WO2020138126A1 - Crosslinkable resin composition and cured product using same - Google Patents

Crosslinkable resin composition and cured product using same Download PDF

Info

Publication number
WO2020138126A1
WO2020138126A1 PCT/JP2019/050725 JP2019050725W WO2020138126A1 WO 2020138126 A1 WO2020138126 A1 WO 2020138126A1 JP 2019050725 W JP2019050725 W JP 2019050725W WO 2020138126 A1 WO2020138126 A1 WO 2020138126A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
mass
crosslinkable resin
cured product
Prior art date
Application number
PCT/JP2019/050725
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 立花
一彦 前川
雄介 天野
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2020138126A1 publication Critical patent/WO2020138126A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a crosslinkable resin composition and a cured product using the same, and more particularly to a crosslinkable resin composition that can provide a material having excellent water absorption and a cured product using the same.
  • a cross-linked polymer obtained by introducing a cross-linking structure into a water-soluble polymer such as polyvinyl alcohol or poly(meth)acrylic acid is a water-absorbing polymer that is insoluble in water but can retain water to a high degree.
  • Water-absorbent polymers are used as materials that make up a wide range of products such as disposable diapers, agricultural materials, ground improvement materials, and contact lenses. In these products, the water-absorbent polymer is required to have both sufficient water absorbency and the property of being moldable into a desired shape.
  • water-absorbent polymers a cross-linked product of anionic electrolyte polymer such as poly(meth)acrylic acid expresses extremely high water absorption, but it is hard and brittle, and it is pointed out that moldability is poor.
  • non-electrolyte polymers such as polyvinyl alcohol are rich in flexibility and toughness and have good film-forming properties, so that they can be formed into films and fibers, but they are inferior in water absorption compared to electrolyte polymers. It has been pointed out. That is, it has been difficult to achieve both high water absorption and high moldability by using each of the electrolyte polymer and the non-electrolyte polymer alone.
  • Patent Document 1 discloses a radical initiator which is a water-soluble peroxide is added to a mixed aqueous solution of polyvinyl alcohol and polyacrylic acid, and cross-linked through heating and drying to give a predetermined shape such as a coating, a film, or a fiber.
  • Patent Document 2 discloses a hydrogel that is crosslinked by irradiating a mixed aqueous solution of polyvinyl alcohol and poly(meth)acrylic acid with radiation such as an electron beam or ⁇ -ray.
  • Patent Document 3 discloses a hydrous gel in which a mixed aqueous solution of polyvinyl alcohol and poly(meth)acrylic acid is freeze-thawed and crosslinked.
  • JP-A-1-92226 Japanese Patent Laid-Open No. 2018-9096 JP-A-5-230313
  • the present invention is intended to solve the above problems, and its object is to provide a material having both excellent water absorption and molding processability, and more simply having the water absorption. It is intended to provide a crosslinkable resin composition that can be obtained and a cured product using the same.
  • the present invention provides a crosslinkable resin composition containing a modified vinyl alcohol polymer containing a vinyl alcohol unit and a structural unit represented by the following formula (I), and an anionic polyelectrolyte:
  • X is a carbon-carbon bond or a divalent saturated hydrocarbon group having 1 to 10 carbon atoms which may be branched
  • Y is a hydrogen atom or an optionally branched carbon atom. It is a divalent saturated hydrocarbon group of the numbers 1 to 6 and Z is a hydrogen atom or a methyl group).
  • Y in formula (I) is a hydrogen atom.
  • X in formula (I) is a carbon-carbon bond.
  • the modified vinyl alcohol-based polymer contains the structural unit represented by the formula (I) in a proportion of 0.01 to 3 mol %.
  • the anionic polyelectrolyte is a polymer having in the side chain at least one group selected from the group consisting of a carboxylic acid group or a salt thereof and a sulfonic acid group or a salt thereof.
  • the anionic polyelectrolyte is poly(meth)acrylic acid.
  • the crosslinkable resin composition of the present invention further contains a crosslinking agent.
  • the present invention is also a cured product containing a crosslinked product of the above-mentioned crosslinkable resin composition.
  • the water absorption capacity of the cured product is 5 times or more.
  • the elution rate of the cured product is 40% or less.
  • the present invention is also a method for producing a cured product, which comprises a step of crosslinking the crosslinkable resin composition by irradiating the crosslinkable resin composition with an active energy ray.
  • the present invention is also a method for producing a cured product, which comprises a step of crosslinking the crosslinkable composition by heating the crosslinkable resin composition.
  • the present invention is also a water absorbent product containing the above cured product.
  • the present invention it is possible to easily obtain a cured product that has been crosslinked and made water resistant by using an energy ray or a crosslinking agent without requiring a complicated crosslinking operation. Further, according to the present invention, the crosslinking density can be easily controlled during the crosslinking, and the physical properties (for example, water absorption and water resistance) of the obtained cured product can be improved and the physical properties can be controlled arbitrarily.
  • the crosslinkable resin composition of the present invention contains a modified vinyl alcohol polymer and an anionic polyelectrolyte.
  • the crosslinkable resin composition of the present invention is a composition that can be crosslinked by application of an active energy ray such as irradiation with a crosslinking agent or UV light described below, and has a property of forming a cured product.
  • modified vinyl alcohol polymer contains a vinyl alcohol unit and a structural unit represented by the following formula (I).
  • the side chain olefin present in the formula (I) is highly reactive and can be easily crosslinked in the presence of a predetermined crosslinking agent or by application of energy rays.
  • the modified vinyl alcohol-based polymer has the property of being water-resistant and capable of forming a gel by crosslinking.
  • X is a carbon-carbon bond or an optionally branched divalent saturated hydrocarbon group having 1 to 10 carbon atoms.
  • X is a carbon-carbon bond or a divalent saturated hydrocarbon group having 1 to 6 carbon atoms, which may be branched, from the viewpoint that appropriate modified water-soluble polymer itself can be imparted with water solubility. It is preferable that it is a carbon-carbon bond or a divalent saturated hydrocarbon group having 1 to 4 carbon atoms which may be branched, and most preferably a carbon-carbon bond.
  • the divalent saturated hydrocarbon group is preferably at least one selected from the group consisting of alkylene groups and cycloalkylene groups.
  • the optionally branched divalent saturated hydrocarbon group having 1 to 10 carbon atoms is selected from the group consisting of a branched or linear alkylene group having 1 to 10 carbon atoms and a cycloalkylene group. Is preferably at least one kind.
  • the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group and a nonylene group.
  • These alkylene groups may have an alkyl group such as a methyl group and an ethyl group as a branched structure.
  • cycloalkylene group examples include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group and a cyclononylene group.
  • These cycloalkylene groups may have an alkyl group such as a methyl group and an ethyl group as a branched structure.
  • Examples of the optionally branched alkylene group having 1 to 10 carbon atoms include methylene group, ethylene group, 1-methylethylene group, 2-methylethylene group, 1,1-dimethylethylene group, 1,2-dimethylethylene.
  • Y is a hydrogen atom or an optionally branched saturated hydrocarbon group having 1 to 6 carbon atoms.
  • Y is preferably a hydrogen atom or an optionally branched saturated hydrocarbon group having 1 to 5 carbon atoms from the viewpoint that appropriate water solubility and reactivity can be imparted to the modified vinyl alcohol polymer itself.
  • a hydrogen atom or an optionally branched saturated hydrocarbon group having 1 to 2 carbon atoms is more preferable, and a hydrogen atom is still more preferable.
  • the saturated hydrocarbon group is preferably at least one selected from the group consisting of an alkyl group and a cycloalkyl group.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group and hexyl group.
  • at least one alkyl group selected from methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group and neopentyl group is preferable.
  • At least one alkyl group selected from the group consisting of a methyl group and an ethyl group is preferably used.
  • the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclohexyl group and the like.
  • at least one cycloalkyl group selected from the group consisting of a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group is preferably used.
  • Z is a hydrogen atom or a methyl group.
  • Z is preferably a hydrogen atom from the viewpoint that suitable modified water-soluble polymer itself can be imparted with appropriate water solubility.
  • the content of the structural unit of the formula (I) in the modified vinyl alcohol-based polymer is preferably 0.01 mol% or more, and preferably 0.05 when the total structural unit of the polymer is 100 mol %. It is at least mol%, more preferably at least 0.1 mol%, and even more preferably at least 0.3 mol%. Further, the content of the structural unit of the formula (I) is preferably 3 mol% or less, and preferably 2.5 mol% or less, when all the structural units of the polymer are 100 mol%. It is preferably 2 mol% or less, and more preferably 1.5 mol% or less.
  • the content of the constituent unit of the above formula (I) is within these ranges, the water resistance of the cured product crosslinked in the presence of a predetermined crosslinking agent or the application of active energy rays is likely to be exhibited.
  • the content of the constituent unit of the above formula (I) is less than 0.01 mol %, the effect of modifying the vinyl alcohol polymer by the constituent unit of the formula (I) may not be sufficiently exhibited.
  • the content of the constituent unit of the above formula (I) exceeds 3 mol %, the crystallinity of the vinyl alcohol polymer due to the constituent unit of the formula (I) begins to decrease and the water resistance of the cured product decreases, resulting in hydrophobization.
  • the modified polyvinyl alcohol-based polymer may include one or more structural units represented by formula (I). When two or more constituent units are contained, the total content of these two or more constituent units preferably satisfies the above range.
  • substitutional unit used in the present specification refers to a repeating unit constituting a polymer. For example, a vinyl alcohol unit and a vinyl ester unit described later are also constituent units.
  • the content of the vinyl alcohol unit in the modified vinyl alcohol-based polymer is not particularly limited, but when all the constituent units in the polymer are 100 mol% from the viewpoint of being able to impart appropriate solubility in water. , Preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more. Further, the content of the vinyl alcohol unit is preferably 99.99 mol% or less, more preferably 99.90 mol% or less, when the total constitutional units in the polymer are 100 mol%.
  • the vinyl alcohol unit can be derived from the vinyl ester unit by hydrolysis or alcoholysis. Therefore, the vinyl ester unit may remain in the modified vinyl alcohol-based polymer depending on the conditions for converting the vinyl ester unit to the vinyl alcohol unit. Therefore, the modified vinyl alcohol-based polymer may contain a vinyl ester unit other than the constitutional unit represented by the above formula (I).
  • vinyl ester of the vinyl ester unit examples include vinyl formate, vinyl acetate, vinyl prilopionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versaticate, vinyl caproate, vinyl caprylate, vinyl laurate, palmitin.
  • vinyl acetate, vinyl stearate, vinyl oleate, and vinyl benzoate examples include vinyl acetate, vinyl stearate, vinyl oleate, and vinyl benzoate. Of these, vinyl acetate is preferable from the industrial viewpoint.
  • the modified vinyl alcohol polymer may further contain a structural unit other than the structural unit represented by the formula (I), the vinyl alcohol unit and the vinyl ester unit as long as the effects of the present invention can be obtained.
  • the constituent unit is, for example, an unsaturated monomer copolymerizable with a vinyl ester and convertible into a constituent unit represented by the formula (I), or an ethylenically unsaturated monomer copolymerizable with a vinyl ester. It is a structural unit derived from a polymer or the like.
  • ethylenically unsaturated monomer examples include ⁇ -olefins such as ethylene, propylene, n-butene, isobutylene and 1-hexene; acrylic acid and salts thereof; methyl acrylate, ethyl acrylate, n-propyl acrylate, Acrylic acid esters such as i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid and its salts; Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhe
  • the arrangement order of the structural unit represented by the formula (I), the vinyl alcohol unit, and any other structural unit in the modified vinyl alcohol-based polymer is not particularly limited, and the modified polyvinyl alcohol-based polymer is a random copolymer. It may be a block copolymer, an alternating copolymer, or the like.
  • the modified vinyl alcohol-based polymer preferably has a predetermined viscosity average degree of polymerization according to JIS K6726.
  • the modified vinyl alcohol-based polymer according to JIS K6726 has a viscosity average degree of polymerization of preferably 100 to 5,000, more preferably 200 to 4,000. If the viscosity average degree of polymerization is less than 100, the mechanical strength of the film may decrease when the film is formed. When the viscosity average degree of polymerization exceeds 5,000, industrial production of the modified vinyl alcohol polymer may be difficult.
  • the method for producing the modified vinyl alcohol-based polymer is not particularly limited.
  • a transesterification reaction of a vinyl alcohol-based polymer and an ester compound represented by the following formula (II) (hereinafter referred to as ester compound (II))
  • ester compound (II) The method of doing is simple.
  • X, Y and Z are the same as those defined in the above formula (I), and R is a saturated hydrocarbon group having 1 to 5 carbon atoms.
  • the vinyl alcohol polymer and the ester compound (II) are mixed with a transesterification reaction catalyst to transesterify the vinyl alcohol unit of the vinyl alcohol polymer and the ester compound (II).
  • the method can be adopted as a preferred embodiment.
  • the alcohol represented by ROH R is the same as defined in the above formula (II)
  • ROH is the same as defined in the above formula (II)
  • the reaction between the vinyl alcohol polymer and the ester compound (II) is promoted.
  • the alcohol represented by ROH is preferably a compound having a low boiling point, the carbon number of R is 1 to 5, preferably 1 to 3, and more preferably 1. ..
  • the saturated hydrocarbon group at least one selected from the group consisting of an alkyl group and a cycloalkyl group is suitable.
  • the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group and the like.
  • At least one alkyl group selected from the group consisting of a methyl group, an ethyl group, a propyl group and an isopropyl group is preferably used, and a methyl group is more preferably used.
  • the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group and the like.
  • at least one cycloalkyl group selected from the group consisting of a cyclopropyl group, a cyclobutyl group and a cyclopentyl group is preferably used.
  • X, Y and Z in the formula (II) those exemplified in the above formula (I) are preferably used.
  • ester compound (II) examples include methyl methacrylate, methyl acrylate, methyl crotone, methyl 3-methyl-3-butenoate, methyl 4-pentenoate, methyl 2-methyl-4-pentenoate, and 5-hexene.
  • methyl methacrylate, methyl acrylate, methyl 4-pentenoate, methyl 2-methyl-4-pentenoate, methyl 5-hexenoate, and 3,3-dimethyl-methyl ester are preferred because the transesterification reaction proceeds easily.
  • At least one selected from the group consisting of methyl 4-pentenoate, methyl 7-octenoate, methyl trans-3-pentenoate and methyl trans-4-pentenoate is preferable, and it is excellent in water solubility and energy reactivity.
  • the transesterification reaction catalyst is not particularly limited, and examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; organic carboxylic acids such as acetic acid, propionic acid, phthalic acid and benzoic acid; methylsulfonic acid, benzenesulfonic acid, p- Organic sulfonic acids such as toluene sulfonic acid and trifluoromethane sulfonic acid; Organic phosphoric acids such as diethyl phosphate and phenyl phosphate; Hydroxylation of alkali metal or alkaline earth metal such as sodium hydroxide, potassium hydroxide and magnesium hydroxide Compounds; carbonates and hydrogen carbonates of alkali metals or alkaline earth metals such as sodium hydrogen carbonate, potassium carbonate, calcium hydrogen carbonate; trilithium phosphate, potassium dihydrogen phosphate, sodium pyrophosphate, alkali metal such as calcium metaphosphate Or alkaline earth
  • Triethylamine tri-n-butylamine, N-methyl-N-ethylaniline, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0]-7-undecene, etc.
  • Nitrogen-containing aromatic heterocyclic compounds such as pyridine, picoline, quinoline, imidazole, pyrimidine, N,N-dimethylaminopyridine; Cadmium compounds such as cadmium chloride, cadmium oxide, cadmium acetate; Tin chloride, tin oxide , Tin acetate, tin octoate, tributyltin, acetylacetone tin (IV) chloride and other tin compounds; lead chloride, lead oxide, lead carbonate, lead tetraacetate and other lead compounds; aluminum chloride, aluminum oxide, aluminum acetate, Aluminum compounds such as aluminum alkoxide; zinc chloride, zinc bromide, zinc iodide, zinc oxide, zinc acetate, zinc trifluoroacetate, zinc stearate, zinc nitrate, zinc carbonate, zinc sulfate, zinc acetylacetone (II), trifluor Zinc (II) methanesulf
  • molybdenum compounds such as molybdenum chloride, molybdenum oxide, molybdenum acetate, acetylacetone molybdenum (VI) dioxide
  • manganese compounds such as manganese chloride,
  • Hafnium-based compounds such as hafnium (IV) methanesulfonate; lanthanum chloride, Lanthanum compounds such as lanthanum oxide, lanthanum acetate, lanthanum nitrate, lanthanum alkoxide, acetylacetone lanthanum (III) and lanthanum (III) trifluoromethanesulfonate; germanium compounds such as germanium chloride and germanium oxide; enzymes such as lipase; It is preferably used.
  • the amount of the transesterification reaction catalyst added is not particularly limited, but is preferably 0.01 part by mass to 30 parts by mass with respect to 100 parts by mass of the vinyl alcohol polymer. If the amount of the transesterification reaction catalyst added is less than 0.01 part by mass, the reaction rate may be lowered. When the amount of the transesterification reaction catalyst added exceeds 30 parts by mass, it becomes difficult to remove the catalyst residue, and the hue and thermal stability of the resulting modified vinyl alcohol-based polymer may decrease.
  • the addition amount of the ester compound (II) is not particularly limited, and is preferably 0.1 part by mass to 1000 parts by mass, more preferably 5 parts by mass to 500 parts by mass with respect to 100 parts by mass of the vinyl alcohol polymer. .. If the amount added is less than 0.1 parts by mass, the reaction rate may decrease. If the addition amount exceeds 1000 parts by mass, it may be difficult to remove the ester compound remaining after the reaction.
  • the transesterification reaction may be carried out in a state in which the vinyl alcohol-based polymer, the ester compound (II) and the transesterification reaction catalyst are mixed, and for example, the molten vinyl alcohol-based polymer is mixed with the ester compound (II) and the ester compound (II).
  • Method of mixing and reacting transesterification reaction catalyst Method of dissolving ester compound (II) and transesterification catalyst and reacting in slurry state in solvent in which vinyl alcohol polymer is not dissolved; Vinyl alcohol system And the like, in which the polymer, the ester compound (II) and the transesterification reaction catalyst are all uniformly dissolved in the solution.
  • the concentration of the vinyl alcohol polymer during the reaction is not particularly limited, but it is preferably 1% by mass to 50% by mass, more preferably 2% by mass to 40% by mass. It is a mass%, and more preferably 3 mass% to 30 mass%. If the concentration is less than 1% by mass, it may be too dilute to reduce the reaction rate, and if the concentration exceeds 50% by mass, poor stirring may occur in the reaction system.
  • the solvent used in the transesterification reaction is not particularly limited, and examples thereof include water; alcohols such as methanol, ethanol, propanol and butanol; aliphatic or alicyclic hydrocarbons such as n-hexane, n-pentane and cyclohexane; benzene.
  • Aromatic hydrocarbons such as toluene; aliphatic or aromatic halides such as chloroform, chlorobenzene and dichlorobenzene; nitriles such as acetonitrile and benzonitrile; diethyl ether, diphenyl ether, anisole, 1,2-dimethoxyethane, 1 , Ethers such as 4-dioxane; ketones such as acetone, methyl isopropyl ketone and methyl isobutyl ketone; esters such as ethyl acetate and ethyl propionate; N-alkyl lactams such as N-methyl-2-pyrrolidone; N , N-dimethylformamide, N,N-dimethylacetamide and other N,N-dialkylamides; dimethyl sulfoxide and other sulfoxides; sulfolane and other sulfolanes; Of these, aprotic polar solvents
  • the reaction temperature in the transesterification reaction is not particularly limited, but in order to properly remove the alcohol desorbed from the ester compound (II) to the outside of the reaction system, it is preferably the boiling point of the alcohol or higher. From such a viewpoint, 20° C. to 200° C. is preferable, 30° C. to 180° C. is more preferable, 40° C. to 170° C. is further preferable, and 50° C. to 150° C. is further more preferable.
  • the reaction system may be depressurized if necessary in order to lower the boiling point of the alcohol desorbed from the ester compound.
  • the pressure in the reaction system is preferably 5 kPa to 99 kPa, more preferably 8 kPa to 97 kPa, and further preferably 10 kPa to 95 kPa.
  • the anionic polyelectrolyte is a natural or synthetic polymer and is, for example, a thermoplastic resin having a predetermined functional group in the side chain, a polysaccharide, a polypeptide, or a salt thereof.
  • the functional group that may be contained in the anionic polyelectrolyte include a carboxylic acid group or a salt thereof (carboxylate group), a sulfonic acid or a salt thereof (sulfonate group), and a combination thereof. ..
  • anionic polyelectrolyte examples include heat of poly(meth)acrylic acid, polystyrene sulfonic acid, maleic acid-based copolymer, itaconic acid-based copolymer, 2-acrylamido-2-methylpropanesulfonic acid copolymer, and the like.
  • Plastic resins polysaccharides such as carboxymethyl cellulose, sodium dextran sulfate, alginic acid, hyaluronic acid, heparin, heparan sulfate, chondroitin sulfate, cellouronic acid; polypeptides such as polyaspartic acid, polyglutamic acid, cellouronic acid; and salts thereof; and A combination thereof can be mentioned.
  • Poly(meth)acrylic acid is preferable because it can be made highly resistant to water together with the modified vinyl alcohol polymer.
  • the mixing ratio of the modified vinyl alcohol polymer and the anionic polyelectrolyte is not particularly limited, but is preferably 1/99 to 99/1, and more preferably based on the mass. It is 10/90 to 90/10, and more preferably 20/80 to 80/20.
  • the resin composition obtained does not require a complicated crosslinking operation, and the presence of a predetermined crosslinking agent is present.
  • a crosslinked structure can be easily formed underneath or by applying an active energy ray.
  • the crosslinkable resin composition of the present invention may contain a crosslinking agent known in the art.
  • the cross-linking agent preferably includes a compound having two or more thiol groups in one molecule, a compound having two or more amino groups in one molecule, and the like.
  • Examples of the compound having two or more thiol groups in one molecule include 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 2,3-butanedithiol, 1,5 -Pentanedithiol, 1,6-hexanedithiol, 1,10-decanedithiol, 2,3-dihydroxy-1,4-butanedithiol, ethylene bis(thioglycolate), ethylene glycol bis(3-mercaptopropionate) , 1,4-butanediol bis(thioglycolate), 2,2'-thiodiethanethiol, 3,6-dioxa-1,8-octanedithiol (DODT), 3,7-dithia-1,9- Nonanedithiol, 1,4-benzenedithiol, trimethylolpropane tris (3-mercaptopropionate), trimethylolpropane tri
  • Examples of the compound having two or more amino groups in one molecule include ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 2,2-dimethyl-1,3-propanediamine, 1, 2-diamino-2-methylpropane, 2-methyl-1,3-propanediamine, 1,2-diaminobutane, 1,4-diaminobutane, 1,3-diaminopentane, 1,5-diaminopentane, 1, 6-diaminohexane, 2-methyl-1,5-diaminopentane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1-methyl-1,8-diaminooctane, 1,10 -Diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, bis(3-
  • the content of the cross-linking agent is not particularly limited, but is, for example, preferably 0.1 parts by mass to 20 parts by mass, more preferably 0.5 parts by mass to 10 parts by mass with respect to 100 parts by mass of the modified vinyl alcohol polymer. It is a mass part. If the content of the cross-linking agent is less than 0.1 parts by mass, the cross-linked structure is not sufficiently formed in the resin composition, and there is a possibility that the obtained cured product may not have satisfactory water resistance. When the content of the cross-linking agent exceeds 20 parts by mass, the cross-linking in the obtained cured product does not proceed further, and the productivity may be rather lowered.
  • the crosslinkable resin composition of the present invention may contain a photopolymerization initiator known in the art in place of the above crosslinker.
  • the photopolymerization initiator is not particularly limited, but is, for example, a propiophenone compound such as 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone; 4′-phenoxy-2,2- Dichloroacetophenone, 4'-t-butyl-2,2,2-trichloroacetophenone, 2,2-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 2-hydroxy-2-methyl-1-(4 '-Dodecylphenyl)-1-propanone, 1-[4'-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propanone, 1-hydroxycyclohexylphenyl ketone, 2-methyl-4' -Acetophenone compounds such as methylthio-2-morpholinopropiophenone; benzo
  • the photopolymerization initiator is not particularly limited, but is, for example, preferably 0.1 parts by mass to 10 parts by mass, more preferably 0.2 parts by mass to 5 parts by mass with respect to 100 parts by mass of the modified vinyl alcohol polymer. It is a department.
  • the content of the photopolymerization initiator is less than 0.1 parts by mass, for example, even if the resin composition is irradiated with UV light, a crosslinked structure is not sufficiently formed, and the resulting cured product has satisfactory water resistance. May not be achieved.
  • the content of the photopolymerization initiator is more than 10 parts by mass, the crosslinking in the obtained cured product does not proceed further, and the productivity may rather be lost.
  • the crosslinkable resin composition of the present invention may contain other additives known in the art.
  • additives include fillers, processing stabilizers, weather resistance stabilizers, colorants, UV light absorbers, light stabilizers, antioxidants, antistatic agents, flame retardants, plasticizers. , Lubricants, fragrances, defoamers, deodorants, release agents, mold release agents, reinforcing agents, fungicides, preservatives, crystallization rate retarders, and other water-soluble resins, and combinations thereof.
  • the content of the above-mentioned other additives is not particularly limited, and an amount that does not impair the efficiency of the present invention can be arbitrarily set by those skilled in the art.
  • cured material of this invention contains the crosslinked body of the said crosslinkable resin composition.
  • the crosslinked product of the crosslinkable resin composition is represented by the above formula (I) in which the modified vinyl alcohol-based polymer and the anionic polyelectrolyte contained in the crosslinkable resin composition constitute the modified vinyl alcohol-based polymer. It is chemically or physically integrated by crosslinking based on the constitutional unit.
  • the cured product of the present invention has excellent water resistance.
  • the degree of such water resistance can be evaluated by, for example, measuring the elution rate of the obtained crosslinked product.
  • the dissolution rate can be calculated according to
  • the cured product of the present invention preferably has an elution rate of 40% by mass or less, more preferably 35% by mass or less, even more preferably 30% by mass or less, and most preferably 25% by mass or less.
  • elution rate 40% by mass or less, more preferably 35% by mass or less, even more preferably 30% by mass or less, and most preferably 25% by mass or less.
  • the cured product of the present invention has excellent water absorption.
  • the degree of such water absorption can be evaluated, for example, by measuring the water absorption capacity of the obtained crosslinked product.
  • the cured product of the present invention preferably has a water absorption capacity of 5 times or more, more preferably 7 times or more, still more preferably 10 times or more.
  • the upper limit of the water absorption capacity of the cured product of the present invention is not particularly limited, but is, for example, 2000 times or less and 1000 times or less. Since the cured product of the present invention satisfies the water absorption capacity in the above range, it is understood that the constituents have the ability to absorb a large amount of water when immersed in the water.
  • the cured product of the present invention can be produced, for example, as follows using the above crosslinkable resin composition.
  • crosslinkable resin composition contains a photopolymerization initiator together with the modified polyvinyl alcohol-based polymer and the anionic polyelectrolyte will be described.
  • the crosslinkable resin composition is irradiated with ⁇ -rays, ⁇ -rays, electron beams, i-rays, active energy rays such as UV rays, and particularly preferably UV rays.
  • the irradiation conditions of UV light are not necessarily limited because they vary depending on the amount of the crosslinkable resin composition used and the content of the contents thereof, and appropriate irradiation conditions (for example, irradiation intensity and irradiation time) can be determined by those skilled in the art. It can be appropriately selected. Irradiation of the UV light to the crosslinkable resin composition may be performed continuously or intermittently.
  • the modified vinyl alcohol-based polymer and the anionic polyelectrolyte contained in the composition constitute the modified vinyl alcohol-based polymer and have the above formula (I).
  • Crosslinking based on the constitutional unit represented by is chemically or physically integrated to form a predetermined crosslinked body. In this way, the cured product of the present invention can be obtained.
  • crosslinkable resin composition contains a crosslinker together with the modified vinyl alcohol polymer and the anionic polyelectrolyte will be described.
  • the crosslinkable resin composition is heated.
  • the heating conditions are not necessarily limited because they vary depending on the amount of the crosslinkable resin composition used, the content of those contents, etc., and appropriate heating conditions (for example, heating temperature and heating time) are appropriately selected by those skilled in the art. obtain.
  • the heating of the crosslinkable resin composition may be performed continuously or intermittently.
  • the modified polyvinyl alcohol-based polymer and the anionic polyelectrolyte contained in the composition are structural units represented by the above formula (I) that constitute the modified polyvinyl alcohol-based polymer. Based on the cross-linking, they are chemically or physically integrated to form a predetermined cross-linked product. In this way, the cured product of the present invention can be obtained.
  • the cured product of the present invention is not particularly limited, but by utilizing its excellent water absorption and water resistance, hygiene products (for example, diapers and sanitary products), medical-related products (for example, dressing materials for wound protection), agriculture/ Gardening materials (eg soil water retention agent, seedling sheet, seed coating material), food packaging materials (eg freshness retention film, dew condensation prevention sheet, barrier coating material), pet related products (eg pet sheet, cat sand), electricity It can be used as a material for forming various industrial products such as related materials (for example, water-stopping materials for communication cables, building materials (for example, wallpaper for preventing dew condensation)).
  • related materials for example, water-stopping materials for communication cables, building materials (for example, wallpaper for preventing dew condensation)
  • modified PVOH-2 obtained in this synthesis example are shown in Table 1.
  • modified PVOH-5 modified polyvinyl alcohol polymer
  • Example 1 To 1 part by mass of a polyacrylic acid aqueous solution (168-07375, 25% aqueous solution manufactured by Wako Pure Chemical Industries, Ltd.), 1.5 parts by mass of ion-exchanged water was added, and they were mixed sufficiently until they became uniform. Next, 2.5 parts by mass of a 10% aqueous solution of modified PVOH-1 obtained in Synthesis Example 1 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-1 and polyacrylic acid. To the resulting mixed solution, 5 parts by mass of ion-exchanged water was added to prepare a 5% by mass aqueous solution, and 2-hydroxy-4′-(2-hydroxyethoxy)-2 as a photopolymerization initiator was added thereto.
  • a polyacrylic acid aqueous solution 168-07375, 25% aqueous solution manufactured by Wako Pure Chemical Industries, Ltd.
  • HEMP -Methylpropiophenone
  • Example 2 2.25 parts by mass of ion-exchanged water was added to 0.25 parts by mass of polymethacrylic acid (00578-50 manufactured by Wako Pure Chemical Industries, Ltd.), and they were mixed sufficiently until they were completely dissolved. Next, 2.5 parts by mass of a 10% aqueous solution of modified PVOH-2 obtained in Synthesis Example 2 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-2 and polymethacrylic acid. 0.005 parts by mass of HEMP as a photopolymerization initiator was added to the obtained mixed liquid and stirred until completely dissolved to prepare an aqueous solution (E2) which is a crosslinkable resin composition.
  • E2 aqueous solution
  • this aqueous solution (E2) was transferred to a petri dish having a diameter of 3 cm and a thickness of 1 cm, and UV light was irradiated from above the petri dish at an intensity of 3000 mJ/cm 2 to obtain a crosslinked gel (SE2).
  • the evaluation results of the obtained crosslinked gel (SE2) are shown in Table 2.
  • Example 3 To 1 part by mass of an aqueous polyacrylic acid solution (168-07375, 25% aqueous solution manufactured by Wako Pure Chemical Industries, Ltd.), 1.4 parts by mass of ion-exchanged water was added, and 0.11 parts by mass of 8N KOH aqueous solution was added, Mix well until uniform. Next, 2.5 parts by mass of a 10% aqueous solution of modified PVOH-3 obtained in Synthesis Example 3 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-3 and polyacrylic acid.
  • an aqueous polyacrylic acid solution 168-07375, 25% aqueous solution manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 4 To 0.2 parts by mass of sodium alginate (manufactured by Wako Pure Chemical Industries, 191-09965), 1.8 parts by mass of ion-exchanged water was added, and they were sufficiently mixed until completely dissolved. Next, 3 parts by mass of a 10% aqueous solution of modified PVOH-4 obtained in Synthesis Example 4 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-4 and alginic acid. 0.005 parts by mass of HEMP was added to the obtained mixed liquid and stirred until completely dissolved to prepare an aqueous solution (E4) which is a crosslinkable resin composition.
  • E4 a crosslinkable resin composition
  • a crosslinked gel (SE4) was obtained in the same manner as in Example 1 except that this aqueous solution (E4) was used and the intensity of the irradiated UV light was changed to 3000 mJ/cm 2 .
  • Table 2 shows the evaluation results of the obtained crosslinked gel (SE4).
  • Example 5 To 1.4 parts by mass of an aqueous polyacrylic acid solution (168-07375, Wako Pure Chemical Industries, 25% aqueous solution), 3.0 parts by mass of ion-exchanged water was added, and 0.154 parts by mass of 8N KOH aqueous solution was added. And mixed well until uniform. Next, 1.5 parts by mass of a 10% aqueous solution of modified PVOH-2 obtained in Synthesis Example 2 was added and mixed until uniform to obtain an aqueous solution containing modified PVOH-2 and polyacrylic acid.
  • aqueous polyacrylic acid solution 168-07375, Wako Pure Chemical Industries, 25% aqueous solution
  • Example 6 1.4 parts by mass of ion-exchanged water was added to 1 part by mass of a polyacrylic acid aqueous solution (manufactured by Wako Pure Chemical Industries, 168-07375, 25% aqueous solution), and 0.055 parts by mass of an 8N KOH aqueous solution was added. , Mixed well until uniform. Next, 2.5 parts by mass of a 10% aqueous solution of modified PVOH-2 obtained in Synthesis Example 2 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-2 and polyacrylic acid.
  • a polyacrylic acid aqueous solution manufactured by Wako Pure Chemical Industries, 168-07375, 25% aqueous solution
  • 8N KOH aqueous solution 8N KOH aqueous solution
  • Example 7 To 0.2 parts by mass of an aqueous solution of polyacrylic acid (168-07375, Wako Pure Chemical Industries, 25% aqueous solution), 0.28 parts by mass of ion-exchanged water was added, and 0.022 parts by mass of 8N KOH aqueous solution was added. And mixed well until uniform. Next, 4.5 parts by mass of a 10% aqueous solution of modified PVOH-3 obtained in Synthesis Example 3 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-3 and polyacrylic acid.
  • polyacrylic acid 168-07375, Wako Pure Chemical Industries, 25% aqueous solution
  • 8N KOH aqueous solution 8N KOH aqueous solution
  • aqueous solution (E7) which is a crosslinkable resin composition was prepared.
  • a crosslinked film (SE7) was obtained in the same manner as in Example 1 except that this aqueous solution (E7) was used and the intensity of the irradiated UV light was changed to 1500 mJ/cm 2 .
  • Table 2 shows the evaluation results of the obtained crosslinked film (SE7).
  • Example 8 To 1.4 parts by mass of an aqueous polyacrylic acid solution (168-07375, Wako Pure Chemical Industries, 25% aqueous solution), 3.0 parts by mass of ion-exchanged water was added, and 0.154 parts by mass of 8N KOH aqueous solution was added. And mixed well until uniform. Next, 1.5 parts by mass of a 10% aqueous solution of modified PVOH-5 obtained in Synthesis Example 5 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-5 and polyacrylic acid.
  • aqueous polyacrylic acid solution 168-07375, Wako Pure Chemical Industries, 25% aqueous solution
  • Comparative Example 1 1.4 parts by mass of ion-exchanged water was added to 1 part by mass of a polyacrylic acid aqueous solution (manufactured by Wako Pure Chemical Industries, 168-07375, 25% aqueous solution), and 0.11 parts by mass of an 8N KOH aqueous solution was added to obtain a uniform mixture. Mix well until Next, 2.5 parts by mass of a 10% aqueous solution of PVOH-6 obtained in Synthesis Example 6 was added and mixed until uniform to obtain a mixed solution containing PVOH-6 and polyacrylic acid.
  • a polyacrylic acid aqueous solution manufactured by Wako Pure Chemical Industries, 168-07375, 25% aqueous solution
  • Comparative example 2 In the same manner as in Comparative Example 1, a mixed solution containing PVOH-6 and polyacrylic acid was obtained. A predetermined amount of ion-exchanged water is added to the obtained mixed liquid to prepare a 5% by mass aqueous solution, and 0.01 part by mass of DODT as a crosslinking agent is added thereto, and the mixture is stirred until completely dissolved to obtain a resin composition. To prepare an aqueous solution (C2). Then, a film (SC2) was obtained in the same manner as in Example 5 except that this aqueous solution (C2) was used. Table 2 shows the evaluation results of the obtained film (SC2).
  • Comparative example 3 In the same manner as in Comparative Example 1, a mixed solution containing PVOH-6 and polyacrylic acid was obtained. 0.005 parts by mass of HEMP as an initiator was added to the obtained mixed liquid and stirred until completely dissolved to prepare an aqueous solution (C3) which is a resin composition. Next, this aqueous solution (C3) was transferred to a petri dish having a diameter of 3 cm and a thickness of 1 cm, and UV light was irradiated from above the petri dish at an intensity of 3000 mJ/cm 2 to try to prepare a crosslinked gel. However, the aqueous solution (C3) remained as an aqueous solution without cross-linking gelation. The evaluation results are shown in Table 2.
  • aqueous solution (C4) which was a resin composition from a mixed solution containing PVOH-6 in the same manner as in Comparative Example 1 except that the aqueous solution of polyacrylic acid was not contained and PVOH-2 was used instead of PVOH-1. was produced. Then, a film (SC4) was obtained in the same manner as in Comparative Example 1 except that this aqueous solution (C4) was used and the intensity of the irradiated UV light was changed to 3000 mJ/cm 2 . Table 2 shows the evaluation results of the obtained film (SC4).
  • aqueous solution (C5) which is a resin composition was prepared from a mixed solution containing polyacrylic acid in the same manner as in Comparative Example 1 except that PVOH-6 was not included. Then, this aqueous solution (C5) was transferred to a petri dish having a diameter of 3 cm and a thickness of 1 cm, and UV light was irradiated from above the petri dish at an intensity of 3000 mJ/cm 2 to try to prepare a crosslinked gel. However, the aqueous solution (C5) remained as an aqueous solution without being crosslinked. The evaluation results are shown in Table 2.
  • each of the crosslinkable resin compositions (E1) to (E8) prepared in Examples 1 to 8 was converted into a crosslinked film or gel by irradiation with UV light or addition of a crosslinking agent. It could be molded.
  • the resin compositions (C1) to (C3) and (C5) of Comparative Examples 1 to 3 and 5 in which the modified polyvinyl alcohol-based polymer was not used the crosslinking itself was difficult and the film was made water resistant. Or could not be gelled from an aqueous solution.
  • a material for forming various industrial products as a resin molding field, a healthcare product field, a medical product field, an agricultural/horticultural field, a food/distribution field, a pet-related product field, an electrical field, and a construction field. It is useful in fields.

