
  • the search gas staying after the pressure resistance test can be quickly removed, and the influence of the search gas leaked at the time of unclamping can be reduced.
  • the withstand voltage inspection of the sample 102 can be continuously performed in a short time.
  • FIG. 7 shows an example of a withstand voltage inspection apparatus (hereinafter referred to as an apparatus main body 101) for performing a withstand voltage inspection by the search gas mixing method of the present invention, and in FIG. 8, a sample to be inspected by the apparatus main body 101. (Work) 102 is shown.
  • FIG. 9 shows a flowchart in this example of the withstand voltage inspection method using the search gas.
  • the apparatus main body 101 in this example is installed at the position of the chamber 51 in the leak inspection equipment 10 of FIG. 1 described above, and the device main body 101 enables the sample 102 to be subjected to pressure resistance inspection.
  • the sample 102 to be pressure-tested by the apparatus main body 101 is composed of, for example, pipe parts such as a pipe joint and a valve.
  • pipe parts such as a pipe joint and a valve.
  • an integrally molded screw-in type having a female screw on the flow path opening side as a pipe end connection part.
  • Pipe fittings are used.
  • As the pipe joint (test sample) 102 there are a cross shown in FIG. 8A, a tee shown in FIG. 8B, an elbow shown in FIG. 8C, and the like.
  • pipe fittings in which the central axes of all the branch flow paths 103 are arranged substantially on the same plane are suitable, which intersect each other at intervals of 90°.
  • Female screws 105 are formed on the inner peripheral sides of the open end surfaces 104 of the cloth, tee, and elbow, respectively.
  • the pipe joint to be inspected has, for example, a nominal diameter of 1/8 inch to 4 inches, and although not shown, it is also possible to perform pressure resistance inspection of a straight pipe joint sample.
  • the apparatus main body 101 of FIG. 7 is a pressure resistance inspection apparatus that uses a search gas such as hydrogen, and includes a mounting jig 110, an opening/closing plate 111, a sensor 112, and a proximity retreat means 113.
  • the mounting jig 110 is provided on the apparatus main body 101 to clamp the DUT 102 so as to perform pressure resistance inspection, and includes a frame body 120, a fixed side jig 121, a movable side jig 122, and a cylinder mechanism 123. ..
  • the frame 120 is in the shape of a rectangular parallelepiped, and the inside of the frame 120 is hollowed out to form a concave housing portion 120a.
  • a fixed-side jig 121, a movable-side jig 122, and a cylinder mechanism 123 are housed in the housing portion 120a, and an inspection space S for pressure resistance inspection of the sample 102 is provided.
  • the inspection space S has a volume capable of accommodating the DUT 102, and has a size capable of diffusing the search gas supplied to the DUT 102 and leaked out, and is provided with a small volume in which this gas can be easily detected.
  • the inspection space S is provided so as to be isolated from the outside by the opening/closing plate 111. In this case, if the leaked gas can be detected, it can be provided in a closed state or a semi-closed state.
  • the opening/closing plate 111 is provided by a transparent, semi-transparent, or opaque acrylic plate, and one end side thereof is attached to the movable side jig 122 as a rotating shaft (not shown). It is rotatable. By rotating the opening/closing plate 111, the region of the inspection space S can be opened/closed. When the opening/closing plate 111 shown in FIGS. 10(a) and 10(e) is fully opened, the opening/closing plate 111 becomes substantially horizontal. On the other hand, when the opening/closing plate 111 shown in FIG. 10D is fully closed, the inspection space S can be closed to be isolated from the outside.
  • the sensors 112 are arranged in the vicinity of four clamp parts described later, and the four sensors 112 can detect the leak of the search gas corresponding to the four branch flow paths 103 when the DUT 102 is a cross. Further, when the DUT 102 is a tee or an elbow, the DUT 102 is placed at an appropriate position.
  • a through hole 124 is provided at a sensor mounting position of the opening/closing plate 111, and a gas detection unit 125 provided in the sensor 112 when the opening/closing plate 111 is fully closed is provided in the inspection space S with respect to the through hole 124.
  • the sensor 112 When facing, the sensor 112 is mounted so as to be flush with the surface of the opening/closing plate 111 on the inspection space S side. This makes it easier for the gas detection unit 125 to detect the leaked gas near the inspection space S, and when the opening/closing plate 111 opens, the gas detection unit 125 causes the inspection space to increase as the opening degree increases. It is designed to move away from
  • the search gas detected by the sensor 112 for example, a mixed gas of nitrogen gas which is an inert gas and hydrogen gas having diffusivity is used, and 5% hydrogen in which the ratio of the nitrogen gas and the hydrogen gas is 95:5.
  • the sensor 112 is composed of a hydrogen gas sensor capable of detecting hydrogen gas, and the hydrogen gas sensor 112 detects hydrogen in a mixed gas of hydrogen and nitrogen, which is a diffusible gas leaked from the sample 102. It will be possible.
  • the sensor 112 is attached at a position where hydrogen can be detected in the inspection space S by an arbitrary number of attachments.
  • the sensor 112 is composed of a module that outputs a voltage according to the concentration of leaked hydrogen when a predetermined voltage is applied. Before the breakdown voltage test, the output voltage may be changed by the resistance adjusting volume, and the sensitivity may be finely adjusted according to the warm-up state of the sensor 112 or the change of the hydrogen concentration in the atmosphere.
  • the hydrogen sensor 112 a commercially available semiconductor sensor that can output an analog signal (0-5V) is used, and for example, a hot wire semiconductor hydrogen sensor is used.
  • the hydrogen sensor 112 is a sensor that utilizes a change in electrical conductivity due to adsorption of hydrogen gas on the surface of a metal oxide semiconductor such as stannic oxide (SnO 2 ). In this case, the output voltage becomes logarithmic with respect to the gas concentration, and high-sensitivity output is possible even at low concentration.
  • the proximity retracting means 113 is a rotating mechanism using the servo motor 130, and is attached to the rotating shaft of the opening/closing plate 111 so that the opening/closing plate 111 can be opened/closed about the rotating shaft. From this fact, if the opening/closing plate 111 is operated in the closing direction by the proximity retreat means 113, the gas detection part 125 of the sensor 112 attached to the opening/closing plate 111 is brought close to the sample 102 arranged in the inspection space S, or By operating the opening/closing plate 111 in the opening direction after the inspection, the opening/closing plate 111 can be retracted from the inspection space S.
  • the opening/closing plate 111 is retracted from the inspection space S by the rotating mechanism 113, and the gas detection unit 125 is brought into contact with the outside air while the sensor 112 is separated from the inspection space S, whereby leakage occurs when the sample 102 is unclamped. The influence of the released search gas is reduced.
  • the fixed-side jig 121 is mounted in a fixed state in the frame 120, and after the sample 102 is placed on the fixed-side jig 121 in a predetermined state, it is provided by the movable-side jig 122.
  • the withstand voltage test can be performed with the prototype 122 clamped.
  • the fixed-side jig 121 includes two cylindrical fixed clamp portions 131 and 131, and these fixed clamp portions 131 have a clamp surface 132 having a sealing property on the clamp side.
  • Each clamp surface 132 is provided in such a shape and at an interval that the open end surfaces 104, 104 of a pair of adjacent branch flow channels 103, 103 of the sample 102 can be clamped in a sealed state. They are provided at intervals of 90° according to the angle of the branch channel 103. Although not shown, these fixed clamp parts 131 are provided with protrusions for supporting the sample 102 in a stable state.
  • connection portions 133 and 133 for external flow path connection are provided outside each fixed clamp part 131.
  • the connection portion 133 on the right side of FIG. 7 is the pressurizing side by the search gas
  • the connection portion 133 on the left side is the exhaust side
  • the pressurizing side connecting portion 133 and the exhaust side connecting portion 133 have external flow paths (not shown), respectively.
  • the movable jig 122 is attached to a piston 134 provided in the cylinder mechanism 123, and is provided by the piston 134 so as to be capable of reciprocating in the vertical direction in FIG. 7.
  • the movable-side jig 122 is provided with two cylindrical movable clamp portions 135, 135, and these movable clamp portions 135 have sealing surfaces 136, 136, which are sealingly sealed and have a sealing property. Both or one of the clamping surfaces 136 is brought into contact with the sample 102, and the sample mechanism 102 is pressed by the cylinder mechanism 123 in the direction of the fixed-side jig 121, whereby the sample 102 can be clamped.
  • the movable clamp part 135 can be provided in various structures as long as it can press the sample 102 in the direction of the fixed-side jig 121, but it is symmetrical to the fixed clamp part 131 as in this example.
  • the non-inspection side of the sample 102 can be fixed between the fixed clamp part 131 and the sample clamp 102 by pressing the non-inspection side with the movable clamp parts 135 at 90° intervals.
  • the fixed side jig 121 is used even when the tee shown in FIG. 8B and the elbow shown in FIG.
  • the movable jig 122 are firmly held, and the two open end surfaces 104 of the sample 102 and the clamp surface 132 of the fixed clamp portion 131 can be fixed while securing the sealability.
  • a search gas supply source and an exhaust flow path are connected to the connection part 133, respectively, and the search gas is supplied from one connection part 133 side in the clamped state of the sample 102 to apply a predetermined pressure to the inside of the cloth 102.
  • the pressure is checked by detecting the gas leaking into the inspection space S with the sensor 112, and then exhausted from the other connecting portion 133 side.
  • the inspection space S increases as the volume of the clamp parts 131 and 135 increases. Volume becomes relatively small. By narrowing the inspection space S in this way, the inspection time can be shortened.
  • the apparatus main body 101 may have a clamp structure different from the one described above, or an attachment structure other than the clamp structure may be used to fix and hold the sample 102 in the inspection space S. As long as it can be withdrawn from the inspection space S, it can be provided in any form depending on the shape and structure of the sample 102.
  • the search gas can be used in various forms as long as it is a mixture of a diffusible gas and an inert gas.
  • a diffusible gas can be used as the diffusible gas, or an inert gas can be used.
  • argon gas may be used.
  • the sample 102 is not limited to a screw-in type pipe joint, but may be a pipe joint formed by integral molding of other structures. Further, the pipe joint is not limited to the integrally molded product, and may be a pipe joint in which a plurality of parts are combined. For example, a cap nut-shaped pipe end connecting portion is provided via a seal member such as an O-ring, screw connection or caulking. The pipe end connecting portion may be integrated with the joint main body. Further, not only the pipe joint, but also a piping device such as a valve may be the DUT 102. When the valve is the DUT 102, various valves such as a ball valve and a gate valve can be inspected for pressure resistance.
  • the DUT 102 may be a straight pipe joint.
  • a mounting jig having a straight gas flow path at the clamp portion may be used. Even when the intervals of the flow paths 103 are provided at angles other than 90°, by using a mounting jig provided with a clamp portion corresponding to the angle, a joint of any shape or piping of various structures can be obtained. Can handle parts.
  • the open/close plate may be made of various materials other than the acrylic plate, and may be set to open at a larger angle than the horizontal direction when fully opened.
  • FIG. 9 shows a flow chart of the withstand voltage inspection method
  • FIGS. 10 and 11 show schematic diagrams of the inspection process by the apparatus main body of FIG.
  • a cloth having a nominal diameter of 3/8 inch was used as the sample.
  • the rotating mechanism 113 is operated to rotate the opening/closing plate 111 to the open state (fully open state), and the inspection space S is opened.
  • the movable jig 122 is moved upward by the cylinder mechanism 123.
  • the cloth (sample) 102 is placed on the fixed clamp portion 131 of the fixed-side jig 121 so that the predetermined position of the inspection space S is reached.
  • the open end surfaces 104, 104 of the arbitrary two branch flow paths 103, 103 of the cloth 102 are placed so as to abut on the two clamp surfaces 132, 132 of the fixed clamp part 131, respectively, and the protrusions are supported by the protrusions.
  • the cylinder mechanism 123 is operated to lower the movable side jig 122, and the two clamp surfaces 136 of the movable clamp portion 135 are connected to the two branch flow paths above the cross 102.
  • the open end faces 104, 104 of the 103, 103 are brought into contact with and clamped.
  • the two opening end surfaces 104, 104 on the upper portion of the cloth 102 are closed by the clamp surfaces 136, 136 in a sealed state, while the two opening end surfaces 104, 104 on the lower portion of the cloth 102 are connected to the gas flow path in a communicating state. It is possible to supply the search gas into the cloth 102 from the pressure side connecting portion 133 and exhaust the search gas from the exhaust side connecting portion 133.
  • 10(d) and 11(d) show the state in which the inspection space S is isolated from the outside by operating the rotating mechanism 113 to rotate the opening/closing plate 111 to the fully closed state. At this time, the inspection space S is in a semi-sealed state, and the gas detection unit 125 of the sensor 112 attached to the opening/closing plate 111 is in a state of being close to the cloth 102.
  • a search gas having a pressure of 1.4 MPa is supplied from the pressurizing side connection portion 133 into the cloth 102, and a withstand pressure test of the cloth 102 is performed.
  • the cloth 102 has a porosity due to cracks or cavities, gas leakage occurs outside, and the leaked search gas diffuses into the inspection space S.
  • the quality of the cloth 102 as a product is determined by detecting the search gas with the sensor 112.
  • compressed air is supplied from the pressurizing side connecting portion 133, and the compressed air is used to air purge the internal flow path from the pressurizing side connecting portion 133 toward the exhaust side connecting portion 133.
  • the residual hydrogen inside is discharged to the outside.
  • the rotating mechanism 113 is operated to rotate the opening/closing plate 111 to the fully opened state, the opening/closing plate 111 is retracted from the inspection space S, and the gas detection unit 125 of the sensor 112 is positively activated. Try to expose it to the open air.
  • the cloth 102 is unclamped, there is no possibility that the search gas leaked from the inspection space S will come into contact with the gas detection unit 125, and the influence of the search gas on the sensor 112 is reduced.
  • the next cloth (test sample) 102 can be inspected at an early stage.
  • the sensor 112 becomes farther from the search gas (inspection space S) and the gas detection unit 125 faces the inspection space S. Therefore, the influence of the residual search gas released from the inspection space S to the outside can be further suppressed. Further, if the gas is lighter than air, such as hydrogen gas, it becomes easy to diffuse above the inspection device. Subsequently, the cloth (sample) 102 is unclamped with the opening/closing plate 111 fully opened, and the cloth 102 is taken out from the inspection space S.
  • the opening/closing plate 111 is retracted from the inspection space S by the rotating mechanism 113 that is the proximity retraction means, so that the sensor 112 is exposed to the outside air and leaks when the cloth 102 is unclamped. Since the influence of the search gas is reduced, the search gas can be quickly removed from the vicinity of the gas detection portion 125 of the sensor 112, and the time until the next withstand voltage inspection can be shortened.
  • a through hole 124 is provided in the opening/closing plate 111, and when the sensor 112 is mounted in the through hole 124, the gas detection part 125 faces the inspection space S and is flush with the surface of the opening/closing plate 111 on the inspection space S side. Since the gas is leaked to the inspection space S during the pressure resistance inspection, the gas detection unit 125 contacts the outside air to detect the outside air when the opening/closing plate 111 is rotated in the opening direction. A large contact area can be secured. Therefore, it is possible to effectively remove the residual gas in the vicinity of the gas detection unit 125 and quickly return the sensor 112 to a gas detectable state.
  • the cloth 102 Since the cloth 102 is arranged in the inspection space S and the search gas leaking from the cloth 102 is electrically detected by the sensor 112, the leaking search gas can be accurately detected in a short time regardless of the volume of the cloth 102. Can be detected. As a result, automation can be achieved, an error in the detection result for each worker is prevented, and the inspection time becomes substantially constant. Since there is no need for the operator to check for leaks, the burden on the operator is small, and there is no need to perform post-processing such as drying on each cloth 102 after the pressure resistance test.
  • 10(e) and 10(f) show a state in which the exhaust fan 140 is arranged as a gas diffusion means in the device main body 101 in a direction intersecting with the opening/closing direction of the opening/closing plate 111.
  • the fan 140 is used to forcibly inhale the vicinity of the sensor 112.
  • forced exhaust may be performed.
  • the influence of the search gas leaked when the cloth 102 is unclamped can be reduced more quickly, and the next cloth (test sample) 102 can be inspected earlier.
  • the gas diffusion means 140 something other than a fan may be used.
  • the sensor 112 not only detects the gas leaking from the cloth (sample) 102 into the inspection space S, but also detects the search gas remaining in the atmosphere around the apparatus main body 101. It may be operated at a time other than during the withstand voltage inspection. As a result, as described above, the measurement by the sensor 112 is continued even after the inspection is completed, and while the ambient atmosphere is measured by the sensor 112, the gas diffusion means 140 performs the forced intake or the forced exhaust to perform the search gas reduction control. As a result, the search gas can be removed in a short time while grasping the residual degree.
  • FIG. 12 in the case where the above gas diffusion means 140 is provided, an example of voltage transition when the search gas (mixed gas of hydrogen 5% and nitrogen 95% in this embodiment) is measured by the sensor 112. It is shown schematically.
  • the horizontal axis represents the passage of time and the vertical axis represents the change in the voltage of the sensor 112 with the passage of time.
  • the sensor 112 was adjusted by a digital potentiometer (not shown), and the reference voltage when the search gas was not detected was 2.0V. Assuming that the sample 102 without leakage is inspected, the change in voltage from before clamping to after measuring the pressure of the sample 102 is shown as a change in the graph. In this graph, when the voltage rises to 2.1 V after unclamping the DUT 102, it is determined that there is a large amount of residual search gas, the fan 140 is activated, and air purge is performed. If the voltage does not drop below 2.05 V, it is determined that there is residual gas, and the next withstand voltage test of the sample 102 is not performed.
  • (1) to (9) in the graph show the main points during the withstand voltage inspection.
  • (1) shows the initial voltage of the sensor 112, which is the voltage immediately after the power of the apparatus main body 101 is turned on.
  • the sample 102 is clamped by the mounting jig 110, the opening/closing plate 111 is fully closed to make the inspection space S semi-closed, and the sensor 112 is zero-adjusted toward the start of the pressure inspection.
  • the reference voltage is set to 2.0V.
  • (3) shows a change in voltage when the DUT 102 is pressurized with the search gas, and the inspection time is set to 30 seconds to check the presence or absence of gas leakage from the change in voltage. In this example, since the test piece 102 has no leakage, the voltage at this time does not substantially change and is maintained at about 2.0V.
  • a fan 140 or an air purge is used to remove residual gas. Let it start. As a result, the residual gas is diffused from the apparatus main body 101, and the voltage starts to decrease. In this way, by forcibly removing the residual gas after unclamping the sample 102, it becomes possible to prepare for the next sample 102 to be subjected to a pressure resistance test.
  • a preset value for example, 2.1 V
  • the following DUT 102 is clamped by the mounting jig 110 and the opening/closing plate 111 is fully closed to make the inspection space S semi-closed. At this time, the voltage slightly rises due to the gas remaining slightly from the device body 101.
  • the fan 140 and the air purge are activated to remove the gas. In this way, by forcibly removing the residual gas after the second and subsequent clamping of the sample 102, it is possible to continuously perform the withstand voltage inspection.
  • the time required for the pressure resistance inspection of the sample 102 can be significantly reduced.
  • the time from the power-on of the main body 101 to the start of the inspection of the first DUT 102 can be carried out in about 75 seconds, which enables a quick withstand voltage inspection.
  • FIG. 13 shows a partially cutaway side view of another example of the withstand voltage inspection device.
  • the same parts as those of the apparatus body 101 described above are denoted by the same reference numerals, and the description thereof will be omitted.
  • the proximity retraction means 151 is composed of a slide mechanism using a cylinder 152, and the opening/closing plate 153 made of an acrylic plate is changed from the closed state shown in FIG. 13A to a frame as shown in FIG. 13B.
  • the region of the inspection space S inside the frame 154 can be opened and closed.
  • the opening/closing plate 111 slides in the same direction as the cylinder 152, so that space saving can be achieved.
  • the opening/closing plate 111 slides in the length direction of the frame body 154, it may be configured to slide in a direction orthogonal to the length direction of the frame body 154.
  • the slide mechanism 151 may be a drive mechanism other than the cylinder 152.

