WO2020138196A1 - Electronic component mounting package, and electronic device - Google Patents

Electronic component mounting package, and electronic device Download PDF

Info

Publication number
WO2020138196A1
WO2020138196A1 PCT/JP2019/050890 JP2019050890W WO2020138196A1 WO 2020138196 A1 WO2020138196 A1 WO 2020138196A1 JP 2019050890 W JP2019050890 W JP 2019050890W WO 2020138196 A1 WO2020138196 A1 WO 2020138196A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding material
electronic component
wiring
width
wiring pattern
Prior art date
Application number
PCT/JP2019/050890
Other languages
French (fr)
Japanese (ja)
Inventor
友治 恩田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2020138196A1 publication Critical patent/WO2020138196A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates

Definitions

  • the present disclosure relates to electronic component mounting packages and electronic devices.
  • Japanese Unexamined Patent Application Publication No. 2007-150182 discloses a technique of appropriately bringing a signal line and a wiring pattern into close proximity to each other and joining them with solder.
  • a wiring board having a first surface and a wiring pattern located on the first surface; A base having a second surface in contact with a surface adjacent to the first surface; A signal line penetrating the base, Conductive bonding material, Equipped with The wiring pattern has a wiring A extending in a first direction away from the second surface, The conductive bonding material bonds the wiring A and the signal line, In the electronic component mounting package, a width of the conductive bonding material orthogonal to the first direction is wider than the width of the wiring A.
  • FIG. 1 is an overall perspective view of the electronic device 1 of this embodiment.
  • the electronic device 1 includes an electronic component mounting package 100 and an electronic component 200.
  • the electronic component mounting package 100 includes a base 11, a signal line 12, a wiring board 14, a conductive bonding material 16, and the like.
  • the base 11 may be a conductive metal, and in this case, it functions as a ground plane. In the following description, it is assumed that the base 11 is a conductive metal unless otherwise specified. In addition to this, the base 11 may have a high thermal conductivity. In this specification, thermal conductivity may refer to heat dissipation.
  • the base 11 has a base 111 and a protrusion 112.
  • the base 111 may have, for example, a disc shape with a diameter of 3 to 10 mm and a thickness of 0.5 to 2 mm, but is not limited thereto.
  • the base 111 has a through hole 111a.
  • the insulating member 113 may be located in the through hole 111a.
  • the insulating member 113 may be, for example, a glass or ceramic material.
  • the material of the insulating member 113 and the size of the through hole 111a may be determined according to the desired characteristic impedance.
  • the base 11 is an insulating member, only the signal line 12 may pass through.
  • the base 111 and the protrusion 112 may be integrated.
  • the wiring board 14 has a first surface 14a.
  • the first surface 14a is a surface opposite to the connection surface with the protrusion 112.
  • the wiring board 14 has a wiring pattern 141 located on the first surface 14a.
  • the wiring board 14 may be used as, for example, a high-frequency line board.
  • the wiring substrate 14 is an insulating substrate and may be, for example, resin. The thickness, the material and the relative permittivity of the material of the wiring board 14 may be appropriately determined according to the desired characteristic impedance.
  • the bonding surface 14b which is a side surface of the wiring board 14 and is adjacent to the first surface 14a, is bonded to the second surface 11a of the base 111.
  • the wiring pattern 141 is electrically connected to the electronic component 200 and supplies electric power and a signal to the electronic component 200.
  • the wiring pattern 141 may be a conductive metal film having a low resistance, here, a gold (Au) thin film.
  • the wiring pattern 141 has an end joined to the signal line 12 by a conductive joining material 16. For example, in FIG. 1, two end portions that are joined to the signal line 12 via the conductive joining material 16 are shown. The shape, length and position of the wiring pattern are appropriately determined according to the size and terminal position of the electronic component 200 to be connected.
  • the signal line 12 is a rod-shaped conductor and penetrates the base 111 of the base 11. In FIG. 1, the signal line 12 penetrates the insulating member 113 in the through hole 111a. The diameter of the signal line 12 may be, for example, about 0.1 to 1.0 mm. At least one of the signal lines 12 is a ground terminal of the base 11, and is directly joined to the base 111. The other signal lines 12 project on the side of the base 111 opposite to the second surface 11a and are electrically connected to external wiring or the like. That is, the signal lines 12 other than the ground terminal are used as lead electrodes.
  • FIG. 1 shows a state in which two signal lines 12 are joined to the wiring pattern 141 via the conductive joining material 16 on the second surface 11a side. The signal line 12 and the wiring pattern 141 do not have to be in direct contact with each other. Further, the signal line 12 does not have to protrude from the second surface 11a. That is, as for the signal line 12, the tip of the signal line 12 may be exposed.
  • the conductive bonding material 16 electrically bonds the signal line 12 on the second surface 11a and the wiring pattern 141 on the first surface 14a.
  • the conductive bonding material 16 may be a nanoparticle sintering type bonding material paste.
  • the nano-particle sintering type bonding material paste contains a nano-sized metal covered with a surface stabilizer, such as silver or copper, a resin, and an organic solvent. It should be noted that the organic solvent is volatilized after the nanoparticle sintering type bonding material paste is fixed.
  • the nanoparticle-sintering-type bonding material paste is heated to cause a reaction of the resin, and the metal is activated to react with each other to bond with each other, and also react with the metal surface to be fixed. A large thermal conductivity is obtained due to the bonding of the metals. Therefore, the conductive bonding material 16 bonds not only to the signal line 12 and the wiring pattern 141 but also to the insulating member 113 and the insulating surface of the wiring board 14.
  • the electronic component 200 shown by the broken line in FIG. 1 is located on the first surface 14a and is electrically connected to the wiring pattern 141 directly or by wire bonding.
  • the electronic component 200 may be, for example, a laser diode.
  • the electronic component 200 may be various types such as a photodiode, an LED (Light Emitting Diode) or a Peltier element, and various sensor elements.
  • the heat generated by the operation of the electronic component 200 may be discharged through the base 11.
  • the protrusion 112, the wiring board 14, the wiring pattern 141, and the electronic component 200 may be covered with a cover member to be isolated from the outside.
  • the cover member may have a window portion made of a material that transmits the wavelength of the emitted light.
  • FIG. 2 is an enlarged view of the vicinity of the bonding position of the conductive bonding material 16.
  • the tips of the two signal lines 12 are exposed on the second surface 11a of the base 111, respectively, at approximately the center of the exposed surface of the insulating member 113 in the separate through hole 111a.
  • the signal line 12 is separated from the outer base 111 by the insulating member 113 inside the insulating member 113, and a signal is transmitted through the coaxial line in the base 111.
  • the wiring A 1411 that is a portion of the wiring pattern 141 that is connected to each of the signal lines 12 extends on the wiring board 14 from the vicinity of the exposed surface of the insulating member 113 in the first direction X away from the second surface 11 a.
  • the first direction X may be a direction perpendicular to the second surface 11a.
  • the term “perpendicular” includes an error caused in manufacturing. The error may be in the range of ⁇ 0.1° to +0.1°.
  • the wiring pattern 141 is separated from the protrusion 112 by the wiring board 14. That is, the wiring pattern 141 on the wiring board 14 is a microstrip line.
  • the conductive bonding material 16 may be located between the signal line 12 and the second surface 11a and the wiring pattern 141 and the first surface 14a.
  • a joint portion A161 which is a part of the conductive joint material 16 on the side closer to the second surface 11a, is joined to the wiring A1411 and the wiring board 14, and is also joined to the insulating member 113 on the second surface 11a. There is.
  • the characteristic impedances of the coaxial line portion and the microstrip line portion may be matched with each other.
  • the conductive bonding material 16 is a section connecting these, and is a position where the characteristic impedance is likely to locally change.
  • the conductive bonding material 16 signals the wiring A 1411 and the wiring substrate 14 of the wiring pattern 141 with a width wider than the width of the wiring in the bonding portion with the wiring pattern 141. It is joined to the wire 12 and the insulating member 113.
  • the width refers to the length of the wiring pattern 141 in the direction perpendicular to the extending direction of the wiring.
  • the width direction of the wiring A 1411 and the conductive bonding material 16 is the length in the direction perpendicular to the first direction X.
  • the conductive bonding material 16 itself forms a part of the wiring of the microstrip line, and the width of the bonding portion is widened, thereby increasing the capacitance between the conductive bonding material 16 and the protrusion 112, which is a conductor, and increasing the characteristic impedance. Can be lowered. Further, by appropriately adjusting the width and the shape, it is possible to reduce the fluctuation of the characteristic impedance in the signal path from the signal line 12 to the wiring pattern 141.
  • 3A and 3B are diagrams illustrating the shape of the conductive bonding material 16.
  • the base portion 111 and one signal line 12 are cut and shown in a cross section including the signal line 12, and a portion of the wiring pattern 141 hidden by the conductive bonding material 16 is shown by a dotted line. ..
  • FIG. 3A is a diagram in a cross section parallel to the first surface 14a.
  • the conductive bonding material 16 is bonded to the first surface 14a with a width wider than the width W0 of the wiring at the bonding portion with the wiring pattern 141 within a range L of a predetermined distance from the bonding surface 14b including the bonding portion A161. ..
  • the maximum value of the width of the joint wider than the width W0 of the wiring in the joint portion of the conductive joint material 16 with the wiring pattern 141 is defined as the maximum width W.
  • the joint portion A 161 is joined to the insulating member 113 over a wider area than the signal line 12 with respect to the second surface 11 a.
  • the characteristic impedance decreases as the width of the wiring becomes wider, such a wide joint is used to reduce the local increase in the characteristic impedance at the connecting portion between the signal line 12 and the joint A161.
  • the width of the conductive bonding material 16 is maximum at the position closest to the second surface 11a, and gradually decreases with increasing distance from the second surface 11a. A sudden change in the characteristic impedance in the direction X can be reduced.
  • FIG. 3B is a cross-sectional view seen from a direction orthogonal to the normal direction of the first surface 14a and the second surface 11a.
  • the conductive bonding material 16 is an insulating member up to a position further distant from the first surface 14a than a position farthest from the first surface 14a in the signal line 12 on a surface in contact with the second surface 11a of the bonding portion A161. It is joined to 113. That is, the thickness from the first surface 14a is large in the immediate vicinity of the second surface 11a. It should be noted that the position farthest from the first surface 14a in the signal line 12 may be described as the upper end.
  • the thickness from the first surface 14a to the upper end of the conductive bonding material 16 is the thickness of the conductive bonding material 16, which is indicated by the height H in FIG. 3B.
  • the thickness of the conductive bonding material 16 may be rapidly reduced as the distance from the bonding surface 14b is increased.
  • the thin state does not have to continue and have a large change in thickness.
  • the thickness of the conductive bonding material 16 does not affect the magnitude of the characteristic impedance. Therefore, it is not necessary to increase the thickness of the conductive bonding material 16 and use a large amount of nanoparticle-sintered bonding material paste.
  • the bonding strength is higher than in the conventional case due to the shape of bonding the signal line 12 and the insulating member 113 to the second surface 11a in a wide range. Can be improved.
  • 4A and 4B show the results of a simulation in which the loss in the electronic component mounting package of the above embodiment is calculated with respect to the signal frequency.