Abstract

A crosslinkable resin composition according to the present invention contains: a modified vinyl alcohol polymer containing a vinyl alcohol unit and a structural unit represented by formula (I); and an anionic polymer electrolyte. In formula (I), X is a carbon-carbon bond or a divalent saturated hydrocarbon group that may be branched and that has 1-10 carbon atoms; Y is a hydrogen atom or a saturated hydrocarbon group that may be branched and that has 1-6 carbon atoms; and Z is a hydrogen atom or a methyl group.

Description

架橋性樹脂組成物およびそれを用いた硬化物Crosslinkable resin composition and cured product using the same
 本発明は、架橋性樹脂組成物およびそれを用いた硬化物に関し、より詳細には、優れた吸水性を有する材料を提供することのできる架橋性樹脂組成物およびそれを用いた硬化物に関する。 The present invention relates to a crosslinkable resin composition and a cured product using the same, and more particularly to a crosslinkable resin composition that can provide a material having excellent water absorption and a cured product using the same.
 ポリビニルアルコールやポリ(メタ)アクリル酸などの水溶性ポリマーに架橋構造を導入した架橋ポリマーは、水に不溶であるが、高度に水を保持することが可能な吸水性ポリマーである。 A cross-linked polymer obtained by introducing a cross-linking structure into a water-soluble polymer such as polyvinyl alcohol or poly(meth)acrylic acid is a water-absorbing polymer that is insoluble in water but can retain water to a high degree.
 吸水性ポリマーは、紙おむつ、農業資材、地盤改良材、コンタクトレンズなどの広範な製品を構成する材料として使用されている。これらの製品において、吸水性ポリマーは、十分な吸水性を有するとともに所望の形態に成形可能であるという性質を兼ね備えていることが必要とされる。  Water-absorbent polymers are used as materials that make up a wide range of products such as disposable diapers, agricultural materials, ground improvement materials, and contact lenses. In these products, the water-absorbent polymer is required to have both sufficient water absorbency and the property of being moldable into a desired shape.
 吸水性ポリマーのうち、ポリ(メタ)アクリル酸などのアニオン性電解質ポリマーの架橋体は、極めて高い吸水性を発現するものの、硬くて脆く、成形加工性に劣る点が指摘されている。一方、ポリビニルアルコールなどの非電解質ポリマーは、柔軟性および靭性に富み、造膜性が良好であることから、フィルムや繊維などに成形可能であるが、電解質ポリマーに比べて吸水性に劣る点が指摘されている。すなわち、電解質ポリマーと非電解質ポリマーのそれぞれ単独では、高い吸水性と高い成形加工性を両立することは困難であった。 Among water-absorbent polymers, a cross-linked product of anionic electrolyte polymer such as poly(meth)acrylic acid expresses extremely high water absorption, but it is hard and brittle, and it is pointed out that moldability is poor. On the other hand, non-electrolyte polymers such as polyvinyl alcohol are rich in flexibility and toughness and have good film-forming properties, so that they can be formed into films and fibers, but they are inferior in water absorption compared to electrolyte polymers. It has been pointed out. That is, it has been difficult to achieve both high water absorption and high moldability by using each of the electrolyte polymer and the non-electrolyte polymer alone.
 上記両立を図るために、ポリビニルアルコールのような非電解質ポリマーと、ポリ(メタ)アクリル酸のような電解質ポリマーとを複合化させることが試みられている。例えば、特許文献1は、ポリビニルアルコールとポリアクリル酸との混合水溶液に水溶性過酸化物であるラジカル開始剤を添加し、加熱および乾燥を通じて架橋させた、被覆、フィルム、繊維等の所定形状に成形された架橋体を開示している。特許文献2は、ポリビニルアルコールとポリ(メタ)アクリル酸との混合水溶液に、電子線、γ線などの放射線を照射することで架橋させた、含水ゲルを開示している。特許文献3では、ポリビニルアルコールとポリ(メタ)アクリル酸との混合水溶液を凍結融解させて架橋させた、含水ゲルを開示している。 In order to achieve the above compatibility, it has been attempted to combine a non-electrolytic polymer such as polyvinyl alcohol and an electrolytic polymer such as poly(meth)acrylic acid. For example, in Patent Document 1, a radical initiator which is a water-soluble peroxide is added to a mixed aqueous solution of polyvinyl alcohol and polyacrylic acid, and cross-linked through heating and drying to give a predetermined shape such as a coating, a film, or a fiber. A molded crosslinked body is disclosed. Patent Document 2 discloses a hydrogel that is crosslinked by irradiating a mixed aqueous solution of polyvinyl alcohol and poly(meth)acrylic acid with radiation such as an electron beam or γ-ray. Patent Document 3 discloses a hydrous gel in which a mixed aqueous solution of polyvinyl alcohol and poly(meth)acrylic acid is freeze-thawed and crosslinked.
特開平1-92226号公報JP-A-1-92226 特開2018-9096号公報Japanese Patent Laid-Open No. 2018-9096 特開平5-230313号公報JP-A-5-230313
 しかし、特許文献1および2に記載されるような過酸化物や放射線による架橋では、ポリマーの主鎖切断が併発することにより、架橋物の物性が著しく低下することが指摘されている。また、ポリマー主鎖がランダムに架橋されるため、架橋密度や架橋点の制御が極めて困難である。他方、特許文献3に記載の凍結融解による架橋は、主鎖切断などの懸念はなくなるものの、凍結工程および融解工程に要するエネルギーおよび時間が膨大となり、工業的には実施が困難である。また、凍結融解により得られたゲルは物理架橋ゲルであり、高温条件下での耐水性が極めて乏しいという点も指摘されている。 However, it has been pointed out that in crosslinking with peroxides or radiation as described in Patent Documents 1 and 2, physical properties of the crosslinked product are remarkably deteriorated due to concurrent main chain scission of the polymer. Further, since the polymer main chain is randomly crosslinked, it is extremely difficult to control the crosslink density and crosslink points. On the other hand, the crosslinking by freezing and thawing described in Patent Document 3 eliminates the concern of main chain scission, but the energy and time required for the freezing and thawing steps are enormous and industrially difficult to carry out. It has also been pointed out that the gel obtained by freezing and thawing is a physically crosslinked gel and has extremely poor water resistance under high temperature conditions.
 本発明は、上記問題の解決を課題とするものであり、その目的とするところは、優れた吸水性と成形加工性とを両立し、かつより簡便に当該吸水性を有する材料を提供することのできる架橋性樹脂組成物およびそれを用いた硬化物を提供することにある。 The present invention is intended to solve the above problems, and its object is to provide a material having both excellent water absorption and molding processability, and more simply having the water absorption. It is intended to provide a crosslinkable resin composition that can be obtained and a cured product using the same.
 本発明は、ビニルアルコール単位と下記式(I)で示される構成単位とを含む変性ビニルアルコール系重合体、およびアニオン性高分子電解質を含む、架橋性樹脂組成物: The present invention provides a crosslinkable resin composition containing a modified vinyl alcohol polymer containing a vinyl alcohol unit and a structural unit represented by the following formula (I), and an anionic polyelectrolyte:
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(I)中、Xは炭素-炭素結合、または分岐していてもよい炭素数1~10の2価の飽和炭化水素基であり、Yは水素原子、または分岐していてもよい炭素数1~6の2価の飽和炭化水素基であり、Zは水素原子またはメチル基である)である。 (In the formula (I), X is a carbon-carbon bond or a divalent saturated hydrocarbon group having 1 to 10 carbon atoms which may be branched, and Y is a hydrogen atom or an optionally branched carbon atom. It is a divalent saturated hydrocarbon group of the numbers 1 to 6 and Z is a hydrogen atom or a methyl group).
 1つの実施形態では、式(I)におけるYは水素原子である。
 1つの実施形態では、式(I)におけるXは炭素-炭素結合である。
 1つの実施形態では、変性ビニルアルコール系重合体は、式(I)で示される構成単位を0.01~3モル%の割合で含有する。
 1つの実施形態では、アニオン性高分子電解質は、側鎖にカルボン酸基またはその塩、およびスルホン酸基またはその塩からなる群から選択される少なくとも1つの基を有する高分子である。
 1つの実施形態では、アニオン性高分子電解質はポリ(メタ)アクリル酸である。
 1つの実施形態では、本発明の架橋性樹脂組成物はさらに架橋剤を含有する。
In one embodiment, Y in formula (I) is a hydrogen atom.
In one embodiment, X in formula (I) is a carbon-carbon bond.
In one embodiment, the modified vinyl alcohol-based polymer contains the structural unit represented by the formula (I) in a proportion of 0.01 to 3 mol %.
In one embodiment, the anionic polyelectrolyte is a polymer having in the side chain at least one group selected from the group consisting of a carboxylic acid group or a salt thereof and a sulfonic acid group or a salt thereof.
In one embodiment, the anionic polyelectrolyte is poly(meth)acrylic acid.
In one embodiment, the crosslinkable resin composition of the present invention further contains a crosslinking agent.
 本発明はまた、上記架橋性樹脂組成物の架橋体を含む、硬化物である。
 1つの実施形態では、硬化物の吸水倍率が5倍以上である。
 1つの実施形態では、硬化物の溶出率が40%以下である。
The present invention is also a cured product containing a crosslinked product of the above-mentioned crosslinkable resin composition.
In one embodiment, the water absorption capacity of the cured product is 5 times or more.
In one embodiment, the elution rate of the cured product is 40% or less.
 本発明はまた、硬化物の製造方法であって、上記架橋性樹脂組成物に活性エネルギー線を照射することにより架橋性樹脂組成物を架橋する工程を包含する、方法である。
 本発明はまた、硬化物の製造方法であって、上記架橋性樹脂組成物を加熱することにより架橋性組成物を架橋する工程を包含する、方法である。
The present invention is also a method for producing a cured product, which comprises a step of crosslinking the crosslinkable resin composition by irradiating the crosslinkable resin composition with an active energy ray.
The present invention is also a method for producing a cured product, which comprises a step of crosslinking the crosslinkable composition by heating the crosslinkable resin composition.
 本発明はまた、上記硬化物を含む吸水性製品である。 The present invention is also a water absorbent product containing the above cured product.
 本発明によれば、複雑な架橋操作を要することなく、エネルギー線や架橋剤を用いて容易に架橋かつ耐水化された硬化物を得ることができる。また、本発明によれば、この架橋に際し架橋密度の制御も容易であり、得られる硬化物の物性(例えば、吸水性および耐水性)を向上させるとともに当該物性を任意に制御することができる。 According to the present invention, it is possible to easily obtain a cured product that has been crosslinked and made water resistant by using an energy ray or a crosslinking agent without requiring a complicated crosslinking operation. Further, according to the present invention, the crosslinking density can be easily controlled during the crosslinking, and the physical properties (for example, water absorption and water resistance) of the obtained cured product can be improved and the physical properties can be controlled arbitrarily.
 以下、本発明について詳述する。 The present invention will be described in detail below.
(架橋性樹脂組成物)
 本発明の架橋性樹脂組成物は、変性ビニルアルコール系重合体およびアニオン性高分子電解質を含む。本発明の架橋性樹脂組成物は、後述する架橋剤やUV光の照射のような活性エネルギー線の付与によって架橋可能であり、硬化物を生成し得る性質を有する組成物である。
(Crosslinkable resin composition)
The crosslinkable resin composition of the present invention contains a modified vinyl alcohol polymer and an anionic polyelectrolyte. The crosslinkable resin composition of the present invention is a composition that can be crosslinked by application of an active energy ray such as irradiation with a crosslinking agent or UV light described below, and has a property of forming a cured product.
(変性ビニルアルコール系重合体)
 変性ビニルアルコール系重合体は、ビニルアルコール単位と下記式(I)で示される構成単位を含む。
(Modified vinyl alcohol polymer)
The modified vinyl alcohol-based polymer contains a vinyl alcohol unit and a structural unit represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(I)中に存在する側鎖オレフィンは反応性に富み、所定の架橋剤の存在下やエネルギー線の付与することによって容易に架橋可能である。これにより、変性ビニルアルコール系重合体は、架橋による耐水性やゲルの生成が可能であるという性質を有する。 The side chain olefin present in the formula (I) is highly reactive and can be easily crosslinked in the presence of a predetermined crosslinking agent or by application of energy rays. As a result, the modified vinyl alcohol-based polymer has the property of being water-resistant and capable of forming a gel by crosslinking.
 上記式(I)において、Xは炭素-炭素結合、または分岐していてもよい炭素数1~10の2価の飽和炭化水素基である。変性ビニルアルコール系重合体自体に適切な水溶性を付与することができる点から、Xは、炭素-炭素結合、または分岐していてもよい炭素数1~6の2価の飽和炭化水素基であることが好ましく、炭素-炭素結合、または分岐していてもよい炭素数1~4の2価の飽和炭化水素基であることがより好ましく、炭素-炭素結合であることが最も好ましい。2価の飽和炭化水素基としては、アルキレン基およびシクロアルキレン基からなる群から選択される少なくとも1種であることが好ましい。すなわち、例えば、上記分岐していてもよい炭素数1~10の2価の飽和炭化水素基は、分岐または直鎖の炭素数1~10を有するアルキレン基およびシクロアルキレン基からなる群から選択される少なくとも1種であることが好ましい。アルキレン基としては、例えばメチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基等が挙げられる。これらアルキレン基は、メチル基、エチル基等のアルキル基を分岐構造として有していてもよい。シクロアルキレン基としては、例えばシクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基、シクロオクチレン基、シクロノニレン基等が挙げられる。これらシクロアルキレン基は、メチル基、エチル基等のアルキル基を分岐構造として有していてもよい。 In the above formula (I), X is a carbon-carbon bond or an optionally branched divalent saturated hydrocarbon group having 1 to 10 carbon atoms. X is a carbon-carbon bond or a divalent saturated hydrocarbon group having 1 to 6 carbon atoms, which may be branched, from the viewpoint that appropriate modified water-soluble polymer itself can be imparted with water solubility. It is preferable that it is a carbon-carbon bond or a divalent saturated hydrocarbon group having 1 to 4 carbon atoms which may be branched, and most preferably a carbon-carbon bond. The divalent saturated hydrocarbon group is preferably at least one selected from the group consisting of alkylene groups and cycloalkylene groups. That is, for example, the optionally branched divalent saturated hydrocarbon group having 1 to 10 carbon atoms is selected from the group consisting of a branched or linear alkylene group having 1 to 10 carbon atoms and a cycloalkylene group. Is preferably at least one kind. Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group and a nonylene group. These alkylene groups may have an alkyl group such as a methyl group and an ethyl group as a branched structure. Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group and a cyclononylene group. These cycloalkylene groups may have an alkyl group such as a methyl group and an ethyl group as a branched structure.
 分岐していてもよい炭素数1~10のアルキレン基としては、例えばメチレン基、エチレン基、1-メチルエチレン基、2-メチルエチレン基、1,1-ジメチルエチレン基、1,2-ジメチルエチレン基、2,2-ジメチルエチレン基、1-エチルエチレン基、2-エチルエチレン基、プロピレン基、1-メチルプロピレン基、2-メチルプロピレン基、3-メチルプロピレン基、1,1-ジメチルプロピレン基、1,2-ジメチルプロピレン基、2,2-ジメチルプロピレン基、1,3-ジメチルプロピレン基、ブチレン基、1-メチルブチレン基、2-メチルブチレン基、3-メチルブチレン基、4-メチルブチレン基、1,1-ジメチルブチレン基、2,2-ジメチルブチレン基、3,3-ジメチルブチレン基、4,4-ジメチルブチレン基、1,2-ジメチルブチレン基、1,3-ジメチルブチレン基、1,4-ジメチルブチレン基、2,3-ジメチルブチレン基、2,4-ジメチルブチレン基、3,4-ジメチルブチレン基、1-エチルブチレン基、2-エチルブチレン基、3-エチルブチレン基、4-エチルブチレン基、1,1-ジエチルブチレン基、2,2-ジエチルブチレン基、ペンチレン基、1-メチルペンチレン基、2-メチルペンチレン基、3-メチルペンチレン基、4-メチルペンチレン基、5-メチルペンチレン基、ヘキシレン基等が挙げられる。 Examples of the optionally branched alkylene group having 1 to 10 carbon atoms include methylene group, ethylene group, 1-methylethylene group, 2-methylethylene group, 1,1-dimethylethylene group, 1,2-dimethylethylene. Group, 2,2-dimethylethylene group, 1-ethylethylene group, 2-ethylethylene group, propylene group, 1-methylpropylene group, 2-methylpropylene group, 3-methylpropylene group, 1,1-dimethylpropylene group , 1,2-dimethylpropylene group, 2,2-dimethylpropylene group, 1,3-dimethylpropylene group, butylene group, 1-methylbutylene group, 2-methylbutylene group, 3-methylbutylene group, 4-methylbutylene group Group, 1,1-dimethylbutylene group, 2,2-dimethylbutylene group, 3,3-dimethylbutylene group, 4,4-dimethylbutylene group, 1,2-dimethylbutylene group, 1,3-dimethylbutylene group, 1,4-dimethylbutylene group, 2,3-dimethylbutylene group, 2,4-dimethylbutylene group, 3,4-dimethylbutylene group, 1-ethylbutylene group, 2-ethylbutylene group, 3-ethylbutylene group, 4-ethylbutylene group, 1,1-diethylbutylene group, 2,2-diethylbutylene group, pentylene group, 1-methylpentylene group, 2-methylpentylene group, 3-methylpentylene group, 4-methylpentylene group Examples thereof include len group, 5-methylpentylene group, and hexylene group.
 上記式(I)において、Yは水素原子、または分岐していてもよい炭素数1~6の飽和炭化水素基である。変性ビニルアルコール系重合体自体に適切な水溶性および反応性を付与することができる点から、Yは水素原子または分岐していてもよい炭素数1~5の飽和炭化水素基であることが好ましく、水素原子または分岐していてもよい炭素数1~2の飽和炭化水素基であることがより好ましく、水素原子であることがさらに好ましい。飽和炭化水素基としては、アルキル基およびシクロアルキル基からなる群から選択される少なくとも1種であることが好ましい。アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基等が挙げられる。中でも、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基およびネオペンチル基から選択される少なくとも1種のアルキル基が好適に用いられ、メチル基およびエチル基からなる群から選択される少なくとも1種のアルキル基が好適に用いられる。シクロアルキル基としては、例えばシクロプロピル基、シクロブチル基、およびシクロヘキシル基等が挙げられる。中でも、シクロプロピル基、シクロブチル基、およびシクロペンチル基からなる群から選択される少なくとも1種のシクロアルキル基が好適に用いられる。 In the above formula (I), Y is a hydrogen atom or an optionally branched saturated hydrocarbon group having 1 to 6 carbon atoms. Y is preferably a hydrogen atom or an optionally branched saturated hydrocarbon group having 1 to 5 carbon atoms from the viewpoint that appropriate water solubility and reactivity can be imparted to the modified vinyl alcohol polymer itself. A hydrogen atom or an optionally branched saturated hydrocarbon group having 1 to 2 carbon atoms is more preferable, and a hydrogen atom is still more preferable. The saturated hydrocarbon group is preferably at least one selected from the group consisting of an alkyl group and a cycloalkyl group. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group and hexyl group. Among them, at least one alkyl group selected from methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group and neopentyl group is preferable. And at least one alkyl group selected from the group consisting of a methyl group and an ethyl group is preferably used. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclohexyl group and the like. Among them, at least one cycloalkyl group selected from the group consisting of a cyclopropyl group, a cyclobutyl group, and a cyclopentyl group is preferably used.
 上記式(I)において、Zは水素原子またはメチル基である。変性ビニルアルコール系重合体自体に適切な水溶性を付与することができる点から、Zは水素原子であることが好ましい。 In the above formula (I), Z is a hydrogen atom or a methyl group. Z is preferably a hydrogen atom from the viewpoint that suitable modified water-soluble polymer itself can be imparted with appropriate water solubility.
 変性ビニルアルコール系重合体における式(I)の構成単位の含有量は、当該重合体の全構成単位を100モル%とした場合、好ましくは0.01モル%以上であり、好ましくは0.05モル%以上であり、より好ましくは0.1モル%以上であり、さらに好ましくは0.3モル%以上である。また、式(I)の構成単位の含有量は、当該重合体の全構成単位を100モル%とした場合、好ましくは3モル%以下であり、好ましくは2.5モル%以下であり、より好ましくは2モル%以下であり、さらに好ましくは1.5モル%以下である。上記式(I)の構成単位の含有量がこれらの範囲内にある場合、所定の架橋剤の存在下や活性エネルギー線の付与によって架橋された硬化物の耐水性が発現し易い。一方、上記式(I)の構成単位の含有量が0.01モル%未満であると、式(I)の構成単位によるビニルアルコール系重合体の変性の効果が十分発揮されないことがある。上記式(I)の構成単位の含有量が3モル%を上回ると、式(I)の構成単位によるビニルアルコール系重合体の結晶性が低下し始めて硬化物の耐水性が低下し、疎水化されることにより水溶性も悪化するおそれがある。変性ポリビニルアルコール系重合体は、式(I)で表される構成単位を1種またはそれ以上含んでいてもよい。この構成単位を2種以上含む場合、これら2種以上の構成単位の含有量の合計が上記範囲を満足していることが好ましい。なお、本明細書中で用いられる用語「構成単位」とは、重合体を構成する繰り返し単位を指して言う。例えば、後述のビニルアルコール単位およびビニルエステル単位も構成単位である。 The content of the structural unit of the formula (I) in the modified vinyl alcohol-based polymer is preferably 0.01 mol% or more, and preferably 0.05 when the total structural unit of the polymer is 100 mol %. It is at least mol%, more preferably at least 0.1 mol%, and even more preferably at least 0.3 mol%. Further, the content of the structural unit of the formula (I) is preferably 3 mol% or less, and preferably 2.5 mol% or less, when all the structural units of the polymer are 100 mol%. It is preferably 2 mol% or less, and more preferably 1.5 mol% or less. When the content of the constituent unit of the above formula (I) is within these ranges, the water resistance of the cured product crosslinked in the presence of a predetermined crosslinking agent or the application of active energy rays is likely to be exhibited. On the other hand, when the content of the constituent unit of the above formula (I) is less than 0.01 mol %, the effect of modifying the vinyl alcohol polymer by the constituent unit of the formula (I) may not be sufficiently exhibited. When the content of the constituent unit of the above formula (I) exceeds 3 mol %, the crystallinity of the vinyl alcohol polymer due to the constituent unit of the formula (I) begins to decrease and the water resistance of the cured product decreases, resulting in hydrophobization. By doing so, water solubility may be deteriorated. The modified polyvinyl alcohol-based polymer may include one or more structural units represented by formula (I). When two or more constituent units are contained, the total content of these two or more constituent units preferably satisfies the above range. The term “constitutional unit” used in the present specification refers to a repeating unit constituting a polymer. For example, a vinyl alcohol unit and a vinyl ester unit described later are also constituent units.
