WO2020138048A1 - Layered product and packaging body obtained using same - Google Patents

Layered product and packaging body obtained using same Download PDF

Info

Publication number
WO2020138048A1
WO2020138048A1 PCT/JP2019/050547 JP2019050547W WO2020138048A1 WO 2020138048 A1 WO2020138048 A1 WO 2020138048A1 JP 2019050547 W JP2019050547 W JP 2019050547W WO 2020138048 A1 WO2020138048 A1 WO 2020138048A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
laminate
heat
polyester
Prior art date
Application number
PCT/JP2019/050547
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 石丸
雅幸 春田
智章 早田
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2020563289A priority Critical patent/JPWO2020138048A1/en
Publication of WO2020138048A1 publication Critical patent/WO2020138048A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes

Definitions

  • the present invention relates to a laminate excellent in heat sealability and bag breakage resistance, and a package using the same.
  • a laminated film obtained by heat-sealing or laminating a sealant film has been used as a packaging material such as a packaging body or a lid material in many distribution items represented by foods, pharmaceuticals, and industrial products.
  • the innermost surface of the packaging material (the surface in contact with the contents) is provided with a sealant layer made of a polyolefin resin such as polyethylene or polypropylene having high sealing strength, or a copolymer resin such as ionomer or EMMA. It is known that these resins can achieve high adhesion strength by heat sealing.
  • a non-stretched sealant film made of a polyolefin-based resin as described in Patent Document 1 easily adsorbs components made of organic compounds such as fats and oils and fragrances, so that it is easy to change the scent and taste of the contents. Has a drawback. Therefore, it is often not suitable to use the sealant layer made of a polyolefin resin as the innermost layer for packaging of chemical products, pharmaceuticals, foods and the like.
  • a sealant composed of an acrylonitrile-based resin as described in Patent Document 2 is suitable for use as the innermost layer of a packaging material because it hardly adsorbs organic compounds contained in chemical products, pharmaceuticals, foods and the like.
  • the acrylonitrile film has a problem that the heat seal strength is low in a low temperature range (150° C. or lower).
  • the heat sealing temperature becomes high, the maintenance frequency of the seal bar increases, which is not preferable from the viewpoint of productivity.
  • the speed of bag making line has been accelerated, and it is preferable that the sealing temperature is low to meet this requirement.
  • a sealant composed of an acrylonitrile resin does not satisfy these requirements.
  • Patent Document 3 discloses a polyester-based sealant having a non-adsorbing property for organic compounds and a low-temperature sealing property.
  • the sealant of Patent Document 3 has a problem that the heat generated during heat sealing not only causes heat shrinkage but also melts the sealant to form holes.
  • the shape of the bag is not only collapsed when the sealant is thermally shrunk, but also when the sealant is perforated, the bag cannot be preserved, which is not preferable.
  • the sealant of Patent Document 3 had room for improvement in heat resistance.
  • Patent Document 4 discloses a sealant with improved heat resistance.
  • the sealant described in Patent Document 4 has a heat-sealable layer and a layer other than the heat-sealable layer, and separately controls the thermal properties of these layers to satisfy the heat-sealability and heat resistance.
  • the sealant described in Patent Document 4 is used as the sealant that constitutes the liquid or heavy-weight package, there is a problem that the bag is broken when the package falls.
  • the package using the sealant described in Patent Document 4 has a problem that a hole is easily pierced when it is pierced from the outside or the content has corners.
  • Patent Document 5 discloses a heat-sealable biaxially stretched polyester film containing 60% by weight or more of polybutylene terephthalate. Although the film of Patent Document 5 has improved puncture strength as compared with the conventional polyester-based film, it does not exhibit heat seal strength unless the temperature is 230° C., and thus has a problem that heat shrinkage at the time of sealing becomes large. There is.
  • an object of the present invention aims to solve the above-mentioned problems of the prior art. That is, an object of the present invention is to provide a laminate which has less component adsorption of contents, has high heat seal strength in a low temperature range, and has excellent bag-breaking resistance. At the same time, an object of the present invention is to provide a package including the above-mentioned laminated body as at least one layer.
  • the present invention has the following configurations. 1. At least three layers of base material layer/adhesive layer/sealant layer are laminated in this order,
  • the base material layer is made of polyester having polyethylene terephthalate or polybutylene terephthalate as a main constituent, or polyolefin having polypropylene as a main constituent, or polyamide having nylon as a main constituent, and the sealant layer is mainly composed of polyethylene terephthalate.
  • a laminate which is composed of polyethylene as a component and has a seal strength of 8 N/15 mm or more and 70 N/15 mm or less when the sealant layers are sealed at 140° C., 0.2 MPa, and 2 seconds. 2.
  • the base material layer is made of polyester having polyethylene terephthalate or polybutylene terephthalate as a main constituent.
  • a gas barrier layer is laminated, which is characterized in that Or 2.
  • the puncture strength is 0.4 N/ ⁇ m or more and 0.6 N/ ⁇ m or less. ⁇ 3.
  • a monomer component of the polyester component constituting the sealant layer a diol monomer component other than ethylene glycol and/or an acid component other than terephthalic acid is contained, and the diol component is neopentyl glycol, 1,4-cyclohexanedimethanol, 1.
  • the laminate of the present invention has little adsorption of the components of the contents, has a high heat seal strength in a low temperature range, and has excellent bag-breaking resistance. Therefore, when used as a packaging material, high sealing strength can be exhibited, and the function of protecting the contents from falling and external stimuli can be improved.
  • the base material layer is a main constituent component of polyester or polypropylene whose main constituent component is polyethylene terephthalate or polybutylene terephthalate.
  • a polyamide containing nylon as a main constituent the sealant layer is made of polyethylene containing polyethylene terephthalate as a main constituent, and the sealant layers are sealed at 140° C., 0.2 MPa for 2 seconds.
  • the laminate has a seal strength of 8 N/15 mm or more and 70 N/15 mm or less.
  • the laminate of the present invention will be described below. 1. Layer structure of laminate, thickness, layer ratio
  • the laminate of the present invention has at least each layer of a heat seal layer (which may be referred to as a sealant layer) and a base material in order to achieve both heat sealability and bag breakage resistance. It must have one layer at a time and must have at least three layers with an adhesive layer to stack these at least two layers. Furthermore, in order to satisfy the predetermined heat seal strength, the heat seal layer must be provided on either one of the outermost layers of the laminate.
  • the base material may be located on either the outermost layer or the intermediate layer (in the case of 4 layers or more) of the laminate. In other words, the base material layer/adhesive layer/heat seal layer must be laminated in this order from the outermost layer when the present invention is used as a package.
  • the layer structure of the laminate of the invention is preferably a four-layer structure in which a gas barrier layer is provided in addition to the above-mentioned three layers.
  • the gas barrier layer is preferably composed of an inorganic thin film containing a metal or a metal oxide as a main constituent, and may be located in either the outermost layer or the intermediate layer. More preferably, the gas barrier layer is transparent.
  • the laminate of the present invention may be provided with a printing layer on which characters and patterns are described in order to improve the design as a package.
  • a printing layer known materials such as gravure printing ink and flexographic printing ink can be used.
  • the number of printing layers may be one or plural.
  • the printing layer may be located on either the outermost layer or the intermediate layer.
  • the base material layer/printing layer/adhesive layer/sealant layer As a preferred constitution of the present invention, from the outermost layer when used as a package, the base material layer/printing layer/adhesive layer/sealant layer, or the base material layer/gas barrier layer/printing layer/adhesive layer/sealant layer, or Examples include base material layer/gas barrier layer/adhesive layer/sealant layer.
  • the constituent requirements for each layer will be described later.
  • the laminate of the present invention may further include an anchor coat layer laminated on the base material layer or the sealant layer and an overcoat layer laminated on the gas barrier layer, if necessary.
  • an anchor coat layer laminated on the base material layer or the sealant layer may further include an anchor coat layer laminated on the base material layer or the sealant layer and an overcoat layer laminated on the gas barrier layer, if necessary.
  • the thickness of the laminate is not particularly limited, but is preferably 3 ⁇ m or more and 200 ⁇ m or less. If the thickness of the laminate is less than 3 ⁇ m, the heat seal strength may be insufficient and processing such as printing may be difficult, which is not preferable.
  • the thickness of the laminated body may be thicker than 200 ⁇ m, but this is not preferable because the weight used for the laminated body increases and the cost increases.
  • the thickness of the laminate is more preferably 5 ⁇ m or more and 160 ⁇ m or less, and even more preferably 7 ⁇ m or more and 120 ⁇ m or less.
  • the layer ratio of the heat seal layer to the thickness of the entire laminate is preferably 20% or more and 80% or less. If the layer ratio of the heat-sealing layer is less than 20%, the heat-sealing strength of the laminate will be reduced, which is not preferable. When the layer ratio of the heat-sealing layer is higher than 80%, the heat-sealing property of the laminate is improved, but the heat resistance is deteriorated, which is not preferable.
  • the layer ratio of the heat seal layer is more preferably 30% or more and 70% or less.
  • the layer ratio of the base material layer to the total thickness of the laminate is preferably 20% or more and 80% or less.
  • the layer ratio of the base material layer is less than 20%, the bag-breaking resistance of the package is reduced, which is not preferable.
  • the layer ratio of the base material layer is higher than 80%, the bag breaking resistance when a packaging bag is produced from the laminate is improved, but the thickness of the heat seal layer is relatively reduced, which is not preferable.
  • the base material layer ratio is more preferably 30% or more and 70% or less.
  • the thickness of the gas barrier layer is preferably 2 nm or more and 100 nm or less when the inorganic thin film layer is used as the gas barrier layer and the inorganic thin film layer is made of vapor-deposited metal or vapor-deposited metal oxide. If the thickness of this layer is less than 2 nm, the gas barrier property tends to deteriorate, which is not preferable. On the other hand, even if the thickness of this layer exceeds 100 nm, there is no corresponding effect of improving the gas barrier property and the manufacturing cost increases, which is not preferable.
  • the thickness of the inorganic thin film layer is more preferably 5 nm or more and 97 nm or less, and further preferably 8 nm or more and 94 nm or less.
  • the thickness of the metal foil is preferably 3 ⁇ m or more and 200 ⁇ m or less. If the thickness of this layer is less than 3 ⁇ m, the gas barrier property tends to deteriorate, which is not preferable. On the other hand, even if the thickness of this layer exceeds 200 nm, there is no corresponding effect of improving the gas barrier property and the manufacturing cost increases, which is not preferable.
  • the thickness of the inorganic thin film layer (metal foil) is more preferably 5 ⁇ m or more and 197 ⁇ m or less, and further preferably 8 ⁇ m or more and 194 ⁇ m or less.
  • the outermost layer (including the heat-sealing layer) of the laminate of the present invention is provided with a layer that has been subjected to corona treatment, coating treatment, flame treatment or the like in order to improve the printability and slipperiness of the film surface. It is also possible and can be arbitrarily provided within the range not deviating from the requirements of the present invention.
  • Heat-sealing strength when heat-sealing the heat-sealing layers of the laminate of the present invention at a temperature of 140° C., a seal bar pressure of 0.2 MPa and a sealing time of 2 seconds is required to be 8 N/15 mm or more and 70 N/15 mm or less. There is. If the heat-sealing strength is less than 8 N/15 mm, the sealed portion can be easily peeled off by boil treatment or the like, so that it cannot be used as a package.
  • the heat seal strength is preferably 12 N/15 mm or more, more preferably 14 N/15 mm or more.
  • the heat seal strength is preferably high, but the currently obtained upper limit is about 60 N/15 mm. Even if the upper limit of the heat seal strength is 69 N/15 mm, it can be said that it is sufficiently preferable in practical use.
  • the laminate of the present invention preferably has an impact strength of 0.9 J or more and 3.0 J or less. If the impact strength is less than 0.9 J, the laminated body is easily broken when dropped as a package, which is not preferable.
  • the lower limit of impact strength is more preferably 1 J, and even more preferably 1.1 J.
  • the laminate of the present invention preferably has a puncture strength of 0.4 N/ ⁇ m or more and 0.6 N/ ⁇ m or less.
  • the puncture strength is less than 0.4 N/ ⁇ m, when the laminate is used as a package, it is easily pierced by external puncture or when the contents have corners, which is not preferable.
  • the lower limit of the puncture strength is more preferably 0.42 N/ ⁇ m and even more preferably 0.44 N/ ⁇ m.
  • the higher the puncture strength the more preferable, but in the technical level of the present invention, the upper limit is 0.6 N/ ⁇ m. Even if the upper limit of the puncture strength is 0.59 N/ ⁇ m, it can be said that it is sufficiently preferable in practical use.
  • the laminate of the present invention preferably has a hot water heat shrinkage rate in the width direction and the longitudinal direction of -5% or more and 5% or less when treated in hot water of 98°C for 3 minutes.
  • the hot water heat shrinkage exceeds 5%, when the bag produced by using the laminate is subjected to heat treatment such as retort treatment, the bag is largely deformed and the original shape cannot be maintained, and the inorganic substance is not only retained. It is not preferable because cracks occur in the layer made of and the gas barrier property is deteriorated.
  • the hot water heat shrinkage is more preferably 4% or less, and further preferably 3% or less.
  • the hot water heat shrinkage rate is less than -5%, it means that the laminate is stretched, which is not preferable because it is difficult to maintain the original shape of the bag as in the case where the shrinkage rate is high.
  • the hot water heat shrinkage of the laminate is more preferably -4% or more and 4% or less, and further preferably -3% or more and 3% or less.
  • the laminate of the present invention is characterized by being less likely to adsorb organic compounds contained in chemical products, pharmaceuticals, foods and the like.
  • the adsorption amount of the laminate of the present invention described in this section means the amount by which the heat-sealing layer adsorbs the contents. Show.
  • organic compound examples include d-limonene, citral, citronellal, p-menthane, pinene, terpinene, myrcene, karen, geraniol, nerol, citronellal, terpineol, 1-menthol, nerolidol, borneol, dl-camphor, lycopene. , Carotene, trans-2-hexenal, cis-3-hexenol, ⁇ -ionone, serinene, 1-octen-3-ol, benzyl alcohol, octal tulobuterol hydrochloride, tocopherol acetate, etc. ..
  • the amount adsorbed to the laminate varies depending on the adsorbing conditions (concentration of adsorbing substance, storage period, temperature, etc.), but the adsorbing amount when stored for 1 week according to the method described below is 0 ⁇ g/cm 2 or more and 2 ⁇ g/ It is preferably cm 2 .
  • An adsorption amount of 0 ⁇ g/cm 2 indicates that the content is not adsorbed on the sealant at all.
  • Adsorption amount is more preferable to be 1.8 ⁇ g / cm 2 or less and further preferably 1.6 [mu] g / cm 2 or less.
  • the adsorptivity may be increased for organic compounds having a similar chemical structure.
  • the polyester resin that constitutes the sealant has four oxygen atoms in the repeating units of the constituent components, the chemical structure of the organic compound shows that the higher the number of oxygen atoms (closer to four), the more the sealant is added to the sealant.
  • the solubility of the organic compound tends to increase and the adsorptivity tends to increase.
  • packaging a content containing eugenol having two oxygen atoms or methyl salicylate having three oxygen atoms is not preferable because the adsorption amount easily exceeds 2 ⁇ g/cm 2.
  • Raw materials constituting the laminate 3.1. Heat Seal Layer The raw material species of the heat seal layer constituting the laminate of the present invention has an ethylene terephthalate unit as a main constituent component.
  • “to be the main constituent” means that the content of all constituents is 50 mol% or more, based on 100 mol %.
  • the polyester used in the polyester resin layer of the present invention contains at least one component other than ethylene terephthalate. This is because the presence of a component other than ethylene terephthalate improves the heat seal strength of the heat seal layer.
  • the components other than ethylene terephthalate are small, but by including the components other than ethylene terephthalate, it is possible to reduce the difference in shrinkage ratio with the heat seal layer, and to reduce the curl of the laminate. There is. The content of each component differs between the heat seal layer and the heat resistant layer, and will be described later.
  • dicarboxylic acid monomer that can be a component other than terephthalic acid that constitutes ethylene terephthalate
  • aromatic dicarboxylic acids such as isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, orthophthalic acid, adipic acid
  • Aliphatic dicarboxylic acids such as azelaic acid, sebacic acid, decanedicarboxylic acid, and alicyclic dicarboxylic acids are included.
  • carboxylic acid components the use of isophthalic acid is preferable because the heat seal strength between the heat seal layers can easily be 8 N/15 mm or more.
  • a polyvalent carboxylic acid having a valence of 3 or more for example, trimellitic acid, pyromellitic acid and their anhydrides
  • diol monomer which can be a component other than ethylene glycol constituting ethylene terephthalate
  • diol monomer which can be a component other than ethylene glycol constituting ethylene terephthalate
  • diol monomer which can be a component other than ethylene glycol constituting ethylene terephthalate
  • diol monomer which can be a component other than ethylene glycol constituting ethylene terephthalate
  • diol monomer which can be a component other than ethylene glycol constituting ethylene terephthalate examples include neopentyl glycol, 1,4-cyclohexanedimethanol, diethylene glycol, 2,2-diethyl 1,3-propanediol, 2-n- Butyl-2-ethyl-1,3-propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, hexan
  • the polyester may not contain a diol having 8 or more carbon atoms (for example, octane diol) or a polyhydric alcohol having 3 or more valences (for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin).
  • a polyester elastomer containing ⁇ -caprolactone, tetramethylene glycol or the like may be contained as a component constituting the polyester. Since the polyester elastomer has the effect of lowering the melting point of the polyester resin layer, it can be particularly preferably used for the heat seal layer.
  • the heat-sealing strength between the heat-sealing layers can easily be 8 N/15 mm or more. Therefore, it is preferable. It is more preferable to use at least one of neopentyl glycol and 1,4-cyclohexanedimethanol, and it is particularly preferable to use neopentyl glycol.
  • the polyester used for the heat-sealing layer constituting the laminate of the present invention has a content of dicarboxylic acid monomer and/or diol monomer, which is a component other than terephthalic acid and ethylene glycol constituting ethylene terephthalate, of 25 mol% or more. Is preferable, 27 mol% or more is more preferable, and 29 mol% or more is particularly preferable. Further, the upper limit of the content of monomers other than ethylene terephthalate is 50 mol %.
  • the monomer other than ethylene terephthalate contained in the heat seal layer is lower than 25 mol%, even if the molten resin is extruded from the die and rapidly solidified, it will be crystallized in the subsequent stretching and heat setting steps. Therefore, it becomes difficult to set the heat sealing strength to 8 N/15 mm or more, which is not preferable.
  • the monomer other than ethylene terephthalate contained in the heat seal layer is 50 mol% or more, the heat seal strength of the film can be increased, but the heat resistance of the heat seal layer becomes extremely low. Therefore, when heat sealing is performed, the periphery of the sealing portion is blocked (a phenomenon in which the heat conduction from the heating member causes sealing in a wider range than the intended range), which makes proper heat sealing difficult. ..
  • the content of the monomer other than ethylene terephthalate is more preferably 48 mol% or less, and particularly preferably 46% or less.
  • the base material layer constituting the present invention is a polyolefin or nylon (nylon 4.6, nylon 6, nylon 6.6, nylon 6,6, whose main component is polyethylene terephthalate or polybutylene terephthalate). It is preferably a uniaxially stretched film or a biaxially stretched film, which is composed of a polyamide containing at least one selected from nylon 12 as a main constituent.
  • ester registered trademark
  • Espet films T4100 and T6140 manufactured by Toyobo
  • Harden registered trademark
  • pyrene manufactured by Toyobo
  • films P2261, P2161 and the like a film containing polybutylene terephthalate as a main constituent may be used as the base material layer.
  • the base material layer is the same polyester resin as the heat seal layer.
  • polybutylene terephthalate or polyethylene terephthalate as a main constituent, and it is more preferable that the main constituent is polybutylene terephthalate.
  • the description when using a polyester resin for a base material layer is described.
  • the content of the polybutylene terephthalate or polyethylene terephthalate resin contained in the base material layer is preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more. If it is less than 60 mol %, the impact strength and the puncture strength of the laminate may decrease.
  • terephthalic acid as a dicarboxylic acid component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and most preferably 100 mol%.
  • 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, further preferably 97 mol% or more, and most preferably 1,4-butane at the time of polymerization. It means that it does not contain other than by-products generated by ether bond of diol.
  • terephthalic acid as a dicarboxylic acid component is preferably 90 mol% or more, more preferably 95 mol% or more, further preferably 98 mol% or more, and most preferably 100 mol%.
  • glycol component ethylene glycol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably diethylene glycol which is a by-product at the time of polymerization. That is, the content is less than or equal to mol %.
  • the base material layer used in the present invention may contain a polyester resin other than polybutylene terephthalate or polyethylene terephthalate for the purpose of adjusting film-forming properties and mechanical properties of the laminate during biaxial stretching.
  • polyester resins other than the above two are polyester resins such as polyethylene naphthalate, polybutylene naphthalate and polypropylene terephthalate, as well as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid and azelaine.
  • Polyester resin copolymerized with dicarboxylic acid such as acid and sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5-pentanediol, 1,6-hexane
  • dicarboxylic acid such as acid and sebacic acid
  • ethylene glycol 1,3-propylene glycol
  • 1,2-propylene glycol 1,2-propylene glycol
  • neopentyl glycol 1,5-pentanediol
  • 1,6-hexane examples thereof include polyester resins obtained by copolymerizing diol components such as diol, diethylene glycol, cyclohexane diol, polyethylene glycol, polytetramethylene glycol, and polycarbonate diol.
  • those containing polyalkylene oxide are not suitable.
  • the upper limit of the amount of the polyester resin added is preferably 40 mol% or less, more preferably 30 mol% or less, further preferably 10 mol% or less, and particularly preferably 5 mol% or less. If the amount of the polyester resin added exceeds 40 mol %, the impact strength and the puncture strength of the laminate will be insufficient, and the gas barrier property may deteriorate.
  • the heat-sealing layer constituting the laminate of the present invention in the base material layer, if necessary, various additives, for example, waxes, antioxidants, antistatic agents, crystal nucleating agents, thickeners, A heat stabilizer, a coloring pigment, an anti-coloring agent, an ultraviolet absorber and the like can be added. Further, it is preferable to add fine particles as a lubricant for improving the slipperiness of the laminate to at least the outermost layer of the laminate. Any fine particles can be selected.
  • the inorganic fine particles may include silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate, and the like, and the organic fine particles include acrylic resin particles, melamine resin particles, silicone resin particles, crosslinked polystyrene. Examples thereof include particles.
  • the average particle size of the fine particles can be appropriately selected as needed within the range of 0.05 to 3.0 ⁇ m when measured with a Coulter counter.
  • the particles can be added at any stage of producing the polyester resin (resin). It is preferable that the polycondensation reaction is carried out by adding as a slurry dispersed in ethylene glycol or the like in the step or after the completion of the transesterification reaction and before the start of the polycondensation reaction. Further, using a kneading extruder with a vent, a method of blending a slurry of particles dispersed in ethylene glycol, water, or another solvent and a polyester resin raw material, or kneading and extruding dried particles and a polyester resin raw material. The method of blending using a machine is also included.
  • Adhesive Layer As the adhesive layer in the laminate of the present invention, an adhesive for dry lamination or a resin layer formed by extrusion lamination can be used.
  • the adhesive may be either one-pack type (dry type) or two-pack type (curing reaction type).
  • dry lamination commercially available polyurethane or polyester adhesives for dry lamination can be used.
  • a polyolefin resin such as polyethylene is melted and adhered between layers or between a layer and another layer, but an anchor coat layer is laminated in order to enhance the adhesiveness of the surface of the layer or the like.
  • the adhesive layer is formed by applying an adhesive to the film of either the heat seal layer or the base material layer, and then drying or reacting the adhesive to cure the adhesive.
  • the thickness of the adhesive layer after drying the adhesive is preferably 1 ⁇ m or more and 6 ⁇ m or less, and more preferably 2 ⁇ m or more and 5 ⁇ m or less.
  • the laminate of the present invention may be provided with a resin layer other than the above-mentioned base material layer, adhesive layer and sealant layer. Providing this resin layer is preferable because it further improves the heat resistance and mechanical strength of the laminate. Further, it is preferable that the resin layer is laminated by coextrusion when forming the heat seal layer, and is formed in the same step as the heat seal layer. It is possible to avoid problems such as the heat seal layer being unintentionally stretched by the tension applied during the film forming process, and being melted and dropped during heat setting.
  • the raw material species constituting the resin layer is a polyester composed of ethylene terephthalate described in the above “3.1. Heat seal layer”, or a polyester containing ethylene terephthalate as a main constituent and having a higher content of ethylene terephthalate than the heat seal layer. Is preferred.
  • gas Barrier Layer As the raw material species of the gas barrier layer that can be used in the laminate of the present invention, conventionally known materials can be used and can be appropriately selected according to the purpose in order to satisfy desired gas barrier properties and the like. .. An inorganic thin film layer is preferable as the gas barrier layer.
  • the raw material species of the inorganic thin film layer include metals such as silicon, aluminum, tin, zinc, iron, and manganese, and inorganic substances or inorganic compounds containing at least one of these metals. And oxides, nitrides, carbides, fluorides, etc. These inorganic substances or inorganic compounds may be used alone or in combination.
  • the component of the inorganic compound is a binary body of silicon oxide and aluminum oxide
  • the content of aluminum oxide is preferably 20% by mass or more and 80% by mass or less, and more preferably 25% by mass or more and 70% by mass or less. ..
  • the content of aluminum oxide is 20% by mass or less, the density of the inorganic thin film layer may be lowered and the gas barrier property may be lowered, which is not preferable.
  • the oxygen/metal element ratio of the metal oxide used in the inorganic thin film layer is 1.3 or more and less than 1.8, because there is little variation in the gas barrier property and an excellent gas barrier property is always obtained.
  • the oxygen/metal element ratio can be determined by measuring the amounts of oxygen and metal elements by X-ray photoelectron spectroscopy (XPS) and calculating the oxygen/metal element ratio.
  • an anchor coat may be applied to the base material layer or the heat seal layer in advance before forming the gas barrier layer.
  • the type of resin, cross-linking agent, compound, etc. constituting the anchor coat layer is not particularly limited, and includes oxazoline group-containing resin, acrylic resin, urethane resin, or a mixture containing two or more of these resins, polyvinyl acetal and polyester polyol.
  • a combination of an isocyanate compound and a silane coupling agent a mixture of a silicon compound such as tetraethoxysilane or tetramethoxysilane or a hydrolyzate thereof and a water-soluble polymer having a hydroxyl group, a silicone resin, a polysilazane resin And a silane compound resin can be used as a mixture.
  • the method for forming the anchor coat layer is not particularly limited, and a known method can be arbitrarily adopted.
  • In-line coating method in which a coating step is provided during the film-forming step of the resin layer such as the base material layer or heat seal layer, or an off-line coating method in which the film as the base material layer or heat seal layer is wound up as a roll and then coated But it doesn't matter.
  • the off-line coating method is preferably the in-line coating method because the productivity is inferior as much as the resin film is wound up and then unwound and coated by another facility.
  • the in-line coating method the following 4.1. 4.1.2 described in “Film forming conditions of polyester resin layer”. "First (longitudinal) stretching" or 4.1.3. After the "intermediate heat treatment", coating is performed, and 4.1.4. "Second (transverse) stretching” to 4.1.5.
  • the solvent is dried until the "final heat treatment" (in the tenter). Therefore, the maximum temperature for drying the coating liquid depends on the final heat treatment temperature, but normally 65°C or higher and 250°C or lower is sufficient.
  • the coating method is not particularly limited, and includes gravure coating method, reverse coating method, dipping method, low coating method, air knife coating method, comma coating method, screen printing method, spray coating method, gravure offset method, die coating method, bar coating method. Known methods such as the above can be adopted.
  • an overcoat layer may be provided thereon.
  • the type of the overcoat layer is not particularly limited, but a composition comprising a urethane resin and a silane coupling agent, a compound comprising an organic silicon and a hydrolyzate thereof, a water-soluble polymer having a hydroxyl group or a carboxyl group, etc.
  • Known materials can be used and can be appropriately selected according to the purpose in order to satisfy desired gas barrier properties and the like.
  • a composition comprising a urethane resin and a silane coupling agent is preferable because it can improve gas barrier properties while maintaining flexibility of the laminate.
  • the overcoat layer is added with one or more kinds of various additives for the purpose of imparting antistatic property, ultraviolet absorbing property, coloring, thermal stability, slip property, etc. within a range not impairing the object of the present invention.
  • the type and amount of various additives can be appropriately selected according to the desired purpose.
  • the heat-sealing layer constituting the laminate of the present invention (hereinafter, the one described as "film” in the range of 4.1 indicates the heat-sealing layer) is the above-mentioned 3. 3.1. in “Layered Constituent Materials”. It can be obtained by melt-extruding the polyester raw material described in the "heat-sealing layer” with an extruder to form an unstretched laminated film, and stretching it by a predetermined method shown below. When the film includes layers other than the heat-sealing layer, the timing of laminating each layer may be before or after stretching.
  • the heat seal layer is described in 4.1.4.
  • the film Since the film is heated at a temperature equal to or higher than the melting point in the "final heat treatment", the film may melt and fall in the heating furnace if it is a single layer. Therefore, it is preferable to stack a heat resistant layer separately from the heat seal layer.