  • the conductive bonding material 16 As the conductive bonding material 16, a nano-particle sintering type bonding material paste in which a nano-sized metal is silver is used, and the conductive bonding material 16 is bonded to the wiring pattern 141 and the wiring board 14. The width is wider than the width of the wiring. As Comparative Example 1, the calculation result when the bonding width of the conductive bonding material 16 is made equal to the width of the wiring is also shown.
  • the standard value of the reflection loss is about -15 dB or less.
  • the increase in loss in the high frequency band is significantly reduced. It should be noted that the closer the reflection loss is to 0, the greater the reflection with respect to the incidence. Also, as shown in FIG. 4B, the insertion loss is reduced to -3 dB or more, which is the reference. Further, in the embodiment of the present disclosure, the increase in insertion loss is further reduced in the high frequency band. The insertion loss increases as the absolute value increases.
  • FIG. 5A and 5B are diagrams showing simulation results of signal transmission characteristics in the comparative example.
  • the calculation results of Comparative Example 1 and Comparative Example 2 in which the wiring thickness is increased with respect to Comparative Example 1 are also shown.
  • the reflection loss of FIG. 5A and the insertion loss of FIG. 5B there is no noticeable difference between Comparative Example 1 and Comparative Example 2 including the high frequency band. That is, even if only the thickness of the conductive bonding material is increased without expanding the width, the signal loss cannot be reduced.
  • FIG. 6A, 6B and 7 are perspective views showing an embodiment of the electronic component mounting package 100 of the present embodiment.
  • the electronic component mounting package 100a shown in FIG. 6A differs from the electronic component mounting package 100 in the width of the wiring pattern 141a.
  • Other configurations, structures, and positional relationships are the same, and the same configurations as those of the electronic component mounting package 100 are designated by the same reference numerals and description thereof will be omitted.
  • the wiring portion of the wiring pattern 141a that is joined to the conductive joining material 16 may have a shape in which the width decreases toward the second surface 11a. Since the width of the wiring is secured by the conductive bonding material 16, the width of the wiring pattern 141a may be narrow as long as the width of the conductive bonding material 16 is wider than the width of the wiring pattern 141a. That is, it is sufficient that the width of the conductive bonding material 16 changes from the width of the wiring pattern 141a to the width of the wiring pattern 141a.
  • the nanoparticle sintering type bonding material paste in which silver or copper is used as the conductor metal is lower in cost, and thus by thinning the wiring pattern 141a in this way, The cost can be reduced.
  • the width of the wiring pattern 141a is changed in the wiring direction in both of the two joining portions in the same manner, such a change may be made in only one of them.
  • the range in which the width of the wiring changes may be limited to only the portion bonded to the conductive bonding material 16 or only a part in the vicinity thereof.
  • the wiring length of the wiring pattern 141b is shorter than that of the electronic component mounting packages 100 and 100a.
  • Other configurations, structures, and positional relationships are the same, and the same configurations as those of the electronic component mounting package 100 are designated by the same reference numerals and description thereof will be omitted.
  • the wiring portion to be joined to the wiring pattern 141b may be shortened so that the area of the portion of the wiring pattern 141b between the conductive bonding material 16 and the wiring substrate 14 becomes small. .. Since the conductive bonding material 16 is used instead of the wiring pattern, the wiring pattern 141b may not be provided in the range in which the conductive bonding material 16 extends from the second surface 11a with a sufficient width. Similar to the wiring pattern 141a, the cost can be reduced by shortening the gold thin film wiring pattern 141b.
  • the signal line 12 is located in the height direction from the first surface 14a with the first surface 14a sandwiched therebetween.
  • the wiring pattern 141c extends to the end of the first surface 14a on the side in contact with the second surface 11a, the signal line 12 and the wiring pattern 141c may be in direct contact with each other.
  • the width of the conductive bonding material 16 gradually approaches the width of the wiring pattern 141, the wiring pattern 141a, the wiring pattern 141b, or the wiring pattern 141c, so that the characteristic impedance is locally increased and abruptly changed. It can be reduced. By stabilizing the characteristic impedance, it is possible to reduce signal transmission loss and loss due to reflection.
  • the electronic component mounting package 100 of the present embodiment has the wiring board 14 having the first surface 14a and the wiring pattern 141 located on the first surface 14a, and the wiring board 14 is A base 11 having a second surface 11a in contact with the bonding surface 14b adjacent to the first surface 14a, a signal line 12 penetrating the base 11, and a conductive bonding material 16 are provided.
  • the wiring pattern 141 has a wiring A1411 which is a portion extending in the first direction X away from the second surface 11a, and the conductive bonding material 16 is a signal of the wiring pattern 141 on the first surface 14a and the signal on the second surface 11a.
  • the width of the conductive bonding material 16 that is joined to the line 12 and is orthogonal to the first direction is wider than the width W0 of the wiring A1411.
  • the conductive bonding material 16 is positioned on the wiring board made of an insulating material so as to exceed the width of the wiring pattern 141, so that the wiring pattern 141 is apparently formed at the joint portion between the signal line 12 and the wiring pattern 141. Has widened. This locally reduces the increase in characteristic impedance and reduces power loss due to signal reflection and the like. By performing such a configuration using the conductive bonding material 16 instead of designing the wiring pattern itself, it is possible to perform flexible adjustment according to the product at the manufacturing stage of the electronic component mounting package 100.
  • the profile of the characteristic impedance can be adjusted appropriately.
  • various adjustments can be easily performed for the same electronic component mounting package when the optimal width etc. changes for each electronic component.
  • since the increase in the characteristic impedance is reduced by the conductive bonding material 16 itself, it is possible to reduce the abrupt change in the characteristic impedance, particularly the increase, even if the signal line 12 and the wiring pattern 141 are not directly bonded. As a result, the design of the arrangement of each component of the electronic component mounting package 100 is facilitated, and the electronic component mounting package 100 that can efficiently transmit signals to the electronic component 200 can be obtained more easily.
  • the end of the signal line 12 in contact with the conductive bonding material 16 may be located in the same plane as the second surface 11a or inside the base 11 with respect to the second surface 11a.
  • the signal line 12 which is the lead electrode having the coaxial structure, protruding from the second surface 11 a and being positioned in parallel with the wiring pattern 141.
  • the conductive bonding material 16 can also be bonded to the insulating member 113 on the second surface 11a, sufficient bonding strength can be obtained even if only the tip of the signal line 12 is connected. Therefore, it is possible to reduce the occurrence of a problem due to the protrusion of the signal line 12.
  • the width of the conductive bonding material 16 may be maximum at the position closest to the second surface 11a. That is, by increasing the bonding width at the tip of the signal line 12 having the coaxial structure with the conductive bonding material 16, it is possible to further reduce the increase in the characteristic impedance at the point where the structure of the signal line is switched. As a result, the electronic component mounting package 100 can reduce power loss of signals.
  • the width of the conductive bonding material 16 may decrease with increasing distance from the second surface 11a.
  • the width of the wiring A1411 that overlaps with the conductive bonding material 16 may decrease toward the second surface 11a.
  • the width of the conductive bonding material 16 determines the characteristic impedance, so it is not necessary to widen the width of the wiring A1411. Therefore, by decreasing the width of the wiring in this portion, the amount of the conductive metal used for the wiring pattern 141, especially the amount of gold used, can be reduced while reducing the width of the wiring as a whole, that is, a sharp change in the characteristic impedance. Can be reduced and the cost can be reduced.
  • the conductive bonding material 16 may have a bonding portion A161 that also bonds to the signal line 12 and the insulating member 113 on the second surface 11a.
  • the bonding portion A161 of the conductive bonding material 16 may be bonded on the second surface 11a at a position farther from the first surface 14a than the signal line 12.
  • the bonding since the bonding is performed not only in the range close to the first surface 14a but also in a wide range, it is difficult to concentrate the force on the bonding portion between the bonding portion A161 and the signal line 12, and the conductive bonding material is used. Since 16 is less likely to be peeled off from the signal line 12, it is possible to reduce initial failure and disconnection during use.
  • the conductive bonding material 16 may be a nanoparticle sintering type bonding material paste.
  • the resin of the nanoparticle sintering type bonding material paste is firmly bonded to the insulating member 113 and the wiring board 14, so that more stable bonding can be obtained.
  • the wiring pattern 141 is bonded to the wiring substrate 14 with a width wider than that of the wiring pattern 141.
  • the bonding range of this nanoparticle sintering type bonding material paste it is possible to more flexibly obtain an appropriate characteristic impedance distribution from the tip of the signal line 12 in the extending direction of the wiring. As a result, signal power loss can be effectively reduced.
  • the sintering temperature of the nanoparticle-sintering-type bonding material paste is often lower than that of solder, it is possible to reduce the influence of high heat on other parts.
  • the electronic device 1 of the present embodiment includes the electronic component mounting package 100 described above and the electronic component 200 connected to the wiring pattern 141.
  • the power loss of the signal can be reduced by more appropriately matching the characteristic impedance, and the electronic component 200 can be effectively operated without wasting the power consumption.
  • the positional relationship between the first surface 14a and the second surface 11a may not be orthogonal to each other, and the shape of each surface may be appropriately adjusted according to the electronic component 200 and the like.
  • the wiring A1411 of the wiring pattern 141 that is joined to the signal line 12 does not have to extend in the direction orthogonal to the second surface 11a.
  • the signal line 12 is described as not protruding from the second surface 11a, but it may be slightly protruding. In this case, the signal line 12 and the wiring pattern 141 may be in direct contact with each other.
  • the joint portion of the conductive joint material 16 has the maximum joint width with the first surface 14a at the contact surface with the second surface 11a, and gradually decreases with increasing distance from the second surface 11a.
  • the bonding portion of the conductive bonding material 16 may have a tapered shape in a plan view toward the first surface 14a, or may have a curve that gradually approaches the width of the wiring pattern 141.
  • the bonding width may be maximized at a position slightly apart from the contact surface with the second surface 11a depending on structural restrictions.
  • the change in the bonding width may be intermittent or may be in the form of fine steps.
  • the joining width may be finely increased or decreased depending on the accuracy of determining the joining range.
  • the signal line 12 and the wiring pattern 141 are joined by using the conductive joining material 16, but the same conductive joining is used for other connection parts, for example, for mounting the electronic component 200.
  • Material 16 may be used, or a conventional bonding material may be used.
  • the base 11 may not be a conductive metal. ..
  • the signal line 12 may directly contact the base 11 and penetrate the through hole 111a.
  • the wiring pattern 14 also does not become a microstrip line.
  • the conductive bonding material 16 may be directly bonded to the second surface 11a of the base 11 which is an insulating member.
  • the through hole 111 a may not be a hole formed in the base body 11 afterwards, but may be formed as a result of forming the base body 11 of the insulating member around the signal line 12.
  • specific details such as the configuration, the structure, the positional relationship, and the shape shown in the above-described embodiment can be appropriately changed without departing from the gist of the present disclosure.
  • the contents of the present disclosure can be used for electronic component mounting packages and electronic devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