 変性ビニルアルコール系重合体におけるビニルアルコール単位の含有量は特に限定されないが、水に対して適切な溶解性を付与することができる点から、重合体中の全構成単位を100モル%とした場合、好ましくは50モル%以上であり、より好ましくは70モル%以上であり、さらに好ましくは75モル%以上であり、さらにより好ましくは80モル%以上である。また、当該ビニルアルコール単位の含有量は、重合体中の全構成単位を100モル%とした場合、好ましくは99.99モル%以下であり、より好ましくは99.90モル%以下である。 The content of the vinyl alcohol unit in the modified vinyl alcohol-based polymer is not particularly limited, but when all the constituent units in the polymer are 100 mol% from the viewpoint of being able to impart appropriate solubility in water. , Preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 75 mol% or more, still more preferably 80 mol% or more. Further, the content of the vinyl alcohol unit is preferably 99.99 mol% or less, more preferably 99.90 mol% or less, when the total constitutional units in the polymer are 100 mol%.
 ビニルアルコール単位は、加水分解や加アルコール分解などによってビニルエステル単位から誘導することができる。そのためビニルエステル単位からビニルアルコール単位に変換する際の条件等によっては、変性ビニルアルコール系重合体中にビニルエステル単位が残存することがある。よって、変性ビニルアルコール系重合体は、上記式(I)で表される構成単位以外のビニルエステル単位を含んでいてもよい。 The vinyl alcohol unit can be derived from the vinyl ester unit by hydrolysis or alcoholysis. Therefore, the vinyl ester unit may remain in the modified vinyl alcohol-based polymer depending on the conditions for converting the vinyl ester unit to the vinyl alcohol unit. Therefore, the modified vinyl alcohol-based polymer may contain a vinyl ester unit other than the constitutional unit represented by the above formula (I).
 上記ビニルエステル単位のビニルエステルの例としては、ギ酸ビニル、酢酸ビニル、プリロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、オレイン酸ビニル、安息香酸ビニルなどが挙げられる。中でも酢酸ビニルが工業的観点から好ましい。 Examples of the vinyl ester of the vinyl ester unit include vinyl formate, vinyl acetate, vinyl prilopionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl versaticate, vinyl caproate, vinyl caprylate, vinyl laurate, palmitin. Examples thereof include vinyl acetate, vinyl stearate, vinyl oleate, and vinyl benzoate. Of these, vinyl acetate is preferable from the industrial viewpoint.
 変性ビニルアルコール系重合体は、本発明の効果が得られる限り、式(I)で表される構成単位、ビニルアルコール単位およびビニルエステル単位以外の構成単位をさらに含んでいてもよい。当該構成単位は、例えば、ビニルエステルと共重合可能であり、かつ式(I)で表される構成単位に変換可能な不飽和単量体や、ビニルエステルと共重合可能なエチレン性不飽和単量体等に由来する構成単位である。エチレン性不飽和単量体は、例えばエチレン、プロピレン、n-ブテン、イソブチレン、1-ヘキセンなどのα-オレフィン類;アクリル酸およびその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシルなどのアクリル酸エステル類;メタクリル酸およびその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシルなどのメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸およびその塩、アクリルアミドプロピルジメチルアミンおよびその塩(例えば4級塩);メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸およびその塩、メタクリルアミドプロピルジメチルアミンおよびその塩(例えば4級塩);メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル、2,3-ジアセトキシ-1-ビニルオキシプロパンなどのビニルエーテル類;アクリロニトリル、メタクリロニトリルなどのシアン化ビニル類;塩化ビニル、フッ化ビニルなどのハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニリデン類;酢酸アリル、2,3-ジアセトキシ-1-アリルオキシプロパン、塩化アリルなどのアリル化合物;マレイン酸、イタコン酸、フマル酸などの不飽和ジカルボン酸およびその塩またはそのエステル;ビニルトリメトキシシランなどのビニルシリル化合物;酢酸イソプロペニル等である。 The modified vinyl alcohol polymer may further contain a structural unit other than the structural unit represented by the formula (I), the vinyl alcohol unit and the vinyl ester unit as long as the effects of the present invention can be obtained. The constituent unit is, for example, an unsaturated monomer copolymerizable with a vinyl ester and convertible into a constituent unit represented by the formula (I), or an ethylenically unsaturated monomer copolymerizable with a vinyl ester. It is a structural unit derived from a polymer or the like. Examples of the ethylenically unsaturated monomer include α-olefins such as ethylene, propylene, n-butene, isobutylene and 1-hexene; acrylic acid and salts thereof; methyl acrylate, ethyl acrylate, n-propyl acrylate, Acrylic acid esters such as i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid and its salts; Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, methacrylic acid Methacrylic acid esters such as octadecyl; acrylamide, N-methylacrylamide, N-ethylacrylamide, N,N-dimethylacrylamide, diacetone acrylamide, acrylamidopropanesulfonic acid and its salts, acrylamidopropyldimethylamine and its salts (eg, quaternary) Methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, methacrylamidepropanesulfonic acid and its salts, methacrylamidopropyldimethylamine and its salts (for example, quaternary salts); methyl vinyl ether, ethyl vinyl ether, n- Vinyl ethers such as propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether, 2,3-diacetoxy-1-vinyloxypropane; acrylonitrile, methacrylonitrile Vinyl cyanides such as; vinyl halides such as vinyl chloride and vinyl fluoride; vinylidene halides such as vinylidene chloride and vinylidene fluoride; allyl acetate, 2,3-diacetoxy-1-allyloxypropane, allyl chloride Allyl compounds such as; unsaturated dicarboxylic acids such as maleic acid, itaconic acid, fumaric acid and the salts thereof or esters thereof; vinylsilyl compounds such as vinyltrimethoxysilane; isopropenyl acetate and the like.
 変性ビニルアルコール系重合体における式(I)で表される構成単位、ビニルアルコール単位、およびその他の任意の構成単位の配列順序に特に制限はなく、変性ポリビニルアルコール系重合体は、ランダム共重合体、ブロック共重合体、交互共重合体などのいずれであってもよい。 The arrangement order of the structural unit represented by the formula (I), the vinyl alcohol unit, and any other structural unit in the modified vinyl alcohol-based polymer is not particularly limited, and the modified polyvinyl alcohol-based polymer is a random copolymer. It may be a block copolymer, an alternating copolymer, or the like.
 変性ビニルアルコール系重合体は、JIS K6726に準拠した所定の粘度平均重合度を有していることが好ましい。JIS K6726に準拠した変性ビニルアルコール系重合体の粘度平均重合度は、好ましくは100~5,000であり、より好ましくは200~4,000である。粘度平均重合度が100未満であると、フィルムに成形した場合に当該フィルムの機械的強度が低下することがある。粘度平均重合度が5,000を越えると、変性ビニルアルコール系重合体の工業的生産が困難となるおそれがある。 The modified vinyl alcohol-based polymer preferably has a predetermined viscosity average degree of polymerization according to JIS K6726. The modified vinyl alcohol-based polymer according to JIS K6726 has a viscosity average degree of polymerization of preferably 100 to 5,000, more preferably 200 to 4,000. If the viscosity average degree of polymerization is less than 100, the mechanical strength of the film may decrease when the film is formed. When the viscosity average degree of polymerization exceeds 5,000, industrial production of the modified vinyl alcohol polymer may be difficult.
 変性ビニルアルコール系重合体の製造方法は特に限定されないが、例えばビニルアルコール系重合体と以下の式(II)で表されるエステル化合物(以下、エステル化合物(II)と称する)とをエステル交換反応させる方法が簡便である。 The method for producing the modified vinyl alcohol-based polymer is not particularly limited. For example, a transesterification reaction of a vinyl alcohol-based polymer and an ester compound represented by the following formula (II) (hereinafter referred to as ester compound (II)) The method of doing is simple.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(II)において、X、YおよびZは上記式(I)で定義したものと同様であり、Rは炭素数1~5の飽和炭化水素基である。この方法では、ビニルアルコール系重合体と、エステル化合物(II)とを、エステル交換反応触媒とともに混合することにより、ビニルアルコール系重合体のビニルアルコール単位と、エステル化合物(II)とをエステル交換させる方法が好ましい実施形態として採用され得る。その際、エステル化合物(II)より、ROH(Rは上記式(II)で定義したものと同様である)で表されるアルコールが脱離するが、当該アルコールを反応系外に除去することで、ビニルアルコール系重合体とエステル化合物(II)との反応が促進される。このような観点から、ROHで表されるアルコールは低沸点の化合物であることが好ましく、Rの炭素数は1~5であり、1~3であることが好ましく、1であることがより好ましい。飽和炭化水素基としては、アルキル基およびシクロアルキル基からなる群から選択される少なくとも1種が好適である。アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。中でも、メチル基、エチル基、プロピル基およびイソプロピル基からなる群から選択される少なくとも1種のアルキル基が好適に用いられ、メチル基がより好適に用いられる。シクロアルキル基としては、例えばシクロプロピル基、シクロブチル基、シクロペンチル基等が挙げられる。中でも、シクロプロピル基、シクロブチル基およびシクロペンチル基からなる群から選択される少なくとも1種のシクロアルキル基が好適に用いられる。なお、式(II)におけるX、YおよびZは、上記式(I)において例示したものが各々好適に用いられる。 In the above formula (II), X, Y and Z are the same as those defined in the above formula (I), and R is a saturated hydrocarbon group having 1 to 5 carbon atoms. In this method, the vinyl alcohol polymer and the ester compound (II) are mixed with a transesterification reaction catalyst to transesterify the vinyl alcohol unit of the vinyl alcohol polymer and the ester compound (II). The method can be adopted as a preferred embodiment. At that time, the alcohol represented by ROH (R is the same as defined in the above formula (II)) is eliminated from the ester compound (II), but by removing the alcohol out of the reaction system. The reaction between the vinyl alcohol polymer and the ester compound (II) is promoted. From this point of view, the alcohol represented by ROH is preferably a compound having a low boiling point, the carbon number of R is 1 to 5, preferably 1 to 3, and more preferably 1. .. As the saturated hydrocarbon group, at least one selected from the group consisting of an alkyl group and a cycloalkyl group is suitable. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group and the like. Among them, at least one alkyl group selected from the group consisting of a methyl group, an ethyl group, a propyl group and an isopropyl group is preferably used, and a methyl group is more preferably used. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group and the like. Among them, at least one cycloalkyl group selected from the group consisting of a cyclopropyl group, a cyclobutyl group and a cyclopentyl group is preferably used. As X, Y and Z in the formula (II), those exemplified in the above formula (I) are preferably used.
 エステル化合物(II)としては、例えばメタクリル酸メチル、アクリル酸メチル、クロトン酸メチル、3-メチル-3-ブテン酸メチル、4-ペンテン酸メチル、2-メチル-4-ペンテン酸メチル、5-ヘキセン酸メチル、3,3-ジメチル-4-ペンテン酸メチル、7-オクテン酸メチル、trans-3-ペンテン酸メチル、trans-4-ペンテン酸メチル、3-メチル-3-ブテン酸エチル、4-ペンテン酸エチル、2-メチル-4-ペンテン酸エチル、5-ヘキセン酸エチル、3,3-ジメチル-4-ペンテン酸エチル、7-オクテン酸エチル、trans-3-デセン酸エチル、trans-4-デセン酸エチルなどが挙げられる。中でも、エステル交換反応が容易に進行するとの理由から、メタクリル酸メチル、アクリル酸メチル、4-ペンテン酸メチル、2-メチル-4-ペンテン酸メチル、5-ヘキセン酸メチル、3,3-ジメチル-4-ペンテン酸メチル、7-オクテン酸メチル、trans-3-ペンテン酸メチルおよびtrans-4-ペンテン酸メチルからなる群から選択される少なくとも1種が好ましく、水溶性およびエネルギーに対する反応性に優れ、適切な水溶性を有する変性ポリビニルアルコール系重合体を得ることができる点から、メタクリル酸メチル、アクリル酸メチル、4-ペンテン酸メチル、2-メチル-4-ペンテン酸メチル、5-ヘキセン酸メチル、および3,3-ジメチル-4-ペンテン酸メチルからなる群から選択される少なくとも1種がより好ましく、メタクリル酸メチル、アクリル酸メチル、3,3-ジメチル-4-ペンテン酸メチルが最も好ましい。なお、上記エステル交換反応においては、これらのエステル化合物を2種以上組み合わせて用いてもよい。 Examples of the ester compound (II) include methyl methacrylate, methyl acrylate, methyl crotone, methyl 3-methyl-3-butenoate, methyl 4-pentenoate, methyl 2-methyl-4-pentenoate, and 5-hexene. Acid methyl, methyl 3,3-dimethyl-4-pentenoate, methyl 7-octenoate, methyl trans-3-pentenoate, methyl trans-4-pentenoate, ethyl 3-methyl-3-butenoate, 4-pentene Acid ethyl, 2-methyl-4-pentenoate, ethyl 5-hexenoate, ethyl 3,3-dimethyl-4-pentenoate, ethyl 7-octenoate, ethyl trans-3-decenoate, trans-4-decene Ethyl acid and the like can be mentioned. Among them, methyl methacrylate, methyl acrylate, methyl 4-pentenoate, methyl 2-methyl-4-pentenoate, methyl 5-hexenoate, and 3,3-dimethyl-methyl ester are preferred because the transesterification reaction proceeds easily. At least one selected from the group consisting of methyl 4-pentenoate, methyl 7-octenoate, methyl trans-3-pentenoate and methyl trans-4-pentenoate is preferable, and it is excellent in water solubility and energy reactivity. Methyl methacrylate, methyl acrylate, methyl 4-pentenoate, methyl 2-methyl-4-pentenoate, methyl 5-hexenoate, from which a modified polyvinyl alcohol-based polymer having appropriate water solubility can be obtained. And at least one selected from the group consisting of methyl 3,3-dimethyl-4-pentenoate are more preferred, and methyl methacrylate, methyl acrylate, and methyl 3,3-dimethyl-4-pentenoate are most preferred. In the transesterification reaction, two or more kinds of these ester compounds may be used in combination.
 エステル交換反応触媒は特に限定されず、例えば塩酸、硫酸、硝酸、リン酸などの無機酸;酢酸、プロピオン酸、フタル酸、安息香酸などの有機カルボン酸類;メチルスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸などの有機スルホン酸類;リン酸ジエチル、リン酸フェニルなどの有機リン酸類;水酸化ナトリウム、水酸化カリウム、水酸化マグネシウムなどのアルカリ金属またはアルカリ土類金属の水酸化物;炭酸水素ナトリウム、炭酸カリウム、炭酸水素カルシウムなどのアルカリ金属またはアルカリ土類金属の炭酸塩および炭酸水素塩;リン酸三リチウム、リン酸二水素カリウム、ピロリン酸ナトリウム、メタリン酸カルシウムなどのアルカリ金属またはアルカリ土類金属のリン酸塩およびリン酸水素塩;メタホウ酸カリウム、四ホウ酸ナトリウム、オルトホウ酸マグネシウムなどのアルカリ金属またはアルカリ土類金属のホウ酸塩;酢酸ナトリウム、酢酸カリウム、安息香酸ナトリウム、酢酸マグネシウムなどのアルカリ金属またはアルカリ土類金属のカルボン酸塩;リチウムエトキシド、ナトリウムメトキシド、カリウムメトキシド、マグネシウムメトキシド、ナトリウムフェノキシドなどのアルカリ金属またはアルカリ土類金属のアルコキシド化合物またはフェノキシド化合物;酸化カルシウムなどのアルカリ金属またはアルカリ土類金属の酸化物;アンモニア;水酸化アンモニウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、テトラメチルアンモニウムメチルカーボネート、テトラメチルアンモニウムエチルカーボネート、メチルトリエチルアンモニウムメチルカーボネート、メチルトリn-ブチルアンモニウムメチルカーボネート、メチルトリn-オクチルメチルカーボネートなどのアンモニウム塩;水酸化テトラフェニルホスホニウム、水酸化テトラメチルホスホニウム、テトラメチルホスホニウムメチルカーボネート、メチルトリn-ブチルホスホニウムエチルカーボネート、メチルトリn-オクチルホスホニウムメチルカーボネートなどのホスホニウム塩;n-ブチルアミン、ベンジルアミン、アニリン、エチレンジアミンなどの一級アミン;ジエチルアミン、メチルエチルアミン、ピロリジン、N-メチルトルイジンなどの二級アミン;トリエチルアミン、トリn-ブチルアミン、N-メチル-N-エチルアニリン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンなどの三級アミン;ピリジン、ピコリン、キノリン、イミダゾール、ピリミジン、N,N-ジメチルアミノピリジンなどの含窒素芳香族複素環式化合物;塩化カドミウム、酸化カドミウム、酢酸カドミウムなどのカドミウム系化合物;塩化錫、酸化錫、酢酸錫、オクタン酸錫、トリブチル錫、アセチルアセトン錫(IV)クロリドなどの錫系化合物;塩化鉛、酸化鉛、炭酸鉛、四酢酸鉛などの鉛系化合物;塩化アルミニウム、酸化アルミニウム、酢酸アルミニウム、アルミニウムアルコキシドなどのアルミニウム系化合物;塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、酸化亜鉛、酢酸亜鉛、トリフルオロ酢酸亜鉛、ステアリン酸亜鉛、硝酸亜鉛、炭酸亜鉛、硫酸亜鉛、アセチルアセトン亜鉛(II)、トリフルオロメタンスルホン酸亜鉛(II)、亜鉛2-テトラフルオロボラート、オキソ[ヘキサ(トリフルオロアセタト)]テトラ亜鉛などの亜鉛系化合物;塩化ビスマス、酸化ビスマス、酢酸ビスマスなどのビスマス系化合物;塩化鉄、酸化鉄、酢酸鉄、アセチルアセトン鉄(III)、N,N’-ビス(サリチリデン)エチレンジアミン鉄(II)などの鉄系化合物;塩化コバルト、酸化コバルト、酢酸コバルト、ステアリン酸コバルト、アセチルアセトンコバルト(II)などのコバルト系化合物;塩化銅、臭化銅、ヨウ化銅、酸化銅、酢酸銅、アセチルアセトン銅(II)などの銅系化合物;塩化クロム、酸化クロム、酢酸クロム、アセチルアセトンクロム(III)などのクロム系化合物;塩化モリブデン、酸化モリブデン、酢酸モリブデン、アセチルアセトンモリブデン(VI)ジオキシドなどのモリブデン系化合物;塩化マンガン、酸化マンガン、酢酸マンガン、アセチルアセトンマンガン(II)などのマンガン系化合物;塩化チタン、酸化チタン、酢酸チタン、アルコキシチタン、乳酸チタン、アセチルアセトンチタン(VI)オキシドなどのチタン系化合物;塩化ジルコニウム、酸化ジルコニウム、酢酸ジルコニウム、アセチルアセトンジルコニウム(IV)などのジルコニウム系化合物;塩化ハフニウム、酸化ハフニウム、トリフルオロメタンスルホン酸ハフニウム(IV)などのハフニウム系化合物;塩化ランタン、酸化ランタン、酢酸ランタン、硝酸ランタン、ランタンアルコキシド、アセチルアセトンランタン(III)、トリフルオロメタンスルホン酸ランタン(III)などのランタン系化合物;塩化ゲルマニウム、酸化ゲルマニウムなどのゲルマニウム系化合物;リパーゼなどの酵素;などが好適に用いられる。中でも、反応性や得られる変性ポリビニルアルコール系重合体の色相の観点から、無機酸、有機カルボン酸、有機スルホン酸、有機リン酸、アルカリ金属またはアルカリ土類金属の水酸化物、アルカリ金属またはアルカリ土類金属の炭酸塩および炭酸水素塩、アルカリ金属またはアルカリ土類金属のリン酸塩およびリン酸水素塩、アルカリ金属またはアルカリ土類金属のカルボン酸塩、アルカリ金属またはアルカリ土類金属のアルコキシド系化合物またはフェノキシド化合物、アンモニウム塩類、ホスホニウム塩類、アルミニウム系化合物、亜鉛系化合物、ビスマス系化合物、チタン系化合物、ジルコニウム系化合物、ランタン系化合物がより好ましく、無機酸、有機カルボン酸、有機スルホン酸、アルカリ金属またはアルカリ土類金属の水酸化物、アルカリ金属またはアルカリ土類金属の炭酸塩および炭酸水素塩、アルカリ金属またはアルカリ土類金属のカルボン酸塩、アルカリ金属またはアルカリ土類金属のアルコキシド化合物、アンモニウム塩類、亜鉛系化合物、チタン系化合物、ジルコニウム系化合物、ランタン系化合物がさらに好ましく、アルカリ金属またはアルカリ土類金属のカルボン酸塩、アンモニウム塩類、亜鉛系化合物がさらにより好ましい。 The transesterification reaction catalyst is not particularly limited, and examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid; organic carboxylic acids such as acetic acid, propionic acid, phthalic acid and benzoic acid; methylsulfonic acid, benzenesulfonic acid, p- Organic sulfonic acids such as toluene sulfonic acid and trifluoromethane sulfonic acid; Organic phosphoric acids such as diethyl phosphate and phenyl phosphate; Hydroxylation of alkali metal or alkaline earth metal such as sodium hydroxide, potassium hydroxide and magnesium hydroxide Compounds; carbonates and hydrogen carbonates of alkali metals or alkaline earth metals such as sodium hydrogen carbonate, potassium carbonate, calcium hydrogen carbonate; trilithium phosphate, potassium dihydrogen phosphate, sodium pyrophosphate, alkali metal such as calcium metaphosphate Or alkaline earth metal phosphates and hydrogen phosphates; alkali metal or alkaline earth metal borates such as potassium metaborate, sodium tetraborate, magnesium orthoborate; sodium acetate, potassium acetate, sodium benzoate Alkali metal or alkaline earth metal carboxylates such as magnesium acetate; alkali metal or alkaline earth metal alkoxide compounds or phenoxide compounds such as lithium ethoxide, sodium methoxide, potassium methoxide, magnesium methoxide, sodium phenoxide Oxides of alkali metals or alkaline earth metals such as calcium oxide; ammonia; ammonium hydroxide, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, ammonium carbonate, ammonium hydrogencarbonate, tetramethylammonium methyl Carbonate, tetramethylammonium ethyl carbonate, methyltriethylammonium methylcarbonate, methyltri-n-butylammonium methylcarbonate, methyltri-n-octylmethylcarbonate and other ammonium salts; tetraphenylphosphonium hydroxide, tetramethylphosphonium hydroxide, tetramethylphosphonium methylcarbonate , Phosphonium salts such as methyltri-n-butylphosphonium ethyl carbonate and methyltri-n-octylphosphonium methylcarbonate; primary amines such as n-butylamine, benzylamine, aniline and ethylenediamine; diamines such as diethylamine, methylethylamine, pyrrolidine and N-methyltoluidine. Primary amine; Triethylamine, tri-n-butylamine, N-methyl-N-ethylaniline, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0]-7-undecene, etc. Amine; Nitrogen-containing aromatic heterocyclic compounds such as pyridine, picoline, quinoline, imidazole, pyrimidine, N,N-dimethylaminopyridine; Cadmium compounds such as cadmium chloride, cadmium oxide, cadmium acetate; Tin chloride, tin oxide , Tin acetate, tin octoate, tributyltin, acetylacetone tin (IV) chloride and other tin compounds; lead chloride, lead oxide, lead carbonate, lead tetraacetate and other lead compounds; aluminum chloride, aluminum oxide, aluminum acetate, Aluminum compounds such as aluminum alkoxide; zinc chloride, zinc bromide, zinc iodide, zinc oxide, zinc acetate, zinc trifluoroacetate, zinc stearate, zinc nitrate, zinc carbonate, zinc sulfate, zinc acetylacetone (II), trifluor Zinc (II) methanesulfonate, zinc 2-tetrafluoroborate, zinc-based compounds such as oxo[hexa(trifluoroacetato)]tetrazinc; bismuth-based compounds such as bismuth chloride, bismuth oxide, bismuth acetate; iron chloride , Iron oxides, iron acetate, iron (III) acetylacetone, iron (II) N,N'-bis(salicylidene) ethylenediamine iron (II); cobalt chloride, cobalt oxide, cobalt acetate, cobalt stearate, acetylacetone cobalt (II) ) And other cobalt-based compounds; copper-based compounds such as copper chloride, copper bromide, copper iodide, copper oxide, copper acetate, and copper (II) acetylacetone; chromium chloride, chromium oxide, chromium acetate, chromium (III) acetylacetone, etc. Chromium compounds; molybdenum compounds such as molybdenum chloride, molybdenum oxide, molybdenum acetate, acetylacetone molybdenum (VI) dioxide; manganese compounds such as manganese chloride, manganese oxide, manganese acetate, acetylacetone manganese (II); titanium chloride, oxidation Titanium compounds such as titanium, titanium acetate, alkoxy titanium, titanium lactate, and acetylacetone titanium (VI) oxide; zirconium compounds such as zirconium chloride, zirconium oxide, zirconium acetate, and acetylacetone zirconium (IV); hafnium chloride, hafnium oxide, and trifluoride. Hafnium-based compounds such as hafnium (IV) methanesulfonate; lanthanum chloride, Lanthanum compounds such as lanthanum oxide, lanthanum acetate, lanthanum nitrate, lanthanum alkoxide, acetylacetone lanthanum (III) and lanthanum (III) trifluoromethanesulfonate; germanium compounds such as germanium chloride and germanium oxide; enzymes such as lipase; It is preferably used. Among them, from the viewpoint of reactivity and hue of the modified polyvinyl alcohol-based polymer obtained, inorganic acid, organic carboxylic acid, organic sulfonic acid, organic phosphoric acid, hydroxide of alkali metal or alkaline earth metal, alkali metal or alkali Earth metal carbonates and hydrogen carbonates, alkali metal or alkaline earth metal phosphates and hydrogen phosphates, alkali metal or alkaline earth metal carboxylates, alkali metal or alkaline earth metal alkoxide systems Compounds or phenoxide compounds, ammonium salts, phosphonium salts, aluminum compounds, zinc compounds, bismuth compounds, titanium compounds, zirconium compounds, lanthanum compounds are more preferable, inorganic acids, organic carboxylic acids, organic sulfonic acids, alkalis Metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal carbonates and hydrogen carbonates, alkali metal or alkaline earth metal carboxylates, alkali metal or alkaline earth metal alkoxide compounds, ammonium Salts, zinc compounds, titanium compounds, zirconium compounds, lanthanum compounds are more preferable, and alkali metal or alkaline earth metal carboxylates, ammonium salts, and zinc compounds are even more preferable.