  • laminating before stretching it is preferable to adopt a method of melting and extruding the resins as the raw materials of the respective layers by separate extruders and joining them by using a feed block or the like in the middle of the resin flow path.
  • laminating after stretching it is preferable to employ a laminate in which films formed separately are laminated with an adhesive, or an extrusion laminate in which a melted polyester resin is poured onto the surface layer of the laminated film to laminate the films.
  • the method of laminating each layer before stretching is preferable.
  • the polyester resin can be obtained by polycondensing by selecting the type and amount of the dicarboxylic acid component and the diol component so that an appropriate amount of a monomer other than ethylene terephthalate can be contained. Further, two or more kinds of chip-shaped polyester may be mixed and used as a raw material for the polyester resin layer.
  • melt-extruding the raw material resin it is preferable to dry the polyester raw material using a dryer such as a hopper dryer or paddle dryer, or a vacuum dryer. After drying the polyester raw material in this way, it is melted at a temperature of 200 to 300° C. using an extruder and extruded as a film.
  • a dryer such as a hopper dryer or paddle dryer, or a vacuum dryer.
  • the polyester raw material After drying the polyester raw material in this way, it is melted at a temperature of 200 to 300° C. using an extruder and extruded as a film.
  • any existing method such as a T-die method or a tubular method can be adopted.
  • the unstretched film can be obtained by rapidly cooling the film melted by extrusion.
  • a method of quenching the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and quenching and solidifying can be suitably adopted.
  • the film may be formed by any of non-stretching, uniaxial stretching (stretching in at least one of the longitudinal (longitudinal) direction and the transverse (width) direction), and biaxial stretching. From the viewpoint of mechanical strength such as impact strength and puncture strength of the laminate of the present invention and productivity, uniaxial stretching is preferable, and biaxial stretching is more preferable.
  • the longitudinal stretching is carried out by first performing longitudinal stretching and then transverse stretching-
  • the sequential biaxial stretching method by transverse stretching will be described.
  • transverse stretching-longitudinal stretching in which the order is reversed may change the main orientation direction.
  • a simultaneous biaxial stretching method may be used.
  • the unstretched film may be introduced into a longitudinal stretching machine in which a plurality of roll groups are continuously arranged.
  • the longitudinal stretching it is preferable to preheat with a preheating roll until the film temperature reaches Tg to Tg+40°C.
  • Tg the film temperature
  • Tg+40° C. the film temperature is lower than Tg, it becomes difficult to stretch the film when it is stretched in the machine direction, and breakage easily occurs, which is not preferable.
  • the temperature is higher than Tg+40° C., the film is likely to stick to the roll, and the film is easily wrapped around the roll or the roll is easily soiled due to continuous production, which is not preferable.
  • the longitudinal stretching ratio is preferably 1 time or more and 5 times or less. Since 1 times means that the film is not longitudinally stretched, the longitudinal stretching ratio is 1 times to obtain a lateral uniaxially stretched film, and 1.1 times or more to obtain a biaxially stretched film.
  • the upper limit of the longitudinal stretching ratio may be any number, but if the longitudinal stretching ratio is too high, not only lateral stretching becomes difficult and breakage easily occurs, but also the molecular orientation angle (bowing) becomes large. It is preferably not more than twice.
  • the shrinkage rate in the longitudinal direction of the film caused by the longitudinal stretching can be reduced.
  • the bowing phenomenon (distortion) that occurs in the tenter can be reduced. This is because, in the subsequent lateral stretching and final heat treatment, the film is heated while being held at both ends in the film width direction, so that only the central portion of the film shrinks in the longitudinal direction.
  • the relaxation rate in the longitudinal direction is preferably 0% or more and 70% or less (a relaxation rate of 0% indicates that relaxation is not performed).
  • the upper limit of the relaxation rate in the longitudinal direction is determined by the raw material used and the longitudinal stretching conditions, and therefore the relaxation cannot be performed beyond this.
  • the upper limit of the relaxation rate in the longitudinal direction of the polyester sealant of the present invention is 70%.
  • the relaxation in the longitudinal direction can be carried out by heating the film after longitudinal stretching at a temperature of 65° C. to 100° C. or less and adjusting the speed difference of the rolls.
  • the heating means any of rolls, near infrared rays, far infrared rays, hot air heaters and the like can be used.
  • the relaxation in the longitudinal direction can be performed not only immediately after the longitudinal stretching but also in the lateral stretching (including the preheating zone) or the final heat treatment by narrowing the clip interval in the longitudinal direction (in this case, both ends in the film width direction). Also, since it is relaxed in the longitudinal direction, bowing distortion is reduced), and it can be performed at any timing.
  • the film is preferably cooled once, and preferably cooled by a cooling roll having a surface temperature of 20 to 40°C.
  • the film is laterally stretched in a tenter at a stretch ratio of 3 to 5 times at Tg to Tg + 50°C, with both edges of the film in the width direction (direction orthogonal to the longitudinal direction) being held by clips. It is preferable to carry out.
  • preheating is preferably performed, and preheating is preferably performed until the film surface temperature reaches Tg-10°C to Tg+40°C.
  • the film is preferably passed through an intermediate zone where no positive heating operation is carried out.
  • the temperature is higher in the final heat treatment zone subsequent to the transverse stretching zone of the tenter, heat (hot air itself or radiant heat) in the final heat treatment zone flows into the transverse stretching process unless the intermediate zone is provided.
  • the temperature of the transverse stretching zone is not stable, not only the thickness accuracy of the film is deteriorated, but also physical properties such as heat seal strength and shrinkage ratio are varied. Therefore, it is preferable that the film after the transverse stretching is passed through the intermediate zone for a predetermined time and then subjected to the final heat treatment. In this intermediate zone, when a strip-shaped piece of paper hangs down while the film is not passing through, it is possible for the piece of paper to hang down almost completely in the vertical direction.
  • a transit time of about 1 to 5 seconds is sufficient for passing through the intermediate zone. If it is shorter than 1 second, the length of the intermediate zone becomes insufficient and the heat blocking effect becomes insufficient. On the other hand, it is preferable that the intermediate zone is long, but if it is too long, the equipment becomes large, so about 5 seconds is sufficient.
  • the shrinkage ratio in the width direction can be reduced by reducing the distance between clips in the width direction of the tenter by an arbitrary ratio (relaxation in the width direction). Therefore, in the final heat treatment, it is preferable to perform relaxation in the width direction in the range of 0% or more and 10% or less (a relaxation rate of 0% indicates that relaxation is not performed).
  • a relaxation rate of 0% indicates that relaxation is not performed.
  • the higher the relaxation ratio in the width direction, the lower the shrinkage ratio in the width direction, but the upper limit of the relaxation ratio (shrinkage ratio in the width direction of the film immediately after transverse stretching) is the upper limit of the raw material used, the stretching conditions in the width direction, and the heat treatment temperature. It is not possible to carry out relaxation beyond this as it is decided by.
  • the relaxation rate in the width direction has an upper limit of 10%.
  • the shrinkage ratio in the longitudinal direction can be reduced by shortening the distance between clips in the longitudinal direction of the tenter by an arbitrary ratio (relaxation in the longitudinal direction). Therefore, relaxation in the longitudinal direction during the final heat treatment is a preferable mode.
  • the higher the relaxation rate in the longitudinal direction, the lower the contraction rate in the longitudinal direction, the upper limit of the relaxation rate (the contraction rate in the longitudinal direction of the film immediately after transverse stretching) is the upper limit of the raw material used and the stretching/relaxation conditions in the longitudinal direction. Since it depends on the heat treatment temperature, the relaxation cannot be performed beyond this.
  • the relaxation rate in the longitudinal direction has an upper limit of 10%.
  • the transit time of the final heat treatment zone is preferably 2 seconds or more and 20 seconds or less.
  • the passage time is 2 seconds or less, the surface temperature of the film passes through the heat treatment zone without reaching the set temperature, so that the heat treatment becomes meaningless.
  • Cooling After passing the final heat treatment, it is necessary to cool the film in the cooling zone with cooling air of 10° C. or higher and 30° C. or lower until the actual temperature of the film becomes the glass transition temperature (Tg) or lower. At this time, it is preferable to lower the temperature of the cooling air or increase the wind speed to improve the cooling efficiency.
  • the actual temperature is the film surface temperature measured by a non-contact radiation thermometer. If the film at the exit of the tenter is not sufficiently cooled and the actual temperature of the film exceeds Tg, thermal contraction will occur even after the film is released from the clip, so the characteristics and thickness of the film may change. is there.
  • the layers other than the heat-sealing layer are the same as those in 4.1. 4.1.1.
  • the passage time through the cooling zone is preferably 2 seconds or more and 20 seconds or less. If the passage time is 2 seconds or less, the curl becomes large because the film passes through the cooling zone without reaching the glass transition temperature. The longer the passage time is, the higher the cooling effect is. Therefore, the passage time is preferably 2 seconds or more, more preferably 5 seconds or more. However, if the passage time is lengthened, the equipment becomes huge, so 20 seconds or less is practically sufficient. After that, the film roll as a heat-sealing layer can be obtained by winding the film while cutting and removing both end portions of the film.
  • the base material layer (hereinafter referred to as “film” in the range of 4.2. refers to the base material layer) constituting the laminate of the present invention is the same as in 3. above.
  • polybutylene terephthalate or polyethylene terephthalate will be described.
  • the timing of laminating each layer may be before or after stretching.
  • the same resin may be laminated in four or more layers by a static mixer or a multilayer feed block.
  • the polyester resin can be obtained by polycondensing by selecting the types and amounts of the dicarboxylic acid component and the diol component. Further, two or more kinds of chip-shaped polyester may be mixed and used as a raw material for the polyester resin layer.
  • a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After drying the polyester raw material in this way, it is melted at a temperature of 200 to 300° C. using an extruder and extruded as a film.
  • any existing method such as a T-die method or a tubular method can be adopted.
  • the unstretched film can be obtained by rapidly cooling the film melted by extrusion.
  • a method of quenching the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and quenching and solidifying can be suitably adopted.
  • the film may be formed by any method of non-stretching, uniaxial stretching and biaxial stretching. From the viewpoint of mechanical strength such as impact strength and puncture strength of the laminate of the present invention and productivity, uniaxial stretching is preferable, and biaxial stretching is more preferable.
  • a sequential biaxial stretching method in which longitudinal stretching is performed first and then transverse stretching is performed-longitudinal stretching-horizontal stretching is performed. However, even in transverse stretching-longitudinal stretching in which the order is reversed, the main orientation direction is It doesn't matter because it only changes. Also, a simultaneous biaxial stretching method may be used.
  • the unstretched film may be introduced into a longitudinal stretching machine in which a plurality of roll groups are continuously arranged.
  • the longitudinal stretching it is preferable to preheat with a preheating roll until the film temperature reaches Tg to Tg+40°C.
  • Tg the film temperature
  • Tg+40° C. the film temperature is lower than Tg, it becomes difficult to stretch the film when it is stretched in the machine direction, and breakage easily occurs, which is not preferable.
  • the temperature is higher than Tg+40° C., the film is likely to stick to the roll, and the film is easily wrapped around the roll or the roll is easily soiled due to continuous production, which is not preferable.
  • the longitudinal stretching ratio is preferably 1 time or more and 5 times or less. Since 1 times means that the film is not longitudinally stretched, the longitudinal stretching ratio is 1 times to obtain a lateral uniaxially stretched film, and 1.1 times or more to obtain a biaxially stretched film.
  • the upper limit of the longitudinal stretching ratio may be any number, but if the longitudinal stretching ratio is too high, lateral stretching becomes difficult and breakage is likely to occur, so that it is preferably 5 times or less.
  • the film is laterally stretched in a tenter at a stretch ratio of 3 to 5 times at Tg to Tg + 50°C, with both edges of the film in the width direction (direction orthogonal to the longitudinal direction) being held by clips. It is preferable to carry out.
  • preheating is preferably performed, and preheating is preferably performed until the film surface temperature reaches Tg-10°C to Tg+40°C.
  • the film is preferably passed through an intermediate zone where no positive heating operation is carried out.
  • the film after the transverse stretching is passed through the intermediate zone for a predetermined time and then subjected to the final heat treatment.
  • a transit time of about 1 to 5 seconds is sufficient for passing through the intermediate zone. If it is shorter than 1 second, the length of the intermediate zone becomes insufficient and the heat blocking effect becomes insufficient.
  • the intermediate zone is long, but if it is too long, the equipment becomes large, so about 5 seconds is sufficient.
  • the shrinkage ratio in the width direction can be reduced by reducing the distance between clips in the width direction of the tenter by an arbitrary ratio. Therefore, in the final heat treatment, it is preferable to relax in the width direction in the range of 0% or more and 5% or less.
  • the upper limit of the relaxation rate is determined by the raw material used, the stretching conditions in the width direction, and the heat treatment temperature. Can not.
  • the relaxation rate in the width direction has an upper limit of 5%.
  • the shrinkage ratio in the longitudinal direction can be reduced by reducing the distance between clips in the longitudinal direction of the tenter by an arbitrary ratio.
  • the upper limit of the relaxation rate (the contraction rate in the longitudinal direction of the film immediately after transverse stretching) is the upper limit of the raw material used and the stretching/relaxation conditions in the longitudinal direction. Since it depends on the heat treatment temperature, the relaxation cannot be performed beyond this.
  • the relaxation rate in the longitudinal direction has an upper limit of 5%.
  • the transit time of the final heat treatment zone is preferably 2 seconds or more and 20 seconds or less.
  • the passage time is 2 seconds or less, the surface temperature of the film passes through the heat treatment zone without reaching the set temperature, so that the heat treatment becomes meaningless.
  • Cooling After passing the final heat treatment, it is necessary to cool the film in the cooling zone with cooling air of 10° C. or higher and 30° C. or lower until the actual temperature of the film becomes the glass transition temperature (Tg) or lower. At this time, it is preferable to lower the temperature of the cooling air or increase the wind speed to improve the cooling efficiency.
  • the actual temperature is the film surface temperature measured by a non-contact radiation thermometer. If the film at the exit of the tenter is not sufficiently cooled and the actual temperature of the film exceeds Tg, thermal contraction will occur even after the film is released from the clip, so the characteristics and thickness of the film may change. is there.
  • the layers other than the heat-sealing layer are the same as those in 4.1. 4.2.1.
  • the passage time through the cooling zone is preferably 2 seconds or more and 20 seconds or less. If the passage time is 2 seconds or less, the curl becomes large because the film passes through the cooling zone without reaching the glass transition temperature. The longer the passage time is, the higher the cooling effect is. Therefore, the passage time is preferably 2 seconds or more, more preferably 5 seconds or more. However, if the passage time is lengthened, the equipment becomes huge, so 20 seconds or less is practically sufficient. After that, the film roll as a base material layer can be obtained by winding the film while cutting and removing both end portions of the film.
  • the method for laminating the gas barrier layer in the laminate of the present invention is not particularly limited, and a known manufacturing method can be adopted as long as the object of the present invention is not impaired.
  • a method of depositing a metal material by a vacuum vapor deposition method, a sputtering method, a PVD method (physical vapor deposition method) such as ion plating, or a CVD method (chemical vapor deposition method).
  • a method of laminating a metal foil such as aluminum foil on the film may be adopted.
  • the vacuum vapor deposition method is particularly preferable from the viewpoint of production speed and stability.
  • the vacuum vapor deposition method resistance heating, high frequency induction heating, electron beam heating or the like can be used.
  • the reactive gas oxygen, nitrogen, water vapor, or the like may be introduced, or reactive vapor deposition using means such as ozone addition or ion assist may be used.
  • the conditions may be changed as long as the object of the present invention is not impaired, for example, by applying a bias or the like to the substrate, raising or cooling the substrate temperature.
  • Method for forming overcoat layer The method for laminating the overcoat in the laminate of the present invention is not particularly limited, and includes a gravure coating method, a reverse coating method, a dipping method, a low coating method, an air knife coating method, a comma coating method, and a screen printing method.
  • Conventionally known coating methods such as a spray coating method, a gravure offset method, a die coating method and a bar coating method can be used, and can be appropriately selected according to a desired purpose.
  • the heating temperature is preferably in the range of 60°C or higher and 200°C or lower, and more preferably in the range of 80°C or higher and 180°C or lower.
  • the drying temperature is 60° C. or higher, a desired barrier property is exhibited, which is good.
  • the drying temperature is 180° C. or lower, deformation of the base material and cracks in the vapor deposition film do not occur for a short vapor deposition time, which is preferable.
  • a heat-sealing layer and a base material layer are used as an adhesive layer.
  • the adhesive forming the adhesive layer is first applied to one of the films. Then, the other film is attached to the surface coated with the adhesive, and the adhesive is dried to volatilize the solvent. Drying conditions differ depending on the adhesive, but the adhesive cures when left in a 40° C. environment for one day or more, for example.
  • the laminate having the above properties can be suitably used as a package.
  • the laminate of the present invention can be used alone as a bag, but other materials may be laminated.
  • As the other layer constituting the laminate for example, a non-stretched film containing polyethylene terephthalate as a constituent component, a non-stretched film containing another amorphous polyester as a constituent component, a uniaxially stretched or biaxially stretched film, a constituent component of nylon.
  • non-stretched film examples include a non-stretched film, a uniaxially stretched film or a biaxially stretched film, a non-stretched film containing polypropylene as a constituent component, a uniaxially stretched film, or a biaxially stretched film.
  • the method of using the laminate for the package is not particularly limited, and a conventionally known manufacturing method such as a coating forming method, a laminating method, and a heat sealing method can be adopted.
  • the package may be at least partially formed of the laminate according to the present invention, but a configuration in which the above-described laminate is present in the entire package is preferable because the gas barrier property of the package is improved. ..
  • the package may be in any layer of the laminate of the present invention, but considering the non-adhesiveness to the contents and the sealing strength when making a bag, the heat-sealing layer of the laminate of the present invention Is preferably the innermost layer of the bag.
  • the method for bag-making the package having the laminate of the present invention is not particularly limited, and conventionally known production methods such as heat sealing using a heat bar (heat jaw), adhesion using hot melt, and center sealing with a solvent can be used. Can be adopted.
  • the package having the laminate of the present invention can be suitably used as a packaging material for various products such as foods, pharmaceuticals, and industrial products.
  • the evaluation method of the laminate is as follows.
  • the longitudinal direction and the width direction cannot be specified immediately because the area of the laminated body is small, the longitudinal direction and the width direction may be temporarily determined and the measurement may be performed. The difference of 90 degrees does not cause any particular problem.
  • the heat seal strength was measured according to JIS Z1707. A specific procedure is shown. A heat sealer was used to bond the heat-sealed surfaces of the samples together. The heat sealing conditions were an upper bar temperature of 140° C., a lower bar temperature of 30° C., a pressure of 0.2 MPa, and a time of 2 seconds. The adhesive sample was cut out so that the seal width was 15 mm. The peel strength was measured using a universal tensile tester “DSS-100” (manufactured by Shimadzu Corporation) at a tensile speed of 200 mm/min. The peel strength is indicated by the strength per 15 mm (N/15 mm).
  • the water vapor permeability was measured according to JIS K7126 B method. Using a water vapor permeability measuring device (PERMATRAN-W3/33MG MOCON), the humidity control gas permeates from the heat seal layer side to the inorganic thin film layer side of the laminate in an atmosphere of a temperature of 40° C. and a humidity of 90% RH. The water vapor permeability was measured in the following direction. Before the measurement, the sample was allowed to stand for 4 hours in a RH environment of 65% RH to control the humidity.
  • PERMATRAN-W3/33MG MOCON PERMATRAN-W3/33MG MOCON
  • the oxygen permeability was measured according to JIS K7126-2 method. Oxygen permeates from the heat seal layer side of the laminate to the inorganic thin film layer side in an atmosphere of a temperature of 23° C. and a humidity of 65% RH using an oxygen permeation measuring device (manufactured by OX-TRAN 2/20 MOCOM). The oxygen permeability was measured in the direction. Before the measurement, the sample was allowed to stand for 4 hours in a RH environment of 65% RH to control the humidity.
  • the obtained four-side sealed bag was dropped 5 times in succession from a position of 100 cm in height at a room temperature of 0° C. on a concrete plate, and as shown below, the number of times until the bag was broken was taken as a drop bag score. I asked.
  • the laminate was cut into a square of 10 cm ⁇ 10 cm, two sheets were stacked with the heat-sealing surface inside, and a position 1 cm from the edge of the film was heat-sealed to form a bag.
  • An aluminum cup containing 0.5 ml of the content was placed in the bag, and the position 1 cm from the end of the laminate was heat-sealed to close the bag.
  • D-limonene manufactured by Tokyo Chemical Industry Co., Ltd.
  • L-menthol manufactured by Nacalai Tesque, Inc.
  • the gas chromatograph uses "GC-14A Glass ID 2.6 ⁇ x 1.1 m PET-HT 5% Uniport HP 80/100 (manufactured by GL Sciences)" for the column, FID for the detector, and N 2 for the carrier gas.
  • the carrier gas flow rate was 35 ml/min, and the injection rate was 1 ⁇ l.
  • the adsorption amount was indicated by an adsorption amount ( ⁇ g/cm 2 ) per 1 cm 2 of the heat-sealed surface, and the low adsorption property was determined as follows. Judgment ⁇ 0 ⁇ g/cm 2 or more, less than 2 ⁇ g/cm 2 Judgment ⁇ 2 ⁇ g/cm 2 or more
  • Polyester (A) was obtained.
  • This polyester (A) is polyethylene terephthalate.
  • the composition of the polyester (A) is shown in Table 1.
  • Polyesters (B) to (G) in which the monomers were changed were obtained by the same procedure as in Synthesis Example 1.
  • the composition of each polyester is shown in Table 1.
  • TPA is terephthalic acid
  • IPA is isophthalic acid
  • BD is 1,4-butanediol
  • NPG is neopentyl glycol
  • CHDM is 1,4-cyclohexanedimethanol
  • DEG diethylene glycol.
  • SiO2 SiO2 (Silysia 266 manufactured by Fuji Silysia Chemical Ltd.) was added as a lubricant at a ratio of 7,000 ppm with respect to the polyester. Each polyester was chipped appropriately.
  • Table 1 shows the composition of the polyesters (B) to (G).
  • Polyester A, polyester B, polyester E and polyester G were mixed at a mass ratio of 9:60:24:7 as raw materials for the heat seal layer (A layer), and polyester A and polyester as raw materials for the other layers (B layer).
  • B, polyester E, and polyester G were mixed in a mass ratio of 56:31:6:7.
  • the mixed raw materials of the A layer and the B layer were put into separate twin-screw extruders and melted at 270°C.
  • Each molten resin was joined by a feed block in the middle of the flow path, discharged from a T die, and cooled on a chill roll set to a surface temperature of 30° C. to obtain an unstretched laminated film.
  • the flow path of the molten resin is set so that one side is the A layer and the other side is the B layer (two-layer two-layer structure of A layer/B layer), and the thickness ratio of the A layer and the B layer is 50/
  • the discharge amount was adjusted to be 50.
  • the unstretched laminated film obtained by cooling and solidification is guided to a longitudinal stretching machine in which a plurality of roll groups are continuously arranged, preheated on a preheating roll until the film temperature reaches 80° C., and then stretched 4.2 times. did.
  • the film immediately after longitudinal stretching was passed through a heating furnace set at 100° C. with a hot air heater, and a 30% relaxation treatment was performed in the longitudinal direction by utilizing the speed difference between the rolls at the inlet and outlet of the heating furnace. Then, the longitudinally stretched film was forcibly cooled by a cooling roll whose surface temperature was set to 25°C.
  • the relaxed film was introduced into a transverse stretching machine (tenter), preheated for 5 seconds until the surface temperature reached 105°C, and then stretched 4.0 times in the width direction (transverse direction).
  • the laterally stretched film was guided to the intermediate zone as it was, and allowed to pass for 1.0 second.
  • the intermediate zone of the tenter when a strip-shaped piece of paper is hung while the film is not passing, the hot air from the final heat treatment zone and the transverse stretching zone are so that the piece of paper hangs almost completely in the vertical direction. Cut off the hot air from.
  • the film that passed through the intermediate zone was guided to the final heat treatment zone and heat treated at 190°C for 5 seconds.
  • the heat treatment was performed, and at the same time, the clip interval in the film width direction was narrowed to perform 3% relaxation treatment in the width direction.
  • the film was cooled with cooling air of 30° C. for 5 seconds.
  • the actual film temperature at the exit of the tenter was 45°C. Both edges were cut off and wound into a roll with a width of 500 mm to continuously produce a biaxially stretched film having a thickness of 30 ⁇ m over a predetermined length.
  • Table 2 shows the production conditions.
  • Polyester B, polyester C, and polyester G were mixed as a raw material of the A layer in a mass ratio of 40:43:7, and were mixed in the same ratio as the B layer of the film 1 as a raw material of the B layer.
  • the mixed raw materials of the layer A and the layer B were respectively put into separate twin-screw extruders, melted and laminated in the same manner as the film 1 above, discharged, and cooled and solidified to obtain an unstretched laminated film. ..
  • This unstretched laminated film was introduced into a simultaneous biaxial stretching machine and preheated for 5 seconds until the surface temperature reached 100° C., and then the longitudinal direction (longitudinal direction) was multiplied by 3.6 times the width direction (lateral direction).
  • the film that passed through the intermediate zone was guided to the final heat treatment zone and heat-treated at 210°C for 10 seconds.
  • the heat treatment was performed, and at the same time, the clip interval in the longitudinal direction of the film and the clip interval in the width direction were simultaneously narrowed to perform relaxation treatment of 18% in the longitudinal direction and 3% in the width direction.
  • the film was cooled with cooling air of 30° C. for 5 seconds.
  • the actual film temperature at the exit of the tenter was 45°C. Both edges were cut off and wound into a roll with a width of 500 mm to continuously produce a biaxially stretched film having a thickness of 30 ⁇ m over a predetermined length.
  • Table 2 shows the production conditions.
  • polyester E and polyester G were mixed at a mass ratio of 95:5, charged into a twin screw extruder and melted at 260°C.
  • This molten resin was discharged alone from a T die and cooled on a chill roll set to a surface temperature of 30° C. to obtain an unstretched monolayer film.
  • This unstretched single-layer film was subjected to a sequential biaxial stretching method similarly to the film 1 to form a polyester film in which the respective conditions of longitudinal stretching, transverse stretching and final heat treatment were changed.
  • the film 4 was not relaxed in the longitudinal direction during the film forming process. Table 2 shows the production conditions.
  • Polyester A and polyester G were mixed as a raw material for the base material layer (C layer) at a mass ratio of 95:5, and the mixture was put into a twin-screw extruder and melted at 275°C.
  • This molten resin was discharged alone from a T die and cooled on a chill roll set to a surface temperature of 30° C. to obtain an unstretched monolayer film.
  • This unstretched single-layer film was subjected to a sequential biaxial stretching method similarly to the film 1 to form a polyester film in which the respective conditions of longitudinal stretching, transverse stretching and final heat treatment were changed.
  • the film 6 was not relaxed in the longitudinal direction during the film forming process. Table 3 shows the manufacturing conditions.
  • polyester A As raw materials for the layer C, polyester A, polyester E and polyester G were mixed at a mass ratio of 13:80:7, charged into a twin screw extruder and melted at 265°C. At this time, the melt line was connected to a 12-element static mixer, and the same resin was divided and laminated into 4096 layers. This molten resin was discharged from a T-die and cooled on a chill roll set to a surface temperature of 30° C. to obtain an unstretched film (a raw material resin species was the above mixing ratio single and the number of layers was 4096).
  • This unstretched film was subjected to a sequential biaxial stretching method in the same manner as the film 1 to form a polyester film in which the respective conditions of longitudinal stretching, transverse stretching and final heat treatment were changed.
  • the film 7 was not relaxed in the longitudinal direction during the film forming process. Table 3 shows the manufacturing conditions.
  • Example 1 On the film 6, a urethane-based two-component curable adhesive (“Takelac (registered trademark) A525S” and “Takenate (registered trademark) A50” manufactured by Mitsui Chemicals, Inc. are mixed at a weight ratio of 13.5:1).
  • a laminate was obtained by laminating the film 1 with the B layer side of the film 1 by a dry laminating method and aging at 40° C. for 4 days. The properties of the obtained laminate were evaluated by the above methods. Table 4 shows the layer structure of the laminate, the physical properties, and the evaluation results of the package.
  • Example 2 A film was changed in the same manner as in Example 1 to prepare a laminate. The properties of the obtained laminate were evaluated by the above methods. It shows in Table 4.
  • Example 3 On one side of the film 7, aluminum was used as a vapor deposition source, and an aluminum oxide (Al 2 O 3 ) thin film was deposited as a gas barrier layer by a vacuum vapor deposition method while introducing oxygen gas with a vacuum vapor deposition machine. The thickness of the gas barrier layer was 10 nm.
  • the gas barrier layer side of the film 7 and the B layer side of the film 3 were attached in the same manner as in Example 1 to produce a laminate. The properties of the obtained laminate were evaluated by the above methods. It shows in Table 4.
  • the present invention it is possible to provide a laminate having less adsorption of components of the content, high heat-sealing strength in a low temperature range, and excellent bag-breaking resistance, and to provide a package having the above characteristics. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Wrappers (AREA)

Abstract

[Problem] To provide: a layered product in which adsorption of an enclosed component is low and which exhibits high heat sealing strength at low temperatures and excellent bursting resistance; and a packaging body containing the layered product as at least one layer thereof. [Solution] This layered product is obtained by layering at least a substrate layer, an adhesive layer and a sealant layer in that order. The substrate layer comprises a polyester, which contains poly(ethylene terephthalate) or poly(butylene terephthalate) as a primary constituent component, a polyolefin that contains polypropylene as a primary constituent component, or a polyamide that contains a nylon as a primary constituent component. The sealant layer comprises a polyester that contains poly(ethylene terephthalate) as a primary constituent component. When sealant layers are sealed for 2 seconds at a temperature of 140ºC and a pressure of 0.2 MPa, the sealing strength of the layered product is 8 N/15 mm-70 N/15 mm.

Description

積層体及びそれを用いた包装体Laminated body and package using the same
 本発明は、ヒートシール性と耐破袋性に優れた積層体およびそれを用いた包装体に関するものである。 The present invention relates to a laminate excellent in heat sealability and bag breakage resistance, and a package using the same.
 従来、食品、医薬品および工業製品に代表される流通物品の多くに、シーラントフィルムをヒートシール又はラミネートして得られた積層フィルムが、包装体や蓋材等の包装材として用いられている。包装材の最内面(内容物と接する面)には、高いシール強度を示すポリエチレン、ポリプロピレン等のポリオレフィン系樹脂や、アイオノマー、EMMA等のコポリマー樹脂からなるシーラント層が設けられている。これらの樹脂は、ヒートシールにより高い密着強度を達成することができることが知られている。
 しかし特許文献1に記されているようなポリオレフィン系樹脂からなる無延伸のシーラントフィルムは、油脂や香料等の有機化合物からなる成分を吸着しやすいため、内容物の香りや味覚を変化させやすいという欠点を持っている。そのため、化成品、医薬品、食品等の包装にポリオレフィン系樹脂からなるシーラント層を最内層として使用するのは適さないケースが多い。
BACKGROUND ART Conventionally, a laminated film obtained by heat-sealing or laminating a sealant film has been used as a packaging material such as a packaging body or a lid material in many distribution items represented by foods, pharmaceuticals, and industrial products. The innermost surface of the packaging material (the surface in contact with the contents) is provided with a sealant layer made of a polyolefin resin such as polyethylene or polypropylene having high sealing strength, or a copolymer resin such as ionomer or EMMA. It is known that these resins can achieve high adhesion strength by heat sealing.
However, a non-stretched sealant film made of a polyolefin-based resin as described in Patent Document 1 easily adsorbs components made of organic compounds such as fats and oils and fragrances, so that it is easy to change the scent and taste of the contents. Has a drawback. Therefore, it is often not suitable to use the sealant layer made of a polyolefin resin as the innermost layer for packaging of chemical products, pharmaceuticals, foods and the like.
 一方、特許文献2に記されているようなアクリロニトリル系樹脂からなるシーラントは、化成品、医薬品、食品等に含まれる有機化合物を吸着しにくいため、包装材の最内層として使用するのに適している。しかし、アクリロニトリル系フィルムは、低温域(150℃以下)におけるヒートシール強度が低いという問題がある。製袋工程において、ヒートシール温度が高温になると、シールバーのメンテナンス頻度が増えてしまうので生産性の観点で好ましくない。また、製袋の歩留まりを向上させるために、製袋ラインの高速化が進んでおり、この要求に対してもシール温度は低温であることが好ましい。アクリロニトリル系樹脂からなるシーラントは、これらの要求を満足できていない。 On the other hand, a sealant composed of an acrylonitrile-based resin as described in Patent Document 2 is suitable for use as the innermost layer of a packaging material because it hardly adsorbs organic compounds contained in chemical products, pharmaceuticals, foods and the like. There is. However, the acrylonitrile film has a problem that the heat seal strength is low in a low temperature range (150° C. or lower). In the bag making process, when the heat sealing temperature becomes high, the maintenance frequency of the seal bar increases, which is not preferable from the viewpoint of productivity. Further, in order to improve the yield of bag making, the speed of bag making line has been accelerated, and it is preferable that the sealing temperature is low to meet this requirement. A sealant composed of an acrylonitrile resin does not satisfy these requirements.
 このような問題に鑑みて、特許文献3には有機化合物の非吸着性と低温シール性をもったポリエステル系シーラントが開示されている。しかし、特許文献3のシーラントは、ヒートシールしたときの熱により、熱収縮を起こすだけでなく、シーラントが融けて穴が空いてしまうという問題があった。例えばシーラントを用いた包装体を作製するとき、シーラントが熱収縮すると袋の形が崩れてしまうだけでなく、穴あきが生じると袋としての保存機能を果たすことができないため好ましくない。このように、特許文献3のシーラントには、耐熱性に改善の余地があった。 In view of these problems, Patent Document 3 discloses a polyester-based sealant having a non-adsorbing property for organic compounds and a low-temperature sealing property. However, the sealant of Patent Document 3 has a problem that the heat generated during heat sealing not only causes heat shrinkage but also melts the sealant to form holes. For example, when a package using a sealant is manufactured, the shape of the bag is not only collapsed when the sealant is thermally shrunk, but also when the sealant is perforated, the bag cannot be preserved, which is not preferable. Thus, the sealant of Patent Document 3 had room for improvement in heat resistance.
 そこで、特許文献4には耐熱性を向上させたシーラントが開示されている。特許文献4に記載のシーラントは、ヒートシール性を有する層とそれ以外の層を分け、これらの層の熱特性をそれぞれ別々に制御することにより、ヒートシール性と耐熱性を満足させている。ただし、液体や重量物の包装体を構成するシーラントに、特許文献4に記載のシーラントを用いた場合、包装体が落下したときに破袋してしまう問題があった。また、特許文献4に記載のシーラントを用いた包装体は、外部からの突刺しや内容物に角がある場合に容易に穴があいてしまう問題もあった。 Therefore, Patent Document 4 discloses a sealant with improved heat resistance. The sealant described in Patent Document 4 has a heat-sealable layer and a layer other than the heat-sealable layer, and separately controls the thermal properties of these layers to satisfy the heat-sealability and heat resistance. However, when the sealant described in Patent Document 4 is used as the sealant that constitutes the liquid or heavy-weight package, there is a problem that the bag is broken when the package falls. In addition, the package using the sealant described in Patent Document 4 has a problem that a hole is easily pierced when it is pierced from the outside or the content has corners.
 かかる問題点を解決するため、例えば特許文献5にはポリブチレンテレフタレートを60重量%以上含むヒートシール性二軸延伸ポリエステルフィルムが開示されている。特許文献5のフィルムは突刺し強度が従来のポリエステル系フィルムに比べて改善されているものの、230℃でなければヒートシール強度が発現しないため、シール時の熱収縮が大きくなるといった問題を抱えている。 In order to solve such a problem, for example, Patent Document 5 discloses a heat-sealable biaxially stretched polyester film containing 60% by weight or more of polybutylene terephthalate. Although the film of Patent Document 5 has improved puncture strength as compared with the conventional polyester-based film, it does not exhibit heat seal strength unless the temperature is 230° C., and thus has a problem that heat shrinkage at the time of sealing becomes large. There is.
特許第3817846号公報Japanese Patent No. 3817846 特開平7-132946号公報JP-A-7-132946 国際公開第2014-175313号公報International Publication No. 2014-175313 国際公開WO2018/150997号公報International publication WO2018/150997 特開2016-203630号公報JP, 2016-203630, A
 本発明は、前記のような従来技術の問題点を解消することを課題とするものである。すなわち、本発明の課題は、内容物の成分吸着が少なく、低温域で高いヒートシール強度を有し、耐破袋性に優れた積層体を提供することにある。同時に、本発明の課題は、前記の積層体を少なくとも一層として含む包装体を提供するものである。 The present invention aims to solve the above-mentioned problems of the prior art. That is, an object of the present invention is to provide a laminate which has less component adsorption of contents, has high heat seal strength in a low temperature range, and has excellent bag-breaking resistance. At the same time, an object of the present invention is to provide a package including the above-mentioned laminated body as at least one layer.
 本発明は、以下の構成よりなる。
1.少なくとも基材層/接着層/シーラント層の3層がこの順番で積層されてなり、
前記基材層はポリエチレンテレフタレートもしくはポリブチレンテレフタレートを主たる構成成分とするポリエステル、またはポリプロピレンを主たる構成成分とするポリオレフィン、またはナイロンを主たる構成成分とするポリアミドからなり、前記シーラント層はポリエチレンテレフタレートを主たる構成成分とするポリエテルからなり、前記シーラント層同士を140℃、0.2MPa、2秒でシールしたときの積層体のシール強度が8N/15mm以上70N/15mm以下である積層体。
2.基材層がポリエチレンテレフタレートまたはポリブチレンテレフタレートを主たる構成成分とするポリエステルからなることを特徴とする1.に記載の積層体。
3.さらにガスバリア層が積層されてなることを特徴とする1.または2.いずれかに記載の積層体。
4.突刺し強度が0.4N/μm以上0.6N/μm以下であることを特徴とする1.~3.のいずれかに記載の積層体。
5.シーラント層を構成するポリエステル系成分のモノマー成分として、エチレングリコール以外のジオールモノマー成分、及び/又はテレフタル酸以外の酸成分を含有し、該ジオール成分がネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,4-ブタンジオール、及びジエチレングリコールからなる群より選択されてなる1種以上であり、該酸成分はイソフタル酸であることを特徴とする1.~4.のいずれかに記載の積層体。
6.前記1.~5.のいずれかに記載の積層体を少なくとも1層に有していることを特徴とする包装体。
The present invention has the following configurations.
1. At least three layers of base material layer/adhesive layer/sealant layer are laminated in this order,
The base material layer is made of polyester having polyethylene terephthalate or polybutylene terephthalate as a main constituent, or polyolefin having polypropylene as a main constituent, or polyamide having nylon as a main constituent, and the sealant layer is mainly composed of polyethylene terephthalate. A laminate, which is composed of polyethylene as a component and has a seal strength of 8 N/15 mm or more and 70 N/15 mm or less when the sealant layers are sealed at 140° C., 0.2 MPa, and 2 seconds.
2. 1. The base material layer is made of polyester having polyethylene terephthalate or polybutylene terephthalate as a main constituent. The laminated body according to.
3. Further, a gas barrier layer is laminated, which is characterized in that Or 2. The laminate according to any one of the above.
4. 1. The puncture strength is 0.4 N/μm or more and 0.6 N/μm or less. ~3. The laminated body according to any one of 1.
5. As a monomer component of the polyester component constituting the sealant layer, a diol monomer component other than ethylene glycol and/or an acid component other than terephthalic acid is contained, and the diol component is neopentyl glycol, 1,4-cyclohexanedimethanol, 1. One or more selected from the group consisting of 1,4-butanediol and diethylene glycol, wherein the acid component is isophthalic acid. ~ 4. The laminated body according to any one of 1.
6. The above 1. ~ 5. A package having at least one layer of the laminate according to any one of 1.
 本発明の積層体は、内容物の成分吸着が少なく、低温域で高いヒートシール強度を有し、耐破袋性に優れている。そのため、包装材料として使用すると高いシール強度を発現することができ、落下や外部刺激からも内容物を保護する機能を向上させることができる。 The laminate of the present invention has little adsorption of the components of the contents, has a high heat seal strength in a low temperature range, and has excellent bag-breaking resistance. Therefore, when used as a packaging material, high sealing strength can be exhibited, and the function of protecting the contents from falling and external stimuli can be improved.
本発明は、少なくとも基材層/接着層/シーラント層の3層がこの順番で積層されてなり、前記基材層はポリエチレンテレフタレートもしくはポリブチレンテレフタレートを主たる構成成分とするポリエステルまたはポリプロピレンを主たる構成成分とするポリオレフィンまたはナイロンを主たる構成成分とするポリアミドからなり、前記シーラント層はポリエチレンテレフタレートを主たる構成成分とするポリエテルからなり、前記シーラント層同士を140℃、0.2MPa、2秒でシールしたときの積層体のシール強度が8N/15mm以上70N/15mm以下である積層体である。 In the present invention, at least three layers of a base material layer/adhesive layer/sealant layer are laminated in this order, and the base material layer is a main constituent component of polyester or polypropylene whose main constituent component is polyethylene terephthalate or polybutylene terephthalate. And a polyamide containing nylon as a main constituent, the sealant layer is made of polyethylene containing polyethylene terephthalate as a main constituent, and the sealant layers are sealed at 140° C., 0.2 MPa for 2 seconds. The laminate has a seal strength of 8 N/15 mm or more and 70 N/15 mm or less.
 以下、本発明の積層体について説明する。
 1.積層体の層構成、厚み、層比率
 本発明の積層体は、ヒートシール性と耐破袋性とを両立させるため、ヒートシール層(シーラント層と称する場合がある)と基材の各層を少なくとも一層ずつ有していなければならず、これら少なくとも2つの層を積層させるために接着層を有した3層以上でなければならない。さらに、所定のヒートシール強度を満たすため、ヒートシール層は積層体における最表層のどちらか一方に設けなければならない。基材は、積層体の最表層、中間層(4層以上の場合)いずれに位置しても構わない。すなわち本発明を包装体として使用するときの最外層から、基材層/接着層/ヒートシール層がこの順番で積層された構成でなければならない。
The laminate of the present invention will be described below.
1. Layer structure of laminate, thickness, layer ratio The laminate of the present invention has at least each layer of a heat seal layer (which may be referred to as a sealant layer) and a base material in order to achieve both heat sealability and bag breakage resistance. It must have one layer at a time and must have at least three layers with an adhesive layer to stack these at least two layers. Furthermore, in order to satisfy the predetermined heat seal strength, the heat seal layer must be provided on either one of the outermost layers of the laminate. The base material may be located on either the outermost layer or the intermediate layer (in the case of 4 layers or more) of the laminate. In other words, the base material layer/adhesive layer/heat seal layer must be laminated in this order from the outermost layer when the present invention is used as a package.
 本発明の積層体の層構成は前記の3層に加えて、ガスバリア層を設けた4層構成であると好ましい。ガスバリア層は金属または金属酸化物を主たる構成成分とする無機薄膜から構成されることが好ましく、最表層、中間層いずれに位置しても構わない。ガスバリア層は透明であるとより好ましい。 The layer structure of the laminate of the invention is preferably a four-layer structure in which a gas barrier layer is provided in addition to the above-mentioned three layers. The gas barrier layer is preferably composed of an inorganic thin film containing a metal or a metal oxide as a main constituent, and may be located in either the outermost layer or the intermediate layer. More preferably, the gas barrier layer is transparent.
 また、本発明の積層体は、包装体としての意匠性を向上させるため、文字や図柄を記載した印刷層を設けてもよい。印刷層を構成する材料としては、グラビア印刷用のインキやフレキソ印刷用のインキ等、公知のものを用いることができる。印刷層数は1層であってもよく、複数層であってもよい。印刷を複数色にして意匠性を向上させるためには、複数層からなる印刷層があると好ましい。印刷層は、最表層、中間層いずれに位置しても構わない。 In addition, the laminate of the present invention may be provided with a printing layer on which characters and patterns are described in order to improve the design as a package. As a material for forming the printing layer, known materials such as gravure printing ink and flexographic printing ink can be used. The number of printing layers may be one or plural. In order to print with a plurality of colors to improve the design, it is preferable to have a printing layer including a plurality of layers. The printing layer may be located on either the outermost layer or the intermediate layer.
 本発明の好ましい構成としては、包装体として使用するときの最外層から、基材層/印刷層/接着層/シーラント層、または基材層/ガスバリア層/印刷層/接着層/シーラント層、または基材層/ガスバリア層/接着層/シーラント層等が挙げられる。
各層に関する構成要件は後述する。
As a preferred constitution of the present invention, from the outermost layer when used as a package, the base material layer/printing layer/adhesive layer/sealant layer, or the base material layer/gas barrier layer/printing layer/adhesive layer/sealant layer, or Examples include base material layer/gas barrier layer/adhesive layer/sealant layer.
The constituent requirements for each layer will be described later.
 また、本発明の積層体は、必要に応じてさらに基材層又はシーラント層に積層されるアンカーコート層やガスバリア層に積層されるオーバーコート層を設けることもできる。これらの層を設けることにより、積層体のガスバリア性や耐擦過性を向上させることができる。 Further, the laminate of the present invention may further include an anchor coat layer laminated on the base material layer or the sealant layer and an overcoat layer laminated on the gas barrier layer, if necessary. By providing these layers, the gas barrier property and scratch resistance of the laminate can be improved.
 積層体の厚みは特に限定されないが、3μm以上200μm以下が好ましい。積層体の厚みが3μmより薄いとヒートシール強度の不足や印刷等の加工が困難になるおそれがありあまり好ましくない。また積層体の厚みが200μmより厚くても構わないが、積層体の使用重量が増えてコストが高くなるので好ましくない。積層体の厚みは5μm以上160μm以下であるとより好ましく、7μm以上120μm以下であるとさらに好ましい。 The thickness of the laminate is not particularly limited, but is preferably 3 μm or more and 200 μm or less. If the thickness of the laminate is less than 3 μm, the heat seal strength may be insufficient and processing such as printing may be difficult, which is not preferable. The thickness of the laminated body may be thicker than 200 μm, but this is not preferable because the weight used for the laminated body increases and the cost increases. The thickness of the laminate is more preferably 5 μm or more and 160 μm or less, and even more preferably 7 μm or more and 120 μm or less.
 ヒートシール層の積層体全体の厚みに対する層比率は、20%以上~80%以下であると好ましい。ヒートシール層の層比率が20%より少ない場合、積層体のヒートシール強度が低下してしまうため好ましくない。ヒートシール層の層比率が80%よりも高くなると、積層体のヒートシール性は向上するが、耐熱性が低下してしまうため好ましくない。ヒートシール層の層比率は、30%以上~70%以下がより好ましい。 The layer ratio of the heat seal layer to the thickness of the entire laminate is preferably 20% or more and 80% or less. If the layer ratio of the heat-sealing layer is less than 20%, the heat-sealing strength of the laminate will be reduced, which is not preferable. When the layer ratio of the heat-sealing layer is higher than 80%, the heat-sealing property of the laminate is improved, but the heat resistance is deteriorated, which is not preferable. The layer ratio of the heat seal layer is more preferably 30% or more and 70% or less.
 基材層の積層体全体の厚みに対する層比率は、20%以上~80%以下であると好ましい。基材層の層比率が20%より少ない場合、包装体としたときの耐破袋性が低下してしまうため好ましくない。基材層の層比率が80%よりも高くなると、積層体より包装袋を作製した際の耐破袋性は向上するが、相対的にヒートシール層の厚みが低下してしまうため好ましくない。基材層比率は、30%以上~70%以下がより好ましい。 The layer ratio of the base material layer to the total thickness of the laminate is preferably 20% or more and 80% or less. When the layer ratio of the base material layer is less than 20%, the bag-breaking resistance of the package is reduced, which is not preferable. When the layer ratio of the base material layer is higher than 80%, the bag breaking resistance when a packaging bag is produced from the laminate is improved, but the thickness of the heat seal layer is relatively reduced, which is not preferable. The base material layer ratio is more preferably 30% or more and 70% or less.
 ガスバリア層の厚みについて、無機薄膜層をガスバリア層として、該無機薄膜層を蒸着金属または蒸着金属酸化物とする場合は2nm以上100nm以下であると好ましい。この層の厚みが2nmを下回ると、ガスバリア性が低下しやすくなるため好ましくない。一方、この層の厚みが100nmを上回っても、それに相当するガスバリア性の向上効果はなく、製造コストが高くなるため好ましくない。無機薄膜層の厚みは、5nm以上97nm以下であるとより好ましく、8nm以上94nm以下であるとさらに好ましい。 The thickness of the gas barrier layer is preferably 2 nm or more and 100 nm or less when the inorganic thin film layer is used as the gas barrier layer and the inorganic thin film layer is made of vapor-deposited metal or vapor-deposited metal oxide. If the thickness of this layer is less than 2 nm, the gas barrier property tends to deteriorate, which is not preferable. On the other hand, even if the thickness of this layer exceeds 100 nm, there is no corresponding effect of improving the gas barrier property and the manufacturing cost increases, which is not preferable. The thickness of the inorganic thin film layer is more preferably 5 nm or more and 97 nm or less, and further preferably 8 nm or more and 94 nm or less.
 ガスバリア層を金属箔とする場合は、金属箔の厚みが3μm以上200μm以下であると好ましい。この層の厚みが3μmを下回ると、ガスバリア性が低下しやすくなるため好ましくない。一方、この層の厚みが200nmを上回っても、それに相当するガスバリア性の向上効果はなく、製造コストが高くなるため好ましくない。無機薄膜層(金属箔)の厚みは、5μm以上197μm以下であるとより好ましく、8μm以上194μm以下であるとさらに好ましい。 When the gas barrier layer is a metal foil, the thickness of the metal foil is preferably 3 μm or more and 200 μm or less. If the thickness of this layer is less than 3 μm, the gas barrier property tends to deteriorate, which is not preferable. On the other hand, even if the thickness of this layer exceeds 200 nm, there is no corresponding effect of improving the gas barrier property and the manufacturing cost increases, which is not preferable. The thickness of the inorganic thin film layer (metal foil) is more preferably 5 μm or more and 197 μm or less, and further preferably 8 μm or more and 194 μm or less.
 また、本発明の積層体の最表層(ヒートシール層を含む)には、フィルム表面の印刷性や滑り性を良好にするためにコロナ処理、コーティング処理や火炎処理などを施した層を設けることも可能であり、本発明の要件を逸しない範囲で任意に設けることができる。 In addition, the outermost layer (including the heat-sealing layer) of the laminate of the present invention is provided with a layer that has been subjected to corona treatment, coating treatment, flame treatment or the like in order to improve the printability and slipperiness of the film surface. It is also possible and can be arbitrarily provided within the range not deviating from the requirements of the present invention.
2.積層体の特性
 2.1.ヒートシール強度
 本発明の積層体のヒートシール層同士を温度140℃、シールバー圧力0.2MPa、シール時間2秒でヒートシールした際のヒートシール強度は、8N/15mm以上70N/15mm以下の必要がある。
ヒートシール強度が8N/15mm未満であると、シール部分がボイル処理等で容易に剥離されるため、包装体として用いることができない。ヒートシール強度は12N/15mm以上が好ましく、14N/15mm以上がより好ましい。ヒートシール強度は大きいことが好ましいが、現状得られる上限は60N/15mm程度である。ヒートシール強度の上限は69N/15mmであっても実用上は十分好ましいものといえる。
2. Characteristics of laminated body 2.1. Heat-sealing strength The heat-sealing strength when heat-sealing the heat-sealing layers of the laminate of the present invention at a temperature of 140° C., a seal bar pressure of 0.2 MPa and a sealing time of 2 seconds is required to be 8 N/15 mm or more and 70 N/15 mm or less. There is.
If the heat-sealing strength is less than 8 N/15 mm, the sealed portion can be easily peeled off by boil treatment or the like, so that it cannot be used as a package. The heat seal strength is preferably 12 N/15 mm or more, more preferably 14 N/15 mm or more. The heat seal strength is preferably high, but the currently obtained upper limit is about 60 N/15 mm. Even if the upper limit of the heat seal strength is 69 N/15 mm, it can be said that it is sufficiently preferable in practical use.
2.2.衝撃強度
 本発明の積層体は、衝撃強度が0.9J以上3.0J以下であると好ましい。 衝撃強度が0.9Jを下回ると、積層体を包装体として落下させたときに容易に破袋してしまうため好ましくない。衝撃強度の下限は1Jであるとより好ましく、1.1Jであるとさらに好ましい。一方、衝撃強度は高ければ高いほど好ましいが、本発明の技術水準では3.0Jが上限である。衝撃強度の上限は2.9Jであっても実用上は十分好ましいものといえる。
2.2. Impact Strength The laminate of the present invention preferably has an impact strength of 0.9 J or more and 3.0 J or less. If the impact strength is less than 0.9 J, the laminated body is easily broken when dropped as a package, which is not preferable. The lower limit of impact strength is more preferably 1 J, and even more preferably 1.1 J. On the other hand, the higher the impact strength is, the more preferable, but 3.0 J is the upper limit in the technical level of the present invention. Even if the upper limit of impact strength is 2.9 J, it can be said that it is sufficiently preferable in practical use.
2.3.突刺し強度
 本発明の積層体は、突刺し強度が0.4N/μm以上0.6N/μm以下であると好ましい。突刺し強度が0.4N/μmを下回ると、積層体を包装体としたときに、外部からの突刺しや内容物に角がある場合に容易に穴があいてしまうため好ましくない。突刺し強度の下限は0.42N/μmであるとより好ましく、0.44N/μmであるとさらに好ましい。一方、突刺し強度は高ければ高いほど好ましいが、本発明の技術水準では0.6N/μmが上限である。突刺し強度の上限は0.59N/μmであっても実用上は十分好ましいものといえる。
2.3. Puncture Strength The laminate of the present invention preferably has a puncture strength of 0.4 N/μm or more and 0.6 N/μm or less. When the puncture strength is less than 0.4 N/μm, when the laminate is used as a package, it is easily pierced by external puncture or when the contents have corners, which is not preferable. The lower limit of the puncture strength is more preferably 0.42 N/μm and even more preferably 0.44 N/μm. On the other hand, the higher the puncture strength, the more preferable, but in the technical level of the present invention, the upper limit is 0.6 N/μm. Even if the upper limit of the puncture strength is 0.59 N/μm, it can be said that it is sufficiently preferable in practical use.
2.4.熱収縮率
本発明の積層体は、98℃の温湯中で3分間に亘って処理した場合における幅方向、長手方向の温湯熱収縮率がいずれも-5%以上5%以下であると好ましい。温湯熱収縮率が5%を超えると、積層体を用いて作製した袋をレトルト処理などの加熱処理をした場合に、袋の変形が大きくなって元の形状を保てなくなるだけでなく、無機物からなる層にクラックが生じてガスバリア性が低下してしまうため好ましくない。温湯熱収縮率は4%以下であるとより好ましく、3%以下であるとさらに好ましい。一方、温湯熱収縮率が-5%を下回る場合、積層体が伸びることを意味しており、収縮率が高い場合と同様に袋が元の形状を維持できにくくなるため好ましくない。積層体の温湯熱収縮率は-4%以上4%以下であるとより好ましく、-3%以上3%以下であるとさらに好ましい。
2.4. Heat Shrinkage Rate The laminate of the present invention preferably has a hot water heat shrinkage rate in the width direction and the longitudinal direction of -5% or more and 5% or less when treated in hot water of 98°C for 3 minutes. When the hot water heat shrinkage rate exceeds 5%, when the bag produced by using the laminate is subjected to heat treatment such as retort treatment, the bag is largely deformed and the original shape cannot be maintained, and the inorganic substance is not only retained. It is not preferable because cracks occur in the layer made of and the gas barrier property is deteriorated. The hot water heat shrinkage is more preferably 4% or less, and further preferably 3% or less. On the other hand, when the hot water heat shrinkage rate is less than -5%, it means that the laminate is stretched, which is not preferable because it is difficult to maintain the original shape of the bag as in the case where the shrinkage rate is high. The hot water heat shrinkage of the laminate is more preferably -4% or more and 4% or less, and further preferably -3% or more and 3% or less.
2.5.内容物の種類と吸着量
 本発明の積層体は、化成品、医薬品、食品等に含まれる有機化合物を吸着しにくい特徴がある。通常、積層体を包装体として使用する際、ヒートシール層を最内層とするため、本項で記載する、本発明の積層体の吸着量とは、ヒートシール層が内容物を吸着する量を示す。
2.5. Types of Contents and Adsorption Amount The laminate of the present invention is characterized by being less likely to adsorb organic compounds contained in chemical products, pharmaceuticals, foods and the like. Usually, when using the laminate as a package, since the heat-sealing layer is the innermost layer, the adsorption amount of the laminate of the present invention described in this section means the amount by which the heat-sealing layer adsorbs the contents. Show.
 前記の有機化合物としては、例えばd-リモネン、シトラール、シトロネラール、p-メンタン、ピネン、テルピネン、ミルセン、カレン、ゲラニオール、ネロール、シトロネラール、テルピネオール、l-メントール、ネロリドール、ボルネオール、dl-カンファー、リコピン、カロテン、トランス-2-ヘキセナール、シス-3-ヘキセノール、β-イオノン、セリネン、1-オクテン-3-オール、ベンジルアルコール、オクタールツロブテロール塩酸塩、酢酸トコフェロールなどの香気成分や薬効成分が挙げられる。 Examples of the organic compound include d-limonene, citral, citronellal, p-menthane, pinene, terpinene, myrcene, karen, geraniol, nerol, citronellal, terpineol, 1-menthol, nerolidol, borneol, dl-camphor, lycopene. , Carotene, trans-2-hexenal, cis-3-hexenol, β-ionone, serinene, 1-octen-3-ol, benzyl alcohol, octal tulobuterol hydrochloride, tocopherol acetate, etc. ..
 積層体への吸着量は、吸着条件(吸着物質の濃度、保管期間、温度等)によって異なるが、後述の実施例に示す方法で1週間保管した場合の吸着量が0μg/cm以上2μg/cmであると好ましい。吸着量0μg/cmは、内容物がシーラントに全く吸着していないことを示す。吸着量は1.8μg/cm以下であるとより好ましく、1.6μg/cm以下であるとさらに好ましい。 The amount adsorbed to the laminate varies depending on the adsorbing conditions (concentration of adsorbing substance, storage period, temperature, etc.), but the adsorbing amount when stored for 1 week according to the method described below is 0 μg/cm 2 or more and 2 μg/ It is preferably cm 2 . An adsorption amount of 0 μg/cm 2 indicates that the content is not adsorbed on the sealant at all. Adsorption amount is more preferable to be 1.8μg / cm 2 or less and further preferably 1.6 [mu] g / cm 2 or less.
 本発明の積層体は、ポリエステル系成分からなるヒートシール層を有しているため、類似した化学構造をもつ有機化合物に対しては吸着性が高まる恐れがある。具体的には、シーラントを構成するポリエステル系樹脂が構成成分の繰り返し単位中に酸素原子を4つ有するため、有機化合物の化学構造として、酸素原子数が多い(4つに近づく)ほど、シーラントに対する有機化合物の溶解度が増加して吸着性が高まる傾向にある。例えば、酸素原子が2つあるオイゲノールや酸素原子が3つあるサリチル酸メチルを含んだ内容物を包装すると、吸着量が2μg/cm2を超えやすくなってしまうため好ましくない。 Since the laminate of the present invention has the heat-sealing layer made of a polyester-based component, the adsorptivity may be increased for organic compounds having a similar chemical structure. Specifically, since the polyester resin that constitutes the sealant has four oxygen atoms in the repeating units of the constituent components, the chemical structure of the organic compound shows that the higher the number of oxygen atoms (closer to four), the more the sealant is added to the sealant. The solubility of the organic compound tends to increase and the adsorptivity tends to increase. For example, packaging a content containing eugenol having two oxygen atoms or methyl salicylate having three oxygen atoms is not preferable because the adsorption amount easily exceeds 2 μg/cm 2.
3.積層体の構成原料
3.1.ヒートシール層
 本発明の積層体を構成するヒートシール層の原料種は、エチレンテレフタレートユニットを主たる構成成分とするものである。ここで、「主たる構成成分とする」とは、全構成成分量を100モル%としたとき、50モル%以上含有することを指す。
3. Raw materials constituting the laminate 3.1. Heat Seal Layer The raw material species of the heat seal layer constituting the laminate of the present invention has an ethylene terephthalate unit as a main constituent component. Here, “to be the main constituent” means that the content of all constituents is 50 mol% or more, based on 100 mol %.
 また、本発明のポリエステル系樹脂層に使用するポリエステルにエチレンテレフタレート以外の成分を1種以上含むことが好ましい。エチレンテレフタレート以外の成分が存在することによって、ヒートシール層のヒートシール強度が向上するためである。耐熱層においては、エチレンテレフタレート以外の成分は少ない方が好ましいが、エチレンテレフタレート以外の成分を含むことによって、ヒートシール層との収縮率差を少なくすることができ、積層体のカールを小さくする効果がある。各成分の含有量はヒートシール層と耐熱層で異なるため後述する。エチレンテレフタレートを構成するテレフタル酸以外の成分となりうるジカルボン酸モノマーとしては、例えばイソフタル酸、1,4-シクロヘキサンジカルボン酸、2,6-ナフタレンジカルボン酸、オルトフタル酸等の芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸、および脂環式ジカルボン酸が挙げられる。上記のカルボン酸成分の中でも、イソフタル酸を用いることでヒートシール層同士のヒートシール強度を8N/15mm以上としやすくなるので好ましい。ただし、3価以上の多価カルボン酸(例えば、トリメリット酸、ピロメリット酸およびこれらの無水物等)はポリエステル中に含有させないことが好ましい。 Further, it is preferable that the polyester used in the polyester resin layer of the present invention contains at least one component other than ethylene terephthalate. This is because the presence of a component other than ethylene terephthalate improves the heat seal strength of the heat seal layer. In the heat-resistant layer, it is preferable that the components other than ethylene terephthalate are small, but by including the components other than ethylene terephthalate, it is possible to reduce the difference in shrinkage ratio with the heat seal layer, and to reduce the curl of the laminate. There is. The content of each component differs between the heat seal layer and the heat resistant layer, and will be described later. Examples of the dicarboxylic acid monomer that can be a component other than terephthalic acid that constitutes ethylene terephthalate include aromatic dicarboxylic acids such as isophthalic acid, 1,4-cyclohexanedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, orthophthalic acid, adipic acid, Aliphatic dicarboxylic acids such as azelaic acid, sebacic acid, decanedicarboxylic acid, and alicyclic dicarboxylic acids are included. Among the above carboxylic acid components, the use of isophthalic acid is preferable because the heat seal strength between the heat seal layers can easily be 8 N/15 mm or more. However, it is preferable that a polyvalent carboxylic acid having a valence of 3 or more (for example, trimellitic acid, pyromellitic acid and their anhydrides) is not contained in the polyester.
 また、エチレンテレフタレートを構成するエチレングリコール以外の成分となりうるジオールモノマーとしては、例えばネオペンチルグリコール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、2,2-ジエチル1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-イソプロピル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、ヘキサンジオール、1,4-ブタンジオール等の長鎖ジオール、ヘキサンジオール等の脂肪族ジオール、ビスフェノールA等の芳香族系ジオール等を挙げることができる。ただし、ポリエステルには炭素数8個以上のジオール(例えば、オクタンジオール等)、または3価以上の多価アルコール(例えば、トリメチロールプロパン、トリメチロールエタン、グリセリン、ジグリセリンなど)を含有させないことが好ましい。
さらに、ポリエステルを構成する成分として、ε-カプロラクトンやテトラメチレングリコールなどを含むポリエステルエラストマーを含んでいてもよい。ポリエステルエラストマーは、ポリエステル系樹脂層の融点を下げる効果があるため、特にヒートシール層に好適に使用することができる。
Examples of the diol monomer which can be a component other than ethylene glycol constituting ethylene terephthalate include neopentyl glycol, 1,4-cyclohexanedimethanol, diethylene glycol, 2,2-diethyl 1,3-propanediol, 2-n- Butyl-2-ethyl-1,3-propanediol, 2,2-isopropyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, hexanediol, 1,4- Examples thereof include long-chain diols such as butanediol, aliphatic diols such as hexanediol, and aromatic diols such as bisphenol A. However, the polyester may not contain a diol having 8 or more carbon atoms (for example, octane diol) or a polyhydric alcohol having 3 or more valences (for example, trimethylolpropane, trimethylolethane, glycerin, diglycerin). preferable.
Further, a polyester elastomer containing ε-caprolactone, tetramethylene glycol or the like may be contained as a component constituting the polyester. Since the polyester elastomer has the effect of lowering the melting point of the polyester resin layer, it can be particularly preferably used for the heat seal layer.
 これらのなかでも、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,4-ブタンジオール、ジエチレングリコールのいずれか1種以上を用いることでヒートシール層同士のヒートシール強度を8N/15mm以上としやすくなるので好ましい。ネオペンチルグリコール、1,4-シクロヘキサンジメタノールのいずれか1種以上を用いることがより好ましく、ネオペンチルグリコールを用いることが特に好ましい。
 本発明の積層体の構成するヒートシール層に用いるポリエステルは、エチレンテレフタレートを構成するテレフタル酸およびエチレングリコール以外の成分となるジカルボン酸モノマーおよび/又はジオールモノマーの含有量が25モル%以上であることが好ましく、27モル%以上がより好ましく、29モル%以上が特に好ましい。また、前記エチレンテレフタレート以外の成分となるモノマー含有量の上限は50モル%である。
ヒートシール層に含まれる前記エチレンテレフタレート以外の成分となるモノマーが25モル%より低い場合、溶融樹脂をダイから押し出した後に例え急冷固化したとしても、後の延伸および熱固定工程で結晶化してしまうため、ヒートシール強度を8N/15mm以上とすることが困難となってしまうため好ましくない。
Among these, by using at least one of neopentyl glycol, 1,4-cyclohexanedimethanol, 1,4-butanediol and diethylene glycol, the heat-sealing strength between the heat-sealing layers can easily be 8 N/15 mm or more. Therefore, it is preferable. It is more preferable to use at least one of neopentyl glycol and 1,4-cyclohexanedimethanol, and it is particularly preferable to use neopentyl glycol.
The polyester used for the heat-sealing layer constituting the laminate of the present invention has a content of dicarboxylic acid monomer and/or diol monomer, which is a component other than terephthalic acid and ethylene glycol constituting ethylene terephthalate, of 25 mol% or more. Is preferable, 27 mol% or more is more preferable, and 29 mol% or more is particularly preferable. Further, the upper limit of the content of monomers other than ethylene terephthalate is 50 mol %.
When the monomer other than ethylene terephthalate contained in the heat seal layer is lower than 25 mol%, even if the molten resin is extruded from the die and rapidly solidified, it will be crystallized in the subsequent stretching and heat setting steps. Therefore, it becomes difficult to set the heat sealing strength to 8 N/15 mm or more, which is not preferable.
 一方、ヒートシール層に含まれる前記エチレンテレフタレート以外の成分となるモノマーが50モル%以上である場合、フィルムのヒートシール強度を高くすることができるものの、ヒートシール層の耐熱性が極端に低くなるため、ヒートシールするときにシール部の周囲がブロッキング(加熱用部材からの熱伝導によって、意図した範囲よりも広い範囲でシールされてしまう現象)してしまうため、適切なヒートシールが困難となる。エチレンテレフタレート以外の成分となるモノマーの含有量は48モル%以下であるとより好ましく、46%以下であると特に好ましい。 On the other hand, when the monomer other than ethylene terephthalate contained in the heat seal layer is 50 mol% or more, the heat seal strength of the film can be increased, but the heat resistance of the heat seal layer becomes extremely low. Therefore, when heat sealing is performed, the periphery of the sealing portion is blocked (a phenomenon in which the heat conduction from the heating member causes sealing in a wider range than the intended range), which makes proper heat sealing difficult. .. The content of the monomer other than ethylene terephthalate is more preferably 48 mol% or less, and particularly preferably 46% or less.
3.2.基材層
 本発明を構成する基材層はポリエチレンテレフタレートもしくはポリブチレンテレフタレートを主たる構成成分とするポリエステルまたはポリプロピレンを主たる構成成分とするポリオレフィンまたはナイロン(ナイロン4・6、ナイロン6、ナイロン6・6、ナイロン12から選択されてなる1種以上)を主たる構成成分とするポリアミドからなり、一軸延伸フィルムあるいは二軸延伸フィルムであることが好ましい。市販品を使用してもよく、例えば、東洋紡社製エステル(登録商標)エステルフィルムE5102、東洋紡社製エスペットフィルムT4100、T6140、東洋紡社製ハーデン(登録商標)フィルムN1100、N2100、東洋紡社製パイレン(登録商標)フィルムP2261、P2161などが挙げられる。また、ポリブチレンテレフタレートを主たる構成成分とするフィルムを基材層として使用してもよい。近年、プラスチックリサイクルの効率化を目指して包装体の構成素材を統一化しようとする「モノマテリアル化」の意識が高まっていることから、基材層はヒートシール層と同じポリエステル系樹脂であると好ましい。具体的には、ポリブチレンテレフタレートまたはポリエチレンテレフタレートを主たる構成成分とするのが好ましく、主たる構成成分がポリブチレンテレフタレートであるとより好ましい。以下では、基材層にポリエステル樹脂を用いたときの説明を記載する。
3.2. Base Material Layer The base material layer constituting the present invention is a polyolefin or nylon (nylon 4.6, nylon 6, nylon 6.6, nylon 6,6, whose main component is polyethylene terephthalate or polybutylene terephthalate). It is preferably a uniaxially stretched film or a biaxially stretched film, which is composed of a polyamide containing at least one selected from nylon 12 as a main constituent. Commercially available products may be used, for example, ester (registered trademark) ester film E5102 manufactured by Toyobo, Espet films T4100 and T6140 manufactured by Toyobo, Harden (registered trademark) films N1100, N2100 manufactured by Toyobo, and pyrene manufactured by Toyobo. (Registered trademark) films P2261, P2161 and the like. Further, a film containing polybutylene terephthalate as a main constituent may be used as the base material layer. In recent years, there has been a growing awareness of "monomaterialization" that seeks to unify the constituent materials of the package to improve the efficiency of plastic recycling. Therefore, the base material layer is the same polyester resin as the heat seal layer. preferable. Specifically, it is preferable to use polybutylene terephthalate or polyethylene terephthalate as a main constituent, and it is more preferable that the main constituent is polybutylene terephthalate. Below, the description when using a polyester resin for a base material layer is described.
 基材層に含まれるポリブチレンテレフタレートまたはポリエチレンテレフタレート樹脂の含有率は60モル%以上であると好ましく、70モル%以上がより好ましく、80モル%以上がさらに好ましい。60モル%未満であると積層体の衝撃強度および突刺し強度が低下してしまうおそれがある。
 ポリブチレンテレフタレートは、ジカルボン酸成分としてテレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分として1,4-ブタンジオールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時に1,4-ブタンジオールのエーテル結合により生成する副生物以外は含まれないことである。
The content of the polybutylene terephthalate or polyethylene terephthalate resin contained in the base material layer is preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 80 mol% or more. If it is less than 60 mol %, the impact strength and the puncture strength of the laminate may decrease.
In polybutylene terephthalate, terephthalic acid as a dicarboxylic acid component is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and most preferably 100 mol%. As the glycol component, 1,4-butanediol is preferably 90 mol% or more, more preferably 95 mol% or more, further preferably 97 mol% or more, and most preferably 1,4-butane at the time of polymerization. It means that it does not contain other than by-products generated by ether bond of diol.
 ポリエチレンテレフタレートは、ジカルボン酸成分としてテレフタル酸が90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは98モル%以上であり最も好ましくは100モル%である。グリコール成分としてエチレングリコールが90モル%以上であることが好ましく、より好ましくは95モル%以上であり、さらに好ましくは97モル%以上であり、最も好ましくは重合時の副生成物であるジエチレングリコールが2モル%以下の含有量となることである。
 本発明に用いられる基材層は、二軸延伸を行う時の製膜性や積層体の力学特性を調整する目的で、ポリブチレンテレフタレートやポリエチレンテレフタレート以外のポリエステル樹脂を含有することもできる。
In the polyethylene terephthalate, terephthalic acid as a dicarboxylic acid component is preferably 90 mol% or more, more preferably 95 mol% or more, further preferably 98 mol% or more, and most preferably 100 mol%. As the glycol component, ethylene glycol is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 97 mol% or more, and most preferably diethylene glycol which is a by-product at the time of polymerization. That is, the content is less than or equal to mol %.
The base material layer used in the present invention may contain a polyester resin other than polybutylene terephthalate or polyethylene terephthalate for the purpose of adjusting film-forming properties and mechanical properties of the laminate during biaxial stretching.
 上記2つ以外のポリエステル樹脂としては、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリプロピレンテレフタレートなどのポリエステル樹脂のほか、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、シクロヘキサンジカルボン酸、アジピン酸、アゼライン酸、セバシン酸などのジカルボン酸が共重合されたポリエステル樹脂や、エチレングリコール、1,3-プロピレングリコール、1,2-プロピレングリコール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール、ポリエチレングリコール、ポリテトラメチレングリコール、ポリカーボネートジオール等のジオール成分が共重合されたポリエステル樹脂が挙げられる。しかし、ポリアルキレンオキサイドを含むものは適さない。 Examples of polyester resins other than the above two are polyester resins such as polyethylene naphthalate, polybutylene naphthalate and polypropylene terephthalate, as well as isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, cyclohexanedicarboxylic acid, adipic acid and azelaine. Polyester resin copolymerized with dicarboxylic acid such as acid and sebacic acid, ethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, neopentyl glycol, 1,5-pentanediol, 1,6-hexane Examples thereof include polyester resins obtained by copolymerizing diol components such as diol, diethylene glycol, cyclohexane diol, polyethylene glycol, polytetramethylene glycol, and polycarbonate diol. However, those containing polyalkylene oxide are not suitable.
 これらポリエステル樹脂の添加量の上限としては、40モル%以下が好ましく、より好ましくは30モル%以下が好ましく、さらに10モル%以下が好ましく、特に5モル%以下が好ましい。上記ポリエステル樹脂の添加量が40モル%を超えると、積層体の衝撃強度や突刺し強度が不十分となるほか、ガスバリア性が低下するおそれがある。 The upper limit of the amount of the polyester resin added is preferably 40 mol% or less, more preferably 30 mol% or less, further preferably 10 mol% or less, and particularly preferably 5 mol% or less. If the amount of the polyester resin added exceeds 40 mol %, the impact strength and the puncture strength of the laminate will be insufficient, and the gas barrier property may deteriorate.
 本発明の積層体を構成するヒートシール層、基材層の中には、必要に応じて各種の添加剤、例えば、ワックス類、酸化防止剤、帯電防止剤、結晶核剤、減粘剤、熱安定剤、着色用顔料、着色防止剤、紫外線吸収剤などを添加することができる。また、積層体の滑り性を良好にする滑剤としての微粒子を、少なくとも積層体の最表層に添加することが好ましい。微粒子としては、任意のものを選択することができる。例えば、無機系微粒子としては、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウムなどをあげることができ、有機系微粒子としては、アクリル系樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、架橋ポリスチレン粒子などを挙げることができる。微粒子の平均粒径は、コールターカウンタにて測定したときに0.05~3.0μmの範囲内で必要に応じて適宜選択することができる。 In the heat-sealing layer constituting the laminate of the present invention, in the base material layer, if necessary, various additives, for example, waxes, antioxidants, antistatic agents, crystal nucleating agents, thickeners, A heat stabilizer, a coloring pigment, an anti-coloring agent, an ultraviolet absorber and the like can be added. Further, it is preferable to add fine particles as a lubricant for improving the slipperiness of the laminate to at least the outermost layer of the laminate. Any fine particles can be selected. For example, the inorganic fine particles may include silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate, and the like, and the organic fine particles include acrylic resin particles, melamine resin particles, silicone resin particles, crosslinked polystyrene. Examples thereof include particles. The average particle size of the fine particles can be appropriately selected as needed within the range of 0.05 to 3.0 μm when measured with a Coulter counter.
 本発明の積層体を構成するヒートシール層、基材層の中に粒子を配合する方法として、例えば、ポリエステル系樹脂(レジン)を製造する任意の段階において添加することができるが、エステル化の段階、もしくはエステル交換反応終了後、重縮合反応開始前の段階でエチレングリコールなどに分散させたスラリーとして添加し、重縮合反応を進めるのが好ましい。また、ベント付き混練押出し機を用いてエチレングリコールや水、そのほかの溶媒に分散させた粒子のスラリーとポリエステル系樹脂原料とをブレンドする方法や、乾燥させた粒子とポリエステル系樹脂原料とを混練押出し機を用いてブレンドする方法なども挙げられる。 As a method of blending the particles into the heat-sealing layer and the base material layer constituting the laminate of the present invention, for example, the particles can be added at any stage of producing the polyester resin (resin). It is preferable that the polycondensation reaction is carried out by adding as a slurry dispersed in ethylene glycol or the like in the step or after the completion of the transesterification reaction and before the start of the polycondensation reaction. Further, using a kneading extruder with a vent, a method of blending a slurry of particles dispersed in ethylene glycol, water, or another solvent and a polyester resin raw material, or kneading and extruding dried particles and a polyester resin raw material. The method of blending using a machine is also included.
3.3.接着層
 本発明の積層体における接着層として、ドライラミネート用接着剤や押出ラミネートによる樹脂層を使用することができる。接着剤は1液型(乾燥タイプ)、2液型(硬化反応タイプ)いずれであっても構わない。ドライラミネートの場合は市販のポリウレタン系やポリエステル系のドライラミネーション用接着剤を用いることができる。代表例としては、DIC社製ディックドライ(登録商標)LX-703VL、DIC社製KR-90、三井化学社製タケネート(登録商標)A-4、三井化学社製タケラック(登録商標)A-905などである。押出ラミネートの場合は、層間、又は層とその他の層の間にポリエチレンなどのポリオレフィン系樹脂を溶融させて接着させるが、層等の表面の接着性を高めるためにアンカーコート層を積層しておくことも好ましい。
 接着層は、接着剤をヒートシール層または基材層どちらか一方のフィルムに塗布し、その後、接着剤が乾燥または反応して接着剤が硬化することによって形成される。本発明の積層体において、接着剤乾燥後の接着層の厚みは1μm以上6μm以下であると好ましく、2μm以上5μm以下であるとより好ましい。
3.3. Adhesive Layer As the adhesive layer in the laminate of the present invention, an adhesive for dry lamination or a resin layer formed by extrusion lamination can be used. The adhesive may be either one-pack type (dry type) or two-pack type (curing reaction type). In the case of dry lamination, commercially available polyurethane or polyester adhesives for dry lamination can be used. As typical examples, DIC Dry (registered trademark) LX-703VL manufactured by DIC, KR-90 manufactured by DIC, Takenate (registered trademark) A-4 manufactured by Mitsui Chemicals, and Takelac (registered trademark) A-905 manufactured by Mitsui Chemicals, Inc. And so on. In the case of extrusion lamination, a polyolefin resin such as polyethylene is melted and adhered between layers or between a layer and another layer, but an anchor coat layer is laminated in order to enhance the adhesiveness of the surface of the layer or the like. Is also preferable.
The adhesive layer is formed by applying an adhesive to the film of either the heat seal layer or the base material layer, and then drying or reacting the adhesive to cure the adhesive. In the laminate of the present invention, the thickness of the adhesive layer after drying the adhesive is preferably 1 μm or more and 6 μm or less, and more preferably 2 μm or more and 5 μm or less.
3.4.基材層、接着層、シーラント層以外の樹脂層
 本発明の積層体は、前述の基材層、接着層、シーラント層以外の樹脂層を設けていてもよい。この樹脂層を設けることにより、積層体の耐熱性や機械強度がさらに向上するため好ましい。さらに、樹脂層はヒートシール層を製膜するときに共押出によって積層され、ヒートシール層と同一工程で製膜されることが好ましい。ヒートシール層が製膜工程中で受ける張力によって意図せずに伸長される、熱固定中に融解して落下するといった問題を回避できるようになる。樹脂層を構成する原料種は、上述の「3.1.ヒートシール層」で記載したエチレンテレフタレートからなるポリエステル、又はエチレンテレフタレートを主たる構成成分としてヒートシール層よりもエチレンテレフタレートの含有量が多いポリエステルであることが好ましい。
3.4. Resin layer other than base material layer, adhesive layer and sealant layer The laminate of the present invention may be provided with a resin layer other than the above-mentioned base material layer, adhesive layer and sealant layer. Providing this resin layer is preferable because it further improves the heat resistance and mechanical strength of the laminate. Further, it is preferable that the resin layer is laminated by coextrusion when forming the heat seal layer, and is formed in the same step as the heat seal layer. It is possible to avoid problems such as the heat seal layer being unintentionally stretched by the tension applied during the film forming process, and being melted and dropped during heat setting. The raw material species constituting the resin layer is a polyester composed of ethylene terephthalate described in the above “3.1. Heat seal layer”, or a polyester containing ethylene terephthalate as a main constituent and having a higher content of ethylene terephthalate than the heat seal layer. Is preferred.
3.5.ガスバリア層
 本発明の積層体に用いることのできるガスバリア層の原料種は、従来から公知の材料を使用することができ、所望のガスバリア性等を満たすために目的に合わせて適宜選択することができる。ガスバリア層として、無機薄膜層が好ましい。無機薄膜層の原料種としては、例えば、ケイ素、アルミニウム、スズ、亜鉛、鉄、マンガン等の金属、これら金属の1種以上を含む無機物または無機化合物があり、該当する無機化合物としては、前記金属の酸化物、窒化物、炭化物、フッ化物等が挙げられる。これらの無機物または無機化合物は単体で用いてもよいし、複数で用いてもよい。特に、酸化ケイ素、酸化アルミニウムを単体(一元体)または併用(二元体)で使用することにより、積層体の透明性を向上させることができるため好ましい。無機化合物の成分が酸化ケイ素と酸化アルミニウムの二元体からなる場合、酸化アルミニウムの含有量は20質量%以上80質量%以下であると好ましく、25質量%以上70質量%以下であるとより好ましい。酸化アルミニウムの含有量が20質量%以下の場合、無機薄膜層の密度が下がり、ガスバリア性が低下する恐れがあるため好ましくない。また、酸化アルミニウムの含有量が80質量%以上であると、無機薄膜層の柔軟性が低下してクラックが発生しやすくなり、結果としてガスバリア性が低下する恐れが生じるため好ましくない。
 無機薄膜層に使用する金属酸化物の酸素/金属の元素比は、1.3以上1.8未満であればガスバリア性のバラツキが少なく、常に優れたガスバリア性が得られるため好ましい。酸素/金属の元素比は、酸素および金属の各元素の量をX線光電子分光分析法(XPS)で測定し、酸素/金属の元素比を算出することで求めることができる。
3.5. Gas Barrier Layer As the raw material species of the gas barrier layer that can be used in the laminate of the present invention, conventionally known materials can be used and can be appropriately selected according to the purpose in order to satisfy desired gas barrier properties and the like. .. An inorganic thin film layer is preferable as the gas barrier layer. Examples of the raw material species of the inorganic thin film layer include metals such as silicon, aluminum, tin, zinc, iron, and manganese, and inorganic substances or inorganic compounds containing at least one of these metals. And oxides, nitrides, carbides, fluorides, etc. These inorganic substances or inorganic compounds may be used alone or in combination. In particular, it is preferable to use silicon oxide or aluminum oxide alone (one body) or in combination (binary body) because the transparency of the laminate can be improved. When the component of the inorganic compound is a binary body of silicon oxide and aluminum oxide, the content of aluminum oxide is preferably 20% by mass or more and 80% by mass or less, and more preferably 25% by mass or more and 70% by mass or less. .. When the content of aluminum oxide is 20% by mass or less, the density of the inorganic thin film layer may be lowered and the gas barrier property may be lowered, which is not preferable. Further, if the content of aluminum oxide is 80% by mass or more, the flexibility of the inorganic thin film layer is lowered, cracks are easily generated, and as a result, the gas barrier property may be lowered, which is not preferable.
It is preferable that the oxygen/metal element ratio of the metal oxide used in the inorganic thin film layer is 1.3 or more and less than 1.8, because there is little variation in the gas barrier property and an excellent gas barrier property is always obtained. The oxygen/metal element ratio can be determined by measuring the amounts of oxygen and metal elements by X-ray photoelectron spectroscopy (XPS) and calculating the oxygen/metal element ratio.
3.6.アンカーコート層
 本発明の積層体には、上記のガスバリア層を成膜する前に、あらかじめ基材層やヒートシール層にアンカーコートを施してもよい。アンカーコートを施すことにより、樹脂層と無機薄膜層との密着を高め、積層体のガスバリア性がさらに向上する。
 アンカーコート層を構成する樹脂、架橋剤、化合物等の種類としては特に限定されず、オキサゾリン基含有樹脂、アクリル樹脂、ウレタン樹脂、又はこれらの樹脂より2種以上を含む混合物、ポリビニルアセタールとポリエステルポリオールとイソシアネート化合物とシランカップリング剤を組み合わせたもの、テトラエトキシシランやテトラメトキシシランをはじめとした珪素化合物あるいはその加水分解物と水酸基を有する水溶性高分子との混合物、シリコン系樹脂、ポリシラザン系樹脂とシラン化合物系樹脂との混合物等を用いることができる。
 アンカーコート層の成膜方法としては特に限定されず、公知の方法を任意に採用することができる。基材層やヒートシール層といった樹脂層の製膜工程中にコーティング工程を設けるインラインコート法、基材層やヒートシール層としてのフィルムをロールとして巻き取った後にコーティングを行うオフラインコート法いずれの方法でも構わない。オフラインコート法は、樹脂フィルムを巻き取った後、別の設備で巻き出してコーティングする分だけ生産性が劣るためインラインコート法が好ましい。インラインコート法では通常、下記4.1.「ポリエステル系樹脂層の製膜条件」で挙げた4.1.2.「第一(縦)延伸」または4.1.3.「中間熱処理」の後でコーティングを施し、4.1.4.「第二(横)延伸」から4.1.5.「最終熱処理」までの間(テンター内)で溶媒を乾燥させることとなる。そのため、コーティング液を乾燥する最高温度は、最終熱処理温度に依ることとなるが、通常は65℃以上250℃以下であれば十分である。コーティングの方法としては特に限定されず、グラビアコート法、リバースコート法、ディッピング法、ローコート法、エアナイフコート法、コンマコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法、ダイコート法、バーコート法等、公知の方法を採用することができる。
3.6. Anchor Coat Layer In the laminate of the present invention, an anchor coat may be applied to the base material layer or the heat seal layer in advance before forming the gas barrier layer. By applying the anchor coat, the adhesion between the resin layer and the inorganic thin film layer is enhanced, and the gas barrier property of the laminate is further improved.
The type of resin, cross-linking agent, compound, etc. constituting the anchor coat layer is not particularly limited, and includes oxazoline group-containing resin, acrylic resin, urethane resin, or a mixture containing two or more of these resins, polyvinyl acetal and polyester polyol. And a combination of an isocyanate compound and a silane coupling agent, a mixture of a silicon compound such as tetraethoxysilane or tetramethoxysilane or a hydrolyzate thereof and a water-soluble polymer having a hydroxyl group, a silicone resin, a polysilazane resin And a silane compound resin can be used as a mixture.
The method for forming the anchor coat layer is not particularly limited, and a known method can be arbitrarily adopted. In-line coating method in which a coating step is provided during the film-forming step of the resin layer such as the base material layer or heat seal layer, or an off-line coating method in which the film as the base material layer or heat seal layer is wound up as a roll and then coated But it doesn't matter. The off-line coating method is preferably the in-line coating method because the productivity is inferior as much as the resin film is wound up and then unwound and coated by another facility. In the in-line coating method, the following 4.1. 4.1.2 described in “Film forming conditions of polyester resin layer”. "First (longitudinal) stretching" or 4.1.3. After the "intermediate heat treatment", coating is performed, and 4.1.4. "Second (transverse) stretching" to 4.1.5. The solvent is dried until the "final heat treatment" (in the tenter). Therefore, the maximum temperature for drying the coating liquid depends on the final heat treatment temperature, but normally 65°C or higher and 250°C or lower is sufficient. The coating method is not particularly limited, and includes gravure coating method, reverse coating method, dipping method, low coating method, air knife coating method, comma coating method, screen printing method, spray coating method, gravure offset method, die coating method, bar coating method. Known methods such as the above can be adopted.
3.7.オーバーコート層
 本発明の積層体には、上記のガスバリア層を成膜した後、その上にオーバーコート層を設けてもよい。オーバーコートを施すことにより、積層体の耐擦過性やガスバリア性が向上する。
オーバーコート層の種類は特に限定されないが、ウレタン系樹脂とシランカップリング剤からなる組成物、有機ケイ素およびその加水分解物からなる化合物、ヒドロキシル基またはカルボキシル基を有する水溶性高分子等、従来から公知の材料を使用することができ、所望のガスバリア性等を満たすために目的に合わせて適宜選択することができる。これらの中でも、ウレタン系樹脂とシランカップリング剤からなる組成物は、積層体の柔軟性を維持しながらガスバリア性を向上させることができるため好ましい。
 また、オーバーコート層は、本発明の目的を損なわない範囲で、帯電防止性、紫外線吸収性、着色、熱安定性、滑り性等を付与する目的で、各種添加剤が1種類以上添加されていてもよく、各種添加剤の種類や添加量は、所望の目的に応じて適宜選択することができる。
3.7. Overcoat Layer After forming the above gas barrier layer on the laminate of the present invention, an overcoat layer may be provided thereon. By applying the overcoat, the scratch resistance and the gas barrier property of the laminate are improved.
The type of the overcoat layer is not particularly limited, but a composition comprising a urethane resin and a silane coupling agent, a compound comprising an organic silicon and a hydrolyzate thereof, a water-soluble polymer having a hydroxyl group or a carboxyl group, etc. Known materials can be used and can be appropriately selected according to the purpose in order to satisfy desired gas barrier properties and the like. Among these, a composition comprising a urethane resin and a silane coupling agent is preferable because it can improve gas barrier properties while maintaining flexibility of the laminate.
Further, the overcoat layer is added with one or more kinds of various additives for the purpose of imparting antistatic property, ultraviolet absorbing property, coloring, thermal stability, slip property, etc. within a range not impairing the object of the present invention. Alternatively, the type and amount of various additives can be appropriately selected according to the desired purpose.
4.積層体の製造条件
4.1.ヒートシール層の製膜方法
4.1.1.溶融押し出し
 本発明の積層体を構成するヒートシール層(以下、4.1.の範囲で「フィルム」と記載するものは、ヒートシール層を指す)は、上記3.「積層体の構成原料」中の3.1.「ヒートシール層」で記載したポリエステル原料を、押し出し機により溶融押し出しして未延伸の積層フィルムを形成し、それを以下に示す所定の方法により延伸することによって得ることができる。なお、フィルムがヒートシール層以外の層を含む場合、各層を積層させるタイミングは延伸の前後いずれであっても構わない。ヒートシール層は、後述の4.1.4.「最終熱処理」で融点以上の温度で加熱するため、単層であると加熱炉内でフィルムが融解して落下してしまう懸念がある。そのため、ヒートシール層とは別に耐熱性のある層を積層させるのが好ましい。延伸前に積層させる場合、各層の原料となる樹脂をそれぞれ別々の押し出し機によって溶融押し出しし、樹脂流路の途中でフィードブロック等を用いて接合させる方法を採用するのが好ましい。延伸後に積層させる場合、それぞれ別々に製膜したフィルムを接着剤によって貼りあわせるラミネート、単独または積層させたフィルムの表層に溶融させたポリエステル樹脂を流して積層させる押出ラミネートを採用するのが好ましい。これらの中でも、延伸前に各層を積層させる方法が好ましい。
ポリエステル樹脂は、前記のように、エチレンテレフタレート以外の成分となり得るモノマーを適量含有するように、ジカルボン酸成分とジオール成分の種類と量を選定して重縮合させることで得ることができる。また、チップ状のポリエステルを2種以上混合してポリエステル系樹脂層の原料として使用することもできる。
4. Manufacturing conditions of laminated body 4.1. Film forming method of heat seal layer 4.1.1. Melt Extrusion The heat-sealing layer constituting the laminate of the present invention (hereinafter, the one described as "film" in the range of 4.1 indicates the heat-sealing layer) is the above-mentioned 3. 3.1. in “Layered Constituent Materials”. It can be obtained by melt-extruding the polyester raw material described in the "heat-sealing layer" with an extruder to form an unstretched laminated film, and stretching it by a predetermined method shown below. When the film includes layers other than the heat-sealing layer, the timing of laminating each layer may be before or after stretching. The heat seal layer is described in 4.1.4. Since the film is heated at a temperature equal to or higher than the melting point in the "final heat treatment", the film may melt and fall in the heating furnace if it is a single layer. Therefore, it is preferable to stack a heat resistant layer separately from the heat seal layer. When laminating before stretching, it is preferable to adopt a method of melting and extruding the resins as the raw materials of the respective layers by separate extruders and joining them by using a feed block or the like in the middle of the resin flow path. When laminating after stretching, it is preferable to employ a laminate in which films formed separately are laminated with an adhesive, or an extrusion laminate in which a melted polyester resin is poured onto the surface layer of the laminated film to laminate the films. Among these, the method of laminating each layer before stretching is preferable.
As described above, the polyester resin can be obtained by polycondensing by selecting the type and amount of the dicarboxylic acid component and the diol component so that an appropriate amount of a monomer other than ethylene terephthalate can be contained. Further, two or more kinds of chip-shaped polyester may be mixed and used as a raw material for the polyester resin layer.
 原料樹脂を溶融押し出しするとき、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後、押出機を利用して200~300℃の温度で溶融してフィルムとして押し出す。押し出しはTダイ法、チューブラー法等、既存の任意の方法を採用することができる。 When melt-extruding the raw material resin, it is preferable to dry the polyester raw material using a dryer such as a hopper dryer or paddle dryer, or a vacuum dryer. After drying the polyester raw material in this way, it is melted at a temperature of 200 to 300° C. using an extruder and extruded as a film. For extrusion, any existing method such as a T-die method or a tubular method can be adopted.
 その後、押し出しで溶融されたフィルムを急冷することにより、未延伸のフィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
フィルムは、無延伸、一軸延伸(縦(長手)方向、横(幅)方向のいずれか少なくとも一方向への延伸)、二軸延伸いずれの方式で製膜されてもよい。本発明の積層体の衝撃強度や突き刺し強度等の機械強度や生産性の観点からは、一軸延伸であることが好ましく、二軸延伸であるとより好ましい。以下では、最初に縦延伸、次に横延伸を実施する縦延伸-
横延伸による逐次二軸延伸法について説明するが、順番を逆にする横延伸-縦延伸であっても、主配向方向が変わるだけなので構わない。また、同時二軸延伸法でも構わない。
Then, the unstretched film can be obtained by rapidly cooling the film melted by extrusion. As a method of quenching the molten resin, a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and quenching and solidifying can be suitably adopted.
The film may be formed by any of non-stretching, uniaxial stretching (stretching in at least one of the longitudinal (longitudinal) direction and the transverse (width) direction), and biaxial stretching. From the viewpoint of mechanical strength such as impact strength and puncture strength of the laminate of the present invention and productivity, uniaxial stretching is preferable, and biaxial stretching is more preferable. In the following, the longitudinal stretching is carried out by first performing longitudinal stretching and then transverse stretching-
The sequential biaxial stretching method by transverse stretching will be described. However, transverse stretching-longitudinal stretching in which the order is reversed may change the main orientation direction. Also, a simultaneous biaxial stretching method may be used.
4.1.2.縦延伸
 縦方向(長手方向)の延伸は、未延伸フィルムを複数のロール群を連続的に配置した縦延伸機へと導入するとよい。縦延伸にあたっては、予熱ロールでフィルム温度がTg~Tg+40℃になるまで予備加熱することが好ましい。フィルム温度がTgより低いと、縦方向に延伸する際に延伸しにくくなり、破断が生じやすくなるため好ましくない。またTg+40℃より高いとロールにフィルムが粘着しやすくなり、ロールへのフィルムの巻き付きや連続生産によるロールの汚れやすくなるため好ましくない。
 フィルム温度が65℃~90℃になったら縦延伸を行う。縦延伸倍率は、1倍以上5倍以下とすると良い。1倍は縦延伸をしていないということなので、横一軸延伸フィルムを得るには縦の延伸倍率を1倍に、二軸延伸フィルムを得るには1.1倍以上の縦延伸となる。また縦延伸倍率の上限は何倍でも構わないが、あまりに高い縦延伸倍率だと横延伸しにくくなって破断が生じやすくなるだけでなく、分子配向角(ボーイング)が大きくなってしまうので、5倍以下であると好ましい。
4.1.2. Longitudinal stretching In the longitudinal direction (longitudinal direction), the unstretched film may be introduced into a longitudinal stretching machine in which a plurality of roll groups are continuously arranged. In the longitudinal stretching, it is preferable to preheat with a preheating roll until the film temperature reaches Tg to Tg+40°C. When the film temperature is lower than Tg, it becomes difficult to stretch the film when it is stretched in the machine direction, and breakage easily occurs, which is not preferable. On the other hand, if the temperature is higher than Tg+40° C., the film is likely to stick to the roll, and the film is easily wrapped around the roll or the roll is easily soiled due to continuous production, which is not preferable.
When the film temperature reaches 65°C to 90°C, longitudinal stretching is performed. The longitudinal stretching ratio is preferably 1 time or more and 5 times or less. Since 1 times means that the film is not longitudinally stretched, the longitudinal stretching ratio is 1 times to obtain a lateral uniaxially stretched film, and 1.1 times or more to obtain a biaxially stretched film. The upper limit of the longitudinal stretching ratio may be any number, but if the longitudinal stretching ratio is too high, not only lateral stretching becomes difficult and breakage easily occurs, but also the molecular orientation angle (bowing) becomes large. It is preferably not more than twice.
 また、縦延伸後にフィルムを長手方向へ弛緩すること(長手方向へのリラックス)により、縦延伸で生じたフィルム長手方向の収縮率を低減することができる。さらに、長手方向へのリラックスにより、テンター内で起こるボーイング現象(歪み)を低減することができる。後工程の横延伸や最終熱処理ではフィルム幅方向の両端が把持された状態で加熱されるため、フィルムの中央部だけが長手方向へ収縮するためである。長手方向へのリラックス率は0%以上70%以下(リラックス率0%はリラックスを行わないことを指す)であることが好ましい。長手方向へのリラックス率の上限は、使用する原料や縦延伸条件よって決まるため、これを超えてリラックスを実施することはできない。本発明のポリエステル系シーラントにおいては、長手方向へのリラックス率は70%が上限である。長手方向へのリラックスは、縦延伸後のフィルムを65℃~100℃以下の温度で加熱し、ロールの速度差を調整することで実施できる。加熱手段はロール、近赤外線、遠赤外線、熱風ヒータ等のいずれも用いる事ができる。また、長手方向へのリラックスは縦延伸直後でなくとも、例えば横延伸(予熱ゾーン含む)や最終熱処理でも長手方向のクリップ間隔を狭めることで実施することができ(この場合はフィルム幅方向の両端も長手方向へリラックスされるため、ボーイング歪みは減少する)、任意のタイミングで実施できる。
 長手方向へのリラックス(リラックスを行わない場合は縦延伸)の後は、一旦フィルムを冷却することが好ましく、表面温度が20~40℃の冷却ロールで冷却することが好ましい。
Further, by relaxing the film in the longitudinal direction after the longitudinal stretching (relaxing in the longitudinal direction), the shrinkage rate in the longitudinal direction of the film caused by the longitudinal stretching can be reduced. Further, by relaxing in the longitudinal direction, the bowing phenomenon (distortion) that occurs in the tenter can be reduced. This is because, in the subsequent lateral stretching and final heat treatment, the film is heated while being held at both ends in the film width direction, so that only the central portion of the film shrinks in the longitudinal direction. The relaxation rate in the longitudinal direction is preferably 0% or more and 70% or less (a relaxation rate of 0% indicates that relaxation is not performed). The upper limit of the relaxation rate in the longitudinal direction is determined by the raw material used and the longitudinal stretching conditions, and therefore the relaxation cannot be performed beyond this. The upper limit of the relaxation rate in the longitudinal direction of the polyester sealant of the present invention is 70%. The relaxation in the longitudinal direction can be carried out by heating the film after longitudinal stretching at a temperature of 65° C. to 100° C. or less and adjusting the speed difference of the rolls. As the heating means, any of rolls, near infrared rays, far infrared rays, hot air heaters and the like can be used. Further, the relaxation in the longitudinal direction can be performed not only immediately after the longitudinal stretching but also in the lateral stretching (including the preheating zone) or the final heat treatment by narrowing the clip interval in the longitudinal direction (in this case, both ends in the film width direction). Also, since it is relaxed in the longitudinal direction, bowing distortion is reduced), and it can be performed at any timing.
After relaxing in the longitudinal direction (longitudinal stretching when not relaxing), the film is preferably cooled once, and preferably cooled by a cooling roll having a surface temperature of 20 to 40°C.
4.1.3.横延伸
 縦延伸の後、テンター内でフィルムの幅方向(長手方向と直交する方向)の両端際をクリップによって把持した状態で、Tg~Tg+50℃で3~5倍程度の延伸倍率で横延伸を行うことが好ましい。横方向の延伸を行う前には、予備加熱を行っておくことが好ましく、予備加熱はフィルム表面温度がTg-10℃~Tg+40℃になるまで行うとよい。
 横延伸の後は、フィルムを積極的な加熱操作を実行しない中間ゾーンを通過させることが好ましい。テンターの横延伸ゾーンに対し、その次の最終熱処理ゾーンでは温度が高いため、中間ゾーンを設けないと最終熱処理ゾーンの熱(熱風そのものや輻射熱)が横延伸工程に流れ込んでしまう。この場合、横延伸ゾーンの温度が安定しないため、フィルムの厚み精度が悪化するだけでなく、ヒートシール強度や収縮率などの物性にもバラツキが生じてしまう。そこで、横延伸後のフィルムは中間ゾーンを通過させて所定の時間を経過させた後、最終熱処理を実施するのが好ましい。この中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、フィルムの走行に伴う随伴流、横延伸ゾーンや最終熱処理ゾーンからの熱風を遮断することが重要である。中間ゾーンの通過時間は、1秒~5秒程度で充分である。1秒より短いと、中間ゾーンの長さが不充分となって、熱の遮断効果が不足する。一方、中間ゾーンは長い方が好ましいが、あまりに長いと設備が大きくなってしまうので、5秒程度で充分である。
4.1.3. Lateral Stretching After longitudinal stretching, the film is laterally stretched in a tenter at a stretch ratio of 3 to 5 times at Tg to Tg + 50°C, with both edges of the film in the width direction (direction orthogonal to the longitudinal direction) being held by clips. It is preferable to carry out. Prior to the stretching in the transverse direction, preheating is preferably performed, and preheating is preferably performed until the film surface temperature reaches Tg-10°C to Tg+40°C.
After transverse stretching, the film is preferably passed through an intermediate zone where no positive heating operation is carried out. Since the temperature is higher in the final heat treatment zone subsequent to the transverse stretching zone of the tenter, heat (hot air itself or radiant heat) in the final heat treatment zone flows into the transverse stretching process unless the intermediate zone is provided. In this case, since the temperature of the transverse stretching zone is not stable, not only the thickness accuracy of the film is deteriorated, but also physical properties such as heat seal strength and shrinkage ratio are varied. Therefore, it is preferable that the film after the transverse stretching is passed through the intermediate zone for a predetermined time and then subjected to the final heat treatment. In this intermediate zone, when a strip-shaped piece of paper hangs down while the film is not passing through, it is possible for the piece of paper to hang down almost completely in the vertical direction. It is important to block the hot air from the heat treatment zone. A transit time of about 1 to 5 seconds is sufficient for passing through the intermediate zone. If it is shorter than 1 second, the length of the intermediate zone becomes insufficient and the heat blocking effect becomes insufficient. On the other hand, it is preferable that the intermediate zone is long, but if it is too long, the equipment becomes large, so about 5 seconds is sufficient.
4.1.4.最終熱処理
 中間ゾーンの通過後は最終熱処理ゾーンにて、160℃以上 250℃以下で熱処理を
行うことが好ましい。熱処理温度が160℃未満であると、積層体の98℃温湯収縮率が5%よりも高くなってしまうため好ましくない。熱処理温度が高くなるほどフィルムの収縮率は低下するが、250℃よりも高くなるとフィルムのヘイズが15%よりも高くなる、フィルムの分子配向角が30℃を超える、最終熱処理工程中にフィルムが融けてテンター内に落下するといった問題が生じやすくなるため好ましくない。
 最終熱処理の際、テンターの幅方向におけるクリップ間距離を任意の倍率で縮めること(幅方向へのリラックス)によって幅方向の収縮率を低減させることができる。そのため、最終熱処理では、0%以上10%以下の範囲で幅方向へのリラックスを行うことが好ましい(リラックス率0%はリラックスを行わないことを指す)。幅方向へのリラックス率が高いほど幅方向の収縮率は下がるものの、リラックス率(横延伸直後のフィルムの幅方向への収縮率)の上限は使用する原料や幅方向への延伸条件、熱処理温度によって決まるため、これを超えてリラックスを実施することはできない。本発明に用いるヒートシール層においては、幅方向へのリラックス率は10%が上限である。
4.1.4. Final heat treatment After passing through the intermediate zone, it is preferable to perform heat treatment at 160°C or higher and 250°C or lower in the final heat treatment zone. If the heat treatment temperature is lower than 160° C., the shrinkage rate of hot water at 98° C. of the laminate will be higher than 5%, which is not preferable. The higher the heat treatment temperature is, the lower the shrinkage rate of the film is, but if it is higher than 250°C, the haze of the film is higher than 15%, the molecular orientation angle of the film is higher than 30°C, the film is melted during the final heat treatment step. It is not preferable because the problem of falling into the tenter easily occurs.
At the time of the final heat treatment, the shrinkage ratio in the width direction can be reduced by reducing the distance between clips in the width direction of the tenter by an arbitrary ratio (relaxation in the width direction). Therefore, in the final heat treatment, it is preferable to perform relaxation in the width direction in the range of 0% or more and 10% or less (a relaxation rate of 0% indicates that relaxation is not performed). The higher the relaxation ratio in the width direction, the lower the shrinkage ratio in the width direction, but the upper limit of the relaxation ratio (shrinkage ratio in the width direction of the film immediately after transverse stretching) is the upper limit of the raw material used, the stretching conditions in the width direction, and the heat treatment temperature. It is not possible to carry out relaxation beyond this as it is decided by. In the heat seal layer used in the present invention, the relaxation rate in the width direction has an upper limit of 10%.
 さらに、最終熱処理の際に、テンターの長手方向におけるクリップ間距離を任意の倍率で縮めること(長手方向へのリラックス)によって長手方向の収縮率を低減させることができる。そのため、最終熱処理時における長手方向へのリラックスは好ましい態様である。長手方向へのリラックス率が高いほど長手方向の収縮率が下がるものの、リラックス率(横延伸直後のフィルムの長手方向への収縮率)の上限は使用する原料や長手方向への延伸・リラックス条件、熱処理温度によって決まるため、これを超えてリラックスを実施することはできない。本発明のヒートシール層においては、長手方向へのリラックス率は10%が上限である。 Furthermore, during the final heat treatment, the shrinkage ratio in the longitudinal direction can be reduced by shortening the distance between clips in the longitudinal direction of the tenter by an arbitrary ratio (relaxation in the longitudinal direction). Therefore, relaxation in the longitudinal direction during the final heat treatment is a preferable mode. Although the higher the relaxation rate in the longitudinal direction, the lower the contraction rate in the longitudinal direction, the upper limit of the relaxation rate (the contraction rate in the longitudinal direction of the film immediately after transverse stretching) is the upper limit of the raw material used and the stretching/relaxation conditions in the longitudinal direction. Since it depends on the heat treatment temperature, the relaxation cannot be performed beyond this. In the heat-sealing layer of the present invention, the relaxation rate in the longitudinal direction has an upper limit of 10%.
 また、最終熱処理ゾーンの通過時間は2秒以上20秒以下が好ましい。通過時間が2秒以下であると、フィルムの表面温度が設定温度に到達しないまま熱処理ゾーンを通過してしまうため、熱処理の意味をなさなくなる。通過時間は長ければ長いほど熱処理の効果が上がるため、2秒以上であることが好ましく、5秒以上であることがさらに好ましい。ただし、通過時間を長くしようとすると、設備が巨大化してしまうため、実用上は20秒以下であれば充分である。 Also, the transit time of the final heat treatment zone is preferably 2 seconds or more and 20 seconds or less. When the passage time is 2 seconds or less, the surface temperature of the film passes through the heat treatment zone without reaching the set temperature, so that the heat treatment becomes meaningless. The longer the passage time is, the higher the effect of the heat treatment is. Therefore, the passage time is preferably 2 seconds or more, more preferably 5 seconds or more. However, if the passage time is lengthened, the equipment becomes huge, so 20 seconds or less is practically sufficient.
4.1.5.冷却
 最終熱処理通過後は冷却ゾーンにて、10℃以上30℃以下の冷却風でフィルムの実温度をガラス転移温度(Tg)以下になるまで冷却させる必要がある。 このとき、冷却風の温度を下げたり、風速を上げたりして冷却効率を向上させることが好ましい。なお実温度とは、非接触の放射温度計で測定したフィルム表面温度のことである。テンター出口のフィルムが十分に冷却されず、フィルムの実温度がTgを上回っていると、フィルムがクリップから解放された後も熱収縮を起こすため、フィルムの特性や厚みが変化してしまうおそれがある。ヒートシール層以外の層を、上記4.1.「ヒートシール層の製膜方法」中の4.1.1.「溶融押し出し」で記載した方法で積層させている場合は、テンター出口のフィルムの実温度がいずれか低い層のTgより低い温度にする必要がある。ヒートシール層以外の層を積層させている場合にテンター出口のフィルムの実温度がガラス転移温度を上回ると、クリップで把持していたフィルム両端部が解放されたときにフィルムが熱収縮してしまうだけでなく、熱収縮率の大きい層の方へカールしてしまうため好ましくない。
4.1.5. Cooling After passing the final heat treatment, it is necessary to cool the film in the cooling zone with cooling air of 10° C. or higher and 30° C. or lower until the actual temperature of the film becomes the glass transition temperature (Tg) or lower. At this time, it is preferable to lower the temperature of the cooling air or increase the wind speed to improve the cooling efficiency. The actual temperature is the film surface temperature measured by a non-contact radiation thermometer. If the film at the exit of the tenter is not sufficiently cooled and the actual temperature of the film exceeds Tg, thermal contraction will occur even after the film is released from the clip, so the characteristics and thickness of the film may change. is there. The layers other than the heat-sealing layer are the same as those in 4.1. 4.1.1. in "Method for forming heat seal layer". When laminating by the method described in "melt extrusion", it is necessary that the actual temperature of the film at the exit of the tenter is lower than the Tg of the lower layer. If the actual temperature of the film at the exit of the tenter exceeds the glass transition temperature when layers other than the heat seal layer are laminated, the film will heat shrink when both ends of the film held by the clips are released. Not only that, but also the layer having a large heat shrinkage is curled, which is not preferable.
 冷却ゾーンの通過時間は2秒以上20秒以下が好ましい。通過時間が2秒以下であると、フィルムの表面温度がガラス転移温度に到達しないまま冷却ゾーンを通過してしまうため、カールが大きくなってしまう。通過時間は長ければ長いほど冷却効果が上がるため、2秒以上であることが好ましく、5秒以上であることがさらに好ましい。ただし、通過時間を長くしようとすると、設備が巨大化してしまうため、実用上は20秒以下であれば充分である。
後は、フィルム両端部を裁断除去しながら巻き取れば、ヒートシール層としてのフィルムロールが得られる。
The passage time through the cooling zone is preferably 2 seconds or more and 20 seconds or less. If the passage time is 2 seconds or less, the curl becomes large because the film passes through the cooling zone without reaching the glass transition temperature. The longer the passage time is, the higher the cooling effect is. Therefore, the passage time is preferably 2 seconds or more, more preferably 5 seconds or more. However, if the passage time is lengthened, the equipment becomes huge, so 20 seconds or less is practically sufficient.
After that, the film roll as a heat-sealing layer can be obtained by winding the film while cutting and removing both end portions of the film.
4.2.基材層の製膜方法
4.2.1.溶融押し出し
 本発明の積層体を構成する基材層(以下、4.2.の範囲で「フィルム」と記載するものは、基材層を指す)は、上記3.「積層体の構成原料」中の3.2.「基材層」で記載した原料を、押し出し機により溶融押し出しして未延伸の積層フィルムを形成し、それを以下に示す所定の方法により延伸することによって得ることができる。ここでは、ポリブチレンテレフタレートまたはポリエチレンテレフタレートについて説明する。なお、フィルムが基材層以外の層を含む場合、各層を積層させるタイミングは延伸の前後いずれであっても構わない。延伸前に積層させる場合、各層の原料となる樹脂をそれぞれ別々の押し出し機によって溶融押し出しし、樹脂流路の途中でフィードブロック等を用いて接合させる方法を採用するのが好ましい。延伸後に積層させる場合、それぞれ別々に製膜したフィルムを接着剤によって貼りあわせるラミネート、単独または積層させたフィルムの表層に溶融させたポリエステル樹脂を流して積層させる押出ラミネートを採用するのが好ましい。これらの中でも、延伸前に各層を積層させる方法が好ましい。また、フィルムを延伸するときの過剰な結晶化を抑制する目的で、スタティックミキサーや多層フィードブロックによって同一樹脂を4層以上に多層積層してもよい。
4.2. Film forming method of base material layer 4.2.1. Melt Extrusion The base material layer (hereinafter referred to as “film” in the range of 4.2. refers to the base material layer) constituting the laminate of the present invention is the same as in 3. above. 3.2. in "Materials for Laminate" It can be obtained by melt-extruding the raw material described in the "base material layer" with an extruder to form an unstretched laminated film, and stretching it by a predetermined method shown below. Here, polybutylene terephthalate or polyethylene terephthalate will be described. When the film includes a layer other than the base material layer, the timing of laminating each layer may be before or after stretching. When laminating before stretching, it is preferable to adopt a method of melting and extruding the resins as the raw materials of the respective layers by separate extruders and joining them by using a feed block or the like in the middle of the resin flow path. When laminating after stretching, it is preferable to employ a laminate in which films formed separately are laminated with an adhesive, or an extrusion laminate in which a melted polyester resin is poured onto the surface layer of the laminated film to laminate the films. Among these, the method of laminating each layer before stretching is preferable. Further, for the purpose of suppressing excessive crystallization when the film is stretched, the same resin may be laminated in four or more layers by a static mixer or a multilayer feed block.
ポリエステル樹脂は、ジカルボン酸成分とジオール成分の種類と量を選定して重縮合させることで得ることができる。また、チップ状のポリエステルを2種以上混合してポリエステル系樹脂層の原料として使用することもできる。
原料樹脂を溶融押し出しするとき、ポリエステル原料をホッパードライヤー、パドルドライヤー等の乾燥機、または真空乾燥機を用いて乾燥するのが好ましい。そのようにポリエステル原料を乾燥させた後、押出機を利用して200~300℃の温度で溶融してフィルムとして押し出す。押し出しはTダイ法、チューブラー法等、既存の任意の方法を採用することができる。
The polyester resin can be obtained by polycondensing by selecting the types and amounts of the dicarboxylic acid component and the diol component. Further, two or more kinds of chip-shaped polyester may be mixed and used as a raw material for the polyester resin layer.
When the raw material resin is melt-extruded, it is preferable to dry the polyester raw material using a dryer such as a hopper dryer or a paddle dryer, or a vacuum dryer. After drying the polyester raw material in this way, it is melted at a temperature of 200 to 300° C. using an extruder and extruded as a film. For extrusion, any existing method such as a T-die method or a tubular method can be adopted.
 その後、押し出しで溶融されたフィルムを急冷することにより、未延伸のフィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂を口金から回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
フィルムは、無延伸、一軸延伸、二軸延伸いずれの方式で製膜されてもよい。本発明の積層体の衝撃強度や突き刺し強度等の機械強度や生産性の観点からは、一軸延伸であることが好ましく、二軸延伸であるとより好ましい。以下では、最初に縦延伸、次に横延伸を実施する縦延伸-横延伸による逐次二軸延伸法について説明するが、順番を逆にする横延伸
-縦延伸であっても、主配向方向が変わるだけなので構わない。また、同時二軸延伸法でも構わない。
Then, the unstretched film can be obtained by rapidly cooling the film melted by extrusion. As a method of quenching the molten resin, a method of obtaining a substantially unoriented resin sheet by casting the molten resin from a die onto a rotating drum and quenching and solidifying can be suitably adopted.
The film may be formed by any method of non-stretching, uniaxial stretching and biaxial stretching. From the viewpoint of mechanical strength such as impact strength and puncture strength of the laminate of the present invention and productivity, uniaxial stretching is preferable, and biaxial stretching is more preferable. In the following, a sequential biaxial stretching method in which longitudinal stretching is performed first and then transverse stretching is performed-longitudinal stretching-horizontal stretching is performed. However, even in transverse stretching-longitudinal stretching in which the order is reversed, the main orientation direction is It doesn't matter because it only changes. Also, a simultaneous biaxial stretching method may be used.
4.2.2.縦延伸
 縦方向の延伸は、未延伸フィルムを複数のロール群を連続的に配置した縦延伸機へと導入するとよい。縦延伸にあたっては、予熱ロールでフィルム温度がTg~Tg+40℃になるまで予備加熱することが好ましい。フィルム温度がTgより低いと、縦方向に延伸する際に延伸しにくくなり、破断が生じやすくなるため好ましくない。またTg+40℃より高いとロールにフィルムが粘着しやすくなり、ロールへのフィルムの巻き付きや連続生産によるロールの汚れやすくなるため好ましくない。
4.2.2. Longitudinal Stretching In the longitudinal stretching, the unstretched film may be introduced into a longitudinal stretching machine in which a plurality of roll groups are continuously arranged. In the longitudinal stretching, it is preferable to preheat with a preheating roll until the film temperature reaches Tg to Tg+40°C. When the film temperature is lower than Tg, it becomes difficult to stretch the film when it is stretched in the machine direction, and breakage easily occurs, which is not preferable. On the other hand, if the temperature is higher than Tg+40° C., the film is likely to stick to the roll, and the film is easily wrapped around the roll or the roll is easily soiled due to continuous production, which is not preferable.
 フィルム温度がTg~Tg+40℃になったら縦延伸を行う。縦延伸倍率は、1倍以上5倍以下とすると良い。1倍は縦延伸をしていないということなので、横一軸延伸フィルムを得るには縦の延伸倍率を1倍に、二軸延伸フィルムを得るには1.1倍以上の縦延伸となる。また縦延伸倍率の上限は何倍でも構わないが、あまりに高い縦延伸倍率だと横延伸しにくくなって破断が生じやすくなるため、5倍以下であると好ましい。 Longitudinal stretching is performed when the film temperature reaches Tg to Tg + 40°C. The longitudinal stretching ratio is preferably 1 time or more and 5 times or less. Since 1 times means that the film is not longitudinally stretched, the longitudinal stretching ratio is 1 times to obtain a lateral uniaxially stretched film, and 1.1 times or more to obtain a biaxially stretched film. The upper limit of the longitudinal stretching ratio may be any number, but if the longitudinal stretching ratio is too high, lateral stretching becomes difficult and breakage is likely to occur, so that it is preferably 5 times or less.
4.2.3.横延伸
 縦延伸の後、テンター内でフィルムの幅方向(長手方向と直交する方向)の両端際をクリップによって把持した状態で、Tg~Tg+50℃で3~5倍程度の延伸倍率で横延伸を行うことが好ましい。横方向の延伸を行う前には、予備加熱を行っておくことが好ましく、予備加熱はフィルム表面温度がTg-10℃~Tg+40℃になるまで行うとよい。
 横延伸の後は、フィルムを積極的な加熱操作を実行しない中間ゾーンを通過させることが好ましい。テンターの横延伸ゾーンに対し、その次の最終熱処理ゾーンでは温度が高いため、中間ゾーンを設けないと最終熱処理ゾーンの熱(熱風そのものや輻射熱)が横延伸工程に流れ込んでしまう。この場合、横延伸ゾーンの温度が安定しないため、フィルムの厚み精度が悪化してしまう。そこで、横延伸後のフィルムは中間ゾーンを通過させて所定の時間を経過させた後、最終熱処理を実施するのが好ましい。この中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、フィルムの走行に伴う随伴流、横延伸ゾーンや最終熱処理ゾーンからの熱風を遮断することが重要である。中間ゾーンの通過時間は、1秒~5秒程度で充分である。1秒より短いと、中間ゾーンの長さが不充分となって、熱の遮断効果が不足する。一方、中間ゾーンは長い方が好ましいが、あまりに長いと設備が大きくなってしまうので、5秒程度で充分である。
4.2.3. Lateral Stretching After longitudinal stretching, the film is laterally stretched in a tenter at a stretch ratio of 3 to 5 times at Tg to Tg + 50°C, with both edges of the film in the width direction (direction orthogonal to the longitudinal direction) being held by clips. It is preferable to carry out. Prior to the stretching in the transverse direction, preheating is preferably performed, and preheating is preferably performed until the film surface temperature reaches Tg-10°C to Tg+40°C.
After transverse stretching, the film is preferably passed through an intermediate zone where no positive heating operation is carried out. Since the temperature is higher in the final heat treatment zone subsequent to the transverse stretching zone of the tenter, heat (hot air itself or radiant heat) in the final heat treatment zone flows into the transverse stretching process unless the intermediate zone is provided. In this case, since the temperature of the transverse stretching zone is not stable, the film thickness accuracy is deteriorated. Therefore, it is preferable that the film after the transverse stretching is passed through the intermediate zone for a predetermined time and then subjected to the final heat treatment. In this intermediate zone, when a strip-shaped piece of paper hangs down while the film is not passing through, it is possible for the piece of paper to hang down almost completely in the vertical direction. It is important to block the hot air from the heat treatment zone. A transit time of about 1 to 5 seconds is sufficient for passing through the intermediate zone. If it is shorter than 1 second, the length of the intermediate zone becomes insufficient and the heat blocking effect becomes insufficient. On the other hand, it is preferable that the intermediate zone is long, but if it is too long, the equipment becomes large, so about 5 seconds is sufficient.
 4.2.4.最終熱処理
 中間ゾーンの通過後は最終熱処理ゾーンにて、180℃以上280℃以下で熱処理を行うことが好ましい。熱処理温度が180℃未満であると、積層体の98℃温湯収縮率が5%よりも高くなってしまうため好ましくない。熱処理温度が高くなるほどフィルムの収縮率は低下するが、280℃よりも高くなると最終熱処理工程中にフィルムが融けてテンター内に落下するといった問題が生じやすくなるため好ましくない。
4.2.4. Final heat treatment After passing through the intermediate zone, it is preferable to perform heat treatment at 180°C or higher and 280°C or lower in the final heat treatment zone. If the heat treatment temperature is lower than 180° C., the shrinkage rate of hot water at 98° C. of the laminate will be higher than 5%, which is not preferable. The higher the heat treatment temperature, the lower the shrinkage factor of the film, but if the heat treatment temperature is higher than 280° C., the problem that the film melts and drops into the tenter during the final heat treatment step is not preferable, which is not preferable.
 最終熱処理の際、テンターの幅方向におけるクリップ間距離を任意の倍率で縮めることによって幅方向の収縮率を低減させることができる。そのため、最終熱処理では、0%以上5%以下の範囲で幅方向へのリラックスを行うことが好ましい。幅方向へのリラックス率が高いほど幅方向の収縮率は下がるものの、リラックス率の上限は使用する原料や幅方向への延伸条件、熱処理温度によって決まるため、これを超えてリラックスを実施することはできない。本発明に用いる基材層においては、幅方向へのリラックス率は5%が上限である。 ▽During the final heat treatment, the shrinkage ratio in the width direction can be reduced by reducing the distance between clips in the width direction of the tenter by an arbitrary ratio. Therefore, in the final heat treatment, it is preferable to relax in the width direction in the range of 0% or more and 5% or less. The higher the relaxation rate in the width direction, the lower the shrinkage rate in the width direction.However, the upper limit of the relaxation rate is determined by the raw material used, the stretching conditions in the width direction, and the heat treatment temperature. Can not. In the base material layer used in the present invention, the relaxation rate in the width direction has an upper limit of 5%.
 さらに、最終熱処理の際に、テンターの長手方向におけるクリップ間距離を任意の倍率で縮めることによって長手方向の収縮率を低減させることができる。長手方向へのリラックス率が高いほど長手方向の収縮率が下がるものの、リラックス率(横延伸直後のフィルムの長手方向への収縮率)の上限は使用する原料や長手方向への延伸・リラックス条件、熱処理温度によって決まるため、これを超えてリラックスを実施することはできない。本発明のヒートシール層においては、長手方向へのリラックス率は5%が上限である。 Furthermore, during the final heat treatment, the shrinkage ratio in the longitudinal direction can be reduced by reducing the distance between clips in the longitudinal direction of the tenter by an arbitrary ratio. Although the higher the relaxation rate in the longitudinal direction, the lower the contraction rate in the longitudinal direction, the upper limit of the relaxation rate (the contraction rate in the longitudinal direction of the film immediately after transverse stretching) is the upper limit of the raw material used and the stretching/relaxation conditions in the longitudinal direction. Since it depends on the heat treatment temperature, the relaxation cannot be performed beyond this. In the heat-sealing layer of the present invention, the relaxation rate in the longitudinal direction has an upper limit of 5%.
 また、最終熱処理ゾーンの通過時間は2秒以上20秒以下が好ましい。通過時間が2秒以下であると、フィルムの表面温度が設定温度に到達しないまま熱処理ゾーンを通過してしまうため、熱処理の意味をなさなくなる。通過時間は長ければ長いほど熱処理の効果が上がるため、2秒以上であることが好ましく、5秒以上であることがさらに好ましい。ただし、通過時間を長くしようとすると、設備が巨大化してしまうため、実用上は20秒以下であれば充分である。 Also, the transit time of the final heat treatment zone is preferably 2 seconds or more and 20 seconds or less. When the passage time is 2 seconds or less, the surface temperature of the film passes through the heat treatment zone without reaching the set temperature, so that the heat treatment becomes meaningless. The longer the passage time is, the higher the effect of the heat treatment is. Therefore, the passage time is preferably 2 seconds or more, more preferably 5 seconds or more. However, if the passage time is lengthened, the equipment becomes huge, so 20 seconds or less is practically sufficient.
4.2.5.冷却
 最終熱処理通過後は冷却ゾーンにて、10℃以上30℃以下の冷却風でフィルムの実温度をガラス転移温度(Tg)以下になるまで冷却させる必要がある。このとき、冷却風の温度を下げたり、風速を上げたりして冷却効率を向上させることが好ましい。なお実温度とは、非接触の放射温度計で測定したフィルム表面温度のことである。テンター出口のフィルムが十分に冷却されず、フィルムの実温度がTgを上回っていると、フィルムがクリップから解放された後も熱収縮を起こすため、フィルムの特性や厚みが変化してしまうおそれがある。ヒートシール層以外の層を、上記4.1.「ヒートシール層の製膜方法」中の4.2.1.「溶融押し出し」で記載した方法で積層させている場合は、テンター出口のフィルムの実温度がいずれか低い層のTgより低い温度にする必要がある。ヒートシール層以外の層を積層させている場合にテンター出口のフィルムの実温度がガラス転移温度を上回ると、クリップで把持していたフィルム両端部が解放されたときにフィルムが熱収縮してしまうだけでなく、熱収縮率の大きい層の方へカールしてしまうため好ましくない。
4.2.5. Cooling After passing the final heat treatment, it is necessary to cool the film in the cooling zone with cooling air of 10° C. or higher and 30° C. or lower until the actual temperature of the film becomes the glass transition temperature (Tg) or lower. At this time, it is preferable to lower the temperature of the cooling air or increase the wind speed to improve the cooling efficiency. The actual temperature is the film surface temperature measured by a non-contact radiation thermometer. If the film at the exit of the tenter is not sufficiently cooled and the actual temperature of the film exceeds Tg, thermal contraction will occur even after the film is released from the clip, so the characteristics and thickness of the film may change. is there. The layers other than the heat-sealing layer are the same as those in 4.1. 4.2.1. in "Method for forming heat seal layer". When laminating by the method described in "melt extrusion", it is necessary that the actual temperature of the film at the exit of the tenter is lower than the Tg of the lower layer. If the actual temperature of the film at the exit of the tenter exceeds the glass transition temperature when layers other than the heat seal layer are laminated, the film will heat shrink when both ends of the film held by the clips are released. Not only that, but also the layer having a large heat shrinkage is curled, which is not preferable.
 冷却ゾーンの通過時間は2秒以上20秒以下が好ましい。通過時間が2秒以下であると、フィルムの表面温度がガラス転移温度に到達しないまま冷却ゾーンを通過してしまうため、カールが大きくなってしまう。通過時間は長ければ長いほど冷却効果が上がるため、2秒以上であることが好ましく、5秒以上であることがさらに好ましい。ただし、通過時間を長くしようとすると、設備が巨大化してしまうため、実用上は20秒以下であれば充分である。
後は、フィルム両端部を裁断除去しながら巻き取れば、基材層としてのフィルムロールが得られる。
The passage time through the cooling zone is preferably 2 seconds or more and 20 seconds or less. If the passage time is 2 seconds or less, the curl becomes large because the film passes through the cooling zone without reaching the glass transition temperature. The longer the passage time is, the higher the cooling effect is. Therefore, the passage time is preferably 2 seconds or more, more preferably 5 seconds or more. However, if the passage time is lengthened, the equipment becomes huge, so 20 seconds or less is practically sufficient.
After that, the film roll as a base material layer can be obtained by winding the film while cutting and removing both end portions of the film.
4.3.ガスバリア層の積層方法
 本発明の積層体におけるガスバリア層の積層方法は特に限定されず、本発明の目的を損なわない限り公知の製造方法を採用することができる。例えば金属材料を真空蒸着法、スパッター法、イオンブレーティングなどのPVD法(物理蒸着法)、あるいは、CVD法(化学蒸着法)などで蒸着する方法が挙げられる。さらに、アルミ箔等の金属箔をフィルムにラミネートする方法を採用してもよい。これらの中でも、特に生産の速度や安定性の観点から真空蒸着法が好ましい。真空蒸着法における加熱方式としては、抵抗加熱、高周波誘導加熱、電子ビーム加熱等を用いることができる。また、反応性ガスとして、酸素、窒素、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を用いたりしてもよい。また、基板にバイアス等を加える、基板温度を上昇あるいは冷却する等、本発明の目的を損なわない限りは条件を変更してもよい。
4.3. Method for Laminating Gas Barrier Layer The method for laminating the gas barrier layer in the laminate of the present invention is not particularly limited, and a known manufacturing method can be adopted as long as the object of the present invention is not impaired. For example, there is a method of depositing a metal material by a vacuum vapor deposition method, a sputtering method, a PVD method (physical vapor deposition method) such as ion plating, or a CVD method (chemical vapor deposition method). Further, a method of laminating a metal foil such as aluminum foil on the film may be adopted. Among these, the vacuum vapor deposition method is particularly preferable from the viewpoint of production speed and stability. As a heating method in the vacuum vapor deposition method, resistance heating, high frequency induction heating, electron beam heating or the like can be used. Further, as the reactive gas, oxygen, nitrogen, water vapor, or the like may be introduced, or reactive vapor deposition using means such as ozone addition or ion assist may be used. Further, the conditions may be changed as long as the object of the present invention is not impaired, for example, by applying a bias or the like to the substrate, raising or cooling the substrate temperature.
4.4.オーバーコート層の成膜方法
 本発明の積層体におけるオーバーコートを積層する方法は特に限定されず、グラビアコート法、リバースコート法、ディッピング法、ローコート法、エアナイフコート法、コンマコート法、スクリーン印刷法、スプレーコート法、グラビアオフセット法、ダイコート法、バーコート法等、従来公知のコーティング方法が使用でき、所望の目的に応じて適宜選択することができる。
4.4. Method for forming overcoat layer The method for laminating the overcoat in the laminate of the present invention is not particularly limited, and includes a gravure coating method, a reverse coating method, a dipping method, a low coating method, an air knife coating method, a comma coating method, and a screen printing method. Conventionally known coating methods such as a spray coating method, a gravure offset method, a die coating method and a bar coating method can be used, and can be appropriately selected according to a desired purpose.
 乾燥方法は、熱風乾燥、熱ロール乾燥、高周波照射、赤外線照射、UV照射など、熱をかける方法を1種類あるいは2種類以上組み合わせて用いることができる。乾燥方法において、加熱温度は、60℃以上200℃以下程度の範囲内が好ましく、80℃以上180℃以下程度の範囲内がより好ましい。乾燥温度が60℃以上であると、所望のバリア性が発現され良好である。乾燥温度が180℃以下であると、蒸着短時間であれば、基材の変形や蒸着膜にクラックが発生することがないため好ましい。 As the drying method, hot air drying, hot roll drying, high frequency irradiation, infrared irradiation, UV irradiation, or the like can be used alone or in combination of two or more. In the drying method, the heating temperature is preferably in the range of 60°C or higher and 200°C or lower, and more preferably in the range of 80°C or higher and 180°C or lower. When the drying temperature is 60° C. or higher, a desired barrier property is exhibited, which is good. When the drying temperature is 180° C. or lower, deformation of the base material and cracks in the vapor deposition film do not occur for a short vapor deposition time, which is preferable.
4.5.積層体の接着方法
 本発明の積層体において、ヒートシール層と基材層(必要に応じて、いずれかの層に積層されたガスバリア層、アンカーコート層、オーバーコート層を含む)を、接着層を介して積層するには、まず、接着層を構成する接着剤をいずれか一方のフィルムに塗布する。その後、もう一方のフィルムを、接着剤を塗布した面に貼りあわせ、接着剤を乾燥させて溶剤を揮発させる。乾燥条件は、接着剤によって異なるが、例えば40℃環境下で1日以上放置する等により接着剤が硬化する。
4.5. Method for Adhering Laminate In the laminate of the present invention, a heat-sealing layer and a base material layer (including a gas barrier layer, an anchor coat layer, and an overcoat layer laminated on any layer, if necessary) are used as an adhesive layer. In order to laminate the films via the, the adhesive forming the adhesive layer is first applied to one of the films. Then, the other film is attached to the surface coated with the adhesive, and the adhesive is dried to volatilize the solvent. Drying conditions differ depending on the adhesive, but the adhesive cures when left in a 40° C. environment for one day or more, for example.
5.包装体の構成、製袋方法
 上記特性を有する積層体は、包装体として好適に使用することができる。本発明の積層体は単独で袋にすることもできるが、他の材料を積層してもよい。積層体を構成する他の層としては、例えば、ポリエチレンテレフタレートを構成成分に含む無延伸フィルム、他の非晶性ポリエステルを構成成分に含む無延伸、一軸延伸または二軸延伸フィルム、ナイロンを構成成分に含む無延伸、一軸延伸または二軸延伸フィルム、ポリプロピレンを構成成分に含む無延伸、一軸延伸または二軸延伸フィルム等が挙げられるが、これらに限定されるものではない。包装体に積層体を用いる方法は特に限定されず、塗布形成法、ラミネート法、ヒートシール法といった従来公知の製造方法を採用することができる。
包装体は、少なくとも一部が本発明に係る積層体で構成されていてもよいが、包装体の全部に上述の積層体が存在している構成が、包装体のガスバリア性が向上するため好ましい。また、包装体は、本発明の積層体がどの層にきてもよいが、内容物に対する非吸着性、袋を製袋するときのシール強度を考慮すると、本発明の積層体のヒートシール層が袋の最内層となる構成が好ましい。
5. Configuration of Package, Bag Making Method The laminate having the above properties can be suitably used as a package. The laminate of the present invention can be used alone as a bag, but other materials may be laminated. As the other layer constituting the laminate, for example, a non-stretched film containing polyethylene terephthalate as a constituent component, a non-stretched film containing another amorphous polyester as a constituent component, a uniaxially stretched or biaxially stretched film, a constituent component of nylon. Examples of the non-stretched film include a non-stretched film, a uniaxially stretched film or a biaxially stretched film, a non-stretched film containing polypropylene as a constituent component, a uniaxially stretched film, or a biaxially stretched film. The method of using the laminate for the package is not particularly limited, and a conventionally known manufacturing method such as a coating forming method, a laminating method, and a heat sealing method can be adopted.
The package may be at least partially formed of the laminate according to the present invention, but a configuration in which the above-described laminate is present in the entire package is preferable because the gas barrier property of the package is improved. .. Further, the package may be in any layer of the laminate of the present invention, but considering the non-adhesiveness to the contents and the sealing strength when making a bag, the heat-sealing layer of the laminate of the present invention Is preferably the innermost layer of the bag.
 本発明の積層体を有する包装体を製袋する方法は特に限定されず、ヒートバー(ヒートジョー)を用いたヒートシール、ホットメルトを用いた接着、溶剤によるセンターシール等の従来公知の製造方法を採用することができる。
 本発明の積層体を有する包装体は、食品、医薬品、工業製品等の様々な物品の包装材料として好適に使用することができる。
The method for bag-making the package having the laminate of the present invention is not particularly limited, and conventionally known production methods such as heat sealing using a heat bar (heat jaw), adhesion using hot melt, and center sealing with a solvent can be used. Can be adopted.
The package having the laminate of the present invention can be suitably used as a packaging material for various products such as foods, pharmaceuticals, and industrial products.
 次に実施例および比較例を用いて本発明を具体的に説明するが、本発明はかかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更することが可能である。
 積層体の評価方法は以下の通りである。なお、積層体の面積が小さいなどの理由で長手方向と幅方向が直ちに特定できない場合は、仮に長手方向と幅方向を定めて測定すればよく、仮に定めた長手方向と幅方向が真の方向に対して90度違っているからといって、とくに問題を生ずることはない。
Next, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the modes of the Examples, and may be appropriately changed without departing from the gist of the present invention. Is possible.
The evaluation method of the laminate is as follows. In addition, when the longitudinal direction and the width direction cannot be specified immediately because the area of the laminated body is small, the longitudinal direction and the width direction may be temporarily determined and the measurement may be performed. The difference of 90 degrees does not cause any particular problem.
 <積層体の評価方法>
[ヒートシール強度]
 ヒートシール強度はJIS Z1707に準拠して測定した。具体的な手順を示す。ヒートシーラーにて、サンプルのヒートシール面同士を接着した。ヒートシール条件は、上バー温度140℃、下バー温度30℃、圧力0.2MPa、時間2秒とした。接着サンプルは、シール幅が15mmとなるように切り出した。剥離強度は、万能引張試験機「DSS-100」(島津製作所製)を用いて引張速度200mm/分で測定した。剥離強度は、15mmあたりの強度(N/15mm)で示す。
<Evaluation method of laminated body>
[Heat seal strength]
The heat seal strength was measured according to JIS Z1707. A specific procedure is shown. A heat sealer was used to bond the heat-sealed surfaces of the samples together. The heat sealing conditions were an upper bar temperature of 140° C., a lower bar temperature of 30° C., a pressure of 0.2 MPa, and a time of 2 seconds. The adhesive sample was cut out so that the seal width was 15 mm. The peel strength was measured using a universal tensile tester “DSS-100” (manufactured by Shimadzu Corporation) at a tensile speed of 200 mm/min. The peel strength is indicated by the strength per 15 mm (N/15 mm).
[衝撃強度]
JIS K7160-1996に準じて、株式会社東洋精機製作所製のインパクトテスターを用い、23℃の雰囲気下における積層体の衝撃打ち抜きに対するエネルギーを測定した。
[Impact strength]
According to JIS K7160-1996, an impact tester manufactured by Toyo Seiki Seisaku-sho, Ltd. was used to measure the energy for impact punching of the laminate in an atmosphere of 23°C.
 [突刺し強度]
 食品衛生法における「食品、添加物等の規格基準 第3:器具及び容器包装」(昭和57年厚生省告示第20号)の「2.強度等試験法」に準拠して23℃下で突刺し強度を測定した。先端部直径0.7mmの針を、突刺し速度50mm/分で積層体のヒートシール層(最内層側)から突き刺し、針がフィルムを貫通する際の強度を測定した。なお、突き刺し強度は、積層体の単位厚みあたり(N/μm)で計算した。
[Puncture strength]
Puncture at 23°C in accordance with “2. Test method for strength, etc.” of “Standards for foods, additives, etc. 3: Appliances and containers and packaging” (Ministry of Health and Welfare Notification No. 20 of 1982) in the Food Sanitation Law. The strength was measured. A needle having a tip diameter of 0.7 mm was pierced from the heat-sealing layer (innermost layer side) of the laminate at a piercing speed of 50 mm/min, and the strength when the needle penetrated the film was measured. The puncture strength was calculated per unit thickness of the laminate (N/μm).
[水蒸気透過度]
 水蒸気透過度はJIS K7126 B法に準じて測定した。水蒸気透過度測定装置(PERMATRAN-W3/33MG MOCON社製)を用いて、温度40℃、湿度90%RHの雰囲気下において、積層体のヒートシール層側から無機薄膜層側に調湿ガスが透過する方向で水蒸気透過度を測定した。なお、測定前には湿度65%RH環境下で、サンプルを4時間放置して調湿した。
[Water vapor permeability]
The water vapor permeability was measured according to JIS K7126 B method. Using a water vapor permeability measuring device (PERMATRAN-W3/33MG MOCON), the humidity control gas permeates from the heat seal layer side to the inorganic thin film layer side of the laminate in an atmosphere of a temperature of 40° C. and a humidity of 90% RH. The water vapor permeability was measured in the following direction. Before the measurement, the sample was allowed to stand for 4 hours in a RH environment of 65% RH to control the humidity.
[酸素透過度]
 酸素透過度はJIS K7126-2法に準じて測定した。酸素透過量測定装置(OX-TRAN 2/20 MOCOM社製)を用いて、温度23度、湿度65%RHの雰囲気下において、積層体のヒートシール層側から無機薄膜層側に酸素が透過する方向で酸素透過度を測定した。なお、測定前には湿度65%RH環境下で、サンプルを4時間放置して調湿した。
[Oxygen permeability]
The oxygen permeability was measured according to JIS K7126-2 method. Oxygen permeates from the heat seal layer side of the laminate to the inorganic thin film layer side in an atmosphere of a temperature of 23° C. and a humidity of 65% RH using an oxygen permeation measuring device (manufactured by OX-TRAN 2/20 MOCOM). The oxygen permeability was measured in the direction. Before the measurement, the sample was allowed to stand for 4 hours in a RH environment of 65% RH to control the humidity.
[温湯熱収縮率]
 サンプルを10cm×10cmの正方形に裁断し、98±0.5℃の温水中に無荷重状態で3分間浸漬して収縮させた後、25℃±0.5℃の水中に10秒間浸漬し、水中から出した。その後、サンプルの縦および横方向の寸法を測定し、下式2にしたがって各方向の熱収縮率を求めた。なお、測定は2回行い、その平均値を求めた。

 収縮率={(収縮前の長さ-収縮後の長さ)/収縮前の長さ}×100(%)  式2

 縦および横方向の熱収縮率を以下の基準で評価した。判定基準は以下の通りである。

判定○ 熱収縮率 5%以下
判定× 熱収縮率 5%以上
[Hot water heat shrinkage rate]
The sample was cut into a square of 10 cm×10 cm, dipped in hot water of 98±0.5° C. for 3 minutes in a no-load state to shrink, and then dipped in water of 25°±0.5° C. for 10 seconds, I took it out of the water. After that, the vertical and horizontal dimensions of the sample were measured, and the heat shrinkage rate in each direction was calculated according to the following equation 2. In addition, the measurement was performed twice and the average value was calculated.

Shrinkage rate={(length before shrinkage-length after shrinkage)/length before shrinkage}×100(%) Equation 2

The heat shrinkage rates in the vertical and horizontal directions were evaluated according to the following criteria. The criteria for judgment are as follows.

Judgment ○ Heat shrinkage rate 5% or less Judgment × Heat shrinkage rate 5% or more
[落袋評価]
 積層体を15cm四方の大きさにカットし、シーラントが内側になるように2枚を重ね合わせ、3方を温度140℃、圧力0.2MPa、時間0.2秒、幅1.0cmでヒートシールすることで内寸13cmの3方シール袋を得た。
 得られた3方シール袋の中に、水を吸わせて重量を300gに調整したキムタオル(登録商標、日本製紙クレシア製、サイズ380mm×330mm)5枚を丸めて入れ、上記と同じヒートシール条件で4方目の口を閉じ、4方シール袋を作製した。
[Drop bag evaluation]
Cut the laminate to a size of 15 cm square, stack the two so that the sealant is on the inside, and heat seal the three sides at a temperature of 140°C, pressure of 0.2 MPa, time of 0.2 seconds, width of 1.0 cm. By doing so, a three-sided sealed bag having an inner size of 13 cm was obtained.
Five Kim towels (registered trademark, made by Nippon Paper Crecia, size 380 mm x 330 mm) whose weight was adjusted to 300 g by absorbing water were rolled into the obtained three-sided seal bag, and the same heat-sealing conditions as above were applied. Then, the mouth of the fourth side was closed and a four-sided sealed bag was produced.
 得られた4方シール袋を室温0℃の環境下、高さ100cmの位置からコンクリート板の上に5回連続で落下させ、以下に示すように、袋が破れるまでの回数を落袋スコアとして求めた。なお、落袋スコアは5回試行後の和として算出した(最高4点×5回=20点満点)。

  1回目で破袋 0点
  2回目で破袋 1点
  3回目で破袋 2点
  4回目で破袋 3点
  5回目で破袋 4点

 落袋スコア10点以上を合格(○)とし、9点以下を不合格(×)とした。
The obtained four-side sealed bag was dropped 5 times in succession from a position of 100 cm in height at a room temperature of 0° C. on a concrete plate, and as shown below, the number of times until the bag was broken was taken as a drop bag score. I asked. The drop bag score was calculated as the sum after 5 trials (maximum 4 points×5 times=maximum 20 points).

1st time bag breaking 0 points 2nd time bag breaking 1 point 3rd time bag breaking 2 points 4th time bag breaking 3 points 5th time bag breaking 4 points

A drop bag score of 10 points or more was passed (◯), and a score of 9 points or less was rejected (x).
[吸着性]
 積層体を10cm×10cmの正方形に裁断し、ヒートシール面を内側にした状態で2枚を重ね、フィルムの端部より1cmの位置をヒートシールして袋を作成した。袋に内容物0.5mlの入ったアルミカップを入れ、積層体端部より1cmの位置をヒートシールして袋を閉じて密閉した。前記内容物にはD-リモネン(東京化成工業株式会社製)、L-メントール(ナカライテスク株式会社製)を使用した。30℃環境下で20時間保持した後、袋のアルミカップの口部に接する面より5cm×5cmの正方形を切り取り、切り取った積層体を抽出溶媒4mlに浸した状態で、超音波で30分間抽出した。抽出溶媒には99.8%エタノール(富士フイルム和光純薬株式会社製)を用いた。島津製作所社製のガスクロマトグラフ「GC-14B」を用いて抽出溶液中の内容物の濃度を定量した。ガスクロマトグラフは、カラムに「GC-14A Glass I.D.2.6φx1.1m PET-HT 5% Uniport HP 80/100(ジーエルサイエンス社製)」、検出器にFID,キャリアガスにNを用い、キャリアガス流量35ml/分、注入量1μlにて面積百分率法で定量した。吸着量はヒートシール面1cmあたりの吸着量(μg/cm)で示し、低吸着性を以下のように判定した。

判定○  0μg/cm以上、2μg/cm未満
判定×  2μg/cm以上
[Adsorption]
The laminate was cut into a square of 10 cm×10 cm, two sheets were stacked with the heat-sealing surface inside, and a position 1 cm from the edge of the film was heat-sealed to form a bag. An aluminum cup containing 0.5 ml of the content was placed in the bag, and the position 1 cm from the end of the laminate was heat-sealed to close the bag. As the contents, D-limonene (manufactured by Tokyo Chemical Industry Co., Ltd.) and L-menthol (manufactured by Nacalai Tesque, Inc.) were used. After holding for 20 hours in a 30°C environment, cut a 5 cm × 5 cm square from the surface of the bag that contacts the mouth of the aluminum cup, and sonicate for 30 minutes while immersing the cut laminated body in 4 ml of extraction solvent. did. 99.8% ethanol (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was used as the extraction solvent. The concentration of the contents in the extraction solution was quantified using a gas chromatograph "GC-14B" manufactured by Shimadzu Corporation. The gas chromatograph uses "GC-14A Glass ID 2.6φ x 1.1 m PET-HT 5% Uniport HP 80/100 (manufactured by GL Sciences)" for the column, FID for the detector, and N 2 for the carrier gas. The carrier gas flow rate was 35 ml/min, and the injection rate was 1 μl. The adsorption amount was indicated by an adsorption amount (μg/cm 2 ) per 1 cm 2 of the heat-sealed surface, and the low adsorption property was determined as follows.

Judgment ○ 0 μg/cm 2 or more, less than 2 μg/cm 2 Judgment × 2 μg/cm 2 or more
 <ポリエステル原料の調製>
[合成例1]
 撹拌機、温度計および部分環流式冷却器を備えたステンレススチール製オートクレーブに、ジカルボン酸成分としてジメチルテレフタレート(DMT)100モル%と、多価アルコール成分としてエチレングリコール(EG)100モル%とを、エチレングリコールがモル比でジメチルテレフタレートの2.2倍になるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)用いて、生成するメタノールを系外へ留去しながらエステル交換反応を行った。その後、重縮合触媒として三酸化アンチモン0.225モル%(酸成分に対して)を添加し、280℃で26.7Paの減圧条件下、重縮合反応を行い、固有粘度0.75dl/gのポリエステル(A)を得た。このポリエステル(A)は、ポリエチレンテレフタレートである。ポリエステル(A)の組成を表1に示す。
<Preparation of polyester raw material>
[Synthesis Example 1]
In a stainless steel autoclave equipped with a stirrer, a thermometer and a partial reflux condenser, dimethyl terephthalate (DMT) 100 mol% as a dicarboxylic acid component, and ethylene glycol (EG) 100 mol% as a polyhydric alcohol component, Ethylene glycol was added so that the molar ratio was 2.2 times that of dimethyl terephthalate, and 0.05 mol% of zinc acetate (based on the acid component) was used as the transesterification catalyst to distill off the produced methanol out of the system. While carrying out the transesterification reaction. Then, 0.225 mol% of antimony trioxide (based on the acid component) was added as a polycondensation catalyst, and the polycondensation reaction was carried out under a reduced pressure condition of 280° C. and 26.7 Pa to obtain an intrinsic viscosity of 0.75 dl/g. Polyester (A) was obtained. This polyester (A) is polyethylene terephthalate. The composition of the polyester (A) is shown in Table 1.
[合成例2]
 合成例1と同様の手順でモノマーを変更したポリエステル(B)~(G)を得た。各ポリエステルの組成を表1に示す。表1において、TPAはテレフタル酸、IPAはイソフタル酸、BDは1,4-ブタンジオール、NPGはネオペンチルグリコール、CHDMは1,4-シクロヘキサンジメタノール、DEGはジエチレングリコールである。なお、ポリエステル(G)の製造の際には、滑剤としてSiO2(富士シリシア社製サイリシア266)をポリエステルに対して7,000ppmの割合で添加した。各ポリエステルは、適宜チップ状にした。ポリエステル(B)~(G)の組成を表1に示す。
[Synthesis example 2]
Polyesters (B) to (G) in which the monomers were changed were obtained by the same procedure as in Synthesis Example 1. The composition of each polyester is shown in Table 1. In Table 1, TPA is terephthalic acid, IPA is isophthalic acid, BD is 1,4-butanediol, NPG is neopentyl glycol, CHDM is 1,4-cyclohexanedimethanol, and DEG is diethylene glycol. During the production of the polyester (G), SiO2 (Silysia 266 manufactured by Fuji Silysia Chemical Ltd.) was added as a lubricant at a ratio of 7,000 ppm with respect to the polyester. Each polyester was chipped appropriately. Table 1 shows the composition of the polyesters (B) to (G).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[フィルム1]
 ヒートシール層(A層)の原料としてポリエステルAとポリエステルBとポリエステルEとポリエステルGを質量比9:60:24:7で混合し、それ以外の層(B層)の原料としてポリエステルAとポリエステルBとポリエステルEとポリエステルGを質量比56:31:6:7で混合した。
[Film 1]
Polyester A, polyester B, polyester E and polyester G were mixed at a mass ratio of 9:60:24:7 as raw materials for the heat seal layer (A layer), and polyester A and polyester as raw materials for the other layers (B layer). B, polyester E, and polyester G were mixed in a mass ratio of 56:31:6:7.
 A層及びB層の混合原料はそれぞれ別々の二軸スクリュー押出機に投入し、いずれも270℃で溶融させた。それぞれの溶融樹脂は、流路の途中でフィードブロックによって接合させてTダイより吐出し、表面温度30℃に設定したチルロール上で冷却することによって未延伸の積層フィルムを得た。積層フィルムは片側がA層、もう片側がB層(A層/B層の2種2層構成)となるように溶融樹脂の流路を設定し、A層とB層の厚み比率が50/50となるように吐出量を調整した。 The mixed raw materials of the A layer and the B layer were put into separate twin-screw extruders and melted at 270°C. Each molten resin was joined by a feed block in the middle of the flow path, discharged from a T die, and cooled on a chill roll set to a surface temperature of 30° C. to obtain an unstretched laminated film. In the laminated film, the flow path of the molten resin is set so that one side is the A layer and the other side is the B layer (two-layer two-layer structure of A layer/B layer), and the thickness ratio of the A layer and the B layer is 50/ The discharge amount was adjusted to be 50.
 冷却固化して得た未延伸の積層フィルムを複数のロール群を連続的に配置した縦延伸機へ導き、予熱ロール上でフィルム温度が80℃になるまで予備加熱した後に4.2倍に延伸した。縦延伸直後のフィルムを熱風ヒータで100℃に設定された加熱炉へ通し、加熱炉の入口と出口のロール間の速度差を利用して、長手方向に30%リラックス処理を行った。その後、縦延伸したフィルムを、表面温度25℃に設定された冷却ロールによって強制的に冷却した。 The unstretched laminated film obtained by cooling and solidification is guided to a longitudinal stretching machine in which a plurality of roll groups are continuously arranged, preheated on a preheating roll until the film temperature reaches 80° C., and then stretched 4.2 times. did. The film immediately after longitudinal stretching was passed through a heating furnace set at 100° C. with a hot air heater, and a 30% relaxation treatment was performed in the longitudinal direction by utilizing the speed difference between the rolls at the inlet and outlet of the heating furnace. Then, the longitudinally stretched film was forcibly cooled by a cooling roll whose surface temperature was set to 25°C.
 リラックス処理後のフィルムを横延伸機(テンター)に導いて表面温度が105℃になるまで5秒間の予備加熱を行った後、幅方向(横方向)に4.0倍延伸した。横延伸後のフィルムはそのまま中間ゾーンに導き、1.0秒で通過させた。なお、テンターの中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、最終熱処理ゾーンからの熱風と横延伸ゾーンからの熱風を遮断した。 The relaxed film was introduced into a transverse stretching machine (tenter), preheated for 5 seconds until the surface temperature reached 105°C, and then stretched 4.0 times in the width direction (transverse direction). The laterally stretched film was guided to the intermediate zone as it was, and allowed to pass for 1.0 second. In the intermediate zone of the tenter, when a strip-shaped piece of paper is hung while the film is not passing, the hot air from the final heat treatment zone and the transverse stretching zone are so that the piece of paper hangs almost completely in the vertical direction. Cut off the hot air from.
 その後、中間ゾーンを通過したフィルムを最終熱処理ゾーンに導き、190℃で5秒間熱処理した。このとき、熱処理を行うと同時にフィルム幅方向のクリップ間隔を狭めることにより、幅方向に3%リラックス処理を行った。最終熱処理ゾーンを通過後はフィルムを30℃の冷却風で5秒間冷却した。このとき、テンター出口のフィルム実温度は45℃であった。両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、厚さ30μmの二軸延伸フィルムを所定の長さにわたって連続的に製造した。得られたフィルムの特性は上記の方法によって評価した。製造条件を表2示す。 After that, the film that passed through the intermediate zone was guided to the final heat treatment zone and heat treated at 190°C for 5 seconds. At this time, the heat treatment was performed, and at the same time, the clip interval in the film width direction was narrowed to perform 3% relaxation treatment in the width direction. After passing through the final heat treatment zone, the film was cooled with cooling air of 30° C. for 5 seconds. At this time, the actual film temperature at the exit of the tenter was 45°C. Both edges were cut off and wound into a roll with a width of 500 mm to continuously produce a biaxially stretched film having a thickness of 30 μm over a predetermined length. The characteristics of the obtained film were evaluated by the above methods. Table 2 shows the production conditions.
[フィルム2]
A層の原料としてポリエステルBとポリエステルCとポリエステルGを質量比40:43:7で混合し、B層の原料としてフィルム1のB層と同じ比率で混合した。
A層及びB層の混合原料はそれぞれ別々の二軸スクリュー押出機に投入し、上記のフィルム1と同様の方法で溶融・積層させて吐出し、冷却固化させて未延伸の積層フィルムを得た。
 この未延伸の積層フィルムを同時二軸延伸機に導いて表面温度が100℃になるまで5秒間の予備加熱を行った後、長手方向(縦方向)に3.6倍、幅方向(横方向)に4.2倍となるよう同時に二軸延伸した。同時二軸延伸した後のフィルムはそのまま中間ゾーンに導き、1.0秒で通過させた。なお、中間ゾーンにおいては、フィルムを通過させていない状態で短冊状の紙片を垂らしたときに、その紙片がほぼ完全に鉛直方向に垂れ下がるように、最終熱処理ゾーンからの熱風と横延伸ゾーンからの熱風を遮断した。
[Film 2]
Polyester B, polyester C, and polyester G were mixed as a raw material of the A layer in a mass ratio of 40:43:7, and were mixed in the same ratio as the B layer of the film 1 as a raw material of the B layer.
The mixed raw materials of the layer A and the layer B were respectively put into separate twin-screw extruders, melted and laminated in the same manner as the film 1 above, discharged, and cooled and solidified to obtain an unstretched laminated film. ..
This unstretched laminated film was introduced into a simultaneous biaxial stretching machine and preheated for 5 seconds until the surface temperature reached 100° C., and then the longitudinal direction (longitudinal direction) was multiplied by 3.6 times the width direction (lateral direction). ) Was simultaneously biaxially stretched to 4.2 times. The film after the simultaneous biaxial stretching was guided to the intermediate zone as it was, and allowed to pass for 1.0 second. In the intermediate zone, when a strip-shaped paper piece is hung in a state where the film is not passed, so that the paper piece hangs almost completely in the vertical direction, hot air from the final heat treatment zone and from the lateral stretching zone The hot air was shut off.
 その後、中間ゾーンを通過したフィルムを最終熱処理ゾーンに導き、210℃で10秒間熱処理した。このとき、熱処理を行うと同時にフィルム長手方向のクリップ間隔と幅方向のクリップ間隔を同時に狭めることにより、長手方向に18%、幅方向に3%のリラックス処理を行った。最終熱処理ゾーンを通過後はフィルムを30℃の冷却風で5秒間冷却した。このとき、テンター出口のフィルム実温度は45℃であった。両縁部を裁断除去して幅500mmでロール状に巻き取ることによって、厚さ30μmの二軸延伸フィルムを所定の長さにわたって連続的に製造した。得られたフィルムの特性は上記の方法によって評価した。製造条件を表2示す。 After that, the film that passed through the intermediate zone was guided to the final heat treatment zone and heat-treated at 210°C for 10 seconds. At this time, the heat treatment was performed, and at the same time, the clip interval in the longitudinal direction of the film and the clip interval in the width direction were simultaneously narrowed to perform relaxation treatment of 18% in the longitudinal direction and 3% in the width direction. After passing through the final heat treatment zone, the film was cooled with cooling air of 30° C. for 5 seconds. At this time, the actual film temperature at the exit of the tenter was 45°C. Both edges were cut off and wound into a roll with a width of 500 mm to continuously produce a biaxially stretched film having a thickness of 30 μm over a predetermined length. The characteristics of the obtained film were evaluated by the above methods. Table 2 shows the production conditions.
[フィルム3]
 フィルム3もフィルム1と同様にして、原料の配合比率、縦延伸、長手方向へのリラックス、横延伸、最終熱処理の各条件を変更したポリエステル系フィルムを製膜した。各フィルムの製造条件を表2に示す。
[Film 3]
In the same manner as the film 1, the film 3 was also formed into a polyester film in which the raw material mixing ratio, the longitudinal stretching, the relaxation in the longitudinal direction, the lateral stretching, and the final heat treatment were changed. Table 2 shows the production conditions of each film.
[フィルム4]
 A層の原料としてポリエステルEとポリエステルGを質量比95:5で混合し、二軸スクリュー押出機に投入して260℃で溶融させた。この溶融樹脂を単独でTダイより吐出し、表面温度30℃に設定したチルロール上で冷却することによって未延伸の単層フィルムを得た。
 この未延伸の単層フィルムを、フィルム1と同様に逐次二軸延伸方式により、縦延伸、横延伸、最終熱処理の各条件を変更したポリエステル系フィルムを製膜した。なお、フィルム4は、製膜工程中で長手方向へのリラックスは行わなかった。製造条件を表2示す。
[Film 4]
As raw materials for the layer A, polyester E and polyester G were mixed at a mass ratio of 95:5, charged into a twin screw extruder and melted at 260°C. This molten resin was discharged alone from a T die and cooled on a chill roll set to a surface temperature of 30° C. to obtain an unstretched monolayer film.
This unstretched single-layer film was subjected to a sequential biaxial stretching method similarly to the film 1 to form a polyester film in which the respective conditions of longitudinal stretching, transverse stretching and final heat treatment were changed. The film 4 was not relaxed in the longitudinal direction during the film forming process. Table 2 shows the production conditions.
[フィルム5]
 フィルム5は、東洋紡株式会社製パイレンフィルム-CT(登録商標)P1128-30μmを使用した。フィルム1~4と併せて表2に示す。
[Film 5]
As the film 5, Pyrene film-CT (registered trademark) P1128-30 μm manufactured by Toyobo Co., Ltd. was used. It is shown in Table 2 together with the films 1 to 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[フィルム6]
 基材層(C層)の原料としてポリエステルAとポリエステルGを質量比95:5で混合し、二軸スクリュー押出機に投入して275℃で溶融させた。この溶融樹脂を単独でTダイより吐出し、表面温度30℃に設定したチルロール上で冷却することによって未延伸の単層フィルムを得た。
この未延伸の単層フィルムを、フィルム1と同様に逐次二軸延伸方式により、縦延伸、横延伸、最終熱処理の各条件を変更したポリエステル系フィルムを製膜した。なお、フィルム6は、製膜工程中で長手方向へのリラックスは行わなかった。製造条件を表3示す。
[Film 6]
Polyester A and polyester G were mixed as a raw material for the base material layer (C layer) at a mass ratio of 95:5, and the mixture was put into a twin-screw extruder and melted at 275°C. This molten resin was discharged alone from a T die and cooled on a chill roll set to a surface temperature of 30° C. to obtain an unstretched monolayer film.
This unstretched single-layer film was subjected to a sequential biaxial stretching method similarly to the film 1 to form a polyester film in which the respective conditions of longitudinal stretching, transverse stretching and final heat treatment were changed. The film 6 was not relaxed in the longitudinal direction during the film forming process. Table 3 shows the manufacturing conditions.
[フィルム7]
 C層の原料としてポリエステルAとポリエステルEとポリエステルGを質量比13:80:7で混合し、二軸スクリュー押出機に投入して265℃で溶融させた。このとき、メルトラインを12エレメントのスタティックミキサーに接続して、同一樹脂を4096層に分割・積層させた。この溶融樹脂をTダイより吐出し、表面温度30℃に設定したチルロール上で冷却することによって未延伸のフィルム(原料樹脂種は上記の混合比率単一で、層数4096)を得た。
この未延伸のフィルムを、フィルム1と同様に逐次二軸延伸方式により、縦延伸、横延伸、最終熱処理の各条件を変更したポリエステル系フィルムを製膜した。なお、フィルム7は、製膜工程中で長手方向へのリラックスは行わなかった。製造条件を表3示す。
[Film 7]
As raw materials for the layer C, polyester A, polyester E and polyester G were mixed at a mass ratio of 13:80:7, charged into a twin screw extruder and melted at 265°C. At this time, the melt line was connected to a 12-element static mixer, and the same resin was divided and laminated into 4096 layers. This molten resin was discharged from a T-die and cooled on a chill roll set to a surface temperature of 30° C. to obtain an unstretched film (a raw material resin species was the above mixing ratio single and the number of layers was 4096).
This unstretched film was subjected to a sequential biaxial stretching method in the same manner as the film 1 to form a polyester film in which the respective conditions of longitudinal stretching, transverse stretching and final heat treatment were changed. The film 7 was not relaxed in the longitudinal direction during the film forming process. Table 3 shows the manufacturing conditions.
[フィルム8]
 フィルム8は、東洋紡株式会社製ハーデンフィルム(登録商標)N1100-15μmを使用した。フィルム1~7と併せて表3に示す。
[Film 8]
As the film 8, Haden film (registered trademark) N1100-15 μm manufactured by Toyobo Co., Ltd. was used. It is shown in Table 3 together with the films 1 to 7.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実施例1]
 フィルム6の上に、ウレタン系2液硬化型接着剤(三井化学社製「タケラック(登録商標)A525S」と「タケネート(登録商標)A50」を重量比13.5:1の割合で配合)を用いてドライラミネート法により、フィルム1のB層側と貼りあわせ、40℃にて4日間エージングすることで積層体を得た。
 得られた積層体の特性は上記の方法によって評価した。積層体の層構成、物性、包装体としたときの評価結果を表4に示す。 
[Example 1]
On the film 6, a urethane-based two-component curable adhesive (“Takelac (registered trademark) A525S” and “Takenate (registered trademark) A50” manufactured by Mitsui Chemicals, Inc. are mixed at a weight ratio of 13.5:1). A laminate was obtained by laminating the film 1 with the B layer side of the film 1 by a dry laminating method and aging at 40° C. for 4 days.
The properties of the obtained laminate were evaluated by the above methods. Table 4 shows the layer structure of the laminate, the physical properties, and the evaluation results of the package.
[実施例2]
 実施例1と同様の方法で、フィルムを変更して積層体を作製した。得られた積層体の特性は上記の方法によって評価した。表4に示す。
[Example 2]
A film was changed in the same manner as in Example 1 to prepare a laminate. The properties of the obtained laminate were evaluated by the above methods. It shows in Table 4.
[実施例3]
 フィルム7の片側に、蒸着源としてアルミニウムを用いて、真空蒸着機にて酸素ガスを導入しながら真空蒸着法で酸化アルミニウム(Al)薄膜をガスバリア層として成膜した。ガスバリア層の厚みは10nmであった。フィルム7のガスバリア層側とフィルム3のB層側とを、実施例1と同様の方法で貼りあわせて積層体を作製した。得られた積層体の特性は上記の方法によって評価した。表4に示す。
[Example 3]
On one side of the film 7, aluminum was used as a vapor deposition source, and an aluminum oxide (Al 2 O 3 ) thin film was deposited as a gas barrier layer by a vacuum vapor deposition method while introducing oxygen gas with a vacuum vapor deposition machine. The thickness of the gas barrier layer was 10 nm. The gas barrier layer side of the film 7 and the B layer side of the film 3 were attached in the same manner as in Example 1 to produce a laminate. The properties of the obtained laminate were evaluated by the above methods. It shows in Table 4.
[比較例1]
 基材層を接着せず、ヒートシール層としてフィルム1のみを使用した。単体フィルムの特性は上記の方法によって評価した。表4に示す。
[Comparative Example 1]
The base material layer was not adhered, and only the film 1 was used as the heat seal layer. The properties of the single film were evaluated by the above methods. It shows in Table 4.
[比較例2、3]
 実施例1と同様の方法で、フィルムをそれぞれ変更して積層体を作製した。得られた積層体の特性は上記の方法によって評価した。表4に示す。なお、比較例2は140℃でのヒートシール強度がゼロだったので、包装体を作製できなかった。そのため、落袋評価と吸着性評価は行っていない。
[Comparative Examples 2 and 3]
In the same manner as in Example 1, the film was changed to prepare a laminate. The properties of the obtained laminate were evaluated by the above methods. It shows in Table 4. In Comparative Example 2, the heat-sealing strength at 140° C. was zero, so a package could not be produced. Therefore, drop bag evaluation and adsorption evaluation were not performed.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[フィルムの評価結果]
 表4より、実施例1から3までの積層体はいずれも、ヒートシール強度、衝撃強度、突刺し強度、熱収縮率、耐破袋性、非吸着性に優れており、良好な評価結果が得られた。また、実施例3の積層体はガスバリア層を設けたため、良好なガスバリア性を示した。
 一方、比較例1のヒートシール層単独のフィルムは、衝撃強度と突刺し強度が低くなり、耐破袋性に劣る結果となった。
 比較例2の積層体は140℃のヒートシール強度がゼロとなったため、包装体を作製するために積層体としては不適であった。
比較例3のシーラントは、ヒートシール層にオレフィン系のものを使用したため、非吸着性に劣っていた。
[Film evaluation results]
From Table 4, all of the laminates of Examples 1 to 3 are excellent in heat seal strength, impact strength, puncture strength, heat shrinkage rate, bag breaking resistance, and non-adhesiveness, and good evaluation results are obtained. Was obtained. In addition, since the laminated body of Example 3 was provided with the gas barrier layer, it showed good gas barrier properties.
On the other hand, the film having only the heat-sealing layer of Comparative Example 1 had low impact strength and puncture strength, resulting in poor bag-breaking resistance.
Since the laminate of Comparative Example 2 had a heat seal strength of 140° C. of zero, it was unsuitable as a laminate for producing a package.
The sealant of Comparative Example 3 was inferior in non-adsorptive property because the heat seal layer used was an olefin type sealant.
 本発明により、内容物の成分を吸着が少なく、低温域で高いヒートシール強度を有し、耐破袋性に優れた積層体を提供することができ、前記特徴を有した包装体を提供することができる。 According to the present invention, it is possible to provide a laminate having less adsorption of components of the content, high heat-sealing strength in a low temperature range, and excellent bag-breaking resistance, and to provide a package having the above characteristics. be able to.

Claims (6)

  1.  少なくとも基材層/接着層/シーラント層の3層がこの順番で積層されてなり、前記基材層はポリエチレンテレフタレートもしくはポリブチレンテレフタレートを主たる構成成分とするポリエステル、またはポリプロピレンを主たる構成成分とするポリオレフィン、またはナイロンを主たる構成成分とするポリアミドからなり、
     前記シーラント層はポリエチレンテレフタレートを主たる構成成分とするポリエテルからなり、
     前記シーラント層同士を140℃、0.2MPa、2秒でシールしたときの積層体のシール強度が8N/15mm以上70N/15mm以下である積層体。
    At least three layers of a base material layer/adhesive layer/sealant layer are laminated in this order, and the base material layer is a polyester having polyethylene terephthalate or polybutylene terephthalate as a main constituent, or a polyolefin having polypropylene as a main constituent. , Or made of polyamide whose main constituent is nylon,
    The sealant layer is made of polyethylene whose main constituent is polyethylene terephthalate,
    A laminate having a seal strength of 8 N/15 mm or more and 70 N/15 mm or less when the sealant layers are sealed at 140° C. and 0.2 MPa for 2 seconds.
  2.  基材層がポリエチレンテレフタレートまたはポリブチレンテレフタレートを主たる構成成分とするポリエステルからなることを特徴とする請求項1に記載の積層体。 The laminate according to claim 1, wherein the base material layer is made of polyester having polyethylene terephthalate or polybutylene terephthalate as a main constituent.
  3.  さらにガスバリア層が積層されてなることを特徴とする請求項1または2いずれかに記載の積層体。 The laminated body according to claim 1 or 2, further comprising a gas barrier layer laminated thereon.
  4.  突刺し強度が0.4N/μm以上0.6N/μm以下であることを特徴とする請求項1~3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the puncture strength is 0.4 N/μm or more and 0.6 N/μm or less.
  5.  シーラント層を構成するポリエステル系成分のモノマー成分として、エチレングリコール以外のジオールモノマー成分、及び/又はテレフタル酸以外の酸成分を含有し、該ジオール成分がネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,4-ブタンジオール、及びジエチレングリコールからなる群より選択されてなる1種以上であり、該酸成分はイソフタル酸であることを特徴とする請求項1~4のいずれかに記載の積層体。 As a monomer component of the polyester component constituting the sealant layer, a diol monomer component other than ethylene glycol and/or an acid component other than terephthalic acid is contained, and the diol component is neopentyl glycol, 1,4-cyclohexanedimethanol, The laminate according to any one of claims 1 to 4, which is one or more selected from the group consisting of 1,4-butanediol and diethylene glycol, and the acid component is isophthalic acid.
  6.  請求項1~5のいずれかに記載の積層体を少なくとも1層に有していることを特徴とする包装体。 A package comprising at least one layer of the laminate according to any one of claims 1 to 5.
PCT/JP2019/050547 2018-12-28 2019-12-24 Layered product and packaging body obtained using same WO2020138048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563289A JPWO2020138048A1 (en) 2018-12-28 2019-12-24 Laminated body and packaging using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018247979 2018-12-28
JP2018-247979 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138048A1 true WO2020138048A1 (en) 2020-07-02

Family

ID=71127703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050547 WO2020138048A1 (en) 2018-12-28 2019-12-24 Layered product and packaging body obtained using same

Country Status (3)

Country Link
JP (1) JPWO2020138048A1 (en)
TW (1) TW202043046A (en)
WO (1) WO2020138048A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111941A1 (en) * 2019-12-05 2021-06-10 東洋紡株式会社 Laminated layered body
CN114074468A (en) * 2020-08-20 2022-02-22 南亚塑胶工业股份有限公司 Composite film material for medicine package
CN115464963A (en) * 2022-08-02 2022-12-13 安徽金田高新材料股份有限公司 BOPBAT film and preparation method thereof
EP4245535A4 (en) * 2020-11-16 2024-04-10 Mitsubishi Chemical Corporation Polyester-based sealant film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144395A (en) * 1993-11-24 1995-06-06 Du Pont Mitsui Polychem Co Ltd Laminated wrapping material
WO2017126563A1 (en) * 2016-01-22 2017-07-27 東洋紡株式会社 Biaxially-stretched polyester film, laminate and packaging bag
WO2018150997A1 (en) * 2017-02-15 2018-08-23 東洋紡株式会社 Polyester-based sealant film, laminated body, and packaged body
JP2018177317A (en) * 2017-04-14 2018-11-15 東洋紡株式会社 Bag-in-box inner bag

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07144395A (en) * 1993-11-24 1995-06-06 Du Pont Mitsui Polychem Co Ltd Laminated wrapping material
WO2017126563A1 (en) * 2016-01-22 2017-07-27 東洋紡株式会社 Biaxially-stretched polyester film, laminate and packaging bag
WO2018150997A1 (en) * 2017-02-15 2018-08-23 東洋紡株式会社 Polyester-based sealant film, laminated body, and packaged body
JP2018177317A (en) * 2017-04-14 2018-11-15 東洋紡株式会社 Bag-in-box inner bag

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111941A1 (en) * 2019-12-05 2021-06-10 東洋紡株式会社 Laminated layered body
CN114074468A (en) * 2020-08-20 2022-02-22 南亚塑胶工业股份有限公司 Composite film material for medicine package
JP2022035974A (en) * 2020-08-20 2022-03-04 南亞塑膠工業股▲分▼有限公司 Composite film for packing medicine
US11752067B2 (en) 2020-08-20 2023-09-12 Nan Ya Plastics Corporation Pharmaceutical packaging composite film
EP4245535A4 (en) * 2020-11-16 2024-04-10 Mitsubishi Chemical Corporation Polyester-based sealant film
CN115464963A (en) * 2022-08-02 2022-12-13 安徽金田高新材料股份有限公司 BOPBAT film and preparation method thereof
CN115464963B (en) * 2022-08-02 2023-12-08 安徽金田高新材料股份有限公司 BOPBAT film and preparation method thereof

Also Published As

Publication number Publication date
TW202043046A (en) 2020-12-01
JPWO2020138048A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020138048A1 (en) Layered product and packaging body obtained using same
JP7238239B2 (en) polyester sealant film
JP6724447B2 (en) Polyester films, laminates and packages for sealants
CN111886135B (en) Laminate and package using same
KR20160002852A (en) Polyester film for sealant use, laminate, and packaging bag
JP2008526570A (en) Breathable heat-sealable composite polymer film
JP2024040295A (en) Low-adsorption sealant film, laminate and packaging bag
JP5049150B2 (en) Shrink film and shrink label
JP7392715B2 (en) Polyester sealant film and packaging using the same
JP7144737B2 (en) laminate
JP7135701B2 (en) Polyester sealant film
WO2020116520A1 (en) Laminated body, and packaging employing same
JP7323030B2 (en) laminate
JP7283620B2 (en) laminate
JP4102584B2 (en) Laminated body and packaging bag using the same
JP6947249B2 (en) Polyester films, laminates and packaging for sealants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563289

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901990

Country of ref document: EP

Kind code of ref document: A1