WO2020138246A1 - Poultry farming method, ultrafine bubble maker for poultry farming, and drinking water preparing device for poultry farming - Google Patents

Poultry farming method, ultrafine bubble maker for poultry farming, and drinking water preparing device for poultry farming Download PDF

Info

Publication number
WO2020138246A1
WO2020138246A1 PCT/JP2019/051034 JP2019051034W WO2020138246A1 WO 2020138246 A1 WO2020138246 A1 WO 2020138246A1 JP 2019051034 W JP2019051034 W JP 2019051034W WO 2020138246 A1 WO2020138246 A1 WO 2020138246A1
Authority
WO
WIPO (PCT)
Prior art keywords
poultry
water
swirl
pump
ultrafine
Prior art date
Application number
PCT/JP2019/051034
Other languages
French (fr)
Japanese (ja)
Inventor
小林 由和
秀匡 小林
政秀 林
孝治 藤原
石井 悦男
矩宏 清水
和喜 五味
Original Assignee
株式会社御池鐵工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社御池鐵工所 filed Critical 株式会社御池鐵工所
Priority to JP2020563392A priority Critical patent/JP7187128B2/en
Publication of WO2020138246A1 publication Critical patent/WO2020138246A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K39/00Feeding or drinking appliances for poultry or other birds
    • A01K39/02Drinking appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • B01F23/2375Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm for obtaining bubbles with a size below 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/80After-treatment of the mixture
    • B01F23/803Venting, degassing or ventilating of gases, fumes or toxic vapours from the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/102Mixing by creating a vortex flow, e.g. by tangential introduction of flow components wherein the vortex is created by two or more jets introduced tangentially in separate mixing chambers or consecutively in the same mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • B01F25/103Mixing by creating a vortex flow, e.g. by tangential introduction of flow components with additional mixing means other than vortex mixers, e.g. the vortex chamber being positioned in another mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • B01F25/23Mixing by intersecting jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4336Mixers with a diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71805Feed mechanisms characterised by the means for feeding the components to the mixer using valves, gates, orifices or openings
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water