 エステル交換反応触媒の添加量は特に限定されないが、ビニルアルコール系重合体100質量部に対して、好ましくは0.01質量部~30質量部である。エステル交換反応触媒の添加量が0.01質量部未満であると、反応率が低下するおそれがある。エステル交換反応触媒の添加量が30質量部を上回ると、触媒残渣の除去が困難となり、得られる変性ビニルアルコール系重合体の色相や熱安定性が低下するおそれがある。 The amount of the transesterification reaction catalyst added is not particularly limited, but is preferably 0.01 part by mass to 30 parts by mass with respect to 100 parts by mass of the vinyl alcohol polymer. If the amount of the transesterification reaction catalyst added is less than 0.01 part by mass, the reaction rate may be lowered. When the amount of the transesterification reaction catalyst added exceeds 30 parts by mass, it becomes difficult to remove the catalyst residue, and the hue and thermal stability of the resulting modified vinyl alcohol-based polymer may decrease.
 エステル化合物(II)の添加量は特に限定されず、ビニルアルコール系重合体100質量部に対して、好ましくは0.1質量部~1000質量部、より好ましくは5質量部~500質量部である。当該添加量が0.1質量部未満であると、反応率が低下するおそれがある。当該添加量が1000質量部を上回ると、反応後に残存するエステル化合物の除去が困難となるおそれがある。 The addition amount of the ester compound (II) is not particularly limited, and is preferably 0.1 part by mass to 1000 parts by mass, more preferably 5 parts by mass to 500 parts by mass with respect to 100 parts by mass of the vinyl alcohol polymer. .. If the amount added is less than 0.1 parts by mass, the reaction rate may decrease. If the addition amount exceeds 1000 parts by mass, it may be difficult to remove the ester compound remaining after the reaction.
 エステル交換反応は、ビニルアルコール系重合体、エステル化合物(II)およびエステル交換反応触媒が混合された状態で行われればよく、例えば、溶融されたビニルアルコール系重合体に、エステル化合物(II)およびエステル交換反応触媒を混合して反応させる方法;エステル化合物(II)とエステル交換反応触媒とを溶解し、かつビニルアルコール系重合体が溶解しない溶媒中で、スラリー状態で反応させる方法;ビニルアルコール系重合体、エステル化合物(II)およびエステル交換反応触媒が全て均一に溶解した溶液状態で反応させる方法;などが挙げられる。これらの方法は、反応性や得られる変性ビニルアルコール系重合体の単離性などを考慮下上で、当業者によって適宜選択され得る。 The transesterification reaction may be carried out in a state in which the vinyl alcohol-based polymer, the ester compound (II) and the transesterification reaction catalyst are mixed, and for example, the molten vinyl alcohol-based polymer is mixed with the ester compound (II) and the ester compound (II). Method of mixing and reacting transesterification reaction catalyst; Method of dissolving ester compound (II) and transesterification catalyst and reacting in slurry state in solvent in which vinyl alcohol polymer is not dissolved; Vinyl alcohol system And the like, in which the polymer, the ester compound (II) and the transesterification reaction catalyst are all uniformly dissolved in the solution. These methods can be appropriately selected by those skilled in the art in consideration of reactivity, isolation of the resulting modified vinyl alcohol-based polymer, and the like.
 エステル交換反応をスラリー状態または均一溶液状態で行う場合、反応時のビニルアルコール系重合体の濃度は特に限定されないが、好ましくは1質量%~50質量%であり、より好ましくは2質量%~40質量%であり、さらに好ましくは3質量%~30質量%である。当該濃度が1質量%未満であると、希薄すぎて反応速度を低下させるおそれがある、当該濃度が50質量%を上回ると、反応系内で撹拌不良を引き起こすおそれがある。 When the transesterification reaction is carried out in a slurry state or a homogeneous solution state, the concentration of the vinyl alcohol polymer during the reaction is not particularly limited, but it is preferably 1% by mass to 50% by mass, more preferably 2% by mass to 40% by mass. It is a mass%, and more preferably 3 mass% to 30 mass%. If the concentration is less than 1% by mass, it may be too dilute to reduce the reaction rate, and if the concentration exceeds 50% by mass, poor stirring may occur in the reaction system.
 エステル交換反応に用いられる溶媒は特に限定されないが、例えば水;メタノール、エタノール、プロパノール、ブタノールなどのアルコール類;n-ヘキサン、n-ペンタン、シクロヘキサンなどの脂肪族または脂環式炭化水素類;ベンゼン、トルエンなどの芳香族炭化水素類;クロロホルム、クロロベンゼン、ジクロロベンゼンなどの脂肪族または芳香族ハロゲン化物;アセトニトリル、ベンゾニトリルなどのニトリル類;ジエチルエーテル、ジフェニルエーテル、アニソール、1,2-ジメトキシエタン、1,4-ジオキサンなどのエーテル類;アセトン、メチルイソプロピルケトン、メチルイソブチルケトンなどのケトン類;酢酸エチル、プロピオン酸エチルなどのエステル類;N-メチル-2-ピロリドンなどのN-アルキルラクタム類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのN,N-ジアルキルアミド類;ジメチルスルホキシドなどのスルホキシド類;スルホランなどのスルホラン類;などが挙げられる。中でも、ニトリル類、エーテル類、ケトン類、エステル類、N-アルキルラクタム類、N,N-ジアルキルアミド類、スルホキシド類、スルホラン類などの非プロトン性極性溶媒が好ましく、N-アルキルラクタム類、N,N-ジアルキルアミド類、スルホキシド類がより好ましい。 The solvent used in the transesterification reaction is not particularly limited, and examples thereof include water; alcohols such as methanol, ethanol, propanol and butanol; aliphatic or alicyclic hydrocarbons such as n-hexane, n-pentane and cyclohexane; benzene. , Aromatic hydrocarbons such as toluene; aliphatic or aromatic halides such as chloroform, chlorobenzene and dichlorobenzene; nitriles such as acetonitrile and benzonitrile; diethyl ether, diphenyl ether, anisole, 1,2-dimethoxyethane, 1 , Ethers such as 4-dioxane; ketones such as acetone, methyl isopropyl ketone and methyl isobutyl ketone; esters such as ethyl acetate and ethyl propionate; N-alkyl lactams such as N-methyl-2-pyrrolidone; N , N-dimethylformamide, N,N-dimethylacetamide and other N,N-dialkylamides; dimethyl sulfoxide and other sulfoxides; sulfolane and other sulfolanes; Of these, aprotic polar solvents such as nitriles, ethers, ketones, esters, N-alkyllactams, N,N-dialkylamides, sulfoxides and sulfolanes are preferable, and N-alkyllactams, N , N-dialkylamides and sulfoxides are more preferable.
 エステル交換反応における反応温度は特に限定されないが、エステル化合物(II)から脱離したアルコールを適切に反応系外に除去するために、当該アルコールの沸点以上であることが望ましい。このような観点から、20℃~200℃が好ましく、30℃~180℃がより好ましく、40℃~170℃がさらに好ましく、50℃~150℃がさらにより好ましい。エステル化合物から脱離したアルコールの沸点を下げるため、必要に応じて反応系を減圧してもよい。反応系内の圧力は好ましくは5kPa~99kPa、より好ましくは8kPa~97kPa、さらに好ましくは10kPa~95kPaである。 The reaction temperature in the transesterification reaction is not particularly limited, but in order to properly remove the alcohol desorbed from the ester compound (II) to the outside of the reaction system, it is preferably the boiling point of the alcohol or higher. From such a viewpoint, 20° C. to 200° C. is preferable, 30° C. to 180° C. is more preferable, 40° C. to 170° C. is further preferable, and 50° C. to 150° C. is further more preferable. The reaction system may be depressurized if necessary in order to lower the boiling point of the alcohol desorbed from the ester compound. The pressure in the reaction system is preferably 5 kPa to 99 kPa, more preferably 8 kPa to 97 kPa, and further preferably 10 kPa to 95 kPa.
(アニオン性高分子電解質)
 アニオン性高分子電解質は、天然または合成された高分子であって、例えば、側鎖に所定の官能基を有する熱可塑性樹脂、多糖類、ポリペプチド、およびそれらの塩である。アニオン性高分子電解質に含まれていてもよい官能基としては、例えば、カルボン酸基またはその塩(カルボン酸塩基)、およびスルホン酸またはその塩(スルホン酸塩基)、ならびにそれらの組み合わせが挙げられる。
(Anionic polyelectrolyte)
The anionic polyelectrolyte is a natural or synthetic polymer and is, for example, a thermoplastic resin having a predetermined functional group in the side chain, a polysaccharide, a polypeptide, or a salt thereof. Examples of the functional group that may be contained in the anionic polyelectrolyte include a carboxylic acid group or a salt thereof (carboxylate group), a sulfonic acid or a salt thereof (sulfonate group), and a combination thereof. ..
 アニオン性高分子電解質としては、例えばポリ(メタ)アクリル酸、ポリスチレンスルホン酸、マレイン酸系共重合体、イタコン酸系共重合体、2-アクリルアミド-2-メチルプロパンスルホン酸共重合体などの熱可塑性樹脂;カルボキシメチルセルロース、デキストラン硫酸ナトリウム、アルギン酸、ヒアルロン酸、ヘパリン、ヘパラン硫酸、コンドロイチン硫酸、セロウロン酸などの多糖類;ポリアスパラギン酸、ポリグルタミン酸、セロウロン酸などのポリペプチド;およびそれらの塩;ならびにそれらの組み合わせが挙げられる。上記変性ビニルアルコール系重合体とともに高度な耐水化が可能であることから、ポリ(メタ)アクリル酸が好ましい。 Examples of the anionic polyelectrolyte include heat of poly(meth)acrylic acid, polystyrene sulfonic acid, maleic acid-based copolymer, itaconic acid-based copolymer, 2-acrylamido-2-methylpropanesulfonic acid copolymer, and the like. Plastic resins; polysaccharides such as carboxymethyl cellulose, sodium dextran sulfate, alginic acid, hyaluronic acid, heparin, heparan sulfate, chondroitin sulfate, cellouronic acid; polypeptides such as polyaspartic acid, polyglutamic acid, cellouronic acid; and salts thereof; and A combination thereof can be mentioned. Poly(meth)acrylic acid is preferable because it can be made highly resistant to water together with the modified vinyl alcohol polymer.
 本発明の架橋樹脂組成物において、上記変性ビニルアルコール系重合体とアニオン性高分子電解質との混合比は特に限定されないが、質量を基準として、好ましくは1/99~99/1、より好ましくは10/90~90/10、さらに好ましくは20/80~80/20である。変性ビニルアルコール系重合体およびアニオン性高分子電解質がこのような範囲の質量比で含有されていることにより、得られる樹脂組成物は、複雑な架橋操作を要することなく、所定の架橋剤の存在下や活性エネルギー線の付与によって容易に架橋構造を形成することができる。 In the crosslinked resin composition of the present invention, the mixing ratio of the modified vinyl alcohol polymer and the anionic polyelectrolyte is not particularly limited, but is preferably 1/99 to 99/1, and more preferably based on the mass. It is 10/90 to 90/10, and more preferably 20/80 to 80/20. By containing the modified vinyl alcohol-based polymer and the anionic polyelectrolyte in a mass ratio in such a range, the resin composition obtained does not require a complicated crosslinking operation, and the presence of a predetermined crosslinking agent is present. A crosslinked structure can be easily formed underneath or by applying an active energy ray.
(架橋剤)
 本発明の架橋性樹脂組成物は、当該分野において公知の架橋剤を含有していてもよい。架橋剤としては、好ましくは1分子内に2つまたはそれ以上のチオール基を有する化合物、1分子内に2つまたはそれ以上のアミノ基を有する化合物等が挙げられる。1分子内に2つまたはそれ以上のチオール基を有する化合物としては、例えば1,2-エタンジチオール、1,3-プロパンジチオール、1,4-ブタンジチオール、2,3-ブタンジチオール、1,5-ペンタンジチオール、1,6-ヘキサンジチオール、1,10-デカンジチオール、2,3-ジヒドロキシ-1,4-ブタンジチオール、エチレンビス(チオグリコラート)、エチレングリコールビス(3-メルカプトプロピオナート)、1,4-ブタンジオールビス(チオグリコラート)、2,2’-チオジエタンチオール、3,6-ジオキサ-1,8-オクタンジチオール(DODT)、3,7-ジチア-1,9-ノナンジチオール、1,4-ベンゼンジチオール、トリメチロールプロパントリス(3-メルカプトプロピオナート)、トリメチロールプロパントリス(チオグリコラート)、ペンタエリトリトールテトラキス(メルカプトアセタート)、ジペンタエリトリトールヘキサキス(3-メルカプトプロピオナート)、チオコール(東レ・ファインケミカル(株)製)等が挙げられる。1分子内に2つまたはそれ以上のアミノ基を有する化合物としては、例えばエチレンジアミン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、2,2-ジメチル-1,3-プロパンジアミン、1,2-ジアミノ-2-メチルプロパン、2-メチル-1,3-プロパンジアミン、1,2-ジアミノブタン、1,4-ジアミノブタン、1,3-ジアミノペンタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、2-メチル-1,5-ジアミノペンタン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1-メチル-1,8-ジアミノオクタン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、ビス(3-アミノプロピル)エーテル、1,2-ビス(3-アミノプロポキシ)エタン、1,3-ビス(3-アミノプロポキシ)-2,2-ジメチルプロパン、2,2’-オキシビス(エチルアミン)、1,3-ジアミノ-2-プロパノール、α,ω-ビス(3-アミノプロピル)ポリエチレングリコールエーテル、1,2-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、4-(2-アミノエチル)シクロヘキシルアミン、イソホロンジアミン、1,4-フェニレンジアミン等が挙げられる。
(Crosslinking agent)
The crosslinkable resin composition of the present invention may contain a crosslinking agent known in the art. The cross-linking agent preferably includes a compound having two or more thiol groups in one molecule, a compound having two or more amino groups in one molecule, and the like. Examples of the compound having two or more thiol groups in one molecule include 1,2-ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, 2,3-butanedithiol, 1,5 -Pentanedithiol, 1,6-hexanedithiol, 1,10-decanedithiol, 2,3-dihydroxy-1,4-butanedithiol, ethylene bis(thioglycolate), ethylene glycol bis(3-mercaptopropionate) , 1,4-butanediol bis(thioglycolate), 2,2'-thiodiethanethiol, 3,6-dioxa-1,8-octanedithiol (DODT), 3,7-dithia-1,9- Nonanedithiol, 1,4-benzenedithiol, trimethylolpropane tris (3-mercaptopropionate), trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (mercaptoacetate), dipentaerythritol hexakis (3- Mercaptopropionate), thiocol (manufactured by Toray Fine Chemical Co., Ltd.) and the like. Examples of the compound having two or more amino groups in one molecule include ethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane, 2,2-dimethyl-1,3-propanediamine, 1, 2-diamino-2-methylpropane, 2-methyl-1,3-propanediamine, 1,2-diaminobutane, 1,4-diaminobutane, 1,3-diaminopentane, 1,5-diaminopentane, 1, 6-diaminohexane, 2-methyl-1,5-diaminopentane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1-methyl-1,8-diaminooctane, 1,10 -Diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, bis(3-aminopropyl)ether, 1,2-bis(3-aminopropoxy)ethane, 1,3-bis(3-aminopropoxy) )-2,2-Dimethylpropane, 2,2'-oxybis(ethylamine), 1,3-diamino-2-propanol, α,ω-bis(3-aminopropyl) polyethylene glycol ether, 1,2-diaminocyclohexane 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 4-(2-aminoethyl)cyclohexylamine, isophoronediamine , 1,4-phenylenediamine and the like.
 架橋剤の含有量は、特に限定されないが、例えば、上記変性ビニルアルコール系重合体100質量部に対して、好ましくは0.1質量部~20質量部、より好ましくは0.5質量部~10質量部である。架橋剤の含有量が0.1質量部未満であると、樹脂組成物内で架橋構造が十分に形成されず、得られる硬化物について満足すべき耐水化が達成されないおそれがある。架橋剤の含有量が20質量部を上回ると、得られる硬化物内の架橋がそれ以上進まず、むしろ生産性を欠くおそれがある。 The content of the cross-linking agent is not particularly limited, but is, for example, preferably 0.1 parts by mass to 20 parts by mass, more preferably 0.5 parts by mass to 10 parts by mass with respect to 100 parts by mass of the modified vinyl alcohol polymer. It is a mass part. If the content of the cross-linking agent is less than 0.1 parts by mass, the cross-linked structure is not sufficiently formed in the resin composition, and there is a possibility that the obtained cured product may not have satisfactory water resistance. When the content of the cross-linking agent exceeds 20 parts by mass, the cross-linking in the obtained cured product does not proceed further, and the productivity may be rather lowered.
(光重合開始剤)
 あるいは、本発明の架橋性樹脂組成物は、上記架橋剤の代わりに当該分野において公知の光重合開始剤を含有していてもよい。光重合開始剤としては、特に限定されないが、例えば2-ヒドロキシ-4'-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノンなどのプロピオフェノン系化合物;4’-フェノキシ-2,2-ジクロロアセトフェノン、4’-t-ブチル-2,2,2-トリクロロアセトフェノン、2,2-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-1-(4’-ドデシルフェニル)-1-プロパノン、1-[4’-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-4’-メチルチオ-2-モルホリノプロピオフェノンなどのアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインブチルエーテル、ベンジルジメチルケタールなどのベンゾイン系化合物;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、2-クロロベンゾフェノン、2,2’-ジクロロベンゾフェノン、4-ヒドロキシベンゾフェノン、4,4’-ジヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド、3,3’-ジメチル-4-メトキシベンゾフェノン、ミヒラーケトン[4,4’-ビス(ジメチルアミノ)ベンゾフェノン]、4,4’-ビス(ジエチルアミノ)ベンゾフェノンなどのベンゾフェノン系化合物;2-クロロチオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントンなどのチオキサントン系化合物;9,10-フェナントレンキノン、カンファーキノン(2,3-ボルナンジオン)、2-エチルアントラキノンなどのキノン系化合物;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド;ベンジルなどが挙げられる。
(Photopolymerization initiator)
Alternatively, the crosslinkable resin composition of the present invention may contain a photopolymerization initiator known in the art in place of the above crosslinker. The photopolymerization initiator is not particularly limited, but is, for example, a propiophenone compound such as 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone; 4′-phenoxy-2,2- Dichloroacetophenone, 4'-t-butyl-2,2,2-trichloroacetophenone, 2,2-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 2-hydroxy-2-methyl-1-(4 '-Dodecylphenyl)-1-propanone, 1-[4'-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propanone, 1-hydroxycyclohexylphenyl ketone, 2-methyl-4' -Acetophenone compounds such as methylthio-2-morpholinopropiophenone; benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin butyl ether, and benzyl dimethyl ketal; benzophenone, o-benzoyl methyl benzoate, 4-phenylbenzophenone, 2-chlorobenzophenone, 2,2'-dichlorobenzophenone, 4-hydroxybenzophenone, 4,4'-dihydroxybenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, 3,3'-dimethyl- Benzophenone compounds such as 4-methoxybenzophenone, Michler's ketone [4,4′-bis(dimethylamino)benzophenone], 4,4′-bis(diethylamino)benzophenone; 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone , 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone and other thioxanthone compounds; such as 9,10-phenanthrenequinone, camphorquinone (2,3-bornanedione) and 2-ethylanthraquinone Examples thereof include quinone compounds; 2,4,6-trimethylbenzoyldiphenylphosphine oxide; benzyl and the like.
 光重合開始剤は、特に限定されないが、例えば、上記変性ビニルアルコール系重合体100質量部に対して、好ましくは0.1質量部~10質量部、より好ましくは0.2質量部~5質量部である。光重合開始剤の含有量が0.1質量部未満であると、例えば樹脂組成物にUV光を照射しても架橋構造が十分に形成されず、得られる硬化物について満足すべき耐水化が達成されないおそれがある。光重合開始剤の含有量が10質量部を上回ると、得られる硬化物内の架橋がそれ以上進まず、むしろ生産性を欠くおそれがある。 The photopolymerization initiator is not particularly limited, but is, for example, preferably 0.1 parts by mass to 10 parts by mass, more preferably 0.2 parts by mass to 5 parts by mass with respect to 100 parts by mass of the modified vinyl alcohol polymer. It is a department. When the content of the photopolymerization initiator is less than 0.1 parts by mass, for example, even if the resin composition is irradiated with UV light, a crosslinked structure is not sufficiently formed, and the resulting cured product has satisfactory water resistance. May not be achieved. When the content of the photopolymerization initiator is more than 10 parts by mass, the crosslinking in the obtained cured product does not proceed further, and the productivity may rather be lost.
(その他の添加剤)
 さらに、本発明の架橋性樹脂組成物は当該分野において公知の他の添加剤を含有していてもよい。このような他の添加剤としては、例えば、充填剤、加工安定剤、耐候性安定剤、着色剤、UV光吸収剤、光安定剤、酸化防止剤、大電防止剤、難燃剤、可塑剤、潤滑剤、香料、消泡剤、消臭剤、剥離剤、離型剤、補強剤、防カビ剤、防腐剤、結晶化速度遅延剤、および他の水溶性樹脂、ならびにそれらの組み合わせが挙げられる。
(Other additives)
Further, the crosslinkable resin composition of the present invention may contain other additives known in the art. Examples of such other additives include fillers, processing stabilizers, weather resistance stabilizers, colorants, UV light absorbers, light stabilizers, antioxidants, antistatic agents, flame retardants, plasticizers. , Lubricants, fragrances, defoamers, deodorants, release agents, mold release agents, reinforcing agents, fungicides, preservatives, crystallization rate retarders, and other water-soluble resins, and combinations thereof. To be
 本発明の架橋性樹脂組成物において、上記その他の添加剤の含有量は特に限定されず、本発明の効率を阻害しない程度の量が当業者によって任意に設定され得る。 In the crosslinkable resin composition of the present invention, the content of the above-mentioned other additives is not particularly limited, and an amount that does not impair the efficiency of the present invention can be arbitrarily set by those skilled in the art.
(硬化物)
 本発明の硬化物は、上記架橋性樹脂組成物の架橋体を含む。当該架橋性樹脂組成物の架橋体は、架橋性樹脂組成物に含まれる変性ビニルアルコール系重合体とアニオン性高分子電解質が、当該変性ビニルアルコール系重合体を構成する上記式(I)で表される構成単位に基づく架橋によって化学的または物理的に一体化されたものである。
(Cured product)
The hardened|cured material of this invention contains the crosslinked body of the said crosslinkable resin composition. The crosslinked product of the crosslinkable resin composition is represented by the above formula (I) in which the modified vinyl alcohol-based polymer and the anionic polyelectrolyte contained in the crosslinkable resin composition constitute the modified vinyl alcohol-based polymer. It is chemically or physically integrated by crosslinking based on the constitutional unit.
 本発明の硬化物は優れた耐水性を有する。このような耐水性の程度は、例えば、得られた架橋体の溶出率を測定することにより評価することができる。 The cured product of the present invention has excellent water resistance. The degree of such water resistance can be evaluated by, for example, measuring the elution rate of the obtained crosslinked product.
 架橋体の溶出率は、以下のようにして算出される:まず評価を開始した(未処理)段階における所定の架橋体の質量(W1)を測定し、次いでこの架橋体の80℃で24時間真空乾燥した後の質量(W2)を測定して、W1およびW2から、架橋体の固形分の含有量(TS)が以下の式:
  TS(質量%)=100×W2/W1
にしたがって算出される。次に、評価を開始した(未処理)段階における所定の架橋体を室温(25℃)にて純水中に24時間浸漬し、水から取り出して、80℃で24時間真空乾燥した後に質量(W3)を測定し、最終的に上記で得られたW1、TSおよびW3を用いて以下の式:
  溶出率(質量%)=100-{W3/(W1×TS/100)}×100
にしたがって溶出率を算出することができる。
The dissolution rate of the crosslinked product is calculated as follows: First, the mass (W1) of a given crosslinked product at the (untreated) stage where the evaluation was started is measured, and then the crosslinked product is heated at 80° C. for 24 hours. The mass (W2) after vacuum drying was measured, and from W1 and W2, the solid content (TS) of the crosslinked product was calculated by the following formula:
TS (mass %)=100×W2/W1
Calculated according to. Next, the predetermined crosslinked product at the (untreated) stage when the evaluation was started was immersed in pure water at room temperature (25°C) for 24 hours, taken out from water, vacuum dried at 80°C for 24 hours, and then mass ( W3) was measured and finally using W1, TS and W3 obtained above, the following formula:
Dissolution rate (mass %)=100−{W3/(W1×TS/100)}×100
The dissolution rate can be calculated according to
 本発明の硬化物は、好ましくは40質量%以下、より好ましくは35質量%以下、さらにより好ましくは30質量%以下、最も好ましくは25質量%以下の溶出率を有する。本発明の硬化物が上記範囲の溶出率を満足していることにより、上記水への浸漬の前後において構成成分の溶出が防止され、言い換えれば当該水に対して優れた耐水性を有していることがわかる。 The cured product of the present invention preferably has an elution rate of 40% by mass or less, more preferably 35% by mass or less, even more preferably 30% by mass or less, and most preferably 25% by mass or less. When the cured product of the present invention satisfies the elution ratio in the above range, elution of the constituents is prevented before and after immersion in the water, in other words, it has excellent water resistance to the water. You can see that
 本発明の硬化物は優れた吸水性を有する。このような吸水性の程度は、例えば、得られた架橋体の吸水倍率を測定することにより評価することができる。 The cured product of the present invention has excellent water absorption. The degree of such water absorption can be evaluated, for example, by measuring the water absorption capacity of the obtained crosslinked product.
 架橋体の吸水倍率は、所定の架橋体を25℃にて水(純水)中に3時間浸漬した後、当該水から取り出して表面に存在する水を拭き取った後の質量(W4)を測定し、次いで、この架橋物を80℃で24時間真空乾燥した後の質量(W5)を測定し、以下の式:
  吸水倍率(倍)=W4/W5
にしたがって算出することができる。
The water absorption capacity of the crosslinked product was measured by immersing the predetermined crosslinked product in water (pure water) at 25°C for 3 hours, then removing the water from the water and wiping off the water on the surface (W4). Then, the mass (W5) of the crosslinked product after vacuum drying at 80° C. for 24 hours was measured.
Water absorption ratio (times) = W4/W5
Can be calculated according to
 本発明の硬化物は、好ましくは5倍以上、より好ましくは7倍以上、さらにより好ましくは10倍以上の吸水倍率を有する。本発明の硬化物が有する吸水倍率の上限は特に限定されないが、例えば2000倍以下、1000倍以下である。本発明の硬化物は上記範囲の吸水倍率を満足していることにより、上記水への浸漬によって構成成分が多くの水を吸収し得る能力を有していることがわかる。 The cured product of the present invention preferably has a water absorption capacity of 5 times or more, more preferably 7 times or more, still more preferably 10 times or more. The upper limit of the water absorption capacity of the cured product of the present invention is not particularly limited, but is, for example, 2000 times or less and 1000 times or less. Since the cured product of the present invention satisfies the water absorption capacity in the above range, it is understood that the constituents have the ability to absorb a large amount of water when immersed in the water.
 本発明の硬化物は、上記架橋性樹脂組成物を用いて例えば以下のようにして製造することができる。 The cured product of the present invention can be produced, for example, as follows using the above crosslinkable resin composition.
 まず、架橋性樹脂組成物が上記変性ポリビニルアルコール系重合体およびアニオン高分子電解質とともに、光重合開始剤を含有している場合について説明する。 First, the case where the crosslinkable resin composition contains a photopolymerization initiator together with the modified polyvinyl alcohol-based polymer and the anionic polyelectrolyte will be described.
 このような場合、架橋性樹脂組成物にα線、γ線、電子線、i線、UV光などの活性エネルギー線、特に好適にはUV光が照射される。 In such a case, the crosslinkable resin composition is irradiated with α-rays, γ-rays, electron beams, i-rays, active energy rays such as UV rays, and particularly preferably UV rays.
 UV光の照射条件は、使用する架橋性樹脂組成物の量およびそれらの内容物の含有量等によって変動するため必ずしも限定されず、適切な照射条件(例えば照射強度および照射時間)は当業者によって適宜選択され得る。架橋性樹脂組成物へのUV光の照射は連続的に行われてもよく、あるいは断続的に行われてもよい。 The irradiation conditions of UV light are not necessarily limited because they vary depending on the amount of the crosslinkable resin composition used and the content of the contents thereof, and appropriate irradiation conditions (for example, irradiation intensity and irradiation time) can be determined by those skilled in the art. It can be appropriately selected. Irradiation of the UV light to the crosslinkable resin composition may be performed continuously or intermittently.
 上記架橋性樹脂組成物にUV光が照射されることにより、当該組成物に含まれる変性ビニルアルコール系重合体とアニオン性高分子電解質は当該変性ビニルアルコール系重合体を構成する上記式(I)で表される構成単位に基づく架橋によって化学的または物理的に一体化され、所定の架橋体が形成される。このようにして本発明の硬化物を得ることができる。 By irradiating the crosslinkable resin composition with UV light, the modified vinyl alcohol-based polymer and the anionic polyelectrolyte contained in the composition constitute the modified vinyl alcohol-based polymer and have the above formula (I). Crosslinking based on the constitutional unit represented by is chemically or physically integrated to form a predetermined crosslinked body. In this way, the cured product of the present invention can be obtained.
 他方、架橋性樹脂組成物が上記変性ビニルアルコール系重合体およびアニオン高分子電解質とともに、架橋剤を含有している場合について説明する。 On the other hand, a case where the crosslinkable resin composition contains a crosslinker together with the modified vinyl alcohol polymer and the anionic polyelectrolyte will be described.
 このような場合、架橋性樹脂組成物が加熱される。 In such a case, the crosslinkable resin composition is heated.
 加熱条件は、使用する架橋性樹脂組成物の量およびそれらの内容物の含有量等によって変動するため必ずしも限定されず、適切な加熱条件(例えば加熱温度および加熱時間)は当業者によって適宜選択され得る。架橋性樹脂組成物への加熱は連続的に行われてもよく、あるいは断続的に行われてもよい。 The heating conditions are not necessarily limited because they vary depending on the amount of the crosslinkable resin composition used, the content of those contents, etc., and appropriate heating conditions (for example, heating temperature and heating time) are appropriately selected by those skilled in the art. obtain. The heating of the crosslinkable resin composition may be performed continuously or intermittently.
 上記架橋性樹脂組成物の加熱によって、当該組成物に含まれる変性ポリビニルアルコール系重合体とアニオン性高分子電解質は当該変性ポリビニルアルコール系重合体を構成する上記式(I)で表される構成単位に基づく架橋によって化学的または物理的に一体化され、所定の架橋体が形成される。このようにして本発明の硬化物を得ることができる。 By heating the crosslinkable resin composition, the modified polyvinyl alcohol-based polymer and the anionic polyelectrolyte contained in the composition are structural units represented by the above formula (I) that constitute the modified polyvinyl alcohol-based polymer. Based on the cross-linking, they are chemically or physically integrated to form a predetermined cross-linked product. In this way, the cured product of the present invention can be obtained.
 本発明の硬化物は、特に限定されないが、その優れた吸水性および耐水性を利用して、衛生製品(例えば、オムツおよび生理用品)、メディカル関連製品(例えば創傷保護用ドレッシング材)、農業・園芸用資材(例えば土壌保水剤、育苗用シート、種子コーティング材)、食品包装材(例えば鮮度保持フィルム、結露防止シート、バリア性コーティング材)、ペット関連製品(例えばペットシート、猫砂)、電気関連資材(例えば通信ケーブル用止水材、建築用資材(例えば結露防止壁紙)などの様々な業製品を構成するための材料として使用することができる。 The cured product of the present invention is not particularly limited, but by utilizing its excellent water absorption and water resistance, hygiene products (for example, diapers and sanitary products), medical-related products (for example, dressing materials for wound protection), agriculture/ Gardening materials (eg soil water retention agent, seedling sheet, seed coating material), food packaging materials (eg freshness retention film, dew condensation prevention sheet, barrier coating material), pet related products (eg pet sheet, cat sand), electricity It can be used as a material for forming various industrial products such as related materials (for example, water-stopping materials for communication cables, building materials (for example, wallpaper for preventing dew condensation)).
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、実施例、比較例中の「%」および「部」は特に断りのない限り、それぞれ「質量%」および「質量部」を表す。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. In addition, "%" and "parts" in Examples and Comparative Examples represent "% by mass" and "parts by mass", respectively, unless otherwise specified.
(変性率の算出)
 日本電子株式会社製核磁気共鳴装置「LAMBDA 500」を用い、室温で変性ビニルアルコール系重合体のH-NMRを測定し、オレフィンプロトン由来のピーク(5.0~7.5ppm)の積分値から変性率を算出した。例えば、実施例1においては、5.6ppmおよび6.0ppmに表れるオレフィンプロトン由来のピークの積分値から、変性率を算出した。
(Calculation of denaturation rate)
Using a nuclear magnetic resonance apparatus “LAMBDA 500” manufactured by JEOL Ltd., 1 H-NMR of the modified vinyl alcohol polymer was measured at room temperature, and an integrated value of a peak (5.0 to 7.5 ppm) derived from an olefin proton was obtained. The denaturation rate was calculated from For example, in Example 1, the modification rate was calculated from the integrated value of the peaks derived from the olefin protons appearing at 5.6 ppm and 6.0 ppm.
(耐水性の評価)
 実施例および比較例で得られた架橋体の質量(W1)を測定し、次いでこの架橋体の80℃で24時間真空乾燥した後の質量(W2)を測定して、W1およびW2から、架橋体の固形分の含有量(TS)が以下の式:
  TS(質量%)=100×W2/W1
にしたがって算出した。次に、評価を開始した(未処理)段階における所定の架橋体を室温(25℃)にて純水中に24時間浸漬し、水から取り出して、80℃で24時間真空乾燥した後に質量(W3)を測定し、最終的に上記で得られたW1、TSおよびW3を用いて以下の式にしたがって溶出率を算出し、架橋耐水性の指標とした。なお、溶出率が低いほど耐水性が高いことを意味する。
  溶出率(質量%)=100-{W3/(W1×TS/100)}×100
(Evaluation of water resistance)
The mass (W1) of the crosslinked products obtained in Examples and Comparative Examples was measured, and then the mass (W2) of the crosslinked product after vacuum drying at 80° C. for 24 hours was measured to obtain the crosslinked product from W1 and W2. The solid content of the body (TS) is the following formula:
TS (mass %)=100×W2/W1
Was calculated according to. Next, the predetermined crosslinked product at the (untreated) stage when the evaluation was started was immersed in pure water at room temperature (25°C) for 24 hours, taken out from water, vacuum dried at 80°C for 24 hours, and then mass ( W3) was measured, and finally the elution rate was calculated according to the following formula using W1, TS and W3 obtained above, which was used as an index of crosslinking water resistance. Note that the lower the elution rate, the higher the water resistance.
Dissolution rate (mass %)=100−{W3/(W1×TS/100)}×100
(吸水性の評価)
 実施例および比較例で得られた架橋体を室温(25℃)にて純水中に3時間浸漬し、水から取り出して表面水を拭き取った後の質量(W4)を測定した。その後、架橋物を80℃で24時間真空乾燥した後の質量(W5)を測定した。得られた質量から、以下の式に従って吸水倍率を算出し、この吸水倍率を吸水性の指標とした。なお、吸水倍率が高いほど吸水性が高いことを意味する。
  吸水倍率(倍)=W4/W5
(Evaluation of water absorption)
The cross-linked products obtained in Examples and Comparative Examples were immersed in pure water at room temperature (25° C.) for 3 hours, taken out from water, and the mass (W4) after wiping off surface water was measured. Then, the mass (W5) of the crosslinked product after vacuum drying at 80° C. for 24 hours was measured. From the obtained mass, a water absorption capacity was calculated according to the following formula, and this water absorption capacity was used as an index of water absorption. The higher the water absorption ratio, the higher the water absorption.
Water absorption ratio (times) = W4/W5
(合成例1)
 撹拌機、還流管、および添加口を備える反応器に、脱水したジメチルスルホキシド(以下、DMSOと略称する)400.0質量部、ベースポリマーとして、予め80℃で24時間真空乾燥させたポリビニルアルコール樹脂(株式会社クラレ製,重合度1700,ケン化度98.5モル%)100質量部を添加し、撹拌しながら100℃に昇温することにより均一な溶液を得た。次いで、40.0質量部の3,3-ジメチルペンテン酸メチルを添加し、均一になるまでさらに撹拌した。
(Synthesis example 1)
In a reactor equipped with a stirrer, a reflux pipe, and an addition port, 400.0 parts by mass of dehydrated dimethylsulfoxide (hereinafter, abbreviated as DMSO), and a base polymer, a polyvinyl alcohol resin previously vacuum dried at 80° C. for 24 hours. (Manufactured by Kuraray Co., Ltd., polymerization degree 1700, saponification degree 98.5 mol %) 100 parts by mass was added, and a uniform solution was obtained by heating to 100° C. with stirring. Next, 40.0 parts by mass of methyl 3,3-dimethylpentenoate was added, and the mixture was further stirred until it became uniform.
 その後、エステル交換触媒としてテトラメチルアンモニウムメチルカーボネート0.4質量部を添加し、5時間反応させた後、室温まで放冷した。反応溶液にDMSOを添加して希釈した後、メタノール中に滴下してポリマーを単離し、40℃にて1.3Paで12時間乾燥することにより、変性ビニルアルコール系重合体(変性PVOH-1)を得た。本合成例で得られた変性PVOH-1の特徴について表1に示す。 After that, 0.4 parts by mass of tetramethylammonium methyl carbonate was added as a transesterification catalyst, reacted for 5 hours, and then allowed to cool to room temperature. DMSO was added to the reaction solution to dilute it, then the polymer was isolated by dropping it in methanol and dried at 40° C. and 1.3 Pa for 12 hours to obtain a modified vinyl alcohol-based polymer (modified PVOH-1). Got Table 1 shows the characteristics of the modified PVOH-1 obtained in this synthesis example.
(合成例2)
 撹拌機、還流管、および添加口を備える反応器に、DMSO36質量部、ベースポリマーとして、予め80℃で24時間真空乾燥させたポリビニルアルコール樹脂(株式会社クラレ製,粘度平均重合度2400,ケン化度98.5モル%)9質量部を添加し、撹拌しながら100℃に昇温することにより均一な溶液を得た。次いで、6質量部のメタクリル酸メチル(MMA)、0.1質量部のフェノチアジンを添加し、均一になるまでさらに撹拌した。その後、エステル交換触媒として酢酸ナトリウム0.17質量部を添加し、1.5時間反応させた後、室温まで放冷した。反応溶液にDMSOを添加して希釈した後、メタノール中に滴下してポリマーを単離し、40℃にて1.3Paで12時間乾燥することにより、変性ポリビニルアルコール系重合体(変性PVOH-2)を得た。本合成例で得られた変性PVOH-2の特徴について表1に示す。
(Synthesis example 2)
In a reactor equipped with a stirrer, a reflux tube, and an addition port, 36 parts by mass of DMSO, a polyvinyl alcohol resin previously vacuum-dried as a base polymer at 80° C. for 24 hours (manufactured by Kuraray Co., Ltd., viscosity average degree of polymerization 2400, saponification) 98.5 parts by mass (98.5 mol%) and heated to 100° C. with stirring to obtain a uniform solution. Next, 6 parts by mass of methyl methacrylate (MMA) and 0.1 parts by mass of phenothiazine were added, and the mixture was further stirred until it became uniform. Then, 0.17 parts by mass of sodium acetate was added as a transesterification catalyst, reacted for 1.5 hours, and then allowed to cool to room temperature. DMSO was added to the reaction solution to dilute it, and the solution was added dropwise to methanol to isolate the polymer, which was then dried at 40° C. and 1.3 Pa for 12 hours to obtain a modified polyvinyl alcohol polymer (modified PVOH-2). Got The characteristics of the modified PVOH-2 obtained in this synthesis example are shown in Table 1.
(合成例3)
 撹拌機、還流管、および添加口を備える反応器に、DMSO36質量部、ベースポリマーとして、予め80℃で24時間真空乾燥させたポリビニルアルコール樹脂(株式会社クラレ製,粘度平均重合度1700,ケン化度98.5モル%)9質量部を添加し、撹拌しながら100℃に昇温することにより均一な溶液を得た。次いで、6質量部のメタクリル酸メチル(MMA)、0.1質量部のフェノチアジンを添加し、均一になるまでさらに撹拌した。その後、エステル交換触媒として酢酸ナトリウム0.17質量部を添加し、20分反応させた後、室温まで放冷した。反応溶液にDMSOを添加して希釈した後、メタノール中に滴下してポリマーを単離し、40℃にて1.3Paで12時間乾燥することにより、変性ビニルアルコール系重合体(変性PVOH-3)を得た。本合成例で得られた変性PVOH-3の特徴について表1に示す。
(Synthesis example 3)
In a reactor equipped with a stirrer, a reflux tube, and an addition port, 36 parts by mass of DMSO, a polyvinyl alcohol resin previously vacuum-dried as a base polymer at 80° C. for 24 hours (Kuraray Co., Ltd., viscosity average degree of polymerization 1700, saponification) 98.5 parts by mass (98.5 mol%) and heated to 100° C. with stirring to obtain a uniform solution. Next, 6 parts by mass of methyl methacrylate (MMA) and 0.1 parts by mass of phenothiazine were added, and the mixture was further stirred until it became uniform. Then, 0.17 parts by mass of sodium acetate was added as a transesterification catalyst, reacted for 20 minutes, and then allowed to cool to room temperature. DMSO was added to the reaction solution to dilute it, and the solution was added dropwise to methanol to isolate the polymer, which was then dried at 40° C. and 1.3 Pa for 12 hours to obtain a modified vinyl alcohol polymer (modified PVOH-3). Got Table 1 shows the characteristics of the modified PVOH-3 obtained in this synthesis example.
(合成例4)
 撹拌機、還流管、および添加口を備える反応器に、DMSO36質量部、ベースポリマーとして、予め80℃で24時間真空乾燥させたポリビニルアルコール樹脂(株式会社クラレ製,粘度平均重合度500,ケン化度88モル%)9質量部を添加し、撹拌しながら100℃に昇温することにより均一な溶液を得た。次いで、6質量部のアクリル酸メチル(MA)、0.1質量部のフェノチアジンを添加し、均一になるまでさらに撹拌した。その後、エステル交換触媒として硝酸亜鉛六水和物1.8質量部を添加し、5時間反応させた後、室温まで放冷した。反応溶液にDMSOを添加して希釈した後、メタノール中に滴下してポリマーを単離し、40℃にて1.3Paで12時間乾燥することにより、変性ビニルアルコール系重合体(変性PVOH-4)を得た。本合成例で得られた変性PVOH-4の特徴について表1に示す。
(Synthesis example 4)
In a reactor equipped with a stirrer, a reflux tube, and an addition port, 36 parts by mass of DMSO, a polyvinyl alcohol resin previously vacuum-dried as a base polymer at 80° C. for 24 hours (manufactured by Kuraray Co., Ltd., viscosity average degree of polymerization: 500, saponification) 9 parts by mass (88 mol %) and heated to 100° C. with stirring to obtain a uniform solution. Next, 6 parts by mass of methyl acrylate (MA) and 0.1 parts by mass of phenothiazine were added and further stirred until uniform. Then, 1.8 parts by mass of zinc nitrate hexahydrate was added as a transesterification catalyst, reacted for 5 hours, and then allowed to cool to room temperature. DMSO was added to the reaction solution to dilute it, and the solution was added dropwise to methanol to isolate the polymer, which was then dried at 40° C. and 1.3 Pa for 12 hours to give a modified vinyl alcohol polymer (modified PVOH-4). Got Table 1 shows the characteristics of the modified PVOH-4 obtained in this synthesis example.
(合成例5)
 撹拌機、還流管、および添加口を備える反応器に、DMSO36質量部、ベースポリマーとして、予め80℃で24時間真空乾燥させたポリビニルアルコール樹脂(株式会社クラレ製,粘度平均重合度1700,ケン化度99.5モル%)9質量部を添加し、撹拌しながら100℃に昇温することにより均一な溶液を得た。次いで、6質量部のメタクリル酸メチル(MMA)、0.1質量部のフェノチアジンを添加し、均一になるまでさらに撹拌した。その後、エステル交換触媒として酢酸ナトリウム0.17質量部を添加し、5時間反応させた後、室温まで放冷した。反応溶液にDMSOを添加して希釈した後、メタノール中に滴下してポリマーを単離し、40℃にて1.3Paで12時間乾燥することにより、変性ポリビニルアルコール系重合体(変性PVOH-5)を得た。本合成例で得られた変性PVOH-5の特徴について表1に示す。
(Synthesis example 5)
In a reactor equipped with a stirrer, a reflux tube, and an addition port, 36 parts by mass of DMSO, a polyvinyl alcohol resin previously vacuum-dried as a base polymer at 80° C. for 24 hours (Kuraray Co., Ltd., viscosity average degree of polymerization 1700, saponification) 99.5 parts by weight (99.5 mol %) and heated to 100° C. with stirring to obtain a uniform solution. Next, 6 parts by mass of methyl methacrylate (MMA) and 0.1 parts by mass of phenothiazine were added, and the mixture was further stirred until it became uniform. Then, 0.17 parts by mass of sodium acetate was added as a transesterification catalyst, reacted for 5 hours, and then allowed to cool to room temperature. DMSO was added to the reaction solution to dilute it, and the solution was added dropwise to methanol to isolate the polymer, which was then dried at 40° C. and 1.3 Pa for 12 hours to obtain a modified polyvinyl alcohol polymer (modified PVOH-5). Got Table 1 shows the characteristics of the modified PVOH-5 obtained in this synthesis example.
(合成例6)
 ベースポリマーとしてポリビニルアルコール樹脂(株式会社クラレ製,粘度平均重合度1700,ケン化度98.5モル%)を、PVOH-6としてそのまま使用した。本合成例で得られたPVOH-6の特徴について表1に示す。
(Synthesis example 6)
As a base polymer, polyvinyl alcohol resin (manufactured by Kuraray Co., Ltd., viscosity average degree of polymerization 1700, degree of saponification 98.5 mol%) was directly used as PVOH-6. The characteristics of PVOH-6 obtained in this synthesis example are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例1)
 ポリアクリル酸水溶液(和光純薬工業製168-07375,25%水溶液)1質量部に、1.5質量部のイオン交換水を添加し、均一になるまで十分混合した。次いで、合成例1で得られた変性PVOH-1の10%水溶液2.5質量部を添加し、均一になるまで混合し、変性PVOH-1およびポリアクリル酸を含む混合液を得た。得られた混合液に、5質量部のイオン交換水を添加して、5質量%の水溶液に調製し、そこへ光重合開始剤として2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン(HEMP)0.005質量部添加し、完全に溶解するまで撹拌して、架橋性樹脂組成物である水溶液(E1)を作製した。次いで、この水溶液(E1)を、ポリエチレンテレフタレートフィルムの端を折り曲げて作製した15cm×15cmの型枠に流延し、室温にて大気圧下で溶媒を十分に揮発させることにより、厚さ約100μmのフィルムを得た。得られたフィルムに10000mJ/cmの強度でUV光を照射して架橋フィルム(SE1)を得た。得られた架橋フィルム(SE1)の評価結果を表2に示す。
(Example 1)
To 1 part by mass of a polyacrylic acid aqueous solution (168-07375, 25% aqueous solution manufactured by Wako Pure Chemical Industries, Ltd.), 1.5 parts by mass of ion-exchanged water was added, and they were mixed sufficiently until they became uniform. Next, 2.5 parts by mass of a 10% aqueous solution of modified PVOH-1 obtained in Synthesis Example 1 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-1 and polyacrylic acid. To the resulting mixed solution, 5 parts by mass of ion-exchanged water was added to prepare a 5% by mass aqueous solution, and 2-hydroxy-4′-(2-hydroxyethoxy)-2 as a photopolymerization initiator was added thereto. -Methylpropiophenone (HEMP) was added in an amount of 0.005 parts by mass and stirred until completely dissolved to prepare an aqueous solution (E1) which is a crosslinkable resin composition. Next, this aqueous solution (E1) was cast onto a 15 cm×15 cm mold formed by bending the ends of a polyethylene terephthalate film, and the solvent was sufficiently volatilized at room temperature under atmospheric pressure to give a thickness of about 100 μm. I got a film of. The obtained film was irradiated with UV light at an intensity of 10,000 mJ/cm 2 to obtain a crosslinked film (SE1). Table 2 shows the evaluation results of the obtained crosslinked film (SE1).
(実施例2)
 ポリメタクリル酸(和光純薬工業製00578-50)0.25質量部に、2.25質量部のイオン交換水を添加し、完全に溶解するまで十分混合した。次いで、合成例2で得られた変性PVOH-2の10%水溶液2.5質量部を添加し、均一になるまで混合し、変性PVOH-2およびポリメタクリル酸を含む混合液を得た。得られた混合液に、光重合開始剤としてHEMPを0.005質量部添加し、完全に溶解するまで撹拌して、架橋性樹脂組成物である水溶液(E2)を作製した。次いで、この水溶液(E2)をφ3cm、厚み1cmのシャーレに移液し、シャーレの上方から3000mJ/cmの強度でUV光を照射することにより架橋ゲル(SE2)を得た。得られた架橋ゲル(SE2)の評価結果を表2に示す。
(Example 2)
2.25 parts by mass of ion-exchanged water was added to 0.25 parts by mass of polymethacrylic acid (00578-50 manufactured by Wako Pure Chemical Industries, Ltd.), and they were mixed sufficiently until they were completely dissolved. Next, 2.5 parts by mass of a 10% aqueous solution of modified PVOH-2 obtained in Synthesis Example 2 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-2 and polymethacrylic acid. 0.005 parts by mass of HEMP as a photopolymerization initiator was added to the obtained mixed liquid and stirred until completely dissolved to prepare an aqueous solution (E2) which is a crosslinkable resin composition. Then, this aqueous solution (E2) was transferred to a petri dish having a diameter of 3 cm and a thickness of 1 cm, and UV light was irradiated from above the petri dish at an intensity of 3000 mJ/cm 2 to obtain a crosslinked gel (SE2). The evaluation results of the obtained crosslinked gel (SE2) are shown in Table 2.
(実施例3)
 ポリアクリル酸水溶液(和光純薬工業製168-07375,25%水溶液)1質量部に、1.4質量部のイオン交換水を添加し、8規定のKOH水溶液0.11質量部を添加し、均一になるまで十分混合した。次いで、合成例3で得られた変性PVOH-3の10%水溶液2.5質量部を添加し、均一になるまで混合し、変性PVOH-3およびポリアクリル酸を含む混合液を得た。得られた混合液に、5質量部のイオン交換水を添加して5質量%水溶液に調製し、そこへ光重合開始剤としてHEMPを0.005質量部添加し、完全に溶解するまで撹拌して、架橋性樹脂組成物である水溶液(E3)を作製した。次いで、この水溶液(E3)を用い、かつ照射したUV光の強度を3000mJ/cmに変更したこと以外は実施例1と同様にして架橋フィルム(SE3)を得た。得られた架橋フィルム(SE3)の評価結果を表2に示す。
(Example 3)
To 1 part by mass of an aqueous polyacrylic acid solution (168-07375, 25% aqueous solution manufactured by Wako Pure Chemical Industries, Ltd.), 1.4 parts by mass of ion-exchanged water was added, and 0.11 parts by mass of 8N KOH aqueous solution was added, Mix well until uniform. Next, 2.5 parts by mass of a 10% aqueous solution of modified PVOH-3 obtained in Synthesis Example 3 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-3 and polyacrylic acid. To the obtained mixed liquid, 5 parts by mass of ion-exchanged water was added to prepare a 5% by mass aqueous solution, and 0.005 parts by mass of HEMP as a photopolymerization initiator was added thereto and stirred until completely dissolved. Thus, an aqueous solution (E3) which is a crosslinkable resin composition was prepared. Then, a crosslinked film (SE3) was obtained in the same manner as in Example 1 except that this aqueous solution (E3) was used and the intensity of the irradiated UV light was changed to 3000 mJ/cm 2 . Table 2 shows the evaluation results of the obtained crosslinked film (SE3).
(実施例4)
 アルギン酸ナトリウム(和光純薬工業製191-09965)0.2質量部に、1.8質量部のイオン交換水を添加し、完全に溶解するまで十分混合した。次いで、合成例4で得られた変性PVOH-4の10%水溶液3質量部を添加し、均一になるまで混合し、変性PVOH-4およびアルギン酸を含む混合液を得た。得られた混合液に、HEMPを0.005質量部添加し、完全に溶解するまで撹拌して、架橋性樹脂組成物である水溶液(E4)を作製した。次いで、この水溶液(E4)を用い、かつ照射したUV光の強度を3000mJ/cmに変更したこと以外は実施例1と同様にして架橋ゲル(SE4)を得た。得られた架橋ゲル(SE4)の評価結果を表2に示す。
(Example 4)
To 0.2 parts by mass of sodium alginate (manufactured by Wako Pure Chemical Industries, 191-09965), 1.8 parts by mass of ion-exchanged water was added, and they were sufficiently mixed until completely dissolved. Next, 3 parts by mass of a 10% aqueous solution of modified PVOH-4 obtained in Synthesis Example 4 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-4 and alginic acid. 0.005 parts by mass of HEMP was added to the obtained mixed liquid and stirred until completely dissolved to prepare an aqueous solution (E4) which is a crosslinkable resin composition. Then, a crosslinked gel (SE4) was obtained in the same manner as in Example 1 except that this aqueous solution (E4) was used and the intensity of the irradiated UV light was changed to 3000 mJ/cm 2 . Table 2 shows the evaluation results of the obtained crosslinked gel (SE4).
(実施例5)
 ポリアクリル酸水溶液(和光純薬工業製168-07375,25%水溶液)1.4質量部に、3.0質量部のイオン交換水を添加し、8規定のKOH水溶液0.154質量部を添加して、均一になるまで十分混合した。次いで、合成例2で得られた変性PVOH-2の10%水溶液1.5質量部を添加し、均一になるまで混合し、変性PVOH-2およびポリアクリル酸を含む水溶液を得た。得られた混合液に、5質量部のイオン交換水を添加して5質量%水溶液に調製し、そこへ架橋剤として、3,6-ジオキサ-1,8-オクタンジチオール(DODT)0.014質量部を添加し、完全に溶解するまで撹拌して、架橋性樹脂組成物である水溶液(E5)を作製した。次いで、この水溶液(E5)を、ポリエチレンテレフタレートフィルムの端を折り曲げて作製した15cm×15cmの型枠に流延し、室温にて大気圧下で溶媒を十分に揮発させることにより、厚さ約100μmのフィルムを得た。得られたフィルムを120℃で10分間熱処理し、架橋フィルム(SE5)を得た。得られた架橋フィルム(SE5)の評価結果を表2に示す。
(Example 5)
To 1.4 parts by mass of an aqueous polyacrylic acid solution (168-07375, Wako Pure Chemical Industries, 25% aqueous solution), 3.0 parts by mass of ion-exchanged water was added, and 0.154 parts by mass of 8N KOH aqueous solution was added. And mixed well until uniform. Next, 1.5 parts by mass of a 10% aqueous solution of modified PVOH-2 obtained in Synthesis Example 2 was added and mixed until uniform to obtain an aqueous solution containing modified PVOH-2 and polyacrylic acid. 5 parts by mass of ion-exchanged water was added to the obtained mixed solution to prepare a 5% by mass aqueous solution, and 3,6-dioxa-1,8-octanedithiol (DODT) 0.014 was added thereto as a crosslinking agent. Parts by mass were added and stirred until completely dissolved to prepare an aqueous solution (E5) which is a crosslinkable resin composition. Next, this aqueous solution (E5) was cast on a 15 cm×15 cm mold formed by bending the ends of a polyethylene terephthalate film, and the solvent was sufficiently volatilized at room temperature under atmospheric pressure to give a thickness of about 100 μm. I got a film of. The obtained film was heat-treated at 120° C. for 10 minutes to obtain a crosslinked film (SE5). Table 2 shows the evaluation results of the obtained crosslinked film (SE5).
(実施例6)
 ポリアクリル酸水溶液(和光純薬工業製168-07375,25%水溶液)1質量部に、1.4質量部のイオン交換水を添加し、8規定のKOH水溶液0.055質量部を添加して、均一になるまで十分混合した。次いで、合成例2で得られた変性PVOH-2の10%水溶液2.5質量部を添加し、均一になるまで混合し、変性PVOH-2およびポリアクリル酸を含む混合液を得た。得られた混合液に、架橋剤としてDODT0.01質量部を添加し、均一になるまで撹拌し、さらに0.011質量部のトリエチルアミン(EtN)を添加して均一になったことを確認して、架橋性樹脂組成物である水溶液(E6)を作製した。次いで、この水溶液(E6)を、速やかにφ3cm、厚み1cmのシャーレに移液し、80℃に昇温して1時間加熱することで、架橋ゲル(SE6)を得た。得られた架橋ゲル(SE6)の評価結果を表2に示す。
(Example 6)
1.4 parts by mass of ion-exchanged water was added to 1 part by mass of a polyacrylic acid aqueous solution (manufactured by Wako Pure Chemical Industries, 168-07375, 25% aqueous solution), and 0.055 parts by mass of an 8N KOH aqueous solution was added. , Mixed well until uniform. Next, 2.5 parts by mass of a 10% aqueous solution of modified PVOH-2 obtained in Synthesis Example 2 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-2 and polyacrylic acid. To the obtained mixed liquid, 0.01 part by mass of DODT was added as a cross-linking agent, stirred until uniform, and 0.011 parts by mass of triethylamine (Et 3 N) was added to confirm that the mixture became uniform. Then, an aqueous solution (E6) which is a crosslinkable resin composition was prepared. Next, this aqueous solution (E6) was immediately transferred to a petri dish having a diameter of 3 cm and a thickness of 1 cm, heated to 80° C. and heated for 1 hour to obtain a crosslinked gel (SE6). Table 2 shows the evaluation results of the obtained crosslinked gel (SE6).
(実施例7)
 ポリアクリル酸水溶液(和光純薬工業製168-07375,25%水溶液)0.2質量部に、0.28質量部のイオン交換水を添加し、8規定のKOH水溶液0.022質量部を添加し、均一になるまで十分混合した。次いで、合成例3で得られた変性PVOH-3の10%水溶液4.5質量部を添加し、均一になるまで混合し、変性PVOH-3およびポリアクリル酸を含む混合液を得た。得られた混合液に、5質量部のイオン交換水を添加して5質量%水溶液に調製し、そこへ光重合開始剤としてHEMPを0.005質量部添加し、完全に溶解するまで撹拌して、架橋性樹脂組成物である水溶液(E7)を作製した。次いで、この水溶液(E7)を用い、かつ照射したUV光の強度を1500mJ/cmに変更したこと以外は実施例1と同様にして架橋フィルム(SE7)を得た。得られた架橋フィルム(SE7)の評価結果を表2に示す。
(Example 7)
To 0.2 parts by mass of an aqueous solution of polyacrylic acid (168-07375, Wako Pure Chemical Industries, 25% aqueous solution), 0.28 parts by mass of ion-exchanged water was added, and 0.022 parts by mass of 8N KOH aqueous solution was added. And mixed well until uniform. Next, 4.5 parts by mass of a 10% aqueous solution of modified PVOH-3 obtained in Synthesis Example 3 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-3 and polyacrylic acid. To the obtained mixed liquid, 5 parts by mass of ion-exchanged water was added to prepare a 5% by mass aqueous solution, and 0.005 parts by mass of HEMP as a photopolymerization initiator was added thereto and stirred until completely dissolved. Thus, an aqueous solution (E7) which is a crosslinkable resin composition was prepared. Next, a crosslinked film (SE7) was obtained in the same manner as in Example 1 except that this aqueous solution (E7) was used and the intensity of the irradiated UV light was changed to 1500 mJ/cm 2 . Table 2 shows the evaluation results of the obtained crosslinked film (SE7).
(実施例8)
 ポリアクリル酸水溶液(和光純薬工業製168-07375,25%水溶液)1.4質量部に、3.0質量部のイオン交換水を添加し、8規定のKOH水溶液0.154質量部を添加し、均一になるまで十分混合した。次いで、合成例5で得られた変性PVOH-5の10%水溶液1.5質量部を添加し、均一になるまで混合し、変性PVOH-5およびポリアクリル酸を含む混合液を得た。得られた混合液に、5質量部のイオン交換水を添加して5質量%水溶液に調製し、そこへ光重合開始剤としてHEMPを0.005質量部添加し、完全に溶解するまで撹拌して、架橋性樹脂組成物である水溶液(E8)を作製した。次いで、この水溶液(E8)を用い、かつ照射したUV光の強度を3000mJ/cmに変更したこと以外は実施例1と同様にして架橋フィルム(SE8)を得た。得られた架橋フィルム(SE8)の評価結果を表2に示す。
(Example 8)
To 1.4 parts by mass of an aqueous polyacrylic acid solution (168-07375, Wako Pure Chemical Industries, 25% aqueous solution), 3.0 parts by mass of ion-exchanged water was added, and 0.154 parts by mass of 8N KOH aqueous solution was added. And mixed well until uniform. Next, 1.5 parts by mass of a 10% aqueous solution of modified PVOH-5 obtained in Synthesis Example 5 was added and mixed until uniform to obtain a mixed solution containing modified PVOH-5 and polyacrylic acid. To the obtained mixed liquid, 5 parts by mass of ion-exchanged water was added to prepare a 5% by mass aqueous solution, and 0.005 parts by mass of HEMP as a photopolymerization initiator was added thereto and stirred until completely dissolved. Thus, an aqueous solution (E8) which is a crosslinkable resin composition was prepared. Then, a crosslinked film (SE8) was obtained in the same manner as in Example 1 except that this aqueous solution (E8) was used and the intensity of the irradiated UV light was changed to 3000 mJ/cm 2 . Table 2 shows the evaluation results of the obtained crosslinked film (SE8).
(比較例1)
 ポリアクリル酸水溶液(和光純薬工業製168-07375,25%水溶液)1質量部に1.4質量部のイオン交換水を添加し、8規定のKOH水溶液0.11質量部を添加し、均一になるまで十分混合した。次いで、合成例6で得られたPVOH-6の10%水溶液2.5質量部を加え、均一になるまで混合し、PVOH-6およびポリアクリル酸を含む混合液を得た。得られた混合液に、5質量部のイオン交換水を添加して5質量%水溶液に調製し、そこへ光重合開始剤としてHEMPを0.005質量部添加し、完全に溶解するまで撹拌して、樹脂組成物である水溶液(C1)を作製した。次いで、この水溶液(C1)を用いたこと以外は実施例1と同様にしてフィルム(SC1)を得た。得られたフィルム(SC1)の評価結果を表2に示す。
(Comparative Example 1)
1.4 parts by mass of ion-exchanged water was added to 1 part by mass of a polyacrylic acid aqueous solution (manufactured by Wako Pure Chemical Industries, 168-07375, 25% aqueous solution), and 0.11 parts by mass of an 8N KOH aqueous solution was added to obtain a uniform mixture. Mix well until Next, 2.5 parts by mass of a 10% aqueous solution of PVOH-6 obtained in Synthesis Example 6 was added and mixed until uniform to obtain a mixed solution containing PVOH-6 and polyacrylic acid. To the obtained mixed liquid, 5 parts by mass of ion-exchanged water was added to prepare a 5% by mass aqueous solution, and 0.005 parts by mass of HEMP as a photopolymerization initiator was added thereto and stirred until completely dissolved. Thus, an aqueous solution (C1) which is a resin composition was prepared. Then, a film (SC1) was obtained in the same manner as in Example 1 except that this aqueous solution (C1) was used. Table 2 shows the evaluation results of the obtained film (SC1).
(比較例2)
 比較例1と同様にして、PVOH-6およびポリアクリル酸を含む混合液を得た。得られた混合液に、所定量のイオン交換水を添加して5質量%水溶液に調製し、そこへ架橋剤としてDODT0.01質量部を添加し、完全に溶解するまで撹拌して樹脂組成物である水溶液(C2)を作製した。次いで、この水溶液(C2)を用いたこと以外は実施例5と同様にしてフィルム(SC2)を得た。得られたフィルム(SC2)の評価結果を表2に示す。
(Comparative example 2)
In the same manner as in Comparative Example 1, a mixed solution containing PVOH-6 and polyacrylic acid was obtained. A predetermined amount of ion-exchanged water is added to the obtained mixed liquid to prepare a 5% by mass aqueous solution, and 0.01 part by mass of DODT as a crosslinking agent is added thereto, and the mixture is stirred until completely dissolved to obtain a resin composition. To prepare an aqueous solution (C2). Then, a film (SC2) was obtained in the same manner as in Example 5 except that this aqueous solution (C2) was used. Table 2 shows the evaluation results of the obtained film (SC2).
(比較例3)
 比較例1と同様にして、PVOH-6およびポリアクリル酸を含む混合液を得た。得られた混合液に、開始剤としてHEMPを0.005質量部添加し、完全に溶解するまで撹拌して、樹脂組成物である水溶液(C3)を作製した。次いで、この水溶液(C3)をφ3cm、厚み1cmのシャーレに移液し、シャーレの上方から3000mJ/cmの強度でUV光を照射することにより架橋ゲルの調製を試みた。しかし、水溶液(C3)は架橋ゲル化せず、水溶液のままであった。評価結果を表2に示す。
(Comparative example 3)
In the same manner as in Comparative Example 1, a mixed solution containing PVOH-6 and polyacrylic acid was obtained. 0.005 parts by mass of HEMP as an initiator was added to the obtained mixed liquid and stirred until completely dissolved to prepare an aqueous solution (C3) which is a resin composition. Next, this aqueous solution (C3) was transferred to a petri dish having a diameter of 3 cm and a thickness of 1 cm, and UV light was irradiated from above the petri dish at an intensity of 3000 mJ/cm 2 to try to prepare a crosslinked gel. However, the aqueous solution (C3) remained as an aqueous solution without cross-linking gelation. The evaluation results are shown in Table 2.
(比較例4)
 ポリアクリル酸水溶液を含有させず、PVOH-1の代わりにPVOH-2を使用したこと以外は、比較例1と同様にしてPVOH-6を含む混合液から、樹脂組成物である水溶液(C4)を作製した。次いで、この水溶液(C4)を用い、かつ照射したUV光の強度を3000mJ/cmに変更したこと以外は比較例1と同様にしてフィルム(SC4)を得た。得られたフィルム(SC4)の評価結果を表2に示す。
(Comparative Example 4)
An aqueous solution (C4) which was a resin composition from a mixed solution containing PVOH-6 in the same manner as in Comparative Example 1 except that the aqueous solution of polyacrylic acid was not contained and PVOH-2 was used instead of PVOH-1. Was produced. Then, a film (SC4) was obtained in the same manner as in Comparative Example 1 except that this aqueous solution (C4) was used and the intensity of the irradiated UV light was changed to 3000 mJ/cm 2 . Table 2 shows the evaluation results of the obtained film (SC4).
(比較例5)
 PVOH-6を含有させなかったこと以外は、比較例1と同様にしてポリアクリル酸を含む混合液から、樹脂組成物である水溶液(C5)を作製した。次いで、この水溶液(C5)をφ3cm、厚み1cmのシャーレに移液し、シャーレの上方から3000mJ/cmの強度でUV光を照射することにより架橋ゲルの調製を試みた。しかし、水溶液(C5)は架橋ゲル化せず、水溶液のままであった。評価結果を表2に示す。
(Comparative example 5)
An aqueous solution (C5) which is a resin composition was prepared from a mixed solution containing polyacrylic acid in the same manner as in Comparative Example 1 except that PVOH-6 was not included. Then, this aqueous solution (C5) was transferred to a petri dish having a diameter of 3 cm and a thickness of 1 cm, and UV light was irradiated from above the petri dish at an intensity of 3000 mJ/cm 2 to try to prepare a crosslinked gel. However, the aqueous solution (C5) remained as an aqueous solution without being crosslinked. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2に示すように、実施例1~8で作製された架橋性樹脂組成物(E1)~(E8)はいずれも、UV光の照射または架橋剤の添加等によって架橋フィルムまたはゲルの形態に成形することができた。これに対し、変性ポリビニルアルコール系重合体を用いなかった比較例1~3および5の樹脂組成物(C1)~(C3)および(C5)では架橋自体が困難であり、フィルムを耐水化することができないか、または水溶液の状態からゲル化させることができなかった。 As shown in Table 2, each of the crosslinkable resin compositions (E1) to (E8) prepared in Examples 1 to 8 was converted into a crosslinked film or gel by irradiation with UV light or addition of a crosslinking agent. It could be molded. On the other hand, in the resin compositions (C1) to (C3) and (C5) of Comparative Examples 1 to 3 and 5 in which the modified polyvinyl alcohol-based polymer was not used, the crosslinking itself was difficult and the film was made water resistant. Or could not be gelled from an aqueous solution.
 さらに実施例1~8および比較例1~3および5で得られたフィルムまたはゲル(SE1)~(SE8)、(SC1)~(SC3)および(SC5)について着目すると、実施例1~8で得られたフィルムまたはゲル(SE1)~(SE8)は、耐水性および吸水性の両方が良好または優れた架橋体を得たことがわかる。これに対し、比較例1~3および5で得られたフィルムまたはゲル(SC1)~(SC3)および(SC5)はいずれも、耐水性および吸水性の評価において、すべて(100%)が溶解し、架橋耐水化物を得ることができなかった。また、比較例4で得られたフィルム(SC4)のように、変性ビニルアルコール系重合体単体では、高度に架橋耐水化するものの、吸水性が極めて低く、吸水性を有する硬化物は得られなかった。 Further focusing on the films or gels (SE1) to (SE8), (SC1) to (SC3) and (SC5) obtained in Examples 1 to 8 and Comparative Examples 1 to 3 and 5, It can be seen that the obtained films or gels (SE1) to (SE8) obtained crosslinked products having good or excellent water resistance and water absorption. In contrast, in the films or gels (SC1) to (SC3) and (SC5) obtained in Comparative Examples 1 to 3 and 5, all (100%) were dissolved in the evaluation of water resistance and water absorption. However, it was not possible to obtain a crosslinked hydrate resistant material. Further, like the film (SC4) obtained in Comparative Example 4, the modified vinyl alcohol polymer alone has a high degree of cross-linking and water resistance, but has extremely low water absorption, and a cured product having water absorption cannot be obtained. It was
 本発明によれば、様々な業製品を構成するための材料として、樹脂成形分野、ヘルスケア製品分野、メディカル製品分野、農業・園芸分野、食品・流通分野、ペット関連製品分野、電気分野、建築分野等において有用である。 According to the present invention, as a material for forming various industrial products, as a resin molding field, a healthcare product field, a medical product field, an agricultural/horticultural field, a food/distribution field, a pet-related product field, an electrical field, and a construction field. It is useful in fields.

Claims (13)

  1.  ビニルアルコール単位と下記式(I)で示される構成単位とを含む変性ビニルアルコール系重合体、およびアニオン性高分子電解質を含む、架橋性樹脂組成物:
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中、Xは炭素-炭素結合、または分岐していてもよい炭素数1~10の2価の飽和炭化水素基であり、Yは水素原子、または分岐していてもよい炭素数1~6の2価の飽和炭化水素基であり、Zは水素原子またはメチル基である)。
    A crosslinkable resin composition containing a modified vinyl alcohol polymer containing a vinyl alcohol unit and a structural unit represented by the following formula (I), and an anionic polyelectrolyte:
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (I), X is a carbon-carbon bond or a divalent saturated hydrocarbon group having 1 to 10 carbon atoms which may be branched, and Y is a hydrogen atom or an optionally branched carbon atom. A divalent saturated hydrocarbon group of the numbers 1 to 6 and Z is a hydrogen atom or a methyl group).
  2.  式(I)におけるYが水素原子である、請求項1に記載の架橋性樹脂組成物。 The crosslinkable resin composition according to claim 1, wherein Y in the formula (I) is a hydrogen atom.
  3.  式(I)におけるXが炭素-炭素結合である、請求項1または2に記載の架橋性樹脂組成物。 The crosslinkable resin composition according to claim 1 or 2, wherein X in the formula (I) is a carbon-carbon bond.
  4.  変性ビニルアルコール系重合体が、式(I)で示される構成単位を0.01~3モル%の割合で含有する、請求項1~3のいずれかに記載の架橋性樹脂組成物。 The crosslinkable resin composition according to any one of claims 1 to 3, wherein the modified vinyl alcohol polymer contains the structural unit represented by the formula (I) in a proportion of 0.01 to 3 mol%.
  5.  アニオン性高分子電解質が、側鎖にカルボン酸基またはその塩、およびスルホン酸基またはその塩からなる群から選択される少なくとも1つの基を有する高分子である、請求項1~4のいずれかに記載の架橋性樹脂組成物。 5. The anionic polyelectrolyte is a polymer having a side chain having at least one group selected from the group consisting of a carboxylic acid group or a salt thereof and a sulfonic acid group or a salt thereof. The crosslinkable resin composition according to item 1.
  6.  アニオン性高分子電解質がポリ(メタ)アクリル酸である、請求項1~4のいずれかに記載の架橋性樹脂組成物。 The crosslinkable resin composition according to any one of claims 1 to 4, wherein the anionic polyelectrolyte is poly(meth)acrylic acid.
  7.  さらに架橋剤を含有する、請求項1~6のいずれかに記載の架橋性樹脂組成物。 The crosslinkable resin composition according to any one of claims 1 to 6, which further contains a crosslinking agent.
  8.  請求項1~7のいずれかに記載の架橋性樹脂組成物の架橋体を含む、硬化物。 A cured product containing a crosslinked product of the crosslinkable resin composition according to any one of claims 1 to 7.
  9.  硬化物の吸水倍率が5倍以上である、請求項8に記載の硬化物。 The cured product according to claim 8, wherein the cured product has a water absorption ratio of 5 or more.
  10.  硬化物の溶出率が40質量%以下である、請求項8または9に記載の硬化物。 The cured product according to claim 8 or 9, wherein the elution rate of the cured product is 40% by mass or less.
  11.  硬化物の製造方法であって、請求項1~6のいずれかに記載の架橋性樹脂組成物に活性エネルギー線を照射することにより架橋性樹脂組成物を架橋する工程を包含する、方法。 A method for producing a cured product, which comprises a step of crosslinking the crosslinkable resin composition by irradiating the crosslinkable resin composition according to any one of claims 1 to 6 with an active energy ray.
  12.  硬化物の製造方法であって、請求項7に記載の架橋性樹脂組成物を加熱することにより架橋性組成物を架橋する工程を包含する、方法。 A method for producing a cured product, which comprises a step of crosslinking the crosslinkable composition by heating the crosslinkable resin composition according to claim 7.
  13.  請求項8に記載の硬化物を含む吸水性製品。 A water absorbent product containing the cured product according to claim 8.
PCT/JP2019/050725 2018-12-28 2019-12-24 Crosslinkable resin composition and cured product using same WO2020138126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-247694 2018-12-28
JP2018247694A JP2022034092A (en) 2018-12-28 2018-12-28 Cross-linkable resin composition, and cured product using the same

Publications (1)

Publication Number Publication Date
WO2020138126A1 true WO2020138126A1 (en) 2020-07-02

Family

ID=71126452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050725 WO2020138126A1 (en) 2018-12-28 2019-12-24 Crosslinkable resin composition and cured product using same

Country Status (2)

Country Link
JP (1) JP2022034092A (en)
WO (1) WO2020138126A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138307A (en) * 1988-07-12 1990-05-28 Dynic Corp Filmlike highly water-absorbing sheet and preparation thereof
JP2007092052A (en) * 2005-08-31 2007-04-12 Tohcello Co Ltd Gas barrier film, gas barrier laminate, and method for producing the same
JP2017066366A (en) * 2015-10-01 2017-04-06 コリア アトミック エナジー リサーチ インスティテュートKorea Atomic Energy Research Institute Ionic polymer membrane comprising radiation-crosslinkable poly(vinyl alcohol) and method of preparation thereof
WO2018124014A1 (en) * 2016-12-28 2018-07-05 株式会社クラレ Side-chain-olefin-containing vinyl alcohol polymer and method of producing same
WO2018181735A1 (en) * 2017-03-30 2018-10-04 株式会社クラレ Release-paper base paper and method for producing same, and release paper
JP2020023634A (en) * 2018-08-08 2020-02-13 株式会社クラレ Composition for aqueous ink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138307A (en) * 1988-07-12 1990-05-28 Dynic Corp Filmlike highly water-absorbing sheet and preparation thereof
JP2007092052A (en) * 2005-08-31 2007-04-12 Tohcello Co Ltd Gas barrier film, gas barrier laminate, and method for producing the same
JP2017066366A (en) * 2015-10-01 2017-04-06 コリア アトミック エナジー リサーチ インスティテュートKorea Atomic Energy Research Institute Ionic polymer membrane comprising radiation-crosslinkable poly(vinyl alcohol) and method of preparation thereof
WO2018124014A1 (en) * 2016-12-28 2018-07-05 株式会社クラレ Side-chain-olefin-containing vinyl alcohol polymer and method of producing same
WO2018181735A1 (en) * 2017-03-30 2018-10-04 株式会社クラレ Release-paper base paper and method for producing same, and release paper
JP2020023634A (en) * 2018-08-08 2020-02-13 株式会社クラレ Composition for aqueous ink

Also Published As

Publication number Publication date
JP2022034092A (en) 2022-03-03

Similar Documents

Publication Publication Date Title
JP4772943B2 (en) Novel hydroxyl group-containing copolymer and process for producing the same
EP3564273B1 (en) Side-chain-olefin-containing vinyl alcohol polymer and method of producing same
CN103865275B (en) A kind of poly(lactic acid) and polypropylene glycol improve the method for polyvinyl alcohol film water tolerance
CN103881398A (en) Method for improving water resistance of polyvinyl alcohol film by using poly(trimethylene carbonate) and poly(p-dioxanone)
JP4086961B2 (en) Graft polymer
EP0296850B1 (en) Hydrophilic group-containing ab-type block copolymer
US8420771B2 (en) PH-sensitive polyethylene oxide co-polymer and synthetic method thereof
WO2020138126A1 (en) Crosslinkable resin composition and cured product using same
JP6994471B2 (en) Method for producing modified polymer polyol
US10640649B2 (en) Solvent-free supersoft and superelastic materials
JP4192862B2 (en) Method for producing polyether copolymer
KR102091156B1 (en) Polymer binder spraying composition for blocking electromagnetic wave and preparation method thereof
CN110330609B (en) Anionic polymerization method for aqueous solution in open environment
CN107312174B (en) A kind of synthetic method of polythiaether
WO2016093953A1 (en) Process for making branched reactive block polymers
JPH07258310A (en) Method and catalyst for controlling polymerization of acrylates
JP4841818B2 (en) Catalyst composition for copolymerizing ethylene oxide and glycidyl ether compound, and method for producing branched polymer using the catalyst composition
Hahn et al. Graft Copolymers Based on Functional Polyesters
CN105670305A (en) Method for improving water resistance and flexibility of polyvinyl alcohol film by using polycaprolactone and polypeptide-polyethylene glycol
KR20210067712A (en) a method for manufacturing nanoparticle using photo-crosslinkable negative charged polymer
Gao et al. Surface-modified zirconium oxide clusters and their use as components for inorganic-organic hybrid materials
EP1422247A2 (en) Crosslinking retarders for crosslinkable polyolefins
CN105542486A (en) Method for improving water resistance and flexibility of polyving akohol membrane by polycaprolactone and polypeptide-polyvinylpyrrolidone
정재연 et al. Synthesizing comb polymers containing–SO 3 for the applications of biomatrials
CN105646888A (en) Preparation method of polyvinyl alcohol-poly(p-dioxanone) grafted copolymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP