WO2020138247A1 - Pig farming method, ultrafine bubble maker for pig farming, and drinking water preparing device for pig farming - Google Patents

Pig farming method, ultrafine bubble maker for pig farming, and drinking water preparing device for pig farming Download PDF

Info

Publication number
WO2020138247A1
WO2020138247A1 PCT/JP2019/051035 JP2019051035W WO2020138247A1 WO 2020138247 A1 WO2020138247 A1 WO 2020138247A1 JP 2019051035 W JP2019051035 W JP 2019051035W WO 2020138247 A1 WO2020138247 A1 WO 2020138247A1
Authority
WO
WIPO (PCT)
Prior art keywords
pig
bubble
water
swirl
ultrafine
Prior art date
Application number
PCT/JP2019/051035
Other languages
French (fr)
Japanese (ja)
Inventor
小林 由和
秀匡 小林
政秀 林
孝治 藤原
石井 悦男
矩宏 清水
和喜 五味
Original Assignee
株式会社御池鐵工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社御池鐵工所 filed Critical 株式会社御池鐵工所
Priority to JP2020563393A priority Critical patent/JPWO2020138247A1/en
Publication of WO2020138247A1 publication Critical patent/WO2020138247A1/en
Priority to JP2023059518A priority patent/JP7510122B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K7/00Watering equipment for stock or game
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • B01F23/2375Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm for obtaining bubbles with a size below 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • B01F23/803Venting, degassing or ventilating of gases, fumes or toxic vapours from the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/102Mixing by creating a vortex flow, e.g. by tangential introduction of flow components wherein the vortex is created by two or more jets introduced tangentially in separate mixing chambers or consecutively in the same mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/103Mixing by creating a vortex flow, e.g. by tangential introduction of flow components with additional mixing means other than vortex mixers, e.g. the vortex chamber being positioned in another mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4336Mixers with a diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water