This electronic component mounting package comprises a wiring substrate having a first surface and a wiring pattern positioned on the first surface, a base having a second surface that contacts the first surface at an adjacent surface, a signal line that passes through the base, and an electroconductive bonding material. The wiring pattern has wiring A that extends in a first direction away from the second surface, an electroconductive bonding material bonds the wiring A and the signal line, and the width of the electroconductive bonding material orthogonal to the first direction is greater than the width of the wiring A.

Description

電子部品搭載用パッケージ及び電子装置Electronic component mounting package and electronic device
 本開示は、電子部品搭載用パッケージ及び電子装置に関する。 The present disclosure relates to electronic component mounting packages and electronic devices.
 電子部品に接続される配線パターンと、当該配線パターンに接合される信号線とを有する電子部品搭載用のパッケージがある。このパッケージの信号線と配線パターンとの接合箇所では、信号の損失が生じやすい。特開2007-150182号公報には、信号線と配線パターンとを適切に近接させて半田で接合する技術の開示がある。 There is a package for mounting an electronic component, which has a wiring pattern connected to the electronic component and a signal line joined to the wiring pattern. Signal loss is likely to occur at the junction between the signal line of this package and the wiring pattern. Japanese Unexamined Patent Application Publication No. 2007-150182 discloses a technique of appropriately bringing a signal line and a wiring pattern into close proximity to each other and joining them with solder.
 本開示の一の態様は、
 第1面と、前記第1面上に位置する配線パターンと、を有する配線基板と、
 前記第1面に隣接する面で接している第2面を有する基体と、
 前記基体を貫通している信号線と、
 導電性接合材と、
 を備え、
 前記配線パターンは、前記第2面から離れる方向の第1方向に延びる配線Aを有し、
 前記導電性接合材は、前記配線A及び前記信号線を接合し、
 前記導電性接合材の前記第1方向に直交する幅が、前記配線Aの前記幅より広い、電子部品搭載用パッケージである。
One aspect of the present disclosure is
A wiring board having a first surface and a wiring pattern located on the first surface;
A base having a second surface in contact with a surface adjacent to the first surface;
A signal line penetrating the base,
Conductive bonding material,
Equipped with
The wiring pattern has a wiring A extending in a first direction away from the second surface,
The conductive bonding material bonds the wiring A and the signal line,
In the electronic component mounting package, a width of the conductive bonding material orthogonal to the first direction is wider than the width of the wiring A.
 また、本開示の他の一の態様は、
 上記の電子部品搭載用パッケージと、
 配線パターンに接続される電子部品と、
 を備える、電子装置である。
In addition, another aspect of the present disclosure is
The above electronic component mounting package,
Electronic components connected to the wiring pattern,
Is an electronic device.
 本開示の内容によれば、電子部品搭載用パッケージにおいて、より信号の電力損失を抑えることができるという効果がある。 According to the contents of the present disclosure, there is an effect that the power loss of a signal can be further suppressed in the electronic component mounting package.
本実施形態の電子装置の全体斜視図である。It is a whole perspective view of the electronic device of this embodiment. 導電性接合材の接合位置付近を拡大して示した図である。It is the figure which expanded and showed the joining position vicinity of a conductive joining material. 導電性接合材の形状を説明する図である。It is a figure explaining the shape of a conductive joining material. 導電性接合材の形状を説明する図である。It is a figure explaining the shape of a conductive joining material. 信号透過特性のシミュレーション結果を示した図である。It is the figure which showed the simulation result of a signal transmission characteristic. 信号透過特性のシミュレーション結果を示した図である。It is the figure which showed the simulation result of a signal transmission characteristic. 比較例における信号透過特性のシミュレーション結果を示した図である。It is a figure showing a simulation result of a signal penetration characteristic in a comparative example. 比較例における信号透過特性のシミュレーション結果を示した図である。It is a figure showing a simulation result of a signal penetration characteristic in a comparative example. 電子部品搭載用パッケージの変形例1を示す斜視図である。It is a perspective view which shows the modification 1 of the package for electronic component mounting. 電子部品搭載用パッケージの変形例2を示す斜視図である。It is a perspective view which shows the modification 2 of the package for electronic component mounting. 電子部品搭載用パッケージの変形例3を示す斜視図である。It is a perspective view which shows the modification 3 of the package for electronic component mounting.
 以下、実施の形態を図面に基づいて説明する。
 図1は、本実施形態の電子装置1の全体斜視図である。
Hereinafter, embodiments will be described with reference to the drawings.
FIG. 1 is an overall perspective view of the electronic device 1 of this embodiment.
 電子装置1は、電子部品搭載用パッケージ100と、電子部品200とを備える。
 電子部品搭載用パッケージ100は、基体11と、信号線12と、配線基板14と、導電性接合材16などを備える。
The electronic device 1 includes an electronic component mounting package 100 and an electronic component 200.
The electronic component mounting package 100 includes a base 11, a signal line 12, a wiring board 14, a conductive bonding material 16, and the like.
 基体11は、導電性の金属であってもよく、この場合には、接地面として機能する。以下では、明記しない限り基体11が導電性の金属であるものとして説明する。これに加えて、基体11には、熱伝導性の高いものが用いられてよい。本明細書において、熱伝導性は放熱性を指すこともある。基体11は、基部111と、突起部112とを有する。基部111は、ここでは、例えば、直径が3~10mm、厚さが0.5~2mmの円板状形状を有していてもよく、また、これには限られない。基部111は、貫通孔111aを有する。貫通孔111a内には、絶縁部材113が位置していてもよい。絶縁部材113は、例えば、ガラス又はセラミック材であってもよい。絶縁部材113の材質及び貫通孔111aの大きさは、所望の特性インピーダンスに応じて定められればよい。または、基体11が絶縁部材の場合には、信号線12のみが通るものであってもよい。基部111と突起部112は一体的であってよい。 The base 11 may be a conductive metal, and in this case, it functions as a ground plane. In the following description, it is assumed that the base 11 is a conductive metal unless otherwise specified. In addition to this, the base 11 may have a high thermal conductivity. In this specification, thermal conductivity may refer to heat dissipation. The base 11 has a base 111 and a protrusion 112. Here, the base 111 may have, for example, a disc shape with a diameter of 3 to 10 mm and a thickness of 0.5 to 2 mm, but is not limited thereto. The base 111 has a through hole 111a. The insulating member 113 may be located in the through hole 111a. The insulating member 113 may be, for example, a glass or ceramic material. The material of the insulating member 113 and the size of the through hole 111a may be determined according to the desired characteristic impedance. Alternatively, when the base 11 is an insulating member, only the signal line 12 may pass through. The base 111 and the protrusion 112 may be integrated.
 突起部112は、一方の面が平面状であり、配線基板14が当該一方の面上に位置している。配線基板14は、第1面14aを有する。この第1面14aは、突起部112との接続面とは反対側の面である。配線基板14は、第1面14a上に位置する配線パターン141を有する。ここでは、配線基板14は、例えば、高周波線路基板として用いられてもよい。配線基板14は、絶縁基板であり、例えば、樹脂であってもよい。配線基板14の厚さ、材質及び材質の比誘電率は、所望の特性インピーダンスに応じて適宜決定されればよい。配線基板14の側面であり、第1面14aに隣接する接合面14bは、基部111の第2面11aに接合している。 One side of the protrusion 112 is flat, and the wiring board 14 is located on the one side. The wiring board 14 has a first surface 14a. The first surface 14a is a surface opposite to the connection surface with the protrusion 112. The wiring board 14 has a wiring pattern 141 located on the first surface 14a. Here, the wiring board 14 may be used as, for example, a high-frequency line board. The wiring substrate 14 is an insulating substrate and may be, for example, resin. The thickness, the material and the relative permittivity of the material of the wiring board 14 may be appropriately determined according to the desired characteristic impedance. The bonding surface 14b, which is a side surface of the wiring board 14 and is adjacent to the first surface 14a, is bonded to the second surface 11a of the base 111.
 配線パターン141は、電子部品200と電気的に接続されて、当該電子部品200に電力及び信号を供給する。配線パターン141は、抵抗の小さい導体金属膜、ここでは、金(Au)薄膜であってもよい。配線パターン141は、端部が導電性接合材16により信号線12と接合している。例えば、図1では、導電性接合材16を介して信号線12と接合される端部が2か所示されている。配線パターンの形状、長さ及び位置は、接続される電子部品200のサイズ及び端子位置に応じて適宜定められる。 The wiring pattern 141 is electrically connected to the electronic component 200 and supplies electric power and a signal to the electronic component 200. The wiring pattern 141 may be a conductive metal film having a low resistance, here, a gold (Au) thin film. The wiring pattern 141 has an end joined to the signal line 12 by a conductive joining material 16. For example, in FIG. 1, two end portions that are joined to the signal line 12 via the conductive joining material 16 are shown. The shape, length and position of the wiring pattern are appropriately determined according to the size and terminal position of the electronic component 200 to be connected.
 信号線12は棒状の導体であり、基体11の基部111を貫通している。図1では、信号線12は、貫通孔111a内の絶縁部材113を貫通している。信号線12の直径は、例えば、0.1~1.0mm程度であってもよい。信号線12のうち少なくとも1本は、基体11の接地端子であり、基部111に直接接合している。その他の信号線12は、基部111の第2面11aとは反対の面の側で突出しており、外部配線などと電気的に接続される。すなわち、接地端子以外のその他の信号線12は、リード電極として用いられる。例えば、図1では、第2面11aの側で、2本の信号線12が導電性接合材16を介して配線パターン141と接合している状態が示されている。信号線12と配線パターン141とは、直接接触していなくてもよい。また、信号線12は、第2面11aから突出していなくてもよい。すなわち、信号線12は、信号線12の先端が露出していればよい。 The signal line 12 is a rod-shaped conductor and penetrates the base 111 of the base 11. In FIG. 1, the signal line 12 penetrates the insulating member 113 in the through hole 111a. The diameter of the signal line 12 may be, for example, about 0.1 to 1.0 mm. At least one of the signal lines 12 is a ground terminal of the base 11, and is directly joined to the base 111. The other signal lines 12 project on the side of the base 111 opposite to the second surface 11a and are electrically connected to external wiring or the like. That is, the signal lines 12 other than the ground terminal are used as lead electrodes. For example, FIG. 1 shows a state in which two signal lines 12 are joined to the wiring pattern 141 via the conductive joining material 16 on the second surface 11a side. The signal line 12 and the wiring pattern 141 do not have to be in direct contact with each other. Further, the signal line 12 does not have to protrude from the second surface 11a. That is, as for the signal line 12, the tip of the signal line 12 may be exposed.
 導電性接合材16は、第2面11aの信号線12と第1面14aの配線パターン141とを電気的に接合する。導電性接合材16は、ナノ粒子焼結型接合材ペーストであってもよい。ナノ粒子焼結型接合材ペーストは、表面安定剤に覆われたナノサイズの金属、例えば銀又は銅などと、樹脂と、有機溶剤とが混在している。なお、ナノ粒子焼結型接合材ペーストが固着した後は、有機溶剤は揮発している。ナノ粒子焼結型接合材ペーストは、加熱されて樹脂が反応を生じ、また、金属が活性化して当該金属同士が反応して結合し、また金属面とも反応して固着する。金属同士の結合により、大きな熱伝導率が得られる。したがって、導電性接合材16は、信号線12及び配線パターン141だけではなく、絶縁部材113及び配線基板14の絶縁面とも接合する。 The conductive bonding material 16 electrically bonds the signal line 12 on the second surface 11a and the wiring pattern 141 on the first surface 14a. The conductive bonding material 16 may be a nanoparticle sintering type bonding material paste. The nano-particle sintering type bonding material paste contains a nano-sized metal covered with a surface stabilizer, such as silver or copper, a resin, and an organic solvent. It should be noted that the organic solvent is volatilized after the nanoparticle sintering type bonding material paste is fixed. The nanoparticle-sintering-type bonding material paste is heated to cause a reaction of the resin, and the metal is activated to react with each other to bond with each other, and also react with the metal surface to be fixed. A large thermal conductivity is obtained due to the bonding of the metals. Therefore, the conductive bonding material 16 bonds not only to the signal line 12 and the wiring pattern 141 but also to the insulating member 113 and the insulating surface of the wiring board 14.