Definitions

  • the present invention relates to a method for raising chickens for egg collection, and an ultra fine bubble producing device for poultry and a drinking water producing device for poultry used therein.
  • a water supply pipe is arranged along the cage, and this water supply pipe is Water is supplied through the provided water pick.
  • 120-day-old chickens are introduced into a poultry house, and the introduced chickens are fed and water-fed to start feeding.
  • the chickens introduced into the poultry house gradually start spawning, and the spawning rate reaches 50% at about 150 days of age, and then reaches the maximum of about 90% at about 200 days of age. After this, the egg production rate gradually decreases, and the eggs are removed from the poultry house at around 600 days of age when the egg production rate becomes 70% or less and replaced with new chickens.
  • the above-mentioned conventional poultry raising method has a problem that feed cost increases because a special feed which is different from usual is fed in order to increase the weight of the chicken in the chick stage.
  • an object of the present invention is to provide a poultry raising method that can improve the productivity of chicken eggs without increasing the feed cost, and an ultra fine bubble producing device for poultry raising and a drinking water producing device for poultry raising used therein. is there.
  • the poultry raising method of the present invention is characterized by obtaining chicken eggs from the above chickens by giving drinking water containing gas ultrafine bubbles to the chickens for egg collection.
  • the chicken for egg collection is provided with drinking water containing a gas ultrafine bubble, without using a special feed, using the conventional feed, the start time of the egg laying of the chicken from the conventional You can also speed up.
  • the egg laying rate can be increased faster than before, so that the productivity of chicken eggs can be improved.
  • the timing of starting the supply of drinking water containing gaseous ultrafine bubbles is not particularly limited, and for example, the supply may be started from a young age, or the supply may be performed after introduction into a chicken house for egg collection. You may start.
  • Ultra fine bubbles means fine bubbles having a diameter of 1 ⁇ m or less. The diameter of ultrafine bubbles can be measured by, for example, a laser diffraction/scattering method, a particle trajectory analysis method, a dynamic light scattering method, or the like.
  • the gas is air.
  • the gas is oxygen
  • the start of egg laying of the chicken is earlier than when the drinking water containing no gas ultrafine bubble is fed.
  • the chicken for egg collection is given the drinking water containing the gas ultrafine bubbles to indicate the start time of egg laying of the chicken, when the drinking water containing no gas ultrafine bubbles is supplied.
  • Can be faster than Therefore it is possible to increase the number of eggs to be laid earlier than in the past and to improve the productivity of chicken eggs.
  • the poultry raising method of one embodiment feeds the above-mentioned chickens with a feed of 16% CP to make the number of eggs of M size or more 95% or more of the total number of eggs laid.
  • the chickens for egg collection are fed with drinking water containing ultrafine bubbles of air to give a feed containing 16% CP (crude protein), which is M size or more.
  • the number of eggs laid can be 95% or more of the total number of eggs laid. Therefore, the productivity of chicken eggs can be improved without using expensive CP18% feed or special feed. Especially, even if the feed of CP18% is changed to the feed of CP16%, the productivity of chicken eggs can be maintained or improved, so that the feed cost can be reduced.
  • the M size means that the weight of the egg is 58 g or more and less than 64 g according to the egg egg transaction standard in the attached egg egg transaction standard established by the Japanese Ministry of Agriculture, Forestry and Fisheries.
  • the drinking water is a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling solution of Kidachi aloe, an alcohol pickling solution of aloe vera, and sugar content. And a fermented liquor, which is a mixture of minerals and minerals, is added.
  • a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling liquid of Kidachi aloe, an alcohol pickling liquid of aloe vera, sugar, and minerals.
  • a chicken poultry ultra fine bubble producing apparatus for producing gas ultra fine bubbles contained in drinking water fed to a chicken for egg collection,
  • a casing having a circular cross section,
  • a supply pipe connected to one end of the casing, extending coaxially with the casing, and supplying a mixed fluid of gas and water,
  • At least a part of the swirl flow forming part is accommodated in the casing and forms a swirl flow of the mixed fluid supplied from the supply pipe into the casing, and swirl formed by these swirl flow forming parts.
  • the ultrafine bubble manufacturing device for poultry which includes the casing, the supply pipe, the discharge pipe, and the miniaturized block housed in the casing, can be easily miniaturized. Further, this chicken ultra-fine bubble manufacturing device includes a plurality of swirl flow forming portions that form a swirl flow of the mixed fluid, collide swirl flows formed by these swirl flow forming portions with each other, and Since it is configured by using the atomization block that atomizes the gas to generate ultrafine bubble water, it is possible to efficiently generate the gas ultrafine bubbles.
  • the miniaturization block includes a first swirl chamber as the swirl flow forming unit that forms a swirl flow of a mixed fluid around a swirl axis coaxial with the casing, A swirl flow of the mixed fluid is formed on the side farther from the supply pipe than the first swirl chamber, and swirls in the opposite direction to the swirl flow formed in the first swirl chamber around the swirl axis coaxial with the casing.
  • a second swirl chamber as the swirl flow forming section, and a collision chamber for colliding the swirl flow of the mixed fluid formed in the first swirl chamber with the swirl flow of the mixed fluid formed in the second swirl chamber.
  • the discharge pipe is connected to the miniaturization block so as to communicate with the discharge passage, and supports the miniaturization block in the casing.
  • the miniaturized block in the casing is farther from the supply pipe than the first swirl chamber that forms the swirl flow of the mixed fluid around the swirl axis that is coaxial with the casing.
  • a second swirl chamber that is formed on the side of the casing and that forms a swirl flow of a mixed fluid that swirls in the opposite direction to the swirl flow that is formed in the first swirl chamber around the swirl axis that is coaxial with the casing; Collision chamber for colliding the swirling flow of the mixed fluid formed in the chamber with the swirling flow of the mixed fluid formed in the second swirling chamber, and an ultra fine bubble formed by the swirling flow of the mixed fluid colliding in the collision chamber Since it is formed to include a discharge passage that guides water to the discharge pipe side, the ultrafine bubble manufacturing device for poultry can be downsized. Further, the discharge pipe is connected to the miniaturization block so as to communicate with the discharge passage of the miniaturization block, and supports the miniaturization block in the casing. Therefore, the miniaturization block in the casing has
  • the ultrafine bubble manufacturing device for poultry farming of one embodiment, the miniaturized block The first swirl chamber, a first introduction path for introducing the mixed fluid in the casing into the tangential direction of the first swirl chamber to one end side of the first swirl chamber, and the first swirl chamber formed at the other end of the first swirl chamber.
  • a first block part having a first discharge hole for discharging a swirl flow;
  • the second swirl chamber a second introduction path for introducing the mixed fluid in the casing in a tangential direction of the second swirl chamber, the second swirl chamber being coupled to the first block component; Between a second discharge hole that is formed at the other end of the swirl chamber and that discharges a swirl flow in opposition to the first discharge hole of the first block component, and the first block component that is connected to the first block component.
  • the surface of the collision chamber facing the collision chamber, the inlet for allowing the ultrafine bubble water of the collision chamber to flow into the discharge passage, and the first block component are connected to each other. And a second block part having an outlet for discharging the ultrafine bubble water that has flowed through the discharge passage.
  • the miniaturized block is formed by combining the first block component and the second block component.
  • the first block component includes a first swirl chamber, a first introduction path for introducing the mixed fluid in the casing into a tangential direction of the first swirl chamber to one end side of the first swirl chamber, and the first swirl chamber of the first swirl chamber. It has a 1st discharge hole formed in the other end and discharging a swirl flow.
  • the second block component includes a second swirl chamber, a second introduction path for introducing the mixed fluid in the casing into one end side of the second swirl chamber in a tangential direction of the second swirl chamber, and the second swirl chamber.
  • the second block component has a collision chamber surface facing a collision chamber formed between the first block component and the first block component, and an inflow port formed on the collision chamber surface. And a discharge passage extending between a side to which the first block component is connected and a discharge port formed on the opposite end surface.
  • the first introduction path and the second introduction path are formed to be inclined with respect to the plane perpendicular to the axis of the miniaturized block.
  • the mixed fluid is introduced into the first swirl chamber through the first introduction path inclined with respect to the plane perpendicular to the axis of the miniaturization block, so that the first swirl chamber faces the first discharge hole.
  • a swirling flow that swirls can be effectively generated.
  • the swirling flow swirling toward the second discharge hole is generated in the second swirling chamber. It can be effectively generated.
  • the swirl flow from the first swirl chamber and the swirl flow from the second swirl chamber Can be made to collide strongly, and as a result, the gas bubbles contained in each swirling flow can be effectively miniaturized, and the gas ultrafine bubbles can be efficiently generated.
  • the ultrafine bubble manufacturing device for poultry farming of one embodiment the miniaturized block, the processing flow path is formed coaxially with the casing and the mixed fluid is guided, the mixed fluid at the upstream end of the processing flow path. Is introduced in the eccentric direction of the central axis to form a swirl flow, and a first eccentric supply passage as the swirl flow forming portion, and the mixed fluid is centered on the downstream side of the first eccentric supply passage in the processing flow passage.
  • the swirl flow forming section is introduced into the shaft in an eccentric direction opposite to the first eccentric supply passage, and generates a swirl flow in the opposite direction against the swirl flow formed in the first eccentric supply passage to collide.
  • the discharge pipe is connected to the downstream end of the processing channel of the miniaturization block.
  • the miniaturized block includes a processing flow path that is formed coaxially with the casing and guides the mixed fluid.
  • a first eccentric supply passage as a swirl flow forming portion that forms a swirl flow by introducing the mixed fluid in the eccentric direction of the central axis communicates with the upstream end of the processing flow path.
  • a second eccentric supply passage as a swirl flow forming unit for introducing the mixed fluid in the eccentric direction opposite to the first eccentric supply passage of the central axis is provided downstream of the first eccentric supply passage of the processing flow passage. It is in communication.
  • the swirl flow formed in the first eccentric supply passage is caused to collide with the swirl flow in the opposite direction to collide with the swirl flow, whereby the gas bubbles contained in the mixed fluid are effectively miniaturized. , Ultra fine bubbles of gas are generated.
  • the miniaturization block is configured to include the processing flow path, the first eccentric supply path, and the second eccentric supply path, the ultrafine bubble manufacturing device for poultry can be downsized.
  • a poultry drinking water production apparatus formed using the poultry ultrafine bubble production device, A first pump for pumping raw material water, A mixer for forming a mixed fluid by mixing a gas with the raw material water pumped from the first pump; A second pump provided on the downstream side of the mixer; A branch portion that branches the mixed fluid into two paths downstream of the second pump; The flow control valve and the first ultrafine bubble producing device for poultry raising are connected to the branch portion, and contain the gas ultrafine bubble produced by the first ultrafine bubble producing device for poultry raising.
  • a return path for returning the generated water between the mixer and the second pump The discharge which discharges the water containing the gas ultra fine bubble which was connected to the said branch part and which was equipped with the 2nd above-mentioned ultra fine bubble manufacturing device for poultry raising, and was manufactured by this 2nd ultra fine bubble manufacturing device for poultry raising And a route.
  • the raw water is pumped by the first pump, and the gas is mixed with the raw water by the mixer.
  • the mixed fluid pumped by the second pump on the downstream side of the mixer is branched into two paths at the branch portion.
  • the flow rate adjusting valve when the flow rate adjusting valve is open, a part of the mixed fluid pumped from the second pump is guided to the first ultra-fine bubble maker for poultry, and the gas in the mixed fluid is introduced.
  • the water containing the gas ultrafine bubbles is returned between the mixer and the second pump, merges with the mixed fluid from the mixer, and is sucked by the second pump.
  • a part of the mixed fluid pumped from the second pump is guided to the second ultra-fine bubble maker for poultry, and the gas in the mixed fluid is atomized to produce ultra-fine particles.
  • a bubble is formed.
  • the water containing the gas ultrafine bubbles is discharged from the downstream side of the discharge path and used as drinking water for the chicken for egg collection. Further, when the flow rate adjusting valve of the return path is closed, all of the mixed fluid pumped from the second pump is guided to the second chicken ultrafine bubble manufacturing device to form a gas ultrafine bubble. The water containing the ultra fine bubbles is discharged from the downstream side of the discharge path.
  • the opening degree of the flow rate adjusting valve By adjusting the opening degree of the flow rate adjusting valve, the amount of water containing the gas ultrafine bubbles formed in the first chicken ultrafine bubble producing device and returned to the second pump can be adjusted. Therefore, it is possible to effectively control the particle size and concentration of the gas ultrafine bubbles in the water discharged from the discharge path.
  • the poultry drinking water production device of one embodiment is an ultrafine bubble water production device formed using the ultrafine bubble production device, A first pump for pumping a mixed fluid in which gas is mixed with raw material water; A mixer connected between the discharge side and the suction side of the first pump, for mixing gas into the mixed fluid discharged from the first pump and returning the mixed fluid to the suction side of the first pump; An ultra fine bubble manufacturing device for poultry, which is provided on the downstream side of the first pump; A second pump connected to the downstream side of the ultrafine bubble manufacturing device for poultry, A gas-liquid separator connected to the downstream side of the second pump, And a discharge path for discharging the liquid separated by the gas-liquid separator.
  • the first pump pumps the mixed fluid in which the gas is mixed with the raw material water.
  • a part of the mixed fluid discharged from the first pump is guided to a mixer connected between the discharge side and the suction side of the first pump, and the mixed fluid mixes gas with the mixed fluid. It The mixed fluid in which the gas is mixed in the mixer is returned to the suction side of the first pump.
  • the other part of the mixed fluid discharged from the first pump is guided to an ultra fine bubble manufacturing device for poultry, which is provided on the downstream side, and the gas in the mixed fluid is atomized to form ultra fine bubbles. ..
  • the water containing the ultra fine bubbles is sucked by the second pump connected to the downstream side of the ultra fine bubble manufacturing device for poultry and discharged toward the gas-liquid separator connected to the downstream side of the second pump. To be done.
  • the water containing ultrafine bubbles introduced into the gas-liquid separator is separated from the gas introduced together with this water.
  • Water containing ultrafine bubbles which is the liquid that remains after the gas is separated by the gas-liquid separator, is discharged through the discharge path. It is possible to stabilize the amount of water containing ultrafine bubbles by interposing an ultrafine bubble manufacturing device for chickens between the first pump and the second pump and adjusting the operation of the second pump mainly. it can.
  • the second pump is a cascade pump.
  • FIG. 4 is a cross-sectional view of the ultrafine bubble manufacturing device for poultry, as viewed in the direction of arrow B in FIG. 3.
  • FIG. 4 is a cross-sectional view of the ultrafine bubble manufacturing device for poultry, taken along arrow C in FIG. 3. It is sectional drawing which shows the 1st block of the ultra fine bubble manufacture device for chicken raising. It is sectional drawing which shows the 2nd block of the ultra fine bubble manufacture device for chicken raising.
  • FIG. 9 is a cross-sectional view of the ultrafine bubble manufacturing device for poultry, taken along arrow D in FIG. 8.
  • FIG. 9 is a cross-sectional view of the ultrafine bubble manufacturing device for poultry, taken along arrow E in FIG. 8. It is a schematic diagram which shows the drinking water manufacturing apparatus for other chickens. It is a graph which shows the result of test 1.
  • eggs are obtained from the above-mentioned chickens by giving drinking water containing ultrafine bubbles of air as gas to the chickens for egg collection.
  • Ultrafine bubbles are bubbles with a diameter of 1 ⁇ m or less, and those smaller than the wavelength of visible light cannot be visually recognized even if they are formed in a liquid.
  • ultrafine bubbles have a smaller floating speed than microbubbles, which are bubbles having a diameter of 1 ⁇ m or more, and can stay in liquid for a long time.
  • ultrafine bubbles have a larger surface area than microbubbles, have a self-pressurizing effect, and have a negative charging effect. Based on such characteristics, it is possible to enhance the egg production efficiency of chickens by feeding water containing ultrafine bubbles of air as drinking water to the chickens for egg collection.
  • chickens for egg collection generally start spawning around 150 days of age.
  • the start of spawning can be accelerated by about 10 to 20 days by feeding drinking water to which air ultrafine bubbles have been added to the chickens that have not spawned and raised them.
  • the egg collection chicken by feeding drinking water with the addition of air ultrafine bubbles to the egg collection chicken, compared to the case of feeding with drinking water without the addition of air ultrafine bubbles, a large egg of 76 g or more is collected.
  • the ratio can be increased from 1.5 times to about 2 times.
  • the ultrafine bubble-containing water of air used as drinking water in the present embodiment is not particularly limited as long as the diameter of the ultrafine bubbles of air is 1 nm or more and 1000 nm or less. If the diameter of the ultrafine bubbles of air exceeds 1000 nm, the improvement in egg production efficiency may be insufficient.
  • the diameter of the ultrafine bubbles of air contained in the drinking water is preferably 10 nm or more and 500 nm or less, more preferably 20 nm or more and 300 nm or less. When the diameter of the air ultrafine bubbles contained in the drinking water is 20 nm or more and 300 nm or less, the production efficiency of chicken eggs can be effectively increased. In addition, the weight of eggs produced can be effectively increased. In the present embodiment, the diameter of the ultra fine bubbles was measured by the laser diffraction/scattering method.
  • the ultrafine bubble-containing water of air used as drinking water of the present embodiment has a concentration of ultrafine bubbles of air of 1 ⁇ 10 7 cells/mL or more, and the upper limit is not particularly limited, but from the ease of production, It is 10 12 pieces/mL or less. If the concentration of ultrafine bubbles in the air is lower than 1 ⁇ 10 7 cells/mL, the improvement in egg production efficiency may be insufficient.
  • the concentration of ultrafine bubbles in air is preferably 1 ⁇ 10 7 cells/mL or more and 3 ⁇ 10 8 cells/mL or less, and particularly preferably 1 ⁇ 10 8 cells/mL or more and 2 ⁇ 10 8 cells/mL or less. Is.
  • Drinking water containing ultrafine bubbles of air may be fed to the chickens for egg collection at any time.
  • the drinking water containing ultrafine bubbles of air can be fed at the time when the chicken is introduced into the poultry house for egg collection.
  • 120-day-old large chicks introduced into a poultry house can be started to be fed with drinking water containing ultrafine bubbles of air.
  • the egg laying rate of the chickens increases with the passage of time and the amount of eggs collected increases.
  • drinking water containing air ultrafine bubbles as drinking water to be fed in this poultry house, it is possible to effectively accelerate the time when the chicken starts to lay eggs.
  • Drinking water containing ultrafine bubbles of air may be fed from any time between when the chicken hatches and when it is introduced into the chicken house for egg collection.
  • the growth of chicks can be promoted by feeding drinking water containing ultrafine bubbles of air at the time of young, medium or large chicks.
  • chickens introduced into a chicken house for egg collection may be supplied with drinking water containing ultrafine bubbles of air.
  • the chickens introduced into the chicken house for egg collection may be supplied with drinking water containing ultrafine bubbles of air for a certain period.
  • the drinking water to be fed to the chickens for egg collection may contain the plant extract mixed fermented liquid in addition to the ultrafine bubbles in the air.
  • the plant extract mixed fermented liquid is a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling liquid of Kidachi aloe, an alcohol pickling liquid of aloe vera, rice bran liquid, and sugar.
  • the plant-derived extract solution of the above-mentioned plant extract mixed fermented solution comprises (a) a first liquid containing at least aloe, sugar and mineral, and (b) a second liquid containing at least aloe, sugar and salt ( c) Alcohol extract of plural kinds of plants containing aloe, sugar extract of plural kinds of plants containing aloe, liquid obtained by boiling and mixing plural kinds of plants, and alcohol extract of plural kinds of plant extracts It is preferable to include a third liquid containing and.
  • the first brown sugar aloe liquid can be adopted as the first liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermentation liquid.
  • the first brown sugar aloe liquid can be prepared as follows. First, brown sugar 15 kg, brown sugar 15 kg, honey 7 kg, plum extract 500 cc, and concentrated mineral liquid 100 cc are mixed with 15 kg of yellowtail aloe, aged for 1 week, the liquid is squeezed, and the squeezed liquid is used as the first liquid.
  • the concentrated mineral liquid was prepared by concentrating seawater 50 times. Aloe is used after being made into fine particles to a size of 1/100,000 mm. Hereinafter, plants such as aloe and aloe vera are treated in the same manner. This facilitates ionization.
  • the second brown sugar aloe liquid prepared as follows can be adopted as the second liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermentation liquid. 30 kg of aloe extract is mixed with 15 kg of brown sugar, 15 kg of brown sugar and 200 g of natural salt, and the mixed solution is boiled to obtain a second solution.
  • the third liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermented liquid is a vegetable prepared by mixing the extract liquid A, the extract liquid B, the extract liquid C, and the extract liquid D prepared as follows.
  • Extract liquid can be used. First, Naga eggplant, cucumber, mushrooms, pumpkin, silk pods, green beans, maitake mushrooms, shimeji mushrooms, komatsuna, oranges, bamboo shoots, ginger, butterbur leaves, pears, butterbur sprouts, cucumber, spinach, red balls, aloe vera, green apple, figs, celery, Pears, halves, rice bran, habucha, lotus leaves, turmeric, black beans, shiitake mushrooms, yellow powder, matsutake mushrooms, sesame seeds, kumamazasa, shiinomi, iyokan, pomelo, prune, edamame, enoki mushrooms, peppers, turnips, persimmon leaves , Mango, strawberry, basil, pineapple, tomato, shishi
  • the ingredients such as garlic, ome, and kidachi aloe are mixed in whole at an arbitrary ratio such that the ratio of each is at least 10% by weight, and the whole material such as leather is mixed to obtain a mixture B.
  • Extraction is performed at a ratio of 1 kg of brown sugar to 1 kg of the mixed material B to obtain an extraction liquid B (sugar extraction liquid).
  • the extraction method of the extract B is sugar extraction, that is, extraction utilizing the osmotic pressure of sugar.
  • turmeric, radish, carrot, Phellinus linteus, litchi, agarisk, burdock root, rice bran, and horsetail are mixed in whole proportions, such as at least 5% by weight, each in whole.
  • a mixed material C is obtained.
  • the mixed material C is boiled and extracted to obtain an extract liquid C (boiled extract liquid).
  • turmeric extract kumazasa solution, watercress solution, horsetail solution, burdock extract, garlic extract, bracken extract, red perilla extract, maitake extract, messhikobu extract, litchi extract, agarisk extract, radish extract, ginseng extract, luohana extract, ova extract.
  • the shishito extract and the kelp extract are mixed with the radish extract in a double amount, and the other ingredients are mixed in the same weight, and the whole material such as the skin is mixed to obtain a mixture D. Extraction is performed at a ratio of 1.5 liters of alcohol to 1 kg of the mixed material D to obtain an extraction liquid D (alcohol extraction liquid).
  • extract A, extract B, extract C and extract D are mixed at an arbitrary ratio such that each of them is at least 10% by weight, to obtain a third liquid.
  • the alcoholic solution of Kidachi aloe as the 4th liquid can be prepared as follows. First, put 13 kg of chopped Kidachi aloe in a 20-liter plastic tank and pour 35 degrees of shochu until the plastic tank is full. After standing for 1 week, this is squeezed to obtain a fourth liquid.
  • the fourth solution is a solution of Kidachi aloe pickled in alcohol.
  • Kidachi aloe having a high medicinal effect is particularly suitable.
  • Alcoholic solution of aloe vera as the fifth liquid can be prepared as follows. First, put 13 kg of chopped aloe vera in a 20-liter plastic tank and pour 35 degrees of shochu until the plastic tank is full. After standing for 1 week, this is squeezed to obtain a fifth liquid.
  • the fifth liquid is an alcohol pickling liquid of aloe vera.
  • As the fifth liquid it is preferable to use edible aloe vera.
  • the first liquid, the second liquid, the third liquid, the fourth liquid and the fifth liquid, honey, the concentrated mineral liquid, the propolis liquid, and the chitin chitosan extract are each at least 5% by weight. And mixed at an arbitrary arbitrary ratio to obtain a sixth liquid.
  • the extracted liquid is referred to as the seventh liquid.
  • the 6th liquid is mixed with the above concentrated mineral liquid as a mineral component at an arbitrary ratio such that the 6th liquid is at least 60% or more, and the others are 1% or more and 20% or less by weight.
  • the first liquid, the fourth liquid, the fifth liquid, and the seventh liquid, which are the source of the sixth liquid, were added to this mixed liquid in the range of 10% or less of the total amount to adjust the total amount. It is stored at room temperature for about 2 weeks and fermented, and when it becomes sour, it is sterilized by boiling to obtain a mixed extract of plant extracts.
  • the above-mentioned plant ash is ash produced by burning plants.
  • brown sugar was used as the above-mentioned sugar, other sugars such as glucose may be used.
  • the above-mentioned plant extract mixed fermented liquor is added to water containing air ultrafine bubbles to prepare drinking water for hens.
  • the amount of the plant extract mixed fermented solution added is 0.01% or more and 0.5% or less of water containing ultrafine bubbles of air. By feeding this drinking water to the egg-picking chicken, the egg-picking amount can be further increased.
  • the chicken for egg collection to which the poultry raising method of the present embodiment is applied is not particularly limited as long as it is a chicken bred for the purpose of egg collection. Practical chicken is preferred.
  • the type of practical breeding chicken for egg collection is not particularly limited, and may be either white or red jade chicken, for example, white leghorn chicken such as Julia, Julia light, Maria, or brown chicken such as Boris brown is preferable. ..
  • breeding method of chickens for egg collection is not particularly limited, and any of flat breeding, cage breeding, and free-range breeding may be used.
  • FIG. 1 is a schematic diagram showing a drinking water supply device provided in a poultry house in which the poultry raising method of the embodiment of the present invention is performed.
  • This poultry house introduces large chicks, feeds and drinking water to the introduced chickens, raises them, lays them, and collects eggs.
  • This poultry house has a cage for accommodating the chicken 9 for egg collection, a feeding device (not shown) for feeding the chicken in the cage, and a drinking water supply device for supplying drinking water for the chicken 9 for egg collection in the cage. 1 is provided.
  • the drinking water supply device 1 supplies tap water with ultrafine bubbles of air to produce drinking water for chickens for egg collection, and supplies the drinking water to the chickens 9 for egg collection.
  • groundwater may be used.
  • the drinking water supply device 1 includes a bubble water tank 2 for storing water containing air ultrafine bubbles, and water supplied from the bubble water tank 2 to generate air ultrafine bubbles. It is provided with a bubble water production device 3 as a poultry drinking water production device for producing ultra fine bubble water by adding and a water storage tank 4 for storing the ultra fine bubble water supplied from the bubble water tank 2.
  • the drinking water supply device 1 is provided in each of the supply pipe 5 that guides the drinking water of the egg collection chicken 9 from the water storage tank 4, a plurality of branch pipes 6 that branch into the supply pipe 5, and the branch pipes 6.
  • a water supply device 7 for supplying drinking water to the egg-pickling chicken 9 is provided.
  • the downstream sides of the plurality of branch pipes 6 join each other and are connected to the return pipe 8, and the downstream side of the return pipe 8 is connected to the water storage tank 4.
  • the tap water is supplied to the bubble water tank 2 by the ball tap 11, and the water level is kept constant.
  • the ball tap 11 has a floating body that moves up and down according to the water level of the bubble water tank 2 and a flow rate adjusting valve connected to this floating body. When the water level decreases, the flow rate adjusting valve opens and the water level in the bubble water tank 2 becomes constant. Hold on.
  • a constant water level valve having various configurations can be used. For example, a water level sensor that measures the water level of the bubble water tank 2 and the valve opening degree is controlled based on the measured value of the water level sensor. It is possible to use a device having a flow rate adjusting valve.
  • the bubble water production device 3 is supplied with tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2, and the supplied water has an ultrafine air content. It is formed to add a bubble and return it to the bubble water tank 2.
  • a bubble water valve 13 is installed in the supply pipe 5, and the flow rate of the drinking water flowing from the water storage tank 4 to the branch pipe 6 is adjusted by the bubble water valve 13.
  • the supply pipe 5 is connected to the water supply via a second tap water valve 12, and the second tap water valve 12 adjusts the flow rate of the tap water flowing to the supply pipe 5.
  • the water supply device 7 is a nipple water supply device and has a discharge pipe for drinking water and an on-off valve connected to this discharge pipe. When the beak of the egg-pickling chicken 9 comes into contact with the discharge pipe, the on-off valve opens and the discharge pipe It is designed to drain drinking water from. Other water supply devices may be used as long as they can supply drinking water to the egg-pickling chicken 9.
  • the bubble water production apparatus 3 serves as a first pump for sucking tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2.
  • a submersible pump 21 is provided. By adjusting the flow rate of the submersible pump 21, the amount of ultrafine bubble water produced by the bubble water producing apparatus 3 is adjusted.
  • an ejector 22 as a mixer for forming a mixed fluid of water and air by sucking and mixing air with the raw material water discharged from the submersible pump 21 as shown by an arrow A. Is provided.
  • an intake pipe for taking in air is connected with a mixed air amount adjusting valve 29 formed of a flow rate adjusting valve for adjusting the amount of air mixed with the mixed fluid.
  • a cascade pump 23 as a second pump that sucks the mixed fluid is provided on the downstream side of the ejector 22.
  • the downstream side of the cascade pump 23 is branched into a return path 24 and a discharge path 25 at a branch part.
  • the return path 24 is provided with a first ultrafine bubble manufacturing device 26A that atomizes the air of the mixed fluid to form ultrafine bubbles, and a flow rate adjustment valve 27 that adjusts the flow rate of the mixed fluid flowing through the return path 24.
  • the pressure on the downstream side of the return path 24 is also adjusted.
  • the downstream side of the return path 24 is connected between the ejector 22 and the cascade pump 23.
  • the discharge path 25 is provided with a second ultrafine bubble manufacturing device 26B that atomizes the mixed fluid air to form ultrafine bubbles.
  • the downstream side of the discharge path 25 is connected to the bubble water tank 2.
  • a volume pump such as a land pump may be used instead of the submersible pump.
  • a pump other than the cascade pump may be used as the second pump, but a centrifugal pump is preferably used.
  • FIG. 3 is a schematic vertical sectional view showing an ultra fine bubble manufacturing device 26 as an ultra fine bubble manufacturing device for poultry, which is built in the bubble water manufacturing device 3.
  • 4 is a sectional view taken along the arrow B in FIG. 3
  • FIG. 5 is a sectional view taken along the arrow C in FIG.
  • the ultra fine bubble manufacturing device 26 atomizes the mixed fluid of water and air supplied through the supply pipe 41 to form ultra fine bubble water containing ultra fine bubbles of air, and discharges the ultra fine bubble water. It is discharged from the pipe 42.
  • the ultra fine bubble manufacturing device 26 includes a substantially cylindrical casing 40, a supply pipe 41 that is connected to one end of the casing 40 and communicates with the inside of the casing 40, and a discharge pipe 42 that is connected to the other end of the casing 40. And the miniaturized block 28 housed in the casing 40 and connected to the end of the discharge pipe 42.
  • the discharge pipe 42 penetrates the other end of the casing 40 and has an end inserted therein, and supports the miniaturized block 28 connected to the tip of the discharge pipe 42 in the casing 40. ..
  • the miniaturization block 28 has a cylindrical shape, and inside thereof, a first swirl chamber 31 and a second swirl chamber 33 are formed as swirl flow forming parts through which a mixed fluid of water and air is guided.
  • the first swirl chamber 31 and the second swirl chamber 33 have a shape in which a flat cylinder and a semi-spheroid are combined, and are formed coaxially and symmetrically with the vertices of the semi-spheroid portions facing each other.
  • the miniaturized block 28 and the first swirl chamber 31 and the second swirl chamber 33 in the miniaturized block 28 are arranged coaxially with the casing 40.
  • the miniaturization block 28 includes a first block part 281 having a first swirl chamber 31 formed therein and a second block part 282 having a second swirl chamber 33 formed therein.
  • FIG. 6 is a sectional view showing the first block component 281.
  • the first block component 281 has a disk portion 281a that constitutes one end surface of the miniaturization block 28, and a protruding portion 281b that protrudes from the center of the disc portion 281a toward the inside of the miniaturization block 28.
  • the protruding portion 281b is formed in a cylindrical shape in a portion close to the disc portion 281a, and is formed in a truncated cone shape in a tip portion far from the disc portion.
  • a first swirl chamber 31 is formed inside the first block component 281.
  • the wall surface 31a at the one end side portion has a cylindrical shape, while the wall surface 31b at the other end side portion has a semi-rotating elliptical shape.
  • the wall surface 31a of the one end side portion of the first swirl chamber 31 is formed substantially inside the disk portion of the first block component 281, and the wall surface 31b of the other end side portion of the semi-spheroidal shape is the protruding portion of the first block component 281. It is generally formed inside.
  • a first introduction path 35 for introducing the mixed fluid between the casing 40 and the miniaturization block 28 into the first swirl chamber 31 is formed in the tangential direction of the first swirl chamber 31.
  • a discharge opening 35 a for discharging the mixed fluid guided by the first introduction passage 35 is formed on the wall surface of the first swirl chamber 31.
  • an inflow opening 35b for allowing the mixed fluid between the casing 40 and the miniaturization block 28 to flow into the first introduction path 35 is formed on the side surface of the disc portion 281a of the first block component 281.
  • the first introduction path 35 is formed from one end of the first swirl chamber 31 toward the other end so as to form an angle ⁇ with respect to a plane perpendicular to the central axis of the first swirl chamber 31. ing.
  • the angle ⁇ of the first introduction path 35 with respect to the plane perpendicular to the central axis of the first swirl chamber 31 can be formed to be 1° or more and 20° or less. This angle ⁇ is preferably 5° or more and 15° or less, and more preferably 8° or more and 12°.
  • a first discharge hole 32 is formed at the tip of the protruding portion 281b of the first block component 281, and the swirl flow of the mixed fluid formed in the first swirl chamber 31 is discharged from the first discharge hole 32. Is formed.
  • FIG. 7 is a sectional view showing the second block component 282.
  • the second block component 282 has a bottomed cylindrical shape with a thick bottom formed at one end and an opening at the other end.
  • the protruding portion 281b of the first block component 281 is inserted from the opening of the second block component 282, and the disc portion 281a of the first block component 281 is connected to the other end surface 282a.
  • the swirl flow from the first swirl chamber 31 and the swirl flow from the second swirl chamber 33 collide between the inner surface of the second block component 282 and the outer surface of the protruding portion 281b of the first block component 281.
  • a collision chamber 38 is formed.
  • a second swirl chamber 33 is formed inside the second block component 282.
  • the wall surface 33a at the one end side portion has a cylindrical shape, while the wall surface 33b at the other end side portion has a semi-rotating elliptical shape.
  • the second block component 282 is formed with a second introduction path 36 for introducing the mixed fluid between the casing 40 and the miniaturization block 28 into the second swirl chamber 33.
  • the second introduction passage 36 is formed in the tangential direction of the second swirl chamber 33.
  • a discharge opening 36 a for discharging the mixed fluid guided by the second introduction path 36 is formed on the wall surface of the second swirl chamber 33.
  • an inflow opening 36b for allowing the mixed fluid between the casing 40 and the miniaturization block 28 to flow into the second introduction path 36 is formed on the side surface on the one end side of the second block component 282.
  • the second introduction path 36 is formed from one end of the second swirl chamber 33 toward the other end so as to form an angle ⁇ with respect to a plane perpendicular to the central axis of the second swirl chamber 33.
  • the angle ⁇ of the second introduction path 36 with respect to the plane perpendicular to the central axis of the second swirl chamber 33 can be formed to be 1° or more and 20° or less. This angle ⁇ is preferably 5° or more and 15° or less, and more preferably 8° or more and 12°.
  • a second discharge hole 34 is formed at the other end of the second block component 282, and the swirl flow of the mixed fluid formed in the second swirl chamber 33 is discharged from the second discharge hole 34.
  • the swirl flow formed in the second swirl chamber 33 is formed so as to swirl in the opposite direction to the swirl flow formed in the first swirl chamber 31.
  • the first swirl chamber 31 and the second swirl chamber 33 are formed symmetrically with respect to the plane perpendicular to the central axis, the first discharge hole 32 and the second discharge hole 34 are arranged so as to face each other, and they are arranged in opposite directions. It is configured to generate a swirling flow that swirls.
  • the discharge passages 39, 39,... are arranged on the outer diameter side of the second swirl chamber 33 so as to surround the second swirl chamber 33.
  • inflow openings 39a, 39a,... As a plurality of inflow ports for allowing the fluid of the collision chamber 38 to flow into the discharge passages 39, 39,. are formed.
  • the bottom surface 282b in which the inflow opening 39a is formed corresponds to the collision chamber surface facing the collision chamber 38.
  • a mixed fluid of water and air is pressure-fed by the cascade pump 23, and the casing from the supply pipe 41, which is a part of the return route 24 or the discharge route 25 on the upstream side of the ultrafine bubble manufacturing device 26, is discharged.
  • the mixed fluid flows into 40.
  • the mixed fluid that has flowed into the casing 40 is guided to the first and second introduction paths 35 and 36 from the inflow openings 35b and 36b on the outer surface of the miniaturization block 28.
  • the mixed fluid guided to the first introduction path 35 is discharged into the first swirl chamber 31 through the discharge opening 35a, and forms a swirl flow in the first swirl chamber 31.
  • a stable swirl flow is formed in the first swirl chamber 31 by the first introduction path 35 extending in the tangential direction of the first swirl chamber 31 and forming an inclination angle ⁇ toward the other end.
  • the mixed fluid guided to the second introduction passage 36 is discharged into the second swirl chamber 33 from the discharge opening 36 a, and forms a swirl flow in the second swirl chamber 33. Since the second introduction path 36 extends in the tangential direction of the second swirl chamber 33 and forms the inclination angle ⁇ toward the other end, a stable swirl flow is formed in the second swirl chamber 33.
  • the swirl flow of the mixed fluid in the first swirl chamber 31 is discharged from the first discharge hole 32 to the collision chamber 38, and the swirl flow in the second swirl chamber 33 to the collision chamber 38 from the second discharge hole 34.
  • the swirling flows discharged from the first discharge hole 32 and the second discharge hole 34 are swirling in opposite directions, and thus collide in the collision chamber 38 with a large impact force.
  • the gas of the mixed fluid is effectively atomized, and ultra nano bubbles are generated.
  • the water containing the ultra nano bubbles of the air thus generated is guided from the collision chamber 38 to the discharge passages 39, 39,... Through the inflow openings 39a, 39a,. -Is discharged from the discharge pipe 42.
  • the discharge pipe 42 is on the downstream side of the ultrafine bubble manufacturing device 26 in the return path 24 and the discharge path 25.
  • the water containing the ultra fine bubbles of the air thus generated in the ultra fine bubble manufacturing device 26 is guided to the downstream side of the return path 24 and the discharge path 25. That is, water containing air ultrafine bubbles flows from the first ultrafine bubble producer 26A to the downstream side of the return route 24, and air ultrafine air from the second ultrafine bubble producer 26B to the downstream side of the discharge route 25. The water containing the bubbles flows.
  • the bubbles produced by the ultrafine bubble production device 26 are not limited to only ultrafine bubbles, and microbubbles may be included depending on the operating conditions, or only microbubbles may be produced.
  • the bubble water production apparatus 3 adjusts the opening degree of the mixed air amount adjusting valve 29, the discharge flow rate or discharge pressure of the mixed water by the submersible pump 21 and the cascade pump 23, and the opening degree of the flow rate adjusting valve 27.
  • the particle size and concentration of ultrafine bubbles and microbubbles from the discharge path 25 can be adjusted.
  • the opening degree of the flow rate adjusting valve 27 increases, the bubble concentration of ultrafine bubbles and/or microbubbles increases, the diameter of the bubbles also decreases, and the amount discharged from the discharge path 25 decreases. .. Along with this, the standard deviation of the diameters of the generated bubbles is reduced, the width of the distribution is reduced, and the diameters of the bubbles are concentrated in a narrow range of relatively small values.
  • the opening degree of the flow rate adjusting valve 27 decreases, the concentration of ultrafine bubbles and/or microbubbles decreases, the diameter of the bubbles increases, and the amount discharged from the discharge path 25 increases. ..
  • the standard deviation of the diameters of the generated bubbles expands, the width of the distribution expands, and the bubble diameters spread in a wide range from a relatively small value to a large value.
  • the discharge pressure of the cascade pump 23 increases, in the region where the discharge pressure is lower than 1 MPa, the concentration of bubbles of ultrafine bubbles and/or microbubbles increases, the diameter of the bubbles decreases, and the discharge is also reduced.
  • the discharge amount from the path 25 increases. In the region where the discharge pressure is higher than 1 MPa, the concentration of ultrafine bubbles and/or microbubbles decreases and the bubble diameter increases.
  • the discharge pressure of the cascade pump 23 decreases, in the region where the discharge pressure is lower than 1 MPa, the concentration of bubbles of ultrafine bubbles and/or microbubbles decreases, the diameter of the bubbles expands, and the discharge is increased.
  • the amount of emissions from the path 25 is reduced. In the region where the discharge pressure is higher than 1 MPa, the concentration of ultrafine bubbles and/or microbubbles increases and the bubble diameter decreases.
  • the proportion of bubbles of 1 ⁇ m or more in the bubbles discharged from the discharge path 25 increases, while the mixed air amount adjusting valve 29 opens.
  • the proportion of bubbles having a diameter of 1 ⁇ m or more in the particle diameter of bubbles discharged from the discharge path 25 decreases.
  • the air mixing amount of the ejector 22 is set to 0.4 L/min by the mixed air amount adjusting valve 29, the diameter of the bubbles discharged from the discharge path 25 is larger than 1 ⁇ m, but the ratio increases, and the bubbles become ultra fine bubbles. Micro bubbles are generated.
  • the air mixing amount of the ejector 22 is set to 0.1 L/min by the mixed air amount adjusting valve 29, most of the bubbles discharged from the discharge path 25 have a diameter of less than 1 ⁇ m, and thus the ultrafine bubbles are substantially formed. Only generated.
  • the bubble water production apparatus 3 also measures the concentration of ultrafine bubbles in the water discharged from the discharge path 25, and based on this measured value, the discharge pressure of the submersible pump 21 and the cascade pump 23 and the return path 24.
  • the concentration of the ultrafine bubbles in the discharge path 25 can be adjusted by adjusting the flow rate of For example, when the concentration of the ultra fine bubbles in the discharge path 25 is lower than the target value, the opening degree of the flow rate adjusting valve 27 is increased to increase the flow rate in the return path 24, so that the ultra fine bubbles discharged from the discharge path 25. Concentration increases.
  • the bubble water producing device 3 is provided with a second flow rate adjusting valve on the upstream side of the second ultrafine bubble producing device 26B in the discharge path 25, and the opening degree of the second flow rate adjusting valve and the mixed air amount adjusting valve.
  • the bubble water producing apparatus 3 is provided with a control device (not shown), and by this control device, the opening degree of the mixed air amount adjusting valve 29, the opening degree of the flow rate adjusting valve 27, and the opening of the second flow rate adjusting valve.
  • the particle size and concentration of the ultrafine bubbles from the discharge path 25 may be adjusted by controlling the discharge pressure of the submersible pump 21 and the cascade pump 23.
  • the bubble water producing apparatus 3 can stably form ultrafine bubbles of 50 to 70 nm.
  • the return path 24, the flow rate adjusting valve 27, and the first ultrafine bubble manufacturing device 26A may not be provided. That is, the discharge path 25 may be provided only on the downstream side of the cascade pump 23 with the second ultrafine bubble manufacturing device 26B, and the ultrafine bubbles may be generated only by the second ultrafine bubble manufacturing device 26B.
  • the ultra fine bubble manufacturing device 26 includes the miniaturization block 28 that includes the first swirl chamber 31 and the second swirl chamber 33 that are coaxially formed symmetrically with respect to the plane perpendicular to the central axis.
  • FIG. 8 is a vertical cross-sectional view showing a modified chicken ultra-fine bubble manufacturing device.
  • 9 is a cross-sectional view taken along arrow D in FIG. 8
  • FIG. 10 is a cross-sectional view taken along arrow E in FIG.
  • This ultra fine bubble manufacturing device 126 atomizes the mixed fluid of water and air supplied from the supply pipe 41 by the atomization block 128 to form ultra fine bubble water containing ultra fine bubbles of air.
  • the ultra fine bubble water is discharged from the discharge pipe 42.
  • the ultrafine bubble manufacturing device 126 has a substantially cylindrical casing 140 having one end connected to the supply pipe 41 and the other end connected to the miniaturization block 128.
  • the miniaturized block 128 has a generally cylindrical shape with a smaller diameter than the casing 140, and has the other end portion formed to have a larger diameter than the other portion and fitted to the inner surface of the other end portion of the casing 140.
  • the miniaturization block 128 includes a processing flow path 130 through which a mixed fluid of water and gas is guided, a first eccentric supply path 131 as a swirl flow forming section that communicates with an upstream end of the processing flow path 130, and the processing flow.
  • a second eccentric supply passage 132 as a swirling flow forming portion that communicates with substantially the center of the passage 130 in the longitudinal direction is formed inside.
  • the central axis of the first eccentric supply channel 131 and the central axis of the second eccentric channel 132 extend at right angles to the central axis of the processing channel 130.
  • the processing flow path 130 of the miniaturization block 128 is formed along the central axis of the miniaturization block 128 from the vicinity of one end surface of the miniaturization block 128 to the other end surface of the miniaturization block 128.
  • One end of the processing channel 130 remains inside the miniaturization block 128 without penetrating one end surface of the miniaturization block 128, while the other end of the processing channel 130 has an opening at the other end surface of the miniaturization block 128. Is forming.
  • the processing flow path 130 has a circular cross section and is formed so that the diameter increases from one end to the other end.
  • a discharge pipe 42 is inserted into the opening at the other end of the processing flow path 130 so that the processing flow path 130 communicates with the discharge pipe 42.
  • Two first eccentric supply paths 131 of the miniaturization block 128 are formed so as to communicate with one end of the processing channel 130, as shown in FIG. 9 which is a cross-sectional view perpendicular to the central axis of the miniaturization block 128. There is. These two first eccentric supply passages 131 are arranged point-symmetrically with respect to the center of the processing flow passage 130. These first eccentric supply passages 131 extend substantially in the radial direction of the miniaturization block 128, form an inflow opening 131a on the outer peripheral surface of the miniaturization block 128, and discharge openings 131b on the inner peripheral surface of the processing flow passage 130. Is formed.
  • first eccentric supply passages 131 have a circular cross section and are formed so that the diameter becomes smaller from the inflow opening 131a toward the discharge opening 131b.
  • the discharge opening 131b of the first eccentric supply path 131 is arranged at a position eccentric with respect to the center of the processing flow path 130 when viewed in the axial direction of the processing flow path 130.
  • the second eccentric supply passage 132 shows a shape of a vertical cross section along the central axis of the second eccentric supply passage 132, and the second eccentric supply passage 132 has a second surface in a plane passing through the central axis of the miniaturized block 128. The state in which the eccentric supply path 132 is cut is not shown.
  • the second eccentric supply passage 132 of the miniaturization block 128 is communicated with substantially the center of the processing flow passage 130 in the longitudinal direction, as shown in FIG. 10 which is a sectional view perpendicular to the central axis of the miniaturization block 128. Two are formed. These two second eccentric supply passages 132 are arranged point-symmetrically with respect to the center of the processing flow passage 130. These second eccentric supply passages 132 extend substantially in the radial direction of the miniaturization block 128, form an inflow opening 132a on the outer peripheral surface of the miniaturization block 128, and discharge openings 132b on the inner peripheral surface of the processing flow passage 130. Is formed.
  • These second eccentric supply passages 132 have a circular cross section and are formed so that the diameter decreases from the inflow opening 132a toward the discharge opening 132b.
  • the discharge opening 132b of the second eccentric supply passage 132 is arranged at a position eccentric with respect to the center of the processing flow passage 130 when viewed in the axial direction of the processing flow passage 130.
  • the discharge opening 132b of the second eccentric supply passage 132 is eccentric to the discharge opening 131b of the first eccentric supply passage 131 on the opposite side with respect to the central axis of the processing flow passage 130.
  • the first eccentric supply passage 131 and the second eccentric supply passage 132 of the miniaturization block 128 are arranged so as to form an angle of 90° with each other when viewed in the axial direction of the miniaturization block 128.
  • the ultrafine bubble manufacturing device 126 having the above-described configuration operates as follows. First, a mixed fluid of water and air is introduced into the casing 140 through the supply pipe 41. The mixed fluid that has flowed into the casing 140 is guided to the first and second eccentric supply paths 131 and 132 from the inflow openings 131a and 132a on the outer surface of the miniaturization block 128. The mixed fluid guided to the first eccentric supply passage 131 is discharged into the processing flow passage 130 from the discharge opening 131b and forms a swirling flow in the processing flow passage 130. Since the discharge opening 131b of the first eccentric supply path 131 is arranged at a position eccentric with respect to the center of the processing channel 130, a stable swirling flow is formed in the processing channel 130.
  • the mixed fluid thus guided from the first eccentric supply passage 131 into the processing flow passage 130 becomes a swirling flow and flows from one end of the processing flow passage 130 to the other end. Further, the mixed fluid guided to the second eccentric supply passage 132 is discharged into the processing flow passage 130 from the discharge opening 132b.
  • the discharge opening 132b of the second eccentric supply passage 132 is arranged at a position eccentric with respect to the central axis of the processing flow path 130, and is eccentric to the opposite side of the discharge opening 131b of the first eccentric supply passage 131. As a result, a swirl flow that is opposite to the swirl flow that has flowed through the processing flow path 130 is formed.
  • the swirling flow of the mixed fluid discharged from the discharge opening 132b of the second eccentric supply passage 132 collides with the swirling flow flowing from the first eccentric supply passage 131.
  • the gas of the mixed fluid is effectively atomized, and ultra nano bubbles are generated.
  • the water containing the ultra nano bubbles of the air thus generated flows toward the other end of the processing flow path 130, and is discharged from the ultra fine bubble manufacturing device 126 through the discharge pipe 42.
  • the ultrafine bubble manufacturing device 126 of the above-described modification forms the processing flow path 130, the first eccentric supply path 131, and the second eccentric supply path 132 by cutting the single metal material. Can be formed. Therefore, the miniaturized block 128 can be easily manufactured with a small number of steps.
  • the first eccentric supply passage 131 and the second eccentric supply passage 132 of the miniaturization block 128 form an angle of 90° with each other when viewed in the axial direction of the processing flow passage 130. Although arranged, they may be arranged to form an angle of 0 degree with each other. Further, although each of the first eccentricity supply passage 131 and the second eccentricity supply passage 132 of the miniaturization block 128 is provided by two, one or both of them may be provided by one.
  • FIG. 11 is a schematic diagram which shows the bubble water manufacturing apparatus 103 of a modification.
  • the bubble water manufacturing apparatus 103 includes a suction pump 121 as a first pump that sucks tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2.
  • an ejector 122 is provided as a mixer for mixing raw material water discharged from the suction pump 121 with air to form a mixed fluid of water and air. That is, the ejector 122 is provided between the suction side and the discharge side of the suction pump 121.
  • an intake pipe for taking in air is connected to a mixed air amount adjusting valve 127 formed of a flow rate adjusting valve for adjusting the amount of air mixed with the mixed fluid.
  • a gas tank 124 that stores air is connected to the upstream side of the mixed air amount adjustment valve 127.
  • the gas tank 124 is preferably provided with a cleaning device for cleaning the air sucked from the atmosphere.
  • the ultra fine bubble manufacturing device 26 that atomizes the mixed fluid air to form ultra fine bubbles is connected.
  • a modified ultra fine bubble manufacturing device 126 may be connected.
  • a first hydraulic pressure sensor 141 for measuring the pressure of the liquid of the fluid guided to the ultra fine bubble manufacturing device 26 is provided.
  • a cascade pump 123 as a second pump that sucks fluid is provided on the downstream side of the ultrafine bubble manufacturing device 26.
  • a second hydraulic pressure sensor 142 that measures the pressure of the liquid of the fluid discharged from the ultra fine bubble manufacturing device 26 is provided between the ultra fine bubble manufacturing device 26 and the cascade pump 123.
  • the controller 143 is configured to control the operation of the cascade pump 123 based on the measurement value of the second hydraulic pressure sensor 142.
  • a gas-liquid separator 125 that separates excess air remaining without being added to water from water containing ultrafine bubbles is connected.
  • the air separated by the gas-liquid separator 125 is returned to the gas tank 124, while the water containing ultrafine bubbles is returned to the water tank 2.
  • a volume pump such as a land pump may be used instead of the submersible pump.
  • a pump other than the cascade pump may be used as the second pump, but a centrifugal pump is preferably used.
  • the bubble water production apparatus 103 of this modification is guided to the bubble water tank 2 by adjusting the opening degree of the mixed air amount adjusting valve 127 and the discharge flow rate or discharge pressure of the fluid of the suction pump 121 and the cascade pump 123.
  • the particle size and concentration of ultrafine bubbles can be adjusted.
  • the bubble water manufacturing apparatus 103 also measures the concentration of ultrafine bubbles in the water in the bubble water tank 2, and based on the measured values, the discharge amounts of the suction pump 121 and the cascade pump 123, and the mixed air amount adjusting valve. By adjusting the opening degree of 127, the concentration of ultrafine bubbles in the bubble water tank 2 can be adjusted.
  • the bubble water producing apparatus 103 is provided with a second control device, and the opening degree of the mixed air amount adjusting valve 127 and the discharge flow rate or discharge amount of the fluid by the suction pump 121 and the cascade pump 123 are provided by the second control device.
  • the particle size and concentration of the ultra fine bubbles in the bubble water tank 2 may be adjusted by controlling the pressure.
  • the opening of the mixed air amount adjusting valve 127 is reduced to reduce the amount of air supplied to the ejector 122, and the suction pump 121 and the cascade.
  • the operation of the pump 123 is continued.
  • the fluid in the bubble water tank 2 is sucked by the suction pump 121 and guided to the ultra fine bubble manufacturing device 26, and the bubbles contained therein are atomized, sucked by the cascade pump 123, and returned to the bubble water tank 2.
  • the diameter of bubbles contained in the fluid can be effectively reduced.
  • the opening degree of the mixed air amount adjusting valve 127 is increased to increase the air supply amount to the ejector 122, and the suction pump 121,
  • the operation of the cascade pump 123 is continued.
  • the fluid in the bubble water tank 2 is sucked by the suction pump 121, part of which is guided to the ejector 122, and air is added.
  • the other part is guided from the suction pump 121 to the ultra fine bubble manufacturing device 26.
  • the bubbles of the fluid are atomized by the ultra fine bubble maker 26, sucked by the cascade pump 123, and returned to the bubble water tank 2.
  • the ultrafine bubble producing device 26 of the bubble water producing apparatus 103 between 4 MPa and 6 MPa is provided between the upstream side and the downstream side, that is, between the fluid pressure of the supply pipe 41 and the fluid pressure of the discharge pipe 42. It is preferable to adjust the discharge amount of the suction pump 121 and the suction amount of the cascade pump 123 so that a pressure difference of 1 is generated. In this case, the pressure of the fluid in the supply pipe 41 is adjusted to be higher than the pressure of the fluid in the discharge pipe 42. As described above, by producing a pressure difference of 4 MPa or more and 6 MPa or less between the upstream side and the downstream side of the ultra fine bubble manufacturing device 26, the water containing the ultra fine bubble stably by the ultra fine bubble manufacturing device 26. Can be manufactured.
  • the bubble water producing apparatus 103 of the modified example can stably form ultrafine bubbles of 50 to 70 nm.
  • the bubble water producing apparatus 103 may produce water containing ultrafine bubbles of oxygen or hydrogen in addition to air.
  • excess oxygen and hydrogen not added to the water are separated by the gas-liquid separator 125 and returned to the gas tank 124, whereby oxygen and hydrogen are obtained.
  • the miniaturization block 28 of the ultrafine bubble manufacturing device 26 has the first swirl chamber 31 and the second swirl chamber 33 as swirl flow forming parts, but the number is not limited to two, and three or more. You may have a swirl flow formation part.
  • the miniaturization block 128 of the ultra fine bubble manufacturing device 126 has the first eccentric supply passage 131 and the second eccentric supply passage 132 as the swirl flow forming portion, but the number is not limited to two, and three or more swirls are provided. It may have a flow forming part.
  • the chicken for egg collection was fed with water containing ultrafine bubbles of air, but in addition to air, it was fed with water containing ultrafine bubbles of other gases such as hydrogen and oxygen. Good.
  • slightly acidic electrolyzed water or drinking water in which ultrafine bubbles are contained in water containing various other components may be supplied.
  • water containing ultrafine bubbles of hydrogen, and also when using water containing ultrafine bubbles of oxygen the effect of accelerating the start time of egg laying of chickens, the effect of improving the productivity of chicken eggs was confirmed.
  • Test 1 In Test 1, the number of eggs collected and the start date of spawning were tested. As test subjects, 40 120-day-old Boris Brown breeding chickens were divided into 4 groups of 10 chickens each, and the following drinking water was fed to the chickens, which were raised by plain feeding.
  • the test group (3) was prepared by diluting a stock solution of minetase with 500 times groundwater.
  • the test group (4) was prepared by diluting a stock solution of minetase with ultrafine bubble water of 500 times air.
  • FIG. 12 is a graph showing the cumulative number of laying eggs from the 120th day to the 148th day after the start of feeding drinking water.
  • the number of days required from the age of 120 days to the start of spawning was 25 days in the test group (1) which was a conventional section, whereas it was 11 days in the test groups (2) and (4).
  • the start of egg laying of the egg hen can be accelerated 14 days. confirmed.
  • Test 2 In Test 2, a test was conducted on the influence of the egg production amount and the egg size by the feed when the air was supplied with ultrafine bubble water.
  • 8000 Boris Brown egg hens between 120 days and 600 days of age were fed with the above ultrafine bubble water of the air and a period of feeding CP16% and a feed of CP18%.
  • the effects of the number of eggs laying and the size of eggs were confirmed by alternately setting the feeding period.
  • 2000 are 120-240 days old
  • 2000 are 240-360 days old
  • 2000 are 360-480 days old
  • 2000 are 480-600 days old. .. Breeding of the hens was carried out in a raised chicken house.
  • Table 1 shows the results of Test 2.
  • the first phase of the period is the 1st to 10th day from the start of the study
  • the 2nd phase is the 131st to 138th day
  • the 3rd period is the 139th to 179th day
  • the 4th period is the 180th to It's 204 days.
  • MS is an egg having a weight of 52 g or more and less than 58 g
  • M is an egg of 58 g or more and less than 64 g
  • L is an egg of 64 g or more and less than 70 g
  • 2 L is an egg of 70 g or more and less than 76 g
  • Large balls are chicken eggs weighing 76g or more.
  • Test 3 In Test 3, the difference in egg size depending on the presence or absence of ultrafine bubbles in the air of the drinking water was tested.
  • a 150-day-old Boris Brown breeding chicken was fed with the test group (5) in which the drinking water containing the air ultrafine bubbles was fed and the drinking water not containing the air ultrafine bubbles.
  • a test group (6) was set up and fed with the same feed of CP 18%.
  • 8000 chickens were raised.
  • out of the total egg production of 5700 eggs per day 200 were large.
  • test group (6) 100 large eggs out of the total egg production of 5000 eggs per day. As described above, by feeding the drinking water containing ultra fine bubbles, the large egg can be effectively produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Birds (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Feeding And Watering For Cattle Raising And Animal Husbandry (AREA)
  • Fodder In General (AREA)