Definitions

  • the present invention relates to a pig raising method for raising edible pigs, and an ultra fine bubble producing device for pig raising and a bubble drinking water producing device for pig raising used therein.
  • Patent Document 1 discloses that it is possible to shorten the fattening period of edible pigs by using a feed containing a powder obtained by crushing the corms of plants.
  • Patent Document 2 discloses that a feed containing olive squeezed slag and/or olive drop can provide a pork having a lipid containing a small amount of saturated fatty acids that increases the cholesterol level of the human body.
  • the pig raising method using the feeds of Patent Document 1 and Patent Document 2 uses a feed containing a special component in order to promote the growth of edible pigs and improve the quality of pork, so that the feed cost is reduced. Easy to increase. Since the feed cost accounts for most of the cost in the pig farming business, its increase has a disadvantage that it adversely affects the management.
  • the object of the present invention is to promote the growth of edible pigs without increasing the feed cost, and a pig breeding method capable of improving the quality of pork, and an ultra fine bubble maker and a pig farm for pig farming used in this method. To provide an apparatus for producing bubble water for drinking.
  • the pig breeding method of the present invention the edible pig, at least a part of the period during the fattening period of the pig, by giving bubble drinking water containing gas ultrafine bubbles, the above, It is characterized by shortening the fattening period of pigs as compared with the case of feeding normal drinking water that does not contain gaseous ultrafine bubbles.
  • edible pigs are given bubble drinking water containing gaseous ultrafine bubbles.
  • the period for supplying bubble drinking water is at least a part of the fattening period.
  • the fattening period of the pig can be shortened as compared with the case where normal drinking water containing no gas ultrafine bubbles is fed.
  • the shortening of the fattening period of pigs can be realized only by changing the normal drinking water to bubble drinking water. Therefore, the growth of pigs can be promoted and shipped early without increasing the feed cost, which accounts for most of the cost of pig farming.
  • the gas is air.
  • the fattening period can be shortened compared to the conventional case.
  • the gas is oxygen
  • the feeding period can be shortened compared to the conventional case by providing the edible pig with drinking water containing ultrafine bubbles of oxygen.
  • the amount of feed consumed by the pig is smaller than that when normal drinking water is fed.
  • the feed consumption of pigs was determined by dividing the mass of feed consumed in a given period in a pig pen raising multiple edible pigs by the total weight of edible pigs shipped from this pig pen. Feed conversion rates can be adopted.
  • the drip loss of the meat obtained from the pig is lower than when the normal drinking water is fed.
  • the edible pig by feeding the bubble drinking water containing the gas ultrafine bubbles, the drip loss of meat obtained from the pig, than when fed normal drinking water. Can be lowered. Therefore, good quality pork can be obtained.
  • the muscle fat content of the meat obtained from the pig is higher than that when normal drinking water is fed.
  • the edible pig by supplying bubble drinking water containing the gas ultrafine bubbles, the intramuscular fat content of the meat obtained from the pig, when fed normal drinking water Can be more than. Therefore, so-called marbled pork can be obtained.
  • the extension rate of the meat obtained from the pig is higher than that when normal drinking water is fed.
  • the edible pig by feeding the bubble drinking water containing the gas ultrafine bubbles, the extension rate of the meat obtained from the pig, than when fed normal drinking water. Can be higher. Therefore, soft pork can be obtained.
  • the amount of polyunsaturated fatty acid contained in the meat obtained from the pig is smaller than that when normal drinking water is fed.
  • the edible pig by supplying the bubble drinking water containing the gas ultrafine bubbles, the amount of polyunsaturated fatty acid contained in the meat obtained from the pig, the normal drinking It can be less than if you were fed water. Therefore, it is possible to obtain pork with a low odor.
  • the amount of monounsaturated fatty acid contained in the meat obtained from the pig is higher than that in the case where normal drinking water is fed.
  • the edible pig by supplying bubble drinking water containing the gas ultrafine bubbles, the amount of monounsaturated fatty acids contained in the meat obtained from the pig, the normal drinking You can do more than you can with water. Therefore, it is possible to obtain pork that has little effect on human health. In addition, pork with little texture can be obtained.
  • the bubble drinking water is a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling solution of Kidachi aloe, and an alcohol pickling solution of aloe vera, A fermentation liquor, which is a mixture of sugar and mineral, is added.
  • a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling liquid of Kidachi aloe, an alcohol pickling liquid of aloe vera, sugar, and minerals.
  • an ultrafine bubble producing apparatus for pig farming for producing an ultrafine bubble of a gas contained in drinking water fed to an edible pig
  • a casing having a circular cross section
  • a supply pipe connected to one end of the casing, extending coaxially with the casing, and supplying a mixed fluid of gas and water, At least a part of the swirl flow forming part is accommodated in the casing and forms a swirl flow of the mixed fluid supplied from the supply pipe into the casing, and swirl formed by these swirl flow forming parts.
  • the ultrafine bubble manufacturing apparatus for pig farming which is composed of the casing, the supply pipe, the discharge pipe, and the miniaturized block housed in the casing, can be easily miniaturized. Further, this ultrafine bubble manufacturing apparatus for pig farming includes a plurality of swirl flow forming portions that form a swirl flow of the mixed fluid, collide swirl flows formed by these swirl flow forming portions with each other, and Since it is configured by using the atomization block that atomizes the gas to generate ultrafine bubble water, it is possible to efficiently generate the gas ultrafine bubbles.
  • the miniaturization block includes a first swirl chamber as the swirl flow forming unit that forms a swirl flow of a mixed fluid around a swirl axis coaxial with the casing, and A swirl flow of the mixed fluid is formed on the side farther from the supply pipe than the first swirl chamber, and swirls in the opposite direction to the swirl flow formed in the first swirl chamber around the swirl axis coaxial with the casing.
  • a second swirl chamber as the swirl flow forming section, and a collision chamber for colliding the swirl flow of the mixed fluid formed in the first swirl chamber with the swirl flow of the mixed fluid formed in the second swirl chamber.
  • the discharge pipe is connected to the miniaturization block so as to communicate with the discharge passage, and supports the miniaturization block in the casing.
  • the miniaturized block in the casing is farther from the supply pipe than the first swirl chamber that forms the swirl flow of the mixed fluid around the swirl axis that is coaxial with the casing.
  • a second swirl chamber that is formed on the side of the casing and that forms a swirl flow of a mixed fluid that swirls in the opposite direction to the swirl flow that is formed in the first swirl chamber around the swirl axis that is coaxial with the casing; Collision chamber for colliding the swirling flow of the mixed fluid formed in the chamber with the swirling flow of the mixed fluid formed in the second swirling chamber, and an ultra fine bubble formed by the swirling flow of the mixed fluid colliding in the collision chamber Since it is formed including a discharge passage for guiding water to the discharge pipe side, the ultra fine bubble maker for pig farming can be downsized.
  • the discharge pipe is connected to the miniaturization block so as to communicate with the discharge passage of the miniaturization block, and supports the miniaturization block in the casing. Therefore, the miniaturization block in the casing has
  • the ultrafine bubble manufacturing device for pig farming of one embodiment the miniaturized block, The first swirl chamber, a first introduction path for introducing the mixed fluid in the casing into the tangential direction of the first swirl chamber to one end side of the first swirl chamber, and the first swirl chamber formed at the other end of the first swirl chamber.
  • a first block part having a first discharge hole for discharging a swirl flow;
  • the second swirl chamber a second introduction path for introducing the mixed fluid in the casing in a tangential direction of the second swirl chamber, the second swirl chamber being coupled to the first block component;
  • the surface of the collision chamber facing the collision chamber, the inlet for allowing the ultrafine bubble water of the collision chamber to flow into the discharge passage, and the first block component are connected to each other.
  • a second block part having an outlet for discharging the ultrafine bubble water that has flowed through the discharge passage.
  • the miniaturized block is formed by combining the first block component and the second block component.
  • the first block component includes a first swirl chamber, a first introduction path for introducing the mixed fluid in the casing into a tangential direction of the first swirl chamber to one end side of the first swirl chamber, and the first swirl chamber of the first swirl chamber. It has a 1st discharge hole formed in the other end and discharging a swirl flow.
  • the second block component includes a second swirl chamber, a second introduction path for introducing the mixed fluid in the casing into one end side of the second swirl chamber in a tangential direction of the second swirl chamber, and the second swirl chamber.
  • the second block component has a collision chamber surface facing a collision chamber formed between the first block component and the first block component, and an inflow port formed on the collision chamber surface. And a discharge passage extending between a side to which the first block component is connected and a discharge port formed on the opposite end surface.
  • the first introduction path and the second introduction path are formed to be inclined with respect to the plane perpendicular to the axis of the miniaturized block.
  • the mixed fluid is introduced into the first swirl chamber through the first introduction path inclined with respect to the plane perpendicular to the axis of the miniaturization block, so that the first swirl chamber faces the first discharge hole.
  • a swirling flow that swirls can be effectively generated.
  • the swirling flow swirling toward the second discharge hole is generated in the second swirling chamber. It can be effectively generated.
  • the swirl flow from the first swirl chamber and the swirl flow from the second swirl chamber Can be made to collide strongly, and as a result, the gas bubbles contained in each swirling flow can be effectively miniaturized, and the gas ultrafine bubbles can be efficiently generated.
  • the miniaturization block, the processing flow path is formed coaxially with the casing and the mixed fluid is guided, the mixed fluid at the upstream end of the processing flow path.
  • the swirl flow forming section is introduced into the shaft in an eccentric direction opposite to the first eccentric supply passage, and generates a swirl flow in the opposite direction against the swirl flow formed in the first eccentric supply passage to collide.
  • the discharge pipe is connected to the downstream end of the processing channel of the miniaturization block.
  • the miniaturized block includes a processing flow path that is formed coaxially with the casing and guides the mixed fluid.
  • a first eccentric supply passage as a swirl flow forming portion that forms a swirl flow by introducing the mixed fluid in the eccentric direction of the central axis communicates with the upstream end of the processing flow path.
  • a second eccentric supply passage as a swirl flow forming unit for introducing the mixed fluid in the eccentric direction opposite to the first eccentric supply passage of the central axis is provided downstream of the first eccentric supply passage of the processing flow passage. It is in communication.
  • the swirl flow formed in the first eccentric supply passage is caused to collide with the swirl flow in the opposite direction to collide with the swirl flow, whereby the gas bubbles contained in the mixed fluid are effectively miniaturized. , Ultra fine bubbles of gas are generated.
  • the miniaturization block is configured to include the processing flow path, the first eccentric supply path, and the second eccentric supply path, the ultrafine bubble maker for pig farming can be downsized.
  • a bubble drinking water production apparatus for pig farm formed using the ultrafine bubble producer for pig farm, A first pump for pumping raw material water, A mixer for forming a mixed fluid by mixing a gas with the raw material water pumped from the first pump; A second pump provided on the downstream side of the mixer; A branch portion that branches the mixed fluid into two paths downstream of the second pump; The flow control valve and the first ultrafine bubble maker for pig farming, which are connected to the branch part, are interposed, and contain the gas ultrafine bubbles produced by the first ultrafine bubble maker for pig farming.
  • a return path for returning the generated water between the mixer and the second pump The discharge which discharges the water containing the gas ultra fine bubble which was connected to the said branch part and which was equipped with the 2nd said ultra fine bubble manufacturing device for pig farms, and was manufactured with this 2nd ultra fine bubble manufacturing device for pig farming And a route.
  • the raw water is pumped by the first pump, and the gas is mixed with the raw water by the mixer.
  • the mixed fluid pumped by the second pump on the downstream side of the mixer is branched into two paths at the branch portion.
  • the flow rate adjusting valve when the flow rate adjusting valve is open, part of the mixed fluid pumped from the second pump is guided to the first ultrafine bubble maker for pig farming, and the gas in the mixed fluid is discharged.
  • the water containing the gas ultrafine bubbles is returned between the mixer and the second pump, merges with the mixed fluid from the mixer, and is sucked by the second pump.
  • the discharge path connected to the branch portion a part of the mixed fluid pumped from the second pump is guided to the second ultrafine bubble maker for pig farming, and the gas in the mixed fluid is atomized to produce ultrafine particles. A bubble is formed.
  • the water containing the gas ultrafine bubbles is discharged from the downstream side of the discharge path and used as drinking water for the edible pig.
  • the flow rate adjusting valve in the return path is closed, all of the mixed fluid pumped from the second pump is guided to the second ultrafine bubble producing device for pig farming, and gas ultrafine bubbles are formed. The water containing the ultra fine bubbles is discharged from the downstream side of the discharge path.
  • the pig water drinking water production apparatus of one embodiment is an ultrafine bubble water production apparatus formed using the ultrafine bubble production apparatus, A first pump for pumping a mixed fluid in which gas is mixed with raw material water; A mixer connected between the discharge side and the suction side of the first pump, for mixing gas into the mixed fluid discharged from the first pump and returning the mixed fluid to the suction side of the first pump; An ultra fine bubble manufacturing device for pig farming, which is provided on the downstream side of the first pump; A second pump connected to the downstream side of the ultra fine bubble manufacturing device for pig farming, A gas-liquid separator connected to the downstream side of the second pump, And a discharge path for discharging the liquid separated by the gas-liquid separator.
  • the first pump pumps the mixed fluid in which the gas is mixed with the raw material water.
  • a part of the mixed fluid discharged from the first pump is guided to a mixer connected between the discharge side and the suction side of the first pump, and the mixed fluid mixes gas with the mixed fluid. It The mixed fluid in which the gas is mixed in the mixer is returned to the suction side of the first pump.
  • the other part of the mixed fluid discharged from the first pump is introduced to an ultra fine bubble manufacturing device for pig farms provided on the downstream side, and the gas in the mixed fluid is atomized to form ultra fine bubbles. ..
  • the water containing the ultra fine bubbles is sucked by the second pump connected to the downstream side of the ultra fine bubble manufacturing device for pig farming and discharged toward the gas-liquid separator connected to the downstream side of the second pump. To be done.
  • the water containing ultrafine bubbles introduced into the gas-liquid separator is separated from the gas introduced together with this water.
  • Water containing ultrafine bubbles which is the liquid that remains after the gas is separated by the gas-liquid separator, is discharged through the discharge path. It is possible to stabilize the production amount of water containing ultrafine bubbles by interposing an ultrafine bubble manufacturing device for pig farming between the first pump and the second pump and mainly adjusting the operation of the second pump. it can.
  • the second pump is a cascade pump.
  • FIG. 4 is a transverse cross-sectional view of the ultrafine bubble maker for pig farming as viewed in the direction of arrow B in FIG. 3.
  • FIG. 4 is a cross-sectional view of the ultrafine bubble manufacturing device for pig farming as viewed in the direction of arrow C in FIG. 3. It is sectional drawing which shows the 1st block of the ultra fine bubble manufacturing apparatus for pig farming.
  • FIG. 9 is a cross-sectional view of the ultrafine bubble maker for pig farming taken along the arrow D in FIG. 8.
  • FIG. 9 is a cross-sectional view of the ultrafine bubble maker for pig farming taken along arrow E in FIG. 8.
  • the pig breeding method of the embodiment of the present invention obtains edible meat from the pig by giving bubble drinking water containing ultrafine bubbles of air as gas to the pig.
  • Ultrafine bubbles are bubbles with a diameter of 1 ⁇ m or less, and those smaller than the wavelength of visible light cannot be visually recognized even if they are formed in a liquid.
  • ultrafine bubbles have a smaller floating speed than microbubbles, which are bubbles having a diameter of 1 ⁇ m or more, and can stay in liquid for a long time.
  • ultrafine bubbles have a larger surface area than microbubbles, have a self-pressurizing effect, and have a negative charging effect.
  • edible pigs start fattening at a time of about 30 kg and reach a suitable weight of 110 kg for shipment, depending on the season and other conditions. Is the day.
  • the shipment of the pigs can be shortened to, for example, about 75 to 80 days after the start of fattening. That is, the growth of the edible pig can be promoted and the fattening period can be shortened, as compared with the case of feeding normal drinking water that does not have ultrafine bubbles of air for fattening. If the fattening period is shortened, the pigs can be shipped quickly, and the raising efficiency of the pigs can be effectively increased.
  • the period for feeding bubble drinking water to pigs may be a part of the fattening period or the whole period.
  • feeding bubble drinking water to pigs can reduce the amount of feed consumed by pigs as compared to the case where regular drinking water is fed.
  • the effect of reducing feed consumption is remarkable when bubble drinking water is fed in the latter half of the fattening period of pigs.
  • the amount of feed consumed by pigs depends on the weight of the pig, so the weight of the feed consumed in a given period in a pig pen that raises multiple edible pigs should be divided by the total weight of the edible pigs in this pig pen. It is preferable to perform the comparison based on the feed conversion rate thus obtained. For example, when bubble drinking water is supplied for at least a part of the fattening period, the feed requirement rate can be reduced by about 10% to 20% compared to when normal drinking water is supplied.
  • the quality of the meat obtained from this pig can be improved as compared with the case of supplying normal drinking water.
  • improving the quality of pork when bubble drinking water is fed during at least part of the fattening period, it is possible to reduce drip loss of pork by about 30% to 40% compared to when normal drinking water is fed. it can.
  • the intramuscular fat content of the pork was about 20% to 40% higher than when normal drinking water was fed. Can be increased.
  • marbling with red meat and sardines when the muscle fat content of pork increases, so-called marbling with red meat and sardines.
  • the extension rate of the pork is increased by about 1% to 20% as compared with the case where the normal drinking water is fed. be able to. As pork stretch rate increases, tenderness increases.
  • the amount of polyunsaturated fatty acid contained in pork is higher than when normal drinking water is fed, It can be reduced by about 20% to 30%.
  • the polyunsaturated fatty acid is, for example, linoleic acid, linolenic acid or the like, which causes a bad odor. Therefore, by supplying the bubble drinking water, the amount of polyunsaturated fatty acid contained in pork can be reduced and the malodor of pork can be prevented.
  • the amount of monounsaturated fatty acids contained in pork is higher than when normal drinking water is fed, It can be increased by about 1% to 5%.
  • the monounsaturated fatty acid corresponds to, for example, palmitoleic acid and oleic acid, and has an action of lowering LDL (Low Density Lipoprotein) cholesterol of the human body and an action of improving the texture of meat. Therefore, LDL cholesterol can be reduced, and pork with a good texture can be obtained.
  • LDL Low Density Lipoprotein
  • the ultrafine bubble-containing water of air used as drinking water in the present embodiment is not particularly limited as long as the diameter of the ultrafine bubbles of air is 1 nm or more and 1000 nm or less. If the diameter of ultrafine bubbles of air exceeds 1000 nm, the promotion of pig growth may be insufficient.
  • the diameter of the ultrafine bubbles of air contained in the drinking water is preferably 10 nm or more and 500 nm or less, more preferably 20 nm or more and 300 nm or less. When the diameter of the air ultrafine bubbles contained in the drinking water is 20 nm or more and 300 nm or less, the growth of pigs can be effectively promoted. In the present embodiment, the diameter of the ultra fine bubbles was measured by the laser diffraction/scattering method.
  • the ultrafine bubble-containing water of air used as drinking water of the present embodiment has a concentration of ultrafine bubbles of air of 1 ⁇ 10 7 cells/mL or more, and the upper limit is not particularly limited, but from the ease of production, It is 10 12 pieces/mL or less. If the concentration of ultrafine bubbles in the air is lower than 1 ⁇ 10 7 cells/mL, promotion of pig growth may be insufficient.
  • the concentration of ultrafine bubbles in air is preferably 1 ⁇ 10 7 cells/mL or more and 3 ⁇ 10 8 cells/mL or less, and particularly preferably 1 ⁇ 10 8 cells/mL or more and 2 ⁇ 10 8 cells/mL or less. Is. By setting the concentration of ultrafine bubbles in the air of drinking water to 1 ⁇ 10 8 cells/mL or more and 2 ⁇ 10 8 cells/mL or less, the growth of pigs can be effectively promoted.
  • Bubble drinking water containing ultrafine bubbles of air may be fed to edible pigs at any time.
  • the bubble drinking water can be fed to pigs having a weight of more than 30 kg and having finished the piglet breeding period and being introduced into a fattening pig pen or the like to enter the fattening period.
  • the fattening period may be divided into two or more, and the bubble drinking water may be supplied during the second and subsequent periods. For example, until the body weight reaches 70 kg is the fattening early period, and when the body weight exceeds 70 kg and reaches 110 kg is the late fattening period, bubble drinking water may be fed in the late fattening period. While normal drinking water is fed in the early period of fattening, and bubble drinking water is fed in the late period of fattening, the feed requirement rate in the late period of fattening can be effectively reduced.
  • the drinking water to be fed to edible pigs may contain the plant extract mixed fermented liquid in addition to the air ultra fine bubbles.
  • the plant extract mixed fermented liquid is a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling liquid of Kidachi aloe, an alcohol pickling liquid of aloe vera, rice bran liquid, and sugar.
  • the plant-derived extract solution of the above-mentioned plant extract mixed fermented solution comprises (a) a first liquid containing at least aloe, sugar and mineral, and (b) a second liquid containing at least aloe, sugar and salt ( c) Alcohol extract of plural kinds of plants containing aloe, sugar extract of plural kinds of plants containing aloe, liquid obtained by boiling and mixing plural kinds of plants, and alcohol extract of plural kinds of plant extracts It is preferable to include a third liquid containing and.
  • the first brown sugar aloe liquid can be adopted as the first liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermentation liquid.
  • the first brown sugar aloe liquid can be prepared as follows. First, brown sugar 15 kg, brown sugar 15 kg, honey 7 kg, plum extract 500 cc, and concentrated mineral liquid 100 cc are mixed with 15 kg of yellowtail aloe, aged for 1 week, the liquid is squeezed, and the squeezed liquid is used as the first liquid.
  • the concentrated mineral liquid was prepared by concentrating seawater 50 times. Aloe is used after being made into fine particles to a size of 1/100,000 mm. Hereinafter, plants such as aloe and aloe vera are treated in the same manner. This facilitates ionization.
  • the second brown sugar aloe liquid prepared as follows can be adopted as the second liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermentation liquid. 30 kg of aloe extract is mixed with 15 kg of brown sugar, 15 kg of brown sugar and 200 g of natural salt, and the mixed solution is boiled to obtain a second solution.
  • the third liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermented liquid is a vegetable prepared by mixing the extract liquid A, the extract liquid B, the extract liquid C, and the extract liquid D prepared as follows.
  • Extract liquid can be used. First, Naga eggplant, cucumber, mushrooms, pumpkin, silk pods, green beans, maitake mushrooms, shimeji mushrooms, komatsuna, oranges, bamboo shoots, ginger, butterbur leaves, pears, butterbur sprouts, cucumber, spinach, red balls, aloe vera, green apple, figs, celery, Pears, halves, rice bran, habucha, lotus leaves, turmeric, black beans, shiitake mushrooms, yellow powder, matsutake mushrooms, sesame seeds, kumamazasa, shiinomi, iyokan, pomelo, prune, edamame, enoki mushrooms, peppers, turnips, persimmon leaves , Mango, strawberry, basil, pineapple, tomato, shishi
  • the ingredients such as garlic, ome, and kidachi aloe are mixed in whole at an arbitrary ratio such that the ratio of each is at least 10% by weight, and the whole material such as leather is mixed to obtain a mixture B.
  • Extraction is performed at a ratio of 1 kg of brown sugar to 1 kg of the mixed material B to obtain an extraction liquid B (sugar extraction liquid).
  • the extraction method of the extract B is sugar extraction, that is, extraction utilizing the osmotic pressure of sugar.
  • turmeric, radish, carrot, Phellinus linteus, litchi, agarisk, burdock root, rice bran, and horsetail are mixed in whole proportions, such as at least 5% by weight, each in whole.
  • a mixed material C is obtained.
  • the mixed material C is boiled and extracted to obtain an extract liquid C (boiled extract liquid).
  • turmeric extract kumazasa solution, watercress solution, horsetail solution, burdock extract, garlic extract, bracken extract, red perilla extract, maitake extract, messhikobu extract, litchi extract, agarisk extract, radish extract, ginseng extract, luohana extract, ova extract.
  • the shishito extract and the kelp extract are mixed with the radish extract in a double amount, and the other ingredients are mixed in the same weight, and the whole material such as the skin is mixed to obtain a mixture D. Extraction is performed at a ratio of 1.5 liters of alcohol to 1 kg of the mixed material D to obtain an extraction liquid D (alcohol extraction liquid).
  • extract A, extract B, extract C and extract D are mixed at an arbitrary ratio such that each of them is at least 10% by weight, to obtain a third liquid.
  • the alcoholic solution of Kidachi aloe as the 4th liquid can be prepared as follows. First, put 13 kg of chopped Kidachi aloe in a 20-liter plastic tank and pour 35 degrees of shochu until the plastic tank is full. After standing for 1 week, this is squeezed to obtain a fourth liquid.
  • the fourth solution is a solution of Kidachi aloe pickled in alcohol.
  • Kidachi aloe having a high medicinal effect is particularly suitable.
  • Alcoholic solution of aloe vera as the fifth liquid can be prepared as follows. First, put 13 kg of chopped aloe vera in a 20-liter plastic tank and pour 35 degrees of shochu until the plastic tank is full. After standing for 1 week, this is squeezed to obtain a fifth liquid.
  • the fifth liquid is an alcohol pickling liquid of aloe vera.
  • As the fifth liquid it is preferable to use edible aloe vera.
  • the first liquid, the second liquid, the third liquid, the fourth liquid and the fifth liquid, honey, the concentrated mineral liquid, the propolis liquid, and the chitin chitosan extract are each at least 5% by weight. And mixed at an arbitrary arbitrary ratio to obtain a sixth liquid.
  • the extracted liquid is referred to as the seventh liquid.
  • the 6th liquid is mixed with the above concentrated mineral liquid as a mineral component at an arbitrary ratio such that the 6th liquid is at least 60% or more, and the others are 1% or more and 20% or less by weight.
  • the first liquid, the fourth liquid, the fifth liquid, and the seventh liquid, which are the source of the sixth liquid, were added to this mixed liquid in the range of 10% or less of the total amount to adjust the total amount. It is stored at room temperature for about 2 weeks and fermented, and when it becomes sour, it is sterilized by boiling to obtain a mixed extract of plant extracts.
  • the above-mentioned plant ash is ash produced by burning plants.
  • brown sugar was used as the above-mentioned sugar, other sugars such as glucose may be used.
  • the above plant extract mixed fermented liquor is added to water containing ultrafine bubbles of air to prepare drinking water for pork for meat.
  • the amount of the plant extract mixed fermented solution added is 0.01% or more and 0.5% or less of water containing ultrafine bubbles of air.
  • the pig to which the pig breeding method of the present embodiment is applied is not particularly limited as long as it is a pig raised for food.
  • the pig breeding form is not particularly limited, and may be flat breeding, cage breeding, or free-range breeding.
  • FIG. 1 is a schematic diagram showing a drinking water supply device provided in a pig pen in which the pig raising method of the embodiment of the present invention is performed.
  • a pig having a weight of about 30 kg is introduced, and the introduced pig is fed with feed and drinking water for fattening.
  • This pig pen is a breeding area that is divided by a fence to house pigs, a feeding device (not shown) that feeds pigs in the breeding area, and drinking water that supplies drinking water for the pigs in the breeding area.
  • the supply device 1 is provided.
  • the drinking water supply device 1 supplies tap water with ultrafine bubbles of air to produce drinking water for edible pigs, and also supplies the drinking water to the edible pigs.
  • groundwater may be used.
  • this drinking water supply device 1 is supplied with tap water through a water level control valve 12, and also contains a bubble water tank 2 for storing water containing ultrafine bubbles of air, and this bubble.
  • a bubble water production apparatus 3 is provided as a bubble drinking water production apparatus for pig farms, which is supplied with water from a water tank 2 and adds ultrafine bubbles of air to produce ultrafine bubble water.
  • a second bubble water tank 4 and a mixed liquid tank 5 are connected to the downstream side of the bubble water tank 2. Ultrafine bubble water is supplied from the bubble water tank 2 to the second bubble water tank 4. Ultra fine bubble water is supplied from the bubble water tank 2 to the mixed liquid tank 5, and the plant extract mixed fermented liquid is mixed with the ultra fine bubble water to form and store the mixed liquid.
  • the drinking water supply device 1 also includes a fermented liquid water tank 6 to which tap water is supplied via a tap water valve 11 and a water tank 7.
  • the fermented liquid water tank 6 stores fermented liquid water obtained by adding a plant extract mixed fermented liquid to tap water.
  • the water tank 7 stores tap water.
  • the second bubble water tank 4 is connected to a discharge pipe for discharging ultrafine bubble water, and this discharge pipe is connected to a water supply device 8 installed in the first breeding area A1 for supplying drinking water to pigs.
  • the mixed liquid tank 5 is connected to a discharge pipe for discharging a mixed liquid of ultrafine bubble water and a plant extract mixed fermented liquid, and this discharge pipe is connected to a water supply device 8 installed in the second breeding area A2.
  • the fermentation liquid water tank 6 is connected to a discharge pipe for discharging the aqueous solution of the plant extract mixed fermentation liquid, and this discharge pipe is connected to the water supply device 8 installed in the third breeding area A3.
  • the water tank 7 is connected to a discharge pipe that discharges tap water, and this discharge pipe is connected to a water supply device 8 installed in the fourth breeding area A4.
  • the drinking water supply apparatus 1 of this embodiment is formed so as to supply different drinking water to a plurality of breeding areas corresponding to the experiment 2 of the example, ultrafine bubble water or a mixed liquid is supplied to all of them. May be formed to supply.
  • the water level control valve 12 of the bubble water tank 2 is formed by a ball tap to keep the water level of the bubble water tank 2 constant.
  • the ball tap has a floating body that moves up and down according to the water level of the bubble water tank 2, and a flow rate adjusting valve connected to this floating body. When the water level decreases, the flow rate adjusting valve opens to keep the water level in the bubble water tank 2 constant. Hold.
  • constant water level valves having various configurations can be used as the water level control valve 12. For example, a water level sensor that measures the water level of the bubble water tank 2 and a measured value of this water level sensor are used. For example, one having a flow rate adjusting valve whose valve opening is controlled can be used.
  • the bubble water production device 3 is supplied with tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2, and the supplied water has an ultrafine air content. It is formed to add a bubble and return it to the bubble water tank 2.
  • the water supply device 8 is a water supply device formed so as to supply drinking water in response to a pig's request, and a nipple water supply device can be used.
  • the nipple water dispenser has a discharge pipe for drinking water and an opening/closing valve connected to this discharge pipe. When the mouth or tongue of a pig comes into contact with the discharge pipe, the opening/closing valve opens and the drinking water flows out from the discharge pipe. Is formed.
  • a water supply device having another structure may be used as long as it supplies drinking water to the pig. For example, a trough, a trough, or the like formed so as to appropriately hold drinking water may be used.
  • the bubble water production apparatus 3 serves as a first pump for sucking tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2.
  • a submersible pump 21 is provided. By adjusting the flow rate of the submersible pump 21, the amount of ultrafine bubble water produced by the bubble water producing apparatus 3 is adjusted.
  • an ejector 22 as a mixer for forming a mixed fluid of water and air by sucking and mixing air with the raw material water discharged from the submersible pump 21 as shown by an arrow A. Is provided.
  • an intake pipe for taking in air is connected with a mixed air amount adjusting valve 29 formed of a flow rate adjusting valve for adjusting the amount of air mixed with the mixed fluid.
  • a cascade pump 23 as a second pump that sucks the mixed fluid is provided on the downstream side of the ejector 22.
  • the downstream side of the cascade pump 23 is branched into a return path 24 and a discharge path 25 at a branch part.
  • the return path 24 is provided with a first ultrafine bubble manufacturing device 26A that atomizes the air of the mixed fluid to form ultrafine bubbles, and a flow rate adjustment valve 27 that adjusts the flow rate of the mixed fluid flowing through the return path 24.
  • the pressure on the downstream side of the return path 24 is also adjusted.
  • the downstream side of the return path 24 is connected between the ejector 22 and the cascade pump 23.
  • the discharge path 25 is provided with a second ultrafine bubble manufacturing device 26B that atomizes the mixed fluid air to form ultrafine bubbles.
  • the downstream side of the discharge path 25 is connected to the bubble water tank 2.
  • a volume pump such as a land pump may be used instead of the submersible pump.
  • a pump other than the cascade pump may be used as the second pump, but a centrifugal pump is preferably used.
  • FIG. 3 is a schematic vertical cross-sectional view showing an ultra fine bubble manufacturing device 26 as an ultra fine bubble manufacturing device for pig farming, which is built in the bubble water manufacturing device 3.
  • 4 is a sectional view taken along the arrow B in FIG. 3
  • FIG. 5 is a sectional view taken along the arrow C in FIG.
  • the ultra fine bubble manufacturing device 26 atomizes the mixed fluid of water and air supplied through the supply pipe 41 to form ultra fine bubble water containing ultra fine bubbles of air, and discharges the ultra fine bubble water. It is discharged from the pipe 42.
  • the ultra fine bubble manufacturing device 26 includes a substantially cylindrical casing 40, a supply pipe 41 that is connected to one end of the casing 40 and communicates with the inside of the casing 40, and a discharge pipe 42 that is connected to the other end of the casing 40. And the miniaturized block 28 housed in the casing 40 and connected to the end of the discharge pipe 42.
  • the discharge pipe 42 penetrates the other end of the casing 40 and has an end inserted therein, and supports the miniaturized block 28 connected to the tip of the discharge pipe 42 in the casing 40. ..
  • the miniaturization block 28 has a cylindrical shape, and inside thereof, a first swirl chamber 31 and a second swirl chamber 33 are formed as swirl flow forming parts through which a mixed fluid of water and air is guided.
  • the first swirl chamber 31 and the second swirl chamber 33 have a shape in which a flat cylinder and a semi-spheroid are combined, and are formed coaxially and symmetrically with the vertices of the semi-spheroid portions facing each other.
  • the miniaturized block 28 and the first swirl chamber 31 and the second swirl chamber 33 in the miniaturized block 28 are arranged coaxially with the casing 40.
  • the miniaturization block 28 includes a first block part 281 having a first swirl chamber 31 formed therein and a second block part 282 having a second swirl chamber 33 formed therein.
  • FIG. 6 is a sectional view showing the first block component 281.
  • the first block component 281 has a disk portion 281a that constitutes one end surface of the miniaturization block 28, and a protruding portion 281b that protrudes from the center of the disc portion 281a toward the inside of the miniaturization block 28.
  • the protruding portion 281b is formed in a cylindrical shape in a portion close to the disc portion 281a, and is formed in a truncated cone shape in a tip portion far from the disc portion.
  • a first swirl chamber 31 is formed inside the first block component 281.
  • the wall surface 31a at the one end side portion has a cylindrical shape, while the wall surface 31b at the other end side portion has a semi-rotating elliptical shape.
  • the wall surface 31a of the one end side portion of the first swirl chamber 31 is formed substantially inside the disk portion of the first block component 281, and the wall surface 31b of the other end side portion of the semi-spheroidal shape is the protruding portion of the first block component 281. It is generally formed inside.
  • a first introduction path 35 for introducing the mixed fluid between the casing 40 and the miniaturization block 28 into the first swirl chamber 31 is formed in the tangential direction of the first swirl chamber 31.
  • a discharge opening 35 a for discharging the mixed fluid guided by the first introduction passage 35 is formed on the wall surface of the first swirl chamber 31.
  • an inflow opening 35b for allowing the mixed fluid between the casing 40 and the miniaturization block 28 to flow into the first introduction path 35 is formed on the side surface of the disc portion 281a of the first block component 281.
  • the first introduction path 35 is formed from one end of the first swirl chamber 31 toward the other end so as to form an angle ⁇ with respect to a plane perpendicular to the central axis of the first swirl chamber 31. ing.
  • the angle ⁇ of the first introduction path 35 with respect to the plane perpendicular to the central axis of the first swirl chamber 31 can be formed to be 1° or more and 20° or less. This angle ⁇ is preferably 5° or more and 15° or less, and more preferably 8° or more and 12°.
  • a first discharge hole 32 is formed at the tip of the protruding portion 281b of the first block component 281, and the swirl flow of the mixed fluid formed in the first swirl chamber 31 is discharged from the first discharge hole 32. Is formed.
  • FIG. 7 is a sectional view showing the second block component 282.
  • the second block component 282 has a bottomed cylindrical shape with a thick bottom formed at one end and an opening at the other end.
  • the protruding portion 281b of the first block component 281 is inserted from the opening of the second block component 282, and the disc portion 281a of the first block component 281 is connected to the other end surface 282a.
  • the swirl flow from the first swirl chamber 31 and the swirl flow from the second swirl chamber 33 collide between the inner surface of the second block component 282 and the outer surface of the protruding portion 281b of the first block component 281.
  • a collision chamber 38 is formed.
  • a second swirl chamber 33 is formed inside the second block component 282.
  • the wall surface 33a at the one end side portion has a cylindrical shape, while the wall surface 33b at the other end side portion has a spheroidal shape.
  • the second block component 282 is formed with a second introduction path 36 for introducing the mixed fluid between the casing 40 and the miniaturization block 28 into the second swirl chamber 33.
  • the second introduction passage 36 is formed in the tangential direction of the second swirl chamber 33.
  • a discharge opening 36 a for discharging the mixed fluid guided by the second introduction path 36 is formed on the wall surface of the second swirl chamber 33.
  • an inflow opening 36b for allowing the mixed fluid between the casing 40 and the miniaturization block 28 to flow into the second introduction path 36 is formed on the side surface on the one end side of the second block component 282.
  • the second introduction path 36 is formed from one end of the second swirl chamber 33 toward the other end so as to form an angle ⁇ with respect to a plane perpendicular to the central axis of the second swirl chamber 33.
  • the angle ⁇ of the second introduction path 36 with respect to the plane perpendicular to the central axis of the second swirl chamber 33 can be formed to be 1° or more and 20° or less. This angle ⁇ is preferably 5° or more and 15° or less, and more preferably 8° or more and 12°.
  • a second discharge hole 34 is formed at the other end of the second block component 282, and the swirl flow of the mixed fluid formed in the second swirl chamber 33 is discharged from the second discharge hole 34.
  • the swirl flow formed in the second swirl chamber 33 is formed so as to swirl in the opposite direction to the swirl flow formed in the first swirl chamber 31.
  • the first swirl chamber 31 and the second swirl chamber 33 are formed symmetrically with respect to the plane perpendicular to the central axis, the first discharge hole 32 and the second discharge hole 34 are arranged so as to face each other, and they are arranged in opposite directions. It is configured to generate a swirling flow that swirls.
  • the discharge passages 39, 39,... are arranged on the outer diameter side of the second swirl chamber 33 so as to surround the second swirl chamber 33.
  • inflow openings 39a, 39a,... As a plurality of inflow ports for allowing the fluid of the collision chamber 38 to flow into the discharge passages 39, 39,. are formed.
  • the bottom surface 282b in which the inflow opening 39a is formed corresponds to the collision chamber surface facing the collision chamber 38.
  • a mixed fluid of water and air is pressure-fed by the cascade pump 23, and the casing from the supply pipe 41, which is a part of the return route 24 or the discharge route 25 on the upstream side of the ultrafine bubble manufacturing device 26, is discharged.
  • the mixed fluid flows into 40.
  • the mixed fluid that has flowed into the casing 40 is guided to the first and second introduction paths 35 and 36 from the inflow openings 35b and 36b on the outer surface of the miniaturization block 28.
  • the mixed fluid guided to the first introduction path 35 is discharged into the first swirl chamber 31 through the discharge opening 35a, and forms a swirl flow in the first swirl chamber 31.
  • a stable swirl flow is formed in the first swirl chamber 31 by the first introduction path 35 extending in the tangential direction of the first swirl chamber 31 and forming an inclination angle ⁇ toward the other end.
  • the mixed fluid guided to the second introduction passage 36 is discharged into the second swirl chamber 33 from the discharge opening 36 a, and forms a swirl flow in the second swirl chamber 33. Since the second introduction path 36 extends in the tangential direction of the second swirl chamber 33 and forms the inclination angle ⁇ toward the other end, a stable swirl flow is formed in the second swirl chamber 33.
  • the swirl flow of the mixed fluid in the first swirl chamber 31 is discharged from the first discharge hole 32 to the collision chamber 38, and the swirl flow in the second swirl chamber 33 to the collision chamber 38 from the second discharge hole 34.
  • the swirling flows discharged from the first discharge hole 32 and the second discharge hole 34 are swirling in opposite directions, and thus collide in the collision chamber 38 with a large impact force.
  • the gas of the mixed fluid is effectively atomized, and ultra nano bubbles are generated.
  • the water containing the ultra nano bubbles of the air thus generated is guided from the collision chamber 38 to the discharge passages 39, 39,... Through the inflow openings 39a, 39a,. -Is discharged from the discharge pipe 42.
  • the discharge pipe 42 is on the downstream side of the ultrafine bubble manufacturing device 26 in the return path 24 and the discharge path 25.
  • the water containing the ultra fine bubbles of the air thus generated in the ultra fine bubble manufacturing device 26 is guided to the downstream side of the return path 24 and the discharge path 25. That is, water containing air ultrafine bubbles flows from the first ultrafine bubble producer 26A to the downstream side of the return route 24, and air ultrafine air from the second ultrafine bubble producer 26B to the downstream side of the discharge route 25. The water containing the bubbles flows.
  • the bubbles produced by the ultrafine bubble production device 26 are not limited to only ultrafine bubbles, and microbubbles may be included depending on the operating conditions, or only microbubbles may be produced.
  • the bubble water production apparatus 3 adjusts the opening degree of the mixed air amount adjusting valve 29, the discharge flow rate or discharge pressure of the mixed water by the submersible pump 21 and the cascade pump 23, and the opening degree of the flow rate adjusting valve 27.
  • the particle size and concentration of ultrafine bubbles and microbubbles from the discharge path 25 can be adjusted.
  • the opening degree of the flow rate adjusting valve 27 increases, the bubble concentration of ultrafine bubbles and/or microbubbles increases, the diameter of the bubbles also decreases, and the amount discharged from the discharge path 25 decreases. .. Along with this, the standard deviation of the diameters of the generated bubbles is reduced, the width of the distribution is reduced, and the diameters of the bubbles are concentrated in a narrow range of relatively small values.
  • the opening degree of the flow rate adjusting valve 27 decreases, the concentration of ultrafine bubbles and/or microbubbles decreases, the diameter of the bubbles increases, and the amount discharged from the discharge path 25 increases. ..
  • the standard deviation of the diameters of the generated bubbles expands, the width of the distribution expands, and the bubble diameters spread in a wide range from a relatively small value to a large value.
  • the discharge pressure of the cascade pump 23 increases, in the region where the discharge pressure is lower than 1 MPa, the concentration of bubbles of ultrafine bubbles and/or microbubbles increases, the diameter of the bubbles decreases, and the discharge is also reduced.
  • the discharge amount from the path 25 increases. In the region where the discharge pressure is higher than 1 MPa, the concentration of ultrafine bubbles and/or microbubbles decreases and the bubble diameter increases.
  • the discharge pressure of the cascade pump 23 decreases, in the region where the discharge pressure is lower than 1 MPa, the concentration of bubbles of ultrafine bubbles and/or microbubbles decreases, the diameter of the bubbles expands, and the discharge is increased.
  • the amount of emissions from the path 25 is reduced. In the region where the discharge pressure is higher than 1 MPa, the concentration of ultrafine bubbles and/or microbubbles increases and the bubble diameter decreases.
  • the proportion of bubbles of 1 ⁇ m or more in the bubbles discharged from the discharge path 25 increases, while the mixed air amount adjusting valve 29 opens.
  • the proportion of bubbles having a diameter of 1 ⁇ m or more in the particle diameter of bubbles discharged from the discharge path 25 decreases.
  • the air mixing amount of the ejector 22 is set to 0.4 L/min by the mixed air amount adjusting valve 29, the diameter of the bubbles discharged from the discharge path 25 is larger than 1 ⁇ m, but the ratio increases, and the bubbles become ultra fine bubbles. Micro bubbles are generated.
  • the air mixing amount of the ejector 22 is set to 0.1 L/min by the mixed air amount adjusting valve 29, most of the bubbles discharged from the discharge path 25 have a diameter of less than 1 ⁇ m, and thus the ultrafine bubbles are substantially formed. Only generated.
  • the bubble water production apparatus 3 also measures the concentration of ultrafine bubbles in the water discharged from the discharge path 25, and based on this measured value, the discharge pressure of the submersible pump 21 and the cascade pump 23 and the return path 24.
  • the concentration of the ultrafine bubbles in the discharge path 25 can be adjusted by adjusting the flow rate of For example, when the concentration of the ultra fine bubbles in the discharge path 25 is lower than the target value, the opening degree of the flow rate adjusting valve 27 is increased to increase the flow rate in the return path 24, so that the ultra fine bubbles discharged from the discharge path 25. Concentration increases.
  • the bubble water producing device 3 is provided with a second flow rate adjusting valve on the upstream side of the second ultrafine bubble producing device 26B in the discharge path 25, and the opening degree of the second flow rate adjusting valve and the mixed air amount adjusting valve.
  • the opening degree of 29, the opening degree of the flow rate adjusting valve 27 of the return path 24, and the discharge pressure of the submersible pump 21 and the cascade pump 23 the diameter and concentration of the ultrafine bubbles discharged from the discharge path 25 can be adjusted. You may adjust.
  • the bubble water producing apparatus 3 is provided with a control device (not shown), and by this control device, the opening degree of the mixed air amount adjusting valve 29, the opening degree of the flow rate adjusting valve 27, and the opening of the second flow rate adjusting valve.
  • the discharge pressure of the submersible pump 21 and the cascade pump 23 may be controlled to adjust the diameter and concentration of the ultrafine bubbles from the discharge path 25.
  • the bubble water producing apparatus 3 can stably form ultrafine bubbles of 50 to 70 nm.
  • the return path 24, the flow rate adjusting valve 27, and the first ultrafine bubble manufacturing device 26A may not be provided. That is, the discharge path 25 may be provided only on the downstream side of the cascade pump 23 with the second ultrafine bubble manufacturing device 26B, and the ultrafine bubbles may be generated only by the second ultrafine bubble manufacturing device 26B.
  • the ultra fine bubble manufacturing device 26 includes the miniaturization block 28 that includes the first swirl chamber 31 and the second swirl chamber 33 that are coaxially formed symmetrically with respect to the plane perpendicular to the central axis.
  • FIG. 8 is a vertical sectional view showing a modified ultrafine bubble manufacturing device for pig farming.
  • 9 is a cross-sectional view taken along arrow D in FIG. 8
  • FIG. 10 is a cross-sectional view taken along arrow E in FIG.
  • This ultra fine bubble manufacturing device 126 atomizes the mixed fluid of water and air supplied from the supply pipe 41 by the atomization block 128 to form ultra fine bubble water containing ultra fine bubbles of air.
  • the ultra fine bubble water is discharged from the discharge pipe 42.
  • the ultrafine bubble manufacturing device 126 has a substantially cylindrical casing 140 having one end connected to the supply pipe 41 and the other end connected to the miniaturization block 128.
  • the miniaturized block 128 has a generally cylindrical shape with a smaller diameter than the casing 140, and has the other end portion formed to have a larger diameter than the other portion and fitted to the inner surface of the other end portion of the casing 140.
  • the miniaturization block 128 includes a processing flow path 130 through which a mixed fluid of water and gas is guided, a first eccentric supply path 131 as a swirl flow forming section that communicates with an upstream end of the processing flow path 130, and the processing flow.
  • a second eccentric supply passage 132 as a swirling flow forming portion that communicates with substantially the center of the passage 130 in the longitudinal direction is formed inside.
  • the central axis of the first eccentric supply channel 131 and the central axis of the second eccentric channel 132 extend at right angles to the central axis of the processing channel 130.
  • the processing flow path 130 of the miniaturization block 128 is formed along the central axis of the miniaturization block 128 from the vicinity of one end surface of the miniaturization block 128 to the other end surface of the miniaturization block 128.
  • One end of the processing channel 130 remains inside the miniaturization block 128 without penetrating one end surface of the miniaturization block 128, while the other end of the processing channel 130 has an opening at the other end surface of the miniaturization block 128. Is forming.
  • the processing flow path 130 has a circular cross section and is formed so that the diameter increases from one end to the other end.
  • a discharge pipe 42 is inserted into the opening at the other end of the processing flow path 130 so that the processing flow path 130 communicates with the discharge pipe 42.
  • Two first eccentric supply paths 131 of the miniaturization block 128 are formed so as to communicate with one end of the processing channel 130, as shown in FIG. 9 which is a cross-sectional view perpendicular to the central axis of the miniaturization block 128. There is. These two first eccentric supply passages 131 are arranged point-symmetrically with respect to the center of the processing flow passage 130. These first eccentric supply passages 131 extend substantially in the radial direction of the miniaturization block 128, form an inflow opening 131a on the outer peripheral surface of the miniaturization block 128, and discharge openings 131b on the inner peripheral surface of the processing flow passage 130. Is formed.
  • first eccentric supply passages 131 have a circular cross section and are formed so that the diameter becomes smaller from the inflow opening 131a toward the discharge opening 131b.
  • the discharge opening 131b of the first eccentric supply path 131 is arranged at a position eccentric with respect to the center of the processing flow path 130 when viewed in the axial direction of the processing flow path 130.
  • the second eccentric supply passage 132 shows a shape of a vertical cross section along the central axis of the second eccentric supply passage 132, and the second eccentric supply passage 132 has a second surface in a plane passing through the central axis of the miniaturized block 128. The state in which the eccentric supply path 132 is cut is not shown.
  • the second eccentric supply passage 132 of the miniaturization block 128 is communicated with substantially the center of the processing flow passage 130 in the longitudinal direction, as shown in FIG. 10 which is a sectional view perpendicular to the central axis of the miniaturization block 128. Two are formed. These two second eccentric supply passages 132 are arranged point-symmetrically with respect to the center of the processing flow passage 130. These second eccentric supply passages 132 extend substantially in the radial direction of the miniaturization block 128, form an inflow opening 132a on the outer peripheral surface of the miniaturization block 128, and discharge openings 132b on the inner peripheral surface of the processing flow passage 130. Is formed.
  • These second eccentric supply passages 132 have a circular cross section and are formed so that the diameter decreases from the inflow opening 132a toward the discharge opening 132b.
  • the discharge opening 132b of the second eccentric supply passage 132 is arranged at a position eccentric with respect to the center of the processing flow passage 130 when viewed in the axial direction of the processing flow passage 130.
  • the discharge opening 132b of the second eccentric supply passage 132 is eccentric to the discharge opening 131b of the first eccentric supply passage 131 on the opposite side with respect to the central axis of the processing flow passage 130.
  • the first eccentric supply passage 131 and the second eccentric supply passage 132 of the miniaturization block 128 are arranged so as to form an angle of 90° with each other when viewed in the axial direction of the miniaturization block 128.
  • the ultrafine bubble manufacturing device 126 having the above-described configuration operates as follows. First, a mixed fluid of water and air is introduced into the casing 140 through the supply pipe 41. The mixed fluid that has flowed into the casing 140 is guided to the first and second eccentric supply paths 131 and 132 from the inflow openings 131a and 132a on the outer surface of the miniaturization block 128. The mixed fluid guided to the first eccentric supply passage 131 is discharged into the processing flow passage 130 from the discharge opening 131b and forms a swirling flow in the processing flow passage 130. Since the discharge opening 131b of the first eccentric supply path 131 is arranged at a position eccentric with respect to the center of the processing channel 130, a stable swirling flow is formed in the processing channel 130.
  • the mixed fluid thus guided from the first eccentric supply passage 131 into the processing flow passage 130 becomes a swirling flow and flows from one end of the processing flow passage 130 to the other end. Further, the mixed fluid guided to the second eccentric supply passage 132 is discharged into the processing flow passage 130 from the discharge opening 132b.
  • the discharge opening 132b of the second eccentric supply passage 132 is arranged at a position eccentric with respect to the central axis of the processing flow path 130, and is eccentric to the opposite side of the discharge opening 131b of the first eccentric supply passage 131. As a result, a swirl flow that is opposite to the swirl flow that has flowed through the processing flow path 130 is formed.
  • the swirling flow of the mixed fluid discharged from the discharge opening 132b of the second eccentric supply passage 132 collides with the swirling flow flowing from the first eccentric supply passage 131.
  • the gas of the mixed fluid is effectively atomized, and ultra nano bubbles are generated.
  • the water containing the ultra nano bubbles of the air thus generated flows toward the other end of the processing flow path 130, and is discharged from the ultra fine bubble manufacturing device 126 through the discharge pipe 42.
  • the ultrafine bubble manufacturing device 126 of the above-described modification forms the processing flow path 130, the first eccentric supply path 131, and the second eccentric supply path 132 by cutting the single metal material. Can be formed. Therefore, the miniaturized block 128 can be easily manufactured with a small number of steps.
  • the first eccentric supply passage 131 and the second eccentric supply passage 132 of the miniaturization block 128 form an angle of 90° with each other when viewed in the axial direction of the processing flow passage 130. Although arranged, they may be arranged to form an angle of 0 degree with each other. Further, although each of the first eccentricity supply passage 131 and the second eccentricity supply passage 132 of the miniaturization block 128 is provided by two, one or both of them may be provided by one.
  • FIG. 11 is a schematic diagram which shows the bubble water manufacturing apparatus 103 of a modification.
  • the bubble water manufacturing apparatus 103 includes a suction pump 121 as a first pump that sucks tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2.
  • an ejector 122 is provided as a mixer for mixing raw material water discharged from the suction pump 121 with air to form a mixed fluid of water and air. That is, the ejector 122 is provided between the suction side and the discharge side of the suction pump 121.
  • an intake pipe for taking in air is connected to a mixed air amount adjusting valve 127 formed of a flow rate adjusting valve for adjusting the amount of air mixed with the mixed fluid.
  • a gas tank 124 that stores air is connected to the upstream side of the mixed air amount adjustment valve 127.
  • the gas tank 124 is preferably provided with a cleaning device for cleaning the air sucked from the atmosphere.
  • the ultra fine bubble manufacturing device 26 that atomizes the mixed fluid air to form ultra fine bubbles is connected.
  • a modified ultra fine bubble manufacturing device 126 may be connected.
  • a first hydraulic pressure sensor 141 for measuring the pressure of the liquid of the fluid guided to the ultra fine bubble manufacturing device 26 is provided.
  • a cascade pump 123 as a second pump that sucks fluid is provided on the downstream side of the ultrafine bubble manufacturing device 26.
  • a second hydraulic pressure sensor 142 that measures the pressure of the liquid of the fluid discharged from the ultra fine bubble manufacturing device 26 is provided between the ultra fine bubble manufacturing device 26 and the cascade pump 123.
  • the controller 143 is configured to control the operation of the cascade pump 123 based on the measurement value of the second hydraulic pressure sensor 142.
  • a gas-liquid separator 125 that separates excess air remaining without being added to water from water containing ultrafine bubbles is connected.
  • the air separated by the gas-liquid separator 125 is returned to the gas tank 124, while the water containing ultrafine bubbles is returned to the water tank 2.
  • a volume pump such as a land pump may be used instead of the submersible pump.
  • a pump other than the cascade pump may be used as the second pump, but a centrifugal pump is preferably used.
  • the bubble water production apparatus 103 of this modification is guided to the bubble water tank 2 by adjusting the opening degree of the mixed air amount adjusting valve 127 and the discharge flow rate or discharge pressure of the fluid of the suction pump 121 and the cascade pump 123.
  • the particle size and concentration of ultrafine bubbles can be adjusted.
  • the bubble water manufacturing apparatus 103 also measures the concentration of ultrafine bubbles in the water in the bubble water tank 2, and based on the measured values, the discharge amounts of the suction pump 121 and the cascade pump 123, and the mixed air amount adjusting valve. By adjusting the opening degree of 127, the concentration of ultrafine bubbles in the bubble water tank 2 can be adjusted.
  • the bubble water producing apparatus 103 is provided with a second control device, and the opening degree of the mixed air amount adjusting valve 127 and the discharge flow rate or discharge amount of the fluid by the suction pump 121 and the cascade pump 123 are provided by the second control device.
  • the particle size and concentration of the ultra fine bubbles in the bubble water tank 2 may be adjusted by controlling the pressure.
  • the opening of the mixed air amount adjusting valve 127 is reduced to reduce the amount of air supplied to the ejector 122, and the suction pump 121 and the cascade.
  • the operation of the pump 123 is continued.
  • the fluid in the bubble water tank 2 is sucked by the suction pump 121 and guided to the ultra fine bubble manufacturing device 26, and the bubbles contained therein are atomized, sucked by the cascade pump 123, and returned to the bubble water tank 2.
  • the diameter of bubbles contained in the fluid can be effectively reduced.
  • the opening degree of the mixed air amount adjusting valve 127 is increased to increase the air supply amount to the ejector 122, and the suction pump 121,
  • the operation of the cascade pump 123 is continued.
  • the fluid in the bubble water tank 2 is sucked by the suction pump 121, part of which is guided to the ejector 122, and air is added.
  • the other part is guided from the suction pump 121 to the ultra fine bubble manufacturing device 26.
  • the bubbles of the fluid are atomized by the ultra fine bubble maker 26, sucked by the cascade pump 123, and returned to the bubble water tank 2.
  • the ultrafine bubble producing device 26 of the bubble water producing apparatus 103 between 4 MPa and 6 MPa is provided between the upstream side and the downstream side, that is, between the fluid pressure of the supply pipe 41 and the fluid pressure of the discharge pipe 42. It is preferable to adjust the discharge amount of the suction pump 121 and the suction amount of the cascade pump 123 so that a pressure difference of 1 is generated. In this case, the pressure of the fluid in the supply pipe 41 is adjusted to be higher than the pressure of the fluid in the discharge pipe 42. As described above, by producing a pressure difference of 4 MPa or more and 6 MPa or less between the upstream side and the downstream side of the ultra fine bubble manufacturing device 26, the water containing the ultra fine bubble stably by the ultra fine bubble manufacturing device 26. Can be manufactured.
  • the bubble water producing apparatus 103 of the modified example can stably form ultrafine bubbles of 50 to 70 nm.
  • the bubble water producing apparatus 103 may produce water containing ultrafine bubbles of oxygen or hydrogen in addition to air.
  • excess oxygen and hydrogen not added to the water are separated by the gas-liquid separator 125 and returned to the gas tank 124, whereby oxygen and hydrogen are obtained.
  • the miniaturization block 28 of the ultrafine bubble manufacturing device 26 has the first swirl chamber 31 and the second swirl chamber 33 as swirl flow forming parts, but the number is not limited to two, and three or more. You may have a swirl flow formation part.
  • the miniaturization block 128 of the ultra fine bubble manufacturing device 126 has the first eccentric supply passage 131 and the second eccentric supply passage 132 as the swirl flow forming portion, but the number is not limited to two, and three or more swirls are provided. It may have a flow forming part.
  • the edible pig was fed with water containing ultrafine bubbles of air, but in addition to air, it may be fed with water containing ultrafine bubbles of other gas such as hydrogen and oxygen. Good.
  • slightly acidic electrolyzed water or drinking water in which ultrafine bubbles are contained in water containing various other components may be supplied.
  • water containing ultrafine bubbles of hydrogen and also when using water containing ultrafine bubbles of oxygen the effect of promoting the growth of edible pigs and the effect of reducing the consumption of pig feed was confirmed.
  • the effect of promoting the growth of edible pigs was confirmed even when slightly acidic electrolyzed water was used.
  • Test 1 In Test 1, a test plot and a control plot were provided in a fattening pig pen for fattening, and in each plot, three dietary pigs in a late fattening stage having a body weight of about 75 kg were fattened. Of the three fattened animals in each ward, one male and two females were used. Ultra fine bubble water was freely drunk in the test section, and tap water of Yamanashi prefecture was freely drawn in the control section. The same commercially available compounded feed for fattening was fed to both the test plot and the control plot. With respect to the edible pigs having a body weight of approximately 110 kg in the test section and the control section, analysis of growth rate, meat quality, carcass performance and the like was performed.
  • Table 1 shows the weight at the start of fattening, the weight at the end of the fattening period, the average daily weight gain due to the fattening period, the number of fattening days, and the feed conversion rate. All are average values per head.
  • Table 2 shows the measurement results of carcasses obtained from the edible pigs fattened in the test section and the control section.
  • Tables 3 to 5 show the analysis results of the meat quality of the loin meat obtained from the edible pigs fattened in the test section and the control section.
  • the average daily weight gain from the start of fattening to the arrival of shipment was significantly higher in the test plot, and the number of fattening days was shortened by 5 days compared to the control plot.
  • the feed intake during the test period was 124 kg/head on average in the control group, while it was 111.5 kg/head in average in the test group.
  • the test plot was able to reduce the feed by 12.5 kg/head compared to the control plot.
  • the feed intake is obtained by multiplying the difference between the end weight and the start weight by the feed requirement rate.
  • the amount of polyunsaturated fatty acids such as linoleic acid and linolenic acid, which are easy to oxidize and cause bad odor, is less in the test section than in the control section.
  • the amount of saturated fatty acids such as palmitic acid and stearic acid and the amount of monounsaturated fatty acids such as palmitoleic acid and oleic acid are greater in the test section than in the control section. Therefore, it can be said that pork with less bad odor, lower LDL cholesterol and good texture can be obtained.
  • Test 2 In Test 2, three test plots and one control plot were provided in a fattening pig pen for fattening, and in each of the plots, four dietary pigs with a body weight of about 35 kg in the early fattening period were fed. Of the 4 fattened animals in each ward, there were 2 males and 2 females.
  • test section 1 ultrafine bubble water was freely drinkable
  • test section 2 an aqueous solution of plant extract mixed fermented solution was allowed to freely drink
  • test section 3 a mixture of ultrafine bubble water and an aqueous solution of plant extract mixed fermented solution. was allowed to drink water freely.
  • tap water from Yamanashi prefecture was freely drawn.
  • test plot 1 can be set to the first breeding area A1 in FIG. 1, the test plot 2 can be set to the third breeding area A3, the test plot 3 can be set to the second breeding area A2, and the control plot is the fourth breeding area. Can be set to A4.
  • Table 6 shows the weight at the beginning of the early fattening period, the weight at the beginning of the late fattening period, the weight at the end of the late fattening period, the average daily weight increase due to the entire fattening period, and the number of fattening days. All are average values per head.
  • Table 7 shows the average daily weight gains in the early and late fattening periods and the feed requirement rate, both of which are the average values per head.
  • Table 8 shows the measurement results of carcasses obtained from the edible pigs fattened in the test section and the control section.
  • Tables 9 and 10 show the results of analyzing the meat quality of the loin meat obtained from the edible pigs fattened in the test group and the control group.
  • the average daily weight gain from the start of fattening to the arrival of shipment was significantly higher in the test groups 1 to 3, and the number of fattening days was shortened by up to 11 days compared with the control group. It was The feed intake during the test period was 381.7 kg/head on average in the control group, while 320.1 kg/head in average in test group 1 and 310.2 kg/head in average in test group 2. The average for Ward 3 is 389.4 kg/head. As a result, it is possible to reduce the feed of 61.6 kg/head in the test section 1 and reduce the feed of 71.5 kg/head in the test section 2.
  • the loin cross section is larger than in the control area.
  • the other measurement results no significant difference was found between the test plot and the control plot.
  • the meat quality of the loin meat as can be seen from Table 9, in the test group 3, the drip loss is less than that in the control group and the intramuscular fat content is more than that in the control group.
  • the test section 1 had a greater extension rate than the control section. From the above, it can be said that by feeding ultra fine bubble water, soft roasted meat with less drip loss can be obtained.
  • the amount of polyunsaturated fatty acids such as linoleic acid and linolenic acid, which are easy to oxidize and cause bad odor, is less in the test section than in the control section.
  • the amount of saturated fatty acids such as palmitic acid and stearic acid and the amount of monounsaturated fatty acids such as palmitoleic acid and oleic acid are greater in the test section than in the control section. Therefore, it can be said that pork with less bad odor, lower LDL cholesterol and good texture can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Nanotechnology (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Medicinal Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Birds (AREA)
  • Fodder In General (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Accessories For Mixers (AREA)

Abstract

The present invention feeds pigs for meat with drinking water containing ultrafine bubbles of air by using a drinking water supply device 1 installed in a pigsty. This drinking water supply device 1 is provided with: a bubble water tank 2 for storing water containing ultrafine bubbles of air; a bubble water preparing device 3 that adds the ultrafine bubbles of air to the water from the bubble water tank 2; a second bubble water tank 4 that stores the ultrafine bubble water; a mixed fluid tank 5 for storing a mixed fluid of the ultrafine bubble water and a plant extract-mixed fermented liquid; a fermented liquid water tank 6 for storing an aqueous solution of the plant extract-mixed fermented liquid; and a water tank 7 for storing tap water. The liquids in the tanks are respectively guided to first to fourth farming areas A1, A2, A3, and A4, and are supplied to the pigs for meat by a water supplier 8.

Description

養豚方法、養豚用ウルトラファインバブル製造器及び養豚用バブル飲用水製造装置Pig raising method, ultra fine bubble producing device for pig raising, and bubble drinking water producing device for pig raising
 本発明は、食用豚を養育する養豚方法と、これに用いられる養豚用ウルトラファインバブル製造器及び養豚用バブル飲用水製造装置に関する。 The present invention relates to a pig raising method for raising edible pigs, and an ultra fine bubble producing device for pig raising and a bubble drinking water producing device for pig raising used therein.
 食用豚を養育する養豚事業において、豚の成長を促進して早期に出荷することは、経営効率を高める効果的な方法である。従来より、豚の成長を促進する方法として、豚の体重の増加を促進する成分を含有した飼料を給与することが提案されている(例えば、特許文献1参照)。特許文献1には、植物の球茎を粉砕して得た被粉を含有する飼料により、食用豚の肥育期間の短縮が可能であることが開示されている。 In the pig farming business that raises edible pigs, promoting pig growth and shipping it early is an effective way to improve management efficiency. Conventionally, as a method of promoting pig growth, it has been proposed to feed a feed containing a component that promotes weight gain of pigs (see, for example, Patent Document 1). Patent Document 1 discloses that it is possible to shorten the fattening period of edible pigs by using a feed containing a powder obtained by crushing the corms of plants.
 また、養豚事業では、商品の競争力を高めるため、豚肉の品質を向上することが求められる。従来より、豚肉の品質を向上する方法として、肉質の食味を向上させる成分や、脂質の成分を改良する成分を含有した飼料を給与することが提案されている(例えば、特許文献2参照)。特許文献2には、オリーブ搾油滓及び/又はオリーブ落果を含有する飼料により、人体のコレステロール値を上昇させる飽和脂肪酸の少ない脂質を有する肉豚が得られることが開示されている。 Also, in the pig farming business, it is required to improve the quality of pork in order to enhance the competitiveness of products. Conventionally, as a method of improving the quality of pork, it has been proposed to feed a feed containing a component that improves the taste of meat and a component that improves the component of lipid (see, for example, Patent Document 2). Patent Document 2 discloses that a feed containing olive squeezed slag and/or olive drop can provide a pork having a lipid containing a small amount of saturated fatty acids that increases the cholesterol level of the human body.
特開2018-134071号公報Japanese Patent Laid-Open No. 2018-134071 特開2011-120554号公報JP, 2011-120554, A
 しかしながら、特許文献1及び特許文献2の飼料を用いた養豚方法は、食用豚の成長の促進や、豚肉の品質の向上を行うために、特殊な成分を含有する飼料を用いるので、飼料費の増大を招きやすい。飼料費は、養豚事業におけるコストの多くを占めるので、その増大は経営に悪影響を及ぼす不都合がある。 However, the pig raising method using the feeds of Patent Document 1 and Patent Document 2 uses a feed containing a special component in order to promote the growth of edible pigs and improve the quality of pork, so that the feed cost is reduced. Easy to increase. Since the feed cost accounts for most of the cost in the pig farming business, its increase has a disadvantage that it adversely affects the management.
 そこで、本発明の課題は、飼料費を増加させることなく、食用豚の成長の促進や、豚肉の品質の向上が可能となる養豚方法と、これに用いられる養豚用ウルトラファインバブル製造器及び養豚用バブル飲用水製造装置を提供することにある。 Therefore, the object of the present invention is to promote the growth of edible pigs without increasing the feed cost, and a pig breeding method capable of improving the quality of pork, and an ultra fine bubble maker and a pig farm for pig farming used in this method. To provide an apparatus for producing bubble water for drinking.
 上記課題を解決するため、本発明の養豚方法は、食用の豚に、この豚の肥育期間中の少なくとも一部の期間に、気体のウルトラファインバブルを含有するバブル飲用水を与えることにより、上記豚の肥育期間を、気体のウルトラファインバブルを含有しない通常飲用水を給与した場合よりも短くすることを特徴としている。 In order to solve the above problems, the pig breeding method of the present invention, the edible pig, at least a part of the period during the fattening period of the pig, by giving bubble drinking water containing gas ultrafine bubbles, the above, It is characterized by shortening the fattening period of pigs as compared with the case of feeding normal drinking water that does not contain gaseous ultrafine bubbles.
 上記構成によれば、食用の豚に、気体のウルトラファインバブルを含有するバブル飲用水を与える。バブル飲用水を給与する期間は、肥育期間中の少なくとも一部の期間である。これにより、気体のウルトラファインバブルを含有しない通常飲用水を給与した場合よりも、豚の肥育期間を短くできる。豚の肥育期間の短縮は、通常飲料水をバブル飲料水に変更することのみにより、実現することができる。したがって、養豚のコストの多くを占める飼料費を増大させることなく、豚の成長を促進して早期に出荷することができる。 According to the above configuration, edible pigs are given bubble drinking water containing gaseous ultrafine bubbles. The period for supplying bubble drinking water is at least a part of the fattening period. Thereby, the fattening period of the pig can be shortened as compared with the case where normal drinking water containing no gas ultrafine bubbles is fed. The shortening of the fattening period of pigs can be realized only by changing the normal drinking water to bubble drinking water. Therefore, the growth of pigs can be promoted and shipped early without increasing the feed cost, which accounts for most of the cost of pig farming.
 一実施形態の養豚方法は、上記気体は空気である。 In the pig raising method of one embodiment, the gas is air.
 上記実施形態によれば、食用の豚に、空気のウルトラファインバブルを含有する飲用水を与えることにより、肥育期間を従来よりも短縮することができる。 According to the above-mentioned embodiment, by feeding the edible pig with drinking water containing ultrafine bubbles of air, the fattening period can be shortened compared to the conventional case.
 一実施形態の養豚方法は、上記気体は酸素である。 In the pig raising method of one embodiment, the gas is oxygen.
 上記実施形態によれば、食用の豚に、酸素のウルトラファインバブルを含有する飲用水を与えることに、肥育期間を従来よりも短縮することができる。 According to the above embodiment, the feeding period can be shortened compared to the conventional case by providing the edible pig with drinking water containing ultrafine bubbles of oxygen.
 一実施形態の養豚方法は、上記豚の飼料の消費量が、通常飲用水を給与した場合よりも少ない。 In the pig raising method of one embodiment, the amount of feed consumed by the pig is smaller than that when normal drinking water is fed.
 上記実施形態によれば、食用の豚に、気体のウルトラファインバブルを含有するバブル飲用水を給与することにより、飼料の消費量を、通常飲用水を給与した場合よりも低減させることができる。したがって、豚の養育に必要な飼料を少なくできるので、飼料費の増大を防止しながら、豚の成長を促進することができる。ここで、豚の飼料の消費量としては、複数の食用豚を養育する豚舎で所定期間に消費された飼料の質量を、この豚舎から出荷された食用豚の全ての質量で除して求めた飼料要求率を採用することができる。 According to the above-described embodiment, by supplying the edible pig with the bubble drinking water containing the gas ultrafine bubbles, it is possible to reduce the consumption of the feed as compared with the case where the normal drinking water is fed. Therefore, the feed required for raising pigs can be reduced, so that the growth of pigs can be promoted while preventing an increase in feed cost. Here, the feed consumption of pigs was determined by dividing the mass of feed consumed in a given period in a pig pen raising multiple edible pigs by the total weight of edible pigs shipped from this pig pen. Feed conversion rates can be adopted.
 一実施形態の養豚方法は、上記豚から得られた肉のドリップロスが、通常飲用水を給与した場合よりも低い。 In the pig farming method of one embodiment, the drip loss of the meat obtained from the pig is lower than when the normal drinking water is fed.
 上記実施形態によれば、食用の豚に、気体のウルトラファインバブルを含有するバブル飲用水を給与することにより、上記豚から得られた肉のドリップロスを、通常飲用水を給与した場合よりも低くすることができる。したがって、品質の良好な豚肉を得ることができる。 According to the above embodiment, the edible pig, by feeding the bubble drinking water containing the gas ultrafine bubbles, the drip loss of meat obtained from the pig, than when fed normal drinking water. Can be lowered. Therefore, good quality pork can be obtained.
 一実施形態の養豚方法は、上記豚から得られた肉の筋肉内脂肪含量が、通常飲用水を給与した場合よりも多い。 In the pig farming method of one embodiment, the muscle fat content of the meat obtained from the pig is higher than that when normal drinking water is fed.
 上記実施形態によれば、食用の豚に、気体のウルトラファインバブルを含有するバブル飲用水を給与することにより、上記豚から得られた肉の筋肉内脂肪含量を、通常飲用水を給与した場合よりも多くすることができる。したがって、いわゆる霜降りの豚肉を得ることができる。 According to the above embodiment, the edible pig, by supplying bubble drinking water containing the gas ultrafine bubbles, the intramuscular fat content of the meat obtained from the pig, when fed normal drinking water Can be more than. Therefore, so-called marbled pork can be obtained.
 一実施形態の養豚方法は、上記豚から得られた肉の伸展率が、通常飲用水を給与した場合よりも高い。 In the pig breeding method of one embodiment, the extension rate of the meat obtained from the pig is higher than that when normal drinking water is fed.
 上記実施形態によれば、食用の豚に、気体のウルトラファインバブルを含有するバブル飲用水を給与することにより、上記豚から得られた肉の伸展率を、通常飲用水を給与した場合よりも高くすることができる。したがって、柔らかい豚肉を得ることができる。 According to the above embodiment, the edible pig, by feeding the bubble drinking water containing the gas ultrafine bubbles, the extension rate of the meat obtained from the pig, than when fed normal drinking water. Can be higher. Therefore, soft pork can be obtained.
 一実施形態の養豚方法は、上記豚から得られた肉に含まれる多価不飽和脂肪酸の量が、通常飲用水を給与した場合よりも少ない。 In the pig breeding method of one embodiment, the amount of polyunsaturated fatty acid contained in the meat obtained from the pig is smaller than that when normal drinking water is fed.
 上記実施形態によれば、食用の豚に、気体のウルトラファインバブルを含有するバブル飲用水を給与することにより、上記豚から得られた肉に含まれる多価不飽和脂肪酸の量を、通常飲用水を給与した場合よりも少なくすることができる。したがって、悪臭の少ない豚肉を得ることができる。 According to the above embodiment, the edible pig, by supplying the bubble drinking water containing the gas ultrafine bubbles, the amount of polyunsaturated fatty acid contained in the meat obtained from the pig, the normal drinking It can be less than if you were fed water. Therefore, it is possible to obtain pork with a low odor.
 一実施形態の養豚方法は、上記豚から得られた肉に含まれる一価不飽和脂肪酸の量が、通常飲用水を給与した場合よりも多い。 In the pig farming method of one embodiment, the amount of monounsaturated fatty acid contained in the meat obtained from the pig is higher than that in the case where normal drinking water is fed.
 上記実施形態によれば、食用の豚に、気体のウルトラファインバブルを含有するバブル飲用水を給与することにより、上記豚から得られた肉に含まれる一価不飽和脂肪酸の量を、通常飲用水を給与した場合よりも多くすることができる。したがって、人体の健康に与える影響の少ない豚肉を得ることができる。また、舌触りの少ない豚肉を得ることができる。 According to the above embodiment, the edible pig, by supplying bubble drinking water containing the gas ultrafine bubbles, the amount of monounsaturated fatty acids contained in the meat obtained from the pig, the normal drinking You can do more than you can with water. Therefore, it is possible to obtain pork that has little effect on human health. In addition, pork with little texture can be obtained.
 一実施形態の養豚方法は、上記バブル飲用水が、少なくともアロエを含む複数種類の植物を含む液を混合し抽出した植物由来エキス液と、キダチアロエのアルコール漬け液と、アロエベラのアルコール漬け液と、糖分と、ミネラル分とを含んで混合してなる液の発酵液が添加されている。 The pig farming method of one embodiment, the bubble drinking water is a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling solution of Kidachi aloe, and an alcohol pickling solution of aloe vera, A fermentation liquor, which is a mixture of sugar and mineral, is added.
 上記実施形態によれば、少なくともアロエを含む複数種類の植物を含む液を混合し抽出した植物由来エキス液と、キダチアロエのアルコール漬け液と、アロエベラのアルコール漬け液と、糖分と、ミネラル分とを含んで混合してなる液の発酵液が添加された飲用水を給与することにより、豚の肥育期間を更に短くできる。 According to the above-described embodiment, a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling liquid of Kidachi aloe, an alcohol pickling liquid of aloe vera, sugar, and minerals. By feeding the drinking water to which the fermented liquid of the liquid containing and mixed is added, the fattening period of the pig can be further shortened.
 本発明の他の側面によれば、食用の豚に給与される飲用水に含有される気体のウルトラファインバブルを製造するための養豚用ウルトラファインバブル製造器であって、
 円形断面を有するケーシングと、
 上記ケーシングの一端に接続され、上記ケーシングと同軸上に延在し、気体と水の混合流体を供給する供給管と、
 上記ケーシング内に少なくとも一部が収容され、上記供給管からケーシング内に供給された上記混合流体の旋回流を形成する複数の旋回流形成部を含み、これらの旋回流形成部で形成された旋回流を互いに衝突させて、上記混合流体の気体を微細化してウルトラファインバブル水を生成する微細化ブロックと、
 上記ケーシングの他端側に配置され、上記微細化ブロックで生成されたウルトラファインバブル水を上記ケーシングの外に排出する排出管と
 を備えることを特徴としている。
According to another aspect of the present invention, an ultrafine bubble producing apparatus for pig farming for producing an ultrafine bubble of a gas contained in drinking water fed to an edible pig,
A casing having a circular cross section,
A supply pipe connected to one end of the casing, extending coaxially with the casing, and supplying a mixed fluid of gas and water,
At least a part of the swirl flow forming part is accommodated in the casing and forms a swirl flow of the mixed fluid supplied from the supply pipe into the casing, and swirl formed by these swirl flow forming parts. A finer block that collides the flows with each other to finely atomize the gas of the mixed fluid to generate ultrafine bubble water,
And a discharge pipe disposed on the other end side of the casing for discharging the ultrafine bubble water generated by the miniaturization block to the outside of the casing.
 上記構成によれば、ケーシングと、供給管と、排出管と、上記ケーシング内に収容された微細化ブロックとで構成された養豚用ウルトラファインバブル製造器は、容易に小型化が可能である。また、この養豚用ウルトラファインバブル製造器は、混合流体の旋回流を形成する複数の旋回流形成部を含み、これらの旋回流形成部で形成された旋回流を互いに衝突させて、混合流体の気体を微細化してウルトラファインバブル水を生成する微細化ブロックを用いて構成されるので、気体のウルトラファインバブルを効率的に生成することができる。 According to the above configuration, the ultrafine bubble manufacturing apparatus for pig farming, which is composed of the casing, the supply pipe, the discharge pipe, and the miniaturized block housed in the casing, can be easily miniaturized. Further, this ultrafine bubble manufacturing apparatus for pig farming includes a plurality of swirl flow forming portions that form a swirl flow of the mixed fluid, collide swirl flows formed by these swirl flow forming portions with each other, and Since it is configured by using the atomization block that atomizes the gas to generate ultrafine bubble water, it is possible to efficiently generate the gas ultrafine bubbles.
 一実施形態の養豚用ウルトラファインバブル製造器は、上記微細化ブロックが、上記ケーシングと同軸の旋回軸回りに混合流体の旋回流を形成する上記旋回流形成部としての第1旋回室と、この第1旋回室よりも上記供給管から遠い側に形成され、上記ケーシングと同軸の旋回軸回りに、上記第1旋回室で形成される旋回流と反対向きに旋回する混合流体の旋回流を形成する上記旋回流形成部としての第2旋回室と、上記第1旋回室で形成された混合流体の旋回流と上記第2旋回室で形成された混合流体の旋回流とを衝突させる衝突室と、この衝突室で混合流体の旋回流が衝突してなるウルトラファインバブル水を排出管側に導く排出通路とを含み、
 上記排出管は、上記排出通路に連通するように上記微細化ブロックに連結され、上記微細化ブロックを上記ケーシング内に支持している。
In the ultrafine bubble manufacturing device for pig farming according to one embodiment, the miniaturization block includes a first swirl chamber as the swirl flow forming unit that forms a swirl flow of a mixed fluid around a swirl axis coaxial with the casing, and A swirl flow of the mixed fluid is formed on the side farther from the supply pipe than the first swirl chamber, and swirls in the opposite direction to the swirl flow formed in the first swirl chamber around the swirl axis coaxial with the casing. A second swirl chamber as the swirl flow forming section, and a collision chamber for colliding the swirl flow of the mixed fluid formed in the first swirl chamber with the swirl flow of the mixed fluid formed in the second swirl chamber. , A discharge passage for guiding the ultrafine bubble water formed by the swirling flow of the mixed fluid colliding in the collision chamber to the discharge pipe side,
The discharge pipe is connected to the miniaturization block so as to communicate with the discharge passage, and supports the miniaturization block in the casing.
 上記実施形態によれば、ケーシング内の微細化ブロックが、上記ケーシングと同軸の旋回軸回りに混合流体の旋回流を形成する第1旋回室と、この第1旋回室よりも上記供給管から遠い側に形成され、上記ケーシングと同軸の旋回軸回りに、上記第1旋回室で形成される旋回流と反対向きに旋回する混合流体の旋回流を形成する第2旋回室と、上記第1旋回室で形成された混合流体の旋回流と上記第2旋回室で形成された混合流体の旋回流とを衝突させる衝突室と、この衝突室で混合流体の旋回流が衝突してなるウルトラファインバブル水を排出管側に導く排出通路とを含んで形成されるので、養豚用ウルトラファインバブル製造器を小型にできる。また、上記排出管は、上記微細化ブロックの排出通路に連通するように上記微細化ブロックに連結され、この微細化ブロックを上記ケーシング内に支持するので、簡易な構造でケーシング内に微細化ブロックを収容できる。 According to the above-described embodiment, the miniaturized block in the casing is farther from the supply pipe than the first swirl chamber that forms the swirl flow of the mixed fluid around the swirl axis that is coaxial with the casing. A second swirl chamber that is formed on the side of the casing and that forms a swirl flow of a mixed fluid that swirls in the opposite direction to the swirl flow that is formed in the first swirl chamber around the swirl axis that is coaxial with the casing; Collision chamber for colliding the swirling flow of the mixed fluid formed in the chamber with the swirling flow of the mixed fluid formed in the second swirling chamber, and an ultra fine bubble formed by the swirling flow of the mixed fluid colliding in the collision chamber Since it is formed including a discharge passage for guiding water to the discharge pipe side, the ultra fine bubble maker for pig farming can be downsized. Further, the discharge pipe is connected to the miniaturization block so as to communicate with the discharge passage of the miniaturization block, and supports the miniaturization block in the casing. Therefore, the miniaturization block in the casing has a simple structure. Can accommodate.
 一実施形態の養豚用ウルトラファインバブル製造器は、上記微細化ブロックが、
 上記第1旋回室と、この第1旋回室の一端側へケーシング内の混合流体を第1旋回室の接線方向に導入する第1導入路と、上記第1旋回室の他端に形成されて旋回流を吐出する第1吐出孔とを有する第1ブロック部品と、
 上記第1ブロック部品に結合され、上記第2旋回室と、この第2旋回室の一端側へケーシング内の混合流体を第2旋回室の接線方向に導入する第2導入路と、上記第2旋回室の他端に形成されて上記第1ブロック部品の第1吐出孔と対向して旋回流を吐出する第2吐出孔と、上記第1ブロック部品に結合されて第1ブロック部品との間に形成される衝突室に面する衝突室表面と、この衝突室表面に形成され、上記衝突室のウルトラファインバブル水を上記排出通路に流入させる流入口と、上記第1ブロック部品が連結された側と反対側の端面に形成され、上記排出通路を流れたウルトラファインバブル水を排出する排出口とを有する第2ブロック部品と
を含んで形成されている。
The ultrafine bubble manufacturing device for pig farming of one embodiment, the miniaturized block,
The first swirl chamber, a first introduction path for introducing the mixed fluid in the casing into the tangential direction of the first swirl chamber to one end side of the first swirl chamber, and the first swirl chamber formed at the other end of the first swirl chamber. A first block part having a first discharge hole for discharging a swirl flow;
The second swirl chamber, a second introduction path for introducing the mixed fluid in the casing in a tangential direction of the second swirl chamber, the second swirl chamber being coupled to the first block component; Between a second discharge hole that is formed at the other end of the swirl chamber and that discharges a swirl flow in opposition to the first discharge hole of the first block component, and the first block component that is connected to the first block component. The surface of the collision chamber facing the collision chamber, the inlet for allowing the ultrafine bubble water of the collision chamber to flow into the discharge passage, and the first block component are connected to each other. And a second block part having an outlet for discharging the ultrafine bubble water that has flowed through the discharge passage.
 上記実施形態によれば、微細化ブロックが、第1ブロック部品と第2ブロック部品が結合されて形成される。上記第1ブロック部品は、第1旋回室と、この第1旋回室の一端側へケーシング内の混合流体を第1旋回室の接線方向に導入する第1導入路と、上記第1旋回室の他端に形成されて旋回流を吐出する第1吐出孔とを有する。また、上記第2ブロック部品は、第2旋回室と、この第2旋回室の一端側へケーシング内の混合流体を第2旋回室の接線方向に導入する第2導入路と、上記第2旋回室の他端に形成されて上記第1ブロック部品の第1吐出孔と対向して旋回流を吐出する第2吐出孔とを有する。更に、上記第2ブロック部品が、上記第1ブロック部品に結合されて第1ブロック部品との間に形成される衝突室に面する衝突室表面と、この衝突室表面に形成された流入口と上記第1ブロック部品が連結された側と反対側の端面に形成された排出口との間に延在する排出通路とを有する。このように形成された第1ブロック部品と第2ブロック部品により、小型の微細化ブロックを構成することができる。 According to the above embodiment, the miniaturized block is formed by combining the first block component and the second block component. The first block component includes a first swirl chamber, a first introduction path for introducing the mixed fluid in the casing into a tangential direction of the first swirl chamber to one end side of the first swirl chamber, and the first swirl chamber of the first swirl chamber. It has a 1st discharge hole formed in the other end and discharging a swirl flow. The second block component includes a second swirl chamber, a second introduction path for introducing the mixed fluid in the casing into one end side of the second swirl chamber in a tangential direction of the second swirl chamber, and the second swirl chamber. It has a second discharge hole formed at the other end of the chamber and facing the first discharge hole of the first block component to discharge a swirling flow. Further, the second block component has a collision chamber surface facing a collision chamber formed between the first block component and the first block component, and an inflow port formed on the collision chamber surface. And a discharge passage extending between a side to which the first block component is connected and a discharge port formed on the opposite end surface. With the first block component and the second block component thus formed, it is possible to configure a small miniaturized block.
 一実施形態の養豚用ウルトラファインバブル製造器は、上記第1導入路と第2導入路は、上記微細化ブロックの軸直角面に対して傾斜して形成されている。 In the ultrafine bubble manufacturing device for pig farming according to one embodiment, the first introduction path and the second introduction path are formed to be inclined with respect to the plane perpendicular to the axis of the miniaturized block.
 上記実施形態によれば、微細化ブロックの軸直角面に対して傾斜した第1導入路を通して混合流体を第1旋回室に導入することにより、第1旋回室内に、第1吐出孔に向かって旋回する旋回流を効果的に生成することができる。また、微細化ブロックの軸直角面に対して傾斜した第2導入路を通して混合流体を第2旋回室に導入することにより、第2旋回室内に、第2吐出孔に向かって旋回する旋回流を効果的に生成することができる。これにより、第1旋回室の第1吐出口と第2旋回室の第2吐出口との間に位置する衝突室で、第1旋回室からの旋回流と、第2旋回室からの旋回流を、強く衝突させることができ、その結果、各旋回流に含まれる気体のバブルを効果的に微細化して、気体のウルトラファインバブルを効率的に生成することができる。 According to the above-described embodiment, the mixed fluid is introduced into the first swirl chamber through the first introduction path inclined with respect to the plane perpendicular to the axis of the miniaturization block, so that the first swirl chamber faces the first discharge hole. A swirling flow that swirls can be effectively generated. Further, by introducing the mixed fluid into the second swirling chamber through the second introducing passage inclined with respect to the plane perpendicular to the axis of the miniaturization block, the swirling flow swirling toward the second discharge hole is generated in the second swirling chamber. It can be effectively generated. Thereby, in the collision chamber located between the first discharge port of the first swirl chamber and the second discharge port of the second swirl chamber, the swirl flow from the first swirl chamber and the swirl flow from the second swirl chamber Can be made to collide strongly, and as a result, the gas bubbles contained in each swirling flow can be effectively miniaturized, and the gas ultrafine bubbles can be efficiently generated.
 一実施形態の養豚用ウルトラファインバブル製造器は、上記微細化ブロックが、上記ケーシングと同軸方向に形成されて上記混合流体が導かれる処理流路と、この処理流路の上流端に上記混合流体を中心軸の偏心方向に導入して旋回流を形成する上記旋回流形成部としての第1偏心供給路と、上記処理流路の上記第1偏心供給路よりも下流側に上記混合流体を中心軸の上記第1偏心供給路と反対向きの偏心方向に導入し、上記第1偏心供給路で形成された旋回流に反対向きの旋回流を生成して衝突させる上記旋回流形成部としての第2偏心供給路とを含み、
 上記排出管は、上記微細化ブロックの処理流路の下流端に連結されている。
Ultrafine bubble manufacturing apparatus for pig farming of one embodiment, the miniaturization block, the processing flow path is formed coaxially with the casing and the mixed fluid is guided, the mixed fluid at the upstream end of the processing flow path. Is introduced in the eccentric direction of the central axis to form a swirl flow, and a first eccentric supply passage as the swirl flow forming portion, and the mixed fluid is centered on the downstream side of the first eccentric supply passage in the processing flow passage. The swirl flow forming section is introduced into the shaft in an eccentric direction opposite to the first eccentric supply passage, and generates a swirl flow in the opposite direction against the swirl flow formed in the first eccentric supply passage to collide. Including two eccentric supply paths,
The discharge pipe is connected to the downstream end of the processing channel of the miniaturization block.
 上記実施形態によれば、微細化ブロックが、ケーシングと同軸方向に形成されて上記混合流体が導かれる処理流路を含む。この処理流路の上流端に、混合流体を中心軸の偏心方向に導入して旋回流を形成する旋回流形成部としての第1偏心供給路が連通している。上記処理流路の上記第1偏心供給路よりも下流側に、混合流体を中心軸の上記第1偏心供給路と反対向きの偏心方向に導入する旋回流形成部としての第2偏心供給路が連通している。この第2偏心供給路により、上記第1偏心供給路で形成された旋回流に反対向きの旋回流を生成して衝突させることにより、混合流体に含まれる気体のバブルを効果的に微細化して、気体のウルトラファインバブルが生成される。このように、微細化ブロックが、処理流路と、第1偏心供給路と、第2偏心供給路を含んで構成されるので、養豚用ウルトラファインバブル製造器を小型にできる。 According to the above-described embodiment, the miniaturized block includes a processing flow path that is formed coaxially with the casing and guides the mixed fluid. A first eccentric supply passage as a swirl flow forming portion that forms a swirl flow by introducing the mixed fluid in the eccentric direction of the central axis communicates with the upstream end of the processing flow path. A second eccentric supply passage as a swirl flow forming unit for introducing the mixed fluid in the eccentric direction opposite to the first eccentric supply passage of the central axis is provided downstream of the first eccentric supply passage of the processing flow passage. It is in communication. By the second eccentric supply passage, the swirl flow formed in the first eccentric supply passage is caused to collide with the swirl flow in the opposite direction to collide with the swirl flow, whereby the gas bubbles contained in the mixed fluid are effectively miniaturized. , Ultra fine bubbles of gas are generated. As described above, since the miniaturization block is configured to include the processing flow path, the first eccentric supply path, and the second eccentric supply path, the ultrafine bubble maker for pig farming can be downsized.
 本発明の他の側面によれば、上記養豚用ウルトラファインバブル製造器を用いて形成された養豚用バブル飲用水製造装置であって、
 原料水を圧送する第1ポンプと、
 上記第1ポンプから圧送された原料水に気体を混合して混合流体を形成する混合器と、
 上記混合器の下流側に設けられた第2ポンプと、
 上記第2ポンプの下流側で混合流体を2つの経路に分岐する分岐部と、
 上記分岐部に接続され、流量調整弁と、第1の上記養豚用ウルトラファインバブル製造器とが介設され、この第1養豚用ウルトラファインバブル製造器で製造された気体のウルトラファインバブルを含有する水を上記混合器と第2ポンプの間に戻す戻し経路と、
 上記分岐部に接続され、第2の上記養豚用ウルトラファインバブル製造器が介設され、この第2養豚用ウルトラファインバブル製造器で製造された気体のウルトラファインバブルを含有する水を排出する排出経路と
を備えることを特徴としている。
According to another aspect of the present invention, a bubble drinking water production apparatus for pig farm formed using the ultrafine bubble producer for pig farm,
A first pump for pumping raw material water,
A mixer for forming a mixed fluid by mixing a gas with the raw material water pumped from the first pump;
A second pump provided on the downstream side of the mixer;
A branch portion that branches the mixed fluid into two paths downstream of the second pump;
The flow control valve and the first ultrafine bubble maker for pig farming, which are connected to the branch part, are interposed, and contain the gas ultrafine bubbles produced by the first ultrafine bubble maker for pig farming. A return path for returning the generated water between the mixer and the second pump,
The discharge which discharges the water containing the gas ultra fine bubble which was connected to the said branch part and which was equipped with the 2nd said ultra fine bubble manufacturing device for pig farms, and was manufactured with this 2nd ultra fine bubble manufacturing device for pig farming And a route.
 上記構成によれば、原料水が第1ポンプで圧送され、混合器によって原料水に気体が混合される。この混合器の下流側の第2ポンプにより圧送された混合流体が、分岐部で2つの経路に分岐される。分岐部に接続された戻し経路では、流量調整弁が開いているとき、第2ポンプから圧送された混合流体の一部が第1養豚用ウルトラファインバブル製造器に導かれ、混合流体中の気体が微細化されてウルトラファインバブルが形成される。この気体のウルトラファインバブルを含有する水は、混合器と第2ポンプの間に戻され、混合器からの混合流体と合流して第2ポンプに吸引される。一方、分岐部に接続された排出経路では、第2ポンプから圧送された混合流体の一部が第2養豚用ウルトラファインバブル製造器に導かれ、混合流体中の気体が微細化されてウルトラファインバブルが形成される。この気体のウルトラファインバブルを含有する水は、排出経路の下流側から排出され、食用豚の飲用水として用いられる。また、戻し経路の流量調整弁が閉じているとき、第2ポンプから圧送された混合流体の全部が第2養豚用ウルトラファインバブル製造器に導かれ、気体のウルトラファインバブルが形成され、この気体のウルトラファインバブルを含有する水が排出経路の下流側から排出される。流量調整弁の開度を調節することにより、第1養豚用ウルトラファインバブル製造器で形成されて第2ポンプに戻される気体のウルトラファインバブルを含む水の量を調節できる。したがって、排出経路から排出される水における気体のウルトラファインバブルの粒径や濃度を、効果的に調節することができる。 According to the above configuration, the raw water is pumped by the first pump, and the gas is mixed with the raw water by the mixer. The mixed fluid pumped by the second pump on the downstream side of the mixer is branched into two paths at the branch portion. In the return path connected to the branch portion, when the flow rate adjusting valve is open, part of the mixed fluid pumped from the second pump is guided to the first ultrafine bubble maker for pig farming, and the gas in the mixed fluid is discharged. Are miniaturized to form ultra fine bubbles. The water containing the gas ultrafine bubbles is returned between the mixer and the second pump, merges with the mixed fluid from the mixer, and is sucked by the second pump. On the other hand, in the discharge path connected to the branch portion, a part of the mixed fluid pumped from the second pump is guided to the second ultrafine bubble maker for pig farming, and the gas in the mixed fluid is atomized to produce ultrafine particles. A bubble is formed. The water containing the gas ultrafine bubbles is discharged from the downstream side of the discharge path and used as drinking water for the edible pig. Further, when the flow rate adjusting valve in the return path is closed, all of the mixed fluid pumped from the second pump is guided to the second ultrafine bubble producing device for pig farming, and gas ultrafine bubbles are formed. The water containing the ultra fine bubbles is discharged from the downstream side of the discharge path. By adjusting the opening of the flow rate adjusting valve, it is possible to adjust the amount of water containing the gas, which is formed by the first ultrafine bubble maker for pig farming and is returned to the second pump. Therefore, it is possible to effectively control the particle size and concentration of the gas ultrafine bubbles in the water discharged from the discharge path.
 一実施形態の養豚用飲用水製造装置は、上記ウルトラファインバブル製造器を用いて形成されたウルトラファインバブル水製造装置であって、
 気体が原料水に混合されてなる混合流体を圧送する第1ポンプと、
 上記第1ポンプの吐出側と吸入側との間に接続され、上記第1ポンプから吐出された混合流体に気体を混合して上記第1ポンプの吸入側に戻す混合器と、
 上記第1ポンプの下流側に設けられた上記養豚用ウルトラファインバブル製造器と、
 上記養豚用ウルトラファインバブル製造器の下流側に接続された第2ポンプと、
 上記第2ポンプの下流側に接続された気液分離器と、
 上記気液分離器で分離された液体を排出する排出経路と
を備える。
The pig water drinking water production apparatus of one embodiment is an ultrafine bubble water production apparatus formed using the ultrafine bubble production apparatus,
A first pump for pumping a mixed fluid in which gas is mixed with raw material water;
A mixer connected between the discharge side and the suction side of the first pump, for mixing gas into the mixed fluid discharged from the first pump and returning the mixed fluid to the suction side of the first pump;
An ultra fine bubble manufacturing device for pig farming, which is provided on the downstream side of the first pump;
A second pump connected to the downstream side of the ultra fine bubble manufacturing device for pig farming,
A gas-liquid separator connected to the downstream side of the second pump,
And a discharge path for discharging the liquid separated by the gas-liquid separator.
 上記実施形態によれば、気体が原料水に混合されてなる混合流体が第1ポンプで圧送される。この第1ポンプから吐出された混合流体の一部は、上記第1ポンプの吐出側と吸入側との間に接続された混合器に導かれ、この混合器により、混合流体に気体が混合される。混合器で気体が混合された混合流体は、上記第1ポンプの吸入側に戻される。上記第1ポンプから吐出された混合流体の他の部分は、下流側に設けられた養豚用ウルトラファインバブル製造器に導かれ、混合流体中の気体が微細化されてウルトラファインバブルが形成される。このウルトラファインバブルを含有する水は、養豚用ウルトラファインバブル製造器の下流側に接続された第2ポンプに吸引され、この第2ポンプの下流側に接続された気液分離器に向かって吐出される。気液分離器に導かれたウルトラファインバブルを含有する水は、この水と共に導かれた気体が分離さる。気液分離器で気体が分離されて残った液体であるウルトラファインバブルを含有する水が、排出経路を通って排出される。第1ポンプと第2ポンプの間に養豚用ウルトラファインバブル製造器を介設し、主に第2ポンプの動作を調節することにより、ウルトラファインバブルを含有する水の生成量を安定させることができる。 According to the above-mentioned embodiment, the first pump pumps the mixed fluid in which the gas is mixed with the raw material water. A part of the mixed fluid discharged from the first pump is guided to a mixer connected between the discharge side and the suction side of the first pump, and the mixed fluid mixes gas with the mixed fluid. It The mixed fluid in which the gas is mixed in the mixer is returned to the suction side of the first pump. The other part of the mixed fluid discharged from the first pump is introduced to an ultra fine bubble manufacturing device for pig farms provided on the downstream side, and the gas in the mixed fluid is atomized to form ultra fine bubbles. .. The water containing the ultra fine bubbles is sucked by the second pump connected to the downstream side of the ultra fine bubble manufacturing device for pig farming and discharged toward the gas-liquid separator connected to the downstream side of the second pump. To be done. The water containing ultrafine bubbles introduced into the gas-liquid separator is separated from the gas introduced together with this water. Water containing ultrafine bubbles, which is the liquid that remains after the gas is separated by the gas-liquid separator, is discharged through the discharge path. It is possible to stabilize the production amount of water containing ultrafine bubbles by interposing an ultrafine bubble manufacturing device for pig farming between the first pump and the second pump and mainly adjusting the operation of the second pump. it can.
 一実施形態の養豚用バブル飲用水製造装置は、上記第2ポンプが、カスケードポンプである。 In the bubble drinking water manufacturing apparatus for pig farming according to one embodiment, the second pump is a cascade pump.
 上記実施形態によれば、第2ポンプとしてカスケードポンプを用いることにより、気体のウルトラファインバブルを含有する水を、安定して生成することができる。 According to the above-described embodiment, by using the cascade pump as the second pump, it is possible to stably generate water containing gaseous ultrafine bubbles.
本発明の実施形態の養豚方法が適用される豚舎を示す模式図である。It is a schematic diagram which shows the pig pen to which the pig raising method of embodiment of this invention is applied. 本発明の実施形態の養豚用バブル飲用水製造装置を示す模式図である。It is a schematic diagram which shows the bubble drinking water manufacturing apparatus for pig farms of embodiment of this invention. 本発明の実施形態の養豚用ウルトラファインバブル製造器の縦断面図である。It is a longitudinal cross-sectional view of the ultra fine bubble manufacturing device for pig farming of the embodiment of the present invention. 図3の矢視Bによる養豚用ウルトラファインバブル製造器の横断面図である。FIG. 4 is a transverse cross-sectional view of the ultrafine bubble maker for pig farming as viewed in the direction of arrow B in FIG. 3. 図3の矢視Cによる養豚用ウルトラファインバブル製造器の横断面図である。FIG. 4 is a cross-sectional view of the ultrafine bubble manufacturing device for pig farming as viewed in the direction of arrow C in FIG. 3. 養豚用ウルトラファインバブル製造器の第1ブロックを示す断面図である。It is sectional drawing which shows the 1st block of the ultra fine bubble manufacturing apparatus for pig farming. 養豚用ウルトラファインバブル製造器の第2ブロックを示す断面図である。It is sectional drawing which shows the 2nd block of the ultra fine bubble manufacturing apparatus for pig farming. 他の養豚用ウルトラファインバブル製造器を示す縦断面図である。It is a longitudinal cross-sectional view showing another ultra fine bubble manufacturing device for pig farming. 図8の矢視Dによる養豚用ウルトラファインバブル製造器の横断面図である。FIG. 9 is a cross-sectional view of the ultrafine bubble maker for pig farming taken along the arrow D in FIG. 8. 図8の矢視Eによる養豚用ウルトラファインバブル製造器の横断面図である。FIG. 9 is a cross-sectional view of the ultrafine bubble maker for pig farming taken along arrow E in FIG. 8. 他の養豚用バブル飲用水製造装置を示す模式図である。It is a schematic diagram which shows the bubble drinking water manufacturing apparatus for other pig farming.
 以下、本発明の実施形態を、添付の図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 本発明の実施形態の養豚方法は、食用豚に、気体としての空気のウルトラファインバブルを含有するバブル飲用水を与えることにより、食用の肉を上記豚から得るものである。 The pig breeding method of the embodiment of the present invention obtains edible meat from the pig by giving bubble drinking water containing ultrafine bubbles of air as gas to the pig.
 ウルトラファインバブルは、直径が1μm以下の気泡であり、可視光の波長よりも小さいものは、液体中に形成されても視認できない。また、ウルトラファインバブルは、直径が1μm以上の気泡であるマイクロバブルと比較して、浮上速度が小さく、液体中に長時間滞在することができる。また、ウルトラファインバブルは、マイクロバブルと比較して、表面積が大きく、自己加圧効果を有し、マイナス電荷の帯電作用を有する。このような特徴に基づき、空気のウルトラファインバブルを添加した水を飲用水として食用豚に給与することにより、豚の成長の促進や、豚肉の品質の向上等の効果が得られる。 Ultrafine bubbles are bubbles with a diameter of 1 μm or less, and those smaller than the wavelength of visible light cannot be visually recognized even if they are formed in a liquid. In addition, ultrafine bubbles have a smaller floating speed than microbubbles, which are bubbles having a diameter of 1 μm or more, and can stay in liquid for a long time. In addition, ultrafine bubbles have a larger surface area than microbubbles, have a self-pressurizing effect, and have a negative charging effect. On the basis of such characteristics, by feeding the water added with air ultra fine bubbles to the edible pig as drinking water, effects such as promotion of pig growth and improvement of pork quality can be obtained.
 食用豚は、例えば富士桜種の場合、体重が約30kgの時期から肥育を開始し、出荷に適した110kgの体重に達するまでの期間は、季節等の条件により異なるが、概ね80日~90日である。ここで、空気のウルトラファインバブルを添加したバブル飲用水を、肥育期間の豚に給与することにより、豚の出荷を肥育の開始から例えば75日~80日程度に短縮することができる。すなわち、空気のウルトラファインバブルを有しない通常飲用水を給与して肥育するよりも、食用豚の成長を促進することができ、肥育期間の短縮を行うことができる。肥育期間を短縮すると、豚を早く出荷できるので、豚の養育効率を効果的に高めることができる。豚にバブル飲用水を給与する期間は、肥育期間の一部でもよく、全部でもよい。 For example, in the case of Fuji Sakura varieties, edible pigs start fattening at a time of about 30 kg and reach a suitable weight of 110 kg for shipment, depending on the season and other conditions. Is the day. Here, by supplying bubble drinking water to which ultrafine bubbles of air are added to pigs in the fattening period, the shipment of the pigs can be shortened to, for example, about 75 to 80 days after the start of fattening. That is, the growth of the edible pig can be promoted and the fattening period can be shortened, as compared with the case of feeding normal drinking water that does not have ultrafine bubbles of air for fattening. If the fattening period is shortened, the pigs can be shipped quickly, and the raising efficiency of the pigs can be effectively increased. The period for feeding bubble drinking water to pigs may be a part of the fattening period or the whole period.
 また、豚にバブル飲用水を給与することにより、豚の飼料の消費量を、通常飲用水を給与した場合よりも削減できる。ここで、飼料の消費量の低減効果は、豚の肥育期間のうちの後半にバブル飲用水を給与した場合に顕著である。なお、豚の飼料の消費量は、豚の体重によって異なるので、複数の食用豚を養育する豚舎で所定期間に消費された飼料の質量を、この豚舎に存在する食用豚の全ての質量で除して求められた飼料要求率により比較を行うのが好ましい。例えば、肥育期間の少なくとも一部にバブル飲用水を給与した場合、通常飲用水を給与した場合よりも、飼料要求率を約10%~20%低減させることができる。 Also, feeding bubble drinking water to pigs can reduce the amount of feed consumed by pigs as compared to the case where regular drinking water is fed. Here, the effect of reducing feed consumption is remarkable when bubble drinking water is fed in the latter half of the fattening period of pigs. The amount of feed consumed by pigs depends on the weight of the pig, so the weight of the feed consumed in a given period in a pig pen that raises multiple edible pigs should be divided by the total weight of the edible pigs in this pig pen. It is preferable to perform the comparison based on the feed conversion rate thus obtained. For example, when bubble drinking water is supplied for at least a part of the fattening period, the feed requirement rate can be reduced by about 10% to 20% compared to when normal drinking water is supplied.
 また、豚にバブル飲用水を給与することにより、この豚から得られる肉の品質を、通常飲用水を給与した場合よりも改善することができる。豚肉の品質が改善される例として、肥育期間の少なくとも一部にバブル飲用水を給与した場合、通常飲用水を給与した場合よりも、豚肉のドリップロスを約30%~40%低減させることができる。 Also, by supplying the pig with bubble drinking water, the quality of the meat obtained from this pig can be improved as compared with the case of supplying normal drinking water. As an example of improving the quality of pork, when bubble drinking water is fed during at least part of the fattening period, it is possible to reduce drip loss of pork by about 30% to 40% compared to when normal drinking water is fed. it can.
 また、豚肉の他の品質の改善例として、肥育期間の少なくとも一部にバブル飲用水を給与した場合、通常飲用水を給与した場合よりも、豚肉の筋肉内脂肪含量を約20%~40%増加させることができる。豚肉の筋肉内脂肪含量が増加すると、赤身の肉にサシの入ったいわゆる霜降り状態となる。 In addition, as another example of improving the quality of pork, when the bubble drinking water was fed for at least a part of the fattening period, the intramuscular fat content of the pork was about 20% to 40% higher than when normal drinking water was fed. Can be increased. When the muscle fat content of pork increases, so-called marbling with red meat and sardines.
 また、豚肉の他の品質の改善例として、肥育期間の少なくとも一部にバブル飲用水を給与した場合、通常飲用水を給与した場合よりも、豚肉の伸展率を約1%~20%増加させることができる。豚肉の伸展率が増加すると、柔らかさが増大する。 As another example of improving the quality of pork, when the bubble drinking water is fed for at least a part of the fattening period, the extension rate of the pork is increased by about 1% to 20% as compared with the case where the normal drinking water is fed. be able to. As pork stretch rate increases, tenderness increases.
 また、豚肉の他の品質の改善例として、肥育期間の少なくとも一部にバブル飲用水を給与した場合、通常飲用水を給与した場合よりも、豚肉に含まれる多価不飽和脂肪酸の量を、約20%~30%減少させることができる。多価不飽和脂肪酸は、例えばリノール酸やリノレン酸等であり、悪臭の原因となる。したがって、バブル飲用水を給与することにより、豚肉に含まれる多価不飽和脂肪酸の量を減少させて、豚肉の悪臭の防止が可能となる。 In addition, as an example of improving other quality of pork, when bubble drinking water is fed to at least a part of the fattening period, the amount of polyunsaturated fatty acid contained in pork is higher than when normal drinking water is fed, It can be reduced by about 20% to 30%. The polyunsaturated fatty acid is, for example, linoleic acid, linolenic acid or the like, which causes a bad odor. Therefore, by supplying the bubble drinking water, the amount of polyunsaturated fatty acid contained in pork can be reduced and the malodor of pork can be prevented.
 また、豚肉の他の品質の改善例として、肥育期間の少なくとも一部にバブル飲用水を給与した場合、通常飲用水を給与した場合よりも、豚肉に含まれる一価不飽和脂肪酸の量を、約1%~5%大きくさせることができる。一価不飽和脂肪酸は、例えばパルミトレイン酸やオレイン酸が該当し、人体のLDL(Low Density Lipoprotein:低密度リポ蛋白)コレステロールを低下させる作用や、肉の舌触りを良好にする作用がある。したがって、LDLコレステロールを低下でき、舌触りの良い豚肉が得られる。 In addition, as an example of improving other quality of pork, when bubble drinking water is fed to at least a part of the fattening period, the amount of monounsaturated fatty acids contained in pork is higher than when normal drinking water is fed, It can be increased by about 1% to 5%. The monounsaturated fatty acid corresponds to, for example, palmitoleic acid and oleic acid, and has an action of lowering LDL (Low Density Lipoprotein) cholesterol of the human body and an action of improving the texture of meat. Therefore, LDL cholesterol can be reduced, and pork with a good texture can be obtained.
 本実施形態で飲用水として用いる空気のウルトラファインバブル含有水は、空気のウルトラファインバブルの直径が1nm以上1000nm以下であれば、特に限定されない。空気のウルトラファインバブルの直径が1000nmを超えると、豚の成長の促進が不十分となる可能性がある。好ましくは、飲用水に含まれる空気のウルトラファインバブルの直径は10nm以上500nm以下であり、更に好ましくは20nm以上300nm以下である。飲用水に含まれる空気のウルトラファインバブルの直径が20nm以上300nm以下であることにより、豚の成長を効果的に促進することができる。本実施形態では、ウルトラファインバブルの径は、レーザー回析・散乱法により測定した。 The ultrafine bubble-containing water of air used as drinking water in the present embodiment is not particularly limited as long as the diameter of the ultrafine bubbles of air is 1 nm or more and 1000 nm or less. If the diameter of ultrafine bubbles of air exceeds 1000 nm, the promotion of pig growth may be insufficient. The diameter of the ultrafine bubbles of air contained in the drinking water is preferably 10 nm or more and 500 nm or less, more preferably 20 nm or more and 300 nm or less. When the diameter of the air ultrafine bubbles contained in the drinking water is 20 nm or more and 300 nm or less, the growth of pigs can be effectively promoted. In the present embodiment, the diameter of the ultra fine bubbles was measured by the laser diffraction/scattering method.
 本実施形態の飲用水として用いる空気のウルトラファインバブル含有水は、空気のウルトラファインバブルの濃度が、1×10個/mL以上であり、上限は特に限定されないが、作製の容易性から、1012個/mL以下である。空気のウルトラファインバブルの濃度が1×10個/mLを下回ると、豚の成長の促進が不十分となる可能性がある。好ましくは、空気のウルトラファインバブルの濃度は、1×10個/mL以上3×10個/mL以下であり、特に好ましくは1×10個/mL以上2×10個/mL以下である。飲用水の空気のウルトラファインバブルの濃度を1×10個/mL以上2×10個/mL以下にすることにより、豚の成長を効果的に促進することができる。 The ultrafine bubble-containing water of air used as drinking water of the present embodiment has a concentration of ultrafine bubbles of air of 1×10 7 cells/mL or more, and the upper limit is not particularly limited, but from the ease of production, It is 10 12 pieces/mL or less. If the concentration of ultrafine bubbles in the air is lower than 1×10 7 cells/mL, promotion of pig growth may be insufficient. The concentration of ultrafine bubbles in air is preferably 1×10 7 cells/mL or more and 3×10 8 cells/mL or less, and particularly preferably 1×10 8 cells/mL or more and 2×10 8 cells/mL or less. Is. By setting the concentration of ultrafine bubbles in the air of drinking water to 1×10 8 cells/mL or more and 2×10 8 cells/mL or less, the growth of pigs can be effectively promoted.
 空気のウルトラファインバブルを含有するバブル飲用水は、食用豚に、何時の段階で給与してもよい。好ましくは、バブル飲用水は、体重が30kgを越えて子豚育成期が終了し、肥育用豚舎等に導入されて肥育期に入る豚に給与を開始することができる。あるいは、肥育期間を2つ以上に分け、これらのうち2番目以降の期間にバブル飲用水を給与してもよい。例えば体重が70kgに達するまでを肥育前期とし、体重が70kgを越えて110kgに達するまでを肥育後期として、肥育後期にバブル飲用水を給与してもよい。肥育前期には通常飲用水を給与する一方、肥育後期にバブル飲用水を給与することにより、肥育後期の飼料要求率を効果的に低減することができる。  Bubble drinking water containing ultrafine bubbles of air may be fed to edible pigs at any time. Preferably, the bubble drinking water can be fed to pigs having a weight of more than 30 kg and having finished the piglet breeding period and being introduced into a fattening pig pen or the like to enter the fattening period. Alternatively, the fattening period may be divided into two or more, and the bubble drinking water may be supplied during the second and subsequent periods. For example, until the body weight reaches 70 kg is the fattening early period, and when the body weight exceeds 70 kg and reaches 110 kg is the late fattening period, bubble drinking water may be fed in the late fattening period. While normal drinking water is fed in the early period of fattening, and bubble drinking water is fed in the late period of fattening, the feed requirement rate in the late period of fattening can be effectively reduced.
 食用豚に給与する飲用水は、空気のウルトラファインバブルに加えて、植物抽出物混合発酵液を添加してもよい。植物抽出物混合発酵液は、少なくともアロエを含む複数種類の植物を含む液を混合し抽出した植物由来エキス液と、キダチアロエのアルコール漬け液と、アロエベラのアルコール漬け液と、米ぬか液と、糖分と、ミネラル分とを含んで混合してなる液にミネラル分と灰分を加えた液の発酵液である。 The drinking water to be fed to edible pigs may contain the plant extract mixed fermented liquid in addition to the air ultra fine bubbles. The plant extract mixed fermented liquid is a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling liquid of Kidachi aloe, an alcohol pickling liquid of aloe vera, rice bran liquid, and sugar. A fermentation liquid of a liquid obtained by adding a mineral component and an ash component to a liquid containing a mixture of a mineral component and a mineral component.
 上記植物抽出物混合発酵液の植物由来エキス液は、(a)少なくともアロエと糖分とミネラル分とを含む第1液と、(b)少なくともアロエと糖分と塩分とを含む第2液と、(c)アロエを含む複数種類の植物のアルコール抽出液と、アロエを含む複数種類の植物の糖抽出液と、複数種類の植物を混合して煮沸抽出した液と複数種類の植物エキスのアルコール抽出液とを含む第3液とを含むことが好ましい。 The plant-derived extract solution of the above-mentioned plant extract mixed fermented solution comprises (a) a first liquid containing at least aloe, sugar and mineral, and (b) a second liquid containing at least aloe, sugar and salt ( c) Alcohol extract of plural kinds of plants containing aloe, sugar extract of plural kinds of plants containing aloe, liquid obtained by boiling and mixing plural kinds of plants, and alcohol extract of plural kinds of plant extracts It is preferable to include a third liquid containing and.
 上記植物抽出物混合発酵液の植物由来エキス液を形成する第1液としては、第1の黒糖アロエ液を採用できる。第1の黒糖アロエ液は、次のようにして作成することができる。まず、キダチアロエ15kgに対し、黒糖15kg、はちみつ7kg、梅エキス500cc、濃縮ミネラル液100ccの割合で混合し、1週間熟成し、液を搾取して、搾りとった液を第1液とする。上記濃縮ミネラル液は、海水を50倍に濃縮して作成した。アロエは100万分の1mmの大きさまで微粒子化処理して使用する。以下、アロエ及びアロエベラをはじめとする植物は同様に処理する。これによりイオン化されやすくなる。 The first brown sugar aloe liquid can be adopted as the first liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermentation liquid. The first brown sugar aloe liquid can be prepared as follows. First, brown sugar 15 kg, brown sugar 15 kg, honey 7 kg, plum extract 500 cc, and concentrated mineral liquid 100 cc are mixed with 15 kg of yellowtail aloe, aged for 1 week, the liquid is squeezed, and the squeezed liquid is used as the first liquid. The concentrated mineral liquid was prepared by concentrating seawater 50 times. Aloe is used after being made into fine particles to a size of 1/100,000 mm. Hereinafter, plants such as aloe and aloe vera are treated in the same manner. This facilitates ionization.
 上記植物抽出物混合発酵液の植物由来エキス液を形成する第2液としては、次のようにして作成される第2の黒糖アロエ液を採用できる。アロエエキス30リットルに対し、ブラウンシュガー15kg、黒糖15kg、自然塩200gの割合で混合し、混合した液を煮溶かして得た液を第2液とする。 The second brown sugar aloe liquid prepared as follows can be adopted as the second liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermentation liquid. 30 kg of aloe extract is mixed with 15 kg of brown sugar, 15 kg of brown sugar and 200 g of natural salt, and the mixed solution is boiled to obtain a second solution.
 上記植物抽出物混合発酵液の植物由来エキス液を形成する第3液としては、次のようにして作成される抽出液A、抽出液B、抽出液C及び抽出液Dを混合してなる野菜エキス液を採用できる。まず、長茄子、キュウリ、マッシュルーム、かぼちゃ、絹さや、いんげん、まいたけ、しめじ、小松菜、オレンジ、竹の子、ショウガ、フキ葉、梨、ふきのとう、にがうり、ほうれん草、紅玉、アロエベラ、青リンゴ、いちじく、セロリ、洋梨、はこべ、米ぬか、はぶ茶、ハスの葉、ウコン、黒豆、シイタケ、黄粉、まつたけ、ゴマ、クマザサ、しいの実、伊予柑、ザボン、プルーン、枝豆、エノキ茸、ピーマン、かぶ、柿葉、マンゴー、いちご、バジリコ、パイナップル、トマト、シシトウ、里芋、春菊、エシャレット葡萄、柿、月桂樹、洋梨、メロン、赤じそ、ほうじ茶、はと麦、人参、キウイ、クワイ、山うど、柚子、ライム、キンカン、ハス、レモン、とうがん、ジャスミン、ニンニク、松葉、玉葱、ターサ、芋がら、ブロッコリー、クレソン、みかん、グレープフルーツ、パパイヤ、パセリ、京みぶな、おおばこ、梅エキス、ワラビ、どくだみ、山芋、カリフラワー、アスパラ、銀杏葉、セリ、ザクロ、ツルムラサキ、菜の花、プ―アール、山クラゲ、そばの実、ペパーミント、花梨、ムラベツ、キャベツ、グリーンリーフ、根三ツ葉、サラダ菜、レタス、京菜、小豆、大根、タンポポ、ルイボス、からしな、空豆、なめこ、たらの芽、紅だて、ラディッシュ、棄玉葱、ニラ、ポンカン、水仙、わかめ、スペアミント、落花生、ピスタチオ、じゃが芋、枇杷薫、杏、ハイビスカス、くるみ、レモンバーベナ、レモンパーム、レモングラス、カモマイルジャーマン、レモンディライト、赤とさか、青とさか、伊勢海老キチンキトサンの137種の各材料を、それぞれが少なくとも重量比で0.2%以上の割合になるような任意の割合で、皮や殻など全て丸ごと混合し、混合材Aを作成する。この混合材A1kgに対し、1.5リットルのアルコールの割合で抽出を行い、抽出液A(アルコール抽出液)を得る。 The third liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermented liquid is a vegetable prepared by mixing the extract liquid A, the extract liquid B, the extract liquid C, and the extract liquid D prepared as follows. Extract liquid can be used. First, Naga eggplant, cucumber, mushrooms, pumpkin, silk pods, green beans, maitake mushrooms, shimeji mushrooms, komatsuna, oranges, bamboo shoots, ginger, butterbur leaves, pears, butterbur sprouts, cucumber, spinach, red balls, aloe vera, green apple, figs, celery, Pears, halves, rice bran, habucha, lotus leaves, turmeric, black beans, shiitake mushrooms, yellow powder, matsutake mushrooms, sesame seeds, kumamazasa, shiinomi, iyokan, pomelo, prune, edamame, enoki mushrooms, peppers, turnips, persimmon leaves , Mango, strawberry, basil, pineapple, tomato, shishito, taro, garland chrysanthemum, shallot grape, persimmon, laurel, pear, melon, ajiso, hojicha, hatome, carrot, kiwi, kwai, mountain udo, citron, lime, kumquat , Lotus, Lemon, Togan, Jasmine, Garlic, Matsuba, Onion, Tartha, Potato, Broccoli, Watercress, Mandarin oranges, Grapefruit, Papaya, Parsley, Kyoto mibuna, Aunt, Plum extract, Bracken, Dodami, Yam, Cauliflower, Asparagus , Ginkgo leaves, apricots, pomegranate, vine, rape blossoms, pearl, mountain jellyfish, buckwheat nuts, peppermint, quince, murabetsu, cabbage, green leaf, root soup, salad, lettuce, kyosai, adzuki bean, radish, dandelion , Rooibos, mustard, soybean, nameko, cod roe, red bud, radish, abandoned onion, leek, poncan, narcissus, seaweed, spearmint, peanut, pistachio, potato, loquat, apricot, hibiscus, walnut, lemon Verbena, Lemon Palm, Lemongrass, Camomile German, Lemon Delight, Red Toka, Blue Toka, and 137 kinds of Ise shrimp chitin chitosan, each of which is at least 0.2% by weight. Whole materials such as skins and shells are mixed at an arbitrary ratio to prepare a mixed material A. Extraction liquid A (alcohol extraction liquid) is obtained by extracting with 1 liter of this mixed material A at a ratio of 1.5 liters of alcohol.
 次に、にんにく、青梅、キダチアロエの各材料を、それぞれが少なくとも重量比で10%以上の割合になるような任意の割合で、皮など全て丸ごと混合し、混合材Bを得る。混合材B1kgに対して1kgの黒糖の割合で抽出を行い、抽出液B(糖抽出液)を得る。抽出液Bの抽出法は、糖抽出すなわち糖による浸透圧を利用した抽出である。 Next, the ingredients such as garlic, ome, and kidachi aloe are mixed in whole at an arbitrary ratio such that the ratio of each is at least 10% by weight, and the whole material such as leather is mixed to obtain a mixture B. Extraction is performed at a ratio of 1 kg of brown sugar to 1 kg of the mixed material B to obtain an extraction liquid B (sugar extraction liquid). The extraction method of the extract B is sugar extraction, that is, extraction utilizing the osmotic pressure of sugar.
 さらに、ウコン、大根、人参、メシマコブ、レイシ、アガリスク、牛蒡、米ぬか、スギナの各材料を、それぞれが少なくとも重量比で5%以上の割合になるような任意の割合で、皮など全て丸ごと混合し、混合材Cを得る。混合材Cを煮沸して抽出を行い、抽出液C(煮沸抽出液)を得る。 In addition, turmeric, radish, carrot, Phellinus linteus, litchi, agarisk, burdock root, rice bran, and horsetail are mixed in whole proportions, such as at least 5% by weight, each in whole. , A mixed material C is obtained. The mixed material C is boiled and extracted to obtain an extract liquid C (boiled extract liquid).
 さらに、ウコンエキス、クマザサ液、クレソン液、スギナ液、ゴボウエキス、にんにくエキス、ワラビエキス、赤シソエキス、マイタケエキス、メシマコブエキス、レイシエキス、アガリスクエキス、大根エキス、人参エキス、羅漢花エキス、オオバエキス、シシトウエキス、昆布エキスの各材料を、大根エキスのみ2倍量で他は全て同じ重量ずつの割合で、皮など全て丸ごと混合し、混合材Dを得る。混合材D1kgに対し1.5リットルのアルコールの割合で抽出を行い、抽出液D(アルコール抽出液)を得る。 Furthermore, turmeric extract, kumazasa solution, watercress solution, horsetail solution, burdock extract, garlic extract, bracken extract, red perilla extract, maitake extract, messhikobu extract, litchi extract, agarisk extract, radish extract, ginseng extract, luohana extract, ova extract. , The shishito extract and the kelp extract are mixed with the radish extract in a double amount, and the other ingredients are mixed in the same weight, and the whole material such as the skin is mixed to obtain a mixture D. Extraction is performed at a ratio of 1.5 liters of alcohol to 1 kg of the mixed material D to obtain an extraction liquid D (alcohol extraction liquid).
 上記抽出液A、抽出液B、抽出液C及び抽出液Dを、それぞれが少なくとも重量比で10%以上の割合になるような任意の割合で、混合し、第3液を得る。 The above-mentioned extract A, extract B, extract C and extract D are mixed at an arbitrary ratio such that each of them is at least 10% by weight, to obtain a third liquid.
 第4液としてのキダチアロエのアルコール漬け液は、次のようにして作成することができる。まず、みじん切りにしたキダチアロエ13kgを20リットルのポリタンクにいれて、35度の焼酎をポリタンクが満杯になるまで注ぐ。1週間放置した後、これを搾取して第4液を得る。第4液はキダチアロエのアルコール漬け液である。第4液の原料は、アロエの中でも特に、薬効の高いキダチアロエが適する。 The alcoholic solution of Kidachi aloe as the 4th liquid can be prepared as follows. First, put 13 kg of chopped Kidachi aloe in a 20-liter plastic tank and pour 35 degrees of shochu until the plastic tank is full. After standing for 1 week, this is squeezed to obtain a fourth liquid. The fourth solution is a solution of Kidachi aloe pickled in alcohol. Among the aloe, as the raw material of the fourth liquid, Kidachi aloe having a high medicinal effect is particularly suitable.
 第5液としてのアロエベラのアルコール漬け液は、次のようにして作成することができる。まず、みじん切りにしたアロエベラ13kgを20リットルのポリタンクにいれて、35度の焼酎をポリタンクが満杯になるまで注ぐ。1週間放置した後、これを搾取して第5液が得られる。第5液はアロエベラのアルコール漬け液である。第5液は、食用可能であるアロエベラを用いることが好ましい。 Alcoholic solution of aloe vera as the fifth liquid can be prepared as follows. First, put 13 kg of chopped aloe vera in a 20-liter plastic tank and pour 35 degrees of shochu until the plastic tank is full. After standing for 1 week, this is squeezed to obtain a fifth liquid. The fifth liquid is an alcohol pickling liquid of aloe vera. As the fifth liquid, it is preferable to use edible aloe vera.
 上記第1液、第2液、第3液、第4液及び第5液、はちみつ、上記濃縮ミネラル液、プロポリス液、キチンキトサンエキスを、それぞれが少なくとも重量比で5%以上の割合になるような任意の割合で、混合し、第6液を得る。 The first liquid, the second liquid, the third liquid, the fourth liquid and the fifth liquid, honey, the concentrated mineral liquid, the propolis liquid, and the chitin chitosan extract are each at least 5% by weight. And mixed at an arbitrary arbitrary ratio to obtain a sixth liquid.
 上記第1液~第5液を作成する過程で排出された搾りカス1kgに対し黒糖500g、はちみつ500gの割合で混合し、1週間熟成して、液を搾取する。搾取した液を第7液とする。 1Mix 1kg of squeeze discharged in the process of making the above 1st to 5th liquids, 500g of brown sugar and 500g of honey are mixed and aged for 1 week to extract the liquid. The extracted liquid is referred to as the seventh liquid.
 上記第6液に、ミネラル分としての上記濃縮ミネラル液を、第6液が少なくとも60%以上、その他がそれぞれ重量比で1%以上20%以内の割合になるような任意の割合で混合する。この混合液に、第6液のもとである第1液、第4液及び第5液と、第7液とを、それぞれ全体量の10%以下となる範囲で加えて全体量を調整し、2週間程度常温にて保管して発酵させ、酸味がでてきたら、煮沸殺菌を行い、植物抽出物混合発酵液が得られる。上記草木灰は、草木を焼いてつくった灰である。また、上記糖分として黒糖を用いたが、ブドウ糖等、他の糖でもよい。 The 6th liquid is mixed with the above concentrated mineral liquid as a mineral component at an arbitrary ratio such that the 6th liquid is at least 60% or more, and the others are 1% or more and 20% or less by weight. The first liquid, the fourth liquid, the fifth liquid, and the seventh liquid, which are the source of the sixth liquid, were added to this mixed liquid in the range of 10% or less of the total amount to adjust the total amount. It is stored at room temperature for about 2 weeks and fermented, and when it becomes sour, it is sterilized by boiling to obtain a mixed extract of plant extracts. The above-mentioned plant ash is ash produced by burning plants. Moreover, although brown sugar was used as the above-mentioned sugar, other sugars such as glucose may be used.
 上記植物抽出物混合発酵液を、空気のウルトラファインバブルを含有する水に添加して、食肉用の豚の飲用水を作成する。植物抽出物混合発酵液の添加量は、空気のウルトラファインバブルを含有する水の0.01%以上0.5%以下である。この飲用水を、食用豚に給与することにより、肉の品質を更に改良することができる。 The above plant extract mixed fermented liquor is added to water containing ultrafine bubbles of air to prepare drinking water for pork for meat. The amount of the plant extract mixed fermented solution added is 0.01% or more and 0.5% or less of water containing ultrafine bubbles of air. By feeding this drinking water to edible pigs, the quality of meat can be further improved.
 本実施形態の養豚方法を適用する豚は、食用を目的として飼育される豚であれば特に限定されない。 The pig to which the pig breeding method of the present embodiment is applied is not particularly limited as long as it is a pig raised for food.
 また、豚の飼育形態としては、特に限定されず、平飼い、ケージ飼育、放し飼いのいずれでもよい。 Also, the pig breeding form is not particularly limited, and may be flat breeding, cage breeding, or free-range breeding.
 図1は、本発明の実施形態の養豚方法が行われる豚舎に設けられた飲用水供給装置を示す模式図である。この豚舎は、約30kgの体重の豚を導入し、導入した豚に飼料と飲用水を給与して肥育を行う。豚舎で肥育された豚は、体重が約110kgに達すると、出荷されて屠畜され、食肉等が採取される。この豚舎は、柵で区切られて豚を収容する飼育エリアと、飼育エリアの中の豚に餌を供給する図示しない給餌装置と、飼育エリアの中の豚のために飲用水を供給する飲用水供給装置1を備える。 FIG. 1 is a schematic diagram showing a drinking water supply device provided in a pig pen in which the pig raising method of the embodiment of the present invention is performed. In this pig pen, a pig having a weight of about 30 kg is introduced, and the introduced pig is fed with feed and drinking water for fattening. When the weight of pigs fed in a pig pen reaches about 110 kg, they are shipped and slaughtered, and meat and the like are collected. This pig pen is a breeding area that is divided by a fence to house pigs, a feeding device (not shown) that feeds pigs in the breeding area, and drinking water that supplies drinking water for the pigs in the breeding area. The supply device 1 is provided.
 飲用水供給装置1は、水道水に空気のウルトラファインバブルを含有させて、食用豚の飲用水を製造すると共に、この飲用水を食用豚に供給するものである。なお、水道水のほか、地下水を用いてもよい。 The drinking water supply device 1 supplies tap water with ultrafine bubbles of air to produce drinking water for edible pigs, and also supplies the drinking water to the edible pigs. In addition to tap water, groundwater may be used.
 この飲用水供給装置1は、図1に示すように、水位調節弁12を介して水道水が供給されると共に、空気のウルトラファインバブルを含有する水を貯留するバブル水タンク2と、このバブル水タンク2の水が供給されて空気のウルトラファインバブルを添加してウルトラファインバブル水を製造する養豚用バブル飲用水製造装置としてのバブル水製造装置3を備える。バブル水タンク2の下流側には、第2バブル水タンク4と、混合液タンク5が接続されている。第2バブル水タンク4は、バブル水タンク2からウルトラファインバブル水が供給される。混合液タンク5には、バブル水タンク2からウルトラファインバブル水が供給されると共に、このウルトラファインバブル水に植物抽出物混合発酵液が混合され、混合液が形成されて貯蔵される。 As shown in FIG. 1, this drinking water supply device 1 is supplied with tap water through a water level control valve 12, and also contains a bubble water tank 2 for storing water containing ultrafine bubbles of air, and this bubble. A bubble water production apparatus 3 is provided as a bubble drinking water production apparatus for pig farms, which is supplied with water from a water tank 2 and adds ultrafine bubbles of air to produce ultrafine bubble water. A second bubble water tank 4 and a mixed liquid tank 5 are connected to the downstream side of the bubble water tank 2. Ultrafine bubble water is supplied from the bubble water tank 2 to the second bubble water tank 4. Ultra fine bubble water is supplied from the bubble water tank 2 to the mixed liquid tank 5, and the plant extract mixed fermented liquid is mixed with the ultra fine bubble water to form and store the mixed liquid.
 また、飲用水供給装置1は、水道水バルブ11を介して水道水が供給される発酵液水タンク6と、水タンク7を備える。発酵液水タンク6は、水道水に植物抽出物混合発酵液が添加されてなる発酵液水を貯蔵する。水タンク7は水道水を貯蔵する。 The drinking water supply device 1 also includes a fermented liquid water tank 6 to which tap water is supplied via a tap water valve 11 and a water tank 7. The fermented liquid water tank 6 stores fermented liquid water obtained by adding a plant extract mixed fermented liquid to tap water. The water tank 7 stores tap water.
 上記第2バブル水タンク4は、ウルトラファインバブル水を排出する排出管に接続され、この排出管は、第1飼育エリアA1に設置されて豚に飲用水を供給する給水器8に接続されている。混合液タンク5は、ウルトラファインバブル水と植物抽出物混合発酵液の混合液を排出する排出管に接続され、この排出管は、第2飼育エリアA2に設置された給水器8に接続されている。発酵液水タンク6は、植物抽出物混合発酵液の水溶液を排出する排出管に接続され、この排出管は、第3飼育エリアA3に設置された給水器8に接続されている。水タンク7は、水道水を排出する排出管に接続され、この排出管は、第4飼育エリアA4に設置された給水器8に接続されている。なお、本実施形態の飲用水供給装置1は、実施例の実験2に対応して複数の飼育エリアに異なる飲用水を供給するように形成しているが、全てにウルトラファインバブル水又は混合液を供給するように形成されてもよい。 The second bubble water tank 4 is connected to a discharge pipe for discharging ultrafine bubble water, and this discharge pipe is connected to a water supply device 8 installed in the first breeding area A1 for supplying drinking water to pigs. There is. The mixed liquid tank 5 is connected to a discharge pipe for discharging a mixed liquid of ultrafine bubble water and a plant extract mixed fermented liquid, and this discharge pipe is connected to a water supply device 8 installed in the second breeding area A2. There is. The fermentation liquid water tank 6 is connected to a discharge pipe for discharging the aqueous solution of the plant extract mixed fermentation liquid, and this discharge pipe is connected to the water supply device 8 installed in the third breeding area A3. The water tank 7 is connected to a discharge pipe that discharges tap water, and this discharge pipe is connected to a water supply device 8 installed in the fourth breeding area A4. In addition, although the drinking water supply apparatus 1 of this embodiment is formed so as to supply different drinking water to a plurality of breeding areas corresponding to the experiment 2 of the example, ultrafine bubble water or a mixed liquid is supplied to all of them. May be formed to supply.
 バブル水タンク2の水位調節弁12は、ボールタップにより形成され、バブル水タンク2の水位を一定に保つようになっている。ボールタップは、バブル水タンク2の水位に応じて昇降する浮体と、この浮体に連結された流量調整弁を有し、水位が低下すると流量調整弁が開いてバブル水タンク2内の水位を一定に保持する。なお、水位調節弁12としては、ボールタップ以外に、種々の構成の定水位弁を用いることができ、例えば、バブル水タンク2の水位を測定する水位センサと、この水位センサの測定値に基づいて弁開度が制御される流量調整弁を有するもの等を用いることができる。 The water level control valve 12 of the bubble water tank 2 is formed by a ball tap to keep the water level of the bubble water tank 2 constant. The ball tap has a floating body that moves up and down according to the water level of the bubble water tank 2, and a flow rate adjusting valve connected to this floating body. When the water level decreases, the flow rate adjusting valve opens to keep the water level in the bubble water tank 2 constant. Hold. In addition to the ball tap, constant water level valves having various configurations can be used as the water level control valve 12. For example, a water level sensor that measures the water level of the bubble water tank 2 and a measured value of this water level sensor are used. For example, one having a flow rate adjusting valve whose valve opening is controlled can be used.
 バブル水製造装置3は、バブル水タンク2から、原料水としての水道水、ファインバブル水、又は、水道水とファインバブル水の混合した水が供給され、この供給された水に空気のウルトラファインバブルを添加してバブル水タンク2へ戻すように形成されている。 The bubble water production device 3 is supplied with tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2, and the supplied water has an ultrafine air content. It is formed to add a bubble and return it to the bubble water tank 2.
 給水器8は、豚の要求に応じて飲用水を供給するように形成された給水器であり、ニップル給水器を用いることができる。ニップル給水器は、飲用水の吐出管と、この吐出管に連結された開閉弁を有し、上記吐出管に豚の口や舌が接触すると開閉弁が開いて吐出管から飲用水が流出するように形成されている。なお、豚に飲用水を供給するものであれば、他の構造の給水器を用いてもよい。例えば、飲用水を適宜保持するように形成された樋や桶等を用いてもよい。 The water supply device 8 is a water supply device formed so as to supply drinking water in response to a pig's request, and a nipple water supply device can be used. The nipple water dispenser has a discharge pipe for drinking water and an opening/closing valve connected to this discharge pipe. When the mouth or tongue of a pig comes into contact with the discharge pipe, the opening/closing valve opens and the drinking water flows out from the discharge pipe. Is formed. In addition, a water supply device having another structure may be used as long as it supplies drinking water to the pig. For example, a trough, a trough, or the like formed so as to appropriately hold drinking water may be used.
 バブル水製造装置3は、図2に示すように、バブル水タンク2から原料水としての水道水、ファインバブル水、又は、水道水とファインバブル水の混合した水を吸引する第1ポンプとしての水中ポンプ21を備える。水中ポンプ21の流量が調整されることにより、このバブル水製造装置3によるウルトラファインバブル水の製造量が調整される。この水中ポンプ21の下流側には、水中ポンプ21から吐出される原料水に、矢印Aで示すように空気を吸引して混合して水と空気の混合流体を形成する混合器としてのエジェクタ22が設けられている。エジェクタ22には、空気を取り入れる吸気管に、混合流体に混合する空気の量を調整するための流量調整弁で形成された混合エア量調整弁29が連結されている。エジェクタ22の下流側には、混合流体を吸引する第2ポンプとしてのカスケードポンプ23が設けられている。カスケードポンプ23の下流側は、分岐部で戻し経路24と排出経路25に分岐されている。戻し経路24は、混合流体の空気を微細化してウルトラファインバブルを形成する第1ウルトラファインバブル製造器26Aと、この戻し経路24を流れる混合流体の流量を調節する流量調整弁27が設けられている。この流量調整弁27で混合流体の流量が調節されるに伴い、戻し経路24の下流側の圧力も調節されるようになっている。この戻し経路24は、下流側が、エジェクタ22とカスケードポンプ23の間に接続されている。排出経路25には、混合流体の空気を微細化してウルトラファインバブルを形成する第2ウルトラファインバブル製造器26Bが設けられている。排出経路25は、下流側がバブル水タンク2に連なっている。ここで、バブル水製造装置3の第1ポンプとしては、水中ポンプ以外に、陸上ポンプ等の容積ポンプを用いてもよい。また、第2ポンプとしては、カスケードポンプ以外のポンプを用いてもよいが、遠心ポンプを用いるのが好ましい。 As shown in FIG. 2, the bubble water production apparatus 3 serves as a first pump for sucking tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2. A submersible pump 21 is provided. By adjusting the flow rate of the submersible pump 21, the amount of ultrafine bubble water produced by the bubble water producing apparatus 3 is adjusted. On the downstream side of this submersible pump 21, an ejector 22 as a mixer for forming a mixed fluid of water and air by sucking and mixing air with the raw material water discharged from the submersible pump 21 as shown by an arrow A. Is provided. To the ejector 22, an intake pipe for taking in air is connected with a mixed air amount adjusting valve 29 formed of a flow rate adjusting valve for adjusting the amount of air mixed with the mixed fluid. A cascade pump 23 as a second pump that sucks the mixed fluid is provided on the downstream side of the ejector 22. The downstream side of the cascade pump 23 is branched into a return path 24 and a discharge path 25 at a branch part. The return path 24 is provided with a first ultrafine bubble manufacturing device 26A that atomizes the air of the mixed fluid to form ultrafine bubbles, and a flow rate adjustment valve 27 that adjusts the flow rate of the mixed fluid flowing through the return path 24. There is. As the flow rate of the mixed fluid is adjusted by the flow rate adjusting valve 27, the pressure on the downstream side of the return path 24 is also adjusted. The downstream side of the return path 24 is connected between the ejector 22 and the cascade pump 23. The discharge path 25 is provided with a second ultrafine bubble manufacturing device 26B that atomizes the mixed fluid air to form ultrafine bubbles. The downstream side of the discharge path 25 is connected to the bubble water tank 2. Here, as the first pump of the bubble water production device 3, a volume pump such as a land pump may be used instead of the submersible pump. A pump other than the cascade pump may be used as the second pump, but a centrifugal pump is preferably used.
 図3は、バブル水製造装置3に内蔵された養豚用ウルトラファインバブル製造器としてのウルトラファインバブル製造器26を示す模式縦断面図である。図4は、図3の矢視Bにおける断面図であり、図5は、図3の矢視Cにおける断面図である。このウルトラファインバブル製造器26は、供給管41で供給される水と空気の混合流体を微細化し、空気のウルトラファインバブルを含有するウルトラファインバブル水を形成して、このウルトラファインバブル水を排出管42から排出するものである。 FIG. 3 is a schematic vertical cross-sectional view showing an ultra fine bubble manufacturing device 26 as an ultra fine bubble manufacturing device for pig farming, which is built in the bubble water manufacturing device 3. 4 is a sectional view taken along the arrow B in FIG. 3, and FIG. 5 is a sectional view taken along the arrow C in FIG. The ultra fine bubble manufacturing device 26 atomizes the mixed fluid of water and air supplied through the supply pipe 41 to form ultra fine bubble water containing ultra fine bubbles of air, and discharges the ultra fine bubble water. It is discharged from the pipe 42.
 ウルトラファインバブル製造器26は、概ね円筒形状のケーシング40と、このケーシング40の一端に接続されてケーシング40の内部に連通する供給管41と、上記ケーシング40の他端に接続された排出管42と、上記ケーシング40内に収容されて排出管42の端部に連結された微細化ブロック28を有する。上記排出管42は、上記ケーシング40の他端部を貫通して端部が内部に挿入されており、この排出管42の先端に連結された微細化ブロック28をケーシング40内に支持している。 The ultra fine bubble manufacturing device 26 includes a substantially cylindrical casing 40, a supply pipe 41 that is connected to one end of the casing 40 and communicates with the inside of the casing 40, and a discharge pipe 42 that is connected to the other end of the casing 40. And the miniaturized block 28 housed in the casing 40 and connected to the end of the discharge pipe 42. The discharge pipe 42 penetrates the other end of the casing 40 and has an end inserted therein, and supports the miniaturized block 28 connected to the tip of the discharge pipe 42 in the casing 40. ..
 微細化ブロック28は円筒形状を有し、内部に、水と空気の混合流体が導かれる旋回流形成部としての第1旋回室31と第2旋回室33が形成されている。第1旋回室31と第2旋回室33は、扁平の円筒と半回転楕円を組み合わせた形状を有し、半回転楕円部分の頂点を対向させて、互いに同軸かつ対称に形成されている。微細化ブロック28と、この微細化ブロック28内の第1旋回室31と第2旋回室33は、ケーシング40と同軸に配置される。微細化ブロック28は、第1旋回室31が内部に形成された第1ブロック部品281と、第2旋回室33が内部に形成された第2ブロック部品282とで構成されている。 The miniaturization block 28 has a cylindrical shape, and inside thereof, a first swirl chamber 31 and a second swirl chamber 33 are formed as swirl flow forming parts through which a mixed fluid of water and air is guided. The first swirl chamber 31 and the second swirl chamber 33 have a shape in which a flat cylinder and a semi-spheroid are combined, and are formed coaxially and symmetrically with the vertices of the semi-spheroid portions facing each other. The miniaturized block 28 and the first swirl chamber 31 and the second swirl chamber 33 in the miniaturized block 28 are arranged coaxially with the casing 40. The miniaturization block 28 includes a first block part 281 having a first swirl chamber 31 formed therein and a second block part 282 having a second swirl chamber 33 formed therein.
 図6は、第1ブロック部品281を示す断面図である。第1ブロック部品281は、微細化ブロック28の一端面を構成する円盤部分281aと、この円盤部分281aの中央部から微細化ブロック28の内側に向かって突出した突出部分281bとを有する。突出部分281bは、円盤部分281aに近い部分が円筒形状に形成されている一方、円盤部分から遠い先端部分は円錐台形状に形成されている。この第1ブロック部品281の内側に、第1旋回室31が形成されている。 FIG. 6 is a sectional view showing the first block component 281. The first block component 281 has a disk portion 281a that constitutes one end surface of the miniaturization block 28, and a protruding portion 281b that protrudes from the center of the disc portion 281a toward the inside of the miniaturization block 28. The protruding portion 281b is formed in a cylindrical shape in a portion close to the disc portion 281a, and is formed in a truncated cone shape in a tip portion far from the disc portion. A first swirl chamber 31 is formed inside the first block component 281.
 第1旋回室31は、一端側部分の壁面31aが円筒形状を有する一方、他端側部分の壁面31bが半回転楕円形状を有する。第1旋回室31の一端側部分の壁面31aが第1ブロック部品281の円盤部分の内側に概ね形成され、半回転楕円形状の他端側部分の壁面31bが第1ブロック部品281の突出部分の内側に概ね形成されている。第1ブロック部品281には、ケーシング40と微細化ブロック28との間の混合流体を第1旋回室31に導入する第1導入路35が形成されている。第1導入路35は、図4に示すように、第1旋回室31の接線方向に形成されている。第1導入路35で導かれた混合流体を吐出する吐出開口35aが第1旋回室31の壁面に形成されている。また、ケーシング40と微細化ブロック28との間の混合流体を第1導入路35へ流入させる流入開口35bが、第1ブロック部品281の円盤部分281aの側面に形成されている。第1導入路35は、図6に示すように、第1旋回室31の一端から他端に向けて、第1旋回室31の中心軸の直角面に対して角度θを成すように形成されている。第1導入路35の第1旋回室31の中心軸直角面に対する角度θは、1°以上20°以下に形成することができる。この角度θは、好ましくは5°以上15°以下であり、更に好ましくは8°以上12°である。第1ブロック部品281の突出部分281bの先端部には第1吐出孔32が形成されており、この第1吐出孔32から、第1旋回室31で形成された混合流体の旋回流が吐出されるように形成されている。 In the first swirl chamber 31, the wall surface 31a at the one end side portion has a cylindrical shape, while the wall surface 31b at the other end side portion has a semi-rotating elliptical shape. The wall surface 31a of the one end side portion of the first swirl chamber 31 is formed substantially inside the disk portion of the first block component 281, and the wall surface 31b of the other end side portion of the semi-spheroidal shape is the protruding portion of the first block component 281. It is generally formed inside. In the first block component 281, a first introduction path 35 for introducing the mixed fluid between the casing 40 and the miniaturization block 28 into the first swirl chamber 31 is formed. As shown in FIG. 4, the first introduction path 35 is formed in the tangential direction of the first swirl chamber 31. A discharge opening 35 a for discharging the mixed fluid guided by the first introduction passage 35 is formed on the wall surface of the first swirl chamber 31. In addition, an inflow opening 35b for allowing the mixed fluid between the casing 40 and the miniaturization block 28 to flow into the first introduction path 35 is formed on the side surface of the disc portion 281a of the first block component 281. As shown in FIG. 6, the first introduction path 35 is formed from one end of the first swirl chamber 31 toward the other end so as to form an angle θ with respect to a plane perpendicular to the central axis of the first swirl chamber 31. ing. The angle θ of the first introduction path 35 with respect to the plane perpendicular to the central axis of the first swirl chamber 31 can be formed to be 1° or more and 20° or less. This angle θ is preferably 5° or more and 15° or less, and more preferably 8° or more and 12°. A first discharge hole 32 is formed at the tip of the protruding portion 281b of the first block component 281, and the swirl flow of the mixed fluid formed in the first swirl chamber 31 is discharged from the first discharge hole 32. Is formed.
 図7は、第2ブロック部品282を示す断面図である。第2ブロック部品282は、一端側に厚い底が形成されて他端が開口した有底の円筒形状を有する。この第2ブロック部品282の開口から上記第1ブロック部品281の突出部分281bが挿入されて、他端面282aに第1ブロック部品281の円盤部分281aが連結されるようになっている。この第2ブロック部品282の内側面と、第1ブロック部品281の突出部分281bの外側面との間に、第1旋回室31からの旋回流と第2旋回室33からの旋回流が衝突する衝突室38が形成されている。第2ブロック部品282の内部には、第2旋回室33が形成されている。 FIG. 7 is a sectional view showing the second block component 282. The second block component 282 has a bottomed cylindrical shape with a thick bottom formed at one end and an opening at the other end. The protruding portion 281b of the first block component 281 is inserted from the opening of the second block component 282, and the disc portion 281a of the first block component 281 is connected to the other end surface 282a. The swirl flow from the first swirl chamber 31 and the swirl flow from the second swirl chamber 33 collide between the inner surface of the second block component 282 and the outer surface of the protruding portion 281b of the first block component 281. A collision chamber 38 is formed. A second swirl chamber 33 is formed inside the second block component 282.
 第2旋回室33は、一端側部分の壁面33aが円筒形状を有する一方、他端側部分の壁面33bが回転楕円形状を有する。第2ブロック部品282には、ケーシング40と微細化ブロック28との間の混合流体を第2旋回室33に導入する第2導入路36が形成されている。第2導入路36は、図5に示すように、第2旋回室33の接線方向に形成されている。第2導入路36で導かれた混合流体を吐出する吐出開口36aが第2旋回室33の壁面に形成されている。また、ケーシング40と微細化ブロック28との間の混合流体を第2導入路36へ流入させる流入開口36bが、第2ブロック部品282の一端側の側面に形成されている。第2導入路36は、図7に示すように、第2旋回室33の一端から他端に向けて、第2旋回室33の中心軸の直角面に対して角度θを成すように形成されている。第2導入路36の第2旋回室33の中心軸直角面に対する角度θは、1°以上20°以下に形成することができる。この角度θは、好ましくは5°以上15°以下であり、更に好ましくは8°以上12°である。第2ブロック部品282の他端には第2吐出孔34が形成されており、この第2吐出孔34から、第2旋回室33で形成された混合流体の旋回流が吐出されるように形成されている。第2旋回室33で形成される旋回流は、第1旋回室31で形成される旋回流と、反対回りに旋回するように形成されている。このように、第1旋回室31と第2旋回室33は、中心軸の直角面に関して対称に形成され、第1吐出孔32と第2吐出孔34を対向して配置され、互いに反対回りに旋回する旋回流を生成するように形成されている。 In the second swirl chamber 33, the wall surface 33a at the one end side portion has a cylindrical shape, while the wall surface 33b at the other end side portion has a spheroidal shape. The second block component 282 is formed with a second introduction path 36 for introducing the mixed fluid between the casing 40 and the miniaturization block 28 into the second swirl chamber 33. As shown in FIG. 5, the second introduction passage 36 is formed in the tangential direction of the second swirl chamber 33. A discharge opening 36 a for discharging the mixed fluid guided by the second introduction path 36 is formed on the wall surface of the second swirl chamber 33. Further, an inflow opening 36b for allowing the mixed fluid between the casing 40 and the miniaturization block 28 to flow into the second introduction path 36 is formed on the side surface on the one end side of the second block component 282. As shown in FIG. 7, the second introduction path 36 is formed from one end of the second swirl chamber 33 toward the other end so as to form an angle θ with respect to a plane perpendicular to the central axis of the second swirl chamber 33. ing. The angle θ of the second introduction path 36 with respect to the plane perpendicular to the central axis of the second swirl chamber 33 can be formed to be 1° or more and 20° or less. This angle θ is preferably 5° or more and 15° or less, and more preferably 8° or more and 12°. A second discharge hole 34 is formed at the other end of the second block component 282, and the swirl flow of the mixed fluid formed in the second swirl chamber 33 is discharged from the second discharge hole 34. Has been done. The swirl flow formed in the second swirl chamber 33 is formed so as to swirl in the opposite direction to the swirl flow formed in the first swirl chamber 31. In this way, the first swirl chamber 31 and the second swirl chamber 33 are formed symmetrically with respect to the plane perpendicular to the central axis, the first discharge hole 32 and the second discharge hole 34 are arranged so as to face each other, and they are arranged in opposite directions. It is configured to generate a swirling flow that swirls.
 第2ブロック部品282の底部の外径側部分には、第2ブロック部品282の中心軸と平行に延在する複数の排出通路39,39,・・・が形成されている。これらの排出通路39,39,・・・は、第2旋回室33の外径側に、この第2旋回室33を取り囲むように配置されている。第2ブロック部品282の底面282bには、外径側部分に、衝突室38の流体を排出通路39,39,・・・に流入させる複数の流入口としての流入開口39a,39a,・・・が形成されている。この流入開口39aが形成された底面282bは、衝突室38に面する衝突室表面に該当する。第2ブロック部品282の一端面には、排出通路39,39,・・・で導かれた流体を吐出する複数の排出口としての吐出開口39b,39b,・・・が形成されている。第2ブロック部品282の一端は、排出管42に連結されており、上記排出通路39,39,・・・の吐出開口39b,39b,・・・から吐出された流体が、排出管42に流れるようになっている。 A plurality of discharge passages 39, 39,... That extend parallel to the central axis of the second block component 282 are formed in the outer diameter side portion of the bottom of the second block component 282. The discharge passages 39, 39,... Are arranged on the outer diameter side of the second swirl chamber 33 so as to surround the second swirl chamber 33. In the bottom surface 282b of the second block component 282, inflow openings 39a, 39a,... As a plurality of inflow ports for allowing the fluid of the collision chamber 38 to flow into the discharge passages 39, 39,. Are formed. The bottom surface 282b in which the inflow opening 39a is formed corresponds to the collision chamber surface facing the collision chamber 38. Discharge openings 39b, 39b,... As a plurality of discharge ports for discharging the fluid guided by the discharge passages 39, 39,... Are formed on one end surface of the second block component 282. One end of the second block component 282 is connected to the discharge pipe 42, and the fluid discharged from the discharge openings 39b, 39b,... Of the discharge passages 39, 39,. It is like this.
 上記ウルトラファインバブル製造器26は、カスケードポンプ23により水と空気の混合流体が圧送され、戻し経路24や排出経路25のウルトラファインバブル製造器26の上流側の部分である供給管41から、ケーシング40内に混合流体が流入する。ケーシング40内に流入した混合流体は、微細化ブロック28の外側面の流入開口35b,36bから第1及び第2導入路35,36に導かれる。第1導入路35に導かれた混合流体は、吐出開口35aから第1旋回室31内に吐出され、第1旋回室31内に旋回流を形成する。第1導入路35が第1旋回室31の接線方向に延在すると共に他端に向けて傾斜角度θを成すことにより、第1旋回室31内に、安定した旋回流が形成される。また、第2導入路36に導かれた混合流体は、吐出開口36aから第2旋回室33内に吐出され、第2旋回室33内に旋回流を形成する。第2導入路36が第2旋回室33の接線方向に延在すると共に他端に向けて傾斜角度θを成すことにより、第2旋回室33内に、安定した旋回流が形成される。上記第1旋回室31内の混合流体の旋回流は、第1吐出孔32から衝突室38へ吐出され、上記第2旋回室33内の旋回流は、第2吐出孔34から衝突室38へ吐出される。これらの第1吐出孔32と第2吐出孔34から吐出された旋回流は、互いに反対方向に旋回しており、これにより大きな衝撃力を伴って衝突室38内で衝突する。その結果、互いの混合流体の気体が効果的に微細化され、ウルトラナノバブルが生成される。こうして生成された空気のウルトラナノバブルを含有する水は、衝突室38から流入開口39a,39a,・・・を経て排出通路39,39,・・・に導かれ、吐出開口39b,39b,・・・から排出管42に排出される。この排出管42は、戻し経路24や排出経路25のウルトラファインバブル製造器26の下流側である。こうしてウルトラファインバブル製造器26で生成された空気のウルトラファインバブルを含有する水は、戻し経路24や排出経路25の下流側に導かれる。すなわち、第1ウルトラファインバブル製造器26Aから戻し経路24の下流側に空気のウルトラファインバブルを含有する水が流れ、第2ウルトラファインバブル製造器26Bから排出経路25の下流側に空気のウルトラファインバブルを含有する水が流れる。なお、ウルトラファインバブル製造器26で製造されるバブルは、ウルトラファインバブルのみに限られず、運転条件に応じてマイクロバブルも含まれ、また、マイクロバブルのみが製造される場合もある。 In the ultrafine bubble manufacturing device 26, a mixed fluid of water and air is pressure-fed by the cascade pump 23, and the casing from the supply pipe 41, which is a part of the return route 24 or the discharge route 25 on the upstream side of the ultrafine bubble manufacturing device 26, is discharged. The mixed fluid flows into 40. The mixed fluid that has flowed into the casing 40 is guided to the first and second introduction paths 35 and 36 from the inflow openings 35b and 36b on the outer surface of the miniaturization block 28. The mixed fluid guided to the first introduction path 35 is discharged into the first swirl chamber 31 through the discharge opening 35a, and forms a swirl flow in the first swirl chamber 31. A stable swirl flow is formed in the first swirl chamber 31 by the first introduction path 35 extending in the tangential direction of the first swirl chamber 31 and forming an inclination angle θ toward the other end. In addition, the mixed fluid guided to the second introduction passage 36 is discharged into the second swirl chamber 33 from the discharge opening 36 a, and forms a swirl flow in the second swirl chamber 33. Since the second introduction path 36 extends in the tangential direction of the second swirl chamber 33 and forms the inclination angle θ toward the other end, a stable swirl flow is formed in the second swirl chamber 33. The swirl flow of the mixed fluid in the first swirl chamber 31 is discharged from the first discharge hole 32 to the collision chamber 38, and the swirl flow in the second swirl chamber 33 to the collision chamber 38 from the second discharge hole 34. Is ejected. The swirling flows discharged from the first discharge hole 32 and the second discharge hole 34 are swirling in opposite directions, and thus collide in the collision chamber 38 with a large impact force. As a result, the gas of the mixed fluid is effectively atomized, and ultra nano bubbles are generated. The water containing the ultra nano bubbles of the air thus generated is guided from the collision chamber 38 to the discharge passages 39, 39,... Through the inflow openings 39a, 39a,. -Is discharged from the discharge pipe 42. The discharge pipe 42 is on the downstream side of the ultrafine bubble manufacturing device 26 in the return path 24 and the discharge path 25. The water containing the ultra fine bubbles of the air thus generated in the ultra fine bubble manufacturing device 26 is guided to the downstream side of the return path 24 and the discharge path 25. That is, water containing air ultrafine bubbles flows from the first ultrafine bubble producer 26A to the downstream side of the return route 24, and air ultrafine air from the second ultrafine bubble producer 26B to the downstream side of the discharge route 25. The water containing the bubbles flows. The bubbles produced by the ultrafine bubble production device 26 are not limited to only ultrafine bubbles, and microbubbles may be included depending on the operating conditions, or only microbubbles may be produced.
 このバブル水製造装置3は、混合エア量調整弁29の開度と、水中ポンプ21及びカスケードポンプ23による混合水の吐出流量又は吐出圧力と、流量調整弁27の開度を調節することにより、排出経路25からのウルトラファインバブル及びマイクロバブルの粒径と濃度を調節することができる。 The bubble water production apparatus 3 adjusts the opening degree of the mixed air amount adjusting valve 29, the discharge flow rate or discharge pressure of the mixed water by the submersible pump 21 and the cascade pump 23, and the opening degree of the flow rate adjusting valve 27. The particle size and concentration of ultrafine bubbles and microbubbles from the discharge path 25 can be adjusted.
 例えば、流量調整弁27の開度が増大すれば、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が増大すると共に、バブルの径が縮小し、また、排出経路25からの排出量が減少する。これと共に、生成されるバブルの径の標準偏差が縮小して分布の幅が縮小し、バブルの径が比較的小さい値の狭い範囲に集中する。一方、流量調整弁27の開度が減少すれば、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が減少すると共に、バブルの径が拡大し、また、排出経路25からの排出量が増大する。これと共に、生成されるバブルの径の標準偏差が拡大して分布の幅が拡大し、バブルの径が比較的小さい値から大きい値にわたって広い範囲に拡散するようになる。 For example, when the opening degree of the flow rate adjusting valve 27 increases, the bubble concentration of ultrafine bubbles and/or microbubbles increases, the diameter of the bubbles also decreases, and the amount discharged from the discharge path 25 decreases. .. Along with this, the standard deviation of the diameters of the generated bubbles is reduced, the width of the distribution is reduced, and the diameters of the bubbles are concentrated in a narrow range of relatively small values. On the other hand, when the opening degree of the flow rate adjusting valve 27 decreases, the concentration of ultrafine bubbles and/or microbubbles decreases, the diameter of the bubbles increases, and the amount discharged from the discharge path 25 increases. .. Along with this, the standard deviation of the diameters of the generated bubbles expands, the width of the distribution expands, and the bubble diameters spread in a wide range from a relatively small value to a large value.
 また、カスケードポンプ23の吐出圧力が増大すると、この吐出圧力が1MPaよりも低い領域では、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が増大すると共に、バブルの径が縮小し、また、排出経路25からの排出量が増大する。吐出圧力が1MPaよりも高い領域では、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が低下すると共に、バブルの径が拡大する。一方、カスケードポンプ23の吐出圧力が減少すると、この吐出圧力が1MPaよりも低い領域では、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が減少すると共に、バブルの径が拡大し、また、排出経路25からの排出量が減少する。吐出圧力が1MPaよりも高い領域では、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が増大すると共に、バブルの径が縮小する。 Further, when the discharge pressure of the cascade pump 23 increases, in the region where the discharge pressure is lower than 1 MPa, the concentration of bubbles of ultrafine bubbles and/or microbubbles increases, the diameter of the bubbles decreases, and the discharge is also reduced. The discharge amount from the path 25 increases. In the region where the discharge pressure is higher than 1 MPa, the concentration of ultrafine bubbles and/or microbubbles decreases and the bubble diameter increases. On the other hand, when the discharge pressure of the cascade pump 23 decreases, in the region where the discharge pressure is lower than 1 MPa, the concentration of bubbles of ultrafine bubbles and/or microbubbles decreases, the diameter of the bubbles expands, and the discharge is increased. The amount of emissions from the path 25 is reduced. In the region where the discharge pressure is higher than 1 MPa, the concentration of ultrafine bubbles and/or microbubbles increases and the bubble diameter decreases.
 また、エジェクタ22の混合エア量調整弁29の開度を増大することにより、排出経路25から排出されるバブルのうち、1μm以上のバブルの割合が増加する一方、混合エア量調整弁29の開度を減少することにより、排出経路25から排出されるバブルの粒径のうち、1μm以上のバブルの割合が減少する。例えば、混合エア量調整弁29により、エジェクタ22の空気混合量を0.4L/minとすると、排出経路25から排出されるバブルの直径は、1μmを超えるものの割合が増大し、ウルトラファインバブルとマイクロバブルが生成される。一方、混合エア量調整弁29により、エジェクタ22の空気混合量を0.1L/minとすると、排出経路25から排出されるバブルの直径は1μmを下回るものが大半となり、実質的にウルトラファインバブルのみが生成される。 Further, by increasing the opening degree of the mixed air amount adjusting valve 29 of the ejector 22, the proportion of bubbles of 1 μm or more in the bubbles discharged from the discharge path 25 increases, while the mixed air amount adjusting valve 29 opens. By decreasing the degree, the proportion of bubbles having a diameter of 1 μm or more in the particle diameter of bubbles discharged from the discharge path 25 decreases. For example, when the air mixing amount of the ejector 22 is set to 0.4 L/min by the mixed air amount adjusting valve 29, the diameter of the bubbles discharged from the discharge path 25 is larger than 1 μm, but the ratio increases, and the bubbles become ultra fine bubbles. Micro bubbles are generated. On the other hand, if the air mixing amount of the ejector 22 is set to 0.1 L/min by the mixed air amount adjusting valve 29, most of the bubbles discharged from the discharge path 25 have a diameter of less than 1 μm, and thus the ultrafine bubbles are substantially formed. Only generated.
 また、このバブル水製造装置3は、排出経路25から排出される水のウルトラファインバブルの濃度を測定し、この測定値に基づいて、水中ポンプ21及びカスケードポンプ23の吐出圧力と、戻し経路24の流量を調節して、排出経路25のウルトラファインバブルの濃度を調節することができる。例えば、排出経路25のウルトラファインバブルの濃度が目標値よりも低い場合、流量調整弁27の開度を上げて戻し経路24の流量を増大させることにより、排出経路25から排出されるウルトラファインバブルの濃度が増大する。 The bubble water production apparatus 3 also measures the concentration of ultrafine bubbles in the water discharged from the discharge path 25, and based on this measured value, the discharge pressure of the submersible pump 21 and the cascade pump 23 and the return path 24. The concentration of the ultrafine bubbles in the discharge path 25 can be adjusted by adjusting the flow rate of For example, when the concentration of the ultra fine bubbles in the discharge path 25 is lower than the target value, the opening degree of the flow rate adjusting valve 27 is increased to increase the flow rate in the return path 24, so that the ultra fine bubbles discharged from the discharge path 25. Concentration increases.
 また、このバブル水製造装置3は、排出経路25の第2ウルトラファインバブル製造器26Bの上流側に第2流量調整弁を設け、この第2流量調整弁の開度と、混合エア量調整弁29の開度と、戻し経路24の流量調整弁27の開度と、水中ポンプ21及びカスケードポンプ23の吐出圧力を調節することにより、排出経路25から排出されるウルトラファインバブルの径と濃度を調節してもよい。 In addition, the bubble water producing device 3 is provided with a second flow rate adjusting valve on the upstream side of the second ultrafine bubble producing device 26B in the discharge path 25, and the opening degree of the second flow rate adjusting valve and the mixed air amount adjusting valve. By adjusting the opening degree of 29, the opening degree of the flow rate adjusting valve 27 of the return path 24, and the discharge pressure of the submersible pump 21 and the cascade pump 23, the diameter and concentration of the ultrafine bubbles discharged from the discharge path 25 can be adjusted. You may adjust.
 上記バブル水製造装置3は、図示しない制御装置を設け、この制御装置により、上記混合エア量調整弁29の開度と、上記流量調整弁27の開度と、上記第2流量調整弁の開度と、上記水中ポンプ21及びカスケードポンプ23の吐出圧力を制御して、排出経路25からのウルトラファインバブルの径と濃度を調節してもよい。 The bubble water producing apparatus 3 is provided with a control device (not shown), and by this control device, the opening degree of the mixed air amount adjusting valve 29, the opening degree of the flow rate adjusting valve 27, and the opening of the second flow rate adjusting valve. The discharge pressure of the submersible pump 21 and the cascade pump 23 may be controlled to adjust the diameter and concentration of the ultrafine bubbles from the discharge path 25.
 このようにして、上記バブル水製造装置3により、安定して50~70nmのウルトラファインバブルを形成することができる。なお、戻し経路24と流量調整弁27と第1ウルトラファインバブル製造器26Aは、設けなくてもよい。すなわち、カスケードポンプ23の下流側に、排出経路25を第2ウルトラファインバブル製造器26Bのみを設け、第2ウルトラファインバブル製造器26Bのみによりウルトラファインバブルを生成してもよい。 In this way, the bubble water producing apparatus 3 can stably form ultrafine bubbles of 50 to 70 nm. The return path 24, the flow rate adjusting valve 27, and the first ultrafine bubble manufacturing device 26A may not be provided. That is, the discharge path 25 may be provided only on the downstream side of the cascade pump 23 with the second ultrafine bubble manufacturing device 26B, and the ultrafine bubbles may be generated only by the second ultrafine bubble manufacturing device 26B.
 上記実施形態において、ウルトラファインバブル製造器26は、同軸上に中心軸の直角面に対して対称に形成された第1旋回室31と第2旋回室33を含む微細化ブロック28を含んでいたが、他の養豚用ウルトラファインバブル製造器を用いてもよい。図8は、変形例の養豚用ウルトラファインバブル製造器を示す縦断面図である。図9は、図8の矢視Dにおける断面図であり、図10は、図8の矢視Eにおける断面図である。このウルトラファインバブル製造器126は、供給管41で供給される水と空気の混合流体を、微細化ブロック128で微細化し、空気のウルトラファインバブルを含有するウルトラファインバブル水を形成して、このウルトラファインバブル水を排出管42から排出するものである。 In the above embodiment, the ultra fine bubble manufacturing device 26 includes the miniaturization block 28 that includes the first swirl chamber 31 and the second swirl chamber 33 that are coaxially formed symmetrically with respect to the plane perpendicular to the central axis. However, other ultra fine bubble manufacturing machines for pig farming may be used. FIG. 8 is a vertical sectional view showing a modified ultrafine bubble manufacturing device for pig farming. 9 is a cross-sectional view taken along arrow D in FIG. 8, and FIG. 10 is a cross-sectional view taken along arrow E in FIG. This ultra fine bubble manufacturing device 126 atomizes the mixed fluid of water and air supplied from the supply pipe 41 by the atomization block 128 to form ultra fine bubble water containing ultra fine bubbles of air. The ultra fine bubble water is discharged from the discharge pipe 42.
 このウルトラファインバブル製造器126は、一端が供給管41に連結され、他端が微細化ブロック128に連結された概ね円筒形状のケーシング140を有する。微細化ブロック128は、ケーシング140よりも小径の概ね円筒形状を有し、他端部分が他の部分よりも大きい径に形成されてケーシング140の他端部の内側面に嵌合している。この微細化ブロック128は、水と気体の混合流体が導かれる処理流路130と、この処理流路130の上流端に連通する旋回流形成部としての第1偏心供給路131と、上記処理流路130の長さ方向の略中央に連通する旋回流形成部としての第2偏心供給路132が内部に形成されている。処理流路130の中心軸を通る断面において、第1偏心供給路131の中心軸と、第2偏心供給路132の中心軸は、処理流路130の中心軸に対して直角に延在している。 The ultrafine bubble manufacturing device 126 has a substantially cylindrical casing 140 having one end connected to the supply pipe 41 and the other end connected to the miniaturization block 128. The miniaturized block 128 has a generally cylindrical shape with a smaller diameter than the casing 140, and has the other end portion formed to have a larger diameter than the other portion and fitted to the inner surface of the other end portion of the casing 140. The miniaturization block 128 includes a processing flow path 130 through which a mixed fluid of water and gas is guided, a first eccentric supply path 131 as a swirl flow forming section that communicates with an upstream end of the processing flow path 130, and the processing flow. A second eccentric supply passage 132 as a swirling flow forming portion that communicates with substantially the center of the passage 130 in the longitudinal direction is formed inside. In a cross section passing through the central axis of the processing channel 130, the central axis of the first eccentric supply channel 131 and the central axis of the second eccentric channel 132 extend at right angles to the central axis of the processing channel 130. There is.
 微細化ブロック128の処理流路130は、微細化ブロック128の中心軸に沿って、微細化ブロック128の一端面の近傍から、微細化ブロック128の他端面に至るまで形成されている。処理流路130の一端は、微細化ブロック128の一端面に貫通することなく微細化ブロック128内に留まっている一方、処理流路130の他端は、微細化ブロック128の他端面に開口を形成している。この処理流路130は、円形断面を有し、一端から他端に向かうにつれて径が増大するように形成されている。処理流路130の他端の開口には、排出管42が挿入されて、処理流路130が排出管42に連通している。 The processing flow path 130 of the miniaturization block 128 is formed along the central axis of the miniaturization block 128 from the vicinity of one end surface of the miniaturization block 128 to the other end surface of the miniaturization block 128. One end of the processing channel 130 remains inside the miniaturization block 128 without penetrating one end surface of the miniaturization block 128, while the other end of the processing channel 130 has an opening at the other end surface of the miniaturization block 128. Is forming. The processing flow path 130 has a circular cross section and is formed so that the diameter increases from one end to the other end. A discharge pipe 42 is inserted into the opening at the other end of the processing flow path 130 so that the processing flow path 130 communicates with the discharge pipe 42.
 微細化ブロック128の第1偏心供給路131は、微細化ブロック128の中心軸と直角の断面図である図9に示すように、処理流路130の一端に連通するように2本形成されている。これらの2つの第1偏心供給路131は、処理流路130の中心に関して点対称に配置されている。これらの第1偏心供給路131は、微細化ブロック128の概ね径方向に延在し、微細化ブロック128の外周面に流入開口131aを形成し、処理流路130の内周面に吐出開口131bを形成している。これらの第1偏心供給路131は、円形断面を有し、流入開口131aから吐出開口131bに向かうにつれて径が小さくなるように形成されている。第1偏心供給路131の吐出開口131bは、処理流路130の軸方向視において、処理流路130の中心に対して偏芯した位置に配置されている。ここで、図8において、第2偏心供給路132は、この第2偏心供給路132の中心軸に沿った縦断面の形状を示しており、微細化ブロック128の中心軸を通る面で第2偏心供給路132を切断した様子を示していない。 Two first eccentric supply paths 131 of the miniaturization block 128 are formed so as to communicate with one end of the processing channel 130, as shown in FIG. 9 which is a cross-sectional view perpendicular to the central axis of the miniaturization block 128. There is. These two first eccentric supply passages 131 are arranged point-symmetrically with respect to the center of the processing flow passage 130. These first eccentric supply passages 131 extend substantially in the radial direction of the miniaturization block 128, form an inflow opening 131a on the outer peripheral surface of the miniaturization block 128, and discharge openings 131b on the inner peripheral surface of the processing flow passage 130. Is formed. These first eccentric supply passages 131 have a circular cross section and are formed so that the diameter becomes smaller from the inflow opening 131a toward the discharge opening 131b. The discharge opening 131b of the first eccentric supply path 131 is arranged at a position eccentric with respect to the center of the processing flow path 130 when viewed in the axial direction of the processing flow path 130. Here, in FIG. 8, the second eccentric supply passage 132 shows a shape of a vertical cross section along the central axis of the second eccentric supply passage 132, and the second eccentric supply passage 132 has a second surface in a plane passing through the central axis of the miniaturized block 128. The state in which the eccentric supply path 132 is cut is not shown.
 微細化ブロック128の第2偏心供給路132は、微細化ブロック128の中心軸と直角の断面図である図10に示すように、処理流路130の長さ方向の略中央に連通するように2本形成されている。これらの2つの第2偏心供給路132は、処理流路130の中心に関して点対称に配置されている。これらの第2偏心供給路132は、微細化ブロック128の概ね径方向に延在し、微細化ブロック128の外周面に流入開口132aを形成し、処理流路130の内周面に吐出開口132bを形成している。これらの第2偏心供給路132は、円形断面を有し、流入開口132aから吐出開口132bに向かうにつれて径が小さくなるように形成されている。第2偏心供給路132の吐出開口132bは、処理流路130の軸方向視において、処理流路130の中心に対して偏芯した位置に配置されている。この第2偏心供給路132の吐出開口132bは、第1偏心供給路131の吐出開口131bと、処理流路130の中心軸に関して反対側に偏心している。上記微細化ブロック128の第1偏心供給路131と第2偏心供給路132は、微細化ブロック128の軸方向視において、互いに90°の角度を成すように配置されている。 The second eccentric supply passage 132 of the miniaturization block 128 is communicated with substantially the center of the processing flow passage 130 in the longitudinal direction, as shown in FIG. 10 which is a sectional view perpendicular to the central axis of the miniaturization block 128. Two are formed. These two second eccentric supply passages 132 are arranged point-symmetrically with respect to the center of the processing flow passage 130. These second eccentric supply passages 132 extend substantially in the radial direction of the miniaturization block 128, form an inflow opening 132a on the outer peripheral surface of the miniaturization block 128, and discharge openings 132b on the inner peripheral surface of the processing flow passage 130. Is formed. These second eccentric supply passages 132 have a circular cross section and are formed so that the diameter decreases from the inflow opening 132a toward the discharge opening 132b. The discharge opening 132b of the second eccentric supply passage 132 is arranged at a position eccentric with respect to the center of the processing flow passage 130 when viewed in the axial direction of the processing flow passage 130. The discharge opening 132b of the second eccentric supply passage 132 is eccentric to the discharge opening 131b of the first eccentric supply passage 131 on the opposite side with respect to the central axis of the processing flow passage 130. The first eccentric supply passage 131 and the second eccentric supply passage 132 of the miniaturization block 128 are arranged so as to form an angle of 90° with each other when viewed in the axial direction of the miniaturization block 128.
 上記構成のウルトラファインバブル製造器126は、次のように動作する。まず、水と空気の混合流体が供給管41を通してケーシング140内に導かれる。ケーシング140内に流入した混合流体は、微細化ブロック128の外側面の流入開口131a,132aから第1及び第2偏心供給路131,132に導かれる。第1偏心供給路131に導かれた混合流体は、吐出開口131bから処理流路130内に吐出され、この処理流路130内に旋回流を形成する。第1偏心供給路131の吐出開口131bが処理流路130の中心に対して偏芯した位置に配置されていることにより、処理流路130内に、安定した旋回流が形成される。こうして第1偏心供給路131から処理流路130内に導かれた混合流体は、旋回流となって処理流路130の一端から他端に向かって流れる。また、第2偏心供給路132に導かれた混合流体は、吐出開口132bから処理流路130内に吐出される。上記第2偏心供給路132の吐出開口132bは、処理流路130の中心軸に関して偏芯した位置に配置されていると共に、第1偏心供給路131の吐出開口131bと反対側に偏心していることにより、処理流路130を流れた旋回流に対して反対向きの旋回流を形成する。この第2偏心供給路132の吐出開口132bから吐出された混合流体の旋回流が、第1偏心供給路131から流れて来た旋回流と衝突する。その結果、互いの混合流体の気体が効果的に微細化され、ウルトラナノバブルが生成される。こうして生成された空気のウルトラナノバブルを含有する水は、処理流路130の他端に向かって流れ、排出管42を通ってウルトラファインバブル製造器126から排出される。 The ultrafine bubble manufacturing device 126 having the above-described configuration operates as follows. First, a mixed fluid of water and air is introduced into the casing 140 through the supply pipe 41. The mixed fluid that has flowed into the casing 140 is guided to the first and second eccentric supply paths 131 and 132 from the inflow openings 131a and 132a on the outer surface of the miniaturization block 128. The mixed fluid guided to the first eccentric supply passage 131 is discharged into the processing flow passage 130 from the discharge opening 131b and forms a swirling flow in the processing flow passage 130. Since the discharge opening 131b of the first eccentric supply path 131 is arranged at a position eccentric with respect to the center of the processing channel 130, a stable swirling flow is formed in the processing channel 130. The mixed fluid thus guided from the first eccentric supply passage 131 into the processing flow passage 130 becomes a swirling flow and flows from one end of the processing flow passage 130 to the other end. Further, the mixed fluid guided to the second eccentric supply passage 132 is discharged into the processing flow passage 130 from the discharge opening 132b. The discharge opening 132b of the second eccentric supply passage 132 is arranged at a position eccentric with respect to the central axis of the processing flow path 130, and is eccentric to the opposite side of the discharge opening 131b of the first eccentric supply passage 131. As a result, a swirl flow that is opposite to the swirl flow that has flowed through the processing flow path 130 is formed. The swirling flow of the mixed fluid discharged from the discharge opening 132b of the second eccentric supply passage 132 collides with the swirling flow flowing from the first eccentric supply passage 131. As a result, the gas of the mixed fluid is effectively atomized, and ultra nano bubbles are generated. The water containing the ultra nano bubbles of the air thus generated flows toward the other end of the processing flow path 130, and is discharged from the ultra fine bubble manufacturing device 126 through the discharge pipe 42.
 上記変形例のウルトラファインバブル製造器126は、微細化ブロック128を製造する際、単一の金属材料に対する切削加工により、処理流路130、第1偏心供給路131及び第2偏心供給路132を形成できる。したがって、少ない工数により容易に微細化ブロック128を製造できる。 When manufacturing the miniaturized block 128, the ultrafine bubble manufacturing device 126 of the above-described modification forms the processing flow path 130, the first eccentric supply path 131, and the second eccentric supply path 132 by cutting the single metal material. Can be formed. Therefore, the miniaturized block 128 can be easily manufactured with a small number of steps.
 上記変形例のウルトラファインバブル製造器126において、微細化ブロック128の第1偏心供給路131及び第2偏心供給路132は、処理流路130の軸方向視において互いに90°の角度を成すように配置されたが、互いに0度の角度を成すように配置されてもよい。また、微細化ブロック128の第1偏心供給路131及び第2偏心供給路132は、いずれも2個ずつ設けたが、いずれか一方又は両方を1個ずつ設けてもよい。 In the ultrafine bubble manufacturing device 126 of the above modification, the first eccentric supply passage 131 and the second eccentric supply passage 132 of the miniaturization block 128 form an angle of 90° with each other when viewed in the axial direction of the processing flow passage 130. Although arranged, they may be arranged to form an angle of 0 degree with each other. Further, although each of the first eccentricity supply passage 131 and the second eccentricity supply passage 132 of the miniaturization block 128 is provided by two, one or both of them may be provided by one.
 また、上記実施形態において、バブル水製造装置3は、他の構成のバブル水製造装置を採用してもよい。図11は、変形例のバブル水製造装置103を示す模式図である。このバブル水製造装置103は、バブル水タンク2から原料水としての水道水、ファインバブル水、又は、水道水とファインバブル水の混合した水を吸引する第1ポンプとしての吸引ポンプ121を備える。 Also, in the above-described embodiment, the bubble water production device 3 may employ a bubble water production device having another configuration. FIG. 11: is a schematic diagram which shows the bubble water manufacturing apparatus 103 of a modification. The bubble water manufacturing apparatus 103 includes a suction pump 121 as a first pump that sucks tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2.
 上記吸引ポンプ121と並列に、吸引ポンプ121から吐出される原料水に、空気を混合して水と空気の混合流体を形成する混合器としてのエジェクタ122が設けられている。すなわち、吸引ポンプ121の吸入側と吐出側の間に、エジェクタ122が介設されている。エジェクタ122には、空気を取り入れる吸気管に、混合流体に混合する空気の量を調整するための流量調整弁で形成された混合エア量調整弁127が連結されている。混合エア量調整弁127の上流側には、空気を貯留する気体タンク124が接続されている。この気体タンク124は、大気から吸入した空気を浄化する清浄装置を設けるのが好ましい。 In parallel with the suction pump 121, an ejector 122 is provided as a mixer for mixing raw material water discharged from the suction pump 121 with air to form a mixed fluid of water and air. That is, the ejector 122 is provided between the suction side and the discharge side of the suction pump 121. To the ejector 122, an intake pipe for taking in air is connected to a mixed air amount adjusting valve 127 formed of a flow rate adjusting valve for adjusting the amount of air mixed with the mixed fluid. A gas tank 124 that stores air is connected to the upstream side of the mixed air amount adjustment valve 127. The gas tank 124 is preferably provided with a cleaning device for cleaning the air sucked from the atmosphere.
 上記吸引ポンプ121の下流側には、混合流体の空気を微細化してウルトラファインバブルを形成する上記ウルトラファインバブル製造器26が接続されている。ウルトラファインバブル製造器26に替えて、変形例のウルトラファインバブル製造器126を接続してもよい。上記吸引ポンプ121とウルトラファインバブル製造器26との間には、ウルトラファインバブル製造器26に導かれる流体のうちの液体の圧力を測定する第1液圧センサ141が設けられている。ウルトラファインバブル製造器26の下流側には、流体を吸引する第2ポンプとしてのカスケードポンプ123が設けられている。ウルトラファインバブル製造器26とカスケードポンプ123との間には、ウルトラファインバブル製造器26から吐出される流体のうちの液体の圧力を測定する第2液圧センサ142が設けられている。この第2液圧センサ142の測定値に基づいて、制御装置143によりカスケードポンプ123の動作を制御するように構成されている。 On the downstream side of the suction pump 121, the ultra fine bubble manufacturing device 26 that atomizes the mixed fluid air to form ultra fine bubbles is connected. Instead of the ultra fine bubble manufacturing device 26, a modified ultra fine bubble manufacturing device 126 may be connected. Between the suction pump 121 and the ultra fine bubble manufacturing device 26, a first hydraulic pressure sensor 141 for measuring the pressure of the liquid of the fluid guided to the ultra fine bubble manufacturing device 26 is provided. A cascade pump 123 as a second pump that sucks fluid is provided on the downstream side of the ultrafine bubble manufacturing device 26. A second hydraulic pressure sensor 142 that measures the pressure of the liquid of the fluid discharged from the ultra fine bubble manufacturing device 26 is provided between the ultra fine bubble manufacturing device 26 and the cascade pump 123. The controller 143 is configured to control the operation of the cascade pump 123 based on the measurement value of the second hydraulic pressure sensor 142.
 カスケードポンプ123の下流側には、ウルトラファインバブルを含有する水から、水に添加されずに残留した余剰の空気を分離する気液分離器125が接続されている。気液分離器125で分離された空気は、気体タンク124に戻される一方、ウルトラファインバブルを含有する水は、水タンク2に戻されるようになっている。ここで、バブル水製造装置103の第1ポンプとしては、水中ポンプ以外に、陸上ポンプ等の容積ポンプを用いてもよい。また、第2ポンプとしては、カスケードポンプ以外のポンプを用いてもよいが、遠心ポンプを用いるのが好ましい。 On the downstream side of the cascade pump 123, a gas-liquid separator 125 that separates excess air remaining without being added to water from water containing ultrafine bubbles is connected. The air separated by the gas-liquid separator 125 is returned to the gas tank 124, while the water containing ultrafine bubbles is returned to the water tank 2. Here, as the first pump of the bubble water manufacturing apparatus 103, a volume pump such as a land pump may be used instead of the submersible pump. A pump other than the cascade pump may be used as the second pump, but a centrifugal pump is preferably used.
 この変形例のバブル水製造装置103は、混合エア量調整弁127の開度と、吸引ポンプ121及びカスケードポンプ123の流体の吐出流量又は吐出圧力を調節することにより、バブル水タンク2へ導かれるウルトラファインバブルの粒径と濃度を調節することができる。 The bubble water production apparatus 103 of this modification is guided to the bubble water tank 2 by adjusting the opening degree of the mixed air amount adjusting valve 127 and the discharge flow rate or discharge pressure of the fluid of the suction pump 121 and the cascade pump 123. The particle size and concentration of ultrafine bubbles can be adjusted.
 また、このバブル水製造装置103は、バブル水タンク2の水のウルトラファインバブルの濃度を測定し、この測定値に基づいて、吸引ポンプ121及びカスケードポンプ123の吐出量と、混合エア量調整弁127の開度を調節して、バブル水タンク2のウルトラファインバブルの濃度を調節することができる。 The bubble water manufacturing apparatus 103 also measures the concentration of ultrafine bubbles in the water in the bubble water tank 2, and based on the measured values, the discharge amounts of the suction pump 121 and the cascade pump 123, and the mixed air amount adjusting valve. By adjusting the opening degree of 127, the concentration of ultrafine bubbles in the bubble water tank 2 can be adjusted.
 上記バブル水製造装置103は、第2の制御装置を設け、この第2の制御装置により、上記混合エア量調整弁127の開度と、吸引ポンプ121及びカスケードポンプ123による流体の吐出流量又は吐出圧力を制御して、バブル水タンク2のウルトラファインバブルの粒径と濃度を調節してもよい。 The bubble water producing apparatus 103 is provided with a second control device, and the opening degree of the mixed air amount adjusting valve 127 and the discharge flow rate or discharge amount of the fluid by the suction pump 121 and the cascade pump 123 are provided by the second control device. The particle size and concentration of the ultra fine bubbles in the bubble water tank 2 may be adjusted by controlling the pressure.
 例えば、バブル水タンク2の流体に含まれる気泡の径を小さくするためには、混合エア量調整弁127の開度を下げてエジェクタ122への空気の供給量を低減し、吸引ポンプ121及びカスケードポンプ123の運転を継続する。バブル水タンク2の流体が、吸引ポンプ121で吸引されてウルトラファインバブル製造器26に導かれ、含有する気泡が微細化されてカスケードポンプ123に吸引され、バブル水タンク2に戻される。バブル水タンク2の流体を、吸引ポンプ121、ウルトラファインバブル製造器26及びカスケードポンプ123に循環させることにより、この流体に含まれる気泡の径を効果的に小さくすることができる。 For example, in order to reduce the diameter of the bubbles contained in the fluid in the bubble water tank 2, the opening of the mixed air amount adjusting valve 127 is reduced to reduce the amount of air supplied to the ejector 122, and the suction pump 121 and the cascade. The operation of the pump 123 is continued. The fluid in the bubble water tank 2 is sucked by the suction pump 121 and guided to the ultra fine bubble manufacturing device 26, and the bubbles contained therein are atomized, sucked by the cascade pump 123, and returned to the bubble water tank 2. By circulating the fluid in the bubble water tank 2 through the suction pump 121, the ultra fine bubble maker 26, and the cascade pump 123, the diameter of bubbles contained in the fluid can be effectively reduced.
 また、例えば、バブル水タンク2の流体に含まれる気泡の濃度を増加させるためには、混合エア量調整弁127の開度を上げてエジェクタ122への空気の供給量を増やし、吸引ポンプ121及びカスケードポンプ123の運転を継続する。バブル水タンク2の流体が、吸引ポンプ121で吸引されて一部がエジェクタ122に導かれて空気が添加される。また、他の部分は吸引ポンプ121からウルトラファインバブル製造器26に導かれる。流体の気泡がウルトラファインバブル製造器26で微細化され、カスケードポンプ123に吸引されて、バブル水タンク2に戻される。バブル水タンク2の流体を、吸引ポンプ121、エジェクタ122、ウルトラファインバブル製造器26及びカスケードポンプ123に循環させることにより、この流体に含まれる気泡の濃度を効果的に増大させることができる。 Further, for example, in order to increase the concentration of bubbles contained in the fluid in the bubble water tank 2, the opening degree of the mixed air amount adjusting valve 127 is increased to increase the air supply amount to the ejector 122, and the suction pump 121, The operation of the cascade pump 123 is continued. The fluid in the bubble water tank 2 is sucked by the suction pump 121, part of which is guided to the ejector 122, and air is added. The other part is guided from the suction pump 121 to the ultra fine bubble manufacturing device 26. The bubbles of the fluid are atomized by the ultra fine bubble maker 26, sucked by the cascade pump 123, and returned to the bubble water tank 2. By circulating the fluid in the bubble water tank 2 through the suction pump 121, the ejector 122, the ultrafine bubble manufacturing device 26, and the cascade pump 123, the concentration of bubbles contained in the fluid can be effectively increased.
 上記バブル水製造装置103のウルトラファインバブル製造器26には、上流側と下流側の間、すなわち、供給管41の流体の圧力と排出管42の流体の圧力との間に、4MPa以上6MPa以下の圧力差が生じるように、吸引ポンプ121の吐出量とカスケードポンプ123の吸入量を調節するのが好ましい。この場合、供給管41における流体の圧力を、排出管42における流体の圧力よりも高く調節する。このように、ウルトラファインバブル製造器26の上流側と下流側の間に、4MPa以上6MPa以下の圧力差を生じさせることにより、ウルトラファインバブル製造器26により安定してウルトラファインバブルを含有する水を製造することができる。 In the ultrafine bubble producing device 26 of the bubble water producing apparatus 103, between 4 MPa and 6 MPa is provided between the upstream side and the downstream side, that is, between the fluid pressure of the supply pipe 41 and the fluid pressure of the discharge pipe 42. It is preferable to adjust the discharge amount of the suction pump 121 and the suction amount of the cascade pump 123 so that a pressure difference of 1 is generated. In this case, the pressure of the fluid in the supply pipe 41 is adjusted to be higher than the pressure of the fluid in the discharge pipe 42. As described above, by producing a pressure difference of 4 MPa or more and 6 MPa or less between the upstream side and the downstream side of the ultra fine bubble manufacturing device 26, the water containing the ultra fine bubble stably by the ultra fine bubble manufacturing device 26. Can be manufactured.
 このようにして、変形例のバブル水製造装置103により、安定して50~70nmのウルトラファインバブルを形成することができる。また、このバブル水製造装置103は、空気以外に、酸素や水素のウルトラファインバブルを含有する水を製造してもよい。酸素や水素のウルトラファインバブルを含有する水を製造する場合、水に添加されなかった余剰の酸素や水素を、気液分離器125で分離して、気体タンク124に戻すことにより、酸素や水素がバブル水製造装置103の外部に漏洩する不都合を防止できる。したがって、酸素や水素のウルトラファインバブルを含有する水を製造する場合に、酸素や水素の漏洩に起因する火災などの不都合を効果的に防止できる。 In this way, the bubble water producing apparatus 103 of the modified example can stably form ultrafine bubbles of 50 to 70 nm. Further, the bubble water producing apparatus 103 may produce water containing ultrafine bubbles of oxygen or hydrogen in addition to air. When producing water containing ultrafine bubbles of oxygen and hydrogen, excess oxygen and hydrogen not added to the water are separated by the gas-liquid separator 125 and returned to the gas tank 124, whereby oxygen and hydrogen are obtained. Can be prevented from leaking to the outside of the bubble water manufacturing apparatus 103. Therefore, when producing water containing ultrafine bubbles of oxygen or hydrogen, it is possible to effectively prevent inconveniences such as a fire caused by leakage of oxygen or hydrogen.
 上記実施形態において、ウルトラファインバブル製造器26の微細化ブロック28は、旋回流形成部としての第1旋回室31と第2旋回室33を有したが、2個に限られず、3個以上の旋回流形成部を有してもよい。また、ウルトラファインバブル製造器126の微細化ブロック128は、旋回流形成部としての第1偏心供給路131と第2偏心供給路132を有したが、2個に限られず、3個以上の旋回流形成部を有してもよい。 In the above embodiment, the miniaturization block 28 of the ultrafine bubble manufacturing device 26 has the first swirl chamber 31 and the second swirl chamber 33 as swirl flow forming parts, but the number is not limited to two, and three or more. You may have a swirl flow formation part. Further, the miniaturization block 128 of the ultra fine bubble manufacturing device 126 has the first eccentric supply passage 131 and the second eccentric supply passage 132 as the swirl flow forming portion, but the number is not limited to two, and three or more swirls are provided. It may have a flow forming part.
 また、上記実施形態において、食用豚に、空気のウルトラファインバブルを含有する水を給与したが、空気以外に、水素や酸素等の他の気体のウルトラファインバブルを含有する水を給与してもよい。また、水以外に、微酸性電解水や、その他の各種の成分を含有する水にウルトラファインバブルを含有させた飲用水を給与してもよい。水素のウルトラファインバブルを含有する水を用いた場合と、酸素のウルトラファインバブルを含有する水を用いた場合においても、食用豚の成長を促進できる効果や、豚の飼料の消費量の低減効果が確認された。また、微酸性電解水を用いた場合においても、食用豚の成長を促進できる効果が確認された。 Further, in the above-described embodiment, the edible pig was fed with water containing ultrafine bubbles of air, but in addition to air, it may be fed with water containing ultrafine bubbles of other gas such as hydrogen and oxygen. Good. In addition to water, slightly acidic electrolyzed water or drinking water in which ultrafine bubbles are contained in water containing various other components may be supplied. When using water containing ultrafine bubbles of hydrogen and also when using water containing ultrafine bubbles of oxygen, the effect of promoting the growth of edible pigs and the effect of reducing the consumption of pig feed Was confirmed. In addition, the effect of promoting the growth of edible pigs was confirmed even when slightly acidic electrolyzed water was used.
 本発明の実施例では、食用豚の飲用水として、上述のバブル水製造装置3により、次のような空気のウルトラファインバブルを含有するウルトラファインバブル水を作成した。
算術個数平均径:89.8nm
最大頻出径:60.3nm
標準偏差:44.2nm
10%径:54.5nm
50%径:74.5nm
90%径:140.7nm
個数濃度:1.75×10個/mL
 これらの値の測定は、日本カンタム・デザイン社製の名の粒子解析装置NANOSIGHT NS500にて行った。
In the example of the present invention, as drinking water for edible pigs, the following ultrafine bubble water containing ultrafine bubbles of air was prepared by the bubble water producing apparatus 3 described above.
Arithmetic number average diameter: 89.8 nm
Maximum frequent diameter: 60.3 nm
Standard deviation: 44.2nm
10% diameter: 54.5 nm
50% diameter: 74.5 nm
90% diameter: 140.7 nm
Number concentration: 1.75×10 8 pieces/mL
These values were measured by a particle analyzer NANOSIGHT NS500 manufactured by Japan Quantum Design Co., Ltd.
(試験1)
 試験1では、肥育を行う肥育豚舎に試験区と対照区を設け、各区で体重が約75kgの肥育後期の食用豚を3頭ずつ肥育した。各区で肥育した3頭は、いずれも雄が1頭であり、雌が2頭である。試験区ではウルトラファインバブル水を自由飲水させ、対照区では山梨県の水道水を自由引水させた。試験区と対照区のいずれも、同一の市販の肥育用配合飼料を給与した。試験区と対照区で体重が概ね110kgに達した食用豚について、発育速度、肉質及び枝肉成績等の分析を行った。次の表1は、肥育の開始時の体重と、肥育期間の終了時の体重と、肥育期間による1日平均増体重と、肥育日数と、飼料要求率である。いずれも、1頭当たりの平均値である。表2は、試験区及び対照区で肥育した食用豚から得られた枝肉の計測結果である。表3乃至5は、試験区及び対照区で肥育した食用豚から得られたロース肉の肉質の分析結果である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
(Test 1)
In Test 1, a test plot and a control plot were provided in a fattening pig pen for fattening, and in each plot, three dietary pigs in a late fattening stage having a body weight of about 75 kg were fattened. Of the three fattened animals in each ward, one male and two females were used. Ultra fine bubble water was freely drunk in the test section, and tap water of Yamanashi prefecture was freely drawn in the control section. The same commercially available compounded feed for fattening was fed to both the test plot and the control plot. With respect to the edible pigs having a body weight of approximately 110 kg in the test section and the control section, analysis of growth rate, meat quality, carcass performance and the like was performed. The following Table 1 shows the weight at the start of fattening, the weight at the end of the fattening period, the average daily weight gain due to the fattening period, the number of fattening days, and the feed conversion rate. All are average values per head. Table 2 shows the measurement results of carcasses obtained from the edible pigs fattened in the test section and the control section. Tables 3 to 5 show the analysis results of the meat quality of the loin meat obtained from the edible pigs fattened in the test section and the control section.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1から分かるように、発育速度については、肥育開始から出荷到達までの1日平均増体重が試験区で有意に高く、肥育日数は対照区と比較して5日短縮された。また、試験期間中の飼料摂取量は、対照区の平均で124kg/頭である一方、試験区の平均で111.5kg/頭であった。その結果、試験区は、対照区よりも12.5kg/頭の飼料の削減を行うことができた。なお、飼料摂取量は、終了体重と開始体重との差に飼料要求率を乗じて求められる。 As can be seen from Table 1, regarding the growth rate, the average daily weight gain from the start of fattening to the arrival of shipment was significantly higher in the test plot, and the number of fattening days was shortened by 5 days compared to the control plot. The feed intake during the test period was 124 kg/head on average in the control group, while it was 111.5 kg/head in average in the test group. As a result, the test plot was able to reduce the feed by 12.5 kg/head compared to the control plot. The feed intake is obtained by multiplying the difference between the end weight and the start weight by the feed requirement rate.
 枝肉の計測結果については、表2から分かるように、試験区と対照区の間で有意な差は見られなかった。ロース肉の肉質については、表3から分かるように、試験区は、筋肉内脂肪含量が対照区よりも多く、ドリップロスが対照区よりも少なかった。また、表4から分かるように、試験区は、破断強度が対照区よりも小さかった。以上より、ウルトラファインバブル水の給与により、ドリップロスの少なく、霜降りの柔らかいロース肉が得られるといえる。 Regarding carcass measurement results, as can be seen from Table 2, no significant difference was observed between the test plot and the control plot. Regarding the meat quality of the loin meat, as can be seen from Table 3, the test group had more intramuscular fat content than the control group and less drip loss than the control group. Further, as can be seen from Table 4, the breaking strength of the test section was smaller than that of the control section. From the above, it can be said that by feeding ultra fine bubble water, soft roasted meat with less drip loss can be obtained.
 また、表5から分かるように、酸化しやすく悪臭の原因になりやすいリノール酸やリノレン酸等の多価不飽和脂肪酸は、試験区が対照区よりも少ない。一方、パルミチン酸やステアリン酸等の飽和脂肪酸と、パルミトレイン酸やオレイン酸等の一価不飽和脂肪酸は、試験区が対照区よりも多い。したがって、悪臭が少なく、LDLコレステロールを低下でき、舌触りの良い豚肉が得られるといえる。 Also, as can be seen from Table 5, the amount of polyunsaturated fatty acids such as linoleic acid and linolenic acid, which are easy to oxidize and cause bad odor, is less in the test section than in the control section. On the other hand, the amount of saturated fatty acids such as palmitic acid and stearic acid and the amount of monounsaturated fatty acids such as palmitoleic acid and oleic acid are greater in the test section than in the control section. Therefore, it can be said that pork with less bad odor, lower LDL cholesterol and good texture can be obtained.
(試験2)
 試験2では、肥育を行う肥育豚舎に3つの試験区と1つの対照区を設け、各区で体重が約35kgの肥育前期の食用豚を4頭ずつ肥育した。各区で肥育した4頭は、いずれも雄が2頭であり、雌が2頭である。試験区1ではウルトラファインバブル水を自由飲水させ、試験区2では植物抽出物混合発酵液の水溶液を自由飲水させ、試験区3ではウルトラファインバブル水と植物抽出物混合発酵液の水溶液の混合液を自由飲水させた。対照区では山梨県の水道水を自由引水させた。植物抽出物混合発酵液の水溶液は、株式会社T.Sエコファーム社製のT.Sミネターゼを、500倍の水道水で希釈して作製した。試験区と対照区のいずれも、同一の市販の肥育用配合飼料を給与した。試験区と対照区で体重が概ね110kgに達した食用豚について、発育速度、肉質及び枝肉成績等の分析を行った。試験区1は、図1の第1飼育エリアA1に設定でき、試験区2は第3飼育エリアA3に設定でき、試験区3は第2飼育エリアA2に設定でき、対照区は第4飼育エリアA4に設定できる。
(Test 2)
In Test 2, three test plots and one control plot were provided in a fattening pig pen for fattening, and in each of the plots, four dietary pigs with a body weight of about 35 kg in the early fattening period were fed. Of the 4 fattened animals in each ward, there were 2 males and 2 females. In test section 1, ultrafine bubble water was freely drinkable, in test section 2, an aqueous solution of plant extract mixed fermented solution was allowed to freely drink, and in test section 3, a mixture of ultrafine bubble water and an aqueous solution of plant extract mixed fermented solution. Was allowed to drink water freely. In the control area, tap water from Yamanashi prefecture was freely drawn. An aqueous solution of a mixed extract of plant extracts is described in T. T.S. made by S Eco Farm. S-minase was prepared by diluting it with 500 times tap water. The same commercially available compounded feed for fattening was fed to both the test plot and the control plot. With respect to the edible pigs having a body weight of approximately 110 kg in the test section and the control section, analysis of growth rate, meat quality, carcass performance and the like was performed. The test plot 1 can be set to the first breeding area A1 in FIG. 1, the test plot 2 can be set to the third breeding area A3, the test plot 3 can be set to the second breeding area A2, and the control plot is the fourth breeding area. Can be set to A4.
 次の表6は、肥育前期の開始時の体重と、肥育後期の開始時の体重と、肥育後期の終了時の体重と、全肥育期間による1日平均増体重と、肥育日数である。いずれも、1頭当たりの平均値である。表7は、肥育前期と肥育後期における1日平均増体重と、飼料要求率であり、いずれも1頭当たりの平均値である。表8は、試験区及び対照区で肥育した食用豚から得られた枝肉の計測結果である。表9及び10は、試験区及び対照区で肥育した食用豚から得られたロース肉の肉質の分析結果である。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
The following Table 6 shows the weight at the beginning of the early fattening period, the weight at the beginning of the late fattening period, the weight at the end of the late fattening period, the average daily weight increase due to the entire fattening period, and the number of fattening days. All are average values per head. Table 7 shows the average daily weight gains in the early and late fattening periods and the feed requirement rate, both of which are the average values per head. Table 8 shows the measurement results of carcasses obtained from the edible pigs fattened in the test section and the control section. Tables 9 and 10 show the results of analyzing the meat quality of the loin meat obtained from the edible pigs fattened in the test group and the control group.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表6から分かるように、発育速度については、肥育開始から出荷到達までの1日平均増体重が試験区1乃至3で有意に高く、肥育日数は対照区と比較して最大で11日短縮された。また、試験期間中の飼料摂取量は、対照区の平均で381.7kg/頭である一方、試験区1の平均で320.1kg/頭、試験区2の平均で310.2kg/頭、試験区3の平均で389.4kg/頭である。その結果、試験区1で61.6kg/頭の飼料を削減でき、試験区2で71.5kg/頭の飼料を削減できる。 As can be seen from Table 6, regarding the growth rate, the average daily weight gain from the start of fattening to the arrival of shipment was significantly higher in the test groups 1 to 3, and the number of fattening days was shortened by up to 11 days compared with the control group. It was The feed intake during the test period was 381.7 kg/head on average in the control group, while 320.1 kg/head in average in test group 1 and 310.2 kg/head in average in test group 2. The average for Ward 3 is 389.4 kg/head. As a result, it is possible to reduce the feed of 61.6 kg/head in the test section 1 and reduce the feed of 71.5 kg/head in the test section 2.
 枝肉の計測結果については、表8から分かるように、試験区2において、ロース断面積が対照区よりも大きい。他の計測結果については、試験区と対照区の間で有意な差は見られなかった。ロース肉の肉質については、表9から分かるように、試験区3は、ドリップロスが対照区よりも少なく、筋肉内脂肪含量が対照区よりも多い。また、表10から分かるように、試験区1は、伸展率が対照区よりも大きかった。以上より、ウルトラファインバブル水の給与により、ドリップロスの少なく、霜降りの柔らかいロース肉が得られるといえる。 Regarding the carcass measurement results, as can be seen from Table 8, in test area 2, the loin cross section is larger than in the control area. Regarding other measurement results, no significant difference was found between the test plot and the control plot. Regarding the meat quality of the loin meat, as can be seen from Table 9, in the test group 3, the drip loss is less than that in the control group and the intramuscular fat content is more than that in the control group. Further, as can be seen from Table 10, the test section 1 had a greater extension rate than the control section. From the above, it can be said that by feeding ultra fine bubble water, soft roasted meat with less drip loss can be obtained.
 また、表5から分かるように、酸化しやすく悪臭の原因になりやすいリノール酸やリノレン酸等の多価不飽和脂肪酸は、試験区が対照区よりも少ない。一方、パルミチン酸やステアリン酸等の飽和脂肪酸と、パルミトレイン酸やオレイン酸等の一価不飽和脂肪酸は、試験区が対照区よりも多い。したがって、悪臭が少なく、LDLコレステロールを低下でき、舌触りの良い豚肉が得られるといえる。 Also, as can be seen from Table 5, the amount of polyunsaturated fatty acids such as linoleic acid and linolenic acid, which are easy to oxidize and cause bad odor, is less in the test section than in the control section. On the other hand, the amount of saturated fatty acids such as palmitic acid and stearic acid and the amount of monounsaturated fatty acids such as palmitoleic acid and oleic acid are greater in the test section than in the control section. Therefore, it can be said that pork with less bad odor, lower LDL cholesterol and good texture can be obtained.
 本発明は、以上説明した実施の形態又は実施例に限定されるものではなく、多くの変形が、本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 The present invention is not limited to the embodiments or examples described above, and many modifications can be made by a person having ordinary skill in the art within the technical idea of the present invention.
 1 飲用水供給装置
 2 バブル水タンク
 3,103 バブル水製造装置
 4 第2バブル水タンク
 5 混合液タンク
 6 発酵液水タンク
 7 水タンク
 8 給水器
 9 食用豚
 11 水道水バルブ
 12 水位調節弁
 A1 第1飼育エリア
 A2 第2飼育エリア
 A3 第3飼育エリア
 A4 第4飼育エリア
 21 水中ポンプ
 22 エジェクタ
 23 カスケードポンプ
 24 戻し経路
 25 排出経路
 26,126 ウルトラファインバブル製造器
 27 流量調整弁
 28 微細化ブロック
 29 混合エア量調整弁
 31 第1旋回室
 33 第2旋回室
 38 衝突室
 40 ケーシング
 41 供給管
 42 排出管
1 Drinking water supply device 2 Bubble water tank 3,103 Bubble water production device 4 Second bubble water tank 5 Mixed liquid tank 6 Fermentation water tank 7 Water tank 8 Water supply device 9 Edible pig 11 Tap water valve 12 Water level control valve A1 No. 1 Breeding Area A2 Second Breeding Area A3 Third Breeding Area A4 Fourth Breeding Area 21 Submersible Pump 22 Ejector 23 Cascade Pump 24 Return Path 25 Discharge Path 26,126 Ultra Fine Bubble Maker 27 Flow Control Valve 28 Fine Block 29 Mixing Air amount adjusting valve 31 First swirl chamber 33 Second swirl chamber 38 Collision chamber 40 Casing 41 Supply pipe 42 Discharge pipe

Claims (18)

  1.  食用の豚に、この豚の肥育期間中の少なくとも一部の期間に、気体のウルトラファインバブルを含有するバブル飲用水を与えることにより、上記豚の肥育期間を、気体のウルトラファインバブルを含有しない通常飲用水を給与した場合よりも短くすることを特徴とする養豚方法。 The edible pig, during at least a part of the fattening period of this pig, by giving bubble drinking water containing a gas ultrafine bubble, the pig fattening period, does not contain a gas ultrafine bubble A pig-growing method characterized in that it is shorter than when drinking water is usually supplied.
  2.  請求項1に記載の養豚方法において、
     上記気体は空気であることを特徴とする養豚方法。
    The pig raising method according to claim 1,
    A method for raising pigs, wherein the gas is air.
  3.  請求項1に記載の養豚方法において、
     上記気体は酸素であることを特徴とする養豚方法。
    The pig raising method according to claim 1,
    The pig breeding method, wherein the gas is oxygen.
  4.  請求項1に記載の養豚方法において、
     上記豚の飼料の消費量が、通常飲用水を給与した場合よりも少ないことを特徴とする養豚方法。
    The pig raising method according to claim 1,
    A method for raising pigs, characterized in that the feed consumption of the above pigs is smaller than that when normal drinking water is fed.
  5.  請求項1に記載の養豚方法において、
     上記豚から得られた肉のドリップロスが、通常飲用水を給与した場合よりも低いことを特徴とする養豚方法。
    The pig raising method according to claim 1,
    A pig raising method, characterized in that the drip loss of meat obtained from the pig is lower than that in the case where normal drinking water is fed.
  6.  請求項1に記載の養豚方法において、
     上記豚から得られた肉の筋肉内脂肪含量が、通常飲用水を給与した場合よりも多いことを特徴とする養豚方法。
    The pig raising method according to claim 1,
    A method for raising pigs, characterized in that the meat obtained from said pigs has a higher intramuscular fat content than when fed normal drinking water.
  7.  請求項1に記載の養豚方法において、
     上記豚から得られた肉の伸展率が、通常飲用水を給与した場合よりも高いことを特徴とする養豚方法。
    The pig raising method according to claim 1,
    A method for producing pigs, characterized in that the rate of extension of the meat obtained from the pigs is higher than that obtained when normal drinking water is fed.
  8.  請求項1に記載の養豚方法において、
     上記豚から得られた肉に含まれる多価不飽和脂肪酸の量が、通常飲用水を給与した場合よりも少ないことを特徴とする養豚方法。
    The pig raising method according to claim 1,
    A method for raising pigs, characterized in that the amount of polyunsaturated fatty acids contained in the meat obtained from the above-mentioned pigs is smaller than that in the case where normal drinking water is fed.
  9.  請求項1に記載の養豚方法において、
     上記豚から得られた肉に含まれる一価不飽和脂肪酸の量が、通常飲用水を給与した場合よりも多いことを特徴とする養豚方法。
    The pig raising method according to claim 1,
    A method for raising pigs, characterized in that the amount of monounsaturated fatty acids contained in the meat obtained from the above-mentioned pigs is larger than that in the case where normal drinking water is fed.
  10.  請求項1に記載の養豚方法において、
     上記バブル飲用水が、少なくともアロエを含む複数種類の植物を含む液を混合し抽出した植物由来エキス液と、キダチアロエのアルコール漬け液と、アロエベラのアルコール漬け液と、糖分と、ミネラル分とを含んで混合してなる液の発酵液が添加されていることを特徴とする養豚方法。
    The pig raising method according to claim 1,
    The bubble drinking water, a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling solution of Kidachi aloe, an alcohol pickling solution of aloe vera, sugar, and a mineral content. A method for pig farming, characterized in that a fermented liquid of the liquid obtained by mixing in 1. is added.
  11.  食用の豚に給与される飲用水に含有される気体のウルトラファインバブルを製造するための養豚用ウルトラファインバブル製造器であって、
     円形断面を有するケーシングと、
     上記ケーシングの一端に接続され、上記ケーシングと同軸上に延在し、気体と水の混合流体を供給する供給管と、
     上記ケーシング内に少なくとも一部が収容され、上記供給管からケーシング内に供給された上記混合流体の旋回流を形成する複数の旋回流形成部を含み、これらの旋回流形成部で形成された旋回流を互いに衝突させて、上記混合流体の気体を微細化してウルトラファインバブル水を生成する微細化ブロックと、
     上記ケーシングの他端側に配置され、上記微細化ブロックで生成されたウルトラファインバブル水を上記ケーシングの外に排出する排出管と
     を備えることを特徴とする養豚用ウルトラファインバブル製造器。
    An ultrafine bubble producing apparatus for pig farming for producing gas ultrafine bubbles contained in drinking water fed to edible pigs,
    A casing having a circular cross section,
    A supply pipe connected to one end of the casing, extending coaxially with the casing, and supplying a mixed fluid of gas and water,
    At least a part of the swirl flow forming part is accommodated in the casing and forms a swirl flow of the mixed fluid supplied from the supply pipe into the casing, and swirl formed by these swirl flow forming parts. A finer block that collides the flows with each other to finely atomize the gas of the mixed fluid to generate ultrafine bubble water,
    An ultra fine bubble manufacturing apparatus for pig farming, comprising: a discharge pipe that is disposed on the other end side of the casing and discharges the ultra fine bubble water generated by the miniaturization block to the outside of the casing.
  12.  請求項11に記載の養豚用ウルトラファインバブル製造器において、
     上記微細化ブロックが、上記ケーシングと同軸の旋回軸回りに混合流体の旋回流を形成する上記旋回流形成部としての第1旋回室と、この第1旋回室よりも上記供給管から遠い側に形成され、上記ケーシングと同軸の旋回軸回りに、上記第1旋回室で形成される旋回流と反対向きに旋回する混合流体の旋回流を形成する上記旋回流形成部としての第2旋回室と、上記第1旋回室で形成された混合流体の旋回流と上記第2旋回室で形成された混合流体の旋回流とを衝突させる衝突室と、この衝突室で混合流体の旋回流が衝突してなるウルトラファインバブル水を排出管側に導く排出通路とを含み、
     上記排出管は、上記排出通路に連通するように上記微細化ブロックに連結され、上記微細化ブロックを上記ケーシング内に支持していることを特徴とする養豚用ウルトラファインバブル製造器。
    The ultra fine bubble manufacturing device for pig farming according to claim 11,
    The miniaturization block forms a swirl flow of the mixed fluid around a swirl axis coaxial with the casing, and a first swirl chamber as the swirl flow forming section, and a side farther from the supply pipe than the first swirl chamber. A second swirl chamber as a swirl flow forming part that forms a swirl flow of the mixed fluid that is formed and swirls in the opposite direction to the swirl flow formed in the first swirl chamber around the swirl axis that is coaxial with the casing. A collision chamber for colliding the swirl flow of the mixed fluid formed in the first swirl chamber with the swirl flow of the mixed fluid formed in the second swirl chamber, and the swirl flow of the mixed fluid collide with each other in the collision chamber. Including a discharge passage that guides the ultra fine bubble water to the discharge pipe side,
    The discharge pipe is connected to the miniaturization block so as to communicate with the discharge passage, and supports the miniaturization block inside the casing.
  13.  請求項12に記載の養豚用ウルトラファインバブル製造器において、
     上記微細化ブロックが、
      上記第1旋回室と、この第1旋回室の一端側へケーシング内の混合流体を第1旋回室の接線方向に導入する第1導入路と、上記第1旋回室の他端に形成されて旋回流を吐出する第1吐出孔とを有する第1ブロック部品と、
      上記第1ブロック部品に結合され、上記第2旋回室と、この第2旋回室の一端側へケーシング内の混合流体を第2旋回室の接線方向に導入する第2導入路と、上記第2旋回室の他端に形成されて上記第1ブロック部品の第1吐出孔と対向して旋回流を吐出する第2吐出孔と、上記第1ブロック部品に結合されて第1ブロック部品との間に形成される衝突室に面する衝突室表面と、この衝突室表面に形成され、上記衝突室のウルトラファインバブル水を上記排出通路に流入させる流入口と、上記第1ブロック部品が連結された側と反対側の端面に形成され、上記排出通路を流れたウルトラファインバブル水を排出する排出口とを有する第2ブロック部品と
    を含んで形成されていることを特徴とする養豚用ウルトラファインバブル製造器。
    The ultrafine bubble manufacturing device for pig farming according to claim 12,
    The miniaturized block is
    The first swirl chamber, a first introduction path for introducing the mixed fluid in the casing into the tangential direction of the first swirl chamber to one end side of the first swirl chamber, and the first swirl chamber formed at the other end of the first swirl chamber. A first block part having a first discharge hole for discharging a swirl flow;
    The second swirl chamber, a second introduction path for introducing the mixed fluid in the casing in a tangential direction of the second swirl chamber, the second swirl chamber being coupled to the first block component; Between a second discharge hole that is formed at the other end of the swirl chamber and that discharges a swirl flow in opposition to the first discharge hole of the first block component, and the first block component that is connected to the first block component. The surface of the collision chamber facing the collision chamber, the inlet for allowing the ultrafine bubble water of the collision chamber to flow into the discharge passage, and the first block component are connected to each other. And a second block part having an outlet for discharging the ultrafine bubble water that has flowed through the discharge passage, and an end face on the opposite side to the second block component. Manufacturing equipment.
  14.  請求項13に記載の養豚用ウルトラファインバブル製造器において、
     上記第1導入路と第2導入路は、上記微細化ブロックの軸直角面に対して傾斜して形成されていることを特徴とする養豚用ウルトラファインバブル製造器。
    The ultrafine bubble manufacturing device for pig farming according to claim 13,
    The ultrafine bubble manufacturing device for pig farms, wherein the first introduction path and the second introduction path are formed to be inclined with respect to a plane perpendicular to the axis of the miniaturized block.
  15.  請求項11に記載の養豚用ウルトラファインバブル製造器において、
     上記微細化ブロックが、上記ケーシングと同軸方向に形成されて上記混合流体が導かれる処理流路と、この処理流路の上流端に上記混合流体を中心軸の偏心方向に導入して旋回流を形成する上記旋回流形成部としての第1偏心供給路と、上記処理流路の上記第1偏心供給路よりも下流側に上記混合流体を中心軸の上記第1偏心供給路と反対向きの偏心方向に導入し、上記第1偏心供給路で形成された旋回流に反対向きの旋回流を生成して衝突させる上記旋回流形成部としての第2偏心供給路とを含み、
     上記排出管は、上記微細化ブロックの処理流路の下流端に連結されている
    ことを特徴とする養豚用ウルトラファインバブル製造器。
    The ultra fine bubble manufacturing device for pig farming according to claim 11,
    The miniaturized block is formed in a coaxial direction with the casing, a processing flow path through which the mixed fluid is guided, and the mixed fluid is introduced into an eccentric direction of the central axis at an upstream end of the processing flow path to generate a swirling flow. A first eccentric supply passage as the swirl flow forming part to be formed, and an eccentricity of the processing fluid on the downstream side of the first eccentric supply passage opposite to the first eccentric supply passage on the central axis of the mixed fluid. A second eccentric supply path as the swirl flow forming section which is introduced in a direction to generate a collision of a swirl flow in the opposite direction to the swirl flow formed in the first eccentric supply path, and collide with the swirl flow.
    The discharge pipe is connected to a downstream end of a processing flow path of the miniaturization block, and an ultra fine bubble manufacturing apparatus for pig farming is provided.
  16.  請求項11に記載の養豚用ウルトラファインバブル製造器を用いて形成された養豚用バブル飲用水製造装置であって、
     原料水を圧送する第1ポンプと、
     上記第1ポンプから圧送された原料水に気体を混合して混合流体を形成する混合器と、
     上記混合器の下流側に設けられた第2ポンプと、
     上記第2ポンプの下流側で流体を2つの経路に分岐する分岐部と、
     上記分岐部に接続され、流量調整弁と、第1の上記養豚用ウルトラファインバブル製造器とが介設され、この第1養豚用ウルトラファインバブル製造器で製造された気体のウルトラファインバブルを含有する水を上記混合器と第2ポンプの間に戻す戻し経路と、
     上記分岐部に接続され、第2の上記養豚用ウルトラファインバブル製造器が介設され、この第2養豚用ウルトラファインバブル製造器で製造された気体のウルトラファインバブルを含有する水を排出する排出経路と
    を備えることを特徴とする養豚用バブル飲用水製造装置。
    A bubble drinking water production apparatus for pig farms, which is formed using the ultra fine bubble producer for pig farms according to claim 11.
    A first pump for pumping raw material water,
    A mixer for forming a mixed fluid by mixing a gas with the raw material water pumped from the first pump;
    A second pump provided on the downstream side of the mixer;
    A branch portion that branches the fluid into two paths downstream of the second pump;
    The flow control valve and the first ultrafine bubble maker for pig farming, which are connected to the branch part, are interposed, and contain the gas ultrafine bubbles produced by the first ultrafine bubble maker for pig farming. A return path for returning the generated water between the mixer and the second pump,
    A discharge that discharges water containing gas ultrafine bubbles produced by the second ultrafine bubble producing device for pig farming, which is connected to the branching portion and is provided with a second ultrafine bubble producing device for pig raising An apparatus for producing bubble drinking water for pig farming, characterized by comprising:
  17.  請求項11に記載の養豚用ウルトラファインバブル製造器を用いて形成された養豚用飲用水製造装置であって、
     気体が原料水に混合されてなる混合流体を圧送する第1ポンプと、
     上記第1ポンプの吐出側と吸入側との間に接続され、上記第1ポンプから吐出された混合流体に気体を混合して上記第1ポンプの吸入側に戻す混合器と、
     上記第1ポンプの下流側に設けられた上記養豚用ウルトラファインバブル製造器と、
     上記養豚用ウルトラファインバブル製造器の下流側に接続された第2ポンプと、
     上記第2ポンプの下流側に接続された気液分離器と、
     上記気液分離器で分離された液体を排出する排出経路と
    を備えることを特徴とする養豚用飲用水製造装置。
    A drinking water production apparatus for pig farming, which is formed by using the ultra fine bubble maker for pig farming according to claim 11.
    A first pump for pumping a mixed fluid in which gas is mixed with raw material water;
    A mixer connected between the discharge side and the suction side of the first pump, for mixing gas into the mixed fluid discharged from the first pump and returning the mixed fluid to the suction side of the first pump;
    An ultra fine bubble manufacturing device for pig farming, which is provided on the downstream side of the first pump;
    A second pump connected to the downstream side of the ultra fine bubble manufacturing device for pig farming,
    A gas-liquid separator connected to the downstream side of the second pump,
    A drainage water discharge device for discharging the liquid separated by the gas-liquid separator.
  18.  請求項16又は17に記載の養豚用バブル飲用水製造装置において、
     上記第2ポンプが、カスケードポンプであることを特徴とする養豚用バブル飲用水製造装置。
    The bubble drinking water manufacturing apparatus for pig farming according to claim 16 or 17,
    The bubble drinking water production apparatus for pig farming, wherein the second pump is a cascade pump.
PCT/JP2019/051035 2018-12-25 2019-12-25 Pig farming method, ultrafine bubble maker for pig farming, and drinking water preparing device for pig farming WO2020138247A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020563393A JPWO2020138247A1 (en) 2018-12-25 2019-12-25 Pig farming method, ultra-fine bubble maker for pig farming and bubble drinking water maker for pig farming
JP2023059518A JP7510122B2 (en) 2018-12-25 2023-03-31 Ultra-fine bubble producing device for pig farming and bubble drinking water producing device for pig farming

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018241809 2018-12-25
JP2018-241809 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020138247A1 true WO2020138247A1 (en) 2020-07-02

Family

ID=71128743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051035 WO2020138247A1 (en) 2018-12-25 2019-12-25 Pig farming method, ultrafine bubble maker for pig farming, and drinking water preparing device for pig farming

Country Status (2)

Country Link
JP (1) JPWO2020138247A1 (en)
WO (1) WO2020138247A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021178303A (en) * 2020-05-15 2021-11-18 株式会社サイエンス Bubble agitator
JP2022037017A (en) * 2020-08-24 2022-03-08 株式会社御池鐵工所 Disinfectant generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114900B2 (en) * 1978-03-11 1986-04-21 Kubota Ltd
JPH0787899A (en) * 1993-09-22 1995-04-04 Hokueiken Corp:Kk Additive for hog-raising feed
JP2011115674A (en) * 2009-11-30 2011-06-16 Miike Iron Works Co Ltd Micronization mixer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114900B1 (en) * 2016-04-27 2017-04-19 有限会社情報科学研究所 Ultra fine bubble water automatic water supply and distribution equipment for livestock.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114900B2 (en) * 1978-03-11 1986-04-21 Kubota Ltd
JPH0787899A (en) * 1993-09-22 1995-04-04 Hokueiken Corp:Kk Additive for hog-raising feed
JP2011115674A (en) * 2009-11-30 2011-06-16 Miike Iron Works Co Ltd Micronization mixer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021178303A (en) * 2020-05-15 2021-11-18 株式会社サイエンス Bubble agitator
JP7236743B2 (en) 2020-05-15 2023-03-10 株式会社サイエンス bubble agitator
JP2022037017A (en) * 2020-08-24 2022-03-08 株式会社御池鐵工所 Disinfectant generator
JP7210122B2 (en) 2020-08-24 2023-01-23 株式会社御池鐵工所 disinfectant generator

Also Published As

Publication number Publication date
JPWO2020138247A1 (en) 2021-10-21
JP2023080148A (en) 2023-06-08

Similar Documents

Publication Publication Date Title
WO2020138247A1 (en) Pig farming method, ultrafine bubble maker for pig farming, and drinking water preparing device for pig farming
WO2016027906A1 (en) Method for manufacturing ultra-fine bubbles having oxidizing radical or reducing radical by resonance foaming and vacuum cavitation, and ultra-fine bubble water manufacturing device
WO2020138246A1 (en) Poultry farming method, ultrafine bubble maker for poultry farming, and drinking water preparing device for poultry farming
KR101461859B1 (en) Method for cultivating bean sprouts using non alcohol water soluble propolis and alkali-water
CN101623053A (en) Chinese herbal medicine feed additive with pine needle flavor for fattening lambs
JP2014171463A (en) Plant processing method
CN107821243A (en) The cultural method of fresh water perch
KR101486922B1 (en) Fabricating process for non alcohol water soluble propolis
JP7510122B2 (en) Ultra-fine bubble producing device for pig farming and bubble drinking water producing device for pig farming
KR102557241B1 (en) Ultra-fine bubble maker and ultra-fine bubble water manufacturing device
CN104757254A (en) Green and healthy treatment agent for new loach feed
RU2277833C1 (en) Alcohol-free beverage
KR101795555B1 (en) Apparatus for manufacturing baby sprout or baby sprout-tea including device for generating nanobubble-water, and manufacturing method of baby sprout or baby sprout-tea using nanobubble-water
RU2734830C1 (en) Composition for production of alcohol-free emulsion beverage
RU2487646C1 (en) Vegetal raw material syrup and its production method
WO2019230789A1 (en) Method of controlling powdery mildew
CN104207247B (en) A kind of olive Pleurotus nebrodensis beverage and preparation method thereof
CN205182533U (en) High concentration ozone water preparing is equipped with equipment
CN109619478A (en) A kind of 8 color fruit vegetable powders
KR101604462B1 (en) Oxygen dissolution apparatus
CN208387857U (en) A kind of dedicated jet stream process units of the water-soluble origanum oil of liquid
CN209031150U (en) A kind of soya bean peeling machine
CN208768904U (en) A kind of cleaning device of vegetable leaf
CN205667240U (en) A kind of for the chlorination equipment on onychostoma simus rearing pool
KR101468145B1 (en) Fabricating process for water soluble propolis using air bubble diffusing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563393

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901468

Country of ref document: EP

Kind code of ref document: A1