 図1の破線で示す電子部品200は、第1面14a上に位置しており、直接又はワイヤボンディングなどにより配線パターン141と電気的に接続されている。電子部品200は、例えば、レーザーダイオードであってもよい。あるいは、電子部品200は、フォトダイオード、LED(Light Emitting Diode)又はペルチェ素子、各種センサ素子など種々のものであってもよい。電子部品200の動作に伴って生じた熱は、基体11を介して排出されてもよい。 The electronic component 200 shown by the broken line in FIG. 1 is located on the first surface 14a and is electrically connected to the wiring pattern 141 directly or by wire bonding. The electronic component 200 may be, for example, a laser diode. Alternatively, the electronic component 200 may be various types such as a photodiode, an LED (Light Emitting Diode) or a Peltier element, and various sensor elements. The heat generated by the operation of the electronic component 200 may be discharged through the base 11.
 突起部112、配線基板14、配線パターン141及び電子部品200は、カバー部材によって覆われて外部と隔離されてもよい。なお、電子部品200が外部に光を出射したりする場合には、カバー部材が当該出射光の波長を透過させる材質の窓部を有していてもよい。 The protrusion 112, the wiring board 14, the wiring pattern 141, and the electronic component 200 may be covered with a cover member to be isolated from the outside. When the electronic component 200 emits light to the outside, the cover member may have a window portion made of a material that transmits the wavelength of the emitted light.
 図2は、導電性接合材16の接合位置付近を拡大して示した図である。 FIG. 2 is an enlarged view of the vicinity of the bonding position of the conductive bonding material 16.
 2本の信号線12の先端は、それぞれ基部111の第2面11aで、別個の貫通孔111a内の絶縁部材113の露出面内ほぼ中央に露出している。信号線12は、絶縁部材113の内部では、当該絶縁部材113により外側の基部111と隔てられており、基部111内を同軸線路により信号が伝送される。 The tips of the two signal lines 12 are exposed on the second surface 11a of the base 111, respectively, at approximately the center of the exposed surface of the insulating member 113 in the separate through hole 111a. The signal line 12 is separated from the outer base 111 by the insulating member 113 inside the insulating member 113, and a signal is transmitted through the coaxial line in the base 111.
 配線パターン141のうち信号線12とそれぞれ接続される部分である配線A1411は、配線基板14上を絶縁部材113の露出面直近から、第2面11aから離れる第1方向Xに延びている。第1方向Xは、第2面11aに垂直な方向であってもよい。なお、本明細書において、垂直とは、製造上生じてしまう誤差を含む。誤差は、-0.1°から+0.1°の範囲であってもよい。配線パターン141は、配線基板14により突起部112と隔てられている。すなわち、配線基板14上の配線パターン141は、マイクロストリップラインとなっている。 The wiring A 1411 that is a portion of the wiring pattern 141 that is connected to each of the signal lines 12 extends on the wiring board 14 from the vicinity of the exposed surface of the insulating member 113 in the first direction X away from the second surface 11 a. The first direction X may be a direction perpendicular to the second surface 11a. In addition, in the present specification, the term “perpendicular” includes an error caused in manufacturing. The error may be in the range of −0.1° to +0.1°. The wiring pattern 141 is separated from the protrusion 112 by the wiring board 14. That is, the wiring pattern 141 on the wiring board 14 is a microstrip line.
 導電性接合材16は、信号線12及び第2面11aと、配線パターン141及び第1面14aとの間にわたって位置していてもよい。導電性接合材16の第2面11aに近い側の一部である接合部A161は、配線A1411及び配線基板14に接合しており、また、第2面11aで絶縁部材113にも接合している。 The conductive bonding material 16 may be located between the signal line 12 and the second surface 11a and the wiring pattern 141 and the first surface 14a. A joint portion A161, which is a part of the conductive joint material 16 on the side closer to the second surface 11a, is joined to the wiring A1411 and the wiring board 14, and is also joined to the insulating member 113 on the second surface 11a. There is.
 同軸線路部分と、マイクロストリップライン部分は、互いに特性インピーダンスの整合が図られていてもよい。導電性接合材16は、これらの間をつなぐ区間になり、局所的に特性インピーダンスが変化しやすい位置である。本開示の一実施形態の電子部品搭載用パッケージ100では、導電性接合材16は、配線パターン141との接合部分における配線の幅よりも広い幅で配線パターン141の配線A1411及び配線基板14を信号線12及び絶縁部材113と接合している。なお、幅とは、配線パターン141における配線の延在方向に垂直な方向の長さを指す。特に、配線A1411及び導電性接合材16について、幅方向は、第1方向Xに垂直な方向の長さである。これにより、導電性接合材16自体がマイクロストリップラインの配線の一部をなし、その接着部分の幅を広げることで、導体である突起部112との間での容量を増加させて特性インピーダンスを低下させることができる。また、この幅及び形状が適宜調整されることで、信号線12から配線パターン141にかけての信号経路における特性インピーダンスの変動を低減できる。 The characteristic impedances of the coaxial line portion and the microstrip line portion may be matched with each other. The conductive bonding material 16 is a section connecting these, and is a position where the characteristic impedance is likely to locally change. In the electronic component mounting package 100 according to the embodiment of the present disclosure, the conductive bonding material 16 signals the wiring A 1411 and the wiring substrate 14 of the wiring pattern 141 with a width wider than the width of the wiring in the bonding portion with the wiring pattern 141. It is joined to the wire 12 and the insulating member 113. The width refers to the length of the wiring pattern 141 in the direction perpendicular to the extending direction of the wiring. In particular, the width direction of the wiring A 1411 and the conductive bonding material 16 is the length in the direction perpendicular to the first direction X. As a result, the conductive bonding material 16 itself forms a part of the wiring of the microstrip line, and the width of the bonding portion is widened, thereby increasing the capacitance between the conductive bonding material 16 and the protrusion 112, which is a conductor, and increasing the characteristic impedance. Can be lowered. Further, by appropriately adjusting the width and the shape, it is possible to reduce the fluctuation of the characteristic impedance in the signal path from the signal line 12 to the wiring pattern 141.
 図3A及び図3Bは、導電性接合材16の形状を説明する図である。ここでは、基部111及び1本の信号線12を当該信号線12が含まれる断面で切断して示し、また、配線パターン141のうち導電性接合材16に隠れている部分を点線で示している。 3A and 3B are diagrams illustrating the shape of the conductive bonding material 16. Here, the base portion 111 and one signal line 12 are cut and shown in a cross section including the signal line 12, and a portion of the wiring pattern 141 hidden by the conductive bonding material 16 is shown by a dotted line. ..
 図3Aは、第1面14aに平行な断面での図である。
 導電性接合材16は、接合部A161を含む接合面14bから所定の距離の範囲Lで、配線パターン141との接合部分における配線の幅W0よりも広い幅で第1面14aと接合している。導電性接合材16の配線パターン141との接合部分における配線の幅W0よりも広い接合の幅の最大値を最大幅Wとする。また、これに応じて、接合部A161は、第2面11aに対しても信号線12よりも広い範囲で絶縁部材113に接合している。特性インピーダンスは、配線の幅が広くなるほど低下するので、このように幅広で接合していることにより、信号線12と接合部A161との接続部分での局所的な特性インピーダンスの増大を低減することができる。また、導電性接合材16の幅は、第2面11aに最も近い位置で最大であり、第2面11aから離れるにつれて幅を漸減していくことで、配線A141の延在方向である第1方向Xについて、特性インピーダンスの急変を低減できる。
FIG. 3A is a diagram in a cross section parallel to the first surface 14a.
The conductive bonding material 16 is bonded to the first surface 14a with a width wider than the width W0 of the wiring at the bonding portion with the wiring pattern 141 within a range L of a predetermined distance from the bonding surface 14b including the bonding portion A161. .. The maximum value of the width of the joint wider than the width W0 of the wiring in the joint portion of the conductive joint material 16 with the wiring pattern 141 is defined as the maximum width W. In addition, accordingly, the joint portion A 161 is joined to the insulating member 113 over a wider area than the signal line 12 with respect to the second surface 11 a. Since the characteristic impedance decreases as the width of the wiring becomes wider, such a wide joint is used to reduce the local increase in the characteristic impedance at the connecting portion between the signal line 12 and the joint A161. You can In addition, the width of the conductive bonding material 16 is maximum at the position closest to the second surface 11a, and gradually decreases with increasing distance from the second surface 11a. A sudden change in the characteristic impedance in the direction X can be reduced.
 図3Bは、第1面14a及び第2面11aの法線方向と直交する方向から見た断面図である。
 導電性接合材16は、接合部A161の第2面11aと接する面では、信号線12のうち第1面14aから最も離れた位置よりもさらに第1面14aから離れた上側の位置まで絶縁部材113と接合している。すなわち、第2面11aの直近では、第1面14aからの厚みが大きい。なお、信号線12において第1面14aから最も離れた位置を上端として説明することがある。また、第1面14aから導電性接合材16の上端までが導電性接合材16の厚みであり、図3Bにおいて高さHで示している。導電性接合材16の厚みは、接合面14bから離れると急激に薄くなってもよい。なお、配線パターン141上では、薄い状態が続いて大きな厚さの変化を有しなくてもよい。導電性接合材16の厚さは、原則的に特性インピーダンスの大小に影響しない。そのため、導電性接合材16の厚さを厚くして、多くのナノ粒子焼結型接合材ペーストを用いる必要はない。しかしながら、上述のように導電性接合材16は、絶縁部材113とも接合するので、第2面11aに対して信号線12及び絶縁部材113の広い範囲で接合する形状により、接合強度を従来よりも向上させることができる。
FIG. 3B is a cross-sectional view seen from a direction orthogonal to the normal direction of the first surface 14a and the second surface 11a.
The conductive bonding material 16 is an insulating member up to a position further distant from the first surface 14a than a position farthest from the first surface 14a in the signal line 12 on a surface in contact with the second surface 11a of the bonding portion A161. It is joined to 113. That is, the thickness from the first surface 14a is large in the immediate vicinity of the second surface 11a. It should be noted that the position farthest from the first surface 14a in the signal line 12 may be described as the upper end. The thickness from the first surface 14a to the upper end of the conductive bonding material 16 is the thickness of the conductive bonding material 16, which is indicated by the height H in FIG. 3B. The thickness of the conductive bonding material 16 may be rapidly reduced as the distance from the bonding surface 14b is increased. In addition, on the wiring pattern 141, the thin state does not have to continue and have a large change in thickness. In principle, the thickness of the conductive bonding material 16 does not affect the magnitude of the characteristic impedance. Therefore, it is not necessary to increase the thickness of the conductive bonding material 16 and use a large amount of nanoparticle-sintered bonding material paste. However, since the conductive bonding material 16 is also bonded to the insulating member 113 as described above, the bonding strength is higher than in the conventional case due to the shape of bonding the signal line 12 and the insulating member 113 to the second surface 11a in a wide range. Can be improved.
 図4A及び図4Bには、上記実施形態の電子部品搭載用パッケージにおける損失を信号の周波数に対して計算したシミュレーションの結果を示す。 4A and 4B show the results of a simulation in which the loss in the electronic component mounting package of the above embodiment is calculated with respect to the signal frequency.
 本開示の実施例では、導電性接合材16として、ナノサイズの金属を銀としたナノ粒子焼結型接合材ペーストを用い、当該導電性接合材16の配線パターン141及び配線基板14との接合幅を、配線の幅よりも拡張している。比較例1として、導電性接合材16の接合幅を配線の幅と等しくした場合の計算結果を併せて示す。 In the embodiment of the present disclosure, as the conductive bonding material 16, a nano-particle sintering type bonding material paste in which a nano-sized metal is silver is used, and the conductive bonding material 16 is bonded to the wiring pattern 141 and the wiring board 14. The width is wider than the width of the wiring. As Comparative Example 1, the calculation result when the bonding width of the conductive bonding material 16 is made equal to the width of the wiring is also shown.
 反射損失は、基準となる-15dB以下程度の値が得られていることが図4Aに示されている。特に、本開示の実施例では、高周波数帯域での損失の増大が顕著に低減される。なお、反射損失は、0に近いほど入射に対して反射が大きくなる。また、図4Bに示すように、挿入損失は、基準となる-3dB以上に低減される。また、本開示の実施例では、高周波数帯域で、より挿入損失の増加が低減されている。なお、挿入損失は、値の絶対値が大きいほど大きくなる。 It is shown in Fig. 4A that the standard value of the reflection loss is about -15 dB or less. Particularly, in the embodiment of the present disclosure, the increase in loss in the high frequency band is significantly reduced. It should be noted that the closer the reflection loss is to 0, the greater the reflection with respect to the incidence. Also, as shown in FIG. 4B, the insertion loss is reduced to -3 dB or more, which is the reference. Further, in the embodiment of the present disclosure, the increase in insertion loss is further reduced in the high frequency band. The insertion loss increases as the absolute value increases.
 図5A及び図5Bは、比較例における信号透過特性のシミュレーション結果を示す図である。
 ここでは、上記比較例1と、比較例1に対して、配線の厚さを増加させた比較例2の計算結果を併せて示している。図5Aの反射損失及び図5Bの挿入損失のいずれも、高周波数帯域を含めて比較例1と比較例2との間に目立った差は見られない。すなわち、導電性接合材の幅を広げずに厚みのみを増加させても信号の損失を低減させることはできない。
5A and 5B are diagrams showing simulation results of signal transmission characteristics in the comparative example.
Here, the calculation results of Comparative Example 1 and Comparative Example 2 in which the wiring thickness is increased with respect to Comparative Example 1 are also shown. In both the reflection loss of FIG. 5A and the insertion loss of FIG. 5B, there is no noticeable difference between Comparative Example 1 and Comparative Example 2 including the high frequency band. That is, even if only the thickness of the conductive bonding material is increased without expanding the width, the signal loss cannot be reduced.
 図6A、図6B及び図7は、本実施形態の電子部品搭載用パッケージ100の一実施形態を示す斜視図である。
 図6Aに示す電子部品搭載用パッケージ100aは、上記電子部品搭載用パッケージ100と比較して、配線パターン141aの幅が異なる。その他の構成、構造及び位置関係は同一であり、電子部品搭載用パッケージ100と同一の構成については同一の符号を付して説明を省略する。
6A, 6B and 7 are perspective views showing an embodiment of the electronic component mounting package 100 of the present embodiment.
The electronic component mounting package 100a shown in FIG. 6A differs from the electronic component mounting package 100 in the width of the wiring pattern 141a. Other configurations, structures, and positional relationships are the same, and the same configurations as those of the electronic component mounting package 100 are designated by the same reference numerals and description thereof will be omitted.
 図6Aに示すように、配線パターン141aのうち導電性接合材16と接合する配線部分は、第2面11aに向かうにつれて幅が減少している形状を有していてもよい。配線の幅は、導電性接合材16によって確保されているので、当該導電性接合材16の幅が配線パターン141aの幅よりも広い範囲では、配線パターン141aの幅が狭くてもよい。すなわち、導電性接合材16の幅から配線パターン141aの幅につながる部分で、幅の変化が緩やかであればよい。金薄膜である配線パターン141aと比較して、導体金属に銀又は銅が用いられるナノ粒子焼結型接合材ペーストの方が低コストであるので、このように配線パターン141aを細くすることで、コストを低減することができる。なお、ここでは、2箇所の接合部分についていずれも同様に配線パターン141aの幅を配線方向について変化させたが、いずれか一方のみでこのような変化があってもよい。また、配線の幅が変化する範囲は、導電性接合材16と接合する部分のみ又はその近傍の一部にのみ限られていてもよい。 As shown in FIG. 6A, the wiring portion of the wiring pattern 141a that is joined to the conductive joining material 16 may have a shape in which the width decreases toward the second surface 11a. Since the width of the wiring is secured by the conductive bonding material 16, the width of the wiring pattern 141a may be narrow as long as the width of the conductive bonding material 16 is wider than the width of the wiring pattern 141a. That is, it is sufficient that the width of the conductive bonding material 16 changes from the width of the wiring pattern 141a to the width of the wiring pattern 141a. Compared with the wiring pattern 141a that is a gold thin film, the nanoparticle sintering type bonding material paste in which silver or copper is used as the conductor metal is lower in cost, and thus by thinning the wiring pattern 141a in this way, The cost can be reduced. Although the width of the wiring pattern 141a is changed in the wiring direction in both of the two joining portions in the same manner, such a change may be made in only one of them. In addition, the range in which the width of the wiring changes may be limited to only the portion bonded to the conductive bonding material 16 or only a part in the vicinity thereof.
 図6Bに示す電子部品搭載用パッケージ100bは、上記電子部品搭載用パッケージ100、100aと比較して、配線パターン141bの配線の長さが短くなっている。その他の構成、構造及び位置関係は同一であり、電子部品搭載用パッケージ100と同一の構成については同一の符号を付して説明を省略する。 In the electronic component mounting package 100b shown in FIG. 6B, the wiring length of the wiring pattern 141b is shorter than that of the electronic component mounting packages 100 and 100a. Other configurations, structures, and positional relationships are the same, and the same configurations as those of the electronic component mounting package 100 are designated by the same reference numerals and description thereof will be omitted.
 図6Bに示すように、配線パターン141bのうち導電性接合材16と配線基板14との間にある部分の面積が小さくなるように、配線パターン141bと接合する配線部分が短くなっていてもよい。導電性接合材16が配線パターンの代わりになっているので、当該導電性接合材16が第2面11aから十分な幅で伸びている範囲には、配線パターン141bがなくてもよい。上記配線パターン141aと同様に、金薄膜の配線パターン141bを短くすることで、コストを低減することができる。 As shown in FIG. 6B, the wiring portion to be joined to the wiring pattern 141b may be shortened so that the area of the portion of the wiring pattern 141b between the conductive bonding material 16 and the wiring substrate 14 becomes small. .. Since the conductive bonding material 16 is used instead of the wiring pattern, the wiring pattern 141b may not be provided in the range in which the conductive bonding material 16 extends from the second surface 11a with a sufficient width. Similar to the wiring pattern 141a, the cost can be reduced by shortening the gold thin film wiring pattern 141b.
 図7に示す電子部品搭載用パッケージ100cは、信号線12が第1面14aからの高さ方向について、当該第1面14aを挟んで位置している。この場合、配線パターン141cが第1面14aにおける第2面11aと接する側の端まで伸びていることで、信号線12と配線パターン141cとが直接接触していてもよい。 In the electronic component mounting package 100c shown in FIG. 7, the signal line 12 is located in the height direction from the first surface 14a with the first surface 14a sandwiched therebetween. In this case, since the wiring pattern 141c extends to the end of the first surface 14a on the side in contact with the second surface 11a, the signal line 12 and the wiring pattern 141c may be in direct contact with each other.
 上述したように、導電性接合材16の幅が緩やかに配線パターン141、配線パターン141a、配線パターン141b又は配線パターン141cの幅へと近づくことで、特性インピーダンスの局所的な上昇及び急激な変化を低減することができる。特性インピーダンスが安定することで、信号の透過損失及び反射による損失を低減できる。 As described above, the width of the conductive bonding material 16 gradually approaches the width of the wiring pattern 141, the wiring pattern 141a, the wiring pattern 141b, or the wiring pattern 141c, so that the characteristic impedance is locally increased and abruptly changed. It can be reduced. By stabilizing the characteristic impedance, it is possible to reduce signal transmission loss and loss due to reflection.
 以上のように、本実施形態の電子部品搭載用パッケージ100は、第1面14aと、前記第1面14a上に位置する配線パターン141と、を有する配線基板14と、この配線基板14において第1面14aに隣接する接合面14bと接している第2面11aを有する基体11と、基体11を貫通している信号線12と、導電性接合材16と、を備える。配線パターン141は、第2面11aから離れる方向の第1方向Xに延びる部分である配線A1411を有し、導電性接合材16は、第1面14aの配線パターン141及び第2面11aの信号線12とを接合し、導電性接合材16の第1方向に直交する幅が、配線A1411の幅W0より広い。
 このように、導電性接合材16が配線パターン141の幅を超えて絶縁材の配線基板上に位置していることで、信号線12と配線パターン141とのつなぎ目部分で配線パターン141の見かけ上の幅を広げている。これにより、局所的に特性インピーダンスの増大を低減させて、信号の反射などによる電力損失を低減させている。このような構成を配線パターン自体の設計ではなく、導電性接合材16によって行うことで、電子部品搭載用パッケージ100の製造段階で製品に応じた柔軟な調整を行うことができる。また、予め設計される配線と比較して調整が容易であり、適切な特性インピーダンスのプロファイルに調整することができる。特に、異なる複数の電子部品が搭載可能な電子部品搭載用パッケージでは、電子部品ごとに最適な幅などが変わってくる場合に、同一の電子部品搭載用パッケージに対して容易に多様な調整が可能となる。また、異なる設計で電子部品搭載用パッケージを製造する手間が省ける。また、導電性接合材16自体で特性インピーダンスの増大の低減を図るので、信号線12と配線パターン141とが直接接合されなくても特性インピーダンスの急激な変化、特に上昇を低減することができる。その結果、電子部品搭載用パッケージ100の有する各構成の配置などの設計が容易になるので、信号を効率よく電子部品200に伝送可能な電子部品搭載用パッケージ100をより容易に得られる。
As described above, the electronic component mounting package 100 of the present embodiment has the wiring board 14 having the first surface 14a and the wiring pattern 141 located on the first surface 14a, and the wiring board 14 is A base 11 having a second surface 11a in contact with the bonding surface 14b adjacent to the first surface 14a, a signal line 12 penetrating the base 11, and a conductive bonding material 16 are provided. The wiring pattern 141 has a wiring A1411 which is a portion extending in the first direction X away from the second surface 11a, and the conductive bonding material 16 is a signal of the wiring pattern 141 on the first surface 14a and the signal on the second surface 11a. The width of the conductive bonding material 16 that is joined to the line 12 and is orthogonal to the first direction is wider than the width W0 of the wiring A1411.
As described above, the conductive bonding material 16 is positioned on the wiring board made of an insulating material so as to exceed the width of the wiring pattern 141, so that the wiring pattern 141 is apparently formed at the joint portion between the signal line 12 and the wiring pattern 141. Has widened. This locally reduces the increase in characteristic impedance and reduces power loss due to signal reflection and the like. By performing such a configuration using the conductive bonding material 16 instead of designing the wiring pattern itself, it is possible to perform flexible adjustment according to the product at the manufacturing stage of the electronic component mounting package 100. Further, it is easier to adjust as compared with the wiring designed in advance, and the profile of the characteristic impedance can be adjusted appropriately. In particular, in the electronic component mounting package that can mount multiple different electronic components, various adjustments can be easily performed for the same electronic component mounting package when the optimal width etc. changes for each electronic component. Becomes Further, it is possible to save the labor of manufacturing the electronic component mounting package with different designs. In addition, since the increase in the characteristic impedance is reduced by the conductive bonding material 16 itself, it is possible to reduce the abrupt change in the characteristic impedance, particularly the increase, even if the signal line 12 and the wiring pattern 141 are not directly bonded. As a result, the design of the arrangement of each component of the electronic component mounting package 100 is facilitated, and the electronic component mounting package 100 that can efficiently transmit signals to the electronic component 200 can be obtained more easily.
 また、信号線12は、導電性接合材16に接する端部が、第2面11aと同じ面内の位置又は第2面11aよりも基体11の内側に位置していてもよい。これにより、同軸構造のリード電極である信号線12のみが第2面11aから突出して配線パターン141と並行に位置することによるノイズの発生を低減することができる。特に、導電性接合材16は、第2面11aの絶縁部材113とも接合させることができるので、信号線12の先端が接続されるだけであっても十分な接合強度を得ることができる。よって、信号線12の突出による問題の発生を低減することができる。 The end of the signal line 12 in contact with the conductive bonding material 16 may be located in the same plane as the second surface 11a or inside the base 11 with respect to the second surface 11a. As a result, it is possible to reduce the generation of noise due to only the signal line 12, which is the lead electrode having the coaxial structure, protruding from the second surface 11 a and being positioned in parallel with the wiring pattern 141. In particular, since the conductive bonding material 16 can also be bonded to the insulating member 113 on the second surface 11a, sufficient bonding strength can be obtained even if only the tip of the signal line 12 is connected. Therefore, it is possible to reduce the occurrence of a problem due to the protrusion of the signal line 12.
