JP3937830B2 - Catalyst for polymerization of oxirane compound, and method for producing oxirane compound polymer using the catalyst - Google Patents

Catalyst for polymerization of oxirane compound, and method for producing oxirane compound polymer using the catalyst Download PDF

Info

Publication number
JP3937830B2
JP3937830B2 JP2001384185A JP2001384185A JP3937830B2 JP 3937830 B2 JP3937830 B2 JP 3937830B2 JP 2001384185 A JP2001384185 A JP 2001384185A JP 2001384185 A JP2001384185 A JP 2001384185A JP 3937830 B2 JP3937830 B2 JP 3937830B2
Authority
JP
Japan
Prior art keywords
compound
catalyst
group
polymer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001384185A
Other languages
Japanese (ja)
Other versions
JP2003183382A (en
Inventor
茂 庄治
克人 三浦
保美 清水
幹男 有可
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2001384185A priority Critical patent/JP3937830B2/en
Publication of JP2003183382A publication Critical patent/JP2003183382A/en
Application granted granted Critical
Publication of JP3937830B2 publication Critical patent/JP3937830B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、エチレンオキシド、エピクロルヒドリン、アリルグリシジルエーテル等のオキシラン化合物の重合体を懸濁析出重合により製造するのに適する重合用触媒に関し、また該重合用触媒を用いるオキシラン化合物の重合体の製造方法に関する。
【0002】
【従来の技術】
オキシラン化合物の重合体は、原料となるオキシラン化合物の種類を選択することにより、様々な性質を持つポリマーとなるため、自動車用ゴム部品、電気、電子機器用ゴム部材、各種プラスチックブレンド用ポリマー、高分子固体電解質等の非常に広範な分野で使用されている。
【0003】
オキシラン化合物重合体の工業的な製造方法としては、単量体および重合体が可溶な有機溶媒中でオキシラン化合物を重合せしめる溶液重合と、重合体が不溶な有機溶媒中でオキシラン化合物を重合せしめ、粒子状の重合体を析出させる懸濁析出重合が知られている。このうち、後者の重合法は、重合時に単量体の濃度を高くでき、重合後の重合体と溶媒との分離が容易である等の利点がある反面、特定の触媒、溶剤を選択する必要がある。
【0004】
オキシラン化合物を重合せしめ得る触媒としては、フッ化硼素、塩化アルミニウム、塩化錫、塩化鉄等のルイス酸の作用を持つものが知られている。これらの触媒を用いて重合を行うと、比較的低分子量(例えば分子量数千から数万)の重合体が得られる。
【0005】
ゴム工業等の特定分野で有用な高分子量の重合体を得るには、触媒として、アルキル亜鉛と水の反応生成物、有機錫化合物と燐酸エステルの反応生成物、アルキルアルミニウムと水の反応生成物、アルキルアルミニウムと燐酸化合物の反応生成物等を用いることが知られている。特に、アルキルアルミニウムを用いた触媒としては、アルキルアルミニウムと水の反応生成物に、更にアセチルアセトンのようなキレート剤を加えた触媒(例えば、J. Polym. Sci. A-1, 7, 525 (1969) 参照)、アルキルアルミニウムと燐酸化合物の反応生成物に、更にアミン化合物、有機燐化合物および/または有機砒素化合物からなる第3成分を加えた触媒(特公昭46−27534号公報参照)、また、アルキルアルミニウムと燐酸化合物の反応生成物に、N−エチルモルフォリン等のN−置換モルフォリンを加えた触媒(特公昭56−8852号公報参照)や、同反応生成物に1,8−ジアザビシクロ[5,4,0]−7−ウンデセンを加えた触媒(特公昭56−51171号公報参照)が、高分子量のオキシラン化合物重合体を得るのに優れた触媒として提案されている。本発明者らは先に、高分子量のオキシラン化合物重合体を懸濁析出重合で得るための触媒として、アルキルアルミニウムと燐のオキソ酸化合物の反応生成物に、特定のpKa値を持つアミン化合物を加えた触媒が提案した(特願2000−193798)。本発明は、この先行発明の延長上にあり生産効率のさらなる向上を企図するものである。
【0006】
【発明が解決しようとする課題】
しかしながら、上記アルキルアルミニウムを用いた触媒に関する従来技術は、ほとんどが溶液重合によるものであり、これらの触媒の存在下にオキシラン化合物の懸濁析出重合を行うと、場合によっては高分子量の重合体が得られなかったり、また、析出した重合体が粒子状とならずに固まるため、反応装置内で撹拌ができなくなったり、反応装置から重合体を取り出せなくなる等の問題がある。
【0007】
本発明の目的は、懸濁析出重合に適したアルキルアルミニウムを用いた触媒をさらに改良することにより、高分子量のオキシラン化合物重合体をより効果的にかつより高い生産効率で製造することができる方法を提供するところにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく種々検討を重ねたところ、アルキルアルミニウム化合物と燐のオキソ酸化合物の反応生成物に、さらに第3成分として特定のアルキル置換ピリジンを加える触媒では、アルキルアルミニウムと燐のオキソ酸化合物が特定の割合にある場合にのみ、懸濁析出重合時に重合体の反応槽壁への付着が著しく低減し生産効率が向上することを見出し、本発明を完成するに至った。
【0009】
本発明によるオキシラン化合物の重合用触媒は、オキシラン化合物を重合体が不溶な有機溶媒中で懸濁析出重合せしめる際に、重合体の反応槽の壁への付着を著しく低減でき得る触媒であって、(A)アルキルアルミニウム化合物と、(B)分子内に少なくとも1つのOH基を有する燐のオキソ酸化合物と、(C)下記一般式[I]で示されるアルキル置換ピリジンとからなり、該(A)アルキルアルミニウム化合物と(B)分子内に少なくとも1つのOH基を有する燐のオキソ酸化合物の割合が、オキソ酸化合物のOH基(オキソ酸化合物が水を含む場合はオキソ酸化合物のOH基と水のOH基の総和)1モルに対してアルキルアルミニウム0.65〜0.95モルの範囲内にあり、(B)燐のオキソ酸化合物が、燐酸、下記一般式[ II ]で示されかつH PO 相当で90〜110重量%であるポリ燐酸の混合物、または酸性燐酸エステル類であることを特徴とするものである。
【化4】

Figure 0003937830
(式中、R、R、R、RおよびRは、互いに同一であっても異なっていてもよく、水素原子または低級アルキル基である。)
【化5】
Figure 0003937830
(式中、nは2から10の整数である。)
【0010】
また、本発明によるオキシラン化合物重合体の製造方法は、上記特徴を有する触媒の存在下に単量体オキシラン化合物をその重合体が不溶な有機溶媒中で懸濁析出重合せしめ、オキシラン化合物の重合体を製造する方法である。
【0011】
以下、本発明の構成につき詳細に説明する。
【0012】
本発明による触媒において使用されるアルキルアルミニウム化合物は、
一般式
(R AlX3−p
(式中、R は低級アルキル基、例えば炭素数1〜6のアルキル基、Xはハロゲン原子または水素原子、pは1、1.5、2または3である。)
で示される化合物である。
【0013】
アルキルアルミニウム化合物としては、例えばトリエチルアルミニウム、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド[Et Al Cl ]、トリイソブチルアルミニウム、ジイソブチルアルミニウムハイドライド、トリ−n−ブチルアルミニウム、トリ−n−プロピルアルミニウム等を挙げることができ、これらは用いられる単量体オキシラン化合物に応じてそれぞれ単独で、または2種以上の組み合わせで用いることができる。
【0014】
また、本発明による触媒において使用される燐のオキソ酸化合物は、燐酸、一般式[ II ]で示されかつH P0 相当で90〜110重量%(H P0 相当で100重量%を越えるものは、通常、縮合燐酸と呼ばれる)であるポリ燐酸の混合物、または酸性燐酸エステルである。
燐のオキソ酸化合物としてポリ燐酸の混合物を用いると、得られる触媒のオキシラン化合物に対する重合活性が大きくなり好ましい。
アルコール類と燐酸との部分エステル化物である酸性燐酸エステル類は、一般式
O=P(OR OH)3−q
(式中、Rは低級アルキル基、例えば炭素数1〜6のアルキル基、qは1または2である。)
で示される化合物であり、酸性燐酸メチル、酸性燐酸エチル、酸性燐酸プロピル、酸性燐酸イソプロピル、酸性燐酸ブチルを例示することができる。
【0016】
該燐酸、またはポリ燐酸の混合物中に水分が少量存在していても問題はないが、燐酸、またはポリ燐酸の混合物中の水分が多量であると触媒反応を阻害し、重合活性が低下する傾向があるので、本発明においてはH PO 相当で好ましくは83重量%以上、より好ましくは90重量%以上の燐酸、またはポリ燐酸の混合物を用いる。
【0017】
本発明による触媒は、一般式[I]で示されるアルキル置換ピリジンを含むものである。したがって、触媒活性が高く、また、得られるオキシラン化合物重合体の分子量も大きくなり好ましい。
【0018】
一般式[I]中、R、R、R、RおよびRは、互いに同一であっても異なっていてもよく、水素原子または低級アルキル基、例えば炭素数1〜6のアルキル基である。
【0019】
一般式[I]で示されるアルキル置換ピリジンとしては、2,4,6−トリメチルピリジン、2,3,6−トリメチルピリジン、2,4−ジメチルピリジン、2,5−ジメチルピリジン、2,6−ジメチルピリジン、3,5−ジメチルピリジン、4−メチルピリジン、3−エチル−6−メチルピリジン、4−イソプロピルピリジン、2−プロピルピリジン、2,3,5,6−テトラメチルピリジン等を挙げることができる。好ましいアルキル置換ピリジンは、少なくとも2位および/または6位がアルキル置換されたピリジンである。特に好ましい化合物は2,4,6−トリメチルピリジンである。
【0020】
上記アルキルアルミニウム化合物、燐のオキソ酸化合物、および含窒素環状化合物を反応させて本発明の触媒を合成する際、アルキルアルミニウムと燐のオキソ酸化合物の割合は、燐のオキソ酸化合物が分子内に持つOH基(オキソ酸化合物が水を含む場合はオキソ酸化合物のOH基と水のOH基の総和)のモル数に依存し、該OH基1モルに対してアルキルアルミニウム化合物0.65〜0.95モル、好ましくは0.7〜0.93モルの範囲内にある。この割合が上記範囲を出ると、懸濁析出重合に用いた際に、重合体が反応槽の壁に付着する量が増加するので好ましくない。
含窒素環状化合物の割合は、アルキルアルミニウム化合物1モルに対して好ましくは0.01〜0.5モル、より好ましくは0.03〜0.25モルである。含窒素化合物の割合がこの範囲を外れると、得られる触媒のオキシラン化合物に対する重合活性が低下する傾向がある。
【0021】
これら三つの原料物質の反応順序は特に限定されるものではなく、まずアルキルアルミニウム化合物と燐のオキソ酸化合物とを反応させ、その後この反応生成物に含窒素環状化合物を反応させてもよいし、また、まずアルキルアルミニウム化合物と含窒素環状化合物を反応させ、その後この反応生成物に燐のオキソ酸化合物を反応させてもよく、得られた触媒のオキシラン化合物に対する重合活性に大きな差はない。上記各反応の反応温度は、用いられるアルキルアルミニウム化合物あるいは燐のオキソ酸化合物によって適宜選択されるが、通常−20℃〜120℃の範囲内にある。触媒合成の反応は窒素ガス等の不活性ガス雰囲気下で無溶媒あるいは不活性溶媒中で行うのが好ましい。不活性溶媒は特に限定されるものではないが、例えばヘキサン、ヘプタン、シクロヘキサン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジエチルエーテル、ジプロピルエーテル、メチルブチルエーテル、ジメトキシエタン等のエーテル類等を挙げることができ、これらが単独であるいは2種以上の混合溶媒として用いられる。
【0022】
上記アルキルアルミニウム、燐のオキソ酸化合物、および含窒素環状化合物の反応により得られた触媒は、オキシラン化合物の懸濁析出重合に非常に適している。重合せしめ得るオキシラン化合物としては、例えば、エチレンオキシド、プロピレンオキシド、ブテンオキシド、イソブチレンオキシド、ブタジエンモノオキシド等のアルキレンオキシド類;エピクロルヒドリン、エピブロムヒドリン、メタクリルクロリドオキシド、トリフルオロメチルエチレンオキシド、ジクロロイソブチレンオキシド、スチレンオキシド等の置換アルキレンオキシド類;シクロヘキセンオキシド、ビニルシクロヘキセンオキシド等の脂環状エポキシド類;アリルグリシジルエーテル、フェニルグリシジルエーテル、クロロエチルグリシジルエーテル、メチルグリシジルエーテル、2−メトキシエチルグリシジルエーテル、2−(2−メトキシエトキシ)エチルグリシジルエーテル、シクロヘキシルグリシジルエーテル、ベンジルグリシジルエーテル等のグリシジルエーテル類;グリシジルアクリレート、グリシジルメタクリレート等のグリシジルエステル類等を挙げることができる。これらのうち、下記一般式[III] で示されるオキシラン化合物の単独重合あるいは2種以上の共重合を行うと、重合速度が速く、また得られる重合体の分子量が大きくなり好ましい。
【0023】
【化6】
Figure 0003937830
(式中、mは0または1である。R は水素原子、置換基を有していてもよいアルキル基、シクロアルキル基、フェニル基、アラルキル基、アルケニル基または(メタ)アクリロイル基であり、該置換基はハロゲン、メトキシ基、エトキシ基またはメトキシエトキシ基である。)
【0024】
本発明による重合方法は、上記触媒の存在下に、単量体に対し不活性でありかつ得られる重合体を溶解しない有機溶媒中で、単量体オキシラン化合物を懸濁析出重合せしめて、オキシラン化合物の重合体を製造する方法である。
【0025】
単量体は有機溶媒に対して可溶であっても不溶であってもよいが、少なくとも一部は可溶である方が好ましい。このような溶媒の例としてはヘキサン、ヘプタン、シクロヘキサン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジエチルエーテル、ジプロピルエーテル、メチルブチルエーテル、ジメトキシエタン等のエーテル類等を挙げることができ、用いられるオキシラン化合物の種類および重合温度に応じて適宜選択される。好ましくは脂肪族炭化水素類が用いられる。
【0026】
単量体オキシラン化合物、有機溶媒および触媒の混合割合は、通常、オキシラン化合物の100重量部に対し、有機溶媒100〜1000重量部、触媒0.01〜5重量部の範囲内にあることが好ましい。重合温度は特に限定されるものではないが、通常−20℃から150℃の範囲内にあり、触媒の活性、用いられる有機溶媒およびオキシラン化合物の種類に応じて適宜選択される。また、重合は通常撹拌下で行われる。
【0027】
【発明の実施の形態】
本発明を実施するための具体的な形態を以下に実施例を挙げて説明する。但し、本発明はその要旨を逸脱しない限り以下の実施例に限定されるものではない。
[実施例1]
内部を窒素置換した容量300mlのガラス製フラスコに、トリイソブチルアルミニウム39mlを投入し、ついでヘキサン81mlを加え、全体を撹拌した。燐酸(H PO 100重量%相当)6.08gをジエチルエーテル180mlに溶解してなる溶液を、反応温度を5℃前後に温度調節しながら、トリイソブチルアルミニウムのヘキサン溶液中へ撹拌下に徐々に加え、両者を反応させた(燐酸の添加割合は、燐酸のOH基1モルに対してトリイソブチルアルミニウム0.83モルに相当する)。この反応液に含窒素環状化合物として2,4,6−トリメチルピリジン(pKa=7.43)1.5mlを撹拌下に加え、60℃で1時間撹拌を続けた。こうして触媒を調製した。
【0028】
内部を窒素置換した容量20リットルのステンレス製反応槽にエピクロルヒドリン1.8リットルとヘキサン9リットルを入れ、ここに上記触媒全量を添加して、全体を20℃で撹拌しながら6時間重合反応を行った。反応槽内には直径1mm程度の粒子状の重合体が析出した。反応槽の壁に付着した重合体の量は2.8%であった。なお、重合体の反応槽壁付着量は下記の式により算出した:
【式1】
Figure 0003937830
【0029】
[実施例2]
含窒素環状化合物として、2,4−ジメチルピリジン(pKa=6.74)1.5mlを用いた点を除いて、実施例1と同様の手順で触媒を調製し、これを用いて重合反応を行った。反応槽内には直径1mm程度の粒子状の重合体が析出した。壁付着量は3.6%であった。
【0031】
[実施例
燐酸(HPO 100重量%相当)の添加量を7.24g(燐酸のOH基1モルに対してトリイソブチルアルミニウム0.70モルに相当する)とした点を除いて、実施例1と同様の手順で触媒を調製し、これを用いて重合反応を行った。反応槽内には直径1.5mm程度の粒子状の重合体が析出した。壁付着量は4.8%であった。
【0032】
[実施例
燐酸(HPO 100重量%相当)の添加量を5.47g(燐酸のOH基1モルに対してトリイソブチルアルミニウム0.93モルに相当する)とした点を除いて、実施例1と同様の手順で触媒を調製し、これを用いて重合反応を行った。反応槽内には直径1.0mm程度の粒子状の重合体が析出した。壁付着量は6.1%であった。
【0033】
[実施例
燐のオキソ酸化合物として、燐酸の部分エチルエステル化物である酸性燐酸エチル(燐含有量21重量%)21g(酸性燐酸エチルのOH基1モルに対してトリイソブチルアルミニウム0.83モルに相当する)を用いた点を除いて、実施例1と同様の手順で触媒を調製し、これを用いて重合反応を行った。反応槽内には直径1.5mm程度の粒子状の重合体が析出した。壁付着量は5.9%であった。
【0034】
[実施例
燐のオキソ酸化合物として、燐酸を水溶液形態で(HPO 85重量%相当)5.4g(燐酸のOH基と水のOH基の総和1モルに対してトリイソブチルアルミニウム0.83モルに相当する)用いた点を除いて、実施例1と同様の手順で触媒を調製し、これを用いて重合反応を行った。反応槽内には直径1mm程度の粒子状の重合体が析出した。壁付着量は5.9%であった。
【0035】
[実施例
アルキルアルミニウム化合物として、トリエチルアルミニウム37mlを用い、これに燐酸(HPO 100重量%相当)10.7g(燐酸のOH基1モルに対してトリエチルアルミニウム0.83モルに相当する)と、2,4,6−トリメチルピリジン2.7mlとを加えた点を除いて、実施例1と同様の手順で触媒を調製し、これを用いて重合反応を行った。反応槽内には直径1.5mm程度の粒子状の重合体が析出した。壁付着量は4.8%であった。
【0036】
[実施例
実施例1と同様の手順で触媒を調製し、次いでオキシラン化合物として、エピクロルヒドリン1.5リットルおよびエチレンオキシド0.6リットルを用いた点を除いて、実施例1と同様の手順で重合反応を行った。反応槽内には直径1mm程度の粒子状の共重合体が析出した。壁付着量は4.1%であった。
【0037】
[実施例
実施例1と同様の手順で触媒を調製し、次いでオキシラン化合物として、プロピレンオキシド0.8リットル、エチレンオキシド0.9リットルおよびアリルグリシジルエーテル120mlを用いた点を除いて、実施例1と同様の手順で重合反応を行った。反応槽内には直径1mm程度の粒子状の三元共重合体が析出した。壁付着量は4.9%であった。
【0038】
[実施例10
実施例1と同様の手順で触媒を調製し、次いでオキシラン化合物として、スチレンオキシド1.8リットルを用いた点を除いて、実施例1と同様の手順で重合反応を行った。反応槽内には直径1.5mm程度の粒子状の重合体が析出した。壁付着量は6.3%であった。
【0039】
[比較例1]
燐酸(H PO 100重量%相当)の添加量を5.07g(燐酸のOH基1モルに対してトリイソブチルアルミニウム1.00モルに相当する)とした点を除いて、実施例1と同様の手順で触媒を調製し、これを用いて重合反応を行った。反応槽内には直径1.0mm程度の粒子状の重合体が析出した。壁付着量は12.4%であった。
【0040】
[比較例2]
燐酸(H PO 100重量%相当)の添加量を8.45g(燐酸のOH基1モルに対してトリイソブチルアルミニウム0.60モルに相当する)とした点を除いて、実施例1と同様の手順で触媒を調製し、これを用いて重合反応を行った。反応槽内には直径1.5mm程度の粒子状の重合体が析出した。壁付着量は16.8%であった。
【0041】
[比較例3]
含窒素環状化合物として、1,8−ジアザビシクロ[5,4,0]−7−ウンデセン(pKa=12.5)1.5mlを用いた点を除いて、実施例1と同様の手順で触媒を調製し、これを用いて重合反応を行った。反応槽内には直径8mm程度の大きな粒状の重合体が析出した。壁付着量は18.5%であった。
【0042】
[比較例4]
含窒素環状化合物として、2−エチルピリジン(pKa=5.89)1.5mlを用いた点を除いて、実施例1と同様の手順で触媒を調製し、これを用いて重合反応を行った。反応槽内には直径15mm程度の大きな粒状の重合体が析出した。壁付着量は26.2%であった。
【0043】
[重合体の評価]
得られた重合体(反応槽壁付着物も含む)を充分に真空乾燥し、重量を測定して重合体収率を求めた。また、得られた重合体を真空乾燥した後ジメチルホルムアミドに溶解し、ゲルパーミエーションクロマトグラフィー法で重合体の分子量を求め、さらに標準ポリスチレン換算で重量平均分子量を算出した。これらの評価結果を表1に示す。
【0044】
【表1】
Figure 0003937830
【0045】
析出した重合体の様相から明らかなように、実施例1〜で得られた触媒を用いてエピクロルヒドリンの重合を行うと、細かな粒子状の単独重合体が得られ、かつ壁付着量も少なくなっている。また、表1から明らかなように、これら実施例では重合体収率、得られた重合体の分子量が共に高い数値を示した。異種の単量体を用いて(共)重合を行った実施例8〜10ではいずれも少ない壁付着量で粒子状の重合体が得られ、これらの実施例でも重合体収率、得られた重合体の分子量は共に高い数値を示した。
【0046】
これに対し、オキソ酸化合物のOH基1モルに対するアルキルアルミニウムの値が0.65〜0.95モルの範囲を外れる比較例1、比較例2では、粒子状の重合体が得られるものの、壁付着量が多くなっている。1,8−ジアザビシクロ[5,4,0]−7−ウンデセンを用いた比較例3、および2−エチルピリジンを用いた比較例4では、重合体収率、重合体の分子量はかなり高いが、重合体は大きな粒状となって得られ、これら化合物は懸濁析出重合用触媒には適しないことが分かる。
【0047】
【発明の効果】
本発明によるオキシラン化合物の重合用触媒は、以上のように構成されており、これを用いることによって高い生産効率で高分子量の重合体が得られ、かつ、反応槽壁への重合体の付着量が少ない。したがって、本発明による触媒を用いれば、自動車用ゴム部品、電気、電子機器用ゴム部材、各種プラスチックブレンド用ポリマー、高分子固体電解質等の非常に広範な分野で使用されている高品質のオキシラン化合物重合体を効率よくかつ容易に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymerization catalyst suitable for producing a polymer of an oxirane compound such as ethylene oxide, epichlorohydrin, and allyl glycidyl ether by suspension precipitation polymerization, and to a method for producing a polymer of an oxirane compound using the polymerization catalyst. .
[0002]
[Prior art]
The polymer of the oxirane compound becomes a polymer having various properties by selecting the type of the oxirane compound used as a raw material. Therefore, rubber components for automobiles, rubber members for electric and electronic devices, polymers for various plastic blends, It is used in a very wide range of fields such as molecular solid electrolytes.
[0003]
Industrial production methods for oxirane compound polymers include solution polymerization in which the oxirane compound is polymerized in an organic solvent in which the monomer and polymer are soluble, and polymerization of the oxirane compound in an organic solvent in which the polymer is insoluble. Suspension precipitation polymerization in which a particulate polymer is precipitated is known. Among these, the latter polymerization method has the advantage that the monomer concentration can be increased at the time of polymerization, and separation of the polymer after polymerization and the solvent is easy, but it is necessary to select a specific catalyst and solvent. There is.
[0004]
As catalysts capable of polymerizing oxirane compounds, those having the action of Lewis acids such as boron fluoride, aluminum chloride, tin chloride and iron chloride are known. When polymerization is performed using these catalysts, a polymer having a relatively low molecular weight (for example, a molecular weight of several thousand to several tens of thousands) can be obtained.
[0005]
In order to obtain a high molecular weight polymer useful in a specific field such as rubber industry, a reaction product of alkylzinc and water, a reaction product of organotin compound and phosphate ester, a reaction product of alkylaluminum and water It is known to use a reaction product of an alkylaluminum and a phosphoric acid compound. In particular, as a catalyst using alkylaluminum, a catalyst obtained by adding a chelating agent such as acetylacetone to a reaction product of alkylaluminum and water (for example, J. Polym. Sci. A-1, 7, 525 (1969 )), A catalyst obtained by adding a third component comprising an amine compound, an organic phosphorus compound and / or an organic arsenic compound to the reaction product of an alkylaluminum and a phosphoric acid compound (see Japanese Patent Publication No. 46-27534), A catalyst obtained by adding an N-substituted morpholine such as N-ethylmorpholine to a reaction product of an alkylaluminum and a phosphoric acid compound (see Japanese Examined Patent Publication No. 56-8852), or 1,8-diazabicyclo [ The catalyst added with 5,4,0] -7-undecene (see Japanese Patent Publication No. 56-51171) was excellent in obtaining a high molecular weight oxirane compound polymer. It has been proposed as a catalyst. As a catalyst for obtaining a high molecular weight oxirane compound polymer by suspension precipitation polymerization, the present inventors previously used an amine compound having a specific pKa value as a reaction product of an alkylaluminum and phosphorus oxoacid compound. An added catalyst was proposed (Japanese Patent Application No. 2000-193798). The present invention is an extension of this prior invention and is intended to further improve production efficiency.
[0006]
[Problems to be solved by the invention]
However, most of the prior art relating to the catalyst using the alkylaluminum is based on solution polymerization. When suspension precipitation polymerization of an oxirane compound is performed in the presence of these catalysts, a high molecular weight polymer may be obtained in some cases. There is a problem that the polymer cannot be obtained or the precipitated polymer is solidified without becoming particles, so that stirring cannot be performed in the reactor, and the polymer cannot be taken out from the reactor.
[0007]
An object of the present invention is a method by which a high molecular weight oxirane compound polymer can be produced more effectively and with higher production efficiency by further improving a catalyst using an alkylaluminum suitable for suspension precipitation polymerization. Is to provide.
[0008]
[Means for Solving the Problems]
The inventors of the present invention have made various studies in order to solve the above problems. As a result, a catalyst in which a specific alkyl-substituted pyridine is further added as a third component to the reaction product of an alkylaluminum compound and a phosphorus oxoacid compound. Only when the aluminum and phosphorus oxo acid compounds are in a specific ratio, the adhesion of the polymer to the reaction vessel wall during suspension precipitation polymerization is remarkably reduced and the production efficiency is improved, and the present invention is completed. It came.
[0009]
The catalyst for oxirane compound polymerization according to the present invention is a catalyst that can significantly reduce the adhesion of the polymer to the reaction vessel wall when the oxirane compound is suspended and precipitated in an organic solvent insoluble in the polymer. (A) an alkylaluminum compound, (B) a phosphorus oxoacid compound having at least one OH group in the molecule, and (C) an alkyl-substituted pyridine represented by the following general formula [I]: A) The ratio of the alkylaluminum compound and (B) the phosphorus oxo acid compound having at least one OH group in the molecule is the OH group of the oxo acid compound (or the OH group of the oxo acid compound if the oxo acid compound contains water). the sum of OH groups of water) in the range of alkylaluminum 0.65-0.95 mol relative to 1 mol, (B) an oxo acid compound of phosphorus, phosphoric acid, the following general formula [II It is characterized in that in shown and H 3 PO 4 mixture corresponding in a 90 to 110 wt% polyphosphoric acid, or an acidic phosphoric ester.
[Formula 4]
Figure 0003937830
(In the formula, R 1 , R 2 , R 3 , R 4 and R 5 may be the same or different from each other, and are a hydrogen atom or a lower alkyl group.)
[Chemical formula 5]
Figure 0003937830
(Where n is an integer from 2 to 10)
[0010]
In addition, the method for producing an oxirane compound polymer according to the present invention comprises subjecting a monomer oxirane compound to suspension precipitation polymerization in an organic solvent in which the polymer is insoluble in the presence of the catalyst having the above-described characteristics, and It is a method of manufacturing.
[0011]
Hereinafter, the configuration of the present invention will be described in detail.
[0012]
The alkylaluminum compound used in the catalyst according to the invention is
Formula (R 7) p AlX 3- p
(Wherein R 7 is a lower alkyl group such as an alkyl group having 1 to 6 carbon atoms, X is a halogen atom or a hydrogen atom, and p is 1, 1.5, 2 or 3.)
It is a compound shown by these.
[0013]
The alkyl aluminum compounds, for example triethylaluminum, diethylaluminum chloride, ethylaluminum sesquichloride [Et 3 Al 2 Cl 3] , triisobutylaluminum, diisobutylaluminum hydride, tri -n- butyl aluminum, tri -n- propyl aluminum These may be used alone or in combination of two or more depending on the monomer oxirane compound used.
[0014]
Also, oxo acid compound of phosphorus used in the catalyst according to the present invention, phosphoric acid, represented by the general formula [II] and H 3 P0 4 equivalent with 90 to 110 wt% (H 3 P0 4 100% by weight equivalent to Beyond are mixtures of polyphosphoric acid, usually called condensed phosphoric acid), or acidic phosphoric esters.
When a mixture of polyphosphoric acid is used as the phosphorus oxoacid compound, the polymerization activity of the resulting catalyst with respect to the oxirane compound is preferably increased.
Alcohol and acid phosphate ester is a partial ester of phosphoric acid represented by the general formula O = P (OR 8) q OH) 3-q
(In the formula, R 8 is a lower alkyl group such as an alkyl group having 1 to 6 carbon atoms, and q is 1 or 2.)
In a compound represented, acid phosphate methyl, acid phosphate ethyl, acid phosphate propyl, acid phosphate isopropyl, Ru can be exemplified acid phosphate butyl.
[0016]
There is no problem even if a small amount of water is present in the phosphoric acid or polyphosphoric acid mixture, but if the amount of water in the phosphoric acid or polyphosphoric acid mixture is large, the catalytic reaction tends to be inhibited and the polymerization activity tends to decrease. Therefore, in the present invention, a phosphoric acid or a mixture of polyphosphoric acid equivalent to H 3 PO 4 and preferably 83% by weight or more, more preferably 90% by weight or more is used.
[0017]
The catalyst according to the present invention contains an alkyl-substituted pyridine represented by the general formula [I]. Therefore, the catalyst activity is high, and the molecular weight of the obtained oxirane compound polymer is preferably increased.
[0018]
In general formula [I] , R 1 , R 2 , R 3 , R 4 and R 5 may be the same as or different from each other, and may be a hydrogen atom or a lower alkyl group such as an alkyl having 1 to 6 carbon atoms. It is a group.
[0019]
Examples of the alkyl-substituted pyridine represented by the general formula [I] include 2,4,6-trimethylpyridine, 2,3,6-trimethylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6- Examples include dimethylpyridine, 3,5-dimethylpyridine, 4-methylpyridine, 3-ethyl-6-methylpyridine, 4-isopropylpyridine, 2-propylpyridine, 2,3,5,6-tetramethylpyridine and the like. it can. Preferred alkyl-substituted pyridines are pyridines that are alkyl-substituted at least in the 2-position and / or 6-position. A particularly preferred compound is 2,4,6-trimethylpyridine.
[0020]
When the catalyst of the present invention is synthesized by reacting the above alkylaluminum compound, phosphorus oxoacid compound, and nitrogen-containing cyclic compound, the ratio of alkylaluminum and phosphorus oxoacid compound is such that the phosphorus oxoacid compound is in the molecule. Depending on the number of moles of OH groups (the sum of the OH groups of the oxo acid compound and the water OH group when the oxo acid compound contains water), the alkylaluminum compound 0.65 to 0 per mole of the OH group .95 moles, preferably in the range of 0.7 to 0.93 moles. When this ratio is out of the above range, the amount of the polymer adhering to the reaction vessel wall increases when used in suspension precipitation polymerization, which is not preferable.
The ratio of the nitrogen-containing cyclic compound is preferably 0.01 to 0.5 mol, more preferably 0.03 to 0.25 mol, relative to 1 mol of the alkylaluminum compound. When the ratio of the nitrogen-containing compound is outside this range, the polymerization activity of the resulting catalyst with respect to the oxirane compound tends to decrease.
[0021]
The reaction sequence of these three raw materials is not particularly limited. First, an alkylaluminum compound and a phosphorus oxo acid compound may be reacted, and then this reaction product may be reacted with a nitrogen-containing cyclic compound. Alternatively, the alkylaluminum compound and the nitrogen-containing cyclic compound may be reacted first, and then the reaction product may be reacted with a phosphorus oxoacid compound. There is no significant difference in the polymerization activity of the resulting catalyst with respect to the oxirane compound. The reaction temperature for each of the above reactions is appropriately selected depending on the alkylaluminum compound or phosphorus oxoacid compound used, but is usually in the range of -20 ° C to 120 ° C. The catalyst synthesis reaction is preferably carried out in an inert gas atmosphere such as nitrogen gas or in a solvent-free or inert solvent. The inert solvent is not particularly limited. For example, aliphatic hydrocarbons such as hexane, heptane, cyclohexane, and octane; aromatic hydrocarbons such as benzene, toluene, and xylene; diethyl ether, dipropyl ether, methyl Examples thereof include ethers such as butyl ether and dimethoxyethane, and these are used alone or as a mixed solvent of two or more.
[0022]
The catalyst obtained by the reaction of the above alkylaluminum, phosphorus oxoacid compound, and nitrogen-containing cyclic compound is very suitable for suspension precipitation polymerization of an oxirane compound. Examples of the oxirane compound that can be polymerized include alkylene oxides such as ethylene oxide, propylene oxide, butene oxide, isobutylene oxide, and butadiene monooxide; epichlorohydrin, epibromohydrin, methacrylic chloride oxide, trifluoromethylethylene oxide, dichloroisobutylene oxide, Substituted alkylene oxides such as styrene oxide; alicyclic epoxides such as cyclohexene oxide and vinylcyclohexene oxide; allyl glycidyl ether, phenyl glycidyl ether, chloroethyl glycidyl ether, methyl glycidyl ether, 2-methoxyethyl glycidyl ether, 2- (2 -Methoxyethoxy) ethyl glycidyl ether, cyclohexyl glycidyl ether, Glycidyl ethers Nji glycidyl ether; glycidyl acrylate and glycidyl esters such as glycidyl methacrylate. Among these, it is preferable to perform homopolymerization or copolymerization of two or more kinds of oxirane compounds represented by the following general formula [III] because the polymerization rate is high and the molecular weight of the resulting polymer increases.
[0023]
[Chemical 6]
Figure 0003937830
(In the formula, m is 0 or 1. R 6 is a hydrogen atom, an alkyl group optionally having a substituent, a cycloalkyl group, a phenyl group, an aralkyl group, an alkenyl group or a (meth) acryloyl group. The substituent is a halogen, a methoxy group, an ethoxy group or a methoxyethoxy group.)
[0024]
In the polymerization method according to the present invention, in the presence of the above catalyst, the monomer oxirane compound is suspended and polymerized in an organic solvent that is inert to the monomer and does not dissolve the resulting polymer. This is a method for producing a polymer of a compound.
[0025]
The monomer may be soluble or insoluble in an organic solvent, but it is preferable that at least a part of the monomer is soluble. Examples of such solvents include aliphatic hydrocarbons such as hexane, heptane, cyclohexane, and octane; aromatic hydrocarbons such as benzene, toluene, and xylene; diethyl ether, dipropyl ether, methylbutyl ether, dimethoxyethane, and the like. Examples include ethers and the like, which are appropriately selected according to the type of oxirane compound used and the polymerization temperature. Preferably, aliphatic hydrocarbons are used.
[0026]
The mixing ratio of the monomer oxirane compound, the organic solvent and the catalyst is usually preferably in the range of 100 to 1000 parts by weight of the organic solvent and 0.01 to 5 parts by weight of the catalyst with respect to 100 parts by weight of the oxirane compound. . The polymerization temperature is not particularly limited, but is usually in the range of −20 ° C. to 150 ° C., and is appropriately selected according to the activity of the catalyst, the organic solvent used, and the type of oxirane compound. The polymerization is usually carried out with stirring.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Specific modes for carrying out the present invention will be described below with reference to examples. However, the present invention is not limited to the following examples without departing from the gist thereof.
[Example 1]
To a glass flask having a capacity of 300 ml with the inside replaced with nitrogen, 39 ml of triisobutylaluminum was added, and then 81 ml of hexane was added, and the whole was stirred. A solution prepared by dissolving 6.08 g of phosphoric acid (equivalent to 100% by weight of H 3 PO 4 ) in 180 ml of diethyl ether is gradually added to a hexane solution of triisobutylaluminum with stirring while adjusting the reaction temperature to about 5 ° C. In addition, both were reacted (the addition ratio of phosphoric acid corresponds to 0.83 mol of triisobutylaluminum with respect to 1 mol of OH group of phosphoric acid). To this reaction solution, 1.5 ml of 2,4,6-trimethylpyridine (pKa = 7.43) was added as a nitrogen-containing cyclic compound with stirring, and stirring was continued at 60 ° C. for 1 hour. A catalyst was thus prepared.
[0028]
Place 18 liters of epichlorohydrin and 9 liters of hexane in a stainless steel reaction vessel with a capacity of 20 liters, the inside of which is purged with nitrogen, add the total amount of the above catalyst, and conduct the polymerization reaction for 6 hours while stirring the whole at 20 ° C. It was. A particulate polymer having a diameter of about 1 mm was deposited in the reaction vessel. The amount of polymer adhering to the reaction vessel wall was 2.8%. In addition, the reaction tank wall adhesion amount of the polymer was calculated by the following formula:
[Formula 1]
Figure 0003937830
[0029]
[Example 2]
A catalyst was prepared in the same procedure as in Example 1 except that 1.5 ml of 2,4-dimethylpyridine (pKa = 6.74) was used as the nitrogen-containing cyclic compound, and the polymerization reaction was performed using this catalyst. went. A particulate polymer having a diameter of about 1 mm was deposited in the reaction vessel. The amount of wall adhesion was 3.6%.
[0031]
[Example 3 ]
Except that the addition amount of phosphoric acid (corresponding to 100% by weight of H 3 PO 4 ) was 7.24 g (corresponding to 0.70 mol of triisobutylaluminum with respect to 1 mol of OH group of phosphoric acid), Example 1 and A catalyst was prepared in the same procedure, and a polymerization reaction was performed using the catalyst. A particulate polymer having a diameter of about 1.5 mm was deposited in the reaction vessel. The amount of wall adhesion was 4.8%.
[0032]
[Example 4 ]
Except that the addition amount of phosphoric acid (corresponding to 100% by weight of H 3 PO 4 ) was 5.47 g (corresponding to 0.93 mol of triisobutylaluminum with respect to 1 mol of OH group of phosphoric acid), Example 1 and A catalyst was prepared in the same procedure, and a polymerization reaction was performed using the catalyst. A particulate polymer having a diameter of about 1.0 mm was deposited in the reaction vessel. The amount of wall adhesion was 6.1%.
[0033]
[Example 5 ]
As an oxo acid compound of phosphorus, 21 g of acidic ethyl phosphate (phosphorus content 21% by weight) which is a partial ethyl ester of phosphoric acid (corresponding to 0.83 mol of triisobutylaluminum with respect to 1 mol of OH group of acidic ethyl phosphate) A catalyst was prepared in the same procedure as in Example 1 except that a polymerization reaction was carried out. A particulate polymer having a diameter of about 1.5 mm was deposited in the reaction vessel. The amount of wall adhesion was 5.9%.
[0034]
[Example 6 ]
As an oxo acid compound of phosphorus, phosphoric acid in an aqueous solution form (equivalent to 85% by weight of H 3 PO 4 ) is 5.4 g (0.83 mol of triisobutylaluminum with respect to 1 mol of a total of OH groups of phosphoric acid and OH groups of water) Except for the points used, a catalyst was prepared in the same procedure as in Example 1, and a polymerization reaction was performed using this catalyst. A particulate polymer having a diameter of about 1 mm was deposited in the reaction vessel. The amount of wall adhesion was 5.9%.
[0035]
[Example 7 ]
As an alkylaluminum compound, 37 ml of triethylaluminum was used, and 10.7 g of phosphoric acid (corresponding to 100% by weight of H 3 PO 4 ) (corresponding to 0.83 mol of triethylaluminum with respect to 1 mol of OH group of phosphoric acid), 2 Except for the addition of 2.7 ml of, 4,6-trimethylpyridine, a catalyst was prepared in the same procedure as in Example 1, and a polymerization reaction was performed using this catalyst. A particulate polymer having a diameter of about 1.5 mm was deposited in the reaction vessel. The amount of wall adhesion was 4.8%.
[0036]
[Example 8 ]
A catalyst was prepared in the same procedure as in Example 1, and then the polymerization reaction was carried out in the same procedure as in Example 1, except that 1.5 liter of epichlorohydrin and 0.6 liter of ethylene oxide were used as the oxirane compound. . A particulate copolymer having a diameter of about 1 mm was deposited in the reaction vessel. The amount of wall adhesion was 4.1%.
[0037]
[Example 9 ]
A catalyst was prepared by the same procedure as in Example 1, and then the same procedure as in Example 1 except that 0.8 liter of propylene oxide, 0.9 liter of ethylene oxide and 120 ml of allyl glycidyl ether were used as the oxirane compound. The polymerization reaction was carried out. A particulate terpolymer having a diameter of about 1 mm was deposited in the reaction vessel. The amount of wall adhesion was 4.9%.
[0038]
[Example 10 ]
A catalyst was prepared in the same procedure as in Example 1, and then the polymerization reaction was performed in the same procedure as in Example 1 except that 1.8 liter of styrene oxide was used as the oxirane compound. A particulate polymer having a diameter of about 1.5 mm was deposited in the reaction vessel. The amount of wall adhesion was 6.3%.
[0039]
[Comparative Example 1]
Except that the addition amount of phosphoric acid (corresponding to 100% by weight of H 3 PO 4 ) was 5.07 g (corresponding to 1.00 mol of triisobutylaluminum with respect to 1 mol of OH group of phosphoric acid), Example 1 and A catalyst was prepared in the same procedure, and a polymerization reaction was performed using the catalyst. A particulate polymer having a diameter of about 1.0 mm was deposited in the reaction vessel. The amount of wall adhesion was 12.4%.
[0040]
[Comparative Example 2]
Except that the addition amount of phosphoric acid (equivalent to 100% by weight of H 3 PO 4 ) was 8.45 g (corresponding to 0.60 mol of triisobutylaluminum with respect to 1 mol of OH group of phosphoric acid), Example 1 and A catalyst was prepared in the same procedure, and a polymerization reaction was performed using the catalyst. A particulate polymer having a diameter of about 1.5 mm was deposited in the reaction vessel. The amount of wall adhesion was 16.8%.
[0041]
[Comparative Example 3]
The catalyst was prepared in the same procedure as in Example 1 except that 1.5 ml of 1,8-diazabicyclo [5,4,0] -7-undecene (pKa = 12.5) was used as the nitrogen-containing cyclic compound. It was prepared and a polymerization reaction was performed using this. A large granular polymer having a diameter of about 8 mm was deposited in the reaction vessel. The amount of wall adhesion was 18.5%.
[0042]
[Comparative Example 4]
A catalyst was prepared in the same procedure as in Example 1 except that 1.5 ml of 2-ethylpyridine (pKa = 5.89) was used as a nitrogen-containing cyclic compound, and a polymerization reaction was performed using this catalyst. . A large granular polymer having a diameter of about 15 mm was deposited in the reaction vessel. The amount of wall adhesion was 26.2%.
[0043]
[Evaluation of polymer]
The obtained polymer (including the deposits on the reaction vessel wall) was sufficiently vacuum-dried and weighed to determine the polymer yield. The obtained polymer was vacuum-dried and then dissolved in dimethylformamide, the molecular weight of the polymer was determined by gel permeation chromatography, and the weight average molecular weight was calculated in terms of standard polystyrene. These evaluation results are shown in Table 1.
[0044]
[Table 1]
Figure 0003937830
[0045]
As is apparent from the appearance of the precipitated polymer, when the polymerization of epichlorohydrin is performed using the catalysts obtained in Examples 1 to 7 , a fine particulate homopolymer is obtained and the amount of wall adhesion is small. It has become. Further, as is clear from Table 1, in these examples, both the polymer yield and the molecular weight of the obtained polymer showed high numerical values. In Examples 8 to 10 in which (co) polymerization was carried out using different monomers, a particulate polymer was obtained with a small amount of wall adhesion, and even in these Examples, the polymer yield was obtained. Both molecular weights of the polymers were high.
[0046]
On the other hand, in Comparative Example 1 and Comparative Example 2 in which the value of alkylaluminum with respect to 1 mol of OH groups of the oxo acid compound is out of the range of 0.65 to 0.95 mol, although a particulate polymer is obtained, The amount of adhesion has increased. In Comparative Example 3 using 1,8-diazabicyclo [5,4,0] -7-undecene and Comparative Example 4 using 2-ethylpyridine, the polymer yield and the molecular weight of the polymer are considerably high. It can be seen that the polymer is obtained in large particles and these compounds are not suitable as a catalyst for suspension precipitation polymerization.
[0047]
【The invention's effect】
The oxirane compound polymerization catalyst according to the present invention is configured as described above. By using this catalyst, a high molecular weight polymer can be obtained with high production efficiency, and the amount of polymer attached to the reaction vessel wall. Less is. Therefore, by using the catalyst according to the present invention, high-quality oxirane compounds used in a very wide range of fields such as rubber parts for automobiles, rubber members for electric and electronic devices, polymers for various plastic blends, polymer solid electrolytes, etc. A polymer can be produced efficiently and easily.

Claims (4)

(A)アルキルアルミニウム化合物、(B)分子内に少なくとも1つのOH基を有する燐のオキソ酸化合物と、(C)下記一般式[I]で示されるアルキル置換ピリジンとからなり、該(A)アルキルアルミニウム化合物と(B)分子内に少なくとも1つのOH基を有する燐のオキソ酸化合物の割合が、オキソ酸化合物のOH基(オキソ酸化合物が水を含む場合はオキソ酸化合物のOH基と水のOH基の総和)1モルに対してアルキルアルミニウム0.65〜0.95モルの範囲内にあり、(B)燐のオキソ酸化合物が、燐酸、下記一般式[ II ]で示されかつH PO 相当で90〜110重量%であるポリ燐酸の混合物、または酸性燐酸エステル類であることを特微とする、オキシラン化合物をその重合体が不溶な有機溶媒中で懸濁析出重合する反応のためのオキシラン化合物の重合用触媒。
Figure 0003937830
(式中、R、R、R、RおよびRは、互いに同一であっても異なっていてもよく、水素原子または低級アルキル基である。)
Figure 0003937830
(式中、nは2から10の整数である。)
And (A) an alkyl aluminum compound consists of at least the oxo acid compound of phosphorus with one OH group, an alkyl-substituted pyridine represented by (C) the following general formula [I] in the (B) molecules, the (A ) The ratio of the alkylaluminum compound and (B) the phosphorus oxoacid compound having at least one OH group in the molecule, the OH group of the oxoacid compound (if the oxoacid compound contains water, the OH group of the oxoacid compound) ( Total of OH groups in water) is within a range of 0.65 to 0.95 mol of alkylaluminum per 1 mol, and (B) an oxoacid compound of phosphorus is represented by the following general formula [ II ] The oxirane compound is suspended in an organic solvent in which the polymer is insoluble, characterized by being a mixture of polyphosphoric acid equivalent to 90 to 110% by weight of H 3 PO 4 or acidic phosphoric acid esters. Catalyst for the polymerization of oxirane compounds for the reaction of depolymerization.
Figure 0003937830
(In the formula, R 1 , R 2 , R 3 , R 4 and R 5 may be the same or different from each other, and are a hydrogen atom or a lower alkyl group.)
Figure 0003937830
(Where n is an integer from 2 to 10)
(C)アルキル置換ピリジンが、2,4,6−トリメチルピリジンである請求項に記載のオキシラン化合物の重合用触媒。(C) alkyl-substituted pyridine, polymerization catalyst of the oxirane compound of claim 1 which is 2,4,6-trimethylpyridine. オキシラン化合物が、下記一般式[III]で示される化合物である請求項1または2記載のオキシラン化合物の重合用触媒。
Figure 0003937830
(式中、mは0または1である。Rは水素原子、置換基を有していてもよいアルキル基、シクロアルキル基、フェニル基、アラルキル基、アルケニル基または(メタ)アクリロイル基であり、該置換基はハロゲン、メトキシ基、エトキシ基またはメトキシエトキシ基である。)
The catalyst for polymerization of an oxirane compound according to claim 1 or 2 , wherein the oxirane compound is a compound represented by the following general formula [III].
Figure 0003937830
(In the formula, m is 0 or 1. R 6 is a hydrogen atom, an alkyl group optionally having a substituent, a cycloalkyl group, a phenyl group, an aralkyl group, an alkenyl group or a (meth) acryloyl group. The substituent is a halogen, a methoxy group, an ethoxy group or a methoxyethoxy group.)
オキシラン化合物を、その重合体が不溶な有機溶媒中で触媒の存在下に懸濁析出重合せしめて、オキシラン化合物の重合体を製造するに際し、請求項1からのいずれかに記載の触媒を用いることを特徴とするオキシラン化合物重合体の製造方法。The catalyst according to any one of claims 1 to 3 is used in producing a polymer of an oxirane compound by subjecting the oxirane compound to suspension precipitation polymerization in the presence of a catalyst in an organic solvent in which the polymer is insoluble. The manufacturing method of the oxirane compound polymer characterized by the above-mentioned.
JP2001384185A 2001-12-18 2001-12-18 Catalyst for polymerization of oxirane compound, and method for producing oxirane compound polymer using the catalyst Expired - Lifetime JP3937830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384185A JP3937830B2 (en) 2001-12-18 2001-12-18 Catalyst for polymerization of oxirane compound, and method for producing oxirane compound polymer using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384185A JP3937830B2 (en) 2001-12-18 2001-12-18 Catalyst for polymerization of oxirane compound, and method for producing oxirane compound polymer using the catalyst

Publications (2)

Publication Number Publication Date
JP2003183382A JP2003183382A (en) 2003-07-03
JP3937830B2 true JP3937830B2 (en) 2007-06-27

Family

ID=27593975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384185A Expired - Lifetime JP3937830B2 (en) 2001-12-18 2001-12-18 Catalyst for polymerization of oxirane compound, and method for producing oxirane compound polymer using the catalyst

Country Status (1)

Country Link
JP (1) JP3937830B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229464B2 (en) * 2008-08-27 2013-07-03 日本ゼオン株式会社 Method for producing polyether polymer
CN110628010B (en) * 2019-10-18 2022-09-27 辽宁奥克医药辅料股份有限公司 Catalyst composition and method for preparing polyethylene glycol with medium molecular weight by using same

Also Published As

Publication number Publication date
JP2003183382A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
US5134209A (en) Process of producing ethylene-propylene rubbery copolymer
KR101361947B1 (en) Method for preventing fouling in chemical equipment and fouling inhibitor
KR100229004B1 (en) Process for producing polyolefin having terminal functional group
JPH10508063A (en) Polymerization of cyclic ethers using selected metal compound catalysts.
CN101693754A (en) Application of rare-earth complexes chelated by tridentate carbazolyl in conjugated diene and polar monomer copolymerization catalyst system
EP3212705A1 (en) Oxalic acid diamides as modifiers for polyolefin catalysts
JP3937830B2 (en) Catalyst for polymerization of oxirane compound, and method for producing oxirane compound polymer using the catalyst
Nuyken Neodymium based Ziegler catalysts-fundamental chemistry
CN100457788C (en) Method for preparing solid titanium catalyst for olefin polymerization
EP0965600B1 (en) Process for preparing polymer by using copper compound
CN102050905A (en) Catalyst prepolymer for olefin polymerization reaction and olefin polymerization method
JP2002012661A (en) Catalyst for polymerizing oxirane compound and method for producing oxirane compound polymer using the same catalyst
EP0116658B1 (en) Process for polymerization of vicinal alkylene oxide
EP0493070A2 (en) Ethylene-propylene copolymer compositions
JPH07258319A (en) Organometallic catalyst and manufacture of vinyl polymer by using the same
US6809211B2 (en) Catalysts for polymerization of alkylene oxides
JPH11171915A (en) Production of polymer using copper compound
JP2010265425A (en) High polymer of oxirane compound, and method for producing the same
US6433130B1 (en) Process for preparing polymer by using copper compound
CN116640163A (en) Cyclopentadienyl rare earth complex, preparation method and application thereof
JPH1025323A (en) Production of alpha-olefin block copolymer
CN116535557A (en) Ethylene-styrene copolymer with bimodal molecular weight and preparation method thereof
JPH0717794B2 (en) Polypropylene resin composition
JP3464269B2 (en) Olefin polymerization catalyst and method for producing ethylene polymer
JPH01108202A (en) Manufacture of polyalkenyl ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3937830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term