Abstract

The present invention feeds egg-laying poultry with drinking water containing ultrafine bubbles of air by using a drinking water supply device 1 installed in a poultry house. This drinking water supply device 1 is provided with: a bubble water tank 2 for storing water containing ultrafine bubbles of air; a bubble water preparing device 3 that adds the ultrafine bubbles of air by supplying the water in the bubble water tank 2 and prepares ultrafine bubble water; and a water storage tank 4 that stores the ultrafine bubble water supplied from the bubble water tank 2. The ultrafine bubble water of the water storage tank 4 is guided by a branch pipe 6 through a supply pipe 5 and is supplied as drinking water to egg-laying poultry by a water supplier 7 provided to the branch pipe 6. The remaining water in the branch pipe 6 is returned to the water storage tank 4 through a return pipe 8.

Description

養鶏方法、養鶏用ウルトラファインバブル製造器及び養鶏用飲用水製造装置Poultry raising method, ultra fine bubble producing device for poultry raising and drinking water producing device for poultry raising
 本発明は、採卵用の鶏の養育方法と、これに用いられる養鶏用ウルトラファインバブル製造器及び養鶏用飲用水製造装置に関する。 The present invention relates to a method for raising chickens for egg collection, and an ultra fine bubble producing device for poultry and a drinking water producing device for poultry used therein.
 従来より、採卵用鶏を養育して鶏卵を採取する鶏舎では、鶏を収容するケージに沿って配置した給餌樋を介して給餌すると共に、ケージに沿って給水管を配置し、この給水管に設けたウォーターピックを介して給水をしている。 Conventionally, in a poultry house that raises chickens for egg collection and collects eggs, while feeding through a feeding gutter arranged along the cage that houses the chickens, a water supply pipe is arranged along the cage, and this water supply pipe is Water is supplied through the provided water pick.
 一般的に、ボリスブラウン品種の鶏を養育する場合、120日齢の鶏を鶏舎に導入し、導入した鶏に給餌と給水を開始して養育を開始する。鶏舎に導入された鶏は、徐々に産卵を開始し、150日齢前後で産卵率が50%に達した後、200日齢前後で最大の90%程度に達する。この後、産卵率が徐々に低下し、産卵率が70%以下となる600日齢前後で鶏舎から排除し、新たな鶏に入れ替えている。 Generally, when raising Boris Brown varieties, 120-day-old chickens are introduced into a poultry house, and the introduced chickens are fed and water-fed to start feeding. The chickens introduced into the poultry house gradually start spawning, and the spawning rate reaches 50% at about 150 days of age, and then reaches the maximum of about 90% at about 200 days of age. After this, the egg production rate gradually decreases, and the eggs are removed from the poultry house at around 600 days of age when the egg production rate becomes 70% or less and replaced with new chickens.
 鶏卵の生産性を高めるには、1日齢から28日齢までの幼雛期の鶏の体重を増加させるのが有効であることが知られており、幼雛期の鶏の体重を増加させるため、種々の飼料が提案されている(例えば、特許文献1参照)。 It is known that increasing the weight of chicks from 1 to 28 days of age in the larvae is effective for improving the productivity of eggs, and increases the weight of chicks in the larval stage. Therefore, various feeds have been proposed (for example, refer to Patent Document 1).
特開2014-057576号公報JP, 2014-055576, A
 しかしながら、上記従来の養鶏方法は、幼雛期の鶏の体重を増加させるために、通常とは異なる特殊な飼料を給与するので、飼料コストが増加する問題がある。 However, the above-mentioned conventional poultry raising method has a problem that feed cost increases because a special feed which is different from usual is fed in order to increase the weight of the chicken in the chick stage.
 そこで、本発明の課題は、飼料コストを増加させることなく、鶏卵の生産性を向上できる養鶏方法と、これに用いられる養鶏用ウルトラファインバブル製造器及び養鶏用飲用水製造装置を提供することにある。 Therefore, an object of the present invention is to provide a poultry raising method that can improve the productivity of chicken eggs without increasing the feed cost, and an ultra fine bubble producing device for poultry raising and a drinking water producing device for poultry raising used therein. is there.
 上記課題を解決するため、本発明の養鶏方法は、採卵用の鶏に、気体のウルトラファインバブルを含有する飲用水を与えることにより、鶏卵を上記鶏から得ることを特徴としている。 In order to solve the above problems, the poultry raising method of the present invention is characterized by obtaining chicken eggs from the above chickens by giving drinking water containing gas ultrafine bubbles to the chickens for egg collection.
 上記構成によれば、採卵用鶏に、気体のウルトラファインバブルを含有する飲用水を与えることにより、特殊な飼料を用いることなく、従来の飼料を用いて、鶏の産卵の開始時期を従来よりも早めることができる。これにより、従来よりも早く産卵率を高めることができるので、鶏卵の生産性を向上することができる。ここで、気体のウルトラファインバブルを含有する飲用水の給与を開始する時期は特に限定されず、例えば幼雛期から給与を開始してもよく、あるいは、採卵用の鶏舎に導入した後に給与を開始してもよい。ウルトラファインバブルとは、1μm以下の直径を有する微細な気泡を意味する。ウルトラファインバブルの径は、例えばレーザー回析・散乱法や、粒子軌跡解析法や、動的光散乱法等で測定することができる。 According to the above configuration, the chicken for egg collection is provided with drinking water containing a gas ultrafine bubble, without using a special feed, using the conventional feed, the start time of the egg laying of the chicken from the conventional You can also speed up. As a result, the egg laying rate can be increased faster than before, so that the productivity of chicken eggs can be improved. Here, the timing of starting the supply of drinking water containing gaseous ultrafine bubbles is not particularly limited, and for example, the supply may be started from a young age, or the supply may be performed after introduction into a chicken house for egg collection. You may start. Ultra fine bubbles means fine bubbles having a diameter of 1 μm or less. The diameter of ultrafine bubbles can be measured by, for example, a laser diffraction/scattering method, a particle trajectory analysis method, a dynamic light scattering method, or the like.
 一実施形態の養鶏方法は、上記気体は空気である。 In the poultry raising method of one embodiment, the gas is air.
 上記実施形態によれば、採卵用の鶏に、空気のウルトラファインバブルを含有する飲用水を与えることにより、従来の飼料を用いて、鶏の産卵の開始時期を従来よりも早めることができる。 According to the above-described embodiment, by providing a chicken for egg collection with drinking water containing air ultrafine bubbles, it is possible to use a conventional feed to make the start of egg laying of the chicken earlier than before.
 一実施形態の養鶏方法は、上記気体は酸素である。 In the poultry raising method of one embodiment, the gas is oxygen.
 上記実施形態によれば、採卵用の鶏に、酸素のウルトラファインバブルを含有する飲用水を与えることにより、従来の飼料を用いて、鶏の産卵の開始時期を従来よりも早めることができる。 According to the above-described embodiment, by providing a chicken for egg collection with drinking water containing ultrafine bubbles of oxygen, it is possible to use a conventional feed to make the start of egg laying of the chicken earlier than before.
 一実施形態の養鶏方法は、上記鶏の産卵の開始時期が、気体のウルトラファインバブルを含有しない飲用水を給与した場合よりも早いものである。 In the poultry raising method of one embodiment, the start of egg laying of the chicken is earlier than when the drinking water containing no gas ultrafine bubble is fed.
 上記実施形態によれば、採卵用の鶏に、気体のウルトラファインバブルを含有する飲用水を与えることにより、鶏の産卵の開始時期を、気体のウルトラファインバブルを含有しない飲用水を給与した場合よりも早めることができる。したがって、従来よりも早く産卵数を増加でき、鶏卵の生産性を高めることができる。 According to the above embodiment, the chicken for egg collection is given the drinking water containing the gas ultrafine bubbles to indicate the start time of egg laying of the chicken, when the drinking water containing no gas ultrafine bubbles is supplied. Can be faster than Therefore, it is possible to increase the number of eggs to be laid earlier than in the past and to improve the productivity of chicken eggs.
 一実施形態の養鶏方法は、上記鶏にCP16%の飼料を給与することにより、Mサイズ以上の鶏卵の産出数を全産卵数の95%以上とするものである。 The poultry raising method of one embodiment feeds the above-mentioned chickens with a feed of 16% CP to make the number of eggs of M size or more 95% or more of the total number of eggs laid.
 上記実施形態によれば、採卵用鶏に、空気のウルトラファインバブルを含有する飲用水を与えることにより、CP(crude protein:粗蛋白質)の割合が16%の飼料を与えても、Mサイズ以上の産卵数を全産卵数の95%以上とすることができる。したがって、高価なCP18%の飼料や、特殊な飼料を用いることなく、鶏卵の生産性を向上することができる。特に、CP18%の飼料をCP16%の飼料に変更しても、鶏卵の生産性を維持又は向上できるので、飼料費の削減を行うことができる。ここで、Mサイズとは、日本国農林水産省により定められた鶏卵規格取引要綱別紙の鶏卵の取引規格において、鶏卵の重量が58g以上64g未満であることをいう。 According to the above-described embodiment, the chickens for egg collection are fed with drinking water containing ultrafine bubbles of air to give a feed containing 16% CP (crude protein), which is M size or more. The number of eggs laid can be 95% or more of the total number of eggs laid. Therefore, the productivity of chicken eggs can be improved without using expensive CP18% feed or special feed. Especially, even if the feed of CP18% is changed to the feed of CP16%, the productivity of chicken eggs can be maintained or improved, so that the feed cost can be reduced. Here, the M size means that the weight of the egg is 58 g or more and less than 64 g according to the egg egg transaction standard in the attached egg egg transaction standard established by the Japanese Ministry of Agriculture, Forestry and Fisheries.
 一実施形態の養鶏方法は、上記飲用水が、少なくともアロエを含む複数種類の植物を含む液を混合し抽出した植物由来エキス液と、キダチアロエのアルコール漬け液と、アロエベラのアルコール漬け液と、糖分と、ミネラル分とを含んで混合してなる液の発酵液が添加されている。 The poultry raising method of one embodiment, the drinking water is a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling solution of Kidachi aloe, an alcohol pickling solution of aloe vera, and sugar content. And a fermented liquor, which is a mixture of minerals and minerals, is added.
 上記実施形態によれば、少なくともアロエを含む複数種類の植物を含む液を混合し抽出した植物由来エキス液と、キダチアロエのアルコール漬け液と、アロエベラのアルコール漬け液と、糖分と、ミネラル分とを含んで混合してなる液の発酵液が添加された飲用水を給与することにより、鶏の産卵数を更に増加させることができる。 According to the above-described embodiment, a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling liquid of Kidachi aloe, an alcohol pickling liquid of aloe vera, sugar, and minerals. By feeding the drinking water to which the fermented liquid of the liquid containing and mixed is added, the number of eggs laid by the chicken can be further increased.
 本発明の他の側面によれば、採卵用の鶏に給与される飲用水に含有される気体のウルトラファインバブルを製造するための養鶏用ウルトラファインバブル製造器であって、
 円形断面を有するケーシングと、
 上記ケーシングの一端に接続され、上記ケーシングと同軸上に延在し、気体と水の混合流体を供給する供給管と、
 上記ケーシング内に少なくとも一部が収容され、上記供給管からケーシング内に供給された上記混合流体の旋回流を形成する複数の旋回流形成部を含み、これらの旋回流形成部で形成された旋回流を互いに衝突させて、上記混合流体の気体を微細化してウルトラファインバブル水を生成する微細化ブロックと、
 上記ケーシングの他端側に配置され、上記微細化ブロックで生成されたウルトラファインバブル水を上記ケーシングの外に排出する排出管と
 を備えることを特徴としている。
According to another aspect of the present invention, a chicken poultry ultra fine bubble producing apparatus for producing gas ultra fine bubbles contained in drinking water fed to a chicken for egg collection,
A casing having a circular cross section,
A supply pipe connected to one end of the casing, extending coaxially with the casing, and supplying a mixed fluid of gas and water,
At least a part of the swirl flow forming part is accommodated in the casing and forms a swirl flow of the mixed fluid supplied from the supply pipe into the casing, and swirl formed by these swirl flow forming parts. A finer block that collides the flows with each other to finely atomize the gas of the mixed fluid to generate ultrafine bubble water,
And a discharge pipe disposed on the other end side of the casing for discharging the ultrafine bubble water generated by the miniaturization block to the outside of the casing.
 上記構成によれば、ケーシングと、供給管と、排出管と、上記ケーシング内に収容された微細化ブロックとで構成された養鶏用ウルトラファインバブル製造器は、容易に小型化が可能である。また、この養鶏用ウルトラファインバブル製造器は、混合流体の旋回流を形成する複数の旋回流形成部を含み、これらの旋回流形成部で形成された旋回流を互いに衝突させて、混合流体の気体を微細化してウルトラファインバブル水を生成する微細化ブロックを用いて構成されるので、気体のウルトラファインバブルを効率的に生成することができる。 According to the above configuration, the ultrafine bubble manufacturing device for poultry, which includes the casing, the supply pipe, the discharge pipe, and the miniaturized block housed in the casing, can be easily miniaturized. Further, this chicken ultra-fine bubble manufacturing device includes a plurality of swirl flow forming portions that form a swirl flow of the mixed fluid, collide swirl flows formed by these swirl flow forming portions with each other, and Since it is configured by using the atomization block that atomizes the gas to generate ultrafine bubble water, it is possible to efficiently generate the gas ultrafine bubbles.
 一実施形態の養鶏用ウルトラファインバブル製造器は、上記微細化ブロックが、上記ケーシングと同軸の旋回軸回りに混合流体の旋回流を形成する上記旋回流形成部としての第1旋回室と、この第1旋回室よりも上記供給管から遠い側に形成され、上記ケーシングと同軸の旋回軸回りに、上記第1旋回室で形成される旋回流と反対向きに旋回する混合流体の旋回流を形成する上記旋回流形成部としての第2旋回室と、上記第1旋回室で形成された混合流体の旋回流と上記第2旋回室で形成された混合流体の旋回流とを衝突させる衝突室と、この衝突室で混合流体の旋回流が衝突してなるウルトラファインバブル水を排出管側に導く排出通路とを含み、
 上記排出管は、上記排出通路に連通するように上記微細化ブロックに連結され、上記微細化ブロックを上記ケーシング内に支持している。
In the ultrafine bubble manufacturing device for poultry farming according to one embodiment, the miniaturization block includes a first swirl chamber as the swirl flow forming unit that forms a swirl flow of a mixed fluid around a swirl axis coaxial with the casing, A swirl flow of the mixed fluid is formed on the side farther from the supply pipe than the first swirl chamber, and swirls in the opposite direction to the swirl flow formed in the first swirl chamber around the swirl axis coaxial with the casing. A second swirl chamber as the swirl flow forming section, and a collision chamber for colliding the swirl flow of the mixed fluid formed in the first swirl chamber with the swirl flow of the mixed fluid formed in the second swirl chamber. , A discharge passage for guiding the ultrafine bubble water formed by the swirling flow of the mixed fluid colliding in the collision chamber to the discharge pipe side,
The discharge pipe is connected to the miniaturization block so as to communicate with the discharge passage, and supports the miniaturization block in the casing.
 上記実施形態によれば、ケーシング内の微細化ブロックが、上記ケーシングと同軸の旋回軸回りに混合流体の旋回流を形成する第1旋回室と、この第1旋回室よりも上記供給管から遠い側に形成され、上記ケーシングと同軸の旋回軸回りに、上記第1旋回室で形成される旋回流と反対向きに旋回する混合流体の旋回流を形成する第2旋回室と、上記第1旋回室で形成された混合流体の旋回流と上記第2旋回室で形成された混合流体の旋回流とを衝突させる衝突室と、この衝突室で混合流体の旋回流が衝突してなるウルトラファインバブル水を排出管側に導く排出通路とを含んで形成されるので、養鶏用ウルトラファインバブル製造器を小型にできる。また、上記排出管は、上記微細化ブロックの排出通路に連通するように上記微細化ブロックに連結され、この微細化ブロックを上記ケーシング内に支持するので、簡易な構造でケーシング内に微細化ブロックを収容できる。 According to the above-described embodiment, the miniaturized block in the casing is farther from the supply pipe than the first swirl chamber that forms the swirl flow of the mixed fluid around the swirl axis that is coaxial with the casing. A second swirl chamber that is formed on the side of the casing and that forms a swirl flow of a mixed fluid that swirls in the opposite direction to the swirl flow that is formed in the first swirl chamber around the swirl axis that is coaxial with the casing; Collision chamber for colliding the swirling flow of the mixed fluid formed in the chamber with the swirling flow of the mixed fluid formed in the second swirling chamber, and an ultra fine bubble formed by the swirling flow of the mixed fluid colliding in the collision chamber Since it is formed to include a discharge passage that guides water to the discharge pipe side, the ultrafine bubble manufacturing device for poultry can be downsized. Further, the discharge pipe is connected to the miniaturization block so as to communicate with the discharge passage of the miniaturization block, and supports the miniaturization block in the casing. Therefore, the miniaturization block in the casing has a simple structure. Can accommodate.
 一実施形態の養鶏用ウルトラファインバブル製造器は、上記微細化ブロックが、
 上記第1旋回室と、この第1旋回室の一端側へケーシング内の混合流体を第1旋回室の接線方向に導入する第1導入路と、上記第1旋回室の他端に形成されて旋回流を吐出する第1吐出孔とを有する第1ブロック部品と、
 上記第1ブロック部品に結合され、上記第2旋回室と、この第2旋回室の一端側へケーシング内の混合流体を第2旋回室の接線方向に導入する第2導入路と、上記第2旋回室の他端に形成されて上記第1ブロック部品の第1吐出孔と対向して旋回流を吐出する第2吐出孔と、上記第1ブロック部品に結合されて第1ブロック部品との間に形成される衝突室に面する衝突室表面と、この衝突室表面に形成され、上記衝突室のウルトラファインバブル水を上記排出通路に流入させる流入口と、上記第1ブロック部品が連結された側と反対側の端面に形成され、上記排出通路を流れたウルトラファインバブル水を排出する排出口とを有する第2ブロック部品と
を含んで形成されている。
The ultrafine bubble manufacturing device for poultry farming of one embodiment, the miniaturized block,
The first swirl chamber, a first introduction path for introducing the mixed fluid in the casing into the tangential direction of the first swirl chamber to one end side of the first swirl chamber, and the first swirl chamber formed at the other end of the first swirl chamber. A first block part having a first discharge hole for discharging a swirl flow;
The second swirl chamber, a second introduction path for introducing the mixed fluid in the casing in a tangential direction of the second swirl chamber, the second swirl chamber being coupled to the first block component; Between a second discharge hole that is formed at the other end of the swirl chamber and that discharges a swirl flow in opposition to the first discharge hole of the first block component, and the first block component that is connected to the first block component. The surface of the collision chamber facing the collision chamber, the inlet for allowing the ultrafine bubble water of the collision chamber to flow into the discharge passage, and the first block component are connected to each other. And a second block part having an outlet for discharging the ultrafine bubble water that has flowed through the discharge passage.
 上記実施形態によれば、微細化ブロックが、第1ブロック部品と第2ブロック部品が結合されて形成される。上記第1ブロック部品は、第1旋回室と、この第1旋回室の一端側へケーシング内の混合流体を第1旋回室の接線方向に導入する第1導入路と、上記第1旋回室の他端に形成されて旋回流を吐出する第1吐出孔とを有する。また、上記第2ブロック部品は、第2旋回室と、この第2旋回室の一端側へケーシング内の混合流体を第2旋回室の接線方向に導入する第2導入路と、上記第2旋回室の他端に形成されて上記第1ブロック部品の第1吐出孔と対向して旋回流を吐出する第2吐出孔とを有する。更に、上記第2ブロック部品が、上記第1ブロック部品に結合されて第1ブロック部品との間に形成される衝突室に面する衝突室表面と、この衝突室表面に形成された流入口と上記第1ブロック部品が連結された側と反対側の端面に形成された排出口との間に延在する排出通路とを有する。このように形成された第1ブロック部品と第2ブロック部品により、小型の微細化ブロックを構成することができる。 According to the above embodiment, the miniaturized block is formed by combining the first block component and the second block component. The first block component includes a first swirl chamber, a first introduction path for introducing the mixed fluid in the casing into a tangential direction of the first swirl chamber to one end side of the first swirl chamber, and the first swirl chamber of the first swirl chamber. It has a 1st discharge hole formed in the other end and discharging a swirl flow. The second block component includes a second swirl chamber, a second introduction path for introducing the mixed fluid in the casing into one end side of the second swirl chamber in a tangential direction of the second swirl chamber, and the second swirl chamber. It has a second discharge hole formed at the other end of the chamber and facing the first discharge hole of the first block component to discharge a swirling flow. Further, the second block component has a collision chamber surface facing a collision chamber formed between the first block component and the first block component, and an inflow port formed on the collision chamber surface. And a discharge passage extending between a side to which the first block component is connected and a discharge port formed on the opposite end surface. With the first block component and the second block component thus formed, it is possible to configure a small miniaturized block.
 一実施形態の養鶏用ウルトラファインバブル製造器は、上記第1導入路と第2導入路は、上記微細化ブロックの軸直角面に対して傾斜して形成されている。 In the ultrafine bubble manufacturing device for poultry farming of one embodiment, the first introduction path and the second introduction path are formed to be inclined with respect to the plane perpendicular to the axis of the miniaturized block.
 上記実施形態によれば、微細化ブロックの軸直角面に対して傾斜した第1導入路を通して混合流体を第1旋回室に導入することにより、第1旋回室内に、第1吐出孔に向かって旋回する旋回流を効果的に生成することができる。また、微細化ブロックの軸直角面に対して傾斜した第2導入路を通して混合流体を第2旋回室に導入することにより、第2旋回室内に、第2吐出孔に向かって旋回する旋回流を効果的に生成することができる。これにより、第1旋回室の第1吐出口と第2旋回室の第2吐出口との間に位置する衝突室で、第1旋回室からの旋回流と、第2旋回室からの旋回流を、強く衝突させることができ、その結果、各旋回流に含まれる気体のバブルを効果的に微細化して、気体のウルトラファインバブルを効率的に生成することができる。 According to the above-described embodiment, the mixed fluid is introduced into the first swirl chamber through the first introduction path inclined with respect to the plane perpendicular to the axis of the miniaturization block, so that the first swirl chamber faces the first discharge hole. A swirling flow that swirls can be effectively generated. Further, by introducing the mixed fluid into the second swirling chamber through the second introducing passage inclined with respect to the plane perpendicular to the axis of the miniaturization block, the swirling flow swirling toward the second discharge hole is generated in the second swirling chamber. It can be effectively generated. Thereby, in the collision chamber located between the first discharge port of the first swirl chamber and the second discharge port of the second swirl chamber, the swirl flow from the first swirl chamber and the swirl flow from the second swirl chamber Can be made to collide strongly, and as a result, the gas bubbles contained in each swirling flow can be effectively miniaturized, and the gas ultrafine bubbles can be efficiently generated.
 一実施形態の養鶏用ウルトラファインバブル製造器は、上記微細化ブロックが、上記ケーシングと同軸方向に形成されて上記混合流体が導かれる処理流路と、この処理流路の上流端に上記混合流体を中心軸の偏心方向に導入して旋回流を形成する上記旋回流形成部としての第1偏心供給路と、上記処理流路の上記第1偏心供給路よりも下流側に上記混合流体を中心軸の上記第1偏心供給路と反対向きの偏心方向に導入し、上記第1偏心供給路で形成された旋回流に反対向きの旋回流を生成して衝突させる上記旋回流形成部としての第2偏心供給路とを含み、
 上記排出管は、上記微細化ブロックの処理流路の下流端に連結されている。
The ultrafine bubble manufacturing device for poultry farming of one embodiment, the miniaturized block, the processing flow path is formed coaxially with the casing and the mixed fluid is guided, the mixed fluid at the upstream end of the processing flow path. Is introduced in the eccentric direction of the central axis to form a swirl flow, and a first eccentric supply passage as the swirl flow forming portion, and the mixed fluid is centered on the downstream side of the first eccentric supply passage in the processing flow passage. The swirl flow forming section is introduced into the shaft in an eccentric direction opposite to the first eccentric supply passage, and generates a swirl flow in the opposite direction against the swirl flow formed in the first eccentric supply passage to collide. Including two eccentric supply paths,
The discharge pipe is connected to the downstream end of the processing channel of the miniaturization block.
 上記実施形態によれば、微細化ブロックが、ケーシングと同軸方向に形成されて上記混合流体が導かれる処理流路を含む。この処理流路の上流端に、混合流体を中心軸の偏心方向に導入して旋回流を形成する旋回流形成部としての第1偏心供給路が連通している。上記処理流路の上記第1偏心供給路よりも下流側に、混合流体を中心軸の上記第1偏心供給路と反対向きの偏心方向に導入する旋回流形成部としての第2偏心供給路が連通している。この第2偏心供給路により、上記第1偏心供給路で形成された旋回流に反対向きの旋回流を生成して衝突させることにより、混合流体に含まれる気体のバブルを効果的に微細化して、気体のウルトラファインバブルが生成される。このように、微細化ブロックが、処理流路と、第1偏心供給路と、第2偏心供給路を含んで構成されるので、養鶏用ウルトラファインバブル製造器を小型にできる。 According to the above-described embodiment, the miniaturized block includes a processing flow path that is formed coaxially with the casing and guides the mixed fluid. A first eccentric supply passage as a swirl flow forming portion that forms a swirl flow by introducing the mixed fluid in the eccentric direction of the central axis communicates with the upstream end of the processing flow path. A second eccentric supply passage as a swirl flow forming unit for introducing the mixed fluid in the eccentric direction opposite to the first eccentric supply passage of the central axis is provided downstream of the first eccentric supply passage of the processing flow passage. It is in communication. By the second eccentric supply passage, the swirl flow formed in the first eccentric supply passage is caused to collide with the swirl flow in the opposite direction to collide with the swirl flow, whereby the gas bubbles contained in the mixed fluid are effectively miniaturized. , Ultra fine bubbles of gas are generated. As described above, since the miniaturization block is configured to include the processing flow path, the first eccentric supply path, and the second eccentric supply path, the ultrafine bubble manufacturing device for poultry can be downsized.
 本発明の他の側面によれば、上記養鶏用ウルトラファインバブル製造器を用いて形成された養鶏用飲用水製造装置であって、
 原料水を圧送する第1ポンプと、
 上記第1ポンプから圧送された原料水に気体を混合して混合流体を形成する混合器と、
 上記混合器の下流側に設けられた第2ポンプと、
 上記第2ポンプの下流側で混合流体を2つの経路に分岐する分岐部と、
 上記分岐部に接続され、流量調整弁と、第1の上記養鶏用ウルトラファインバブル製造器とが介設され、この第1養鶏用ウルトラファインバブル製造器で製造された気体のウルトラファインバブルを含有する水を上記混合器と第2ポンプの間に戻す戻し経路と、
 上記分岐部に接続され、第2の上記養鶏用ウルトラファインバブル製造器が介設され、この第2養鶏用ウルトラファインバブル製造器で製造された気体のウルトラファインバブルを含有する水を排出する排出経路と
を備えることを特徴としている。
According to another aspect of the present invention, there is provided a poultry drinking water production apparatus formed using the poultry ultrafine bubble production device,
A first pump for pumping raw material water,
A mixer for forming a mixed fluid by mixing a gas with the raw material water pumped from the first pump;
A second pump provided on the downstream side of the mixer;
A branch portion that branches the mixed fluid into two paths downstream of the second pump;
The flow control valve and the first ultrafine bubble producing device for poultry raising are connected to the branch portion, and contain the gas ultrafine bubble produced by the first ultrafine bubble producing device for poultry raising. A return path for returning the generated water between the mixer and the second pump,
The discharge which discharges the water containing the gas ultra fine bubble which was connected to the said branch part and which was equipped with the 2nd above-mentioned ultra fine bubble manufacturing device for poultry raising, and was manufactured by this 2nd ultra fine bubble manufacturing device for poultry raising And a route.
 上記構成によれば、原料水が第1ポンプで圧送され、混合器によって原料水に気体が混合される。この混合器の下流側の第2ポンプにより圧送された混合流体が、分岐部で2つの経路に分岐される。分岐部に接続された戻し経路では、流量調整弁が開いているとき、第2ポンプから圧送された混合流体の一部が第1養鶏用ウルトラファインバブル製造器に導かれ、混合流体中の気体が微細化されてウルトラファインバブルが形成される。この気体のウルトラファインバブルを含有する水は、混合器と第2ポンプの間に戻され、混合器からの混合流体と合流して第2ポンプに吸引される。一方、分岐部に接続された排出経路では、第2ポンプから圧送された混合流体の一部が第2養鶏用ウルトラファインバブル製造器に導かれ、混合流体中の気体が微細化されてウルトラファインバブルが形成される。この気体のウルトラファインバブルを含有する水は、排出経路の下流側から排出され、採卵用鶏の飲用水として用いられる。また、戻し経路の流量調整弁が閉じているとき、第2ポンプから圧送された混合流体の全部が第2養鶏用ウルトラファインバブル製造器に導かれ、気体のウルトラファインバブルが形成され、この気体のウルトラファインバブルを含有する水が排出経路の下流側から排出される。流量調整弁の開度を調節することにより、第1養鶏用ウルトラファインバブル製造器で形成されて第2ポンプに戻される気体のウルトラファインバブルを含む水の量を調節できる。したがって、排出経路から排出される水における気体のウルトラファインバブルの粒径や濃度を、効果的に調節することができる。 According to the above configuration, the raw water is pumped by the first pump, and the gas is mixed with the raw water by the mixer. The mixed fluid pumped by the second pump on the downstream side of the mixer is branched into two paths at the branch portion. In the return path connected to the branch portion, when the flow rate adjusting valve is open, a part of the mixed fluid pumped from the second pump is guided to the first ultra-fine bubble maker for poultry, and the gas in the mixed fluid is introduced. Are miniaturized to form ultra fine bubbles. The water containing the gas ultrafine bubbles is returned between the mixer and the second pump, merges with the mixed fluid from the mixer, and is sucked by the second pump. On the other hand, in the discharge path connected to the branch part, a part of the mixed fluid pumped from the second pump is guided to the second ultra-fine bubble maker for poultry, and the gas in the mixed fluid is atomized to produce ultra-fine particles. A bubble is formed. The water containing the gas ultrafine bubbles is discharged from the downstream side of the discharge path and used as drinking water for the chicken for egg collection. Further, when the flow rate adjusting valve of the return path is closed, all of the mixed fluid pumped from the second pump is guided to the second chicken ultrafine bubble manufacturing device to form a gas ultrafine bubble. The water containing the ultra fine bubbles is discharged from the downstream side of the discharge path. By adjusting the opening degree of the flow rate adjusting valve, the amount of water containing the gas ultrafine bubbles formed in the first chicken ultrafine bubble producing device and returned to the second pump can be adjusted. Therefore, it is possible to effectively control the particle size and concentration of the gas ultrafine bubbles in the water discharged from the discharge path.
 一実施形態の養鶏用飲用水製造装置は、上記ウルトラファインバブル製造器を用いて形成されたウルトラファインバブル水製造装置であって、
 気体が原料水に混合されてなる混合流体を圧送する第1ポンプと、
 上記第1ポンプの吐出側と吸入側との間に接続され、上記第1ポンプから吐出された混合流体に気体を混合して上記第1ポンプの吸入側に戻す混合器と、
 上記第1ポンプの下流側に設けられた上記養鶏用ウルトラファインバブル製造器と、
 上記養鶏用ウルトラファインバブル製造器の下流側に接続された第2ポンプと、
 上記第2ポンプの下流側に接続された気液分離器と、
 上記気液分離器で分離された液体を排出する排出経路と
を備える。
The poultry drinking water production device of one embodiment is an ultrafine bubble water production device formed using the ultrafine bubble production device,
A first pump for pumping a mixed fluid in which gas is mixed with raw material water;
A mixer connected between the discharge side and the suction side of the first pump, for mixing gas into the mixed fluid discharged from the first pump and returning the mixed fluid to the suction side of the first pump;
An ultra fine bubble manufacturing device for poultry, which is provided on the downstream side of the first pump;
A second pump connected to the downstream side of the ultrafine bubble manufacturing device for poultry,
A gas-liquid separator connected to the downstream side of the second pump,
And a discharge path for discharging the liquid separated by the gas-liquid separator.
 上記実施形態によれば、気体が原料水に混合されてなる混合流体が第1ポンプで圧送される。この第1ポンプから吐出された混合流体の一部は、上記第1ポンプの吐出側と吸入側との間に接続された混合器に導かれ、この混合器により、混合流体に気体が混合される。混合器で気体が混合された混合流体は、上記第1ポンプの吸入側に戻される。上記第1ポンプから吐出された混合流体の他の部分は、下流側に設けられた養鶏用ウルトラファインバブル製造器に導かれ、混合流体中の気体が微細化されてウルトラファインバブルが形成される。このウルトラファインバブルを含有する水は、養鶏用ウルトラファインバブル製造器の下流側に接続された第2ポンプに吸引され、この第2ポンプの下流側に接続された気液分離器に向かって吐出される。気液分離器に導かれたウルトラファインバブルを含有する水は、この水と共に導かれた気体が分離さる。気液分離器で気体が分離されて残った液体であるウルトラファインバブルを含有する水が、排出経路を通って排出される。第1ポンプと第2ポンプの間に養鶏用ウルトラファインバブル製造器を介設し、主に第2ポンプの動作を調節することにより、ウルトラファインバブルを含有する水の生成量を安定させることができる。 According to the above-mentioned embodiment, the first pump pumps the mixed fluid in which the gas is mixed with the raw material water. A part of the mixed fluid discharged from the first pump is guided to a mixer connected between the discharge side and the suction side of the first pump, and the mixed fluid mixes gas with the mixed fluid. It The mixed fluid in which the gas is mixed in the mixer is returned to the suction side of the first pump. The other part of the mixed fluid discharged from the first pump is guided to an ultra fine bubble manufacturing device for poultry, which is provided on the downstream side, and the gas in the mixed fluid is atomized to form ultra fine bubbles. .. The water containing the ultra fine bubbles is sucked by the second pump connected to the downstream side of the ultra fine bubble manufacturing device for poultry and discharged toward the gas-liquid separator connected to the downstream side of the second pump. To be done. The water containing ultrafine bubbles introduced into the gas-liquid separator is separated from the gas introduced together with this water. Water containing ultrafine bubbles, which is the liquid that remains after the gas is separated by the gas-liquid separator, is discharged through the discharge path. It is possible to stabilize the amount of water containing ultrafine bubbles by interposing an ultrafine bubble manufacturing device for chickens between the first pump and the second pump and adjusting the operation of the second pump mainly. it can.
 一実施形態の養鶏用飲用水製造装置は、上記第2ポンプが、カスケードポンプである。 In the poultry drinking water producing apparatus of one embodiment, the second pump is a cascade pump.
 上記実施形態によれば、第2ポンプとしてカスケードポンプを用いることにより、気体のウルトラファインバブルを含有する水を、安定して生成することができる。 According to the above-described embodiment, by using the cascade pump as the second pump, it is possible to stably generate water containing gaseous ultrafine bubbles.
本発明の実施形態の養鶏方法が適用される鶏舎を示す模式図である。It is a schematic diagram which shows the poultry house to which the poultry raising method of embodiment of this invention is applied. 本発明の実施形態の養鶏用飲用水製造装置を示す模式図である。It is a schematic diagram which shows the drinking water manufacturing apparatus for chicken raising of embodiment of this invention. 本発明の実施形態の養鶏用ウルトラファインバブル製造器の縦断面図である。It is a longitudinal cross-sectional view of the ultra-fine bubble manufacturing device for poultry farming of the embodiment of the present invention. 図3の矢視Bによる養鶏用ウルトラファインバブル製造器の横断面図である。FIG. 4 is a cross-sectional view of the ultrafine bubble manufacturing device for poultry, as viewed in the direction of arrow B in FIG. 3. 図3の矢視Cによる養鶏用ウルトラファインバブル製造器の横断面図である。FIG. 4 is a cross-sectional view of the ultrafine bubble manufacturing device for poultry, taken along arrow C in FIG. 3. 養鶏用ウルトラファインバブル製造器の第1ブロックを示す断面図である。It is sectional drawing which shows the 1st block of the ultra fine bubble manufacture device for chicken raising. 養鶏用ウルトラファインバブル製造器の第2ブロックを示す断面図である。It is sectional drawing which shows the 2nd block of the ultra fine bubble manufacture device for chicken raising. 他の養鶏用ウルトラファインバブル製造器を示す縦断面図である。It is a longitudinal cross-sectional view showing another ultrafine bubble manufacturing device for poultry farming. 図8の矢視Dによる養鶏用ウルトラファインバブル製造器の横断面図である。FIG. 9 is a cross-sectional view of the ultrafine bubble manufacturing device for poultry, taken along arrow D in FIG. 8. 図8の矢視Eによる養鶏用ウルトラファインバブル製造器の横断面図である。FIG. 9 is a cross-sectional view of the ultrafine bubble manufacturing device for poultry, taken along arrow E in FIG. 8. 他の養鶏用飲用水製造装置を示す模式図である。It is a schematic diagram which shows the drinking water manufacturing apparatus for other chickens. 試験1の結果を示すグラフである。It is a graph which shows the result of test 1.
 以下、本発明の実施形態を、添付の図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 本発明の実施形態の養鶏方法は、採卵用鶏に、気体としての空気のウルトラファインバブルを含有する飲用水を与えることにより、鶏卵を上記鶏から得るものである。 According to the poultry raising method of the embodiment of the present invention, eggs are obtained from the above-mentioned chickens by giving drinking water containing ultrafine bubbles of air as gas to the chickens for egg collection.
 ウルトラファインバブルは、直径が1μm以下の気泡であり、可視光の波長よりも小さいものは、液体中に形成されても視認できない。また、ウルトラファインバブルは、直径が1μm以上の気泡であるマイクロバブルと比較して、浮上速度が小さく、液体中に長時間滞在することができる。また、ウルトラファインバブルは、マイクロバブルと比較して、表面積が大きく、自己加圧効果を有し、マイナス電荷の帯電作用を有する。このような特徴に基づき、空気のウルトラファインバブルを添加した水を飲用水として採卵用鶏に給与することにより、鶏の卵の生産効率を高めることが可能となる。 Ultrafine bubbles are bubbles with a diameter of 1 μm or less, and those smaller than the wavelength of visible light cannot be visually recognized even if they are formed in a liquid. In addition, ultrafine bubbles have a smaller floating speed than microbubbles, which are bubbles having a diameter of 1 μm or more, and can stay in liquid for a long time. In addition, ultrafine bubbles have a larger surface area than microbubbles, have a self-pressurizing effect, and have a negative charging effect. Based on such characteristics, it is possible to enhance the egg production efficiency of chickens by feeding water containing ultrafine bubbles of air as drinking water to the chickens for egg collection.
 採卵用鶏は、例えばボリスブラウン種の場合、一般的に150日齢前後で産卵を開始する。ここで、空気のウルトラファインバブルを添加した飲用水を、未産卵の鶏に給与して養育することにより、産卵の開始を10日乃至20日程度早めることができる。 In the case of Boris brown breeds, for example, chickens for egg collection generally start spawning around 150 days of age. Here, the start of spawning can be accelerated by about 10 to 20 days by feeding drinking water to which air ultrafine bubbles have been added to the chickens that have not spawned and raised them.
 また、空気のウルトラファインバブルを添加した飲用水を採卵用鶏に給与することにより、空気のウルトラファインバブルを添加しない飲用水を給与した場合と比較して、76g以上の大玉の鶏卵が採取される割合を、1.5倍から2倍程度に増大することができる。 Also, by feeding drinking water with the addition of air ultrafine bubbles to the egg collection chicken, compared to the case of feeding with drinking water without the addition of air ultrafine bubbles, a large egg of 76 g or more is collected. The ratio can be increased from 1.5 times to about 2 times.
 また、空気のウルトラファインバブルを添加した飲用水を採卵用鶏に給与することにより、CP(crude protein:粗蛋白質)の割合が16%の飼料を与えても、Mサイズ(58g以上64g未満)以上の産卵数を全産卵数の95%以上とすることができる。したがって、飼料費を効果的に削減できる。 Also, by feeding drinking water to which ultrafine bubbles of air have been added to the egg-laying chicken, even if fed with a feed containing 16% of CP (crude protein), M size (58g or more and less than 64g) The number of eggs laid above can be 95% or more of the total number of eggs laid. Therefore, the feed cost can be effectively reduced.
 本実施形態で飲用水として用いる空気のウルトラファインバブル含有水は、空気のウルトラファインバブルの直径が1nm以上1000nm以下であれば、特に限定されない。空気のウルトラファインバブルの直径が1000nmを超えると、卵の生産効率の向上が不十分となる可能性がある。好ましくは、飲用水に含まれる空気のウルトラファインバブルの直径は10nm以上500nm以下であり、更に好ましくは20nm以上300nm以下である。飲用水に含まれる空気のウルトラファインバブルの直径が20nm以上300nm以下であることにより、鶏の卵の生産効率を効果的に高めることができる。また、産出される卵の重さを効果的に増大させることができる。本実施形態では、ウルトラファインバブルの径は、レーザー回析・散乱法により測定した。 The ultrafine bubble-containing water of air used as drinking water in the present embodiment is not particularly limited as long as the diameter of the ultrafine bubbles of air is 1 nm or more and 1000 nm or less. If the diameter of the ultrafine bubbles of air exceeds 1000 nm, the improvement in egg production efficiency may be insufficient. The diameter of the ultrafine bubbles of air contained in the drinking water is preferably 10 nm or more and 500 nm or less, more preferably 20 nm or more and 300 nm or less. When the diameter of the air ultrafine bubbles contained in the drinking water is 20 nm or more and 300 nm or less, the production efficiency of chicken eggs can be effectively increased. In addition, the weight of eggs produced can be effectively increased. In the present embodiment, the diameter of the ultra fine bubbles was measured by the laser diffraction/scattering method.
 本実施形態の飲用水として用いる空気のウルトラファインバブル含有水は、空気のウルトラファインバブルの濃度が、1×10個/mL以上であり、上限は特に限定されないが、作製の容易性から、1012個/mL以下である。空気のウルトラファインバブルの濃度が1×10個/mLを下回ると、卵の生産効率の向上が不十分となる可能性がある。好ましくは、空気のウルトラファインバブルの濃度は、1×10個/mL以上3×10個/mL以下であり、特に好ましくは1×10個/mL以上2×10個/mL以下である。飲用水の空気のウルトラファインバブルの濃度を1×10個/mL以上2×10個/mL以下にすることにより、鶏の卵の生産効率を効果的に高めることができる。また、産出される卵の重さを効果的に増大させることができる。 The ultrafine bubble-containing water of air used as drinking water of the present embodiment has a concentration of ultrafine bubbles of air of 1×10 7 cells/mL or more, and the upper limit is not particularly limited, but from the ease of production, It is 10 12 pieces/mL or less. If the concentration of ultrafine bubbles in the air is lower than 1×10 7 cells/mL, the improvement in egg production efficiency may be insufficient. The concentration of ultrafine bubbles in air is preferably 1×10 7 cells/mL or more and 3×10 8 cells/mL or less, and particularly preferably 1×10 8 cells/mL or more and 2×10 8 cells/mL or less. Is. By setting the concentration of ultrafine bubbles in the air of drinking water to 1×10 8 cells/mL or more and 2×10 8 cells/mL or less, the production efficiency of chicken eggs can be effectively increased. In addition, the weight of eggs produced can be effectively increased.
 空気のウルトラファインバブルを含有する飲用水は、採卵用鶏に、何時の段階で給与してもよい。好ましくは、空気のウルトラファインバブルを含有する飲用水は、採卵のための鶏舎に鶏が導入された時点から給与を開始することができる。例えば、鶏舎に導入された120日齢の大雛に、空気のウルトラファインバブルを含有する飲料水の給与を開始することができる。鶏舎に導入された鶏に、飼料と飲用水を提供して養育を行うことにより、時間の経過と共に鶏の産卵率が増大し、採卵量が増大する。この鶏舎で給与する飲用水に、空気のウルトラファインバブルを含有する飲用水を採用することにより、鶏が産卵を開始する時期を効果的に早めることができる。 ❖ Drinking water containing ultrafine bubbles of air may be fed to the chickens for egg collection at any time. Preferably, the drinking water containing ultrafine bubbles of air can be fed at the time when the chicken is introduced into the poultry house for egg collection. For example, 120-day-old large chicks introduced into a poultry house can be started to be fed with drinking water containing ultrafine bubbles of air. By providing feed and drinking water to the chickens introduced into the poultry house and raising them, the egg laying rate of the chickens increases with the passage of time and the amount of eggs collected increases. By adopting drinking water containing air ultrafine bubbles as drinking water to be fed in this poultry house, it is possible to effectively accelerate the time when the chicken starts to lay eggs.
 空気のウルトラファインバブルを含有する飲用水は、鶏がふ化してから採卵用の鶏舎に導入されるまでの間の何時の時点から給与してもよい。幼雛、中雛又は大雛の時期に、空気のウルトラファインバブルを含有する飲用水を給与することにより、雛の成長を促進することができる。 Drinking water containing ultrafine bubbles of air may be fed from any time between when the chicken hatches and when it is introduced into the chicken house for egg collection. The growth of chicks can be promoted by feeding drinking water containing ultrafine bubbles of air at the time of young, medium or large chicks.
 また、採卵用の鶏舎に導入された鶏に、何時の時点から空気のウルトラファインバブルを含有する飲用水を給与してもよい。また、採卵用の鶏舎に導入された鶏に、一定の期間に空気のウルトラファインバブルを含有する飲用水を給与してもよい。 Also, from any point in time, chickens introduced into a chicken house for egg collection may be supplied with drinking water containing ultrafine bubbles of air. In addition, the chickens introduced into the chicken house for egg collection may be supplied with drinking water containing ultrafine bubbles of air for a certain period.
 採卵用鶏に給与する飲用水は、空気のウルトラファインバブルに加えて、植物抽出物混合発酵液を添加してもよい。植物抽出物混合発酵液は、少なくともアロエを含む複数種類の植物を含む液を混合し抽出した植物由来エキス液と、キダチアロエのアルコール漬け液と、アロエベラのアルコール漬け液と、米ぬか液と、糖分と、ミネラル分とを含んで混合してなる液にミネラル分と灰分を加えた液の発酵液である。 The drinking water to be fed to the chickens for egg collection may contain the plant extract mixed fermented liquid in addition to the ultrafine bubbles in the air. The plant extract mixed fermented liquid is a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling liquid of Kidachi aloe, an alcohol pickling liquid of aloe vera, rice bran liquid, and sugar. A fermentation liquid of a liquid obtained by adding a mineral component and an ash component to a liquid containing a mixture of a mineral component and a mineral component.
 上記植物抽出物混合発酵液の植物由来エキス液は、(a)少なくともアロエと糖分とミネラル分とを含む第1液と、(b)少なくともアロエと糖分と塩分とを含む第2液と、(c)アロエを含む複数種類の植物のアルコール抽出液と、アロエを含む複数種類の植物の糖抽出液と、複数種類の植物を混合して煮沸抽出した液と複数種類の植物エキスのアルコール抽出液とを含む第3液とを含むことが好ましい。 The plant-derived extract solution of the above-mentioned plant extract mixed fermented solution comprises (a) a first liquid containing at least aloe, sugar and mineral, and (b) a second liquid containing at least aloe, sugar and salt ( c) Alcohol extract of plural kinds of plants containing aloe, sugar extract of plural kinds of plants containing aloe, liquid obtained by boiling and mixing plural kinds of plants, and alcohol extract of plural kinds of plant extracts It is preferable to include a third liquid containing and.
 上記植物抽出物混合発酵液の植物由来エキス液を形成する第1液としては、第1の黒糖アロエ液を採用できる。第1の黒糖アロエ液は、次のようにして作成することができる。まず、キダチアロエ15kgに対し、黒糖15kg、はちみつ7kg、梅エキス500cc、濃縮ミネラル液100ccの割合で混合し、1週間熟成し、液を搾取して、搾りとった液を第1液とする。上記濃縮ミネラル液は、海水を50倍に濃縮して作成した。アロエは100万分の1mmの大きさまで微粒子化処理して使用する。以下、アロエ及びアロエベラをはじめとする植物は同様に処理する。これによりイオン化されやすくなる。 The first brown sugar aloe liquid can be adopted as the first liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermentation liquid. The first brown sugar aloe liquid can be prepared as follows. First, brown sugar 15 kg, brown sugar 15 kg, honey 7 kg, plum extract 500 cc, and concentrated mineral liquid 100 cc are mixed with 15 kg of yellowtail aloe, aged for 1 week, the liquid is squeezed, and the squeezed liquid is used as the first liquid. The concentrated mineral liquid was prepared by concentrating seawater 50 times. Aloe is used after being made into fine particles to a size of 1/100,000 mm. Hereinafter, plants such as aloe and aloe vera are treated in the same manner. This facilitates ionization.
 上記植物抽出物混合発酵液の植物由来エキス液を形成する第2液としては、次のようにして作成される第2の黒糖アロエ液を採用できる。アロエエキス30リットルに対し、ブラウンシュガー15kg、黒糖15kg、自然塩200gの割合で混合し、混合した液を煮溶かして得た液を第2液とする。 The second brown sugar aloe liquid prepared as follows can be adopted as the second liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermentation liquid. 30 kg of aloe extract is mixed with 15 kg of brown sugar, 15 kg of brown sugar and 200 g of natural salt, and the mixed solution is boiled to obtain a second solution.
 上記植物抽出物混合発酵液の植物由来エキス液を形成する第3液としては、次のようにして作成される抽出液A、抽出液B、抽出液C及び抽出液Dを混合してなる野菜エキス液を採用できる。まず、長茄子、キュウリ、マッシュルーム、かぼちゃ、絹さや、いんげん、まいたけ、しめじ、小松菜、オレンジ、竹の子、ショウガ、フキ葉、梨、ふきのとう、にがうり、ほうれん草、紅玉、アロエベラ、青リンゴ、いちじく、セロリ、洋梨、はこべ、米ぬか、はぶ茶、ハスの葉、ウコン、黒豆、シイタケ、黄粉、まつたけ、ゴマ、クマザサ、しいの実、伊予柑、ザボン、プルーン、枝豆、エノキ茸、ピーマン、かぶ、柿葉、マンゴー、いちご、バジリコ、パイナップル、トマト、シシトウ、里芋、春菊、エシャレット葡萄、柿、月桂樹、洋梨、メロン、赤じそ、ほうじ茶、はと麦、人参、キウイ、クワイ、山うど、柚子、ライム、キンカン、ハス、レモン、とうがん、ジャスミン、ニンニク、松葉、玉葱、ターサ、芋がら、ブロッコリー、クレソン、みかん、グレープフルーツ、パパイヤ、パセリ、京みぶな、おおばこ、梅エキス、ワラビ、どくだみ、山芋、カリフラワー、アスパラ、銀杏葉、セリ、ザクロ、ツルムラサキ、菜の花、プ―アール、山クラゲ、そばの実、ペパーミント、花梨、ムラベツ、キャベツ、グリーンリーフ、根三ツ葉、サラダ菜、レタス、京菜、小豆、大根、タンポポ、ルイボス、からしな、空豆、なめこ、たらの芽、紅だて、ラディッシュ、棄玉葱、ニラ、ポンカン、水仙、わかめ、スペアミント、落花生、ピスタチオ、じゃが芋、枇杷薫、杏、ハイビスカス、くるみ、レモンバーベナ、レモンパーム、レモングラス、カモマイルジャーマン、レモンディライト、赤とさか、青とさか、伊勢海老キチンキトサンの137種の各材料を、それぞれが少なくとも重量比で0.2%以上の割合になるような任意の割合で、皮や殻など全て丸ごと混合し、混合材Aを作成する。この混合材A1kgに対し、1.5リットルのアルコールの割合で抽出を行い、抽出液A(アルコール抽出液)を得る。 The third liquid forming the plant-derived extract liquid of the above-mentioned plant extract mixed fermented liquid is a vegetable prepared by mixing the extract liquid A, the extract liquid B, the extract liquid C, and the extract liquid D prepared as follows. Extract liquid can be used. First, Naga eggplant, cucumber, mushrooms, pumpkin, silk pods, green beans, maitake mushrooms, shimeji mushrooms, komatsuna, oranges, bamboo shoots, ginger, butterbur leaves, pears, butterbur sprouts, cucumber, spinach, red balls, aloe vera, green apple, figs, celery, Pears, halves, rice bran, habucha, lotus leaves, turmeric, black beans, shiitake mushrooms, yellow powder, matsutake mushrooms, sesame seeds, kumamazasa, shiinomi, iyokan, pomelo, prune, edamame, enoki mushrooms, peppers, turnips, persimmon leaves , Mango, strawberry, basil, pineapple, tomato, shishito, taro, garland chrysanthemum, shallot grape, persimmon, laurel, pear, melon, ajiso, hojicha, hatome, carrot, kiwi, kwai, mountain udo, citron, lime, kumquat , Lotus, Lemon, Togan, Jasmine, Garlic, Matsuba, Onion, Tartha, Potato, Broccoli, Watercress, Mandarin oranges, Grapefruit, Papaya, Parsley, Kyoto mibuna, Aunt, Plum extract, Bracken, Dodami, Yam, Cauliflower, Asparagus , Ginkgo leaves, apricots, pomegranate, vine, rape blossoms, pearl, mountain jellyfish, buckwheat nuts, peppermint, quince, murabetsu, cabbage, green leaf, root soup, salad, lettuce, kyosai, adzuki bean, radish, dandelion , Rooibos, mustard, soybean, nameko, cod roe, red bud, radish, abandoned onion, leek, poncan, narcissus, seaweed, spearmint, peanut, pistachio, potato, loquat, apricot, hibiscus, walnut, lemon Verbena, Lemon Palm, Lemongrass, Camomile German, Lemon Delight, Red Toka, Blue Toka, and 137 kinds of Ise shrimp chitin chitosan, each of which is at least 0.2% by weight. Whole materials such as skins and shells are mixed at an arbitrary ratio to prepare a mixed material A. Extraction liquid A (alcohol extraction liquid) is obtained by extracting with 1 liter of this mixed material A at a ratio of 1.5 liters of alcohol.
 次に、にんにく、青梅、キダチアロエの各材料を、それぞれが少なくとも重量比で10%以上の割合になるような任意の割合で、皮など全て丸ごと混合し、混合材Bを得る。混合材B1kgに対して1kgの黒糖の割合で抽出を行い、抽出液B(糖抽出液)を得る。抽出液Bの抽出法は、糖抽出すなわち糖による浸透圧を利用した抽出である。 Next, the ingredients such as garlic, ome, and kidachi aloe are mixed in whole at an arbitrary ratio such that the ratio of each is at least 10% by weight, and the whole material such as leather is mixed to obtain a mixture B. Extraction is performed at a ratio of 1 kg of brown sugar to 1 kg of the mixed material B to obtain an extraction liquid B (sugar extraction liquid). The extraction method of the extract B is sugar extraction, that is, extraction utilizing the osmotic pressure of sugar.
 さらに、ウコン、大根、人参、メシマコブ、レイシ、アガリスク、牛蒡、米ぬか、スギナの各材料を、それぞれが少なくとも重量比で5%以上の割合になるような任意の割合で、皮など全て丸ごと混合し、混合材Cを得る。混合材Cを煮沸して抽出を行い、抽出液C(煮沸抽出液)を得る。 In addition, turmeric, radish, carrot, Phellinus linteus, litchi, agarisk, burdock root, rice bran, and horsetail are mixed in whole proportions, such as at least 5% by weight, each in whole. , A mixed material C is obtained. The mixed material C is boiled and extracted to obtain an extract liquid C (boiled extract liquid).
 さらに、ウコンエキス、クマザサ液、クレソン液、スギナ液、ゴボウエキス、にんにくエキス、ワラビエキス、赤シソエキス、マイタケエキス、メシマコブエキス、レイシエキス、アガリスクエキス、大根エキス、人参エキス、羅漢花エキス、オオバエキス、シシトウエキス、昆布エキスの各材料を、大根エキスのみ2倍量で他は全て同じ重量ずつの割合で、皮など全て丸ごと混合し、混合材Dを得る。混合材D1kgに対し1.5リットルのアルコールの割合で抽出を行い、抽出液D(アルコール抽出液)を得る。 Furthermore, turmeric extract, kumazasa solution, watercress solution, horsetail solution, burdock extract, garlic extract, bracken extract, red perilla extract, maitake extract, messhikobu extract, litchi extract, agarisk extract, radish extract, ginseng extract, luohana extract, ova extract. , The shishito extract and the kelp extract are mixed with the radish extract in a double amount, and the other ingredients are mixed in the same weight, and the whole material such as the skin is mixed to obtain a mixture D. Extraction is performed at a ratio of 1.5 liters of alcohol to 1 kg of the mixed material D to obtain an extraction liquid D (alcohol extraction liquid).
 上記抽出液A、抽出液B、抽出液C及び抽出液Dを、それぞれが少なくとも重量比で10%以上の割合になるような任意の割合で、混合し、第3液を得る。 The above-mentioned extract A, extract B, extract C and extract D are mixed at an arbitrary ratio such that each of them is at least 10% by weight, to obtain a third liquid.
 第4液としてのキダチアロエのアルコール漬け液は、次のようにして作成することができる。まず、みじん切りにしたキダチアロエ13kgを20リットルのポリタンクにいれて、35度の焼酎をポリタンクが満杯になるまで注ぐ。1週間放置した後、これを搾取して第4液を得る。第4液はキダチアロエのアルコール漬け液である。第4液の原料は、アロエの中でも特に、薬効の高いキダチアロエが適する。 The alcoholic solution of Kidachi aloe as the 4th liquid can be prepared as follows. First, put 13 kg of chopped Kidachi aloe in a 20-liter plastic tank and pour 35 degrees of shochu until the plastic tank is full. After standing for 1 week, this is squeezed to obtain a fourth liquid. The fourth solution is a solution of Kidachi aloe pickled in alcohol. Among the aloe, as the raw material of the fourth liquid, Kidachi aloe having a high medicinal effect is particularly suitable.
 第5液としてのアロエベラのアルコール漬け液は、次のようにして作成することができる。まず、みじん切りにしたアロエベラ13kgを20リットルのポリタンクにいれて、35度の焼酎をポリタンクが満杯になるまで注ぐ。1週間放置した後、これを搾取して第5液が得られる。第5液はアロエベラのアルコール漬け液である。第5液は、食用可能であるアロエベラを用いることが好ましい。 Alcoholic solution of aloe vera as the fifth liquid can be prepared as follows. First, put 13 kg of chopped aloe vera in a 20-liter plastic tank and pour 35 degrees of shochu until the plastic tank is full. After standing for 1 week, this is squeezed to obtain a fifth liquid. The fifth liquid is an alcohol pickling liquid of aloe vera. As the fifth liquid, it is preferable to use edible aloe vera.
 上記第1液、第2液、第3液、第4液及び第5液、はちみつ、上記濃縮ミネラル液、プロポリス液、キチンキトサンエキスを、それぞれが少なくとも重量比で5%以上の割合になるような任意の割合で、混合し、第6液を得る。 The first liquid, the second liquid, the third liquid, the fourth liquid and the fifth liquid, honey, the concentrated mineral liquid, the propolis liquid, and the chitin chitosan extract are each at least 5% by weight. And mixed at an arbitrary arbitrary ratio to obtain a sixth liquid.
 上記第1液~第5液を作成する過程で排出された搾りカス1kgに対し黒糖500g、はちみつ500gの割合で混合し、1週間熟成して、液を搾取する。搾取した液を第7液とする。 1Mix 1kg of squeeze discharged in the process of making the above 1st to 5th liquids, 500g of brown sugar and 500g of honey are mixed and aged for 1 week to extract the liquid. The extracted liquid is referred to as the seventh liquid.
 上記第6液に、ミネラル分としての上記濃縮ミネラル液を、第6液が少なくとも60%以上、その他がそれぞれ重量比で1%以上20%以内の割合になるような任意の割合で混合する。この混合液に、第6液のもとである第1液、第4液及び第5液と、第7液とを、それぞれ全体量の10%以下となる範囲で加えて全体量を調整し、2週間程度常温にて保管して発酵させ、酸味がでてきたら、煮沸殺菌を行い、植物抽出物混合発酵液が得られる。上記草木灰は、草木を焼いてつくった灰である。また、上記糖分として黒糖を用いたが、ブドウ糖等、他の糖でもよい。 The 6th liquid is mixed with the above concentrated mineral liquid as a mineral component at an arbitrary ratio such that the 6th liquid is at least 60% or more, and the others are 1% or more and 20% or less by weight. The first liquid, the fourth liquid, the fifth liquid, and the seventh liquid, which are the source of the sixth liquid, were added to this mixed liquid in the range of 10% or less of the total amount to adjust the total amount. It is stored at room temperature for about 2 weeks and fermented, and when it becomes sour, it is sterilized by boiling to obtain a mixed extract of plant extracts. The above-mentioned plant ash is ash produced by burning plants. Moreover, although brown sugar was used as the above-mentioned sugar, other sugars such as glucose may be used.
 上記植物抽出物混合発酵液を、空気のウルトラファインバブルを含有する水に添加して、採卵鶏の飲用水を作成する。植物抽出物混合発酵液の添加量は、空気のウルトラファインバブルを含有する水の0.01%以上0.5%以下である。この飲用水を、採卵用鶏に給与することにより、採卵量を更に増やすことができる。 -The above-mentioned plant extract mixed fermented liquor is added to water containing air ultrafine bubbles to prepare drinking water for hens. The amount of the plant extract mixed fermented solution added is 0.01% or more and 0.5% or less of water containing ultrafine bubbles of air. By feeding this drinking water to the egg-picking chicken, the egg-picking amount can be further increased.
 本実施形態の養鶏方法を適用する採卵用の鶏は、採卵を目的として飼育される鶏であれば特に限定されず、採卵用実用種のほか、卵肉兼用種であってもよいが、採卵用実用鶏が好ましい。また、採卵用実用種の鶏の種類は、特に限定されず、白玉鶏又は赤玉鶏のいずれでもよく、例えば、ジュリア、ジュリアライト、マリア等の白色レグホーン鶏や、ボリスブラウン等の褐色鶏が好ましい。 The chicken for egg collection to which the poultry raising method of the present embodiment is applied is not particularly limited as long as it is a chicken bred for the purpose of egg collection. Practical chicken is preferred. In addition, the type of practical breeding chicken for egg collection is not particularly limited, and may be either white or red jade chicken, for example, white leghorn chicken such as Julia, Julia light, Maria, or brown chicken such as Boris brown is preferable. ..
 また、採卵用の鶏の飼育形態としては、特に限定されず、平飼い、ケージ飼育、放し飼いのいずれもよい。 Also, the breeding method of chickens for egg collection is not particularly limited, and any of flat breeding, cage breeding, and free-range breeding may be used.
 図1は、本発明の実施形態の養鶏方法が行われる鶏舎に設けられた飲用水供給装置を示す模式図である。この鶏舎は、大雛期の鶏を導入し、導入した鶏に飼料と飲用水を給与して養育し、産卵させて、採卵を行うものである。この鶏舎は、採卵用鶏9を収容するケージと、ケージの中の鶏に餌を供給する図示しない給餌装置と、ケージの中の採卵用鶏9のために飲用水を供給する飲用水供給装置1を備える。 FIG. 1 is a schematic diagram showing a drinking water supply device provided in a poultry house in which the poultry raising method of the embodiment of the present invention is performed. This poultry house introduces large chicks, feeds and drinking water to the introduced chickens, raises them, lays them, and collects eggs. This poultry house has a cage for accommodating the chicken 9 for egg collection, a feeding device (not shown) for feeding the chicken in the cage, and a drinking water supply device for supplying drinking water for the chicken 9 for egg collection in the cage. 1 is provided.
 飲用水供給装置1は、水道水に空気のウルトラファインバブルを含有させて、採卵用鶏の飲用水を製造すると共に、この飲用水を採卵用鶏9に供給するものである。なお、水道水のほか、地下水を用いてもよい。この飲用水供給装置1は、図1に示すように、空気のウルトラファインバブルを含有する水を貯留するバブル水タンク2と、このバブル水タンク2の水が供給されて空気のウルトラファインバブルを添加してウルトラファインバブル水を製造する養鶏用飲用水製造装置としてのバブル水製造装置3と、バブル水タンク2から供給されるウルトラファインバブル水を貯留する貯水タンク4を備える。また、飲用水供給装置1は、貯水タンク4から採卵用鶏9の飲用水を導く供給管5と、供給管5に連なって分岐する複数の分岐管6と、分岐管6の夫々に設けられて飲用水を採卵用鶏9に与えるための給水器7を備える。上記複数の分岐管6の下流側は、互いに合流して戻り管8に接続され、この戻り管8の下流側が貯水タンク4に接続されている。 The drinking water supply device 1 supplies tap water with ultrafine bubbles of air to produce drinking water for chickens for egg collection, and supplies the drinking water to the chickens 9 for egg collection. In addition to tap water, groundwater may be used. As shown in FIG. 1, the drinking water supply device 1 includes a bubble water tank 2 for storing water containing air ultrafine bubbles, and water supplied from the bubble water tank 2 to generate air ultrafine bubbles. It is provided with a bubble water production device 3 as a poultry drinking water production device for producing ultra fine bubble water by adding and a water storage tank 4 for storing the ultra fine bubble water supplied from the bubble water tank 2. In addition, the drinking water supply device 1 is provided in each of the supply pipe 5 that guides the drinking water of the egg collection chicken 9 from the water storage tank 4, a plurality of branch pipes 6 that branch into the supply pipe 5, and the branch pipes 6. A water supply device 7 for supplying drinking water to the egg-pickling chicken 9 is provided. The downstream sides of the plurality of branch pipes 6 join each other and are connected to the return pipe 8, and the downstream side of the return pipe 8 is connected to the water storage tank 4.
 バブル水タンク2は、ボールタップ11により水道水が供給され、水位が一定に保たれる。ボールタップ11は、バブル水タンク2の水位に応じて昇降する浮体と、この浮体に連結された流量調整弁を有し、水位が低下すると流量調整弁が開いてバブル水タンク2内の水位を一定に保持する。なお、ボールタップ11以外に、種々の構成の定水位弁を用いることができ、例えば、バブル水タンク2の水位を測定する水位センサと、この水位センサの測定値に基づいて弁開度が制御される流量調整弁を有するもの等を用いることができる。 The tap water is supplied to the bubble water tank 2 by the ball tap 11, and the water level is kept constant. The ball tap 11 has a floating body that moves up and down according to the water level of the bubble water tank 2 and a flow rate adjusting valve connected to this floating body. When the water level decreases, the flow rate adjusting valve opens and the water level in the bubble water tank 2 becomes constant. Hold on. In addition to the ball tap 11, a constant water level valve having various configurations can be used. For example, a water level sensor that measures the water level of the bubble water tank 2 and the valve opening degree is controlled based on the measured value of the water level sensor. It is possible to use a device having a flow rate adjusting valve.
 バブル水製造装置3は、バブル水タンク2から、原料水としての水道水、ファインバブル水、又は、水道水とファインバブル水の混合した水が供給され、この供給された水に空気のウルトラファインバブルを添加してバブル水タンク2へ戻すように形成されている。 The bubble water production device 3 is supplied with tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2, and the supplied water has an ultrafine air content. It is formed to add a bubble and return it to the bubble water tank 2.
 供給管5はバブル水バルブ13が介設され、このバブル水バルブ13により、貯水タンク4から分岐管6へ流す飲用水の流量が調節される。また、供給管5は、第2水道水バルブ12を介して水道に接続されており、この第2水道水バルブ12により、供給管5へ流れる水道水の流量が調節される。 A bubble water valve 13 is installed in the supply pipe 5, and the flow rate of the drinking water flowing from the water storage tank 4 to the branch pipe 6 is adjusted by the bubble water valve 13. The supply pipe 5 is connected to the water supply via a second tap water valve 12, and the second tap water valve 12 adjusts the flow rate of the tap water flowing to the supply pipe 5.
 給水器7はニップル給水器であり、飲用水の吐出管と、この吐出管に連結された開閉弁を有し、上記吐出管に採卵用鶏9の嘴が接触すると開閉弁が開いて吐出管から飲用水が流出するように形成されている。なお、採卵用鶏9に飲用水を供給するものであれば、他の給水器を用いてもよい。 The water supply device 7 is a nipple water supply device and has a discharge pipe for drinking water and an on-off valve connected to this discharge pipe. When the beak of the egg-pickling chicken 9 comes into contact with the discharge pipe, the on-off valve opens and the discharge pipe It is designed to drain drinking water from. Other water supply devices may be used as long as they can supply drinking water to the egg-pickling chicken 9.
 バブル水製造装置3は、図2に示すように、バブル水タンク2から原料水としての水道水、ファインバブル水、又は、水道水とファインバブル水の混合した水を吸引する第1ポンプとしての水中ポンプ21を備える。水中ポンプ21の流量が調整されることにより、このバブル水製造装置3によるウルトラファインバブル水の製造量が調整される。この水中ポンプ21の下流側には、水中ポンプ21から吐出される原料水に、矢印Aで示すように空気を吸引して混合して水と空気の混合流体を形成する混合器としてのエジェクタ22が設けられている。エジェクタ22には、空気を取り入れる吸気管に、混合流体に混合する空気の量を調整するための流量調整弁で形成された混合エア量調整弁29が連結されている。エジェクタ22の下流側には、混合流体を吸引する第2ポンプとしてのカスケードポンプ23が設けられている。カスケードポンプ23の下流側は、分岐部で戻し経路24と排出経路25に分岐されている。戻し経路24は、混合流体の空気を微細化してウルトラファインバブルを形成する第1ウルトラファインバブル製造器26Aと、この戻し経路24を流れる混合流体の流量を調節する流量調整弁27が設けられている。この流量調整弁27で混合流体の流量が調節されるに伴い、戻し経路24の下流側の圧力も調節されるようになっている。この戻し経路24は、下流側が、エジェクタ22とカスケードポンプ23の間に接続されている。排出経路25には、混合流体の空気を微細化してウルトラファインバブルを形成する第2ウルトラファインバブル製造器26Bが設けられている。排出経路25は、下流側がバブル水タンク2に連なっている。ここで、バブル水製造装置3の第1ポンプとしては、水中ポンプ以外に、陸上ポンプ等の容積ポンプを用いてもよい。また、第2ポンプとしては、カスケードポンプ以外のポンプを用いてもよいが、遠心ポンプを用いるのが好ましい。 As shown in FIG. 2, the bubble water production apparatus 3 serves as a first pump for sucking tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2. A submersible pump 21 is provided. By adjusting the flow rate of the submersible pump 21, the amount of ultrafine bubble water produced by the bubble water producing apparatus 3 is adjusted. On the downstream side of this submersible pump 21, an ejector 22 as a mixer for forming a mixed fluid of water and air by sucking and mixing air with the raw material water discharged from the submersible pump 21 as shown by an arrow A. Is provided. To the ejector 22, an intake pipe for taking in air is connected with a mixed air amount adjusting valve 29 formed of a flow rate adjusting valve for adjusting the amount of air mixed with the mixed fluid. A cascade pump 23 as a second pump that sucks the mixed fluid is provided on the downstream side of the ejector 22. The downstream side of the cascade pump 23 is branched into a return path 24 and a discharge path 25 at a branch part. The return path 24 is provided with a first ultrafine bubble manufacturing device 26A that atomizes the air of the mixed fluid to form ultrafine bubbles, and a flow rate adjustment valve 27 that adjusts the flow rate of the mixed fluid flowing through the return path 24. There is. As the flow rate of the mixed fluid is adjusted by the flow rate adjusting valve 27, the pressure on the downstream side of the return path 24 is also adjusted. The downstream side of the return path 24 is connected between the ejector 22 and the cascade pump 23. The discharge path 25 is provided with a second ultrafine bubble manufacturing device 26B that atomizes the mixed fluid air to form ultrafine bubbles. The downstream side of the discharge path 25 is connected to the bubble water tank 2. Here, as the first pump of the bubble water production device 3, a volume pump such as a land pump may be used instead of the submersible pump. A pump other than the cascade pump may be used as the second pump, but a centrifugal pump is preferably used.
 図3は、バブル水製造装置3に内蔵された養鶏用ウルトラファインバブル製造器としてのウルトラファインバブル製造器26を示す模式縦断面図である。図4は、図3の矢視Bにおける断面図であり、図5は、図3の矢視Cにおける断面図である。このウルトラファインバブル製造器26は、供給管41で供給される水と空気の混合流体を微細化し、空気のウルトラファインバブルを含有するウルトラファインバブル水を形成して、このウルトラファインバブル水を排出管42から排出するものである。 FIG. 3 is a schematic vertical sectional view showing an ultra fine bubble manufacturing device 26 as an ultra fine bubble manufacturing device for poultry, which is built in the bubble water manufacturing device 3. 4 is a sectional view taken along the arrow B in FIG. 3, and FIG. 5 is a sectional view taken along the arrow C in FIG. The ultra fine bubble manufacturing device 26 atomizes the mixed fluid of water and air supplied through the supply pipe 41 to form ultra fine bubble water containing ultra fine bubbles of air, and discharges the ultra fine bubble water. It is discharged from the pipe 42.
 ウルトラファインバブル製造器26は、概ね円筒形状のケーシング40と、このケーシング40の一端に接続されてケーシング40の内部に連通する供給管41と、上記ケーシング40の他端に接続された排出管42と、上記ケーシング40内に収容されて排出管42の端部に連結された微細化ブロック28を有する。上記排出管42は、上記ケーシング40の他端部を貫通して端部が内部に挿入されており、この排出管42の先端に連結された微細化ブロック28をケーシング40内に支持している。 The ultra fine bubble manufacturing device 26 includes a substantially cylindrical casing 40, a supply pipe 41 that is connected to one end of the casing 40 and communicates with the inside of the casing 40, and a discharge pipe 42 that is connected to the other end of the casing 40. And the miniaturized block 28 housed in the casing 40 and connected to the end of the discharge pipe 42. The discharge pipe 42 penetrates the other end of the casing 40 and has an end inserted therein, and supports the miniaturized block 28 connected to the tip of the discharge pipe 42 in the casing 40. ..
 微細化ブロック28は円筒形状を有し、内部に、水と空気の混合流体が導かれる旋回流形成部としての第1旋回室31と第2旋回室33が形成されている。第1旋回室31と第2旋回室33は、扁平の円筒と半回転楕円を組み合わせた形状を有し、半回転楕円部分の頂点を対向させて、互いに同軸かつ対称に形成されている。微細化ブロック28と、この微細化ブロック28内の第1旋回室31と第2旋回室33は、ケーシング40と同軸に配置される。微細化ブロック28は、第1旋回室31が内部に形成された第1ブロック部品281と、第2旋回室33が内部に形成された第2ブロック部品282とで構成されている。 The miniaturization block 28 has a cylindrical shape, and inside thereof, a first swirl chamber 31 and a second swirl chamber 33 are formed as swirl flow forming parts through which a mixed fluid of water and air is guided. The first swirl chamber 31 and the second swirl chamber 33 have a shape in which a flat cylinder and a semi-spheroid are combined, and are formed coaxially and symmetrically with the vertices of the semi-spheroid portions facing each other. The miniaturized block 28 and the first swirl chamber 31 and the second swirl chamber 33 in the miniaturized block 28 are arranged coaxially with the casing 40. The miniaturization block 28 includes a first block part 281 having a first swirl chamber 31 formed therein and a second block part 282 having a second swirl chamber 33 formed therein.
 図6は、第1ブロック部品281を示す断面図である。第1ブロック部品281は、微細化ブロック28の一端面を構成する円盤部分281aと、この円盤部分281aの中央部から微細化ブロック28の内側に向かって突出した突出部分281bとを有する。突出部分281bは、円盤部分281aに近い部分が円筒形状に形成されている一方、円盤部分から遠い先端部分は円錐台形状に形成されている。この第1ブロック部品281の内側に、第1旋回室31が形成されている。 FIG. 6 is a sectional view showing the first block component 281. The first block component 281 has a disk portion 281a that constitutes one end surface of the miniaturization block 28, and a protruding portion 281b that protrudes from the center of the disc portion 281a toward the inside of the miniaturization block 28. The protruding portion 281b is formed in a cylindrical shape in a portion close to the disc portion 281a, and is formed in a truncated cone shape in a tip portion far from the disc portion. A first swirl chamber 31 is formed inside the first block component 281.
 第1旋回室31は、一端側部分の壁面31aが円筒形状を有する一方、他端側部分の壁面31bが半回転楕円形状を有する。第1旋回室31の一端側部分の壁面31aが第1ブロック部品281の円盤部分の内側に概ね形成され、半回転楕円形状の他端側部分の壁面31bが第1ブロック部品281の突出部分の内側に概ね形成されている。第1ブロック部品281には、ケーシング40と微細化ブロック28との間の混合流体を第1旋回室31に導入する第1導入路35が形成されている。第1導入路35は、図4に示すように、第1旋回室31の接線方向に形成されている。第1導入路35で導かれた混合流体を吐出する吐出開口35aが第1旋回室31の壁面に形成されている。また、ケーシング40と微細化ブロック28との間の混合流体を第1導入路35へ流入させる流入開口35bが、第1ブロック部品281の円盤部分281aの側面に形成されている。第1導入路35は、図6に示すように、第1旋回室31の一端から他端に向けて、第1旋回室31の中心軸の直角面に対して角度θを成すように形成されている。第1導入路35の第1旋回室31の中心軸直角面に対する角度θは、1°以上20°以下に形成することができる。この角度θは、好ましくは5°以上15°以下であり、更に好ましくは8°以上12°である。第1ブロック部品281の突出部分281bの先端部には第1吐出孔32が形成されており、この第1吐出孔32から、第1旋回室31で形成された混合流体の旋回流が吐出されるように形成されている。 In the first swirl chamber 31, the wall surface 31a at the one end side portion has a cylindrical shape, while the wall surface 31b at the other end side portion has a semi-rotating elliptical shape. The wall surface 31a of the one end side portion of the first swirl chamber 31 is formed substantially inside the disk portion of the first block component 281, and the wall surface 31b of the other end side portion of the semi-spheroidal shape is the protruding portion of the first block component 281. It is generally formed inside. In the first block component 281, a first introduction path 35 for introducing the mixed fluid between the casing 40 and the miniaturization block 28 into the first swirl chamber 31 is formed. As shown in FIG. 4, the first introduction path 35 is formed in the tangential direction of the first swirl chamber 31. A discharge opening 35 a for discharging the mixed fluid guided by the first introduction passage 35 is formed on the wall surface of the first swirl chamber 31. In addition, an inflow opening 35b for allowing the mixed fluid between the casing 40 and the miniaturization block 28 to flow into the first introduction path 35 is formed on the side surface of the disc portion 281a of the first block component 281. As shown in FIG. 6, the first introduction path 35 is formed from one end of the first swirl chamber 31 toward the other end so as to form an angle θ with respect to a plane perpendicular to the central axis of the first swirl chamber 31. ing. The angle θ of the first introduction path 35 with respect to the plane perpendicular to the central axis of the first swirl chamber 31 can be formed to be 1° or more and 20° or less. This angle θ is preferably 5° or more and 15° or less, and more preferably 8° or more and 12°. A first discharge hole 32 is formed at the tip of the protruding portion 281b of the first block component 281, and the swirl flow of the mixed fluid formed in the first swirl chamber 31 is discharged from the first discharge hole 32. Is formed.
 図7は、第2ブロック部品282を示す断面図である。第2ブロック部品282は、一端側に厚い底が形成されて他端が開口した有底の円筒形状を有する。この第2ブロック部品282の開口から上記第1ブロック部品281の突出部分281bが挿入されて、他端面282aに第1ブロック部品281の円盤部分281aが連結されるようになっている。この第2ブロック部品282の内側面と、第1ブロック部品281の突出部分281bの外側面との間に、第1旋回室31からの旋回流と第2旋回室33からの旋回流が衝突する衝突室38が形成されている。第2ブロック部品282の内部には、第2旋回室33が形成されている。 FIG. 7 is a sectional view showing the second block component 282. The second block component 282 has a bottomed cylindrical shape with a thick bottom formed at one end and an opening at the other end. The protruding portion 281b of the first block component 281 is inserted from the opening of the second block component 282, and the disc portion 281a of the first block component 281 is connected to the other end surface 282a. The swirl flow from the first swirl chamber 31 and the swirl flow from the second swirl chamber 33 collide between the inner surface of the second block component 282 and the outer surface of the protruding portion 281b of the first block component 281. A collision chamber 38 is formed. A second swirl chamber 33 is formed inside the second block component 282.
 第2旋回室33は、一端側部分の壁面33aが円筒形状を有する一方、他端側部分の壁面33bが半回転楕円形状を有する。第2ブロック部品282には、ケーシング40と微細化ブロック28との間の混合流体を第2旋回室33に導入する第2導入路36が形成されている。第2導入路36は、図5に示すように、第2旋回室33の接線方向に形成されている。第2導入路36で導かれた混合流体を吐出する吐出開口36aが第2旋回室33の壁面に形成されている。また、ケーシング40と微細化ブロック28との間の混合流体を第2導入路36へ流入させる流入開口36bが、第2ブロック部品282の一端側の側面に形成されている。第2導入路36は、図7に示すように、第2旋回室33の一端から他端に向けて、第2旋回室33の中心軸の直角面に対して角度θを成すように形成されている。第2導入路36の第2旋回室33の中心軸直角面に対する角度θは、1°以上20°以下に形成することができる。この角度θは、好ましくは5°以上15°以下であり、更に好ましくは8°以上12°である。第2ブロック部品282の他端には第2吐出孔34が形成されており、この第2吐出孔34から、第2旋回室33で形成された混合流体の旋回流が吐出されるように形成されている。第2旋回室33で形成される旋回流は、第1旋回室31で形成される旋回流と、反対回りに旋回するように形成されている。このように、第1旋回室31と第2旋回室33は、中心軸の直角面に関して対称に形成され、第1吐出孔32と第2吐出孔34を対向して配置され、互いに反対回りに旋回する旋回流を生成するように形成されている。 In the second swirl chamber 33, the wall surface 33a at the one end side portion has a cylindrical shape, while the wall surface 33b at the other end side portion has a semi-rotating elliptical shape. The second block component 282 is formed with a second introduction path 36 for introducing the mixed fluid between the casing 40 and the miniaturization block 28 into the second swirl chamber 33. As shown in FIG. 5, the second introduction passage 36 is formed in the tangential direction of the second swirl chamber 33. A discharge opening 36 a for discharging the mixed fluid guided by the second introduction path 36 is formed on the wall surface of the second swirl chamber 33. Further, an inflow opening 36b for allowing the mixed fluid between the casing 40 and the miniaturization block 28 to flow into the second introduction path 36 is formed on the side surface on the one end side of the second block component 282. As shown in FIG. 7, the second introduction path 36 is formed from one end of the second swirl chamber 33 toward the other end so as to form an angle θ with respect to a plane perpendicular to the central axis of the second swirl chamber 33. ing. The angle θ of the second introduction path 36 with respect to the plane perpendicular to the central axis of the second swirl chamber 33 can be formed to be 1° or more and 20° or less. This angle θ is preferably 5° or more and 15° or less, and more preferably 8° or more and 12°. A second discharge hole 34 is formed at the other end of the second block component 282, and the swirl flow of the mixed fluid formed in the second swirl chamber 33 is discharged from the second discharge hole 34. Has been done. The swirl flow formed in the second swirl chamber 33 is formed so as to swirl in the opposite direction to the swirl flow formed in the first swirl chamber 31. In this way, the first swirl chamber 31 and the second swirl chamber 33 are formed symmetrically with respect to the plane perpendicular to the central axis, the first discharge hole 32 and the second discharge hole 34 are arranged so as to face each other, and they are arranged in opposite directions. It is configured to generate a swirling flow that swirls.
 第2ブロック部品282の底部の外径側部分には、第2ブロック部品282の中心軸と平行に延在する複数の排出通路39,39,・・・が形成されている。これらの排出通路39,39,・・・は、第2旋回室33の外径側に、この第2旋回室33を取り囲むように配置されている。第2ブロック部品282の底面282bには、外径側部分に、衝突室38の流体を排出通路39,39,・・・に流入させる複数の流入口としての流入開口39a,39a,・・・が形成されている。この流入開口39aが形成された底面282bは、衝突室38に面する衝突室表面に該当する。第2ブロック部品282の一端面には、排出通路39,39,・・・で導かれた流体を吐出する複数の排出口としての吐出開口39b,39b,・・・が形成されている。第2ブロック部品282の一端は、排出管42に連結されており、上記排出通路39,39,・・・の吐出開口39b,39b,・・・から吐出された流体が、排出管42に流れるようになっている。 A plurality of discharge passages 39, 39,... That extend parallel to the central axis of the second block component 282 are formed in the outer diameter side portion of the bottom of the second block component 282. The discharge passages 39, 39,... Are arranged on the outer diameter side of the second swirl chamber 33 so as to surround the second swirl chamber 33. In the bottom surface 282b of the second block component 282, inflow openings 39a, 39a,... As a plurality of inflow ports for allowing the fluid of the collision chamber 38 to flow into the discharge passages 39, 39,. Are formed. The bottom surface 282b in which the inflow opening 39a is formed corresponds to the collision chamber surface facing the collision chamber 38. Discharge openings 39b, 39b,... As a plurality of discharge ports for discharging the fluid guided by the discharge passages 39, 39,... Are formed on one end surface of the second block component 282. One end of the second block component 282 is connected to the discharge pipe 42, and the fluid discharged from the discharge openings 39b, 39b,... Of the discharge passages 39, 39,. It is like this.
 上記ウルトラファインバブル製造器26は、カスケードポンプ23により水と空気の混合流体が圧送され、戻し経路24や排出経路25のウルトラファインバブル製造器26の上流側の部分である供給管41から、ケーシング40内に混合流体が流入する。ケーシング40内に流入した混合流体は、微細化ブロック28の外側面の流入開口35b,36bから第1及び第2導入路35,36に導かれる。第1導入路35に導かれた混合流体は、吐出開口35aから第1旋回室31内に吐出され、第1旋回室31内に旋回流を形成する。第1導入路35が第1旋回室31の接線方向に延在すると共に他端に向けて傾斜角度θを成すことにより、第1旋回室31内に、安定した旋回流が形成される。また、第2導入路36に導かれた混合流体は、吐出開口36aから第2旋回室33内に吐出され、第2旋回室33内に旋回流を形成する。第2導入路36が第2旋回室33の接線方向に延在すると共に他端に向けて傾斜角度θを成すことにより、第2旋回室33内に、安定した旋回流が形成される。上記第1旋回室31内の混合流体の旋回流は、第1吐出孔32から衝突室38へ吐出され、上記第2旋回室33内の旋回流は、第2吐出孔34から衝突室38へ吐出される。これらの第1吐出孔32と第2吐出孔34から吐出された旋回流は、互いに反対方向に旋回しており、これにより大きな衝撃力を伴って衝突室38内で衝突する。その結果、互いの混合流体の気体が効果的に微細化され、ウルトラナノバブルが生成される。こうして生成された空気のウルトラナノバブルを含有する水は、衝突室38から流入開口39a,39a,・・・を経て排出通路39,39,・・・に導かれ、吐出開口39b,39b,・・・から排出管42に排出される。この排出管42は、戻し経路24や排出経路25のウルトラファインバブル製造器26の下流側である。こうしてウルトラファインバブル製造器26で生成された空気のウルトラファインバブルを含有する水は、戻し経路24や排出経路25の下流側に導かれる。すなわち、第1ウルトラファインバブル製造器26Aから戻し経路24の下流側に空気のウルトラファインバブルを含有する水が流れ、第2ウルトラファインバブル製造器26Bから排出経路25の下流側に空気のウルトラファインバブルを含有する水が流れる。なお、ウルトラファインバブル製造器26で製造されるバブルは、ウルトラファインバブルのみに限られず、運転条件に応じてマイクロバブルも含まれ、また、マイクロバブルのみが製造される場合もある。 In the ultrafine bubble manufacturing device 26, a mixed fluid of water and air is pressure-fed by the cascade pump 23, and the casing from the supply pipe 41, which is a part of the return route 24 or the discharge route 25 on the upstream side of the ultrafine bubble manufacturing device 26, is discharged. The mixed fluid flows into 40. The mixed fluid that has flowed into the casing 40 is guided to the first and second introduction paths 35 and 36 from the inflow openings 35b and 36b on the outer surface of the miniaturization block 28. The mixed fluid guided to the first introduction path 35 is discharged into the first swirl chamber 31 through the discharge opening 35a, and forms a swirl flow in the first swirl chamber 31. A stable swirl flow is formed in the first swirl chamber 31 by the first introduction path 35 extending in the tangential direction of the first swirl chamber 31 and forming an inclination angle θ toward the other end. In addition, the mixed fluid guided to the second introduction passage 36 is discharged into the second swirl chamber 33 from the discharge opening 36 a, and forms a swirl flow in the second swirl chamber 33. Since the second introduction path 36 extends in the tangential direction of the second swirl chamber 33 and forms the inclination angle θ toward the other end, a stable swirl flow is formed in the second swirl chamber 33. The swirl flow of the mixed fluid in the first swirl chamber 31 is discharged from the first discharge hole 32 to the collision chamber 38, and the swirl flow in the second swirl chamber 33 to the collision chamber 38 from the second discharge hole 34. Is ejected. The swirling flows discharged from the first discharge hole 32 and the second discharge hole 34 are swirling in opposite directions, and thus collide in the collision chamber 38 with a large impact force. As a result, the gas of the mixed fluid is effectively atomized, and ultra nano bubbles are generated. The water containing the ultra nano bubbles of the air thus generated is guided from the collision chamber 38 to the discharge passages 39, 39,... Through the inflow openings 39a, 39a,. -Is discharged from the discharge pipe 42. The discharge pipe 42 is on the downstream side of the ultrafine bubble manufacturing device 26 in the return path 24 and the discharge path 25. The water containing the ultra fine bubbles of the air thus generated in the ultra fine bubble manufacturing device 26 is guided to the downstream side of the return path 24 and the discharge path 25. That is, water containing air ultrafine bubbles flows from the first ultrafine bubble producer 26A to the downstream side of the return route 24, and air ultrafine air from the second ultrafine bubble producer 26B to the downstream side of the discharge route 25. The water containing the bubbles flows. The bubbles produced by the ultrafine bubble production device 26 are not limited to only ultrafine bubbles, and microbubbles may be included depending on the operating conditions, or only microbubbles may be produced.
 このバブル水製造装置3は、混合エア量調整弁29の開度と、水中ポンプ21及びカスケードポンプ23による混合水の吐出流量又は吐出圧力と、流量調整弁27の開度を調節することにより、排出経路25からのウルトラファインバブル及びマイクロバブルの粒径と濃度を調節することができる。 The bubble water production apparatus 3 adjusts the opening degree of the mixed air amount adjusting valve 29, the discharge flow rate or discharge pressure of the mixed water by the submersible pump 21 and the cascade pump 23, and the opening degree of the flow rate adjusting valve 27. The particle size and concentration of ultrafine bubbles and microbubbles from the discharge path 25 can be adjusted.
 例えば、流量調整弁27の開度が増大すれば、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が増大すると共に、バブルの径が縮小し、また、排出経路25からの排出量が減少する。これと共に、生成されるバブルの径の標準偏差が縮小して分布の幅が縮小し、バブルの径が比較的小さい値の狭い範囲に集中する。一方、流量調整弁27の開度が減少すれば、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が減少すると共に、バブルの径が拡大し、また、排出経路25からの排出量が増大する。これと共に、生成されるバブルの径の標準偏差が拡大して分布の幅が拡大し、バブルの径が比較的小さい値から大きい値にわたって広い範囲に拡散するようになる。 For example, when the opening degree of the flow rate adjusting valve 27 increases, the bubble concentration of ultrafine bubbles and/or microbubbles increases, the diameter of the bubbles also decreases, and the amount discharged from the discharge path 25 decreases. .. Along with this, the standard deviation of the diameters of the generated bubbles is reduced, the width of the distribution is reduced, and the diameters of the bubbles are concentrated in a narrow range of relatively small values. On the other hand, when the opening degree of the flow rate adjusting valve 27 decreases, the concentration of ultrafine bubbles and/or microbubbles decreases, the diameter of the bubbles increases, and the amount discharged from the discharge path 25 increases. .. Along with this, the standard deviation of the diameters of the generated bubbles expands, the width of the distribution expands, and the bubble diameters spread in a wide range from a relatively small value to a large value.
 また、カスケードポンプ23の吐出圧力が増大すると、この吐出圧力が1MPaよりも低い領域では、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が増大すると共に、バブルの径が縮小し、また、排出経路25からの排出量が増大する。吐出圧力が1MPaよりも高い領域では、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が低下すると共に、バブルの径が拡大する。一方、カスケードポンプ23の吐出圧力が減少すると、この吐出圧力が1MPaよりも低い領域では、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が減少すると共に、バブルの径が拡大し、また、排出経路25からの排出量が減少する。吐出圧力が1MPaよりも高い領域では、ウルトラファインバブル及び/又はマイクロバブルのバブルの濃度が増大すると共に、バブルの径が縮小する。 Further, when the discharge pressure of the cascade pump 23 increases, in the region where the discharge pressure is lower than 1 MPa, the concentration of bubbles of ultrafine bubbles and/or microbubbles increases, the diameter of the bubbles decreases, and the discharge is also reduced. The discharge amount from the path 25 increases. In the region where the discharge pressure is higher than 1 MPa, the concentration of ultrafine bubbles and/or microbubbles decreases and the bubble diameter increases. On the other hand, when the discharge pressure of the cascade pump 23 decreases, in the region where the discharge pressure is lower than 1 MPa, the concentration of bubbles of ultrafine bubbles and/or microbubbles decreases, the diameter of the bubbles expands, and the discharge is increased. The amount of emissions from the path 25 is reduced. In the region where the discharge pressure is higher than 1 MPa, the concentration of ultrafine bubbles and/or microbubbles increases and the bubble diameter decreases.
 また、エジェクタ22の混合エア量調整弁29の開度を増大することにより、排出経路25から排出されるバブルのうち、1μm以上のバブルの割合が増加する一方、混合エア量調整弁29の開度を減少することにより、排出経路25から排出されるバブルの粒径のうち、1μm以上のバブルの割合が減少する。例えば、混合エア量調整弁29により、エジェクタ22の空気混合量を0.4L/minとすると、排出経路25から排出されるバブルの直径は、1μmを超えるものの割合が増大し、ウルトラファインバブルとマイクロバブルが生成される。一方、混合エア量調整弁29により、エジェクタ22の空気混合量を0.1L/minとすると、排出経路25から排出されるバブルの直径は1μmを下回るものが大半となり、実質的にウルトラファインバブルのみが生成される。 Further, by increasing the opening degree of the mixed air amount adjusting valve 29 of the ejector 22, the proportion of bubbles of 1 μm or more in the bubbles discharged from the discharge path 25 increases, while the mixed air amount adjusting valve 29 opens. By decreasing the degree, the proportion of bubbles having a diameter of 1 μm or more in the particle diameter of bubbles discharged from the discharge path 25 decreases. For example, when the air mixing amount of the ejector 22 is set to 0.4 L/min by the mixed air amount adjusting valve 29, the diameter of the bubbles discharged from the discharge path 25 is larger than 1 μm, but the ratio increases, and the bubbles become ultra fine bubbles. Micro bubbles are generated. On the other hand, if the air mixing amount of the ejector 22 is set to 0.1 L/min by the mixed air amount adjusting valve 29, most of the bubbles discharged from the discharge path 25 have a diameter of less than 1 μm, and thus the ultrafine bubbles are substantially formed. Only generated.
 また、このバブル水製造装置3は、排出経路25から排出される水のウルトラファインバブルの濃度を測定し、この測定値に基づいて、水中ポンプ21及びカスケードポンプ23の吐出圧力と、戻し経路24の流量を調節して、排出経路25のウルトラファインバブルの濃度を調節することができる。例えば、排出経路25のウルトラファインバブルの濃度が目標値よりも低い場合、流量調整弁27の開度を上げて戻し経路24の流量を増大させることにより、排出経路25から排出されるウルトラファインバブルの濃度が増大する。 The bubble water production apparatus 3 also measures the concentration of ultrafine bubbles in the water discharged from the discharge path 25, and based on this measured value, the discharge pressure of the submersible pump 21 and the cascade pump 23 and the return path 24. The concentration of the ultrafine bubbles in the discharge path 25 can be adjusted by adjusting the flow rate of For example, when the concentration of the ultra fine bubbles in the discharge path 25 is lower than the target value, the opening degree of the flow rate adjusting valve 27 is increased to increase the flow rate in the return path 24, so that the ultra fine bubbles discharged from the discharge path 25. Concentration increases.
 また、このバブル水製造装置3は、排出経路25の第2ウルトラファインバブル製造器26Bの上流側に第2流量調整弁を設け、この第2流量調整弁の開度と、混合エア量調整弁29の開度と、戻し経路24の流量調整弁27の開度と、水中ポンプ21及びカスケードポンプ23の吐出圧力を調節することにより、排出経路25から排出されるウルトラファインバブルの粒径と濃度を調節してもよい。 In addition, the bubble water producing device 3 is provided with a second flow rate adjusting valve on the upstream side of the second ultrafine bubble producing device 26B in the discharge path 25, and the opening degree of the second flow rate adjusting valve and the mixed air amount adjusting valve. By adjusting the opening degree of 29, the opening degree of the flow rate adjusting valve 27 of the return path 24, and the discharge pressure of the submersible pump 21 and the cascade pump 23, the particle size and concentration of ultrafine bubbles discharged from the discharge path 25. May be adjusted.
 上記バブル水製造装置3は、図示しない制御装置を設け、この制御装置により、上記混合エア量調整弁29の開度と、上記流量調整弁27の開度と、上記第2流量調整弁の開度と、上記水中ポンプ21及びカスケードポンプ23の吐出圧力を制御して、排出経路25からのウルトラファインバブルの粒径と濃度を調節してもよい。 The bubble water producing apparatus 3 is provided with a control device (not shown), and by this control device, the opening degree of the mixed air amount adjusting valve 29, the opening degree of the flow rate adjusting valve 27, and the opening of the second flow rate adjusting valve. The particle size and concentration of the ultrafine bubbles from the discharge path 25 may be adjusted by controlling the discharge pressure of the submersible pump 21 and the cascade pump 23.
 このようにして、上記バブル水製造装置3により、安定して50~70nmのウルトラファインバブルを形成することができる。なお、戻し経路24と流量調整弁27と第1ウルトラファインバブル製造器26Aは、設けなくてもよい。すなわち、カスケードポンプ23の下流側に、排出経路25を第2ウルトラファインバブル製造器26Bのみを設け、第2ウルトラファインバブル製造器26Bのみによりウルトラファインバブルを生成してもよい。 In this way, the bubble water producing apparatus 3 can stably form ultrafine bubbles of 50 to 70 nm. The return path 24, the flow rate adjusting valve 27, and the first ultrafine bubble manufacturing device 26A may not be provided. That is, the discharge path 25 may be provided only on the downstream side of the cascade pump 23 with the second ultrafine bubble manufacturing device 26B, and the ultrafine bubbles may be generated only by the second ultrafine bubble manufacturing device 26B.
 上記実施形態において、ウルトラファインバブル製造器26は、同軸上に中心軸の直角面に対して対称に形成された第1旋回室31と第2旋回室33を含む微細化ブロック28を含んでいたが、他の養鶏用ウルトラファインバブル製造器を用いてもよい。図8は、変形例の養鶏用ウルトラファインバブル製造器を示す縦断面図である。図9は、図8の矢視Dにおける断面図であり、図10は、図8の矢視Eにおける断面図である。このウルトラファインバブル製造器126は、供給管41で供給される水と空気の混合流体を、微細化ブロック128で微細化し、空気のウルトラファインバブルを含有するウルトラファインバブル水を形成して、このウルトラファインバブル水を排出管42から排出するものである。 In the above embodiment, the ultra fine bubble manufacturing device 26 includes the miniaturization block 28 that includes the first swirl chamber 31 and the second swirl chamber 33 that are coaxially formed symmetrically with respect to the plane perpendicular to the central axis. However, other ultra-fine bubble manufacturing devices for chicken farming may be used. FIG. 8 is a vertical cross-sectional view showing a modified chicken ultra-fine bubble manufacturing device. 9 is a cross-sectional view taken along arrow D in FIG. 8, and FIG. 10 is a cross-sectional view taken along arrow E in FIG. This ultra fine bubble manufacturing device 126 atomizes the mixed fluid of water and air supplied from the supply pipe 41 by the atomization block 128 to form ultra fine bubble water containing ultra fine bubbles of air. The ultra fine bubble water is discharged from the discharge pipe 42.
 このウルトラファインバブル製造器126は、一端が供給管41に連結され、他端が微細化ブロック128に連結された概ね円筒形状のケーシング140を有する。微細化ブロック128は、ケーシング140よりも小径の概ね円筒形状を有し、他端部分が他の部分よりも大きい径に形成されてケーシング140の他端部の内側面に嵌合している。この微細化ブロック128は、水と気体の混合流体が導かれる処理流路130と、この処理流路130の上流端に連通する旋回流形成部としての第1偏心供給路131と、上記処理流路130の長さ方向の略中央に連通する旋回流形成部としての第2偏心供給路132が内部に形成されている。処理流路130の中心軸を通る断面において、第1偏心供給路131の中心軸と、第2偏心供給路132の中心軸は、処理流路130の中心軸に対して直角に延在している。 The ultrafine bubble manufacturing device 126 has a substantially cylindrical casing 140 having one end connected to the supply pipe 41 and the other end connected to the miniaturization block 128. The miniaturized block 128 has a generally cylindrical shape with a smaller diameter than the casing 140, and has the other end portion formed to have a larger diameter than the other portion and fitted to the inner surface of the other end portion of the casing 140. The miniaturization block 128 includes a processing flow path 130 through which a mixed fluid of water and gas is guided, a first eccentric supply path 131 as a swirl flow forming section that communicates with an upstream end of the processing flow path 130, and the processing flow. A second eccentric supply passage 132 as a swirling flow forming portion that communicates with substantially the center of the passage 130 in the longitudinal direction is formed inside. In a cross section passing through the central axis of the processing channel 130, the central axis of the first eccentric supply channel 131 and the central axis of the second eccentric channel 132 extend at right angles to the central axis of the processing channel 130. There is.
 微細化ブロック128の処理流路130は、微細化ブロック128の中心軸に沿って、微細化ブロック128の一端面の近傍から、微細化ブロック128の他端面に至るまで形成されている。処理流路130の一端は、微細化ブロック128の一端面に貫通することなく微細化ブロック128内に留まっている一方、処理流路130の他端は、微細化ブロック128の他端面に開口を形成している。この処理流路130は、円形断面を有し、一端から他端に向かうにつれて径が増大するように形成されている。処理流路130の他端の開口には、排出管42が挿入されて、処理流路130が排出管42に連通している。 The processing flow path 130 of the miniaturization block 128 is formed along the central axis of the miniaturization block 128 from the vicinity of one end surface of the miniaturization block 128 to the other end surface of the miniaturization block 128. One end of the processing channel 130 remains inside the miniaturization block 128 without penetrating one end surface of the miniaturization block 128, while the other end of the processing channel 130 has an opening at the other end surface of the miniaturization block 128. Is forming. The processing flow path 130 has a circular cross section and is formed so that the diameter increases from one end to the other end. A discharge pipe 42 is inserted into the opening at the other end of the processing flow path 130 so that the processing flow path 130 communicates with the discharge pipe 42.
 微細化ブロック128の第1偏心供給路131は、微細化ブロック128の中心軸と直角の断面図である図9に示すように、処理流路130の一端に連通するように2本形成されている。これらの2つの第1偏心供給路131は、処理流路130の中心に関して点対称に配置されている。これらの第1偏心供給路131は、微細化ブロック128の概ね径方向に延在し、微細化ブロック128の外周面に流入開口131aを形成し、処理流路130の内周面に吐出開口131bを形成している。これらの第1偏心供給路131は、円形断面を有し、流入開口131aから吐出開口131bに向かうにつれて径が小さくなるように形成されている。第1偏心供給路131の吐出開口131bは、処理流路130の軸方向視において、処理流路130の中心に対して偏芯した位置に配置されている。ここで、図8において、第2偏心供給路132は、この第2偏心供給路132の中心軸に沿った縦断面の形状を示しており、微細化ブロック128の中心軸を通る面で第2偏心供給路132を切断した様子を示していない。 Two first eccentric supply paths 131 of the miniaturization block 128 are formed so as to communicate with one end of the processing channel 130, as shown in FIG. 9 which is a cross-sectional view perpendicular to the central axis of the miniaturization block 128. There is. These two first eccentric supply passages 131 are arranged point-symmetrically with respect to the center of the processing flow passage 130. These first eccentric supply passages 131 extend substantially in the radial direction of the miniaturization block 128, form an inflow opening 131a on the outer peripheral surface of the miniaturization block 128, and discharge openings 131b on the inner peripheral surface of the processing flow passage 130. Is formed. These first eccentric supply passages 131 have a circular cross section and are formed so that the diameter becomes smaller from the inflow opening 131a toward the discharge opening 131b. The discharge opening 131b of the first eccentric supply path 131 is arranged at a position eccentric with respect to the center of the processing flow path 130 when viewed in the axial direction of the processing flow path 130. Here, in FIG. 8, the second eccentric supply passage 132 shows a shape of a vertical cross section along the central axis of the second eccentric supply passage 132, and the second eccentric supply passage 132 has a second surface in a plane passing through the central axis of the miniaturized block 128. The state in which the eccentric supply path 132 is cut is not shown.
 微細化ブロック128の第2偏心供給路132は、微細化ブロック128の中心軸と直角の断面図である図10に示すように、処理流路130の長さ方向の略中央に連通するように2本形成されている。これらの2つの第2偏心供給路132は、処理流路130の中心に関して点対称に配置されている。これらの第2偏心供給路132は、微細化ブロック128の概ね径方向に延在し、微細化ブロック128の外周面に流入開口132aを形成し、処理流路130の内周面に吐出開口132bを形成している。これらの第2偏心供給路132は、円形断面を有し、流入開口132aから吐出開口132bに向かうにつれて径が小さくなるように形成されている。第2偏心供給路132の吐出開口132bは、処理流路130の軸方向視において、処理流路130の中心に対して偏芯した位置に配置されている。この第2偏心供給路132の吐出開口132bは、第1偏心供給路131の吐出開口131bと、処理流路130の中心軸に関して反対側に偏心している。上記微細化ブロック128の第1偏心供給路131と第2偏心供給路132は、微細化ブロック128の軸方向視において、互いに90°の角度を成すように配置されている。 The second eccentric supply passage 132 of the miniaturization block 128 is communicated with substantially the center of the processing flow passage 130 in the longitudinal direction, as shown in FIG. 10 which is a sectional view perpendicular to the central axis of the miniaturization block 128. Two are formed. These two second eccentric supply passages 132 are arranged point-symmetrically with respect to the center of the processing flow passage 130. These second eccentric supply passages 132 extend substantially in the radial direction of the miniaturization block 128, form an inflow opening 132a on the outer peripheral surface of the miniaturization block 128, and discharge openings 132b on the inner peripheral surface of the processing flow passage 130. Is formed. These second eccentric supply passages 132 have a circular cross section and are formed so that the diameter decreases from the inflow opening 132a toward the discharge opening 132b. The discharge opening 132b of the second eccentric supply passage 132 is arranged at a position eccentric with respect to the center of the processing flow passage 130 when viewed in the axial direction of the processing flow passage 130. The discharge opening 132b of the second eccentric supply passage 132 is eccentric to the discharge opening 131b of the first eccentric supply passage 131 on the opposite side with respect to the central axis of the processing flow passage 130. The first eccentric supply passage 131 and the second eccentric supply passage 132 of the miniaturization block 128 are arranged so as to form an angle of 90° with each other when viewed in the axial direction of the miniaturization block 128.
 上記構成のウルトラファインバブル製造器126は、次のように動作する。まず、水と空気の混合流体が供給管41を通してケーシング140内に導かれる。ケーシング140内に流入した混合流体は、微細化ブロック128の外側面の流入開口131a,132aから第1及び第2偏心供給路131,132に導かれる。第1偏心供給路131に導かれた混合流体は、吐出開口131bから処理流路130内に吐出され、この処理流路130内に旋回流を形成する。第1偏心供給路131の吐出開口131bが処理流路130の中心に対して偏芯した位置に配置されていることにより、処理流路130内に、安定した旋回流が形成される。こうして第1偏心供給路131から処理流路130内に導かれた混合流体は、旋回流となって処理流路130の一端から他端に向かって流れる。また、第2偏心供給路132に導かれた混合流体は、吐出開口132bから処理流路130内に吐出される。上記第2偏心供給路132の吐出開口132bは、処理流路130の中心軸に関して偏芯した位置に配置されていると共に、第1偏心供給路131の吐出開口131bと反対側に偏心していることにより、処理流路130を流れた旋回流に対して反対向きの旋回流を形成する。この第2偏心供給路132の吐出開口132bから吐出された混合流体の旋回流が、第1偏心供給路131から流れて来た旋回流と衝突する。その結果、互いの混合流体の気体が効果的に微細化され、ウルトラナノバブルが生成される。こうして生成された空気のウルトラナノバブルを含有する水は、処理流路130の他端に向かって流れ、排出管42を通ってウルトラファインバブル製造器126から排出される。 The ultrafine bubble manufacturing device 126 having the above-described configuration operates as follows. First, a mixed fluid of water and air is introduced into the casing 140 through the supply pipe 41. The mixed fluid that has flowed into the casing 140 is guided to the first and second eccentric supply paths 131 and 132 from the inflow openings 131a and 132a on the outer surface of the miniaturization block 128. The mixed fluid guided to the first eccentric supply passage 131 is discharged into the processing flow passage 130 from the discharge opening 131b and forms a swirling flow in the processing flow passage 130. Since the discharge opening 131b of the first eccentric supply path 131 is arranged at a position eccentric with respect to the center of the processing channel 130, a stable swirling flow is formed in the processing channel 130. The mixed fluid thus guided from the first eccentric supply passage 131 into the processing flow passage 130 becomes a swirling flow and flows from one end of the processing flow passage 130 to the other end. Further, the mixed fluid guided to the second eccentric supply passage 132 is discharged into the processing flow passage 130 from the discharge opening 132b. The discharge opening 132b of the second eccentric supply passage 132 is arranged at a position eccentric with respect to the central axis of the processing flow path 130, and is eccentric to the opposite side of the discharge opening 131b of the first eccentric supply passage 131. As a result, a swirl flow that is opposite to the swirl flow that has flowed through the processing flow path 130 is formed. The swirling flow of the mixed fluid discharged from the discharge opening 132b of the second eccentric supply passage 132 collides with the swirling flow flowing from the first eccentric supply passage 131. As a result, the gas of the mixed fluid is effectively atomized, and ultra nano bubbles are generated. The water containing the ultra nano bubbles of the air thus generated flows toward the other end of the processing flow path 130, and is discharged from the ultra fine bubble manufacturing device 126 through the discharge pipe 42.
 上記変形例のウルトラファインバブル製造器126は、微細化ブロック128を製造する際、単一の金属材料に対する切削加工により、処理流路130、第1偏心供給路131及び第2偏心供給路132を形成できる。したがって、少ない工数により容易に微細化ブロック128を製造できる。 When manufacturing the miniaturized block 128, the ultrafine bubble manufacturing device 126 of the above-described modification forms the processing flow path 130, the first eccentric supply path 131, and the second eccentric supply path 132 by cutting the single metal material. Can be formed. Therefore, the miniaturized block 128 can be easily manufactured with a small number of steps.
 上記変形例のウルトラファインバブル製造器126において、微細化ブロック128の第1偏心供給路131及び第2偏心供給路132は、処理流路130の軸方向視において互いに90°の角度を成すように配置されたが、互いに0度の角度を成すように配置されてもよい。また、微細化ブロック128の第1偏心供給路131及び第2偏心供給路132は、いずれも2個ずつ設けたが、いずれか一方又は両方を1個ずつ設けてもよい。 In the ultrafine bubble manufacturing device 126 of the above modification, the first eccentric supply passage 131 and the second eccentric supply passage 132 of the miniaturization block 128 form an angle of 90° with each other when viewed in the axial direction of the processing flow passage 130. Although arranged, they may be arranged to form an angle of 0 degree with each other. Further, although each of the first eccentricity supply passage 131 and the second eccentricity supply passage 132 of the miniaturization block 128 is provided by two, one or both of them may be provided by one.
 また、上記実施形態において、バブル水製造装置3は、他の構成のバブル水製造装置を採用してもよい。図11は、変形例のバブル水製造装置103を示す模式図である。このバブル水製造装置103は、バブル水タンク2から原料水としての水道水、ファインバブル水、又は、水道水とファインバブル水の混合した水を吸引する第1ポンプとしての吸引ポンプ121を備える。 Also, in the above-described embodiment, the bubble water production device 3 may employ a bubble water production device having another configuration. FIG. 11: is a schematic diagram which shows the bubble water manufacturing apparatus 103 of a modification. The bubble water manufacturing apparatus 103 includes a suction pump 121 as a first pump that sucks tap water as raw material water, fine bubble water, or a mixture of tap water and fine bubble water from the bubble water tank 2.
 上記吸引ポンプ121と並列に、吸引ポンプ121から吐出される原料水に、空気を混合して水と空気の混合流体を形成する混合器としてのエジェクタ122が設けられている。すなわち、吸引ポンプ121の吸入側と吐出側の間に、エジェクタ122が介設されている。エジェクタ122には、空気を取り入れる吸気管に、混合流体に混合する空気の量を調整するための流量調整弁で形成された混合エア量調整弁127が連結されている。混合エア量調整弁127の上流側には、空気を貯留する気体タンク124が接続されている。この気体タンク124は、大気から吸入した空気を浄化する清浄装置を設けるのが好ましい。 In parallel with the suction pump 121, an ejector 122 is provided as a mixer for mixing raw material water discharged from the suction pump 121 with air to form a mixed fluid of water and air. That is, the ejector 122 is provided between the suction side and the discharge side of the suction pump 121. To the ejector 122, an intake pipe for taking in air is connected to a mixed air amount adjusting valve 127 formed of a flow rate adjusting valve for adjusting the amount of air mixed with the mixed fluid. A gas tank 124 that stores air is connected to the upstream side of the mixed air amount adjustment valve 127. The gas tank 124 is preferably provided with a cleaning device for cleaning the air sucked from the atmosphere.
 上記吸引ポンプ121の下流側には、混合流体の空気を微細化してウルトラファインバブルを形成する上記ウルトラファインバブル製造器26が接続されている。ウルトラファインバブル製造器26に替えて、変形例のウルトラファインバブル製造器126を接続してもよい。上記吸引ポンプ121とウルトラファインバブル製造器26との間には、ウルトラファインバブル製造器26に導かれる流体のうちの液体の圧力を測定する第1液圧センサ141が設けられている。ウルトラファインバブル製造器26の下流側には、流体を吸引する第2ポンプとしてのカスケードポンプ123が設けられている。ウルトラファインバブル製造器26とカスケードポンプ123との間には、ウルトラファインバブル製造器26から吐出される流体のうちの液体の圧力を測定する第2液圧センサ142が設けられている。この第2液圧センサ142の測定値に基づいて、制御装置143によりカスケードポンプ123の動作を制御するように構成されている。 On the downstream side of the suction pump 121, the ultra fine bubble manufacturing device 26 that atomizes the mixed fluid air to form ultra fine bubbles is connected. Instead of the ultra fine bubble manufacturing device 26, a modified ultra fine bubble manufacturing device 126 may be connected. Between the suction pump 121 and the ultra fine bubble manufacturing device 26, a first hydraulic pressure sensor 141 for measuring the pressure of the liquid of the fluid guided to the ultra fine bubble manufacturing device 26 is provided. A cascade pump 123 as a second pump that sucks fluid is provided on the downstream side of the ultrafine bubble manufacturing device 26. A second hydraulic pressure sensor 142 that measures the pressure of the liquid of the fluid discharged from the ultra fine bubble manufacturing device 26 is provided between the ultra fine bubble manufacturing device 26 and the cascade pump 123. The controller 143 is configured to control the operation of the cascade pump 123 based on the measurement value of the second hydraulic pressure sensor 142.
 カスケードポンプ123の下流側には、ウルトラファインバブルを含有する水から、水に添加されずに残留した余剰の空気を分離する気液分離器125が接続されている。気液分離器125で分離された空気は、気体タンク124に戻される一方、ウルトラファインバブルを含有する水は、水タンク2に戻されるようになっている。ここで、バブル水製造装置103の第1ポンプとしては、水中ポンプ以外に、陸上ポンプ等の容積ポンプを用いてもよい。また、第2ポンプとしては、カスケードポンプ以外のポンプを用いてもよいが、遠心ポンプを用いるのが好ましい。 On the downstream side of the cascade pump 123, a gas-liquid separator 125 that separates excess air remaining without being added to water from water containing ultrafine bubbles is connected. The air separated by the gas-liquid separator 125 is returned to the gas tank 124, while the water containing ultrafine bubbles is returned to the water tank 2. Here, as the first pump of the bubble water manufacturing apparatus 103, a volume pump such as a land pump may be used instead of the submersible pump. A pump other than the cascade pump may be used as the second pump, but a centrifugal pump is preferably used.
 この変形例のバブル水製造装置103は、混合エア量調整弁127の開度と、吸引ポンプ121及びカスケードポンプ123の流体の吐出流量又は吐出圧力を調節することにより、バブル水タンク2へ導かれるウルトラファインバブルの粒径と濃度を調節することができる。 The bubble water production apparatus 103 of this modification is guided to the bubble water tank 2 by adjusting the opening degree of the mixed air amount adjusting valve 127 and the discharge flow rate or discharge pressure of the fluid of the suction pump 121 and the cascade pump 123. The particle size and concentration of ultrafine bubbles can be adjusted.
 また、このバブル水製造装置103は、バブル水タンク2の水のウルトラファインバブルの濃度を測定し、この測定値に基づいて、吸引ポンプ121及びカスケードポンプ123の吐出量と、混合エア量調整弁127の開度を調節して、バブル水タンク2のウルトラファインバブルの濃度を調節することができる。 The bubble water manufacturing apparatus 103 also measures the concentration of ultrafine bubbles in the water in the bubble water tank 2, and based on the measured values, the discharge amounts of the suction pump 121 and the cascade pump 123, and the mixed air amount adjusting valve. By adjusting the opening degree of 127, the concentration of ultrafine bubbles in the bubble water tank 2 can be adjusted.
 上記バブル水製造装置103は、第2の制御装置を設け、この第2の制御装置により、上記混合エア量調整弁127の開度と、吸引ポンプ121及びカスケードポンプ123による流体の吐出流量又は吐出圧力を制御して、バブル水タンク2のウルトラファインバブルの粒径と濃度を調節してもよい。 The bubble water producing apparatus 103 is provided with a second control device, and the opening degree of the mixed air amount adjusting valve 127 and the discharge flow rate or discharge amount of the fluid by the suction pump 121 and the cascade pump 123 are provided by the second control device. The particle size and concentration of the ultra fine bubbles in the bubble water tank 2 may be adjusted by controlling the pressure.
 例えば、バブル水タンク2の流体に含まれる気泡の径を小さくするためには、混合エア量調整弁127の開度を下げてエジェクタ122への空気の供給量を低減し、吸引ポンプ121及びカスケードポンプ123の運転を継続する。バブル水タンク2の流体が、吸引ポンプ121で吸引されてウルトラファインバブル製造器26に導かれ、含有する気泡が微細化されてカスケードポンプ123に吸引され、バブル水タンク2に戻される。バブル水タンク2の流体を、吸引ポンプ121、ウルトラファインバブル製造器26及びカスケードポンプ123に循環させることにより、この流体に含まれる気泡の径を効果的に小さくすることができる。 For example, in order to reduce the diameter of the bubbles contained in the fluid in the bubble water tank 2, the opening of the mixed air amount adjusting valve 127 is reduced to reduce the amount of air supplied to the ejector 122, and the suction pump 121 and the cascade. The operation of the pump 123 is continued. The fluid in the bubble water tank 2 is sucked by the suction pump 121 and guided to the ultra fine bubble manufacturing device 26, and the bubbles contained therein are atomized, sucked by the cascade pump 123, and returned to the bubble water tank 2. By circulating the fluid in the bubble water tank 2 through the suction pump 121, the ultra fine bubble maker 26, and the cascade pump 123, the diameter of bubbles contained in the fluid can be effectively reduced.
 また、例えば、バブル水タンク2の流体に含まれる気泡の濃度を増加させるためには、混合エア量調整弁127の開度を上げてエジェクタ122への空気の供給量を増やし、吸引ポンプ121及びカスケードポンプ123の運転を継続する。バブル水タンク2の流体が、吸引ポンプ121で吸引されて一部がエジェクタ122に導かれて空気が添加される。また、他の部分は吸引ポンプ121からウルトラファインバブル製造器26に導かれる。流体の気泡がウルトラファインバブル製造器26で微細化され、カスケードポンプ123に吸引されて、バブル水タンク2に戻される。バブル水タンク2の流体を、吸引ポンプ121、エジェクタ122、ウルトラファインバブル製造器26及びカスケードポンプ123に循環させることにより、この流体に含まれる気泡の濃度を効果的に増大させることができる。 Further, for example, in order to increase the concentration of bubbles contained in the fluid in the bubble water tank 2, the opening degree of the mixed air amount adjusting valve 127 is increased to increase the air supply amount to the ejector 122, and the suction pump 121, The operation of the cascade pump 123 is continued. The fluid in the bubble water tank 2 is sucked by the suction pump 121, part of which is guided to the ejector 122, and air is added. The other part is guided from the suction pump 121 to the ultra fine bubble manufacturing device 26. The bubbles of the fluid are atomized by the ultra fine bubble maker 26, sucked by the cascade pump 123, and returned to the bubble water tank 2. By circulating the fluid in the bubble water tank 2 through the suction pump 121, the ejector 122, the ultrafine bubble manufacturing device 26, and the cascade pump 123, the concentration of bubbles contained in the fluid can be effectively increased.
 上記バブル水製造装置103のウルトラファインバブル製造器26には、上流側と下流側の間、すなわち、供給管41の流体の圧力と排出管42の流体の圧力との間に、4MPa以上6MPa以下の圧力差が生じるように、吸引ポンプ121の吐出量とカスケードポンプ123の吸入量を調節するのが好ましい。この場合、供給管41における流体の圧力を、排出管42における流体の圧力よりも高く調節する。このように、ウルトラファインバブル製造器26の上流側と下流側の間に、4MPa以上6MPa以下の圧力差を生じさせることにより、ウルトラファインバブル製造器26により安定してウルトラファインバブルを含有する水を製造することができる。 In the ultrafine bubble producing device 26 of the bubble water producing apparatus 103, between 4 MPa and 6 MPa is provided between the upstream side and the downstream side, that is, between the fluid pressure of the supply pipe 41 and the fluid pressure of the discharge pipe 42. It is preferable to adjust the discharge amount of the suction pump 121 and the suction amount of the cascade pump 123 so that a pressure difference of 1 is generated. In this case, the pressure of the fluid in the supply pipe 41 is adjusted to be higher than the pressure of the fluid in the discharge pipe 42. As described above, by producing a pressure difference of 4 MPa or more and 6 MPa or less between the upstream side and the downstream side of the ultra fine bubble manufacturing device 26, the water containing the ultra fine bubble stably by the ultra fine bubble manufacturing device 26. Can be manufactured.
 このようにして、変形例のバブル水製造装置103により、安定して50~70nmのウルトラファインバブルを形成することができる。また、このバブル水製造装置103は、空気以外に、酸素や水素のウルトラファインバブルを含有する水を製造してもよい。酸素や水素のウルトラファインバブルを含有する水を製造する場合、水に添加されなかった余剰の酸素や水素を、気液分離器125で分離して、気体タンク124に戻すことにより、酸素や水素がバブル水製造装置103の外部に漏洩する不都合を防止できる。したがって、酸素や水素のウルトラファインバブルを含有する水を製造する場合に、酸素や水素の漏洩に起因する火災などの不都合を効果的に防止できる。 In this way, the bubble water producing apparatus 103 of the modified example can stably form ultrafine bubbles of 50 to 70 nm. Further, the bubble water producing apparatus 103 may produce water containing ultrafine bubbles of oxygen or hydrogen in addition to air. When producing water containing ultrafine bubbles of oxygen and hydrogen, excess oxygen and hydrogen not added to the water are separated by the gas-liquid separator 125 and returned to the gas tank 124, whereby oxygen and hydrogen are obtained. Can be prevented from leaking to the outside of the bubble water manufacturing apparatus 103. Therefore, when producing water containing ultrafine bubbles of oxygen or hydrogen, it is possible to effectively prevent inconveniences such as a fire caused by leakage of oxygen or hydrogen.
 上記実施形態において、ウルトラファインバブル製造器26の微細化ブロック28は、旋回流形成部としての第1旋回室31と第2旋回室33を有したが、2個に限られず、3個以上の旋回流形成部を有してもよい。また、ウルトラファインバブル製造器126の微細化ブロック128は、旋回流形成部としての第1偏心供給路131と第2偏心供給路132を有したが、2個に限られず、3個以上の旋回流形成部を有してもよい。 In the above embodiment, the miniaturization block 28 of the ultrafine bubble manufacturing device 26 has the first swirl chamber 31 and the second swirl chamber 33 as swirl flow forming parts, but the number is not limited to two, and three or more. You may have a swirl flow formation part. Further, the miniaturization block 128 of the ultra fine bubble manufacturing device 126 has the first eccentric supply passage 131 and the second eccentric supply passage 132 as the swirl flow forming portion, but the number is not limited to two, and three or more swirls are provided. It may have a flow forming part.
 また、上記実施形態において、採卵用鶏に、空気のウルトラファインバブルを含有する水を給与したが、空気以外に、水素や酸素等の他の気体のウルトラファインバブルを含有する水を給与してもよい。また、水以外に、微酸性電解水や、その他の各種の成分を含有する水にウルトラファインバブルを含有させた飲用水を給与してもよい。水素のウルトラファインバブルを含有する水を用いた場合と、酸素のウルトラファインバブルを含有する水を用いた場合においても、鶏の産卵の開始時期を早める効果や、鶏卵の生産性を向上できる効果が確認された。また、微酸性電解水を用いた場合においても、鶏の産卵の開始時期を早める効果や、鶏卵の生産性を向上できる効果が確認された。 Further, in the above embodiment, the chicken for egg collection was fed with water containing ultrafine bubbles of air, but in addition to air, it was fed with water containing ultrafine bubbles of other gases such as hydrogen and oxygen. Good. In addition to water, slightly acidic electrolyzed water or drinking water in which ultrafine bubbles are contained in water containing various other components may be supplied. When using water containing ultrafine bubbles of hydrogen, and also when using water containing ultrafine bubbles of oxygen, the effect of accelerating the start time of egg laying of chickens, the effect of improving the productivity of chicken eggs Was confirmed. Moreover, it was confirmed that even when slightly acidic electrolyzed water was used, the effect of accelerating the start of egg laying in chickens and the effect of improving the productivity of chicken eggs were confirmed.
 本発明の実施例では、採卵用鶏の飲用水として、上述のバブル水製造装置3により、次のような空気のウルトラファインバブルを含有する水を作成した。
算術個数平均径:89.8nm
最大頻出径:60.3nm
標準偏差:44.2nm
10%径:54.5nm
50%径:74.5nm
90%径:140.7nm
個数濃度:1.75×10個/mL
 これらの値の測定は、日本カンタム・デザイン社製の名の粒子解析装置NANOSIGHT NS500にて行った。
In the examples of the present invention, the following water containing ultrafine bubbles of air was prepared as the drinking water for the chickens for egg collection by the bubble water production apparatus 3 described above.
Arithmetic number average diameter: 89.8 nm
Maximum frequent diameter: 60.3 nm
Standard deviation: 44.2nm
10% diameter: 54.5 nm
50% diameter: 74.5 nm
90% diameter: 140.7 nm
Number concentration: 1.75×10 8 pieces/mL
These values were measured by a particle analyzer NANOSIGHT NS500 manufactured by Japan Quantum Design Co., Ltd.
(試験1)
 試験1では、採卵個数と産卵開始日について試験を行った。試験対象として、120日齢のボリスブラウン種の採卵鶏40羽を、10羽ずつ4群に分け、次の飲用水を給与して平飼により養育した。
試験群(1):地下水
試験群(2):空気のウルトラファインバブル水
試験群(3):植物抽出物混合発酵液の希釈水
試験群(4):試験群(2)と植物抽出物混合発酵液の混合水
 上記試験群(3)及び(4)の植物抽出物混合発酵液として、株式会社T.Sエコファーム社製のT.Sミネターゼを用いた。試験群(3)は、ミネターゼの原液を、500倍の地下水で希釈して作製した。試験群(4)は、ミネターゼの原液を、500倍の空気のウルトラファインバブル水で希釈して作成した。
(Test 1)
In Test 1, the number of eggs collected and the start date of spawning were tested. As test subjects, 40 120-day-old Boris Brown breeding chickens were divided into 4 groups of 10 chickens each, and the following drinking water was fed to the chickens, which were raised by plain feeding.
Test group (1): Ground water test group (2): Air ultra fine bubble water test group (3): Plant extract mixture Diluted water of fermented liquid test group (4): Test group (2) and plant extract mixture Mixed Water of Fermentation Liquid As the plant extract mixed fermentation liquid of the above test groups (3) and (4), T. Co., Ltd. was used. T.S. made by S Eco Farm. S-minase was used. The test group (3) was prepared by diluting a stock solution of minetase with 500 times groundwater. The test group (4) was prepared by diluting a stock solution of minetase with ultrafine bubble water of 500 times air.
 図12は、飲用水の給与を開始した120日齢から148日齢までの間の産卵個数の累積を示したグラフである。120日齢から産卵を開始するまでに要した日数は、慣行区である試験群(1)が25日であったのに対し、試験群(2)及び(4)では11日であった。このように、空気のウルトラファインバブル水と、空気のウルトラファインバブル水と植物抽出物混合発酵液との混合水を、飲用水として用いることにより、採卵鶏の産卵の開始が14日早まることが確認された。飲用水の給与開始から39日目であって、159日齢の時点での鶏卵の総生産量は、試験群(1)と比較して、試験群(2)は1.63倍であり、試験群(3)は0.97倍であり、試験群(4)は1.68倍であった。このように、空気のウルトラファインバブル水と、空気のウルトラファインバブル水と植物抽出物混合発酵液との混合水を、飲用水として用いることにより、産卵の時期を早めることができ、その結果、採卵期間の全体における採卵量を増加させることができるといえる。 FIG. 12 is a graph showing the cumulative number of laying eggs from the 120th day to the 148th day after the start of feeding drinking water. The number of days required from the age of 120 days to the start of spawning was 25 days in the test group (1) which was a conventional section, whereas it was 11 days in the test groups (2) and (4). Thus, by using the air ultrafine bubble water and the mixed water of the air ultrafine bubble water and the plant extract mixed fermented liquid as drinking water, the start of egg laying of the egg hen can be accelerated 14 days. confirmed. On the 39th day from the start of feeding drinking water, the total production of chicken eggs at the age of 159 days was 1.63 times in the test group (2) as compared with the test group (1), The test group (3) was 0.97 times and the test group (4) was 1.68 times. Thus, ultrafine bubble water in the air, mixed water of air ultrafine bubble water and a plant extract mixed fermented liquid, by using as drinking water, it is possible to accelerate the time of spawning, as a result, It can be said that the amount of eggs collected can be increased during the entire egg collection period.
(試験2)
 試験2では、空気のウルトラファインバブル水を給与したときの飼料による産卵量と卵の大きさの影響について試験を行った。試験対象として、120日齢から600日齢までの間のボリスブラウン種の採卵鶏8000羽に、上記空気のウルトラファインバブル水を給与すると共に、CP16%の飼料を与える期間と、CP18%の飼料を与える期間を交互に設定し、産卵個数と卵のサイズの影響を確認した。採卵鶏8000羽のうち、2000羽が120~240日齢であり、2000羽が240~360日齢であり、2000羽が360~480日齢であり、2000羽が480~600日齢である。採卵鶏の飼育は高床鶏舎にて行った。
Figure JPOXMLDOC01-appb-T000001
(Test 2)
In Test 2, a test was conducted on the influence of the egg production amount and the egg size by the feed when the air was supplied with ultrafine bubble water. As a test object, 8000 Boris Brown egg hens between 120 days and 600 days of age were fed with the above ultrafine bubble water of the air and a period of feeding CP16% and a feed of CP18%. The effects of the number of eggs laying and the size of eggs were confirmed by alternately setting the feeding period. Of the 8000 hens, 2000 are 120-240 days old, 2000 are 240-360 days old, 2000 are 360-480 days old, and 2000 are 480-600 days old. .. Breeding of the hens was carried out in a raised chicken house.
Figure JPOXMLDOC01-appb-T000001
 表1は、試験2の結果である。期間の第1期は、試験の開始から第1~10日であり、第2期は第131~138日であり、第3期は第139~179日であり、第4期は第180~204日である。表1において、MSは重量が52g以上58g未満の鶏卵であり、Mは58g以上64g未満の鶏卵であり、Lは64g以上70g未満の鶏卵であり、2Lは70g以上76g未満の鶏卵であり、大玉は76g以上の鶏卵である。第1期及び第2期は、120日齢の鶏のうち、未産卵の鶏が含まれる割合が多いため、検討の対象から除外する。第3期は、飼料がCP16%であるにもかかわらず、全ての卵のうち、Mサイズ以上の卵が95.2%であった。したがって、CP18%よりも安価なCP16%の飼料を用いて、流通可能な大きさの卵を高い割合で生産することができるので、飼料費を効果的に削減できる。また、第3期では、他のサイズよりも需要の多いMサイズとLサイズの卵を、第4期よりも多く生産できた。したがって、安価なCP16%の飼料を用いて、需要の多いM及びLサイズの卵を、CP18%の飼料を用いるよりも多く生産できるので、卵の生産効率を効果的に高めることができる。 Table 1 shows the results of Test 2. The first phase of the period is the 1st to 10th day from the start of the study, the 2nd phase is the 131st to 138th day, the 3rd period is the 139th to 179th day, and the 4th period is the 180th to It's 204 days. In Table 1, MS is an egg having a weight of 52 g or more and less than 58 g, M is an egg of 58 g or more and less than 64 g, L is an egg of 64 g or more and less than 70 g, and 2 L is an egg of 70 g or more and less than 76 g, Large balls are chicken eggs weighing 76g or more. In the 1st and 2nd seasons, a large proportion of 120-day-old chickens include laying hens, and are therefore excluded from consideration. In the third period, 95.2% of all eggs were M size or larger, although the feed was CP 16%. Therefore, it is possible to produce eggs of a circulatable size at a high rate by using a feed of CP16% which is cheaper than a feed of CP18%, so that the feed cost can be effectively reduced. In addition, in the third period, more M-sized and L-sized eggs, which are in greater demand than other sizes, could be produced more than in the fourth period. Therefore, M and L size eggs, which are in high demand, can be produced more by using the inexpensive CP 16% feed than by using the CP 18% feed, so that the egg production efficiency can be effectively increased.
(試験3)
 試験3では、飲用水の空気のウルトラファインバブルの有無による卵のサイズの違いについて試験を行った。試験対象として、150日齢のボリスブラウン種の採卵鶏に、上記空気のウルトラファインバブルを含有する飲用水を給与した試験群(5)と、空気のウルトラファインバブルを含有しない飲用水を給与した試験群(6)を設定し、同一のCP18%の飼料を給与した。試験群(5)と試験群(6)のいずれも、採卵鶏を8000羽ずつ養育した。その結果、試験群(5)については、1日の総産卵量5700個のうち、大玉が200個であった。試験群(6)については、1日の総産卵量5000個のうち、大玉が100個であった。このように、ウルトラファインバブルを含有する飲用水を給与することにより、大玉の卵を、効果的に生産することができる。
(Test 3)
In Test 3, the difference in egg size depending on the presence or absence of ultrafine bubbles in the air of the drinking water was tested. As a test object, a 150-day-old Boris Brown breeding chicken was fed with the test group (5) in which the drinking water containing the air ultrafine bubbles was fed and the drinking water not containing the air ultrafine bubbles. A test group (6) was set up and fed with the same feed of CP 18%. In each of the test group (5) and the test group (6), 8000 chickens were raised. As a result, in the test group (5), out of the total egg production of 5700 eggs per day, 200 were large. Regarding test group (6), 100 large eggs out of the total egg production of 5000 eggs per day. As described above, by feeding the drinking water containing ultra fine bubbles, the large egg can be effectively produced.
 本発明は、以上説明した実施の形態又は実施例に限定されるものではなく、多くの変形が、本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 The present invention is not limited to the embodiments or examples described above, and many modifications can be made by a person having ordinary skill in the art within the technical idea of the present invention.
 1 飲用水供給装置
 2 バブル水タンク
 3,103 バブル水製造装置
 4 貯水タンク
 5 供給管
 6 分岐管
 7 給水器
 8 戻り管
 9 採卵用鶏
 11 第1水道水バルブ
 12 第2水道水バルブ
 13 バブル水バルブ
 21 水中ポンプ
 22 エジェクタ
 23 カスケードポンプ
 24 戻し経路
 25 排出経路
 26,126 ウルトラファインバブル製造器
 27 流量調整弁
 28 微細化ブロック
 29 混合エア量調整弁
 31 第1旋回室
 33 第2旋回室
 38 衝突室
 40 ケーシング
 41 供給管
 42 排出管
1 Drinking water supply device 2 Bubble water tank 3,103 Bubble water production device 4 Water storage tank 5 Supply pipe 6 Branch pipe 7 Water supply device 8 Return pipe 9 Egg-picking chicken 11 First tap water valve 12 Second tap water valve 13 Bubble water Valve 21 Submersible pump 22 Ejector 23 Cascade pump 24 Return path 25 Discharge path 26,126 Ultra fine bubble manufacturing device 27 Flow rate adjusting valve 28 Fine block 29 Mixed air amount adjusting valve 31 First swirling chamber 33 Second swirling chamber 38 Collision chamber 40 casing 41 supply pipe 42 discharge pipe

Claims (14)

  1.  採卵用の鶏に、気体のウルトラファインバブルを含有する飲用水を与えることにより、鶏卵を上記鶏から得ることを特徴とする養鶏方法。 A method of poultry raising characterized in that eggs are obtained from the above chickens by giving drinking water containing gas ultrafine bubbles to the chickens for egg collection.
  2.  請求項1に記載の養鶏方法において、
     上記気体は空気であることを特徴とする養鶏方法。
    The poultry raising method according to claim 1,
    The above-mentioned gas is air, The poultry raising method characterized by the above-mentioned.
  3.  請求項1に記載の養鶏方法において、
     上記気体は酸素であることを特徴とする養鶏方法。
    The poultry raising method according to claim 1,
    The poultry raising method, wherein the gas is oxygen.
  4.  請求項1に記載の養鶏方法において、
     上記鶏の産卵の開始時期が、気体のウルトラファインバブルを含有しない飲用水を給与した場合よりも早いことを特徴とする養鶏方法。
    The poultry raising method according to claim 1,
    A method for poultry raising, wherein the start of egg laying of the chicken is earlier than when the drinking water containing no gas ultrafine bubbles is fed.
  5.  請求項2に記載の養鶏方法において、
     上記鶏にCP16%の飼料を給与することにより、Mサイズ以上の鶏卵の産出数を全産卵数の95%以上とすることを特徴とする養鶏方法。
    The poultry raising method according to claim 2,
    A method of poultry raising, wherein the number of eggs of M size or more is 95% or more of the total number of eggs by feeding the chicken with CP of 16%.
  6.  請求項1に記載の養鶏方法において、
     上記飲用水が、少なくともアロエを含む複数種類の植物を含む液を混合し抽出した植物由来エキス液と、キダチアロエのアルコール漬け液と、アロエベラのアルコール漬け液と、糖分と、ミネラル分とを含んで混合してなる液の発酵液が添加されていることを特徴とする養鶏方法。
    The poultry raising method according to claim 1,
    The above-mentioned drinking water is a plant-derived extract liquid obtained by mixing and extracting a liquid containing a plurality of types of plants containing at least aloe, an alcohol pickling solution of Kidachi aloe, an alcohol pickling solution of aloe vera, sugar, and a mineral content. A method for poultry raising, wherein a fermented liquid of a mixed liquid is added.
  7.  採卵用の鶏に給与される飲用水に含有される気体のウルトラファインバブルを製造するための養鶏用ウルトラファインバブル製造器であって、
     円形断面を有するケーシングと、
     上記ケーシングの一端に接続され、上記ケーシングと同軸上に延在し、気体と水の混合流体を供給する供給管と、
     上記ケーシング内に少なくとも一部が収容され、上記供給管からケーシング内に供給された上記混合流体の旋回流を形成する複数の旋回流形成部を含み、これらの旋回流形成部で形成された旋回流を互いに衝突させて、上記混合流体の気体を微細化してウルトラファインバブル水を生成する微細化ブロックと、
     上記ケーシングの他端側に配置され、上記微細化ブロックで生成されたウルトラファインバブル水を上記ケーシングの外に排出する排出管と
     を備えることを特徴とする養鶏用ウルトラファインバブル製造器。
    An ultrafine bubble manufacturing device for poultry for producing gas ultrafine bubbles contained in drinking water fed to a chicken for egg collection,
    A casing having a circular cross section,
    A supply pipe connected to one end of the casing, extending coaxially with the casing, and supplying a mixed fluid of gas and water,
    At least a part of the swirl flow forming part is accommodated in the casing and forms a swirl flow of the mixed fluid supplied from the supply pipe into the casing, and swirl formed by these swirl flow forming parts. A finer block that collides the flows with each other to finely atomize the gas of the mixed fluid to generate ultrafine bubble water,
    A discharge pipe arranged on the other end side of the casing for discharging the ultrafine bubble water generated by the miniaturization block to the outside of the casing.
  8.  請求項7に記載の養鶏用ウルトラファインバブル製造器において、
     上記微細化ブロックが、上記ケーシングと同軸の旋回軸回りに混合流体の旋回流を形成する上記旋回流形成部としての第1旋回室と、この第1旋回室よりも上記供給管から遠い側に形成され、上記ケーシングと同軸の旋回軸回りに、上記第1旋回室で形成される旋回流と反対向きに旋回する混合流体の旋回流を形成する上記旋回流形成部としての第2旋回室と、上記第1旋回室で形成された混合流体の旋回流と上記第2旋回室で形成された混合流体の旋回流とを衝突させる衝突室と、この衝突室で混合流体の旋回流が衝突してなるウルトラファインバブル水を排出管側に導く排出通路とを含み、
     上記排出管は、上記排出通路に連通するように上記微細化ブロックに連結され、上記微細化ブロックを上記ケーシング内に支持していることを特徴とする養鶏用ウルトラファインバブル製造器。
    The ultrafine bubble manufacturing device for poultry according to claim 7,
    The miniaturization block forms a swirl flow of the mixed fluid around a swirl axis coaxial with the casing, and a first swirl chamber as the swirl flow forming section, and a side farther from the supply pipe than the first swirl chamber. A second swirl chamber as a swirl flow forming part that forms a swirl flow of the mixed fluid that is formed and swirls in the opposite direction to the swirl flow formed in the first swirl chamber around the swirl axis that is coaxial with the casing. A collision chamber for colliding the swirl flow of the mixed fluid formed in the first swirl chamber with the swirl flow of the mixed fluid formed in the second swirl chamber, and the swirl flow of the mixed fluid collide with each other in the collision chamber. Including a discharge passage that guides the ultra fine bubble water to the discharge pipe side,
    The discharge pipe is connected to the miniaturization block so as to communicate with the discharge passage, and the miniaturization block is supported in the casing.
  9.  請求項8に記載の養鶏用ウルトラファインバブル製造器において、
     上記微細化ブロックが、
      上記第1旋回室と、この第1旋回室の一端側へケーシング内の混合流体を第1旋回室の接線方向に導入する第1導入路と、上記第1旋回室の他端に形成されて旋回流を吐出する第1吐出孔とを有する第1ブロック部品と、
      上記第1ブロック部品に結合され、上記第2旋回室と、この第2旋回室の一端側へケーシング内の混合流体を第2旋回室の接線方向に導入する第2導入路と、上記第2旋回室の他端に形成されて上記第1ブロック部品の第1吐出孔と対向して旋回流を吐出する第2吐出孔と、上記第1ブロック部品に結合されて第1ブロック部品との間に形成される衝突室に面する衝突室表面と、この衝突室表面に形成され、上記衝突室のウルトラファインバブル水を上記排出通路に流入させる流入口と、上記第1ブロック部品が連結された側と反対側の端面に形成され、上記排出通路を流れたウルトラファインバブル水を排出する排出口とを有する第2ブロック部品と
    を含んで形成されていることを特徴とする養鶏用ウルトラファインバブル製造器。
    The ultra fine bubble manufacturing device for poultry according to claim 8,
    The miniaturized block is
    The first swirl chamber, a first introduction path for introducing the mixed fluid in the casing into the tangential direction of the first swirl chamber to one end side of the first swirl chamber, and the first swirl chamber formed at the other end of the first swirl chamber. A first block part having a first discharge hole for discharging a swirl flow;
    The second swirl chamber, a second introduction path for introducing the mixed fluid in the casing in a tangential direction of the second swirl chamber, the second swirl chamber being coupled to the first block component; Between a second discharge hole that is formed at the other end of the swirl chamber and that discharges a swirl flow in opposition to the first discharge hole of the first block component, and the first block component that is connected to the first block component. The surface of the collision chamber facing the collision chamber, the inlet for allowing the ultrafine bubble water of the collision chamber to flow into the discharge passage, and the first block component are connected to each other. And a second block part having an outlet for discharging the ultra fine bubble water flowing through the discharge passage, and an ultra fine bubble for poultry farming. Manufacturing equipment.
  10.  請求項9に記載の養鶏用ウルトラファインバブル製造器において、
     上記第1導入路と第2導入路は、上記微細化ブロックの軸直角面に対して傾斜して形成されていることを特徴とする養鶏用ウルトラファインバブル製造器。
    The ultrafine bubble manufacturing device for poultry according to claim 9,
    The said 1st introduction path and the 2nd introduction path are formed inclining with respect to the axis right-angled surface of the said refinement|miniaturization block, The ultra fine bubble manufacturing apparatus for chickens characterized by the above-mentioned.
  11.  請求項7に記載の養鶏用ウルトラファインバブル製造器において、
     上記微細化ブロックが、上記ケーシングと同軸方向に形成されて上記混合流体が導かれる処理流路と、この処理流路の上流端に上記混合流体を中心軸の偏心方向に導入して旋回流を形成する上記旋回流形成部としての第1偏心供給路と、上記処理流路の上記第1偏心供給路よりも下流側に上記混合流体を中心軸の上記第1偏心供給路と反対向きの偏心方向に導入し、上記第1偏心供給路で形成された旋回流に反対向きの旋回流を生成して衝突させる上記旋回流形成部としての第2偏心供給路とを含み、
     上記排出管は、上記微細化ブロックの処理流路の下流端に連結されている
    ことを特徴とする養鶏用ウルトラファインバブル製造器。
    The ultrafine bubble manufacturing device for poultry according to claim 7,
    The miniaturized block is formed in a coaxial direction with the casing, a processing flow path through which the mixed fluid is guided, and the mixed fluid is introduced into an eccentric direction of the central axis at an upstream end of the processing flow path to generate a swirling flow. A first eccentric supply passage as the swirl flow forming part to be formed, and an eccentricity of the processing fluid on the downstream side of the first eccentric supply passage opposite to the first eccentric supply passage on the central axis of the mixed fluid. A second eccentric supply path as the swirl flow forming section which is introduced in a direction to generate a collision of a swirl flow in the opposite direction to the swirl flow formed in the first eccentric supply path, and collide with the swirl flow.
    The said discharge pipe is connected to the downstream end of the processing flow path of the said refinement|miniaturization block, The ultra-fine bubble manufacturing device for chickens characterized by the above-mentioned.
  12.  請求項7に記載の養鶏用ウルトラファインバブル製造器を用いて形成された養鶏用飲用水製造装置であって、
     原料水を圧送する第1ポンプと、
     上記第1ポンプから圧送された原料水に気体を混合して混合流体を形成する混合器と、
     上記混合器の下流側に設けられた第2ポンプと、
     上記第2ポンプの下流側で混合流体を2つの経路に分岐する分岐部と、
     上記分岐部に接続され、流量調整弁と、第1の上記養鶏用ウルトラファインバブル製造器とが介設され、この第1養鶏用ウルトラファインバブル製造器で製造された気体のウルトラファインバブルを含有する水を上記混合器と第2ポンプの間に戻す戻し経路と、
     上記分岐部に接続され、第2の上記養鶏用ウルトラファインバブル製造器が介設され、この第2養鶏用ウルトラファインバブル製造器で製造された気体のウルトラファインバブルを含有する水を排出する排出経路と
    を備えることを特徴とする養鶏用飲用水製造装置。
    A poultry drinking water production apparatus formed using the poultry ultrafine bubble production apparatus according to claim 7.
    A first pump for pumping raw material water,
    A mixer for forming a mixed fluid by mixing a gas with the raw material water pumped from the first pump;
    A second pump provided on the downstream side of the mixer;
    A branch portion that branches the mixed fluid into two paths downstream of the second pump;
    The flow control valve and the first ultrafine bubble producing device for poultry raising are connected to the branch portion, and contain the gas ultrafine bubble produced by the first ultrafine bubble producing device for poultry raising. A return path for returning the generated water between the mixer and the second pump,
    The discharge which discharges the water containing the gas ultra fine bubble which was connected to the said branch part and which was equipped with the 2nd above-mentioned ultra fine bubble manufacturing device for poultry raising, and was manufactured by this 2nd ultra fine bubble manufacturing device for poultry raising An apparatus for producing drinking water for poultry, comprising:
  13.  請求項7に記載の養鶏用ウルトラファインバブル製造器を用いて形成された養鶏用飲用水製造装置であって、
     気体が原料水に混合されてなる混合流体を圧送する第1ポンプと、
     上記第1ポンプの吐出側と吸入側との間に接続され、上記第1ポンプから吐出された混合流体に気体を混合して上記第1ポンプの吸入側に戻す混合器と、
     上記第1ポンプの下流側に設けられた上記養鶏用ウルトラファインバブル製造器と、
     上記養鶏用ウルトラファインバブル製造器の下流側に接続された第2ポンプと、
     上記第2ポンプの下流側に接続された気液分離器と、
     上記気液分離器で分離された液体を排出する排出経路と
    を備えることを特徴とする養鶏用飲用水製造装置。
    A poultry drinking water production apparatus formed using the poultry ultrafine bubble production apparatus according to claim 7.
    A first pump for pumping a mixed fluid in which gas is mixed with raw material water;
    A mixer connected between the discharge side and the suction side of the first pump, for mixing gas into the mixed fluid discharged from the first pump and returning the mixed fluid to the suction side of the first pump;
    An ultra fine bubble manufacturing device for poultry, which is provided on the downstream side of the first pump;
    A second pump connected to the downstream side of the ultrafine bubble manufacturing device for poultry,
    A gas-liquid separator connected to the downstream side of the second pump,
    An outlet for discharging the liquid separated by the gas-liquid separator, a poultry drinking water producing apparatus.
  14.  請求項12又は13に記載の養鶏用飲用水製造装置において、
     上記第2ポンプが、カスケードポンプであることを特徴とする養鶏用飲用水製造装置。
    The drinking water producing apparatus for poultry according to claim 12 or 13,
    The drinking water producing apparatus for poultry farming, wherein the second pump is a cascade pump.
PCT/JP2019/051034 2018-12-25 2019-12-25 Poultry farming method, ultrafine bubble maker for poultry farming, and drinking water preparing device for poultry farming WO2020138246A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563392A JP7187128B2 (en) 2018-12-25 2019-12-25 Poultry farming method, poultry farming ultra-fine bubble maker and poultry farming drinking water production device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018241808 2018-12-25
JP2018-241808 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020138246A1 true WO2020138246A1 (en) 2020-07-02

Family

ID=71128715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051034 WO2020138246A1 (en) 2018-12-25 2019-12-25 Poultry farming method, ultrafine bubble maker for poultry farming, and drinking water preparing device for poultry farming

Country Status (2)

Country Link
JP (1) JP7187128B2 (en)
WO (1) WO2020138246A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024129460A1 (en) * 2022-12-12 2024-06-20 Praxair Technology, Inc. Using oxygen in nanobubbles to improve characteristics of poultry
WO2024129474A1 (en) * 2022-12-12 2024-06-20 Praxair Technology, Inc. Methods using carbon dioxide and oxygen to improve characteristics of poultry

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027920A (en) * 2000-07-17 2002-01-29 Itochu Shiryo Kk Glycine-enriched vegetable feed composition for hen, and method for raising hen
JP2011115674A (en) * 2009-11-30 2011-06-16 Miike Iron Works Co Ltd Micronization mixer
JP2017195869A (en) * 2016-04-27 2017-11-02 有限会社情報科学研究所 Device for automatically supplying/distributing ultrafine bubble water of air for stock raising

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002027920A (en) * 2000-07-17 2002-01-29 Itochu Shiryo Kk Glycine-enriched vegetable feed composition for hen, and method for raising hen
JP2011115674A (en) * 2009-11-30 2011-06-16 Miike Iron Works Co Ltd Micronization mixer
JP2017195869A (en) * 2016-04-27 2017-11-02 有限会社情報科学研究所 Device for automatically supplying/distributing ultrafine bubble water of air for stock raising

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Manufacturer of Microbubble Nanobubble Finebubble Generator.", 4 September 2018 (2018-09-04), Retrieved from the Internet <URL:https://web.archive.org/web/20180904030721/https://www.livingenergies.biz> [retrieved on 20200311] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024129460A1 (en) * 2022-12-12 2024-06-20 Praxair Technology, Inc. Using oxygen in nanobubbles to improve characteristics of poultry
WO2024129474A1 (en) * 2022-12-12 2024-06-20 Praxair Technology, Inc. Methods using carbon dioxide and oxygen to improve characteristics of poultry

Also Published As

Publication number Publication date
JP7187128B2 (en) 2022-12-12
JPWO2020138246A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
WO2020138246A1 (en) Poultry farming method, ultrafine bubble maker for poultry farming, and drinking water preparing device for poultry farming
JP7510122B2 (en) Ultra-fine bubble producing device for pig farming and bubble drinking water producing device for pig farming
CN207137714U (en) Microbubble generator
CN107321204A (en) Microbubble generator
CN105123714A (en) Abamectin and etoxazole compound suspending agent and preparation method thereof
CN107529523A (en) Micro-nano gas-liquid producer
KR101486922B1 (en) Fabricating process for non alcohol water soluble propolis
CN105557576A (en) Method for flowing water culturing of grass carp in mountainous area
CN104430460A (en) Pyrazosulfuron-ethyl, clomazone and butachlor compound dispersible oil suspension concentrate and preparation method thereof
KR102557241B1 (en) Ultra-fine bubble maker and ultra-fine bubble water manufacturing device
CN117069791A (en) Extraction method of selenium protein of ground tip melon
KR20150068572A (en) Carbon dioxide supply vegetable growi
CN207022950U (en) Water oxygenation, sterilizing unit
Anil et al. Comparison of Penaeus monodon (Crustacea, Penaeidae) growth between commercial feed vs commercial shrimp feed supplemented with Kappaphycus alvarezii (Rhodophyta, Solieriaceae) seaweed sap
CN109122418A (en) A kind of method that intensive culture Culter meat quality of fish restores
KR20200141515A (en) How to control powdery mildew
CN110476886A (en) A kind of method for breeding of chicken
KR101604462B1 (en) Oxygen dissolution apparatus
JP2022132344A (en) Control method of tetranychid
CN208768904U (en) A kind of cleaning device of vegetable leaf
DE102011012782A1 (en) Algae harvesting comprises concentrating a part of a liquid in which the algae are located, which include bringing the algae present in the liquid, for flotation, by means of micro-bubbles, and harvesting
CN209031150U (en) A kind of soya bean peeling machine
Nadro et al. Comparatcve chemical evaluation of locust bean (Parkia biglobosa) fruit pulp harvested during the dry and wet season
Rahmaningsih et al. Potential Analysis of Majapahit Fruit Powder (Crescentia cujete L) as Shrimp Immunostimulants using the in Silico Method
CN105875593A (en) Fluroxypyr-mepthyl, cyhalofop-butyl and penoxsulam compounded dispersing oil suspending agent and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904400

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904400

Country of ref document: EP

Kind code of ref document: A1