 また、導電性接合材16の幅は、第2面11aに最も近い位置で最大であってもよい。すなわち、同軸構造の信号線12の先端で導電性接合材16により接合幅を広くすることで、信号線の構造が切り替わるところでの特性インピーダンスの増大を一層低減させることができる。その結果、電子部品搭載用パッケージ100では、信号の電力損失を低減させることができる。 Further, the width of the conductive bonding material 16 may be maximum at the position closest to the second surface 11a. That is, by increasing the bonding width at the tip of the signal line 12 having the coaxial structure with the conductive bonding material 16, it is possible to further reduce the increase in the characteristic impedance at the point where the structure of the signal line is switched. As a result, the electronic component mounting package 100 can reduce power loss of signals.
 また、導電性接合材16の幅は、第2面11aから離れるにつれて減少していてもよい。信号線12の先端でインピーダンスの増大を低減する構造から予め特性インピーダンスの設計がなされた配線パターン141へ幅を変えながらつなげることで、配線パターン141につながるまでの間に特性インピーダンスの急激な変化が低減される。その結果、電子部品搭載用パッケージ100では、信号へのノイズの発生、又は電力損失の増大を低減できる。 Also, the width of the conductive bonding material 16 may decrease with increasing distance from the second surface 11a. By connecting from the structure that reduces the increase in impedance at the tip of the signal line 12 to the wiring pattern 141 in which the characteristic impedance is designed in advance, a sharp change in the characteristic impedance can be achieved before connecting to the wiring pattern 141. Will be reduced. As a result, in the electronic component mounting package 100, it is possible to reduce the occurrence of noise in signals or the increase in power loss.
 また、導電性接合材16と重なる配線A1411の幅は、第2面11aに向かうにつれて減少していてもよい。導電性接合材16の幅が広い部分では、当該導電性接合材16の幅が特性インピーダンスを定めるので、配線A1411の幅を広くする必要がない。したがって、この部分で配線の幅を減少させていくことで、全体としての配線の幅、すなわち特性インピーダンスの急激な変化を低減しつつ、配線パターン141に用いられる導体金属、特に、金の利用量を削減し、コストを低減させることができる。 The width of the wiring A1411 that overlaps with the conductive bonding material 16 may decrease toward the second surface 11a. In the portion where the width of the conductive bonding material 16 is wide, the width of the conductive bonding material 16 determines the characteristic impedance, so it is not necessary to widen the width of the wiring A1411. Therefore, by decreasing the width of the wiring in this portion, the amount of the conductive metal used for the wiring pattern 141, especially the amount of gold used, can be reduced while reducing the width of the wiring as a whole, that is, a sharp change in the characteristic impedance. Can be reduced and the cost can be reduced.
 また、導電性接合材16は、第2面11aで、信号線12及び絶縁部材113にも接合する接合部A161を有していてもよい。このように、導電性接合材16を配線パターン141及び信号線12だけでなく絶縁部材113にも接合させることで、接合強度を向上させることができるので、初期不良を削減し、また、耐久性を向上させることができる。 Further, the conductive bonding material 16 may have a bonding portion A161 that also bonds to the signal line 12 and the insulating member 113 on the second surface 11a. By thus bonding the conductive bonding material 16 not only to the wiring pattern 141 and the signal line 12 but also to the insulating member 113, the bonding strength can be improved, so that initial defects can be reduced and durability can be improved. Can be improved.
 また、導電性接合材16の接合部A161は、第2面11aで、信号線12よりも第1面14aから離れた位置で接合していてもよい。このように、第1面14aに近い範囲だけでなく、広い範囲で接合していることで、接合部A161と信号線12との接合部分に集中して力がかかりにくくなり、導電性接合材16が信号線12から剥離しにくくなるので、初期不良及び使用中の断線などを低減することができる。 Further, the bonding portion A161 of the conductive bonding material 16 may be bonded on the second surface 11a at a position farther from the first surface 14a than the signal line 12. As described above, since the bonding is performed not only in the range close to the first surface 14a but also in a wide range, it is difficult to concentrate the force on the bonding portion between the bonding portion A161 and the signal line 12, and the conductive bonding material is used. Since 16 is less likely to be peeled off from the signal line 12, it is possible to reduce initial failure and disconnection during use.
 また、導電性接合材16は、ナノ粒子焼結型接合材ペーストであってもよい。ナノ粒子焼結型接合材ペーストの樹脂は、絶縁部材113及び配線基板14と強固に結合するので、より接合の安定性を得ることができる。これにより、上述のように配線パターン141の幅よりも広い幅で配線基板14に接合する。このナノ粒子焼結型接合材ペーストの接合範囲を調整することで、より柔軟に配線の延在方向について信号線12の先端から適宜な特性インピーダンスの分布を得ることができる。その結果、信号の電力損失を効果的に低減することができる。また、ナノ粒子焼結型接合材ペーストは、半田と比較して焼結温度も低いことが多いので、高熱による他の部分への影響も低減させることができる。 Further, the conductive bonding material 16 may be a nanoparticle sintering type bonding material paste. The resin of the nanoparticle sintering type bonding material paste is firmly bonded to the insulating member 113 and the wiring board 14, so that more stable bonding can be obtained. Thereby, as described above, the wiring pattern 141 is bonded to the wiring substrate 14 with a width wider than that of the wiring pattern 141. By adjusting the bonding range of this nanoparticle sintering type bonding material paste, it is possible to more flexibly obtain an appropriate characteristic impedance distribution from the tip of the signal line 12 in the extending direction of the wiring. As a result, signal power loss can be effectively reduced. In addition, since the sintering temperature of the nanoparticle-sintering-type bonding material paste is often lower than that of solder, it is possible to reduce the influence of high heat on other parts.
 また、本実施形態の電子装置1は、上述の電子部品搭載用パッケージ100と、配線パターン141に接続される電子部品200と、を備える。このような電子装置では、より適切な特性インピーダンスの整合をとることで、信号の電力損失を低減させることができ、消費電力を無駄にせずに電子部品200を有効に動作させることができる。 Further, the electronic device 1 of the present embodiment includes the electronic component mounting package 100 described above and the electronic component 200 connected to the wiring pattern 141. In such an electronic device, the power loss of the signal can be reduced by more appropriately matching the characteristic impedance, and the electronic component 200 can be effectively operated without wasting the power consumption.
 なお、上記実施の形態は例示であり、様々な変更が可能である。
 例えば、第1面14aと第2面11aとの位置関係は、直交していなくてもよく、各面の形状などは電子部品200などに応じて適宜さだめられてよい。また、信号線12と接合する配線パターン141の配線A1411は、第2面11aに直交する向きに伸びていなくてもよい。
The above embodiment is an example, and various modifications can be made.
For example, the positional relationship between the first surface 14a and the second surface 11a may not be orthogonal to each other, and the shape of each surface may be appropriately adjusted according to the electronic component 200 and the like. Further, the wiring A1411 of the wiring pattern 141 that is joined to the signal line 12 does not have to extend in the direction orthogonal to the second surface 11a.
 また、上記実施の形態では、信号線12が第2面11aから突出しないものとして説明したが、若干突出していてもよい。この場合には、信号線12と配線パターン141とが直接接していてもよい。 Further, in the above embodiment, the signal line 12 is described as not protruding from the second surface 11a, but it may be slightly protruding. In this case, the signal line 12 and the wiring pattern 141 may be in direct contact with each other.
 また、上記実施の形態では、導電性接合材16の接合部分は、第2面11aとの接触面で第1面14aとの接合幅が最大になり、第2面11aから離れるにつれて漸減するものとして、半円~長楕円様の形状を示したが、これに限られない。導電性接合材16の接合部分は、第1面14aに向かう平面視でテーパー形状であってもよいし、配線パターン141の幅に漸近する曲線などであってもよい。また、構造上の制限などに応じて第2面11aとの接触面から若干離れた位置で接合幅が最大になってもよい。また、接合幅の変化は、断続的であったり細かいステップ状であったりしてもよい。また、接合範囲の決定精度などに応じて接合幅に細かい増減があってもよい。 Further, in the above-described embodiment, the joint portion of the conductive joint material 16 has the maximum joint width with the first surface 14a at the contact surface with the second surface 11a, and gradually decreases with increasing distance from the second surface 11a. As a shape, a semicircle to an ellipse-like shape is shown, but the shape is not limited to this. The bonding portion of the conductive bonding material 16 may have a tapered shape in a plan view toward the first surface 14a, or may have a curve that gradually approaches the width of the wiring pattern 141. Further, the bonding width may be maximized at a position slightly apart from the contact surface with the second surface 11a depending on structural restrictions. Further, the change in the bonding width may be intermittent or may be in the form of fine steps. Further, the joining width may be finely increased or decreased depending on the accuracy of determining the joining range.
 また、上記実施の形態では、ナノ粒子焼結型接合材ペーストを用いることとして説明したが、配線基板14に接合する導電性の接合材であればその他のものであってもよい。 In addition, in the above-described embodiment, the description was made using the nanoparticle-sintered bonding material paste, but any other conductive bonding material that bonds to the wiring board 14 may be used.
 また、上記実施の形態では、導電性接合材16を用いて信号線12と配線パターン141とを接合したが、他の接続部分、例えば、電子部品200の取り付けなどには、同一の導電性接合材16が用いられてもよいし、従来の接合材が用いられてもよい。 Further, in the above-described embodiment, the signal line 12 and the wiring pattern 141 are joined by using the conductive joining material 16, but the same conductive joining is used for other connection parts, for example, for mounting the electronic component 200. Material 16 may be used, or a conventional bonding material may be used.
 また、信号が同軸線路で伝送されるのではなく、単純に信号線12が単独で電圧変化などを伝えたり、電流を流したりする場合には、基体11が導電性の金属ではなくてもよい。基体11が導電性を有さない絶縁部材の場合には、信号線12は、直接基体11に接して貫通孔111aを貫通していてもよい。この場合には、配線パターン14もマイクロストリップラインとはならない。また、導電性接合材16は、直接絶縁部材である基体11の第2面11aに接合していてもよい。また、貫通孔111aは、基体11に後から形成された孔ではなく、信号線12の周囲に絶縁部材の基体11が形成されることで結果的に生じたものであってもよい。
 その他、上記実施の形態で示した構成、構造、位置関係及び形状などの具体的な細部は、本開示の趣旨を逸脱しない範囲において適宜変更可能である。
Further, when the signal is not transmitted by the coaxial line but the signal line 12 simply transmits a voltage change or the like, or a current flows, the base 11 may not be a conductive metal. .. When the base 11 is an insulating member having no conductivity, the signal line 12 may directly contact the base 11 and penetrate the through hole 111a. In this case, the wiring pattern 14 also does not become a microstrip line. Further, the conductive bonding material 16 may be directly bonded to the second surface 11a of the base 11 which is an insulating member. Further, the through hole 111 a may not be a hole formed in the base body 11 afterwards, but may be formed as a result of forming the base body 11 of the insulating member around the signal line 12.
In addition, specific details such as the configuration, the structure, the positional relationship, and the shape shown in the above-described embodiment can be appropriately changed without departing from the gist of the present disclosure.
 本開示の内容は、電子部品搭載用パッケージ及び電子装置に利用することができる。 The contents of the present disclosure can be used for electronic component mounting packages and electronic devices.
1 電子装置
11 基体
11a 第2面
111 基部
111a 貫通孔
112 突起部
113 絶縁部材
12 信号線
14 配線基板
14a 第1面
14b 接合面
141、141a~141c 配線パターン
1411 配線A
16 導電性接合材
161 接合部A
100、100a~100c 電子部品搭載用パッケージ
200 電子部品
DESCRIPTION OF SYMBOLS 1 electronic device 11 base 11a second surface 111 base 111a through hole 112 protrusion 113 insulating member 12 signal line 14 wiring board 14a first surface 14b bonding surfaces 141, 141a to 141c wiring pattern 1411 wiring A
16 Conductive Joining Material 161 Joining Part A
100, 100a to 100c Electronic component mounting package 200 Electronic component