Abstract

Provided is a search gas mixing method with which a diffusive gas and an inert gas are mixed in a short time by small and simplified equipment to safely produce a search gas for leakage inspection is safely generated, so that the inspection of leakage from a pressure apparatus can be simply and efficiently performed. A search gas composed of a diffusive gas and an inert gas is used, one of the gases is sealed in a sample 1 with a pressure corresponding to a predetermined concentration, and then, the other of the gases raises the pressure inside the sample 1 up to an inspection pressure. Thus, the inspection of leakage from the pressure apparatus is performed with the search gas having the predetermined concentration.

Description

サーチガスの混合方法Search gas mixing method
 本発明は、例えばバルブなどの耐圧機器や耐圧部品の耐圧検査や漏れ検査用として用いられるサーチガスの混合方法に関する。 The present invention relates to a method of mixing a search gas used for a pressure test or a leak test of a pressure resistant device such as a valve or a pressure resistant component.
 例えば、バルブなどの耐圧機器や各種の耐圧部品では、高い耐圧性や気密性が要求されることから、出荷前に強度や漏れの有無を確認するため、サーチガスを用いた耐圧検査や漏れ検査が実施される。これらサーチガスを用いた検査では、一般にサーチガスをワーク(供試品)内部に供給し、ワーク外部へのガスの漏れをセンサで検知することで圧力検査や漏れ検査が行われる。このことから、サーチガスとしては、漏れをセンサで検知しやすい拡散性のガスが用いられ、この拡散性ガスとしては水素ガスが使用されることが多い。 For example, pressure-resistant equipment such as valves and various pressure-resistant parts require high pressure resistance and airtightness. Therefore, to confirm strength and leakage before shipment, pressure resistance inspection and leak inspection using search gas are required. Is carried out. In the inspection using these search gases, a pressure inspection and a leakage inspection are generally performed by supplying the search gas into the work (sample) and detecting the leakage of the gas to the outside of the work with a sensor. For this reason, a diffusible gas whose leak is easily detected by a sensor is used as the search gas, and hydrogen gas is often used as the diffusible gas.
 この場合、高濃度の水素ガスの化学的な反応性を低くして安全性を高め、かつ漏れ検査時の水素ガスの使用量を極力抑えるために、通常は高濃度の水素ガスを希釈用のガスで希釈し、この希釈した水素ガスをサーチガスとして用いるようになっている。希釈用のガスとしては不活性ガスが使用され、水素ガスを希釈する不活性ガスとしては窒素を用いる場合が一般的である。 In this case, in order to increase the safety by lowering the chemical reactivity of high-concentration hydrogen gas, and to minimize the amount of hydrogen gas used during leak inspection as much as possible, high-concentration hydrogen gas is usually diluted. The diluted hydrogen gas is used as a search gas. In general, an inert gas is used as the diluting gas, and nitrogen is generally used as the inert gas for diluting the hydrogen gas.
 この種の拡散性ガスと不活性ガスとを混合してサーチガスを設ける装置として、例えば特許文献1の希釈水素ガス生成装置が開示されている。この装置は、水素ガス供給流路と、希釈用ガス供給流路と、混合タンクと、ガス流量比例制御手段とを有している。そして、水素発生源による電気分解により水素が生成され、この水素は水素ガス供給流路により混合タンクに導かれる。一方、希釈ガスは希釈用ガス供給源から供給され、この希釈用ガス中の窒素ガスが希釈用ガス供給流路により混合タンクに導かれる。これら混合タンク内に導かれた水素ガス並びに窒素ガスは、この混合タンク内で混合されて希釈水素ガス(混合ガス)が生成される。このように、この装置は、水素ガスと窒素ガスとを別体の混合タンクで混合して混合ガスを生成し、この混合ガスをサーチガスとしてワーク内部に送って漏れ検査を実施しようとするものである。 As a device for providing a search gas by mixing this type of diffusible gas and an inert gas, for example, a diluted hydrogen gas generation device of Patent Document 1 is disclosed. This apparatus has a hydrogen gas supply passage, a dilution gas supply passage, a mixing tank, and a gas flow rate proportional control means. Then, hydrogen is generated by electrolysis by the hydrogen generation source, and this hydrogen is guided to the mixing tank by the hydrogen gas supply passage. On the other hand, the diluting gas is supplied from the diluting gas supply source, and the nitrogen gas in the diluting gas is guided to the mixing tank by the diluting gas supply passage. The hydrogen gas and nitrogen gas introduced into these mixing tanks are mixed in this mixing tank to generate diluted hydrogen gas (mixed gas). As described above, this device mixes hydrogen gas and nitrogen gas in separate mixing tanks to generate a mixed gas, and sends the mixed gas as a search gas to the inside of the work to perform a leak inspection. Is.
 ガス流量比例制御手段は、水素ガス供給流路に設けられる第1のマスフローコントローラと、希釈用ガス供給流路に設けられる第2のマスフローコントローラとからなり、これら各マスフローコントローラによって水素ガス、窒素のそれぞれの流量制御が行われ、この流量制御により希釈水素ガスの混合比が設定されるようになっている。 The gas flow rate proportional control means is composed of a first mass flow controller provided in the hydrogen gas supply passage and a second mass flow controller provided in the dilution gas supply passage. Each flow rate control is performed, and the mixing ratio of the diluted hydrogen gas is set by this flow rate control.
特開2018-65073号公報Japanese Patent Laid-Open No. 2018-65073
 前述した特許文献1の希釈水素ガス生成装置は、拡散性ガスである水素ガスと不活性ガスである窒素ガスとを混合してサーチガスを生成しているが、これら水素ガスと窒素ガスとを外部の混合タンクで混合させていることで設備全体が大型化し、さらにガス流量制御用の2つのマスフローコントローラを設けていることで設備がより大型化し、流路の複雑化するという問題も有している。 The diluted hydrogen gas generator of Patent Document 1 described above generates a search gas by mixing hydrogen gas, which is a diffusible gas, and nitrogen gas, which is an inert gas, but these hydrogen gas and nitrogen gas are mixed. There is also a problem that the whole equipment becomes larger by mixing in an external mixing tank, and the equipment becomes larger by providing two mass flow controllers for gas flow control, and the flow path becomes complicated. ing.
 漏れ検査の実施時には、水素ガスと窒素ガスとを混合タンク内で混合して混合ガスを生成し、この混合ガスをサーチガスとしてワークに送って漏れを検知しているため、各マスフローコントローラによりそれぞれのガスの複雑な流量制御が必要になり、仮に、マスフローコントローラの不具合等により混合タンク内の水素の混合割合が上がった場合、安全性の低下にもつながる。
 混合タンク内に所定濃度の混合ガスを大量に生成し、この混合ガスの中から各供試品の漏れ検査で使用するガスを供給するようにしているので、漏れ検査の終了後には混合タンク内に残ったサーチガスの濃度を改めて調整する必要がある。
 また、拡散性ガスと不活性ガスとを混合したサーチガスが市販されているが、使用量の増加に対するコストの上昇を抑える必要性が求められている。
When performing a leak inspection, hydrogen gas and nitrogen gas are mixed in a mixing tank to generate a mixed gas, and this mixed gas is sent to the workpiece as a search gas to detect leaks. However, if the mixing ratio of hydrogen in the mixing tank is increased due to a malfunction of the mass flow controller or the like, safety will be reduced.
A large amount of mixed gas with a predetermined concentration is generated in the mixing tank, and the gas used for the leak inspection of each sample is supplied from this mixed gas. It is necessary to adjust again the concentration of the search gas remaining in.
Further, a search gas in which a diffusible gas and an inert gas are mixed is commercially available, but it is necessary to suppress an increase in cost with an increase in the amount used.
 本発明は、従来の課題を解決するために開発したものであり、その目的とするところは、小型で簡略化した設備により拡散性ガスと不活性ガスとを短時間で混合し、漏れ検査用のサーチガスを安全に生成して圧力機器の漏れ検査を簡便かつ効率的に実施可能なサーチガスの混合方法を提供することにある。 The present invention was developed in order to solve the conventional problems, and its purpose is to mix a diffusible gas and an inert gas in a short time by a small and simplified facility for leak inspection. Another object of the present invention is to provide a search gas mixing method capable of safely producing the search gas and performing leak inspection of a pressure device easily and efficiently.
 上記目的を達成するため、請求項1に係る発明は、拡散性ガスと不活性ガスにより構成されるサーチガスを用いたバルブ等の供試品の検査方法であって、一方のガスを所定濃度に応じた圧力で供試品に封入した後、他方のガスで検査圧まで供試品内を昇圧することにより、所定濃度のサーチガスで圧力機器の漏れ検査を行うようにしたサーチガスの混合方法である。 In order to achieve the above object, the invention according to claim 1 is a method for inspecting a sample such as a valve using a search gas composed of a diffusible gas and an inert gas, wherein one of the gases has a predetermined concentration. After mixing the sample gas with the pressure according to the above, the other gas is used to increase the pressure inside the sample up to the inspection pressure, so that the leak gas of the pressure equipment can be inspected with the search gas of the specified concentration. Is the way.
 請求項2に係る発明は、拡散性ガスと不活性ガスとの圧力比を、2.5:97.5~5.5:94.5の圧力比の割合で供試品に封入したサーチガスの混合方法である。 The invention according to claim 2 is a search gas in which a pressure ratio between a diffusible gas and an inert gas is 2.5:97.5 to 5.5:94.5, and the test gas is enclosed in the sample. It is a method of mixing.
 請求項3に係る発明は、拡散性ガスは水素ガスであり、不活性ガスは窒素ガスであるサーチガスの混合方法である。 The invention according to claim 3 is a search gas mixing method, wherein the diffusible gas is hydrogen gas and the inert gas is nitrogen gas.
 請求項4に係る発明は、窒素ガスを封入した後に、水素ガスで検査圧まで昇圧したサーチガスの混合方法である。 The invention according to claim 4 is a method for mixing a search gas, which is filled with nitrogen gas and then pressurized to a test pressure with hydrogen gas.
 請求項5に係る発明は、水素ガスを封入した後に、窒素ガスで検査圧まで昇圧したサーチガスの混合方法である。 The invention according to claim 5 is a method of mixing search gas in which hydrogen gas is charged and then pressurized to a test pressure with nitrogen gas.
 請求項1に係る発明によると、拡散性ガスと不活性ガスのうち、一方のガスを所定濃度に応じた圧力で供試品に封入した後に、他方のガスで検査圧まで供試品内を昇圧することにより、これらガス混合用のタンク及びガス流量制御用や機器を必要とすることがなく、設備全体を小型化して簡略化でき、この設備で漏れ検査用のサーチガスを安全に生成し、サーチガスによるバルブ等の圧力機器の漏れ検査を高精度に行える。このように圧力の管理のみで、所定の濃度と検査圧により供試品の漏れを簡便かつ効率的に検知可能し、サーチガスの製造設備にかかる費用を抑えることもできる。各供試品に対して、漏れ検査に必要な最小の量のサーチガスを生成できることから、無駄なサーチガスの生成を防いで漏れ検査後の後処理も迅速に行うことができる。 According to the invention of claim 1, one of the diffusible gas and the inert gas is sealed in the sample at a pressure corresponding to a predetermined concentration, and then the other gas is filled up to the inspection pressure in the sample. By boosting the pressure, there is no need for tanks for gas mixing, gas flow rate control, and equipment, and the entire facility can be made smaller and simpler, and this facility can safely generate search gas for leak inspection. Highly accurate leak inspection of pressure equipment such as valves by search gas. As described above, by only controlling the pressure, it is possible to easily and efficiently detect the leakage of the sample by the predetermined concentration and the inspection pressure, and it is possible to suppress the cost required for the search gas manufacturing facility. Since a minimum amount of search gas required for leak inspection can be generated for each sample, wasteful search gas can be prevented from being generated and post-processing after the leak inspection can be quickly performed.
 請求項2に係る発明によると、拡散性ガスと不活性ガスとの圧力比を、2.5:97.5~5.5:94.5の圧力比の割合で供試品に封入したことにより、サーチガスを不燃性の高圧ガスとして生成でき、このサーチガスの安全性を向上しつつ、センサによるサーチガスの検知精度を向上させて漏れを確実に検知できる。 According to the invention of claim 2, the pressure ratio of the diffusible gas and the inert gas is sealed in the sample at a pressure ratio of 2.5:97.5 to 5.5:94.5. As a result, the search gas can be generated as a noncombustible high-pressure gas, and the safety of the search gas can be improved, and the accuracy of detection of the search gas by the sensor can be improved to reliably detect the leak.
 請求項3に係る発明によると、拡散性ガスを水素ガスとすることで、他の拡散性ガスに比較して入手が容易であり、高い拡散性を発揮してセンサで検知しやすくなる。不活性ガスを窒素ガスとすることで、この窒素ガスを水素に混合して安価にサーチガスを生成し、生成後のサーチガスの化学的な反応性を低く抑えて安全性を高めつつ、拡散性を維持して利用価値の高いサーチガスを生成可能になる。 According to the invention of claim 3, hydrogen gas is used as the diffusible gas, so that it is easier to obtain than other diffusible gases, and exhibits high diffusivity to be easily detected by the sensor. By using nitrogen gas as the inert gas, this nitrogen gas is mixed with hydrogen to generate a search gas at a low cost, and the chemical reactivity of the search gas after generation is kept low to improve safety and diffusion. It is possible to generate search gas with high utility value while maintaining the property.
 請求項4に係る発明によると、不活性ガスである窒素ガスを供試品内に満たした後に、この不活性状態の雰囲気中に水素ガスを加えて検査圧まで昇圧することにより、安全に漏れ検査を行うことができる。 According to the invention of claim 4, after the nitrogen gas, which is an inert gas, is filled in the sample, hydrogen gas is added to the atmosphere of the inert state to raise the pressure to the inspection pressure, thereby safely leaking. An inspection can be done.
 請求項5に係る発明によると、ボンベ内に蓄積された水素ガスを使用する場合、この水素ガスを供試品ごとに細かく供給できるため、ボンベ内の水素ガスを無駄にすること無く極限まで使いきることができる。これにより、サーチガス生成のためのランニングコストを削減できる。 According to the invention of claim 5, when the hydrogen gas accumulated in the cylinder is used, this hydrogen gas can be finely supplied for each sample, so that the hydrogen gas in the cylinder is used to the maximum without being wasted. You can do it. As a result, the running cost for generating the search gas can be reduced.
供試品の漏れ検査設備の検査ラインの初期状態を示す回路図である。It is a circuit diagram which shows the initial state of the inspection line of the leak inspection equipment of a sample. (a)は図1に窒素を加圧した状態を示す検査ラインの回路図である。(b)は(a)に対して水素を加圧した状態を示す検査ラインの回路図である。FIG. 1A is a circuit diagram of an inspection line showing a state where nitrogen is pressurized in FIG. 1. (B) is a circuit diagram of an inspection line showing a state in which hydrogen is pressurized to (a). (a)はガスの外部漏れを検知する状態を示す検査ラインの回路図である。(b)は回路内の残留水素をパージする状態を示す検査ラインの回路図である。(A) is a circuit diagram of an inspection line showing a state of detecting external leakage of gas. (B) is a circuit diagram of an inspection line showing a state of purging residual hydrogen in the circuit. (a)は供試品から排気する状態を示す検査ラインの回路図である。(b)は(a)の後の処理状態を示す検査ラインの回路図である。(A) is a circuit diagram of an inspection line showing a state in which air is exhausted from the sample. (B) is a circuit diagram of an inspection line showing a processing state after (a). (a)は実験用供試品のチャンバを示す断面図である。(b)は実験用供試品を示す一部切欠き正面図である。(A) is sectional drawing which shows the chamber of a test sample. (B) is a partially cutaway front view showing a test sample. サーチガスに対するセンサの挙動を示すグラフである。It is a graph which shows the behavior of the sensor to search gas. 耐圧検査装置の一例を示す模式図である。It is a schematic diagram which shows an example of a withstand voltage inspection apparatus. 供試品を示す縦断面図である。(a)はクロスの縦断面図である。(b)はティーの縦断面図である。(c)はエルボの縦断面図である。It is a longitudinal cross-sectional view showing a sample. (A) is a longitudinal sectional view of the cloth. (B) is a longitudinal sectional view of the tee. (C) is a longitudinal sectional view of the elbow. 耐圧検査方法のフローチャートである。It is a flowchart of a withstand voltage inspection method. 図7の耐圧検査装置による検査工程を示す一部省略模式図である。It is a partially-omitted schematic diagram which shows the inspection process by the withstand voltage inspection apparatus of FIG. 図7の耐圧検査装置による検査工程を示す一部省略模式正面図である。It is a partially-omitted schematic front view which shows the inspection process by the withstand voltage inspection apparatus of FIG. センサの電圧推移を表すグラフである。It is a graph showing the voltage transition of the sensor. 耐圧検査装置の他例を示した模式図である。It is a schematic diagram which showed the other example of the withstand voltage inspection apparatus.
 以下に、本発明におけるサーチガスの混合方法並びにその作用を実施形態に基づいて詳細に説明する。
 本発明のサーチガスの混合方法は、拡散性ガスと不活性ガスにより構成されるサーチガスを用いたバルブ等の供試品の検査方法である。供試品の検査時には、先ず、一方のガスを所定濃度に応じた圧力で供試品に封入し、その後、他方のガスで検査圧まで供試品内を昇圧することにより、所定濃度のサーチガスで圧力機器の漏れ検査を行うようにしたものである。
The search gas mixing method and the operation thereof according to the present invention will be described below in detail based on the embodiments.
The search gas mixing method of the present invention is an inspection method for a sample such as a valve using a search gas composed of a diffusible gas and an inert gas. When inspecting a sample, first, one gas is sealed in the sample at a pressure according to the specified concentration, and then the other gas is used to increase the pressure inside the sample to the inspection pressure to search for the specified concentration. It is designed to check the leak of pressure equipment with gas.
 この場合、拡散性ガスと不活性ガスとの圧力比を、2.5:97.5~5.5:94.5の圧力比の割合で供試品に封入することが望ましい。拡散性ガスとして水素ガスを使用する場合には、この水素ガスの濃度を5%±0.5%、すなわち4.5~5.5%を狙い値とすることが望ましく、このときの水素ガスと窒素ガスは、供試品への圧力比が4.5:95.5~5.5:94.5の割合で供試品に封入する。 In this case, it is desirable to fill the sample with a pressure ratio of the diffusible gas and the inert gas at a pressure ratio of 2.5:97.5 to 5.5:94.5. When hydrogen gas is used as the diffusible gas, it is desirable to set the concentration of this hydrogen gas to 5%±0.5%, that is, 4.5 to 5.5%. The nitrogen gas and nitrogen gas are enclosed in the sample at a pressure ratio of 4.5:95.5 to 5.5:94.5.
 拡散性ガスを水素ガスとし、不活性ガスを窒素ガスとするとよく、拡散性ガスは、比重が小さく拡散する性質を有するものであれば、水素ガス以外のガスを用いるようにしてもよく、例えば、ヘリウムガスやメタンガスなどの各種ガスを用いることができる。サーチガスとしてヘリウムガスを用いた場合、水素含有の混合気体と同様に拡散性が高い。不活性ガスは、反応性の低い不活性を有する性質のガスであれば、窒素ガス以外のガスを用いるようにしてもよい。 The diffusible gas may be hydrogen gas, the inert gas may be nitrogen gas, and the diffusible gas may be a gas other than hydrogen gas as long as it has a property of having a small specific gravity and diffusing, for example, Various gases such as helium gas and methane gas can be used. When helium gas is used as the search gas, it has a high diffusivity like a mixed gas containing hydrogen. As the inert gas, a gas other than nitrogen gas may be used as long as it is a gas having low reactivity and inertness.
 サーチガスを混合する際には、窒素ガスを封入した後に、水素ガスで検査圧まで昇圧するとよい。
 または、水素ガスを封入した後に、窒素ガスで検査圧まで昇圧するようにしてもよい。
When mixing the search gas, it is advisable to fill the nitrogen gas and then increase the pressure up to the inspection pressure with hydrogen gas.
Alternatively, after filling the hydrogen gas, the pressure may be increased to the inspection pressure with nitrogen gas.
 続いて、図1において、本発明のサーチガスの混合方法により供試品1の漏れ検査を実施するための漏れ検査設備10の検査ライン11の回路図の一例を示しており、この漏れ検査設備10によるサーチガスの混合方法を述べる。 Subsequently, FIG. 1 shows an example of a circuit diagram of an inspection line 11 of a leakage inspection equipment 10 for performing a leakage inspection of the sample 1 by the search gas mixing method of the present invention. A method of mixing the search gas according to 10 will be described.
 図1は、検査ライン11の初期状態を示しており、図2~図4は、図1の検査ライン11によりサーチガスを生成する場合の各工程の回路図を示している。図中、実線は検査ライン11の流路(回路)の開状態を示しており、内部をガスが流れることが可能な状態を表している。一方、二点鎖線は流路の閉状態を示しており、内部をガスが流れない状態を表している。 1 shows an initial state of the inspection line 11, and FIGS. 2 to 4 show circuit diagrams of respective steps when the search gas is generated by the inspection line 11 of FIG. In the figure, the solid line shows the open state of the flow path (circuit) of the inspection line 11, and shows the state in which gas can flow inside. On the other hand, the alternate long and two short dashes line shows the closed state of the flow path, and represents the state in which the gas does not flow inside.
 検査ライン11において、第1流路20は窒素ガスを供給する流路であり、この第1流路20には、窒素ガス供給源21、第1レギュレータ22、第1電磁弁23が一次側から続けて設けられる。第2流路30は水素ガスを供給する流路であり、この第2流路30には、水素ガス供給源31、第2レギュレータ32、第2電磁弁33が一次側から続けて設けられる。第3流路40は圧縮エアを供給する流路であり、この第3流路40には、エア供給源41、第3電磁弁42が一次側から続けて設けられる。 In the inspection line 11, the first flow path 20 is a flow path for supplying nitrogen gas, and in this first flow path 20, a nitrogen gas supply source 21, a first regulator 22, and a first solenoid valve 23 are provided from the primary side. It will be established continuously. The second flow passage 30 is a flow passage for supplying hydrogen gas, and the hydrogen gas supply source 31, the second regulator 32, and the second electromagnetic valve 33 are continuously provided in the second flow passage 30 from the primary side. The third flow passage 40 is a flow passage for supplying compressed air, and an air supply source 41 and a third electromagnetic valve 42 are continuously provided in the third flow passage 40 from the primary side.
 本実施形態では、窒素ガス供給源21には市販の窒素100%のガスボンベ、水素ガス供給源31には市販の水素100%ガスボンベ、エア供給源41にはエアコンプレッサーを用いている。 In this embodiment, a commercially available 100% nitrogen gas cylinder is used as the nitrogen gas supply source 21, a commercially available 100% hydrogen gas cylinder is used as the hydrogen gas supply source 31, and an air compressor is used as the air supply source 41.
 上記の第1流路20、第2流路30、第3流路40は、供試品1への一次側流路50で合流するように接続され、窒素ガス供給源21からの窒素ガス、水素ガス供給源31からの水素ガス、エア供給源41からの圧縮エアの何れかを、第1電磁弁23、第2電磁弁33、第3電磁弁42による流路の切換えによって一次側流路50から供試品1に流すことが可能になっている。電磁弁は、この第1、第2、第3電磁弁23、33、42以外にも後述の第4電磁弁~第6電磁弁が設けられ、これら第1~第6電磁弁の各電磁弁の開閉制御により全体の流路(回路)を開閉可能に設けられている。 The above-mentioned first flow path 20, second flow path 30, and third flow path 40 are connected so as to join the sample 1 at the primary-side flow path 50, and the nitrogen gas from the nitrogen gas supply source 21 Either the hydrogen gas from the hydrogen gas supply source 31 or the compressed air from the air supply source 41 is switched by the first solenoid valve 23, the second solenoid valve 33, and the third solenoid valve 42 to switch the flow passage on the primary side flow passage. It is possible to flow from 50 to DUT 1. The solenoid valves include fourth to sixth solenoid valves, which will be described later, in addition to the first, second and third solenoid valves 23, 33 and 42. The solenoid valves of these first to sixth solenoid valves are provided. The entire flow path (circuit) can be opened/closed by the opening/closing control.
 第1レギュレータ22は窒素ガス供給源21からの窒素ガス、第2レギュレータ32は水素ガス供給源31から水素ガスの圧力を調整可能に設けられ、本例では第1レギュレータ22により窒素ガスが0.95MPa、第2レギュレータ32により水素ガスが1.0MPaの圧力に調整された後、第1電磁弁23側、第2電磁弁33側にそれぞれ送られる。 The first regulator 22 is provided so that the nitrogen gas from the nitrogen gas supply source 21 can be adjusted, and the second regulator 32 is provided so that the pressure of the hydrogen gas from the hydrogen gas supply source 31 can be adjusted. After adjusting the hydrogen gas to a pressure of 1.0 MPa by the second regulator 32 at 95 MPa, it is sent to the first electromagnetic valve 23 side and the second electromagnetic valve 33 side, respectively.
 一次側流路50は、供試品1の収容部であるチャンバ51内に着脱可能に装着される供試品(バルブ)1の上流側開口部1aに接続可能に設けられ、この供試品1の下流側開口部1bには二次側流路52が接続可能に設けられる。一次側流路50には分岐流路53が設けられ、この分岐流路53は、第4電磁弁54を介して外部に排気可能な排気部(排気ポート)55に接続されている。 The primary side flow path 50 is provided so as to be connectable to the upstream side opening 1a of the sample (valve) 1 which is detachably mounted in the chamber 51 which is a housing part of the sample 1, A secondary side flow passage 52 is provided so as to be connectable to the downstream side opening portion 1b of the first unit 1. A branch passage 53 is provided in the primary passage 50, and the branch passage 53 is connected to an exhaust unit (exhaust port) 55 capable of exhausting to the outside via a fourth electromagnetic valve 54.
 二次側流路52は、圧力センサ56、第5電磁弁57を介して排気部55に接続されている。圧力センサ56は、供試品1内部の圧力値を検出可能であり、この圧力センサ56により圧力を測定して前述のレギュレータによる水素ガスや窒素ガスの圧力調整を可能としている。 The secondary passage 52 is connected to the exhaust unit 55 via a pressure sensor 56 and a fifth solenoid valve 57. The pressure sensor 56 can detect the pressure value inside the DUT 1, and the pressure sensor 56 measures the pressure, and the pressure of hydrogen gas or nitrogen gas can be adjusted by the regulator described above.
 第3流路40には、第3電磁弁42の手前から分岐してチャンバ51に接続されるエア供給路60が設けられ、このエア供給路60は、途中で分岐してチャンバ51の二箇所に接続され、このエア供給路60を介してエア供給源41からのエアをチャンバ51内に供給したり、チャンバ51内の流体を排気可能になっている。
 エア供給路60には、第6電磁弁61、チャンバ51内の吸気可能なバキューム部62が設けられ、このバキューム部62には吸気した気体を外部に排気可能な排気部(排気ポート)63が接続されている。
The third flow path 40 is provided with an air supply path 60 that branches from before the third electromagnetic valve 42 and is connected to the chamber 51. The air supply path 60 branches in the middle and is provided at two locations of the chamber 51. The air from the air supply source 41 can be supplied into the chamber 51 and the fluid in the chamber 51 can be exhausted through the air supply path 60.
The air supply path 60 is provided with a sixth electromagnetic valve 61 and a vacuum part 62 capable of sucking air in the chamber 51. The vacuum part 62 has an exhaust part (exhaust port) 63 capable of discharging the sucked gas to the outside. It is connected.
 チャンバ51は、内部に供試品1を収納可能な大きさの容積に設けられ、供試品1から漏れ出たガスを検知するセンサ70が取付けられている。チャンバ51は、供試品1に供給されるサーチガスが拡散可能な広さの検査空間を有し、この検査空間は外部から隔離されている。検査空間は必ずしも密閉されている必要はなく、供試品1から漏れ出たガスをセンサ70で検知可能であれば、半密閉状態に設けられていてもよい。チャンバ51が密閉状態或は半密閉状態の何れの場合であっても、供試品1からの漏洩ガスをより検知しやすくするために、なるべく小さい検査容積であるとよい。 The chamber 51 is provided inside with a volume large enough to accommodate the sample 1, and a sensor 70 for detecting gas leaking from the sample 1 is attached to the chamber 51. The chamber 51 has an inspection space having a space in which the search gas supplied to the DUT 1 can diffuse, and the inspection space is isolated from the outside. The inspection space does not necessarily have to be sealed, and may be provided in a semi-sealed state as long as the gas leaked from the sample 1 can be detected by the sensor 70. Regardless of whether the chamber 51 is in a closed state or a semi-closed state, the inspection volume is preferably as small as possible in order to make it easier to detect the leaked gas from the sample 1.
 センサ70は、水素ガスを検知可能な水素ガスセンサからなり、これにより供試品1から漏れ出た拡散性の気体である、水素と窒素との混合気体中の水素を確実に検出可能になっている。センサ70は、任意の数によりチャンバ51内の水素を検知可能な位置に取付けられているが、位置調整できるように移動可能に取付けられていてもよい。サーチガスとしてヘリウムガスを用いる場合には、気体熱伝導式センサをセンサとして用いるようにするとよい。 The sensor 70 is composed of a hydrogen gas sensor capable of detecting hydrogen gas, which makes it possible to reliably detect hydrogen in a mixed gas of hydrogen and nitrogen, which is a diffusible gas leaked from the sample 1. There is. The sensor 70 is mounted at a position where hydrogen can be detected in the chamber 51 by an arbitrary number, but may be mounted movably so that the position can be adjusted. When helium gas is used as the search gas, a gas heat conduction type sensor may be used as the sensor.
 センサ70は、所定の電圧印加により、漏れ出した水素の濃度に応じた電圧を出力するモジュールからなっている。漏れ検査前には、抵抗調整用のボリュームにより出力電圧を変えて、センサ70の暖機状態や大気中の水素濃度の変化に応じて感度調整を精細におこなうとよい。 The sensor 70 is composed of a module that outputs a voltage according to the concentration of leaked hydrogen when a predetermined voltage is applied. Before the leak inspection, it is advisable to change the output voltage by the resistance adjusting volume and finely adjust the sensitivity according to the warm-up state of the sensor 70 and the change of the hydrogen concentration in the atmosphere.
 センサ70としては、アナログ信号(0-5V)を出力可能な、市販の半導体式センサが用いられ、例えば、熱線型半導体式水素センサが用いられる。この水素センサ70は、酸化第二スズ(SnO)などの金属酸化物半導体表面での水素ガスの吸着による電気伝導度の変化を利用するセンサである。この場合、出力電圧が、ガス濃度に対して対数的になって、低濃度でも高感度の出力が可能になる。 As the sensor 70, a commercially available semiconductor sensor that can output an analog signal (0-5V) is used, and for example, a hot wire semiconductor hydrogen sensor is used. The hydrogen sensor 70 is a sensor that utilizes a change in electric conductivity due to adsorption of hydrogen gas on the surface of a metal oxide semiconductor such as stannic oxide (SnO 2 ). In this case, the output voltage becomes logarithmic with respect to the gas concentration, and high-sensitivity output is possible even at low concentration.
 図示しないが、検査ライン11にはCPU(中央処理装置)からなる制御部が接続され、この制御部には、センサ70、各電磁弁23、33、42、54、57、61、各レギュレータ22、32、窒素ガス供給源21、水素ガス供給源31、エア供給源41などの各素子が電気的に接続されている。制御部には、供試品1の呼び圧力、呼び径、弁種等に基づいて設定されたテーブル(設置データ)が格納され、このテーブルに基づいて各部の動作が制御される。 Although not shown, a control unit including a CPU (central processing unit) is connected to the inspection line 11, and the control unit includes a sensor 70, electromagnetic valves 23, 33, 42, 54, 57, 61, and regulators 22. , 32, nitrogen gas supply source 21, hydrogen gas supply source 31, air supply source 41, etc. are electrically connected. The control section stores a table (installation data) set based on the nominal pressure, nominal diameter, valve type, etc. of the sample 1, and the operation of each section is controlled based on this table.
 制御部にはデジタル表示部が設けられ、供試品から水素漏れが生じた場合には、制御部に設けられた信号処理部を介して水素ガス濃度に応じた電圧としてこのデジタル表示部に出力される。デジタル表示部は、LCD(液晶ディスプレイ)を有し、このLCDに各センサ70の出力電圧がインジケータ表示される。 The control unit is equipped with a digital display unit, and when hydrogen leaks from the DUT, it outputs to this digital display unit as a voltage according to the hydrogen gas concentration via the signal processing unit provided in the control unit. To be done. The digital display unit has an LCD (liquid crystal display), and the output voltage of each sensor 70 is displayed as an indicator on this LCD.
 供試品1は、例えばバルブや管継手等の配管部品からなり、本例ではボールバルブが使用される。供試品(ボールバルブ)は、呼び径1/2~2インチ、耐圧検査の被検査容積は約12~236mLまでとする。供試品1は、ボールバルブ以外であってもよく、例えばゲート弁などの各種バルブや、或はボールバルブの開閉操作用として使用される図示しない空圧式アクチュエータのハウジングであってもよい。この場合、ハウジングの耐圧検査の被検査容積は、約150~610mL程度とする。このように、チャンバ51内に装着する供試品の容積は、例えば1000mL未満であることが望ましい。本例のボールバルブよりなる供試品1は、適宜の耐圧性を有する継手により、一次側流路50と二次側流路52との間に接続される。 Specimen 1 is composed of piping parts such as valves and pipe fittings, and a ball valve is used in this example. The sample (ball valve) has a nominal diameter of 1/2 to 2 inches, and the inspected volume for pressure resistance inspection is about 12 to 236 mL. The sample 1 may be other than the ball valve, and may be, for example, various valves such as a gate valve, or a housing of a pneumatic actuator (not shown) used for opening and closing the ball valve. In this case, the volume to be inspected for the pressure resistance inspection of the housing is about 150 to 610 mL. Thus, the volume of the sample to be mounted in the chamber 51 is preferably less than 1000 mL, for example. The sample 1 including the ball valve of this example is connected between the primary side flow passage 50 and the secondary side flow passage 52 by a joint having appropriate pressure resistance.
 続いて、上述した漏れ検査設備10によるサーチガスの混合方法と、供試品1の漏れ検査方法とを説明する。
 図1はサーチガスにより漏れ検査を行うときの初期状態を示している。この場合、第1、第2、第3電磁弁23、33、42、第6電磁弁61を閉状態とし、第1、第2、第3流路20、30、40、エア供給路60への流路を遮断した状態になっている。この状態から窒素ガス供給源21から窒素ガスを第1レギュレータ22、水素ガス供給源31からの水素ガスの圧力を第2レギュレータ32によりそれぞれ制御し、所定圧力の各ガスを供給するようになっている。図1においては、供試品1であるボールバルブは全閉状態、図2における加圧前にはボールバルブ1を半開状態とする。図3におけるサーチガスの漏れ検査までこの半開状態で行うものとする。
Next, a method of mixing the search gas by the above-described leak inspection facility 10 and a leak inspection method of the sample 1 will be described.
FIG. 1 shows an initial state when performing a leak test with a search gas. In this case, the first, second, third electromagnetic valves 23, 33, 42, and the sixth electromagnetic valve 61 are closed, and the first, second, third flow paths 20, 30, 40, and the air supply path 60 are connected. The flow path of is blocked. From this state, the nitrogen gas from the nitrogen gas supply source 21 is controlled by the first regulator 22 and the pressure of the hydrogen gas from the hydrogen gas supply source 31 is controlled by the second regulator 32, respectively, so that each gas having a predetermined pressure is supplied. There is. In FIG. 1, the ball valve as the sample 1 is in a fully closed state, and before pressurization in FIG. 2, the ball valve 1 is in a half-opened state. The search gas leak inspection shown in FIG. 3 is performed in this half-opened state.
 その際、窒素ガスの圧力を0.95MPa、水素ガスの圧力を1.00MPaとなるように各レギュレータ22、32を調整することにより、これら水素ガスと窒素ガスとの加圧後の圧力比を5:95の割合とし、この圧力比の割合により1.0Maの圧力の水素窒素混合ガスを供試品1の内部で混合し、この圧力値で耐圧漏れ検査を実施するようにする。このとき、第4電磁弁54、第5電磁弁57は、開状態に維持されている。以降の説明において、各電磁弁を操作しない限り、その開閉状態を維持するものとする。 At that time, by adjusting the regulators 22 and 32 so that the pressure of the nitrogen gas is 0.95 MPa and the pressure of the hydrogen gas is 1.00 MPa, the pressure ratio between the hydrogen gas and the nitrogen gas after pressurization is adjusted. The ratio is 5:95, and the hydrogen-nitrogen mixed gas having a pressure of 1.0 Ma is mixed inside the sample 1 according to the ratio of the pressure ratio, and the pressure resistance leak test is performed at this pressure value. At this time, the fourth solenoid valve 54 and the fifth solenoid valve 57 are maintained in the open state. In the following description, the open/closed state is maintained unless each solenoid valve is operated.
 図2(a)においては、窒素ガスで供試品1内部を加圧した状態を示している。このとき、第1電磁弁23を開状態にし、第4電磁弁54、第5電磁弁57を閉状態に操作する。その際、第1流路20と一次側流路50、二次側流路52とが連通する。このように最初に窒素ガスにより供試品1を加圧し、前述した0.95MPaまで昇圧する。この場合、第1レギュレータ22で窒素ガスの圧力を調整することに加えて、圧力センサ56でも圧力を確認し、このように圧力センサ56で圧力の実測値を測定することで正確な圧力によるガス供給が可能となる。先に窒素ガスで加圧することで、安全な漏れ検査作業を可能としている。 2(a) shows a state in which the inside of the sample 1 is pressurized with nitrogen gas. At this time, the first solenoid valve 23 is opened and the fourth solenoid valve 54 and the fifth solenoid valve 57 are closed. At that time, the first flow path 20, the primary-side flow path 50, and the secondary-side flow path 52 communicate with each other. In this way, the sample 1 is first pressurized with nitrogen gas, and the pressure is increased to 0.95 MPa described above. In this case, in addition to adjusting the pressure of the nitrogen gas by the first regulator 22, the pressure is also confirmed by the pressure sensor 56, and the measured value of the pressure is measured by the pressure sensor 56 in this way to obtain the gas with the accurate pressure. Supply is possible. By pressurizing with nitrogen gas first, a safe leak inspection work is possible.
 図2(b)は、続けて水素ガスで供試品1内部を加圧した状態を示している。この場合、第1電磁弁23を閉状態にし、第2電磁弁33を開状態とする。これにより、第1流路20からの窒素ガスの供給を停止させた状態で、第2流路30から水素ガスを供給して供試品1を加圧する。このときの水素ガスの圧力は前述した1.00MPaであり、この水素ガスの加圧により水素ガスと窒素ガスとを混合させた状態で1.0MPaに昇圧する。これにより、前述したように水素ガスと窒素ガスとの比率を5:95として、約5%水素の混合ガスを供試品1内で形成し、この所定濃度のサーチガスで圧力機器である供試品1の漏れ検査を実施する。 FIG. 2B shows a state in which the inside of the sample 1 is continuously pressurized with hydrogen gas. In this case, the first solenoid valve 23 is closed and the second solenoid valve 33 is opened. As a result, hydrogen gas is supplied from the second flow path 30 to pressurize the sample 1 while the supply of nitrogen gas from the first flow path 20 is stopped. The pressure of the hydrogen gas at this time is 1.00 MPa described above, and the pressure of the hydrogen gas is raised to 1.0 MPa in a state where the hydrogen gas and the nitrogen gas are mixed. As a result, a mixed gas of about 5% hydrogen is formed in the sample 1 with the ratio of hydrogen gas and nitrogen gas being 5:95 as described above, and the search gas of this predetermined concentration is used as a pressure device. Perform a leak inspection of sample 1.
 図3(a)は、第2電磁弁33を閉操作した状態を示しており、この状態でチャンバ51にセットしたセンサ70により供試品1からのサーチガスの漏れを検出する。このとき、供試品1から漏れ出したサーチガスは、チャンバ51によって周囲への拡散が防がれた状態でセンサ70により正確に検知される。この漏れ検査の測定結果に応じて供試品1の製品としての合否を判定可能になる。 FIG. 3A shows a state in which the second electromagnetic valve 33 is closed, and in this state, the sensor 70 set in the chamber 51 detects the leak of the search gas from the sample 1. At this time, the search gas leaked from the sample 1 is accurately detected by the sensor 70 in a state where the chamber 51 prevents the diffusion of the search gas to the surroundings. According to the measurement result of the leak inspection, it becomes possible to judge the pass/fail of the sample 1 as a product.
 図3(b)は、漏れ検査を実施した後に、回路内の残留水素をエアでパージする状態を示している。この場合、第4電磁弁54、第5電磁弁57を開状態にして排気部55から排気し、続いて、第4電磁弁54を閉状態にし、第3電磁弁42、第5電磁弁57をそれぞれ開状態とすることで、第3流路40から一次側流路50を通して二次側流路52の排気部55までを連通させた状態とする。これにより、供試品1の内部を含む回路内の残留水素をエアで排気部55から排出する。 Fig. 3(b) shows a state in which residual hydrogen in the circuit is purged with air after performing a leak test. In this case, the fourth solenoid valve 54 and the fifth solenoid valve 57 are opened to exhaust from the exhaust unit 55, and then the fourth solenoid valve 54 is closed to the third solenoid valve 42 and the fifth solenoid valve 57. Are opened, so that the third flow path 40 communicates with the exhaust part 55 of the secondary flow path 52 through the primary flow path 50. As a result, the residual hydrogen in the circuit including the inside of the DUT 1 is discharged from the exhaust unit 55 by air.
 図4(a)は、第3電磁弁42を開状態に操作し、その上で図示しない駆動装置によって供試品1を弁開状態に操作した状態を示している。これにより、供試品1を回路から遮断して内部の圧力を排気可能になる。 FIG. 4A shows a state in which the third solenoid valve 42 is operated in the open state, and then the DUT 1 is operated in the valve open state by the drive device (not shown). As a result, the DUT 1 can be disconnected from the circuit and the internal pressure can be exhausted.
 図4(b)は、供試品1の上流側開口部1a及び下流側開口部1bを、それぞれ一次側流路50及び二次側流路52から取外して回路からアンクランプした状態を示している。この状態で第6電磁弁61を開状態に操作し、第3流路40とエア供給路60とを連通させることで、このエア供給路60を通してチャンバ51内をエアでパージし、これらチャンバ51、エア供給路60内の残留水素をバキューム部62によりバキュームし、このバキュームした残留水素を排気部63から排出するようになっている。以上の工程を経ることで一つの供試品1の漏れ検査が終了となり、引き続き漏れ検査設備10の検査ライン11を図1の初期状態にすることで、別の供試品1の漏れ検査を行うことが可能になる。 FIG. 4B shows a state in which the upstream side opening 1a and the downstream side opening 1b of the sample 1 are removed from the primary side flow path 50 and the secondary side flow path 52, respectively, and unclamped from the circuit. There is. In this state, the sixth solenoid valve 61 is operated to open so that the third flow passage 40 and the air supply passage 60 are communicated with each other, thereby purging the chamber 51 with air through the air supply passage 60. The residual hydrogen in the air supply path 60 is vacuumed by the vacuum section 62, and the vacuumed residual hydrogen is discharged from the exhaust section 63. After passing through the above steps, the leak inspection of one sample 1 is completed, and the inspection line 11 of the leak inspection facility 10 is continuously set to the initial state of FIG. 1 to perform the leak inspection of another sample 1. It will be possible to do.
 本発明のサーチガスの混合方法の上記実施形態において、漏れ検査設備10の検査ライン11における第1流路20に第1レギュレータ22及び第1電磁弁23、第2流路30に第2レギュレータ32及び第2電磁弁33を設けているので、第1レギュレータ22により窒素ガス供給源21からの窒素ガスを0.95MPa、第2レギュレータ32により水素ガス供給源31からの水素ガスを1.00MPaに調圧し、これらの所定圧力の各ガスを第1電磁弁23、第2電磁弁33の開閉操作により供試弁1内に高精度に供給できる。 In the above-described embodiment of the search gas mixing method of the present invention, the first regulator 22 and the first solenoid valve 23 are provided in the first flow passage 20 and the second regulator 32 is provided in the second flow passage 30 in the inspection line 11 of the leak inspection equipment 10. Since the second solenoid valve 33 is provided, the first regulator 22 sets the nitrogen gas from the nitrogen gas supply source 21 to 0.95 MPa, and the second regulator 32 sets the hydrogen gas from the hydrogen gas supply source 31 to 1.00 MPa. It is possible to regulate the pressure and supply each gas of these predetermined pressures into the test valve 1 with high accuracy by opening/closing the first solenoid valve 23 and the second solenoid valve 33.
 これにより、供試品1内に0.95MPaの窒素ガスを封入した後に、水素ガスを供給して所定の検査圧である1.0Maまで正確に昇圧でき、このときの水素ガス:窒素ガスの比率を5:95として、5%濃度の混合ガスを漏れ検査用のサーチガスとして設け、このサーチガスを漏れ検査用ガスとして供試品1に使用できる。このように供試品1内で約5%濃度の安全かつ検出に適したサーチガスを設けることができるので、外部にサーチガス混合用のタンクや機器を設ける必要がなく、漏れ検査設備10全体のコンパクト化を図りつつ、短時間で正確な漏れ検査の実施が可能となる。 As a result, after nitrogen gas of 0.95 MPa is filled in the sample 1, hydrogen gas can be supplied to accurately increase the pressure to 1.0 Ma, which is a predetermined inspection pressure. A 5% mixed gas having a concentration of 5:95 can be provided as a leak inspection search gas, and this search gas can be used as a leak inspection gas for the sample 1. As described above, since a search gas having a concentration of about 5% that is safe and suitable for detection can be provided in the sample 1, there is no need to provide a tank or equipment for mixing the search gas outside, and the entire leak inspection facility 10 can be provided. It is possible to carry out an accurate leak inspection in a short time while achieving a compact size.
 一方、水素ガスの圧力を0.05MPa、窒素ガスの圧力を1.0MPaというように各レギュレータ22、32を調整することにより、これらの水素ガスと窒素ガスとの加圧後の圧力比を5:95の割合とし、この混合割合により1.0MPaの圧力の水素窒素混合ガスを供試品1の内部で混合し、この圧力値で耐圧漏れ検査を実施するようにしてもよい。
 これらにより、ボンベ内の水素ガスを0.05MPaまで使い切ることができ、ボンベ内の水素ガスを無駄にすることなく極限まで使い切ることができる。
On the other hand, by adjusting the regulators 22 and 32 such that the pressure of hydrogen gas is 0.05 MPa and the pressure of nitrogen gas is 1.0 MPa, the pressure ratio of the hydrogen gas and the nitrogen gas after pressurization is 5%. It is also possible that the hydrogen-nitrogen mixed gas having a pressure of 1.0 MPa is mixed inside the test sample 1 according to this mixing ratio, and the pressure resistance leak test is performed at this pressure value.
As a result, the hydrogen gas in the cylinder can be used up to 0.05 MPa, and the hydrogen gas in the cylinder can be used up to the maximum without being wasted.
 次いで、実験用供試品を用いてシミュレーション実験を行った。図5(b)においては実験用供試品(実験治具)80を示しており、この実験用供試品80は、呼び径2インチのボールバルブを模して作成したものであり、CAC406Cを材料として略円筒状に形成した。実験用供試品80内部の中空部81の寸法としては、内径φdを50mm、長さを120mmに設けた。 Next, a simulation experiment was conducted using the test sample. FIG. 5B shows an experimental sample (experimental jig) 80. The experimental sample 80 is made by imitating a ball valve having a nominal diameter of 2 inches. Was formed into a substantially cylindrical shape. Regarding the dimensions of the hollow portion 81 inside the test sample 80, the inner diameter φd was 50 mm and the length was 120 mm.
 図5(a)においては、実験用供試品80をクランプ治具90、91で挟持した状態で収納するためのチャンバ82を示しており、このチャンバ82の軸方向の長さは実験用供試品の長さよりもやや長く形成されている。チャンバ82にはガスセンサ83が6箇所に設けられ、これらのガスセンサ83により実験用供試品80から漏れ出たガスを検出可能になっている。図中、「前」のクランプ治具90側から「後」のクランプ治具91側に向けてサーチガスを流すようにした。 FIG. 5A shows a chamber 82 for accommodating the experimental sample 80 in a state of being clamped by the clamp jigs 90 and 91, and the axial length of the chamber 82 is the experimental sample. It is formed slightly longer than the length of the sample. Gas sensors 83 are provided at six places in the chamber 82, and the gas leaked from the test sample 80 can be detected by these gas sensors 83. In the figure, the search gas was made to flow from the “front” clamp jig 90 side toward the “rear” clamp jig 91 side.
 チャンバ82に実験用供試品80を収納し、これを漏れ検査設備の検査ラインに接続して漏れ量の測定を行った。このとき、3種類のサーチガスを供試品に供給し、漏れ量0.3mL/minの定流量器を介して、ガスセンサ83の挙動をそれぞれ測定した。この場合、ガスセンサ83から出力される初期電圧を2.0Vとし、この初期電圧の105%に達したとき、すなわち、電圧が2.0Vから2.1V以上に上昇したときに、ガス漏れを検出したものと判定するようにした。 The experimental sample 80 was stored in the chamber 82, and this was connected to the inspection line of the leakage inspection equipment to measure the amount of leakage. At this time, three types of search gases were supplied to the sample, and the behavior of the gas sensor 83 was measured through a constant flow rate device with a leak rate of 0.3 mL/min. In this case, the initial voltage output from the gas sensor 83 is set to 2.0V, and when the initial voltage reaches 105%, that is, when the voltage rises from 2.0V to 2.1V or more, a gas leak is detected. I decided to do it.
 3種類のサーチガスとしては、(1)市販の混合ガス、(2)及び(3)本発明のサーチガスの混合方法によって現地の漏れ検査設備で混合したガスとした。(1)市販の混合ガスとしては、ガスボンベによる水素5%、窒素95%の混合ガスを用いた。(2)の現地混合ガスとしては、窒素ガス1.14MPaを実験用供試品80内に供給後、水素ガスを供給して実験用供試品80内の圧力を1.20MPa、すなわち水素ガスと窒素ガスとの圧力比を5:95とし、これにより水素約5%、窒素約95%の混合ガスを実験用供試品80内に設けた。(3)の現地混合ガスとしては、窒素ガス1.17MPaを実験用供試品80内に供給後、水素ガスを供給して実験用供試品80内の圧力を1.20MPa、すなわち水素ガスと窒素ガスとの圧力比を2.5:97.5とし、これにより水素約2.5%、窒素約97.5%の混合ガスを実験用供試品80内に設けた。 The three types of search gas were (1) a commercially available mixed gas, and (2) and (3) a gas mixed in a local leak inspection facility by the search gas mixing method of the present invention. (1) As a commercially available mixed gas, a mixed gas containing 5% hydrogen and 95% nitrogen was used. As the on-site mixed gas of (2), after supplying nitrogen gas 1.14 MPa into the experimental sample 80, hydrogen gas is supplied to set the pressure in the experimental sample 80 to 1.20 MPa, that is, hydrogen gas. The pressure ratio of nitrogen gas to nitrogen gas was set to 5:95, so that a mixed gas of about 5% hydrogen and about 95% nitrogen was provided in the experimental sample 80. As the on-site mixed gas of (3), after supplying nitrogen gas of 1.17 MPa into the experimental sample 80, hydrogen gas is supplied so that the pressure inside the experimental sample 80 is 1.20 MPa, that is, hydrogen gas. The pressure ratio of nitrogen gas to nitrogen gas was 2.5:97.5, so that a mixed gas of approximately 2.5% hydrogen and approximately 97.5% nitrogen was provided in the experimental sample 80.
 上記の(1)~(3)の3種類のサーチガスにより実験用供試品80内を昇圧し、定流量器を介して発生させた疑似漏れ(0.3mL/min)に対してガスセンサ83がどのように反応するかをそれぞれ図6のグラフに表した。 The gas sensor 83 is used for the pseudo-leakage (0.3 mL/min) generated through the constant flow rate device by pressurizing the inside of the experimental sample 80 with the above three kinds of search gases (1) to (3). The graphs in FIG. 6 show how each of these reacts.
 図6において、(1)の市販の混合ガスと(2)の現地混合ガスとを比較すると、検査開始からおよそ15秒経過後にはガスセンサ83の電圧はともに上昇している。このことから、(2)の現地混合ガスは、圧力管理により(1)の市販の混合ガスに近い状態で漏れ検査を行うことができるといえる。 In FIG. 6, comparing the commercially available mixed gas of (1) with the on-site mixed gas of (2), the voltage of the gas sensor 83 both rises approximately 15 seconds after the start of the inspection. From this, it can be said that the on-site mixed gas of (2) can be subjected to a leak test in a state close to the commercially available mixed gas of (1) by pressure control.
 一方、(3)の現地混合ガスについては、検査開始からおよそ20秒後にガスセンサ83による電圧上昇が確認され、漏れを検出した。このことから、水素ガスの濃度が約4.5%の場合でも、所定時間内(例えば、漏れ検査の前工程である加工工程のサイクルタイム内)に安全な検査を完了できることが確認されたといえる。
 これらのことから、本発明のサーチガスの混合方法により作成した混合ガスは、市販の混合ガスの代わりとして十分に使用できるといえる。
 その場合、各ガスを圧力制御することで、混合したサーチガス(水素ガス)の濃度も制御可能となった。低濃度のサーチガスであっても検出は可能であるので、安全を考慮して水素ガス濃度を下げた場合にも、耐圧検査や漏れ検査用のサーチガスとして使用できることが確認された。
On the other hand, regarding the on-site mixed gas of (3), a voltage increase was confirmed by the gas sensor 83 approximately 20 seconds after the start of the inspection, and a leak was detected. From this, it can be said that even if the concentration of hydrogen gas is about 4.5%, it can be said that the safe inspection can be completed within a predetermined time (for example, within the cycle time of the processing process which is a pre-process of the leak inspection). ..
From these, it can be said that the mixed gas prepared by the search gas mixing method of the present invention can be sufficiently used as a substitute for a commercially available mixed gas.
In that case, the concentration of the mixed search gas (hydrogen gas) can also be controlled by controlling the pressure of each gas. It was confirmed that even a low-concentration search gas can be detected, so even if the hydrogen gas concentration is lowered in consideration of safety, it can be used as a search gas for a pressure test or a leak test.
 以上、本発明の実施の形態について詳述したが、本発明は、前記実施の形態記載に限定されるものではなく、本発明の特許請求の範囲に記載されている発明の精神を逸脱しない範囲で、種々の変更ができるものである。例えば、本発明は、ボールバルブやグローブバルブなどの弁座検査用のサーチガスとして適用することができる。具体的には、実施形態に示すボールバルブの場合、図9(a)において、所定の検査時間内におけるボールバルブからのサーチガスの外部漏れ検査、すなわち耐圧検査を行った後、図9(b)におけるエアパージの前に、ボールバルブを全閉状態としてバルブのキャビティにサーチガスを内封することにより、所定の検査時間内における弁座からの漏れ検査にも適用することができる。この弁座検査におけるサーチガスの検出には、一次側流路50や二次側流路52に接続したフローセンサ(図示せず)などを用いる。
 また、本発明は、グローブバルブやゲートバルブなどのボールバルブ以外のバルブ用のサーチガスとして適用でき、バルブ以外の配管機器を含む、例えば空気圧式アクチュエータのハウジングなどの各種の圧力機器の耐圧検査や漏れ検査などに適用することができる。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the description of the embodiments, and does not depart from the spirit of the invention described in the claims of the present invention. Therefore, various changes can be made. For example, the present invention can be applied as a search gas for inspecting a valve seat such as a ball valve or a globe valve. Specifically, in the case of the ball valve according to the embodiment, in FIG. 9A, after performing an external leakage inspection of the search gas from the ball valve within a predetermined inspection time, that is, a pressure resistance inspection, Prior to the air purging in (1), the ball valve is fully closed and the search gas is sealed in the cavity of the valve, so that it can be applied to the leak inspection from the valve seat within a predetermined inspection time. To detect the search gas in the valve seat inspection, a flow sensor (not shown) connected to the primary side flow passage 50 or the secondary side flow passage 52 is used.
Further, the present invention can be applied as a search gas for valves other than ball valves such as globe valves and gate valves, and can perform pressure resistance inspection of various pressure devices such as housings of pneumatic actuators, including piping devices other than valves. It can be applied to leak inspection.
 次に、本発明のサーチガスの混合方法の具体例の一例として、耐圧検査装置に適用する場合を説明する。 Next, as an example of a specific example of the search gas mixing method of the present invention, a case of applying it to a pressure resistance inspection device will be described.
 例えば、継手などの配管部品では高い耐圧性が要求されることから、出荷前に強度・漏れの有無を確認するためにサーチガスを用いた耐圧検査が実施される。
 この場合、配管部品などのワーク(供試品)を耐圧検査するときには、圧力変化法と呼ばれる検査によりおこなわれることがある。圧力変化法による耐圧検査では、漏れのない基準品(マスター)を用意し、ワークとマスターとを同時に加圧の上、差圧センサを用いて、漏れによるワーク内の圧力変化をマスター内の圧力変化との差として検出することにより、漏れを検知するようになっている。
For example, since piping components such as fittings are required to have high pressure resistance, a pressure resistance inspection using a search gas is carried out before shipment to confirm strength and leakage.
In this case, when a pressure test is performed on a work (test sample) such as a piping component, a test called a pressure change method may be performed. In the pressure resistance test using the pressure change method, prepare a leak-free standard product (master), pressurize the work and master simultaneously, and use the differential pressure sensor to determine the pressure change in the work due to leakage Leakage is detected by detecting the difference as a change.
 一方、圧力変化法以外の耐圧検査として、ワーク内部から外部への流体の漏れを検出して耐圧検査をおこなう場合がある。この場合、呼び径が小さいバルブ(例えば呼び径50A以下)のバルブの耐圧検査では、サーチ用流体として空気を用いてもよいことが知られ、このような気体の漏れの検出による耐圧検査として、例えば水素漏れ試験が用いられることがある。この場合、ワークに水素・窒素混合ガスを印可し、外部へのガスの漏れをガスセンサで検出して漏れを判定する。
 この種の外部への流体漏れの検出により試験をおこなうものとして、例えば特開昭62-55538号公報(以下、「文献1」という。)の水没式の圧力漏れ検査装置が開示されている。この漏れ検査装置は、被検査物であるワークに所定圧力の流体を充填し、このワークを水槽内に水没した状態で気泡の発生有無を観察することでワークの圧力漏れを検査するようになっている。
On the other hand, as a pressure resistance test other than the pressure change method, a pressure resistance test may be performed by detecting leakage of fluid from the inside of the work to the outside. In this case, it is known that air may be used as a search fluid in a pressure resistance test of a valve having a small nominal diameter (for example, a nominal diameter of 50 A or less). As a pressure resistance test by detecting such gas leakage, For example, a hydrogen leak test may be used. In this case, hydrogen/nitrogen mixed gas is applied to the work, and the leak is judged by detecting the leak of gas to the outside with a gas sensor.
As a device for performing such a test by detecting a fluid leak to the outside, for example, Japanese Patent Laid-Open No. 62-55538 (hereinafter referred to as "reference 1") discloses a submersible pressure leak inspection device. This leak inspection device is designed to inspect a work for pressure leak by filling a work to be inspected with a fluid having a predetermined pressure and observing the presence or absence of bubbles in the work in a state of being submerged in a water tank. ing.
 配管部品を水没式の漏れ検査装置で耐圧検査する技術としては、例えば株式会社小島製作所(HPの著者名不明)、”全数検査 水没式ジョイント漏れ検査”、[online]、2000年10月31日、株式会社小島製作所、[平成30年12月11日検索]、インターネット<URL:http://kojima-core.co.jp/20001031report.html>(以下、「文献2」という。)の水没式ジョイント漏れ検査が開示されている。この漏れ検査では、配管部品である継手をワークとして水槽内に沈めて空気圧を加え、この継手を目視することで漏れ発生時の漏洩箇所を確認するようになっている。 As a technique for pressure resistance inspection of piping parts with a submersion type leak inspection device, for example, Kojima Seisakusho Co., Ltd. (HP author unknown), "100% inspection submerged joint leak inspection", [online], October 31, 2000 , Kojima Seisakusho Co., Ltd. [Search on December 11, 2018], Internet <URL:http://kojima-core.co.jp/20001031report.html> (hereinafter referred to as "Reference 2") submersion ceremony Joint leak testing is disclosed. In this leak inspection, a joint, which is a piping component, is sunk into a water tank as a work, air pressure is applied, and the joint is visually inspected to confirm the leak location when a leak occurs.
 前述した圧力変化法によりワーク(供試品)を耐圧検査する場合、このワークの容積が大きかったり検査圧力が高いときには、漏れの測定開始前に基準品と同圧に調整する段階において、時間を要したり差圧が安定しにくくなって漏れを検出できない場合がある。 When performing pressure resistance inspection of a work (test sample) by the pressure change method described above, if the volume of this work is large or the inspection pressure is high, the time at the stage of adjusting to the same pressure as the reference product before starting leak measurement In some cases, leakage may not be detected because it becomes necessary or the differential pressure becomes difficult to stabilize.
 一方、上記文献1や文献2のように、水没させたワークからの外部への気体の漏れを検出しようとする場合、ワークからの気泡の発生の有無を作業者が目視で観察することで確認作業に時間がかかり、各ワークごとの検査時間を一定にすることも難しくなって作業時間にムラも生じやすい。目視による検査は作業者への負担が大きいことから、検査作業を連続しておこなうと疲労の蓄積などで一層時間がかかることにもつながる。
 さらに、ワークを水槽に水没させる際の昇降動にも時間がかかり、検査後に水に濡れたワークの水滴を拭き取ったり乾燥させる場合には更なる時間も必要となる。気体の漏れ確認用として水を使用しているため、排水処理をおこなうための設備が必要になったり、後処理に手間がかかるという問題もあり、環境への負荷の低減も求められている。
 これらの理由から、耐圧検査時間を短くして検知作業も容易であり、高精度で簡便な耐圧検査装置の開発が切望されていた。
On the other hand, in the case of detecting the leakage of gas from the work submerged in water to the outside as in Reference 1 and Reference 2, the operator visually confirms whether bubbles are generated from the work. The work takes time, and it is difficult to make the inspection time constant for each work, and the work time tends to be uneven. Since the visual inspection imposes a heavy burden on the operator, if the inspection work is carried out continuously, it will take more time due to accumulation of fatigue.
Furthermore, it takes time to move up and down when the work is submerged in the water tank, and further time is required when the water drops of the work wet with water are wiped off or dried after the inspection. Since water is used for confirming gas leaks, there is a problem that facilities for wastewater treatment are required and post-treatment is time-consuming, and reduction in environmental load is also required.
For these reasons, it has been earnestly desired to develop a high-accuracy and simple withstand voltage inspection device that can shorten the withstand voltage inspection time and facilitate the detection work.
 上記課題に対し、以下に示す耐圧検査装置の具体例においては、短時間で速やかに供試品を連続して耐圧検査でき、しかも簡便かつ正確に漏れを検知可能なサーチガスを用いた耐圧検査装置を提供するものである。 In order to solve the above problems, in the specific example of the withstand voltage inspection apparatus shown below, the withstand pressure inspection using a search gas capable of continuously and quickly performing the withstand pressure inspection of the sample under a short time and capable of easily and accurately detecting the leak is provided. A device is provided.
 この具体例は、水素等のサーチガスを用いた耐圧検査装置101であって、検査空間Sを開閉する開閉板111と、この開閉板111に取り付けられてサーチガスを検知するセンサ112と、このセンサ112を検査空間Sに配置した供試品102を近接し、又は検査終了後に開閉板111を検査空間Sから退避させる近接退避手段とを備え、この近接退避手段によりセンサ112を外気に触れされることにより、供試品102のアンクランプの際に漏れ出たサーチガスの影響を低減させたサーチガスを用いた耐圧検査装置101である。 This specific example is a pressure resistance inspection device 101 using a search gas such as hydrogen, and includes an opening/closing plate 111 for opening and closing the inspection space S, a sensor 112 attached to the opening/closing plate 111 for detecting the search gas, and a sensor 112 for detecting the search gas. The DUT 102 in which the sensor 112 is arranged in the inspection space S is brought close to or provided with a proximity withdrawal means for withdrawing the opening/closing plate 111 from the inspection space S after the inspection is completed. As a result, the withstand voltage inspection device 101 uses the search gas in which the influence of the search gas leaked when the sample 102 is unclamped is reduced.
 この具体例において、近接退避手段113は、サーボモータ130などを用いた回転機構であり、この回転機構により開閉板111を検査空間Sから退避させるようにしたサーチガスを用いた耐圧検査装置101である。 In this specific example, the proximity withdrawing means 113 is a rotating mechanism using a servomotor 130 or the like, and in the withstand voltage inspection device 101 using a search gas, the opening/closing plate 111 is withdrawn from the inspection space S by this rotating mechanism. is there.
 さらに、近接退避手段151は、シリンダ152などを用いたスライド機構であり、このスライド機構により開閉板153を検査空間Sから退避させるようにしたサーチガスを用いた耐圧検査装置150である。 Further, the proximity retraction means 151 is a slide mechanism that uses a cylinder 152 and the like, and is a pressure resistance inspection device 150 that uses search gas to retract the opening/closing plate 153 from the inspection space S by this slide mechanism.
 また、この具体例の別の側面は、水素等のサーチガスを用いた耐圧検査方法であって、開閉板111により検査空間Sを開閉してこの検査空間Sに供試品102を配置し、開閉板111に取り付けられたセンサ112を近接退避手段により供試品102に近接させた状態でサーチガスを検知し、サーチガスによる検査終了後には、近接退避手段で開閉板111を検査空間Sから退避させてセンサ112を外気に触れさせることにより、供試品102のアンクランプの際に漏れ出たサーチガスの影響を低減させるようにしたサーチガスを用いた耐圧検査方法である。 Further, another aspect of this specific example is a pressure resistance inspection method using a search gas such as hydrogen, in which the inspection space S is opened and closed by the opening/closing plate 111 and the sample 102 is arranged in the inspection space S. The search gas is detected while the sensor 112 attached to the opening/closing plate 111 is brought close to the DUT 102 by the proximity retreating means, and after the inspection by the search gas is completed, the opening/closing plate 111 is removed from the inspection space S by the proximity retreating means. This is a withstand voltage inspection method using a search gas in which the influence of the search gas leaked when the sample 102 is unclamped is reduced by evacuating the sensor 112 and exposing the sensor 112 to the outside air.
 さらに、検査終了後もセンサ112を測定状態とし、所定以上に水素が残留している場合には、ファン140等のガス拡散手段を用いてセンサ112付近の強制吸気又は強制排気をおこなうことにより、供試品102のアンクランプの際に漏れ出たサーチガスの影響を低減して、次の供試品102の検査を早期におこなうようにしたサーチガスを用いた耐圧検査方法である。 Further, even after the inspection is completed, the sensor 112 is kept in the measuring state, and when hydrogen remains above a predetermined level, the gas diffusion means such as the fan 140 is used to perform forced intake or forced exhaust in the vicinity of the sensor 112. This is a withstand voltage inspection method using a search gas that reduces the influence of the search gas leaked during the unclamping of the sample 102 and allows the next sample 102 to be inspected early.
 この具体例の効果として、耐圧検査終了後に近接退避手段113で開閉板111を検査空間Sから退避させ、センサ112を外気に触れさせて供試品102のアンクランプ時に漏れ出るサーチガスの影響を低減させていることにより、検査終了後にセンサ112周囲のサーチガスを取り除くと共に、検査空間Sに残留するサーチガスの影響を早期に抑えて耐圧検査後の処理時間を短くできる。このため、各供試品102の耐圧検査にかかる時間を短縮し、次の供試品102を耐圧検査可能な状態にセットして連続して速やかに供試品102を検査できる。しかも、供試品102を検査空間Sに配置した状態で、近接退避手段113によりセンサ112を供試品102に近接させる構成としていることで、この一つの近接退避手段113を用いて簡便に開閉板111を供試品102に近接又は退避でき、この開閉板111に取り付けられたセンサ112を供試品102の所定位置に配置して漏れを正確に検知可能となる。
 供試品の容積の大小や検査圧の高低による影響が少なく、上述した機能を安定して発揮し、継手等の配管部品に加えて、あらゆる態様の供試品102を対象として迅速に耐圧検査を実施できる。
 検査用の流体としてサーチガスを用いているため後処置が容易になり、環境への負荷も少ない。
As an effect of this specific example, after the withstand voltage inspection is completed, the opening/closing plate 111 is retracted from the inspection space S by the proximity retraction means 113, the sensor 112 is exposed to the outside air, and the influence of the search gas leaked when the sample 102 is unclamped is influenced. By reducing the amount, the search gas around the sensor 112 can be removed after the inspection is completed, and the influence of the search gas remaining in the inspection space S can be suppressed early to shorten the processing time after the breakdown voltage inspection. Therefore, the time required for the withstand voltage inspection of each sample 102 can be shortened, and the next sample 102 can be set in a state capable of withstanding voltage inspection to continuously and quickly inspect the sample 102. In addition, since the sensor 112 is brought into proximity to the sample 102 by the proximity retracting means 113 in the state where the sample 102 is arranged in the inspection space S, it is possible to easily open and close by using this one proximity retracting means 113. The plate 111 can be brought close to or retracted from the DUT 102, and the sensor 112 attached to the opening/closing plate 111 can be arranged at a predetermined position of the DUT 102 to accurately detect a leak.
There is little influence due to the size of the sample product and the high or low of the inspection pressure, the above-mentioned functions are stably exhibited, and in addition to the piping parts such as the joints, the sample 102 of all aspects can be quickly subjected to the pressure resistance test. Can be implemented.
Since the search gas is used as the inspection fluid, post-treatment is easy and the load on the environment is small.
 また、近接退避手段113は、サーボモータ130などを用いた回転機構であり、この回転機構により開閉板111を検査空間Sから退避させているので、開閉板111の退避時にはセンサ112を迅速に大気に接触させてサーチガスの影響を早期に低減し、開閉板111が検査空間Sから離れる方向に回転して開状態になることで、センサ112が検査空間Sのサーチガスによる影響を受けにくい。 Further, the proximity retracting means 113 is a rotating mechanism using the servo motor 130 and the like, and the opening/closing plate 111 is retracted from the inspection space S by this rotating mechanism. The sensor 112 is less susceptible to the influence of the search gas in the inspection space S because the opening/closing plate 111 is rotated in a direction away from the inspection space S to be in an open state by making contact with the.
 さらに、近接退避手段151は、シリンダな152などを用いたスライド機構であり、このスライド機構により開閉板153を検査空間Sから退避させているので、開閉板153の退避時にはセンサ112を迅速に大気に接触させてサーチガスの影響を早期に低減可能となる。開閉板153が検査空間Sから離れる方向にスライドして開状態になることで、センサ112が検査空間Sのサーチガスによる影響を受けにくくなり、さらには、開閉板153のスライド量を増やして検査空間Sからのセンサ112の距離を大きくすれば、センサ112へのサーチガスの影響をより一層抑えることができる。 Further, the proximity retracting means 151 is a slide mechanism using a cylinder 152 or the like, and since the opening/closing plate 153 is retracted from the inspection space S by this sliding mechanism, the sensor 112 can be quickly moved to the atmosphere when the opening/closing plate 153 is retracted. The influence of the search gas can be reduced early by contacting the. Since the open/close plate 153 slides in the direction away from the inspection space S to be in the open state, the sensor 112 is less likely to be affected by the search gas in the inspection space S, and further, the slide amount of the open/close plate 153 is increased to perform the inspection. By increasing the distance of the sensor 112 from the space S, the influence of the search gas on the sensor 112 can be further suppressed.
 検査終了後には、センサ112付近に残留するサーチガスの影響を早期に低減して耐圧検査後の処理時間を短くできる。このため、各供試品102の耐圧検査にかかる時間を短縮し、次の供試品102を速やかに耐圧検査可能な状態にして短時間で連続して供試品102を検査できる。しかも、一つの近接退避手段で簡便に開閉板を供試品に近接又は退避でき、この開閉板に取り付けられたセンサ112を供試品102の所定位置に配置して漏れを正確に検知可能となる。
 供試品102の容積の大小や検査圧の高低による影響が少なく、上述した機能を安定して発揮し、継手等の配管部品に加えて、あらゆる態様の供試品102を対象として迅速に耐圧検査を実施できる。
After the inspection, the influence of the search gas remaining near the sensor 112 can be reduced early to shorten the processing time after the breakdown voltage inspection. Therefore, the time required for the withstand voltage inspection of each sample 102 can be shortened, and the sample 102 can be inspected continuously in a short time in a state where the next sample 102 can be quickly subjected to the withstand voltage inspection. Moreover, the opening/closing plate can be easily brought close to or retracted from the DUT by one proximity retreat means, and the sensor 112 attached to the opening/closing plate can be arranged at a predetermined position of the DUT 102 to accurately detect the leak. Become.
There is little influence due to the size of the sample 102 and the high or low of the inspection pressure, the above-mentioned functions are stably exhibited, and in addition to the piping parts such as the joints, the sample 102 of all modes can be quickly pressure-resistant. Inspection can be carried out.
 ファン140等のガス拡散手段でセンサ112付近の強制吸気又は強制排気することで耐圧検査後に滞留するサーチガスを迅速に除去でき、アンクランプ時に漏れ出たサーチガスの影響を低減して次の供試品102の検査を早期におこなうことで、供試品102の耐圧検査を連続して短時間でおこなえる。 By forcibly inhaling or forcibly exhausting the vicinity of the sensor 112 with the gas diffusion means such as the fan 140, the search gas staying after the pressure resistance test can be quickly removed, and the influence of the search gas leaked at the time of unclamping can be reduced. By performing the inspection of the sample 102 early, the withstand voltage inspection of the sample 102 can be continuously performed in a short time.
 図7においては、本発明のサーチガスの混合方法により耐圧検査する耐圧検査装置(以下、装置本体101という)の一例を示しており、図8においては、装置本体101で検査される供試品(ワーク)102を示している。図9においては、サーチガスを用いた耐圧検査方法の本例におけるフローチャートを示している。 FIG. 7 shows an example of a withstand voltage inspection apparatus (hereinafter referred to as an apparatus main body 101) for performing a withstand voltage inspection by the search gas mixing method of the present invention, and in FIG. 8, a sample to be inspected by the apparatus main body 101. (Work) 102 is shown. FIG. 9 shows a flowchart in this example of the withstand voltage inspection method using the search gas.
 この例における装置本体101は、前述した図1の漏れ検査設備10におけるチャンバ51の位置に設置され、この装置本体101により供試品102を耐圧検査可能としたものである。 The apparatus main body 101 in this example is installed at the position of the chamber 51 in the leak inspection equipment 10 of FIG. 1 described above, and the device main body 101 enables the sample 102 to be subjected to pressure resistance inspection.
 装置本体101により耐圧検査される供試品102は、例えば管継手やバルブ等の配管部品からなり、本例では、管端接続部として流路開口側に雌螺子を有する一体成形型のねじ込み式の管継手が使用される。この管継手(供試品)102としては、図8(a)に示すクロス、図8(b)のティー、図8(c)のエルボなどがあり、これらのように隣接する分岐流路103が、それぞれ90°の間隔で交差し、全ての分岐流路103の中心軸が略同一平面上に配置されている管継手が適している。クロス、ティー、エルボの開口端面104の内周側には、それぞれ雌螺子105が形成されている。検査対象の管継手は、例えば呼び径1/8インチ~4インチまでとし、図示しないが、ストレート状の管継手の供試品の耐圧検査も可能である。 The sample 102 to be pressure-tested by the apparatus main body 101 is composed of, for example, pipe parts such as a pipe joint and a valve. In this example, an integrally molded screw-in type having a female screw on the flow path opening side as a pipe end connection part. Pipe fittings are used. As the pipe joint (test sample) 102, there are a cross shown in FIG. 8A, a tee shown in FIG. 8B, an elbow shown in FIG. 8C, and the like. However, pipe fittings in which the central axes of all the branch flow paths 103 are arranged substantially on the same plane are suitable, which intersect each other at intervals of 90°. Female screws 105 are formed on the inner peripheral sides of the open end surfaces 104 of the cloth, tee, and elbow, respectively. The pipe joint to be inspected has, for example, a nominal diameter of 1/8 inch to 4 inches, and although not shown, it is also possible to perform pressure resistance inspection of a straight pipe joint sample.
 図7の装置本体101は、水素等のサーチガスを用いた耐圧検査装置であり、取付治具110、開閉板111、センサ112、近接退避手段113を備えている。
 取付治具110は、供試品102を耐圧検査可能にクランプするために装置本体101に設けられ、枠体120、固定側治具121、可動側治具122、シリンダ機構123を有している。
The apparatus main body 101 of FIG. 7 is a pressure resistance inspection apparatus that uses a search gas such as hydrogen, and includes a mounting jig 110, an opening/closing plate 111, a sensor 112, and a proximity retreat means 113.
The mounting jig 110 is provided on the apparatus main body 101 to clamp the DUT 102 so as to perform pressure resistance inspection, and includes a frame body 120, a fixed side jig 121, a movable side jig 122, and a cylinder mechanism 123. ..
 枠体120は直方体状をなし、その内部が有底状にくり抜かれて凹状の収容部120aが設けられている。この収容部120a内に、固定側治具121、可動側治具122、シリンダ機構123が収容され、供試品102の耐圧検査用の検査空間Sが設けられている。 The frame 120 is in the shape of a rectangular parallelepiped, and the inside of the frame 120 is hollowed out to form a concave housing portion 120a. A fixed-side jig 121, a movable-side jig 122, and a cylinder mechanism 123 are housed in the housing portion 120a, and an inspection space S for pressure resistance inspection of the sample 102 is provided.
 検査空間Sは、供試品102を収納可能な容積であり、供試品102に供給されて漏れ出たサーチガスが拡散可能な広さであって、このガスを検知しやすい小さい容積により設けられる。検査空間Sは、開閉板111により外部から隔離可能に設けられ、この場合、漏れ出たガスを検知可能であれば、密閉状態或は半密閉状態に設けることが可能になっている。 The inspection space S has a volume capable of accommodating the DUT 102, and has a size capable of diffusing the search gas supplied to the DUT 102 and leaked out, and is provided with a small volume in which this gas can be easily detected. To be The inspection space S is provided so as to be isolated from the outside by the opening/closing plate 111. In this case, if the leaked gas can be detected, it can be provided in a closed state or a semi-closed state.
 開閉板111は、透明や半透明或は不透明のアクリル板により設けられ、その一端側が図示しない回転軸として可動側治具122に取付けられ、この回転軸を中心に可動側治具122に対して回転可能になっている。開閉板111を回動操作することで検査空間Sの領域を開閉可能となり、図10(a)、図10(e)に示した開閉板111の全開時には、この開閉板111が略水平状態となり、一方、図10(d)に示した開閉板111の全閉時には検査空間Sを閉じて外部から隔離可能になっている。 The opening/closing plate 111 is provided by a transparent, semi-transparent, or opaque acrylic plate, and one end side thereof is attached to the movable side jig 122 as a rotating shaft (not shown). It is rotatable. By rotating the opening/closing plate 111, the region of the inspection space S can be opened/closed. When the opening/closing plate 111 shown in FIGS. 10(a) and 10(e) is fully opened, the opening/closing plate 111 becomes substantially horizontal. On the other hand, when the opening/closing plate 111 shown in FIG. 10D is fully closed, the inspection space S can be closed to be isolated from the outside.
 センサ112は、後述する4つのクランプ部の近傍に配置され、この4箇所のセンサ112により供試品102がクロスであるときの4つの分岐流路103に対応してサーチガスの漏れを検知可能になり、さらに供試品102がティーやエルボの場合にも適切な位置に配置される。図7において、開閉板111のセンサ取付け位置には貫通孔124が設けられ、この貫通孔124に対して、開閉板111の全閉時にセンサ112に設けられたガス検知部125が検査空間Sに臨んだ状態で、センサ112が開閉板111の検査空間S側の表面と面一になるように装着される。これにより、ガス検知部125が検査空間Sに近接して漏れ出たガスを検知しやすくなり、また、開閉板111が開く際には、その開度が大きくなるに従ってガス検知部125が検査空間Sから離れるようになっている。 The sensors 112 are arranged in the vicinity of four clamp parts described later, and the four sensors 112 can detect the leak of the search gas corresponding to the four branch flow paths 103 when the DUT 102 is a cross. Further, when the DUT 102 is a tee or an elbow, the DUT 102 is placed at an appropriate position. In FIG. 7, a through hole 124 is provided at a sensor mounting position of the opening/closing plate 111, and a gas detection unit 125 provided in the sensor 112 when the opening/closing plate 111 is fully closed is provided in the inspection space S with respect to the through hole 124. When facing, the sensor 112 is mounted so as to be flush with the surface of the opening/closing plate 111 on the inspection space S side. This makes it easier for the gas detection unit 125 to detect the leaked gas near the inspection space S, and when the opening/closing plate 111 opens, the gas detection unit 125 causes the inspection space to increase as the opening degree increases. It is designed to move away from S.
 センサ112で検知するサーチガスとしては、例えば不活性ガスである窒素ガスと拡散性を有する水素ガスとの混合ガスが用いられ、窒素ガスと水素ガスとの比率を95:5とした5%水素の混合ガスが使用される。
 このため、センサ112は、水素ガスを検知可能な水素ガスセンサからなり、この水素ガスセンサ112により供試品102から漏れ出た拡散性の気体である、水素と窒素との混合気体中の水素を検出可能となる。センサ112は、任意の取付け数により検査空間S内の水素を検知可能な位置に取付けられる。
As the search gas detected by the sensor 112, for example, a mixed gas of nitrogen gas which is an inert gas and hydrogen gas having diffusivity is used, and 5% hydrogen in which the ratio of the nitrogen gas and the hydrogen gas is 95:5. Mixed gas is used.
Therefore, the sensor 112 is composed of a hydrogen gas sensor capable of detecting hydrogen gas, and the hydrogen gas sensor 112 detects hydrogen in a mixed gas of hydrogen and nitrogen, which is a diffusible gas leaked from the sample 102. It will be possible. The sensor 112 is attached at a position where hydrogen can be detected in the inspection space S by an arbitrary number of attachments.
 センサ112は、所定の電圧印加により、漏れ出した水素の濃度に応じた電圧を出力するモジュールからなっている。耐圧検査前には、抵抗調整用のボリュームにより出力電圧を変えて、センサ112の暖機状態や大気中の水素濃度の変化に応じて感度調整を精細におこなうとよい。 The sensor 112 is composed of a module that outputs a voltage according to the concentration of leaked hydrogen when a predetermined voltage is applied. Before the breakdown voltage test, the output voltage may be changed by the resistance adjusting volume, and the sensitivity may be finely adjusted according to the warm-up state of the sensor 112 or the change of the hydrogen concentration in the atmosphere.
 センサ112としては、アナログ信号(0-5V)を出力可能な、市販の半導体式センサが用いられ、例えば、熱線型半導体式水素センサが用いられる。この水素センサ112は、酸化第二スズ(SnO)などの金属酸化物半導体表面での水素ガスの吸着による電気伝導度の変化を利用するセンサである。この場合、出力電圧が、ガス濃度に対して対数的になって、低濃度でも高感度の出力が可能になる。 As the sensor 112, a commercially available semiconductor sensor that can output an analog signal (0-5V) is used, and for example, a hot wire semiconductor hydrogen sensor is used. The hydrogen sensor 112 is a sensor that utilizes a change in electrical conductivity due to adsorption of hydrogen gas on the surface of a metal oxide semiconductor such as stannic oxide (SnO 2 ). In this case, the output voltage becomes logarithmic with respect to the gas concentration, and high-sensitivity output is possible even at low concentration.
 近接退避手段113は、サーボモータ130を用いた回転機構であり、開閉板111の回転軸に取付けられてこの開閉板111を回転軸を中心に開閉操作可能に設けられる。このことから、近接退避手段113により開閉板111を閉方向に操作すれば、開閉板111に取り付けられたセンサ112のガス検知部125を検査空間Sに配置した供試品102に近接させ、又は、検査終了後に開閉板111を開方向に操作すれば、この開閉板111を検査空間Sから退避可能になっている。
 このとき、回転機構113により開閉板111を検査空間Sから退避させ、センサ112を検査空間Sから離しつつガス検知部125を外気に接触させることにより、供試品102のアンクランプの際に漏れ出たサーチガスの影響を低減している。
The proximity retracting means 113 is a rotating mechanism using the servo motor 130, and is attached to the rotating shaft of the opening/closing plate 111 so that the opening/closing plate 111 can be opened/closed about the rotating shaft. From this fact, if the opening/closing plate 111 is operated in the closing direction by the proximity retreat means 113, the gas detection part 125 of the sensor 112 attached to the opening/closing plate 111 is brought close to the sample 102 arranged in the inspection space S, or By operating the opening/closing plate 111 in the opening direction after the inspection, the opening/closing plate 111 can be retracted from the inspection space S.
At this time, the opening/closing plate 111 is retracted from the inspection space S by the rotating mechanism 113, and the gas detection unit 125 is brought into contact with the outside air while the sensor 112 is separated from the inspection space S, whereby leakage occurs when the sample 102 is unclamped. The influence of the released search gas is reduced.
 固定側治具121は、枠体120内に固定された状態で取付けられ、この固定側治具121に供試品102が所定の状態で載置された後に、可動側治具122とによって供試品122をクランプした状態で耐圧検査を実施可能になっている。固定側治具121は、2つの円筒状の固定クランプ部131、131を備え、これら固定クランプ部131は、そのクランプ側にシール性を有するクランプ面132を有している。 The fixed-side jig 121 is mounted in a fixed state in the frame 120, and after the sample 102 is placed on the fixed-side jig 121 in a predetermined state, it is provided by the movable-side jig 122. The withstand voltage test can be performed with the prototype 122 clamped. The fixed-side jig 121 includes two cylindrical fixed clamp portions 131 and 131, and these fixed clamp portions 131 have a clamp surface 132 having a sealing property on the clamp side.
 各クランプ面132は、供試品102の隣接する一組の分岐流路103、103の開口端面104、104をシール状態でクランプ可能な形状や間隔に設けられ、本例では供試品102の分岐流路103の角度に合わせて90°の間隔に設けられる。図示しないが、これら固定クランプ部131には、供試品102を安定状態で支持するための突起が設けられる。 Each clamp surface 132 is provided in such a shape and at an interval that the open end surfaces 104, 104 of a pair of adjacent branch flow channels 103, 103 of the sample 102 can be clamped in a sealed state. They are provided at intervals of 90° according to the angle of the branch channel 103. Although not shown, these fixed clamp parts 131 are provided with protrusions for supporting the sample 102 in a stable state.
 各固定クランプ部131の内部には、サーチガス等の流体を流すための図示しない流体流路がそれぞれ供試品102との接続側に連通して形成され、これら各流体流路に連通して各固定クランプ部131の外側に外部流路接続用の接続部133、133が設けられている。本例では、図7の右側の接続部133がサーチガスによる加圧側、左側の接続部133が排気側とされ、これら加圧側接続部133、排気側接続部133に図示しない外部流路がそれぞれ接続されて、供試品102の右側から左側にサーチガスや圧縮エアを流すことが可能になっている。 Inside each of the fixed clamp portions 131, fluid flow paths (not shown) for flowing a fluid such as a search gas are formed so as to communicate with the connection side with the sample 102, respectively. Connection parts 133 and 133 for external flow path connection are provided outside each fixed clamp part 131. In this example, the connection portion 133 on the right side of FIG. 7 is the pressurizing side by the search gas, and the connection portion 133 on the left side is the exhaust side, and the pressurizing side connecting portion 133 and the exhaust side connecting portion 133 have external flow paths (not shown), respectively. When connected, the search gas and compressed air can be flowed from the right side to the left side of the DUT 102.
 一方、可動側治具122は、シリンダ機構123に設けられたピストン134に取付けられ、このピストン134によって図7において上下方向に往復動可能に設けられる。可動側治具122は、2つの円柱状の可動クランプ部135、135を備え、これら可動クランプ部135は、そのクランプ側にシール性を有する密栓状のクランプ面136、136を有している。これらクランプ面136の双方或は片方を供試品102に当接させ、シリンダ機構123により固定側治具121の方向にこの供試品102を押圧することでクランプ可能となる。 On the other hand, the movable jig 122 is attached to a piston 134 provided in the cylinder mechanism 123, and is provided by the piston 134 so as to be capable of reciprocating in the vertical direction in FIG. 7. The movable-side jig 122 is provided with two cylindrical movable clamp portions 135, 135, and these movable clamp portions 135 have sealing surfaces 136, 136, which are sealingly sealed and have a sealing property. Both or one of the clamping surfaces 136 is brought into contact with the sample 102, and the sample mechanism 102 is pressed by the cylinder mechanism 123 in the direction of the fixed-side jig 121, whereby the sample 102 can be clamped.
 このように可動クランプ部135は、供試品102を固定側治具121の方向に押圧可能であれば、各種構造に設けることも可能であるが、本例のように固定クランプ部131と対称形状に設けることで、供試品102の非検査側を90°間隔の可動クランプ部135で位置決めした状態で押圧することで、この供試品102を固定クランプ部131との間に固定可能になる。これにより、供試品102が、図7及び図8(a)のクロスである場合に加えて、図8(b)のティー、図8(c)のエルボの場合でも、固定側治具121と可動側治具122との間に強固に保持し、この供試品102の2つの開口端面104と固定クランプ部131のクランプ面132とのシール性をそれぞれ確保しつつ固定可能になる。この場合、ティーやエルボの形状や大きさに応じて態様の異なる可動クランプ部135に交換することもでき、これにより各種形状や大きさのティーやエルボにも対応可能となる。 As described above, the movable clamp part 135 can be provided in various structures as long as it can press the sample 102 in the direction of the fixed-side jig 121, but it is symmetrical to the fixed clamp part 131 as in this example. By providing it in a shape, the non-inspection side of the sample 102 can be fixed between the fixed clamp part 131 and the sample clamp 102 by pressing the non-inspection side with the movable clamp parts 135 at 90° intervals. Become. As a result, in addition to the case where the DUT 102 is the cloth shown in FIGS. 7 and 8A, the fixed side jig 121 is used even when the tee shown in FIG. 8B and the elbow shown in FIG. And the movable jig 122 are firmly held, and the two open end surfaces 104 of the sample 102 and the clamp surface 132 of the fixed clamp portion 131 can be fixed while securing the sealability. In this case, it is possible to replace the movable clamp portion 135 with a different shape according to the shape and size of the tee or elbow, and this makes it possible to handle tees and elbows of various shapes and sizes.
 接続部133には図示しないサーチガス供給源、排気流路がそれぞれ接続され、供試品102のクランプ状態で一方の接続部133側からサーチガスを供給することでクロス102内を所定圧力に加圧し、検査空間Sに漏れ出たガスをセンサ112で検知することにより耐圧検査を実施し、その後、他方の接続部133側から排気するようになっている。 A search gas supply source and an exhaust flow path (not shown) are connected to the connection part 133, respectively, and the search gas is supplied from one connection part 133 side in the clamped state of the sample 102 to apply a predetermined pressure to the inside of the cloth 102. The pressure is checked by detecting the gas leaking into the inspection space S with the sensor 112, and then exhausted from the other connecting portion 133 side.
 図示しないが、例えば、固定クランプ部131及び可動クランプ部135の外形を角形状とし、その体積を検査空間Sに対して大きくすれば、これらクランプ部131、135の体積増加に伴って検査空間Sの容積が相対的に小さくなる。このように検査空間Sをより狭くすることで、検査時間の短縮化を図れる。 Although not shown, for example, if the fixed clamp part 131 and the movable clamp part 135 are formed in a rectangular shape and the volume thereof is larger than the inspection space S, the inspection space S increases as the volume of the clamp parts 131 and 135 increases. Volume becomes relatively small. By narrowing the inspection space S in this way, the inspection time can be shortened.
 なお、装置本体101は、上記と異なるクランプ構造であったり、或はクランプ構造以外の取付け構造によって供試品102を検査空間Sに固定保持するようにしてもよく、センサ112が開閉板111により検査空間Sから退避可能であれば、供試品102の形状や構造に応じてあらゆる態様に設けることが可能である。 The apparatus main body 101 may have a clamp structure different from the one described above, or an attachment structure other than the clamp structure may be used to fix and hold the sample 102 in the inspection space S. As long as it can be withdrawn from the inspection space S, it can be provided in any form depending on the shape and structure of the sample 102.
 サーチガスは、拡散性を有するガスと不活性ガスとを混合したものであれば、各種態様のものを用いることができ、例えば、拡散性ガスとしてヘリウムガスやメタンガスなどを用いたり、不活性ガスとしてアルゴンガスを用いるようにしてもよい。 The search gas can be used in various forms as long as it is a mixture of a diffusible gas and an inert gas. For example, helium gas or methane gas can be used as the diffusible gas, or an inert gas can be used. Alternatively, argon gas may be used.
 供試品102は、ねじ込み式の管継手に限らず、その他の構造の一体成形による管継手であってもよい。また、一体成形品に限らず、複数の部品を組み合わせた管継手としてもよく、例えば、Oリング等のシール部材を介して袋ナット状の管端接続部が設けられていたり、螺子接続やかしめにより継手本体に管端接続部が一体化されているものであってもよい。さらには、管継手に限らず、バルブ等の配管機器を供試品102としてもよく、バルブを供試品102とする場合、ボールバルブやゲート弁などの各種バルブを耐圧検査可能である。 The sample 102 is not limited to a screw-in type pipe joint, but may be a pipe joint formed by integral molding of other structures. Further, the pipe joint is not limited to the integrally molded product, and may be a pipe joint in which a plurality of parts are combined. For example, a cap nut-shaped pipe end connecting portion is provided via a seal member such as an O-ring, screw connection or caulking. The pipe end connecting portion may be integrated with the joint main body. Further, not only the pipe joint, but also a piping device such as a valve may be the DUT 102. When the valve is the DUT 102, various valves such as a ball valve and a gate valve can be inspected for pressure resistance.
 供試品102をストレート状の管継手とすることもでき、この場合には、クランプ部のガス流路をストレート形状に設けた取付治具を使用すればよく、また、供試品102の分岐流路103の間隔が90°以外の角度に設けられている場合にも、その角度に応じたクランプ部を設けた取付治具を使用することで、あらゆる形状の継手や或は各種構造の配管部品に対応できる。 The DUT 102 may be a straight pipe joint. In this case, a mounting jig having a straight gas flow path at the clamp portion may be used. Even when the intervals of the flow paths 103 are provided at angles other than 90°, by using a mounting jig provided with a clamp portion corresponding to the angle, a joint of any shape or piping of various structures can be obtained. Can handle parts.
 開閉板は、アクリル板以外の各種材料で形成してもよく、全開時に水平方向よりも大きい角度で開くように設定してもよい。 The open/close plate may be made of various materials other than the acrylic plate, and may be set to open at a larger angle than the horizontal direction when fully opened.
 次いで、上述した装置本体によるサーチガスを用いた耐圧検査方法ならびに作用を説明する。図9においては、耐圧検査方法のフローチャートを示し、図10、図11においては、図7の装置本体による検査工程の模式図を示している。本例では、供試品として呼び径3/8インチのクロスを用いた。 Next, the pressure resistance inspection method and operation using the above-mentioned apparatus main body using the search gas will be explained. FIG. 9 shows a flow chart of the withstand voltage inspection method, and FIGS. 10 and 11 show schematic diagrams of the inspection process by the apparatus main body of FIG. In this example, a cloth having a nominal diameter of 3/8 inch was used as the sample.
 先ず、図10(a)、図11(a)の状態において、回転機構113を動作させて開閉板111を開状態(全開状態)に回転させ、検査空間Sを開放した状態にする。このとき、可動側治具122はシリンダ機構123により上方に移動した状態になっている。 First, in the state of FIG. 10A and FIG. 11A, the rotating mechanism 113 is operated to rotate the opening/closing plate 111 to the open state (fully open state), and the inspection space S is opened. At this time, the movable jig 122 is moved upward by the cylinder mechanism 123.
 この状態で、図10(b)、図11(b)に示すように、クロス(供試品)102を固定側治具121の固定クランプ部131に載置することで検査空間Sの所定位置に配置する。このとき、クロス102の任意の2つの分岐流路103、103の開口端面104、104を固定クランプ部131の2つのクランプ面132、132にそれぞれ当接させるように載置させ、突起の支持によりクロス102を安定させるようにする。 In this state, as shown in FIG. 10B and FIG. 11B, the cloth (sample) 102 is placed on the fixed clamp portion 131 of the fixed-side jig 121 so that the predetermined position of the inspection space S is reached. To place. At this time, the open end surfaces 104, 104 of the arbitrary two branch flow paths 103, 103 of the cloth 102 are placed so as to abut on the two clamp surfaces 132, 132 of the fixed clamp part 131, respectively, and the protrusions are supported by the protrusions. Make the cloth 102 stable.
 図10(c)、図11(c)において、シリンダ機構123を動作させて可動側治具122を下降させ、可動クランプ部135の2つのクランプ面136をクロス102の上部の2つの分岐流路103、103の開口端面104、104に当接させてクランプする。これにより、クランプ面136、136でクロス102上部の2つの開口端面104、104をシール状態で塞ぎつつ、クロス102下部の2つの開口端面104、104をガス流路に連通状態で接続し、加圧側の接続部133からクロス102内にサーチガスを供給し、排気側の接続部133からサーチガスを排気することが可能になる。 In FIG. 10C and FIG. 11C, the cylinder mechanism 123 is operated to lower the movable side jig 122, and the two clamp surfaces 136 of the movable clamp portion 135 are connected to the two branch flow paths above the cross 102. The open end faces 104, 104 of the 103, 103 are brought into contact with and clamped. As a result, the two opening end surfaces 104, 104 on the upper portion of the cloth 102 are closed by the clamp surfaces 136, 136 in a sealed state, while the two opening end surfaces 104, 104 on the lower portion of the cloth 102 are connected to the gas flow path in a communicating state. It is possible to supply the search gas into the cloth 102 from the pressure side connecting portion 133 and exhaust the search gas from the exhaust side connecting portion 133.
 図10(d)、図11(d)では、回転機構113を動作させて開閉板111を全閉状態まで回転させ、検査空間Sを外部から隔離した状態を示している。このとき、検査空間Sは半密閉状態となり、開閉板111に取り付けられたセンサ112のガス検知部125がクロス102に近接した状態となる。 10(d) and 11(d) show the state in which the inspection space S is isolated from the outside by operating the rotating mechanism 113 to rotate the opening/closing plate 111 to the fully closed state. At this time, the inspection space S is in a semi-sealed state, and the gas detection unit 125 of the sensor 112 attached to the opening/closing plate 111 is in a state of being close to the cloth 102.
 加圧側接続部133から圧力1.4MPaのサーチガスをクロス102内に供給し、このクロス102の耐圧検査を実施する。この場合、クロス102にクラックや巣などによるポーラスがあるときには外部にガス漏れが発生し、漏れたサーチガスが検査空間Sに拡散する。このサーチガスをセンサ112で検知することにより、クロス102の製品としての良否を判定する。 A search gas having a pressure of 1.4 MPa is supplied from the pressurizing side connection portion 133 into the cloth 102, and a withstand pressure test of the cloth 102 is performed. In this case, when the cloth 102 has a porosity due to cracks or cavities, gas leakage occurs outside, and the leaked search gas diffuses into the inspection space S. The quality of the cloth 102 as a product is determined by detecting the search gas with the sensor 112.
 サーチガスによる耐圧検査の終了後には、加圧側接続部133から圧縮エアを供給し、この圧縮エアにより加圧側接続部133から排気側接続部133に向けて内部の流路をエアパージし、クロス102内の残留水素を外部に排出する。 After the completion of the pressure resistance inspection with the search gas, compressed air is supplied from the pressurizing side connecting portion 133, and the compressed air is used to air purge the internal flow path from the pressurizing side connecting portion 133 toward the exhaust side connecting portion 133. The residual hydrogen inside is discharged to the outside.
 続いて、図11(e)において、回転機構113を動作させて開閉板111を全開状態まで回転させ、この開閉板111を検査空間Sから退避させてセンサ112のガス検知部125を積極的に外気に触れさせるようにする。これによって、図に示すように、クロス102をアンクランプした際には検査空間Sから漏れ出たサーチガスがガス検知部125に触れるおそれがなく、このサーチガスによるセンサ112への影響を低減して次のクロス(供試品)102の検査を早期に実施可能になる。 Subsequently, in FIG. 11E, the rotating mechanism 113 is operated to rotate the opening/closing plate 111 to the fully opened state, the opening/closing plate 111 is retracted from the inspection space S, and the gas detection unit 125 of the sensor 112 is positively activated. Try to expose it to the open air. As a result, as shown in the figure, when the cloth 102 is unclamped, there is no possibility that the search gas leaked from the inspection space S will come into contact with the gas detection unit 125, and the influence of the search gas on the sensor 112 is reduced. The next cloth (test sample) 102 can be inspected at an early stage.
 この場合、全開時の開閉板111を水平方向よりも大きい角度に開くようにすれば、センサ112がサーチガス(検査空間S)からより離れると共に、ガス検知部125が検査空間Sと対向することを防いで、検査空間Sから外部に放出される残留サーチガスによる影響をより抑えることができる。また、水素ガスなど、空気よりも軽いガスであれば、検査装置の上方に拡散容易となる。
 続いて、開閉板111の全開状態でクロス(供試品)102をアンクランプし、このクロス102を検査空間Sから取り出す。
In this case, when the opening/closing plate 111 at the time of full opening is opened at an angle larger than the horizontal direction, the sensor 112 becomes farther from the search gas (inspection space S) and the gas detection unit 125 faces the inspection space S. Therefore, the influence of the residual search gas released from the inspection space S to the outside can be further suppressed. Further, if the gas is lighter than air, such as hydrogen gas, it becomes easy to diffuse above the inspection device.
Subsequently, the cloth (sample) 102 is unclamped with the opening/closing plate 111 fully opened, and the cloth 102 is taken out from the inspection space S.
 上述のように、サーチガスによる検査終了後に、近接退避手段である回転機構113で開閉板111を検査空間Sから退避させることにより、センサ112を外気に触れさせてクロス102のアンクランプ時に漏れ出たサーチガスの影響を低減しているので、センサ112のガス検知部125付近からサーチガスを迅速に取り除き、次の耐圧検査までの時間を短縮できる。 As described above, after the inspection with the search gas is completed, the opening/closing plate 111 is retracted from the inspection space S by the rotating mechanism 113 that is the proximity retraction means, so that the sensor 112 is exposed to the outside air and leaks when the cloth 102 is unclamped. Since the influence of the search gas is reduced, the search gas can be quickly removed from the vicinity of the gas detection portion 125 of the sensor 112, and the time until the next withstand voltage inspection can be shortened.
 開閉板111に貫通孔124を設け、この貫通孔124にセンサ112を装着したときにガス検知部125を検査空間Sに臨んだ状態とし、開閉板111の検査空間S側の表面と面一になるように取付けているので、耐圧検査時には、検査空間Sに漏れ出たガスを確実に検知し、一方、開閉板111を開方向に回転したときには、ガス検知部125が外気に接して外気との接触面積を大きく確保できる。このため、ガス検知部125付近の残留ガスを効果的に除去し、センサ112をガス検知可能な状態まで早く復帰させることが可能になる。 A through hole 124 is provided in the opening/closing plate 111, and when the sensor 112 is mounted in the through hole 124, the gas detection part 125 faces the inspection space S and is flush with the surface of the opening/closing plate 111 on the inspection space S side. Since the gas is leaked to the inspection space S during the pressure resistance inspection, the gas detection unit 125 contacts the outside air to detect the outside air when the opening/closing plate 111 is rotated in the opening direction. A large contact area can be secured. Therefore, it is possible to effectively remove the residual gas in the vicinity of the gas detection unit 125 and quickly return the sensor 112 to a gas detectable state.
 検査空間S内にクロス102を配置し、このクロス102から漏れ出るサーチガスをセンサ112で電気的に検知しているので、クロス102の容積の大小にかかわらず漏出するサーチガスを短時間で正確に検知できる。これにより自動化を図ることもでき、作業者ごとの検知結果の誤差を防いで検査時間も略一定となる。作業者が漏れを確認する必要が無いため、作業者の負担も小さく、耐圧検査後に各クロス102に乾燥などの後処理を施す必要も無い。 Since the cloth 102 is arranged in the inspection space S and the search gas leaking from the cloth 102 is electrically detected by the sensor 112, the leaking search gas can be accurately detected in a short time regardless of the volume of the cloth 102. Can be detected. As a result, automation can be achieved, an error in the detection result for each worker is prevented, and the inspection time becomes substantially constant. Since there is no need for the operator to check for leaks, the burden on the operator is small, and there is no need to perform post-processing such as drying on each cloth 102 after the pressure resistance test.
 図10(e)、図10(f)においては、装置本体101において、開閉板111の開閉方向と交差する方向に排気用ファン140をガス拡散手段として配置した状態を示している。このようにファン140を設け、検査終了後もセンサ112を測定状態に維持した状態で、所定以上に残留ガス(水素)が残留している場合に、ファン140を用いてセンサ112付近を強制吸気又は強制排気をおこなうようにしてもよい。このことにより、クロス102のアンクランプの際に漏れ出たサーチガスによる影響をより迅速に低減し、次のクロス(供試品)102の検査を早期に実施可能になる。ガス拡散手段140としては、ファン以外のものを使用してもよい。 10(e) and 10(f) show a state in which the exhaust fan 140 is arranged as a gas diffusion means in the device main body 101 in a direction intersecting with the opening/closing direction of the opening/closing plate 111. When the residual gas (hydrogen) remains above the predetermined level with the fan 140 provided in this manner and the sensor 112 kept in the measurement state even after the inspection is completed, the fan 140 is used to forcibly inhale the vicinity of the sensor 112. Alternatively, forced exhaust may be performed. As a result, the influence of the search gas leaked when the cloth 102 is unclamped can be reduced more quickly, and the next cloth (test sample) 102 can be inspected earlier. As the gas diffusion means 140, something other than a fan may be used.
 上記のように、センサ112は、クロス(供試品)102から検査空間Sに漏れ出すガスを検知するだけでなく、装置本体101の周囲の雰囲気に残留するサーチガスの検知などを目的として、耐圧検査中以外の時間に動作させるようにしてもよい。これによって、前記のように検査終了後にもセンサ112による測定を継続し、このセンサ112で周囲雰囲気の測定を行いつつ、ガス拡散手段140で強制吸気又は強制排気してサーチガスの低減制御をおこなうことで、残留度合を把握しながら短時間でサーチガスを除去できる。 As described above, the sensor 112 not only detects the gas leaking from the cloth (sample) 102 into the inspection space S, but also detects the search gas remaining in the atmosphere around the apparatus main body 101. It may be operated at a time other than during the withstand voltage inspection. As a result, as described above, the measurement by the sensor 112 is continued even after the inspection is completed, and while the ambient atmosphere is measured by the sensor 112, the gas diffusion means 140 performs the forced intake or the forced exhaust to perform the search gas reduction control. As a result, the search gas can be removed in a short time while grasping the residual degree.
 ここで、図12においては、上記のガス拡散手段140を設ける場合において、センサ112によりサーチガス(本実施形態では水素5%、窒素95%の混合ガス)を測定したときの電圧の推移例を模式的に示している。グラフ中、横軸は時間経過を示し、縦軸は時間経過に対するセンサ112の電圧の変化を示している。 Here, in FIG. 12, in the case where the above gas diffusion means 140 is provided, an example of voltage transition when the search gas (mixed gas of hydrogen 5% and nitrogen 95% in this embodiment) is measured by the sensor 112. It is shown schematically. In the graph, the horizontal axis represents the passage of time and the vertical axis represents the change in the voltage of the sensor 112 with the passage of time.
 センサ112は、図示しないデジタルポテンショメータで調整し、サーチガスを検知しないときの基準電圧を2.0Vとした。漏れの無い供試品102を検査した場合を想定し、この供試品102のクランプ前から圧力測定後までの電圧の変化をグラフの変化として示した。このグラフにおいて、供試品102のアンクランプ後に電圧が2.1Vまで上がった場合には、残留サーチガスが多いと判断してファン140を起動させ、エアパージをおこなうようにする。そして、電圧が2.05V以下に低下しない場合には、残留ガスありと判断し、次の供試品102の耐圧試験を行わないようにする。 The sensor 112 was adjusted by a digital potentiometer (not shown), and the reference voltage when the search gas was not detected was 2.0V. Assuming that the sample 102 without leakage is inspected, the change in voltage from before clamping to after measuring the pressure of the sample 102 is shown as a change in the graph. In this graph, when the voltage rises to 2.1 V after unclamping the DUT 102, it is determined that there is a large amount of residual search gas, the fan 140 is activated, and air purge is performed. If the voltage does not drop below 2.05 V, it is determined that there is residual gas, and the next withstand voltage test of the sample 102 is not performed.
 グラフの(1)~(9)は、耐圧検査時の主なポイントを示している。
 (1)は、センサ112の初期電圧を示し、装置本体101の電源投入直後の電圧を表している。(2)は、供試品102を取付治具110でクランプし、開閉板111を全閉状態にして検査空間Sを半密閉状態にし、圧力検査の開始に向けてセンサ112をゼロアジャストして基準電圧2.0Vに設定した状態である。(3)は、サーチガスにより供試品102を加圧したときの電圧の変化を示し、検査時間を30秒間として電圧の変化からガス漏れの有無を調べるようにする。本例では漏れの無い供試品102とするため、このときの電圧からほぼ変わることがなく、約2.0Vに維持されている。
(1) to (9) in the graph show the main points during the withstand voltage inspection.
(1) shows the initial voltage of the sensor 112, which is the voltage immediately after the power of the apparatus main body 101 is turned on. In (2), the sample 102 is clamped by the mounting jig 110, the opening/closing plate 111 is fully closed to make the inspection space S semi-closed, and the sensor 112 is zero-adjusted toward the start of the pressure inspection. The reference voltage is set to 2.0V. (3) shows a change in voltage when the DUT 102 is pressurized with the search gas, and the inspection time is set to 30 seconds to check the presence or absence of gas leakage from the change in voltage. In this example, since the test piece 102 has no leakage, the voltage at this time does not substantially change and is maintained at about 2.0V.
 (4)では、耐圧検査後に開閉板111を全開状態にし、続いて供試品102をアンクランプして取り外したときの電圧を示している。このアンクランプ後には、供試品102内の残留ガスが装置本体101の周辺に拡散し、これによってセンサ112の電圧が上昇する。 (4) shows the voltage when the opening/closing plate 111 is fully opened after the withstand voltage test, and then the DUT 102 is unclamped and removed. After this unclamping, the residual gas in the sample 102 diffuses around the apparatus main body 101, and the voltage of the sensor 112 rises.
 (5)の付近において、測定した電圧が、残留ガス有無の判断の基準として予め設定した設置値(例えば2.1V)以上に上昇したときに、残留ガスを除去するためにファン140やエアパージを起動させるようにする。これにより、残留ガスが装置本体101から拡散され、電圧が低下する方向に転じる。このように供試品102のアンクランプ後に強制的に残留ガスを除去することで、次の供試品102を耐圧検査するための準備が可能となる。 In the vicinity of (5), when the measured voltage rises above a preset value (for example, 2.1 V) set in advance as a criterion for determining the presence or absence of residual gas, a fan 140 or an air purge is used to remove residual gas. Let it start. As a result, the residual gas is diffused from the apparatus main body 101, and the voltage starts to decrease. In this way, by forcibly removing the residual gas after unclamping the sample 102, it becomes possible to prepare for the next sample 102 to be subjected to a pressure resistance test.
 (6)において、電圧が設定値の電圧付近(例えば2.1V)まで下がったら、ファン140やエアパージを停止する。このとき、残留ガスが装置本体101からほぼ拡散された状態となる。 At (6), when the voltage drops to around the set voltage (for example, 2.1 V), the fan 140 and the air purge are stopped. At this time, the residual gas is almost diffused from the apparatus main body 101.
 (7)で次の供試品102を取付治具110でクランプし、開閉板111を全閉状態にして検査空間Sを半密閉状態とする。このとき、装置本体101から抜けきらずにわずかに残ったガスによって若干電圧が上がることとなる。 At (7), the following DUT 102 is clamped by the mounting jig 110 and the opening/closing plate 111 is fully closed to make the inspection space S semi-closed. At this time, the voltage slightly rises due to the gas remaining slightly from the device body 101.
 その際、(8)の状態に示すように、センサ112が基準電圧以上(例えば2.05V以上)に上昇したときには、耐圧検査に支障をきたすガスが残留する状態であると判定し、この残留ガスを除去するためにファン140やエアパージを起動させるようにする。このように2回目以降の供試品102のクランプ後に強制的に残留ガスを除去することで、続けて耐圧検査することが可能になる。 At this time, as shown in the state (8), when the sensor 112 rises to the reference voltage or higher (for example, 2.05 V or higher), it is determined that the gas that interferes with the withstand voltage test remains, and the residual gas remains. The fan 140 and the air purge are activated to remove the gas. In this way, by forcibly removing the residual gas after the second and subsequent clamping of the sample 102, it is possible to continuously perform the withstand voltage inspection.
 (9)において、電圧が設定値以下(例えば2.05V以下)に下がったときにファン140とエアパージを停止し、次の供試品102に対して耐圧検査をおこなうようにする。 In (9), when the voltage drops below a set value (for example, 2.05 V or less), the fan 140 and the air purge are stopped, and the next sample 102 is subjected to a withstand voltage test.
 以上のように、耐圧検査時にファン140、エアパージの起動による2度の残留ガスの強制排気を実施することで供試品102の耐圧検査にかかる時間を大幅に削減でき、図12の場合、装置本体101の電源投入から、最初の供試品102の検査を開始するまでの時間をおよそ75秒で実施でき、迅速な耐圧検査が可能になる。 As described above, by performing the forced evacuation of the residual gas twice by starting the fan 140 and the air purge during the pressure resistance inspection, the time required for the pressure resistance inspection of the sample 102 can be significantly reduced. In the case of FIG. The time from the power-on of the main body 101 to the start of the inspection of the first DUT 102 can be carried out in about 75 seconds, which enables a quick withstand voltage inspection.
 図13においては、耐圧検査装置の他例の一部切欠き側面図を示している。なお、前述した装置本体101と同一部分は同一符号によって表し、その説明を省略する。 FIG. 13 shows a partially cutaway side view of another example of the withstand voltage inspection device. The same parts as those of the apparatus body 101 described above are denoted by the same reference numerals, and the description thereof will be omitted.
 この装置本体150では、近接退避手段151がシリンダ152を用いたスライド機構からなっており、アクリル板による開閉板153が図13(a)の閉状態から、図13(b)に示すように枠体154の長さ方向に対して平行にスライドして開状態となることで、この枠体154内部の検査空間Sの領域を開閉することが可能になっている。 In this apparatus main body 150, the proximity retraction means 151 is composed of a slide mechanism using a cylinder 152, and the opening/closing plate 153 made of an acrylic plate is changed from the closed state shown in FIG. 13A to a frame as shown in FIG. 13B. By sliding in parallel to the length direction of the body 154 and opening the body 154, the region of the inspection space S inside the frame 154 can be opened and closed.
 この場合にも、前述した回転機構113と同様に、開閉板153が図13(b)の開状態となったときには、センサ112のガス検知部125が外気に接した状態になり、外気との接触面積を大きく確保しつつ、ガス検知部125付近の残留サーチガスを効果的に除去可能となる。 Also in this case, similarly to the rotating mechanism 113 described above, when the opening/closing plate 153 is in the open state shown in FIG. 13B, the gas detection unit 125 of the sensor 112 is in contact with the outside air, and the gas is not in contact with the outside air. It is possible to effectively remove the residual search gas in the vicinity of the gas detection unit 125 while ensuring a large contact area.
 この装置本体150では、供試品をクランプするときに、開閉板111がシリンダ152と同方向にスライドするため、省スペース化を図ることができる。開閉板111は、枠体154の長さ方向にスライドしているが、枠体154の長さ方向と直交する方向にスライドする構成としてもよい。スライド機構151は、シリンダ152以外の駆動機構であってもよい。 In this device body 150, when the sample is clamped, the opening/closing plate 111 slides in the same direction as the cylinder 152, so that space saving can be achieved. Although the opening/closing plate 111 slides in the length direction of the frame body 154, it may be configured to slide in a direction orthogonal to the length direction of the frame body 154. The slide mechanism 151 may be a drive mechanism other than the cylinder 152.
 1、102 供試品(ワーク)
 10 漏れ検査設備
 11 検査ライン
1,102 EUT (work)
10 Leakage inspection equipment 11 Inspection line

Claims (5)

  1.  拡散性ガスと不活性ガスにより構成されるサーチガスを用いたバルブ等の供試品の検査方法であって、一方のガスを所定濃度に応じた圧力で供試品に封入した後、他方のガスで検査圧まで供試品内を昇圧することにより、所定濃度のサーチガスで圧力機器の漏れ検査を行うようにしたことを特徴とするサーチガスの混合方法。 A method for inspecting a sample such as a valve using a search gas composed of a diffusible gas and an inert gas, in which one gas is sealed in the sample at a pressure according to a predetermined concentration, and then the other A method for mixing a search gas, characterized in that a leak test of a pressure device is performed with a search gas having a predetermined concentration by increasing the pressure inside the sample to a test pressure with gas.
  2.  前記拡散性ガスと前記不活性ガスとの圧力比を、2.5:97.5~5.5:94.5の圧力比の割合で供試品に封入した請求項1に記載のサーチガスの混合方法。 The search gas according to claim 1, wherein a pressure ratio of the diffusible gas and the inert gas is sealed in the sample under a pressure ratio of 2.5:97.5 to 5.5:94.5. How to mix.
  3.  前記拡散性ガスは水素ガスであり、前記不活性ガスは窒素ガスである請求項1又は2に記載のサーチガスの混合方法。 The method for mixing search gas according to claim 1 or 2, wherein the diffusible gas is hydrogen gas and the inert gas is nitrogen gas.
  4.  前記窒素ガスを封入した後に、前記水素ガスで検査圧まで昇圧した請求項1乃至3の何れか1項に記載のサーチガスの混合方法。 The method of mixing a search gas according to any one of claims 1 to 3, wherein after filling the nitrogen gas, the pressure of the hydrogen gas is increased to an inspection pressure.
  5.  前記水素ガスを封入した後に、前記窒素ガスで検査圧まで昇圧した請求項1乃至3の何れか1項に記載のサーチガスの混合方法。 The method for mixing search gas according to any one of claims 1 to 3, wherein after the hydrogen gas is filled, the pressure is increased to the inspection pressure with the nitrogen gas.
PCT/JP2019/051444 2018-12-27 2019-12-27 Search gas mixing method WO2020138425A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018246125A JP2020106423A (en) 2018-12-27 2018-12-27 Pressure resistance inspection device and pressure resistance inspection method using search gas
JP2018-246125 2018-12-27
JP2018-246928 2018-12-28
JP2018246928A JP2020106456A (en) 2018-12-28 2018-12-28 Mixing method of search gas

Publications (1)

Publication Number Publication Date
WO2020138425A1 true WO2020138425A1 (en) 2020-07-02

Family

ID=71129129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051444 WO2020138425A1 (en) 2018-12-27 2019-12-27 Search gas mixing method

Country Status (1)

Country Link
WO (1) WO2020138425A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089620A (en) * 2009-10-26 2011-05-06 Toyota Motor Corp Gas filling device
JP2013228019A (en) * 2012-04-25 2013-11-07 Toyota Motor Corp Gas filling device, gas tank inspection device and gas tank inspection method
US20160116364A1 (en) * 2014-10-24 2016-04-28 Air Products And Chemicals, Inc. Leak Test Apparatus and Method
WO2018003977A1 (en) * 2016-06-30 2018-01-04 株式会社キッツ Apparatus and method for pressure resistance test for valve, and hydrogen gas-detection unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089620A (en) * 2009-10-26 2011-05-06 Toyota Motor Corp Gas filling device
JP2013228019A (en) * 2012-04-25 2013-11-07 Toyota Motor Corp Gas filling device, gas tank inspection device and gas tank inspection method
US20160116364A1 (en) * 2014-10-24 2016-04-28 Air Products And Chemicals, Inc. Leak Test Apparatus and Method
WO2018003977A1 (en) * 2016-06-30 2018-01-04 株式会社キッツ Apparatus and method for pressure resistance test for valve, and hydrogen gas-detection unit

Similar Documents

Publication Publication Date Title
JP6638117B2 (en) Valve seat inspection and pressure resistance inspection apparatus for valves and their inspection methods
CN109313100B (en) Valve pressure resistance inspection device, inspection method thereof, and hydrogen gas detection unit
TWI689715B (en) Pressure resistance inspection method for pressure equipment such as valves, pressure resistance inspection device and pressure equipment
US8201438B1 (en) Detection of gas leakage
JP2012047651A (en) Leak detector
WO2020138425A1 (en) Search gas mixing method
CN111868494A (en) Inspection device and inspection method for inspecting three-way valve device for leakage
JP2009281934A (en) External pressure detection type leak inspection device and leak inspection method using the same
JP2005055263A (en) Leakage gas detector
JP2020106456A (en) Mixing method of search gas
JP4644100B2 (en) Helium leak test method and apparatus
CN205138740U (en) Airtight programme -controlled test bench
JP2020106423A (en) Pressure resistance inspection device and pressure resistance inspection method using search gas
JP5766057B2 (en) Gas leak inspection method
JP2650475B2 (en) Airtight test equipment
CN102636633B (en) Non-standard oil sample calibration device
CN218546062U (en) Air tightness detector
JP7381194B2 (en) Pressure test device for pressure equipment using variable jig for inspection equipment, pressure test method for pressure equipment using variable jig for test equipment, variable jig for assembly equipment and variable jig for processing equipment
JPS5826240A (en) Method and device for inspecting revention of air leakage of rim for tubeless tire
KR101269526B1 (en) Leak detection apparatus
CN218566815U (en) Air tightness detection device for iron casting
CN218937665U (en) Water pipe valve check out test set
JP5665678B2 (en) Calibration method and mechanism of gas leakage inspection apparatus
CN209446278U (en) Moving type security valve calibration equipment
JP2007071545A (en) Leakage inspection apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902166

Country of ref document: EP

Kind code of ref document: A1