JP4841818B2 - Catalyst composition for copolymerizing ethylene oxide and glycidyl ether compound, and method for producing branched polymer using the catalyst composition - Google Patents

Catalyst composition for copolymerizing ethylene oxide and glycidyl ether compound, and method for producing branched polymer using the catalyst composition Download PDF

Info

Publication number
JP4841818B2
JP4841818B2 JP2004259159A JP2004259159A JP4841818B2 JP 4841818 B2 JP4841818 B2 JP 4841818B2 JP 2004259159 A JP2004259159 A JP 2004259159A JP 2004259159 A JP2004259159 A JP 2004259159A JP 4841818 B2 JP4841818 B2 JP 4841818B2
Authority
JP
Japan
Prior art keywords
catalyst composition
glycidyl ether
ethylene oxide
ether compound
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004259159A
Other languages
Japanese (ja)
Other versions
JP2006077039A (en
Inventor
秀樹 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Chemical Works Ltd
Original Assignee
Meisei Chemical Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Chemical Works Ltd filed Critical Meisei Chemical Works Ltd
Priority to JP2004259159A priority Critical patent/JP4841818B2/en
Publication of JP2006077039A publication Critical patent/JP2006077039A/en
Application granted granted Critical
Publication of JP4841818B2 publication Critical patent/JP4841818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、エチレンオキシドとグリシジルエーテル化合物とを共重合させる際に使用される触媒組成物および当該触媒組成物を用いた分岐を有するポリマーの製造方法に関するものである。   The present invention relates to a catalyst composition used for copolymerizing ethylene oxide and a glycidyl ether compound, and a method for producing a branched polymer using the catalyst composition.

従来より知られているポリエーテル重合体は、溶液重合法または溶媒スラリー重合法などにより、所定の重合触媒を用いてオキシラン基を含有するモノマーを重合して製造されている。この際使用される重合触媒としては、1)開環重合用触媒としての、有機アルミニウムを主体とする触媒(例えば下記の特許文献1〜3)や、有機亜鉛を主体とする触媒(例えば下記の特許文献4〜7)や、有機錫‐リン酸エステル縮合物触媒(例えば下記の特許文献8〜9)など、および2)水酸化カリウムやナトリウムメトキシドなどのアルカリ金属水酸化物触媒などが挙げられる。
USP3,135,705 USP3,219,591 USP3,403,114 USP5,326,852 特公昭46-7,709号公報 特公昭45-7,751号公報 特公昭53-27,319号公報 USP3,773,694 特公昭46-41378号公報
A conventionally known polyether polymer is produced by polymerizing a monomer containing an oxirane group using a predetermined polymerization catalyst by a solution polymerization method or a solvent slurry polymerization method. As the polymerization catalyst used in this case, 1) a catalyst mainly composed of organoaluminum (for example, the following Patent Documents 1 to 3) or a catalyst mainly composed of organic zinc (for example, the following: Patent Documents 4 to 7), organotin-phosphate ester condensate catalysts (for example, Patent Documents 8 to 9 below), and 2) alkali metal hydroxide catalysts such as potassium hydroxide and sodium methoxide It is done.
USP3,135,705 USP3,219,591 USP3,403,114 USP5,326,852 Japanese Patent Publication No.46-7,709 Japanese Patent Publication No.45-7,751 Japanese Patent Publication No.53-27,319 USP3,773,694 Japanese Patent Publication No.46-41378

しかしながら、上記1)の開環重合用触媒を用いて得られる重合体はいずれも、高分子量物の生成反応が主となり、グリシジルエーテル類の導入される割合がかなり低いという欠点を有している。   However, all of the polymers obtained using the ring-opening polymerization catalyst of 1) above have the disadvantage that the production reaction of the high molecular weight product is the main, and the proportion of glycidyl ethers introduced is considerably low. .

一方、上記2)のアルカリ金属水酸化物触媒を用いた場合には、分子量がある一定以上にならなく、また、副生成物が起こりやすく収率が低下するなどで満足のいくものではなかった。   On the other hand, when the alkali metal hydroxide catalyst of the above 2) was used, the molecular weight did not exceed a certain level, and a by-product was likely to occur and the yield was lowered, which was not satisfactory. .

本発明者は上記の課題を解決すべく鋭意検討した結果、エチレンオキシドとグリシジルエーテル化合物とを共重合させる際に、特定の触媒組成物を用いると、極めて良好にエチレンオキシドとグリシジルエーテル化合物との共重合がなされることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventor found that when a specific catalyst composition was used when copolymerizing ethylene oxide and a glycidyl ether compound, the copolymerization of ethylene oxide and glycidyl ether compound was very well performed. And the present invention has been completed.

即ち、本発明の触媒組成物は、エチレンオキシドとグリシジルエーテル化合物とを共重合させる際に使用される触媒組成物であって、当該触媒組成物が、成分A:トリ(C 〜C アルキル)アルミニウムと、成分B:アルカリ金属のアルコキシド又はアルカリ金属水酸化物のいずれか一方、からなり、しかも、成分Aが、成分B1モルに対して3モル以上含有されていることを特徴とする。
又、本発明の、分岐を有するポリマーの製造方法は、成分A:トリ(C 〜C アルキル)アルミニウムと、成分B:アルカリ金属のアルコキシド又はアルカリ金属水酸化物のいずれか一方、からなり、しかも、成分Aが、成分B1モルに対して3モル以上含有されている触媒組成物の存在下、エチレンオキシド99.9〜70重量%に対するグリシジルエーテル化合物の割合を0.1〜30重量%とし、従来法と同様の重合条件下で、エチレンオキシドとグリシジルエーテル化合物とを共重合させることを特徴とするものである。
That is, the catalyst composition of the present invention is a catalyst composition used when copolymerizing ethylene oxide and a glycidyl ether compound, and the catalyst composition is component A: tri (C 1 -C 4 alkyl). It consists of aluminum and one of component B: alkali metal alkoxide or alkali metal hydroxide , and component A is contained in an amount of 3 mol or more per 1 mol of component B.
The method for producing a branched polymer according to the present invention comprises Component A: tri (C 1 -C 4 alkyl) aluminum and Component B: either an alkali metal alkoxide or an alkali metal hydroxide. And the ratio of the glycidyl ether compound with respect to 99.9-70 weight% of ethylene oxide shall be 0.1-30 weight% in presence of the catalyst composition which 3 mol or more of component A contains with respect to 1 mole of component B Further, ethylene oxide and a glycidyl ether compound are copolymerized under the same polymerization conditions as in the conventional method.

本発明の触媒組成物を使用することで、エチレンオキシドとグリシジルエーテル化合物とを共重合させることにより、分岐をしたポリマーを製造することが可能であり、本発明の製法を用いて得られた分岐を有するポリマーは、分岐を有するという特性を生かして多種の用途に利用可能である。このような用途の具体例としては、限定されるものではないが、製紙、繊維、塗料、医療品、化粧品、パーソナルケア品、トイレタリー、セラミック、化成品、印刷製品、農林・水産・環境分野、土木・建材製品、電気、機器、機械、金属加工などが挙げられる。本発明の製法により得られたポリマーは、特に医療品、化粧品、パーソナルケア品およびトイレタリーにおける用途に好適である。   By using the catalyst composition of the present invention, it is possible to produce a branched polymer by copolymerizing ethylene oxide and a glycidyl ether compound, and branching obtained using the production method of the present invention can be obtained. The polymer having it can be used for various applications by taking advantage of the property of having a branch. Specific examples of such applications include, but are not limited to, papermaking, textiles, paints, medical products, cosmetics, personal care products, toiletries, ceramics, chemical products, printing products, agriculture, forestry, fisheries and environmental fields, Civil engineering / building material products, electricity, equipment, machinery, metal processing, etc. The polymer obtained by the production method of the present invention is particularly suitable for use in medical products, cosmetics, personal care products and toiletries.

まず、本発明の触媒組成物について説明する。
エチレンオキシドとグリシジルエーテル化合物とを共重合させるのに際し使用される本発明の触媒組成物は、有機アルミニウム化合物(成分A)と、アルカリ金属のアルコキシド又はアルカリ金属水酸化物(成分B)の2成分を触媒成分として含み、この際、成分Aの有機アルミニウム化合物は、Al−C結合を有した化合物、即ち、金属(Al)に炭素が結合している化合物であれば特に限定するものではない。本発明に適した有機アルミニウム化合物としては、例えばトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリフェニルアルミニウム、ジフェニルイソブチルアルミニウム、モノフェニルジイソブチルアルミニウム等が挙げられ、これらの中でも、トリイソブチルアルミニウムが特に好ましい。また、有機アルミニウム化合物は、必要に応じて2種以上を併用することもできる。
First, the catalyst composition of the present invention will be described.
The catalyst composition of the present invention used for copolymerizing ethylene oxide and a glycidyl ether compound comprises an organoaluminum compound (component A) and an alkali metal alkoxide or alkali metal hydroxide (component B). In this case, the organoaluminum compound of component A is not particularly limited as long as it is a compound having an Al—C bond, that is, a compound in which carbon is bonded to metal (Al). Examples of the organoaluminum compound suitable for the present invention include trimethylaluminum, triethylaluminum, triisobutylaluminum, triphenylaluminum, diphenylisobutylaluminum, monophenyldiisobutylaluminum, and among these, triisobutylaluminum is particularly preferable. Moreover, the organoaluminum compound can also use 2 or more types together as needed.

成分Bのアルカリ金属のアルコキシドは特にその種類を限定するものではなく、例えばセシウム、ルビジウム、カリウム、ナトリウム、リチウム等のメトキシド、エトキシド、プロポキシド、ブトキシド等が挙げられる。これらの中でも、カリウムt−ブトキシドは特に成分Bとして好ましい。
又、成分Bとしてのアルカリ金属水酸化物も、特にその種類が限定されるものではなく、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化ルビジウム等が挙げられ、これらの中でも、水酸化カリウムが特に好ましい。
尚、本発明の触媒組成物には、上記成分Aと成分Bの他に、反応を阻害しない範囲で任意の公知の添加物が添加されても良い。
The kind of alkali metal alkoxide of component B is not particularly limited, and examples thereof include methoxide such as cesium, rubidium, potassium, sodium, lithium, ethoxide, propoxide, butoxide and the like. Of these, potassium t-butoxide is particularly preferred as Component B.
Further, the kind of alkali metal hydroxide as component B is not particularly limited, and examples thereof include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, rubidium hydroxide, and the like. Of these, potassium hydroxide is particularly preferred.
In addition to the above components A and B, any known additive may be added to the catalyst composition of the present invention as long as the reaction is not inhibited.

本発明の触媒組成物を用いてエチレンオキシドと重合されるグリシジルエーテル化合物としては、n−ブチルグリシジルエーテル、t−ブチルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテルが挙げられる。   Examples of the glycidyl ether compound polymerized with ethylene oxide using the catalyst composition of the present invention include n-butyl glycidyl ether, t-butyl glycidyl ether, allyl glycidyl ether, and phenyl glycidyl ether.

本発明の触媒組成物中には、成分Aの有機アルミニウム化合物は、成分Bのアルカリ金属のアルコキシド又はアルカリ金属水酸化物1モルに対して3モル以上含有されていることが望ましい。これは、成分Bが3モル未満の含有割合では反応が進まない場合が多いからである。また、エチレンオキシドとグリシジルエーテル化合物に対する本発明の触媒組成物の使用量は、エチレンオキシドとグリシジルエーテル化合物に対するAl原子のモル%で0.01〜5.0、さらに好ましくは0.1〜3.0、特に好ましくは0.4〜1.5である。この際、上記使用量が0.4モル%未満であると、グリシジルエーテルの種類によっては反応速度が遅くなる傾向があり、0.2モル%未満では反応が進み難い場合がある。上記のAl原子のモル%が5.0を超えた場合でも重合反応は一応進行するが、反応促進の効果は得られない。   In the catalyst composition of the present invention, the organoaluminum compound of component A is desirably contained in an amount of 3 mol or more per 1 mol of the alkali metal alkoxide or alkali metal hydroxide of component B. This is because the reaction does not often proceed when the content ratio of component B is less than 3 mol. Moreover, the usage-amount of the catalyst composition of this invention with respect to ethylene oxide and a glycidyl ether compound is 0.01-5.0 by mol% of the Al atom with respect to ethylene oxide and a glycidyl ether compound, More preferably, it is 0.1-3.0, Especially preferably, it is 0.4-1.5. At this time, if the amount used is less than 0.4 mol%, the reaction rate tends to be slow depending on the type of glycidyl ether, and if it is less than 0.2 mol%, the reaction may not proceed easily. Even when the mol% of the Al atom exceeds 5.0, the polymerization reaction proceeds temporarily, but the effect of promoting the reaction cannot be obtained.

本発明の触媒組成物の作用機構ついては明らかではないが、成分B中のアルカリ金属イオンが開始剤としての機能を有し、成分Aの有機アルミニウム化合物に含まれるAl原子がエチレンオキシドとグリシジルエーテル化合物を共重合するに有効な配置をとることにより反応が進行するものと考えられる。   Although the mechanism of action of the catalyst composition of the present invention is not clear, the alkali metal ion in component B has a function as an initiator, and the Al atom contained in the organoaluminum compound of component A is an ethylene oxide and glycidyl ether compound. It is considered that the reaction proceeds by taking an effective arrangement for copolymerization.

次に、前述の触媒組成物を用いた本発明の分岐ポリマーの製造方法について説明する。
本発明では、エチレンオキシドとグリシジルエーテル化合物の共重合により分岐を有するポリマーを製造するに際し、触媒組成物として前述の成分Aと成分Bを含む触媒組成物を前述の使用量、即ち、エチレンオキシドとグリシジルエーテル化合物に対するAl原子のモル%が0.01〜5.0、さらに好ましくは0.1〜3.0、特に好ましくは0.4〜1.5となる量にて使用するが、この際、エチレンオキシドとグリシジルエーテル化合物の共重合を公知の他の触媒を用いた場合と同様の方法により行うことができ、例えば、不活性ガスの存在下、非水雰囲気下、室温でアルカリ金属のアルコキシド又はアルカリ金属水酸化物を適切な溶媒に加え、有機アルミニウム化合物を加えて得た溶液に、必要量のエチレンオキシドとグリシジルエーテル化合物を添加し、重合せしめることができる。
Next, the manufacturing method of the branched polymer of this invention using the above-mentioned catalyst composition is demonstrated.
In the present invention, when a branched polymer is produced by copolymerization of ethylene oxide and a glycidyl ether compound, the catalyst composition containing the aforementioned component A and component B as the catalyst composition is used in the above-mentioned usage amount, that is, ethylene oxide and glycidyl ether. It is used in such an amount that the mol% of Al atoms relative to the compound is 0.01 to 5.0, more preferably 0.1 to 3.0, and particularly preferably 0.4 to 1.5. And glycidyl ether compound can be copolymerized in the same manner as when other known catalysts are used, for example, an alkali metal alkoxide or alkali metal at room temperature in the presence of an inert gas, in a non-aqueous atmosphere. Add the required amount of ethylene oxide and glycidyl to the solution obtained by adding the hydroxide to an appropriate solvent and adding the organoaluminum compound. Was added ether compound, it is possible to polymerizing.

本発明の製法では、重合を行う際の溶媒として、エチレンオキシドの重合に用いられる公知のものを用いることができ、例えばエーテル類、脂肪族炭化水素類、芳香族炭化水素類、ハロゲン系溶媒、ケトン類等を使用することができる。この際、これら溶媒の1種または必要に応じて2種以上併用することもでき、これらの中でも、n−ブタン、イソブタン、n−ペンタン、シクロペンタン、工業用ヘキサン、n−ヘキサン、イソヘキサン、シクロヘキサン、n−ヘプタン、n−オクタン、イソオクタンは、生成ポリマーである分岐を有するポリマーの粉体が乾燥しやすいことと、分岐を有するポリマーが溶解しないため、粉体のまま凝集させることなく取り扱えるために特に好ましく用いることができる。   In the production method of the present invention, known solvents used for the polymerization of ethylene oxide can be used as the solvent for the polymerization. For example, ethers, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated solvents, ketones Can be used. At this time, one of these solvents or two or more of them can be used in combination, and among them, n-butane, isobutane, n-pentane, cyclopentane, industrial hexane, n-hexane, isohexane, cyclohexane , N-heptane, n-octane, and isooctane are easy to dry the polymer powder having a branch as a product polymer, and the polymer having a branch does not dissolve, so that the powder can be handled without agglomeration. It can be particularly preferably used.

尚、本発明の製造方法を実施する際の反応温度(重合温度)は一般的な温度であれば特に限定されないが、従来の場合と同様の温度範囲であることができ、0〜50℃が好ましい。   The reaction temperature (polymerization temperature) for carrying out the production method of the present invention is not particularly limited as long as it is a general temperature, but can be in the same temperature range as in the conventional case, and 0 to 50 ° C. preferable.

以下、本発明を実施例によりさらに説明するが、本発明はこれらの例に限定されるものではない。なお、実施例中の「%」は重量基準によるものである。また、反応は不活性ガス下、非水雰囲気下で行った。重合により得られた生成物の分子量[Mw(重量平均分子量)]は、GPC(水系:ポリエチレンオキシド換算)により測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these examples. In the examples, “%” is based on weight. The reaction was performed under an inert gas and a non-aqueous atmosphere. The molecular weight [Mw (weight average molecular weight)] of the product obtained by polymerization was measured by GPC (aqueous system: converted to polyethylene oxide).

実施例1
1Lのオートクレーブに脱水n−ヘキサン300mlを仕込み、カリウムt−ブトキシド2.0mmolを加えた。次にトリイソブチルアルミニウム(Al(i−Bu) ) 1.0Mのn−ヘキサン溶液10ml を加え、本発明の触媒組成物溶液を得た。この溶液に室温(25℃)で1.7molのエチレンオキシドと0.24molのt−ブチルグリシジルエーテルの混合液を約1.4時間かけてフィードした。フィード終了後、4時間熟成し、分岐を有するポリマーのn−ヘキサンスラリーを得た。得られたスラリーを濾過した後、減圧乾燥することにより粉体状の分岐を有するポリマーを得た。この際の収率は84%で、GPCによるMw=40,000、[t−ブチルグリシジルエーテル/エチレンオキシド]=5.7mol%であった。
Example 1
A 1 L autoclave was charged with 300 ml of dehydrated n-hexane and 2.0 mmol of potassium t-butoxide was added. Next, 10 ml of a 1.0 M n-hexane solution of triisobutylaluminum (Al (i-Bu) 3 ) was added to obtain a catalyst composition solution of the present invention. To this solution, a mixture of 1.7 mol of ethylene oxide and 0.24 mol of t-butyl glycidyl ether was fed at room temperature (25 ° C.) over about 1.4 hours. After completion of the feed, the mixture was aged for 4 hours to obtain a branched polymer n-hexane slurry. The obtained slurry was filtered and then dried under reduced pressure to obtain a polymer having powdery branches. The yield at this time was 84%, Mw by GPC = 40,000, and [t-butyl glycidyl ether / ethylene oxide] = 5.7 mol%.

実施例2
フィードする混合液のt−ブチルグリシジルエーテルをn−ブチルグリシジルエーテルに変更し、それ以外は実施例1と同一の条件と操作を行い、重合反応を行った。得られた分岐を有するポリマーの収率は84%で、GPCによるMw=44,000、[n−ブチルグリシジルエーテル/エチレンオキシド]=9.8mol%であった。
Example 2
The t-butyl glycidyl ether of the mixed liquid to be fed was changed to n-butyl glycidyl ether, and the polymerization reaction was carried out under the same conditions and operations as in Example 1 except that. The yield of the obtained branched polymer was 84%, Mw = 44,000 by GPC, and [n-butyl glycidyl ether / ethylene oxide] = 9.8 mol%.

実施例3
フィードする混合液のt−ブチルグリシジルエーテルをアリルグリシジルエーテルに変更し、それ以外は実施例1と同一の条件と操作を行い、重合反応を行った。得られた分岐を有するポリマーの収率は85%で、GPCによるMw=24,000、[アリルグリシジルエーテル/エチレンオキシド]=6.2mol%であった。
Example 3
The t-butyl glycidyl ether of the liquid mixture to be fed was changed to allyl glycidyl ether, and the polymerization reaction was carried out under the same conditions and operations as in Example 1 except that. The yield of the obtained branched polymer was 85%, Mw by GPC = 24,000, and [allyl glycidyl ether / ethylene oxide] = 6.2 mol%.

実施例4
触媒組成物溶液中のカリウムt−ブトキシドを水酸化カリウムに変更し、実施例1と同一の条件と操作を行い、重合反応を行った。得られた分岐を有するポリマーの収率は84%で、GPCによるMw=28,000、[t−ブチルグリシジルエーテル/エチレンオキシド]=5.2mol%であった。
Example 4
The potassium t-butoxide in the catalyst composition solution was changed to potassium hydroxide, and the same conditions and operations as in Example 1 were performed to carry out a polymerization reaction. The yield of the obtained branched polymer was 84%, Mw by GPC = 28,000, and [t-butyl glycidyl ether / ethylene oxide] = 5.2 mol%.

比較例1
触媒組成物溶液中のトリイソブチルアルミニウム(Al(i−Bu) )1.0Mのn−ヘキサン溶液を加えずに、実施例1と同一の条件と操作を行った。重合反応は起こらず、ポリマーの生成は確認されなかった。
Comparative Example 1
The same conditions and operation as in Example 1 were carried out without adding 1.0 M of triisobutylaluminum (Al (i-Bu) 3 ) 1.0 M in the catalyst composition solution. The polymerization reaction did not occur, and the production of polymer was not confirmed.

比較例2
触媒組成物溶液中のカリウムt−ブトキシドを加えずに、実施例1と同一の条件と操作を行い、重合反応を行った。得られた分岐を有するポリマーの収率は1.6%で、GPCによるMw=25,000であり、3ピークになった。
Comparative Example 2
The polymerization reaction was carried out under the same conditions and operation as in Example 1 without adding potassium t-butoxide in the catalyst composition solution. The yield of the obtained polymer having a branch was 1.6%, Mw by GPC = 25,000, and 3 peaks were obtained.

比較例3
触媒組成物溶液中のカリウムt−ブトキシドの使用量を3.0mmolに、トリイソブチルアルミニウム(Al(i−Bu) )1.0Mのn−ヘキサン溶液の使用量を5.0mlに変更し、また、実施例1の熟成条件を69時間とし、重合反応を行った。得られた分岐を有するポリマーの収率は21.4%で、GPCによるMw=30,000であり、2ピークになった。
Comparative Example 3
The amount of potassium t-butoxide used in the catalyst composition solution was changed to 3.0 mmol, the amount of triisobutylaluminum (Al (i-Bu) 3 ) 1.0M n-hexane solution was changed to 5.0 ml, Moreover, the aging conditions of Example 1 were 69 hours, and the polymerization reaction was performed. The yield of the obtained polymer having a branch was 21.4%, Mw = 30,000 by GPC, and two peaks were obtained.

実施例1〜4に示されるように、当該触媒組成物を使用した場合には、エチレンオキシドとグリシジルエーテル化合物とを共重合させることにより分岐を有するポリマーを製造できることが分かる。これに対して、比較例の場合には、収率が非常に悪く、反応しない場合もあった。   As shown in Examples 1 to 4, it is understood that when the catalyst composition is used, a branched polymer can be produced by copolymerizing ethylene oxide and a glycidyl ether compound. On the other hand, in the case of the comparative example, the yield was very bad and there were cases where the reaction did not occur.

本発明の触媒組成物を使用することによって、エチレンオキシドとグリシジルエーテル化合物との共重合により、分岐を有するポリマーを効率よく製造することが可能である。   By using the catalyst composition of the present invention, it is possible to efficiently produce a branched polymer by copolymerization of ethylene oxide and a glycidyl ether compound.

Claims (9)

エチレンオキシドとグリシジルエーテル化合物とを共重合させる際に使用される触媒組成物であって、
前記触媒組成物が、成分A:トリ(C 〜C アルキル)アルミニウムと、成分B:アルカリ金属のアルコキシド又はアルカリ金属水酸化物のいずれか一方、からなり、しかも、前記成分Aが、前記成分B1モルに対して3モル以上含有されていることを特徴とする触媒組成物。
A catalyst composition used when copolymerizing ethylene oxide and a glycidyl ether compound,
The catalyst composition comprises component A: tri (C 1 -C 4 alkyl) aluminum and component B: one of an alkali metal alkoxide or alkali metal hydroxide , and the component A is A catalyst composition comprising 3 mol or more per 1 mol of component B.
前記成分Aがトリ‐イソブチルアルミニウムであることを特徴とする請求項1記載の触媒組成物。 The catalyst composition of claim 1 wherein component A is tri-isobutylaluminum . 前記アルカリ金属アルコキシドが、カリウム、ナトリウム、リチウムのメトキシド、エトキシド、プロポキシド、ブトキシドのいずれかであることを特徴とする請求項1又は2に記載の触媒組成物。 3. The catalyst composition according to claim 1 , wherein the alkali metal alkoxide is any one of potassium, sodium, lithium methoxide, ethoxide, propoxide, and butoxide . 前記アルカリ金属アルコキシドがカリウムt−ブトキシドであることを特徴とする請求項3記載の触媒組成物。 4. The catalyst composition according to claim 3, wherein the alkali metal alkoxide is potassium t-butoxide . 前記アルカリ金属水酸化物が、水酸化リチウム、水酸化ナトリウム、水酸化カリウムのいずれかであることを特徴とする請求項1記載の触媒組成物。 The catalyst composition according to claim 1 , wherein the alkali metal hydroxide is any one of lithium hydroxide, sodium hydroxide, and potassium hydroxide . 前記アルカリ金属水酸化物が水酸化カリウムであることを特徴とする請求項5記載の触媒組成物。 The catalyst composition according to claim 5, wherein the alkali metal hydroxide is potassium hydroxide. エチレンオキシドとグリシジルエーテル化合物とを共重合させて分岐を有するポリマーを製造するための方法であって、A method for producing a branched polymer by copolymerizing ethylene oxide and a glycidyl ether compound,
前記請求項1〜6のいずれか1項に記載の触媒組成物を使用し、エチレンオキシド99.9〜70重量%に対するグリシジルエーテル化合物の割合を0.1〜30重量%として重合を行うことを特徴とする、分岐を有するポリマーの製造方法。Polymerization is performed using the catalyst composition according to any one of claims 1 to 6, wherein the ratio of the glycidyl ether compound to 99.9 to 70% by weight of ethylene oxide is 0.1 to 30% by weight. A method for producing a branched polymer.
前記グリシジルエーテル化合物が、n−ブチルグリシジルエーテル、t−ブチルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテルからなる群より選ばれたものであることを特徴とする請求項7に記載のポリマーの製造方法。 The method for producing a polymer according to claim 7, wherein the glycidyl ether compound is selected from the group consisting of n-butyl glycidyl ether, t-butyl glycidyl ether, allyl glycidyl ether, and phenyl glycidyl ether. . 前記触媒組成物の使用量が、エチレンオキシドとグリシジルエーテル化合物に対して0.01〜5.0モル%Al原子であることを特徴とする請求項7に記載のポリマーの製造方法。 The method for producing a polymer according to claim 7 , wherein an amount of the catalyst composition used is 0.01 to 5.0 mol% Al atom with respect to ethylene oxide and a glycidyl ether compound .
JP2004259159A 2004-09-07 2004-09-07 Catalyst composition for copolymerizing ethylene oxide and glycidyl ether compound, and method for producing branched polymer using the catalyst composition Active JP4841818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259159A JP4841818B2 (en) 2004-09-07 2004-09-07 Catalyst composition for copolymerizing ethylene oxide and glycidyl ether compound, and method for producing branched polymer using the catalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259159A JP4841818B2 (en) 2004-09-07 2004-09-07 Catalyst composition for copolymerizing ethylene oxide and glycidyl ether compound, and method for producing branched polymer using the catalyst composition

Publications (2)

Publication Number Publication Date
JP2006077039A JP2006077039A (en) 2006-03-23
JP4841818B2 true JP4841818B2 (en) 2011-12-21

Family

ID=36156766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259159A Active JP4841818B2 (en) 2004-09-07 2004-09-07 Catalyst composition for copolymerizing ethylene oxide and glycidyl ether compound, and method for producing branched polymer using the catalyst composition

Country Status (1)

Country Link
JP (1) JP4841818B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5789335B1 (en) 2014-09-08 2015-10-07 明成化学工業株式会社 Dispersant and dispersion composition
CN110628010B (en) * 2019-10-18 2022-09-27 辽宁奥克医药辅料股份有限公司 Catalyst composition and method for preparing polyethylene glycol with medium molecular weight by using same
WO2024053562A1 (en) * 2022-09-05 2024-03-14 株式会社 資生堂 Cosmetic base

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293915A (en) * 2001-03-29 2002-10-09 Asahi Denka Kogyo Kk Polymerization catalyst composition for propylene oxide
JP4092537B2 (en) * 2001-11-06 2008-05-28 日本ゼオン株式会社 Method for producing polyether polymer
JP4585864B2 (en) * 2002-11-05 2010-11-24 明成化学工業株式会社 Polymerization catalyst composition for ethylene oxide and method for producing poly (ethylene oxide) using the composition

Also Published As

Publication number Publication date
JP2006077039A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
Carlotti et al. Living/controlled anionic polymerization and copolymerization of epichlorohydrin with tetraoctylammonium bromide− triisobutylaluminum initiating systems
JP2002265592A (en) Process for producing alkylene oxide polymer
JPH11322942A (en) Process for preparing polymer
KR102613107B1 (en) Solid electrolytes and batteries
DE50006019D1 (en) METHOD FOR THE CONTINUOUS PRODUCTION OF POLYISOBUTEN
JP4585864B2 (en) Polymerization catalyst composition for ethylene oxide and method for producing poly (ethylene oxide) using the composition
Scholten et al. Merging CO2-based building blocks with cobalt-mediated radical polymerization for the synthesis of functional poly (vinyl alcohol) s
JP4841818B2 (en) Catalyst composition for copolymerizing ethylene oxide and glycidyl ether compound, and method for producing branched polymer using the catalyst composition
CN104892919A (en) Preparation method for polyhexafluoroepoxypropanediacyl fluoride
CN102164973B (en) Vinyloxy group-containing vinyl polymer
JP3321209B2 (en) Method for producing cross-linked carboxyl group-containing polymer
Tian et al. Hydrogen bonding improved atom transfer radical polymerization of methyl methacrylate with a glycerol/1, 3‐dimethyl‐2‐imidazolidinone green system
CN112979849A (en) Method for catalyzing methyl methacrylate anion polymerization
JP3871447B2 (en) Polymerization catalyst composition for propylene oxide
JP2002128886A (en) Catalyst composition for polymerization of propylene oxide polymer and preparation method of the polymer
JP4064003B2 (en) Polycarbonate manufacturing method
JP2000100246A (en) Solid electrolyte, and manufacture thereof
JP2000256457A (en) Propylene oxide polymerization catalyst composition and preparation of poly(propylene oxide)
JP4192862B2 (en) Method for producing polyether copolymer
CN108752510B (en) Iron-catalyzed AGET ATRP system in biomass-based solvent under ligand-free condition and polymerization method
CN110628010B (en) Catalyst composition and method for preparing polyethylene glycol with medium molecular weight by using same
US2861962A (en) Process for the polymerization of olefin oxides with ferric compounds
Kitahama et al. Polymerization of 3, 4‐dihydro‐2H‐carboxyaldehyde (acrolein dimer). Part II. Copolymerization with isocyanates
JP3937830B2 (en) Catalyst for polymerization of oxirane compound, and method for producing oxirane compound polymer using the catalyst
US4169925A (en) Manufacture of olefin polymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070905

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111005

R150 Certificate of patent or registration of utility model

Ref document number: 4841818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250