Claims (9)

  1.  第1面と、前記第1面上に位置する配線パターンと、を有する配線基板と、
     前記第1面に隣接する面で接している第2面を有する基体と、
     前記基体を貫通している信号線と、
     導電性接合材と、
     を備え、
     前記配線パターンは、前記第2面から離れる方向の第1方向に延びる配線Aを有し、
     前記導電性接合材は、前記配線A及び前記信号線を接合し、
     前記導電性接合材の前記第1方向に直交する幅が、前記配線Aの前記幅より広い、電子部品搭載用パッケージ。
    A wiring board having a first surface and a wiring pattern located on the first surface;
    A base having a second surface in contact with a surface adjacent to the first surface;
    A signal line penetrating the base,
    Conductive bonding material,
    Equipped with
    The wiring pattern has a wiring A extending in a first direction away from the second surface,
    The conductive bonding material bonds the wiring A and the signal line,
    A package for mounting an electronic component, wherein a width of the conductive bonding material orthogonal to the first direction is wider than the width of the wiring A.
  2.  前記信号線は、前記導電性接合材に接する前記信号線の端部が、前記第2面と同じ位置、又は前記第2面より前記基体の内側に位置する、請求項1記載の電子部品搭載用パッケージ。 The electronic component mounting according to claim 1, wherein the signal line has an end portion of the signal line in contact with the conductive bonding material, which is located at the same position as the second surface or inside the base from the second surface. For the package.
  3.  前記導電性接合材の前記幅は、前記第2面に最も近い位置で最大である、請求項1又は2記載の電子部品搭載用パッケージ。 The electronic component mounting package according to claim 1 or 2, wherein the width of the conductive bonding material is maximum at a position closest to the second surface.
  4.  前記導電性接合材の前記幅は、前記第2面から離れるにつれて減少している、請求項3記載の電子部品搭載用パッケージ。 The electronic component mounting package according to claim 3, wherein the width of the conductive bonding material decreases with increasing distance from the second surface.
  5.  前記導電性接合材と重なる前記配線Aの前記幅は、前記第2面に向かうにつれて減少している、請求項1~4のいずれか一項に記載の電子部品搭載用パッケージ。 The electronic component mounting package according to any one of claims 1 to 4, wherein the width of the wiring A that overlaps with the conductive bonding material is reduced toward the second surface.
  6.  導電性接合材は、前記第2面にも接合する接合部Aを有する、請求項1~5のいずれか一項に記載の電子部品搭載用パッケージ。 The package for mounting electronic parts according to any one of claims 1 to 5, wherein the conductive bonding material has a bonding portion A that also bonds to the second surface.
  7.  前記接合部Aは、前記信号線よりも前記第1面から離れた位置で接合している、請求項6記載の電子部品搭載用パッケージ。 The electronic component mounting package according to claim 6, wherein the joint portion A is joined at a position farther from the first surface than the signal line.
  8.  前記導電性接合材は、ナノ粒子焼結型接合材ペーストである、請求項1~7のいずれか一項に記載の電子部品搭載用パッケージ。 The electronic component mounting package according to any one of claims 1 to 7, wherein the conductive bonding material is a nanoparticle sintering type bonding material paste.
  9.  請求項1~8のいずれか一項に記載の電子部品搭載用パッケージと、
     前記配線パターンに接続される電子部品と、
     を備える、電子装置。
    An electronic component mounting package according to any one of claims 1 to 8,
    An electronic component connected to the wiring pattern,
    An electronic device comprising:
PCT/JP2019/050890 2018-12-26 2019-12-25 Electronic component mounting package, and electronic device WO2020138196A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-243430 2018-12-26
JP2018243430A JP2022046829A (en) 2018-12-26 2018-12-26 Package for mounting electronic component and electronic apparatus

Publications (1)

Publication Number Publication Date
WO2020138196A1 true WO2020138196A1 (en) 2020-07-02

Family

ID=71127215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050890 WO2020138196A1 (en) 2018-12-26 2019-12-25 Electronic component mounting package, and electronic device

Country Status (2)

Country Link
JP (1) JP2022046829A (en)
WO (1) WO2020138196A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164466A (en) * 2000-11-27 2002-06-07 Kyocera Corp Semiconductor device storing package
JP2003078056A (en) * 2001-08-31 2003-03-14 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device package
JP2007150182A (en) * 2005-11-30 2007-06-14 Mitsubishi Electric Corp Stem for optical element and optical semiconductor device using the same
JP2009152520A (en) * 2007-11-26 2009-07-09 Kyocera Corp Connection structure between signal terminal and signal line conductor, electronic component mounting package, and electronic apparatus
JP2016092394A (en) * 2014-10-30 2016-05-23 京セラ株式会社 Package for mounting electronic component and electronic device using the same
JP2016189431A (en) * 2015-03-30 2016-11-04 京セラ株式会社 Package for mounting electronic component and electronic component using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164466A (en) * 2000-11-27 2002-06-07 Kyocera Corp Semiconductor device storing package
JP2003078056A (en) * 2001-08-31 2003-03-14 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device package
JP2007150182A (en) * 2005-11-30 2007-06-14 Mitsubishi Electric Corp Stem for optical element and optical semiconductor device using the same
JP2009152520A (en) * 2007-11-26 2009-07-09 Kyocera Corp Connection structure between signal terminal and signal line conductor, electronic component mounting package, and electronic apparatus
JP2016092394A (en) * 2014-10-30 2016-05-23 京セラ株式会社 Package for mounting electronic component and electronic device using the same
JP2016189431A (en) * 2015-03-30 2016-11-04 京セラ株式会社 Package for mounting electronic component and electronic component using the same

Also Published As

Publication number Publication date
JP2022046829A (en) 2022-03-24

Similar Documents

Publication Publication Date Title
WO2021020480A1 (en) Electronic component mounting package, and electronic device
JP6614811B2 (en) Semiconductor device stem and semiconductor device
CN107430293B (en) Optical circuit
JP4550386B2 (en) Package for optical semiconductor devices
US11340412B2 (en) Optical module
US9502745B2 (en) Flexible substrate having a microstrip line connected to a connection portion with a specified conductor pattern
CN109478537B (en) Substrate for mounting semiconductor element and semiconductor device
JP2017121032A (en) High frequency device
JP7170832B2 (en) Electronic device mounting package and electronic device
US8008761B2 (en) Optical semiconductor apparatus
WO2020262636A1 (en) Electronic component mounting package, and electronic device
WO2020138196A1 (en) Electronic component mounting package, and electronic device
JP6228560B2 (en) High frequency transmission line and optical circuit
WO2022123659A1 (en) Laser light source device
WO2022085062A1 (en) Optical semiconductor device
WO2020158928A1 (en) Electronic component mounting package, and electronic device
WO2021020530A1 (en) Electronic component mounting package, and electronic device
JP2020188115A (en) Package for mounting electronic component and electronic device
WO2020158944A1 (en) Electronic component mounting package, electronic device, and substrate for electronic component mounting package
JP2020167255A (en) Package for mounting electronic component and electronic apparatus
JP4127652B2 (en) Optical module
JP2018074034A (en) High frequency device
JP2022153678A (en) Package for mounting electronic component and electronic device
WO2020175619A1 (en) Electronic component mounting package, electronic device, and light-emitting device
TW202040773A (en) Header for semiconductor device, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP