WO2020137945A1 - Resin composition, fiber-reinforced plastic molding material, and molded article - Google Patents

Resin composition, fiber-reinforced plastic molding material, and molded article Download PDF

Info

Publication number
WO2020137945A1
WO2020137945A1 PCT/JP2019/050297 JP2019050297W WO2020137945A1 WO 2020137945 A1 WO2020137945 A1 WO 2020137945A1 JP 2019050297 W JP2019050297 W JP 2019050297W WO 2020137945 A1 WO2020137945 A1 WO 2020137945A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
fiber
resin composition
anhydride copolymer
frp
Prior art date
Application number
PCT/JP2019/050297
Other languages
French (fr)
Japanese (ja)
Inventor
涼丞 原子
浩之 ▲高▼橋
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to JP2020563239A priority Critical patent/JPWO2020137945A1/en
Publication of WO2020137945A1 publication Critical patent/WO2020137945A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols

Definitions

  • the present invention relates to a resin composition having a good impregnation property into a reinforced fiber base material and a good moldability, a fiber reinforced plastic molding material using the composition as a matrix resin, and a molded product thereof.
  • Fiber-reinforced plastic (FRP) material which is a composite material of glass fiber or carbon fiber and plastic, is lightweight, has high strength and high rigidity, and is used for the industrial robots from the housing of electronic devices such as notebook PCs and tablets. Its applications are being applied to consumer equipment, industrial equipment, and automobile fields such as arms for automobiles, reinforcing materials for building structures, structural members such as automobile back doors and pillars.
  • FRP Fiber-reinforced plastic
  • a general FRP material is made by impregnating a base material made of reinforcing fibers with a liquid thermosetting resin such as an epoxy resin as a matrix resin, and curing and molding.
  • a thermosetting resin such as an epoxy resin as a matrix resin
  • it is generally essential to use a curing agent together, so while the storage load of such a mixture is large, the curing time is long and the productivity is low. There is a strong demand for improvement.
  • thermoplastic resin as a matrix resin
  • engineering plastics such as polyamide have a high melting point and high viscosity, making it difficult to impregnate a reinforced fiber base material or requiring a high temperature process for molding. There is a problem such as.
  • thermoplastic resin that melts at a relatively low temperature such as a phenoxy resin
  • a thermoplastic resin that melts at a relatively low temperature has no problem in terms of processability, but it has poor heat resistance as an FRP material and has a problem of compatibility with high-temperature processes such as baking coating.
  • Patent Documents 1 and 2 propose a method of increasing the glass transition temperature by a crosslinking reaction utilizing a hydroxyl group in the side chain of a phenoxy resin. This is due to the three-dimensional cross-linking of the phenoxy resin utilizing the esterification reaction between the hydroxyl group and the acid anhydride group, but the aromatic dianhydride used as the cross-linking agent easily absorbs moisture, depending on the storage environment conditions. Has a problem that the reactivity of the crosslinking reaction varies. Further, it is recommended to carry out post cure for 30 to 60 minutes to complete the crosslinking reaction, so that the takt time at the time of molding becomes long and it is difficult to reduce the manufacturing cost.
  • an adhesive resin composition obtained by blending a maleic anhydride-modified styrene resin, a naphthalene epoxy resin, and a latent curing agent into a bisphenol F type epoxy resin as in Patent Document 3.
  • Example 9 discloses a blend of a bisphenol F-type phenoxy resin, a maleic anhydride-modified styrene resin, and an imidazole curing agent.
  • Patent Document 3 discloses a conductive resin composition for a circuit board material, which uses a bisphenol F-type phenoxy resin for the purpose of exhibiting flexibility and promoting a curing reaction of an epoxy resin, and a styrene copolymer. Is used for adjusting viscosity and suppressing bubbles, and the purpose of combining the two is to prevent contact between the latent curing agent and the epoxy resin at room temperature.
  • the Tg of the obtained resin composition is 130° C. or lower, and the necessary physical properties such as melt viscosity necessary for use as a matrix resin of FRP are not disclosed at all.
  • Patent Document 4 also discloses a resin composition for an adhesive, which is a mixture of maleic anhydride-modified polypropylene and a phenoxy resin.
  • the phenoxy resin is a compound containing modified polypropylene as a main component at about 20 wt %.
  • the evaluation was made only on the adhesive strength, and neither the improvement of Tg nor the physical properties necessary for the matrix resin of FRP were disclosed.
  • An object of the present invention is an FRP molding material capable of suppressing changes in mechanical properties under a high temperature environment, which is a problem due to a crosslinking reaction, while having a good moldability which is a characteristic of a phenoxy resin.
  • the present inventors have conducted extensive studies to solve the above problems, and when the fiber-reinforced base material is a continuous fiber, use a thermoplastic phenoxy resin as a main component and combine a specific cross-linking agent.
  • the inventors have found that the above problems can be solved by using a resin composition, and have completed the present invention.
  • the present invention is a resin composition used together with a reinforced fiber base material as a material for molding a fiber reinforced plastic, comprising a phenoxy resin (A) and a maleic anhydride copolymer (B) as a cross-linking agent.
  • the curing catalyst (C) is contained as an essential component, the weight average molecular weight of the maleic anhydride copolymer (B) is 100,000 or less, and the acid value is 150 to 400 KOH-mg/g, and the phenoxy resin (A) is A resin composition characterized in that the secondary hydroxyl group and the acid anhydride group of the maleic anhydride copolymer (B) are mixed in a molar ratio of 1/0.1 to 1/1.6. It is a thing.
  • the resin composition may contain an epoxy resin (D), and the crosslinked or cured resin composition preferably has a glass transition temperature (Tg) of 160° C. or higher.
  • Tg glass transition temperature
  • the present invention is also a fiber-reinforced plastic molding material in which at least a part of a reinforced fiber base material is coated or impregnated with the above resin composition.
  • the present invention is also a fiber-reinforced plastic molded product obtained by heat-molding this fiber-reinforced plastic molding material.
  • the resin composition of the present invention is used as a matrix resin for a fiber-reinforced plastic molding material, and since the reinforced fiber base material is satisfactorily impregnated, voids and the like are formed inside the molded body when this is used as a molded body. Is less likely to occur. Therefore, there is an effect that the mechanical properties of the molded body can be maintained well.
  • the matrix resin of the molding material is composed of a resin composition containing a thermoplastic phenoxy resin as a main component, it is flexible and can be shaped into various shapes. In addition to its characteristics, it has excellent adhesiveness to different materials. Further, the molded product can have a good external appearance, excellent heat resistance, and low water absorption.
  • the resin composition used together with the reinforcing fiber as the FRP molding material of the present invention is a solvent-free room temperature system containing phenoxy resin (A), maleic anhydride copolymer (B) and curing catalyst (C) as essential components. It is a solid phenoxy resin composition. Further, the epoxy resin (D) may be contained.
  • the phenoxy resin (A) used as an essential component of the resin composition of the present invention is solid at room temperature and exhibits a melt viscosity of 4000 Pa ⁇ s or less in any of the temperature ranges of 160 to 280°C. ..
  • the melt viscosity is preferably 3500 Pa ⁇ s or less, more preferably 3000 Pa ⁇ s or less. If the melt viscosity exceeds 4000 Pa ⁇ s in any temperature range from 160 to 280°C, the fluidity of the phenoxy resin during molding will deteriorate, and the phenoxy resin will not fully spread into the fiber substrate, causing voids. However, the mechanical properties of the molded product deteriorate.
  • the phenoxy resin is a thermoplastic resin obtained by a condensation reaction between a dihydric phenol compound and epihalohydrin or a polyaddition reaction between a dihydric phenol compound and a difunctional epoxy resin, which is a conventionally known method in a solution or without a solvent. Can be obtained at The average molecular weight is usually 10,000 to 200,000 as a mass average molecular weight (Mw), preferably 20,000 to 100,000, and more preferably 30,000 to 80,000. If the Mw is too low, the strength of the molded article will be poor, and if it is too high, the workability and workability will tend to be poor.
  • Mw is a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
  • the hydroxyl equivalent (g/eq) of the phenoxy resin is usually 50 to 1000, preferably 50 to 750, particularly preferably 50 to 500. If the hydroxyl group equivalent is too low, the water absorption rate increases due to an increase in the number of hydroxyl groups, and there is a concern that the mechanical properties will deteriorate. If the hydroxyl group equivalent is too high, the number of hydroxyl groups is small, so that the wettability with the carbon fibers constituting the reinforcing fiber substrate is lowered, and even if a crosslinking agent is used, the crosslink density is low and mechanical properties are not improved.
  • the hydroxyl group equivalent as used herein means a secondary hydroxyl group equivalent.
  • the glass transition temperature (Tg) of the phenoxy resin is suitably 65°C to 160°C, preferably 70°C to 150°C. If the glass transition temperature is lower than 65° C., the moldability will be good, but problems will occur in the storage stability of the powder and the tackiness of the preform. If the temperature is higher than 160° C., the melt viscosity will be high and the moldability and the filling property into the fiber will be poor, and as a result, higher temperature press molding is required.
  • the glass transition temperature of the phenoxy resin is a numerical value obtained from the peak value of the second scan, which is measured in the range of 20 to 280° C. under a temperature rising condition of 10° C./min using a differential scanning calorimeter.
  • the phenoxy resin is not particularly limited as long as it satisfies the above physical properties, but is a bisphenol A type phenoxy resin (for example, Phenotote YP-50, YP-50S, YP-55U manufactured by Nippon Steel Chemical & Material), bisphenol.
  • a bisphenol A type phenoxy resin for example, Phenotote YP-50, YP-50S, YP-55U manufactured by Nippon Steel Chemical & Material
  • F-type phenoxy resin for example, Phenototo FX-316 manufactured by Nittetsu Chemical & Material
  • copolymerization type phenoxy resin of bisphenol A and bisphenol F for example, YP-70 manufactured by Nittetsu Chemical & Material
  • phenoxy resins for example, Phenothote YPB-43C and FX293 manufactured by Nittetsu Chemical & Materials
  • the resin composition of the present invention contains a maleic anhydride copolymer (B) as a crosslinking agent together with the phenoxy resin (A) for the purpose of improving the Tg of the matrix resin.
  • the acid anhydride group of the maleic anhydride copolymer (B) is hydrolyzed to form two carboxy groups from one acid anhydride group. Therefore, a functional group that reacts with the OH group of the phenoxy resin (A) is 2 It is understood that the phenoxy resin is three-dimensionally cross-linked by forming an ester bond with the secondary hydroxyl group of the phenoxy resin.
  • the Tg of the crosslinked cured product of the resin composition can be greatly improved as compared with the phenoxy resin alone, and the formed three-dimensional crosslinks can be released by a hydrolysis reaction, so that the FRP molded products can be recycled.
  • the maleic anhydride copolymer (B) has two or more maleic anhydride-derived acid anhydrides that react with the secondary hydroxyl groups of the phenoxy resin, is solid at room temperature, and has no sublimation property.
  • maleic anhydride, polyolefin and styrene, a high molecular weight epoxy resin having a weight average molecular weight of about 5,000 to 10,000, and a phenoxy resin are used from the viewpoint of imparting heat resistance to a molded article, reactivity, and handleability.
  • Copolymers with etc. are preferably used.
  • a copolymer of maleic anhydride and styrene or polypropylene has less change in reactivity due to moisture absorption than an aromatic acid anhydride having two or more similar acid anhydrides capable of crosslinking and curing, and a phenoxy resin. It is the most preferable because it has good compatibility with epoxy resin.
  • the weight average molecular weight (Mw) of the maleic anhydride copolymer (B) is preferably 100,000 or less.
  • Mw weight average molecular weight
  • the weight average molecular weight exceeds 100,000, the fluidity at the time of melting is lowered, and therefore the crosslinking reaction occurs only in the vicinity of the maleic anhydride copolymer, and the crosslinking density is lowered, so that the physical properties of the FRP molded article are deteriorated. Not suitable for storage.
  • the lower limit of the weight average molecular weight is not particularly limited, a decrease in the weight average molecular weight may lead to a decrease in the moisture absorption resistance, and therefore it is at least 200 or more. Therefore, the weight average molecular weight of the maleic anhydride copolymer is preferably 200 to 100,000, more preferably 200 to 50,000, and further preferably 200 to 20,000.
  • the maleic anhydride copolymer (B) preferably has an acid value of 150 to 400. It is preferably 170 to 375, more preferably 200 to 300.
  • the acid value is represented by the number of mg of potassium hydroxide (KOH-mg/g) required to neutralize the acidic component contained in 1 g of the sample. If the acid value exceeds 400, the melt viscosity will be high and the crosslinking reaction will be difficult to occur. If it is less than 150, the number of crosslinking points will be small and the increase in Tg will be suppressed, which is not suitable for use.
  • the softening point or Tg is preferably 160° C. or lower, more preferably 100 to 155° C.
  • the maleic anhydride copolymer (B) as a cross-linking agent may be used in combination with another cross-linking agent, for example, an aromatic acid dianhydride such as pyromellitic dianhydride (PMDA), as long as the effect of the present invention is not impaired. You may. However, it is less than 50% by weight of the crosslinking agent.
  • PMDA pyromellitic dianhydride
  • the amount of the maleic anhydride copolymer (B) to be blended is usually 0.1-1 mole of the acid anhydride group of the maleic anhydride copolymer (B) per 1 mol of the secondary hydroxyl group of the phenoxy resin (A).
  • the amount is in the range of 0.6 mol, preferably in the range of 0.2 to 1.4 mol, and more preferably in the range of 0.6 to 1.2 mol. If the amount of the maleic anhydride copolymer (B) is too small, the crosslink density is low, resulting in poor mechanical properties and heat resistance. If it is too large, unreacted acid anhydride groups and carboxy groups adversely affect the properties of the crosslinked cured product. give.
  • the epoxy resin (D) is blended as necessary and the blending amount of the epoxy resin (D) is adjusted according to the blending amount of the maleic anhydride copolymer (B).
  • the epoxy resin (D) is used for the purpose of reacting the carboxy group generated by the reaction between the secondary hydroxyl group of the phenoxy resin (A) and the maleic anhydride copolymer (B) with the epoxy resin (D). It is advisable that the compounding amount of) is within the range of 0.5 to 1.2 in terms of an equivalent ratio to the acid anhydride group of the maleic anhydride copolymer (B).
  • the resin composition of the present invention can be formed into a crosslinked resin by simply adding the maleic anhydride copolymer (B) to the phenoxy resin (A) or the resin composition containing the phenoxy resin (A) and the epoxy resin (D). Although the product can be obtained, it is essential to add the curing catalyst (C) so that the crosslinking reaction is surely performed and the Tg exhibits heat resistance of 160° C. or higher.
  • the curing catalyst is not particularly limited as long as it is a solid at room temperature and has no sublimation property.
  • a tertiary amine such as triethylenediamine, 2-methylimidazole, 2-phenylimidazole, 2-phenyl- Examples thereof include imidazoles such as 4-methylimidazole, organic phosphines such as triphenylphosphine, tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate, and aminopyridines such as 4-dimethylaminopyridine.
  • These curing catalysts (accelerators) may be used alone or in combination of two or more.
  • the compounding amount of the curing catalyst (C) is 100 parts by weight of the total amount of the phenoxy resin (A) and the maleic anhydride copolymer (B), or the phenoxy resin (A) and the maleic anhydride copolymer (B),
  • the total amount of the epoxy resin (D) is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight.
  • the epoxy resin (D) may be added to the resin composition of the present invention as described above. By blending the epoxy resin, it is possible to improve the impregnability into the reinforcing fiber base material by reducing the melt viscosity of the matrix resin and the heat resistance by improving the crosslink density of the matrix resin cured product.
  • the epoxy resin (D) is applicable to the present invention as long as it is a solid epoxy resin, for example, a bifunctional or higher epoxy resin is preferable, and a bisphenol A type epoxy resin (for example, Epototo YD manufactured by Nippon Steel Chemical & Material).
  • the epoxy resin (D) is more preferably a crystalline epoxy resin that is solid at room temperature, has a melting point of 75° C. to 145° C., and a viscosity at 160° C. of 1.0 Pa ⁇ s or less.
  • the crystalline epoxy resin has a low melt viscosity, is easy to handle, and can reduce the melt viscosity of a matrix resin containing a phenoxy resin as an essential component. When the melt viscosity exceeds 1.0 Pa ⁇ s, the filling property of the matrix resin into the reinforced fiber base material is poor, and the obtained fiber reinforced plastic molded product (FRP molded product) is poor in homogeneity.
  • the reaction of the phenoxy resin (A), the maleic anhydride copolymer (B) and the epoxy resin (D) is carried out by reacting the secondary hydroxyl group in the phenoxy resin (A) with maleic anhydride.
  • the copolymer (B) is crosslinked and cured by an esterification reaction with an acid anhydride group, and further by a reaction between the epoxy group of the epoxy resin (D) and a benzyl group produced by this esterification reaction.
  • a phenoxy resin cross-linked product can be obtained by the reaction of the phenoxy resin (A) and the maleic anhydride copolymer (B).
  • the coexistence of the epoxy resin (D) results in the secondary hydroxyl group of the phenoxy resin and the maleic anhydride copolymer.
  • the carboxy group formed by the reaction with the acid anhydride group of the polymer (B) is bonded to the epoxy group of the epoxy resin to accelerate the cross-linking reaction and increase the cross-linking density, and reduce the melt viscosity of the matrix resin.
  • the impregnating property into the reinforcing fiber base material can be enhanced. As a result, it becomes a suitable FRP molding material for obtaining an excellent FRP molded product such as improved mechanical strength.
  • the main component is the phenoxy resin (A) which is a thermoplastic resin, and the secondary hydroxyl group and the maleic anhydride copolymer ( It is considered that the esterification reaction of B) with the acid anhydride group has priority. That is, when the maleic anhydride copolymer (B) and the epoxy resin (D) and the phenoxy resin (A) coexist, the reaction between the acid anhydride of the maleic anhydride copolymer and the secondary hydroxyl group of the phenoxy resin is first performed.
  • the FRP molding material of the present invention has good moldability, unlike ordinary prepregs containing an epoxy resin as a main component, which is a thermosetting resin, and has long-term room temperature in a state where humidity control is not performed. Even after storage, the moldability and physical properties of FRP molded products are maintained, and storage stability is excellent.
  • the resin composition of the present invention contains a phenoxy resin as a resin component in an amount of more than 30 wt%, preferably 45 wt% or more.
  • the resin component includes an epoxy resin in addition to the phenoxy resin and the maleic anhydride copolymer, but does not include a non-resin component such as a curing catalyst.
  • the matrix resin includes a crosslinking agent and a curing catalyst in addition to the resin component, but does not include the reinforcing fiber base material.
  • the blending amount of the phenoxy resin (A) and the epoxy resin (D) is the epoxy resin (D) based on 100 parts by weight of the phenoxy resin (A). It is advisable to add them in an amount of 1 to 35 parts by weight.
  • the blending amount of the epoxy resin (D) is preferably 3 to 30 parts by weight, more preferably 5 to 25 parts by weight.
  • the amount of the epoxy resin (D) is less than 1 part by weight, the effect of improving the crosslink density due to the mixture of the epoxy resin cannot be obtained, and the cured product of the matrix resin hardly develops Tg of 160° C. or higher. Since the fluidity of the matrix resin deteriorates, it may be difficult to impregnate the reinforcing fiber base material.
  • the resin composition of the present invention is solid at room temperature even when it contains an epoxy resin together with a phenoxy resin and a maleic anhydride copolymer, and its melt viscosity is 3000 Pa in any temperature range of 160 to 280°C. ⁇ It must be s or less.
  • the melt viscosity is preferably 2500 Pa ⁇ s or less and 30 Pa ⁇ s or more, and more preferably 2200 Pa ⁇ s or less and 30 Pa ⁇ s or more. If the melt viscosity exceeds 3000 Pa ⁇ s, the reinforcing fiber base material will not be sufficiently impregnated with the matrix resin during molding by hot pressing, and defects such as internal voids will occur and the physical properties of the matrix resin of the molded product will also vary.
  • the melt viscosity of the resin composition of the present invention decreases as the temperature rises, and then the melt viscosity rapidly increases due to the initiation of the crosslinking reaction. Therefore, normally, in the temperature range of 160 to 280° C. which is the molding temperature, the minimum melt viscosity before the start of the crosslinking reaction may be 3000 Pa ⁇ s or less. As described above, when the melt viscosity of the matrix resin is 3000 Pa ⁇ s or less in any of the 160 to 280°C temperature range, a desired FRP molded product can be obtained.
  • melt viscosity of the phenoxy resin alone is 3000 Pa ⁇ s or less in any of the temperature ranges of 160 to 280° C.
  • the crosslinking reaction is initiated early by the maleic anhydride copolymer, and the melt as the matrix resin is melted.
  • the viscosity may exceed 3000 Pa ⁇ s in any of the above temperature ranges. Therefore, the melt viscosity of the matrix resin, not the melt viscosity of the phenoxy resin, must be 3000 Pa ⁇ s or less in any of the above temperature ranges.
  • the temperature at which the melt viscosity becomes 3000 Pa ⁇ s or less fluctuates somewhat, but if the melt viscosity is 3000 Pa ⁇ s or less at least in the temperature range of 160 to 280° C., which is the molding temperature, FRP molding is possible. Although the molding temperature can be higher, for example, 300° C., it is likely to exceed 3000 Pa ⁇ s due to the accelerated crosslinking reaction.
  • a flame retardant and a flame retardant aid may be blended in the resin composition of the present invention.
  • Any flame retardant may be used as long as it is a solid at room temperature and has no sublimation property.
  • an inorganic flame retardant such as calcium hydroxide or an organic or inorganic phosphorus flame retardant such as ammonium phosphates or phosphate ester compounds.
  • examples thereof include a flame retardant, a nitrogen-containing flame retardant such as a triazine compound, and a brominated flame retardant such as a brominated phenoxy resin.
  • a brominated phenoxy resin and a phosphorus-containing phenoxy resin can be preferably used because they can be used as a flame retardant/matrix resin.
  • the blending amount of the flame retardant (and the flame retardant aid) is appropriately selected depending on the kind of the flame retardant and the desired degree of flame retardancy, but is generally 0.01 to 50 parts by weight with respect to 100 parts by weight of the matrix resin. Within the range, it is preferable to mix them in such an amount that the adhesion of the matrix resin and the physical properties of the FRP molded product are not impaired.
  • thermoplastic resin powder other than a phenoxy resin for example, in a range that does not impair the good adhesion of the matrix resin powder to the fiber base material and the physical properties of the FRP molded product after molding, for example, Powders of polyvinylidene chloride resin, natural rubber, synthetic rubber, etc., and various additives such as various inorganic fillers, extender pigments, colorants, antioxidants, UV inhibitors and the like can also be added.
  • the resin composition of the present invention serves as the matrix resin of the FRP molding material, and is adhered or impregnated on the reinforcing fiber base material by a known method, but it is preferable to use a method that does not use a solvent.
  • a method of melt-impregnating a resin composition formed into a film on a reinforcing fiber substrate pressing-fitting method, film stack method) or a method of mixing continuous fibers spun with the resin composition with a reinforcing fiber (commingle method)
  • a method pressure coating method, powder coating method
  • the powder coating method is for FRP molding, in which the reinforcing fibers are less likely to break when manufacturing the FRP molding material, have flexibility, and have breathability, so that internal bubbles are less likely to be generated even when laminated in a high multilayer. This is a more preferable method because a material can be obtained.
  • the adhesion amount (resin ratio: RC) of the matrix resin in the FRP molding material (prepreg) using the resin composition of the present invention is 20 to 50% by weight, preferably 25 to 45%, and more preferably 25-40%.
  • RC exceeds 50%, mechanical properties such as tensile and flexural modulus of FRP are deteriorated, and when it is less than 20%, the resin adhesion amount is extremely small. There is a concern that it will be sufficient and that both thermophysical properties and mechanical properties will deteriorate.
  • At least a part of the reinforcing fiber base material is covered with the resin composition.
  • at least a part of the reinforcing fiber base material is impregnated with the resin composition.
  • the fiber constituting the reinforcing fiber base material is at least one fiber selected from the group consisting of carbon fiber, boron fiber, silicon carbide fiber, glass fiber and aramid fiber, and includes two or more fibers. It may be one.
  • the fiber is preferably a carbon fiber having high strength and good thermal conductivity, and in particular, the pitch-based carbon fiber is not only high in strength but also high in thermal conductivity, so that the generated heat can be quickly diffused. More preferable.
  • the form of the reinforcing fiber substrate is not particularly limited, and for example, a unidirectional material, a cloth such as plain weave or twill, a three-dimensional cloth, a chopped strand mat, a tow consisting of several thousand or more filaments, or a non-woven fabric is used. Can be used. These reinforcing fiber bases may be used alone or in combination of two or more.
  • the FRP molding material of the present invention at least a part of the reinforcing fiber base material is covered or impregnated with the thermoplastic resin composition.
  • the coating or impregnation of the reinforcing fiber base material is performed by the powder coating method, it is preferable to use the opened reinforcing fiber base material.
  • the fiber opening process makes it easier to impregnate the inside of the reinforced fiber base material with the matrix resin when forming the molding material by powder coating or the film stack method, and during the subsequent molding process. Higher physical properties can be expected.
  • the reinforcing fibers are preferably those having a sizing material (a sizing agent) or a coupling agent attached to the surface thereof, because the wettability of the matrix resin with the reinforcing fibers and the handleability can be improved.
  • a sizing agent include maleic anhydride-based compounds, urethane-based compounds, acryl-based compounds, epoxy-based compounds, phenol-based compounds or derivatives of these compounds, among which sizing agents containing epoxy-based compounds are preferred. It can be used.
  • the coupling agent include amino-based, epoxy-based, chloro-based, mercapto-based, and cationic-based silane coupling agents, and amino-based silane-based coupling agents can be preferably used.
  • the content of the sizing material and the coupling agent is 0.1 to 10 parts by weight, and more preferably 0.5 to 6 parts by weight, based on 100 parts by weight of the reinforcing fiber. With this content, the wettability with the matrix resin and the handleability are excellent.
  • the FRP molded product can be easily produced by heating the single FRP molding material using the resin composition of the present invention or by laminating a plurality of materials and heating and pressing. That is, it becomes possible to simultaneously perform shaping and complete impregnation of the matrix resin into the reinforcing fiber base material by pressure molding by hot pressing. Molding using the FRP molding material can be carried out by various molding methods such as autoclave molding and hot press molding using a metal mold, depending on the size and shape of the desired FRP molded product, as long as it is heat and pressure molding. It can be selected and implemented.
  • the molding temperature in the heat and pressure molding is, for example, 160 to 280°C, preferably 180°C to 270°C, more preferably 180°C to 260°C. If the molding temperature exceeds the upper limit temperature, excessive heat will be applied more than necessary, and there is a risk of excessive resin outflow and thermal deterioration. Moreover, the time required for heating and cooling will increase the molding time (tact time). The productivity will deteriorate. On the other hand, when the temperature is lower than the lower limit temperature, the melt viscosity of the matrix resin is high, so that the impregnability of the matrix resin into the reinforcing fiber base material is deteriorated. The molding time is usually 10 to 60 minutes.
  • the demolding temperature of the manufactured FRP molded product is set in consideration of the type and composition of the matrix resin, the productivity, etc., but is 100 to 120° C., for example.
  • the resin composition of the present invention has a much higher heat resistance than that before molding due to the crosslinking reaction utilizing the secondary hydroxyl group of the phenoxy resin, and thus the demolding temperature can be increased.
  • the crosslinking reaction between the phenoxy resin and the maleic anhydride copolymer proceeds according to the length of thermal history, for example, instead of shortening the pressing time, a heat treatment performed in a later step is used to reheat
  • the crosslinking reaction can also be completed by adding history.
  • Average particle size (d50) The average particle size of fine powders such as matrix resin is measured by a laser diffraction-scattering particle size distribution measuring device (Microtrac MT3300EX, manufactured by Nikkiso Co., Ltd.) when the cumulative volume is 50% on a volume basis. did.
  • Moisture absorption resistance of resin composition 0.5 g of resin composition powder was placed in an aluminum cup and left in a constant temperature and humidity tester adjusted to 35° C. and 80% RH, and left for 1 hr, 2 hr, 5 hr, 24 hr, 48 hr, 72 hr, After 168 hours, it was taken out each time and the change in its properties was confirmed. If the powder is lumped due to moisture absorption, or if the properties have changed significantly, the moisture absorption resistance is poor, and it is indicated as ⁇ .If the powder properties are not particularly changed, it is indicated as good moisture absorption resistance. ..
  • Glass transition temperature (Tg) of resin composition The resin composition powder was compression-molded to prepare a test piece having a size of 6 mm ⁇ 2 mmt, and using a dynamic viscoelasticity measuring device (DMA 7e manufactured by Perkin Elmer), a temperature rising condition of 5° C./min, 25 to 250. The maximum peak of tan ⁇ obtained by measuring in the range of °C was taken as the glass transition point.
  • DMA 7e dynamic viscoelasticity measuring device
  • the glass transition temperature of the resin composition was evaluated by the amount of movement of the probe before and after the measurement when measured with a dynamic viscoelasticity measuring device. When the amount of movement of the probe was less than 0.5 mm, it was marked with ⁇ , when less than 1 mm was marked with ⁇ , and when 1 mm or more was marked with x.
  • Glass transition temperature (Tg) of FRP molded product Using a diamond cutter, a test piece having a width of 10 mm and a length of 10 mm was prepared from a laminated plate having a thickness of 2 mm prepared by laminating FRP molding materials and hot pressing, and using the above-mentioned dynamic viscoelasticity measuring device. was measured at a temperature rising condition of 5° C./min under the range of 25 to 250° C., and the maximum peak of tan ⁇ obtained was taken as the glass transition point.
  • Resin ratio (RC:%) (W2-W1)/W2 ⁇ 100 W1: Weight of reinforcing fiber cloth before resin adhesion W2: Weight of FRP molding material after resin adhesion
  • Fiber volume content (Vf:%) The fiber volume content of FRP was measured by the combustion method based on the JIS K 7075:1991 carbon fiber reinforced plastic fiber content and void content test method.
  • P/P storage stability After leaving the FRP molding material for 24 hours in a thermo-hygrostat set to a temperature of 35° C. and a humidity of 80% RH, 10 sheets were stacked on a fluororesin sheet and pressed with a press machine heated to 200° C. for 5 MPa for 5 minutes. A laminated board was prepared and evaluated for thermophysical properties and mechanical properties. A comparison was made with a laminated plate using the FRP molding material before standing, and if the difference in physical properties was within ⁇ 10%, it was regarded as acceptable, and was marked as ⁇ in the table.
  • Presence or absence of post cure The FRP molding material molded at 5 MPa, 260° C. for 10 minutes with a heat press was heat-treated in an oven at 240° C. for 1 hour, and Tg before and after the heat treatment was measured. If the Tg before the treatment was 160° C. or higher and the difference between the Tg before and after the treatment was within 10° C., post cure was not required.
  • B-1 Maleic anhydride copolymer (B)
  • B-2 SMA resin EF-30 (manufactured by Kawara Yuka, Mw: 9500, acid value: 282, Tg: 125° C.)
  • B-2 SMA resin EF-40 (manufactured by Kawara Yuka Co., Ltd., Mw: 11000, acid value: 210, Tg: 115° C.)
  • B-3) SMA resin EF-80 (manufactured by Kawahara Yuka Co., Ltd., Mw: 14000, acid value: 120, Tg: 104° C.)
  • Epoxy resin (D) (D-1): YSLV-80XY (Tetramethylbisphenol F type, manufactured by Nittetsu Chemical & Materials, epoxy equivalent: 192, melting point: 72°C)
  • Curing catalyst (C) (C-1): 4-dimethylaminopyridine (DMAP, manufactured by Koei Chemical Industry Co., Ltd.)
  • C-2) 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine (Cureazole 2MZ-A, manufactured by Shikoku Kasei)
  • Aromatic acid dianhydride (E-1) ethylene glycol bisanhydrotrimellitate (manufactured by Shin Nippon Rika, acid anhydride equivalent: 207, melting point: 160°C, TEMG)
  • Example 1 The phenoxy resin (A-1), the maleic anhydride copolymer (B-1), and the curing catalyst (C-1) were crushed and classified, respectively, and the average particle diameter d50 was 80 ⁇ m (the average particle diameter of A, B, and C).
  • the phenoxy resin (A-1) has a secondary hydroxyl group and the maleic anhydride copolymer (B-1) has an acid anhydride group molar ratio of 1:1.
  • dry blending was carried out in the proportions (parts by weight) shown in Table 1 to prepare a matrix resin composition powder.
  • a plain weave reinforcing fiber base material made of carbon fiber (STANDARD Modulus type HTS40 3K, manufactured by Toho Tenax Co., Ltd.) was subjected to powder coating under an electrostatic field under conditions of an electric charge of 100 kV and a blowing air pressure of 0.32 MPa. went. Thereafter, the resin was heat-melted in an oven at 180° C. for 1 minute to heat-bond the resin to obtain an FRP molding material. The resin ratio (RC) of the obtained FRP molding material was 33%.
  • Various physical properties were measured for a 1 mm-thick FRP cured product obtained by stacking the above FRP molding materials and press-molding them with a hot press machine under the conditions of 5 MPa, 260° C. and 10 min. The results are shown in Table 1.
  • Example 2 Same as Example 1 except that the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-1) was set to 1:0.2. Then, various physical properties of the matrix resin composition, the FRP molding material (RC: 31%), and the FRP cured product were measured. The results are shown in Table 1.
  • Example 3 Same as Example 1 except that the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-1) was set to 1:1.4. Then, various physical properties of the matrix resin composition, the FRP molding material (RC: 30%), and the FRP cured product were measured. The results are shown in Table 1.
  • Example 4 In addition to the phenoxy resin (A-1), the maleic anhydride copolymer (B-1) and the curing catalyst (C-1), the epoxy resin (D-1) was crushed and classified, and the average particle diameter d50 was 80 ⁇ m. (A-1, B-1, C-1, and D-1 have almost the same average particle size) Powder was dry-blended at the ratio (parts by weight) shown in Table 1 to obtain a matrix resin composition. Various physical properties of the matrix resin composition, the FRP molding material (RC: 32%), and the FRP cured product were measured in the same manner as in Example 1 except that the material powder was produced. The results are shown in Table 1.
  • Example 5 Various physical properties of the matrix resin composition, FRP molding material (RC: 33%), and FRP cured product were measured in the same manner as in Example 1 except that the amount of the curing catalyst (C-1) blended was 3 parts by weight. did. The results are shown in Table 1.
  • Example 6 A matrix resin composition and a FRP molding material (RC: 33%) were prepared in the same manner as in Example 1 except that the curing catalyst (C-1) was changed to (C-2) and the compounding amount was 3 parts by weight. Various physical properties of the FRP cured product were measured. The results are shown in Table 1.
  • Example 7 In addition to the phenoxy resin (A-1), the maleic anhydride copolymer (B-2) and the curing catalyst (C-1), the epoxy resin (D-1) was crushed and classified to obtain an average particle diameter d50 of 80 ⁇ m. (A, B, and C have approximately the same average particle size) The powdered powder is used as an acid anhydride of the secondary hydroxyl group of the phenoxy resin (A-1) and the maleic anhydride copolymer (B-2).
  • FRP molding material (RC: 33%), FRP were prepared in the same manner as in Example 1 except that the matrix resin composition powder was prepared by mixing and dry blending so that the molar ratio of the groups was 1:0.2.
  • Various physical properties of the cured product were measured. The results are shown in Table 1.
  • Comparative Example 1 The phenoxy resin (A-1), the epoxy resin (D-1), and the aromatic dianhydride (E-1) were crushed and classified, respectively, and the average particle diameter d50 was 80 ⁇ m (the average particle diameter of A, D, and E). Powders of the phenoxy resin (A-1) and the acid anhydride group of the aromatic dianhydride (E-1) in a molar ratio of 1:1 and epoxy. The epoxy groups of the resin (D-1) and the aromatic dianhydride (E-1) were dry-blended at a ratio (parts by weight) shown in Table 2 such that the molar ratio was 1:0.6. A matrix resin composition powder was produced.
  • a plain weave reinforcing fiber base material made of carbon fiber (STANDARD Modulus type HTS40 3K, manufactured by Toho Tenax Co., Ltd.) was subjected to powder coating under an electrostatic field under conditions of an electric charge of 100 kV and a blowing air pressure of 0.32 MPa. went. Thereafter, the resin was heat-melted in an oven at 180° C. for 1 minute to heat-bond the resin to obtain an FRP molding material. The resin ratio (RC) of the obtained FRP molding material was 30%.
  • Various physical properties were measured for a 1 mm-thick FRP cured product obtained by stacking the above FRP molding materials and press-molding them with a hot press machine under the conditions of 5 MPa, 260° C. and 10 min. The results are shown in Table 2.
  • Comparative example 2 Same as Example 1 except that the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-1) was set to 1:0.05. Then, various physical properties of the matrix resin composition, the FRP molding material (RC: 29%), and the FRP cured product were measured. The results are shown in Table 2.
  • Comparative Example 3 Example 1 was repeated except that the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-1) was set to 1:9.
  • Various physical properties of the matrix resin composition, FRP molding material (RC: 29%), and FRP cured product were measured. The results are shown in Table 2.
  • Comparative Example 4 (B-3) was used as the maleic anhydride copolymer, and the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-3) was 1:0.
  • Various physical properties of the FRP molding material (RC: 33%) and the FRP cured product were measured in the same manner as in Example 1 except that the components were blended so as to be 0.2 and dry-blended. The results are shown in Table 2.
  • Examples 1 to 7 of the present invention can provide CFRPs having higher Tg and heat resistance than Comparative Examples 2 to 4 and better mechanical properties than Comparative Example 5.
  • Comparative Example 1 which has almost the same Tg and heat resistance as the resin composition using the aromatic dianhydride cross-linking agent of Comparative Example 1, excellent moisture resistance and does not require post cure. It turns out that it has an excellent effect that was not achieved.
  • the fiber-reinforced plastic molding material of the present invention is used as a fiber-reinforced plastic (FRP) material for housing electronic devices such as notebook PCs and tablets, arms for industrial robots, reinforcing materials for building structures, and sports leisure. It can be used in a wide range of fields including fields.
  • FRP fiber-reinforced plastic

Abstract

The present invention provides: an FRP molding material which is capable of suppressing the problem of changes in mechanical characteristics in a high temperature environment by means of a crosslinking reaction, while maintaining good moldability that is a characteristic of phenoxy resins, and which enables the achievement of an FRP molded article that has a heat resistance high enough for use in a harsh environment and excellent mechanical strength at room temperature and in a hot environment; and a method for producing this FRP molding material. A resin composition which is used, as a fiber-reinforced plastic molding material, together with a reinforcing fiber base material, and which is characterized by containing, as essential ingredients, (A) a phenoxy resin, (B) a maleic acid anhydride copolymer serving as a crosslinking agent and (C) a curing catalyst, and is also characterized in that: the maleic acid anhydride copolymer (B) has a weight average molecular weight of 100,000 or less and an acid value of 100-400 KOH-mg/g; and the components are blended so that the molar ratio of the secondary hydroxyl groups of the phenoxy resin (A) to the acid anhydride groups of the maleic acid anhydride copolymer (B) is from 1/0.1 to 1/1.6.

Description

樹脂組成物、繊維強化プラスチック成形用材料および成形物Resin composition, fiber-reinforced plastic molding material and molded article
 本発明は、強化繊維基材への含浸性、成形性が良好である樹脂組成物、その組成物をマトリックス樹脂とする繊維強化プラスチック成形用材料、およびその成形物に関する。 The present invention relates to a resin composition having a good impregnation property into a reinforced fiber base material and a good moldability, a fiber reinforced plastic molding material using the composition as a matrix resin, and a molded product thereof.
 ガラス繊維や炭素繊維とプラスチックとの複合材料である繊維強化プラスチック(FRP)材料は、軽量かつ高強度で高剛性な特徴を生かし、ノートPCやタブレットといった電子機器類の筐体から、産業用ロボット等のアーム、建築構造物の補強材料、自動車のバックドアやピラーなどの構造部材といったように、民生機器から産業機器、自動車分野にまでその適用が展開されている。 Fiber-reinforced plastic (FRP) material, which is a composite material of glass fiber or carbon fiber and plastic, is lightweight, has high strength and high rigidity, and is used for the industrial robots from the housing of electronic devices such as notebook PCs and tablets. Its applications are being applied to consumer equipment, industrial equipment, and automobile fields such as arms for automobiles, reinforcing materials for building structures, structural members such as automobile back doors and pillars.
 一般的なFRP材料は、強化繊維からなる基材にエポキシ樹脂などの液状の熱硬化性樹脂をマトリックス樹脂として含浸し、硬化・成形することによって作製されている。しかし、マトリックス樹脂として熱硬化性樹脂を使用する場合、一般的に硬化剤を併用することが必須であることから、こうした混合物の貯蔵負荷が大きい一方、硬化時間が長いために生産性が低く、その改善が強く求められている。 A general FRP material is made by impregnating a base material made of reinforcing fibers with a liquid thermosetting resin such as an epoxy resin as a matrix resin, and curing and molding. However, when a thermosetting resin is used as the matrix resin, it is generally essential to use a curing agent together, so while the storage load of such a mixture is large, the curing time is long and the productivity is low. There is a strong demand for improvement.
 マトリックス樹脂として熱可塑性樹脂の適用も検討されているが、ポリアミドなどのエンジニアリングプラスチックは高融点・高粘度であるために強化繊維基材への含浸が難しかったり、成形加工に高温プロセスを必要とするなどの問題がある。 Although the application of thermoplastic resin as a matrix resin is also under consideration, engineering plastics such as polyamide have a high melting point and high viscosity, making it difficult to impregnate a reinforced fiber base material or requiring a high temperature process for molding. There is a problem such as.
 一方、フェノキシ樹脂などの比較的低温で溶融する熱可塑性樹脂は、加工性の面では問題ないものの、FRP材料としての耐熱性に劣り、焼付け塗装などの高温プロセスへの適合性の問題がある。 On the other hand, a thermoplastic resin that melts at a relatively low temperature, such as a phenoxy resin, has no problem in terms of processability, but it has poor heat resistance as an FRP material and has a problem of compatibility with high-temperature processes such as baking coating.
 そのため、特許文献1、2では、フェノキシ樹脂の側鎖にある水酸基を利用した架橋反応によりガラス転移温度を上げる手法が提案されている。これは水酸基と酸無水物基とのエステル化反応を利用したフェノキシ樹脂の3次元架橋によるものであるが、架橋剤として使用される芳香族酸二無水物が吸湿しやすく、保管環境の条件によっては架橋反応の反応性が変動してしまう課題がある。さらに、架橋反応を完結させるために30~60分のポストキュアを行うことが推奨されるため、成形時のタクトタイムが長くなって製造コスト低減が難しい。 Therefore, Patent Documents 1 and 2 propose a method of increasing the glass transition temperature by a crosslinking reaction utilizing a hydroxyl group in the side chain of a phenoxy resin. This is due to the three-dimensional cross-linking of the phenoxy resin utilizing the esterification reaction between the hydroxyl group and the acid anhydride group, but the aromatic dianhydride used as the cross-linking agent easily absorbs moisture, depending on the storage environment conditions. Has a problem that the reactivity of the crosslinking reaction varies. Further, it is recommended to carry out post cure for 30 to 60 minutes to complete the crosslinking reaction, so that the takt time at the time of molding becomes long and it is difficult to reduce the manufacturing cost.
 また、酸無水物と水酸基による架橋反応を利用した樹脂組成物として特許文献3のようにビスフェノールF型エポキシ樹脂に無水マレイン変性スチレン樹脂およびナフタレンエポキシ樹脂、潜在性硬化剤を配合した接着性樹脂組成物があり、実施例9にはビスフェノールF型フェノキシ樹脂と無水マレイン酸変性スチレン樹脂、イミダゾール硬化剤の配合物が開示されている。
 しかし、特許文献3は、回路基板材料のための導電性の樹脂組成物であり、可とう性の発現とエポキシ樹脂の硬化反応の促進のためにビスフェノールF型フェノキシ樹脂を用い、スチレン共重合体は粘度調整と気泡の抑制に使用されていて、両者を組み合わせる目的については潜在性硬化剤とエポキシ樹脂の接触を常温域では阻害することにある。また、得られる樹脂組成物のTgは130℃以下であって、FRPのマトリックス樹脂として使用するために必要な溶融粘度などの必要物性は一切開示されていない。
Further, as a resin composition utilizing a cross-linking reaction between an acid anhydride and a hydroxyl group, an adhesive resin composition obtained by blending a maleic anhydride-modified styrene resin, a naphthalene epoxy resin, and a latent curing agent into a bisphenol F type epoxy resin as in Patent Document 3. Example 9 discloses a blend of a bisphenol F-type phenoxy resin, a maleic anhydride-modified styrene resin, and an imidazole curing agent.
However, Patent Document 3 discloses a conductive resin composition for a circuit board material, which uses a bisphenol F-type phenoxy resin for the purpose of exhibiting flexibility and promoting a curing reaction of an epoxy resin, and a styrene copolymer. Is used for adjusting viscosity and suppressing bubbles, and the purpose of combining the two is to prevent contact between the latent curing agent and the epoxy resin at room temperature. In addition, the Tg of the obtained resin composition is 130° C. or lower, and the necessary physical properties such as melt viscosity necessary for use as a matrix resin of FRP are not disclosed at all.
 さらに、特許文献4においても、無水マレイン酸変性ポリプロピレンとフェノキシ樹脂を配合した接着剤用の樹脂組成物が開示されているが、フェノキシ樹脂は20wt%程度で変性ポリプロピレンが主成分となる配合であり、その評価も接着強度のみで、Tgの向上やFRPのマトリックス樹脂としての必要な物性については開示されていない。 Further, Patent Document 4 also discloses a resin composition for an adhesive, which is a mixture of maleic anhydride-modified polypropylene and a phenoxy resin. However, the phenoxy resin is a compound containing modified polypropylene as a main component at about 20 wt %. However, the evaluation was made only on the adhesive strength, and neither the improvement of Tg nor the physical properties necessary for the matrix resin of FRP were disclosed.
WO2014/157132WO2014/157132 WO2016/152856WO2016/152856 特開平9-143445Japanese Patent Laid-Open No. 9-143445 特開2014-218633JP, 2014-218633, A
 本発明の目的は、フェノキシ樹脂の特徴である良成形性を持ちつつ、架橋反応によって課題であった高温環境下における力学特性の変化を抑えることができるFRP成形用材料であって、過酷な環境でも使用できる高い耐熱性と、優れた常温および熱間における機械強度を有するFRP成形体を得ることができるFRP成形用材料とその製造方法を提供することにある。 An object of the present invention is an FRP molding material capable of suppressing changes in mechanical properties under a high temperature environment, which is a problem due to a crosslinking reaction, while having a good moldability which is a characteristic of a phenoxy resin. However, it is an object of the present invention to provide an FRP molding material capable of obtaining a FRP molding having high heat resistance that can be used and excellent mechanical strength at room temperature and hot and a manufacturing method thereof.
 本発明者等は、上記課題を解決するために鋭意検討した結果、繊維強化基材が連続繊維である場合に、熱可塑性のフェノキシ樹脂を主成分として使用すると共に、特定の架橋剤を組み合わせた樹脂組成物とすることによって上記課題を解決し得ることを見出し、本発明を完成するに至った。 The present inventors have conducted extensive studies to solve the above problems, and when the fiber-reinforced base material is a continuous fiber, use a thermoplastic phenoxy resin as a main component and combine a specific cross-linking agent. The inventors have found that the above problems can be solved by using a resin composition, and have completed the present invention.
 すなわち、本発明は、繊維強化プラスチック成形用材料として強化繊維基材とともに使用される樹脂組成物であって、フェノキシ樹脂(A)と、架橋剤としての無水マレイン酸共重合体(B)と、硬化触媒(C)とを必須成分として含み、前記無水マレイン酸共重合体(B)の重量平均分子量が100000以下、かつ酸価が150~400KOH-mg/gであり、フェノキシ樹脂(A)の2級水酸基と、無水マレイン酸共重合体(B)の酸無水物基が、モル比で1/0.1~1/1.6となるように配合されていることを特徴とする樹脂組成物である。 That is, the present invention is a resin composition used together with a reinforced fiber base material as a material for molding a fiber reinforced plastic, comprising a phenoxy resin (A) and a maleic anhydride copolymer (B) as a cross-linking agent. The curing catalyst (C) is contained as an essential component, the weight average molecular weight of the maleic anhydride copolymer (B) is 100,000 or less, and the acid value is 150 to 400 KOH-mg/g, and the phenoxy resin (A) is A resin composition characterized in that the secondary hydroxyl group and the acid anhydride group of the maleic anhydride copolymer (B) are mixed in a molar ratio of 1/0.1 to 1/1.6. It is a thing.
 樹脂組成物はエポキシ樹脂(D)が含まれていてもよく、架橋又は硬化した樹脂組成物は、そのガラス転移温度(Tg)が160℃以上を示すものが好適である。 The resin composition may contain an epoxy resin (D), and the crosslinked or cured resin composition preferably has a glass transition temperature (Tg) of 160° C. or higher.
 また、本発明は、強化繊維基材の少なくとも一部が上記樹脂組成物により被覆または含浸された繊維強化プラスチック成形用材料である。 The present invention is also a fiber-reinforced plastic molding material in which at least a part of a reinforced fiber base material is coated or impregnated with the above resin composition.
 更に、本発明は、この繊維強化プラスチック成形用材料を加熱成形させてなる繊維強化プラスチック成形物でもある。 Furthermore, the present invention is also a fiber-reinforced plastic molded product obtained by heat-molding this fiber-reinforced plastic molding material.
 本発明の樹脂組成物は、繊維強化プラスチック成形用材料のマトリックス樹脂として使用され、強化繊維基材への含浸が良好に行われるため、これを成形体とした場合の成形体の内部にボイドなどの欠陥が発生しにくい。このため、成形体の機械特性を良好に保持できるという効果を有する。また、繊維強化プラスチック成形用材料としては、成形用材料のマトリックス樹脂が熱可塑性のフェノキシ樹脂を主成分とする樹脂組成物によって構成されているため、柔軟であり、様々な形状に賦形できるという特徴を有する他、異種材料との接着性にも優れる。更に、成形物にあっては、外観性状も良く、耐熱性に優れ、かつ低吸水性の成形品を得ることができる。 The resin composition of the present invention is used as a matrix resin for a fiber-reinforced plastic molding material, and since the reinforced fiber base material is satisfactorily impregnated, voids and the like are formed inside the molded body when this is used as a molded body. Is less likely to occur. Therefore, there is an effect that the mechanical properties of the molded body can be maintained well. Further, as a fiber-reinforced plastic molding material, since the matrix resin of the molding material is composed of a resin composition containing a thermoplastic phenoxy resin as a main component, it is flexible and can be shaped into various shapes. In addition to its characteristics, it has excellent adhesiveness to different materials. Further, the molded product can have a good external appearance, excellent heat resistance, and low water absorption.
 以下、本発明を詳細に説明する。
 本発明のFRP成形用材料として強化繊維とともに使用される樹脂組成物は、フェノキシ樹脂(A)と無水マレイン酸共重合体(B)と硬化触媒(C)を必須成分とする無溶剤系の常温固形のフェノキシ樹脂組成物である。さらにエポキシ樹脂(D)が含まれていてもよい。
Hereinafter, the present invention will be described in detail.
The resin composition used together with the reinforcing fiber as the FRP molding material of the present invention is a solvent-free room temperature system containing phenoxy resin (A), maleic anhydride copolymer (B) and curing catalyst (C) as essential components. It is a solid phenoxy resin composition. Further, the epoxy resin (D) may be contained.
 本発明の樹脂組成物の必須成分として使用されるフェノキシ樹脂(A)は、常温において固形であり、かつ160~280℃の温度域のいずれかにおいて4000Pa・s以下の溶融粘度を示すものである。溶融粘度は、好ましくは3500Pa・s以下であり、より好ましくは3000Pa・s以下である。160~280℃の温度域のいずれにおいても溶融粘度が4000Pa・sを超えると成形加工時のフェノキシ樹脂の流動性が悪くなるため、フェノキシ樹脂が繊維基材内に十分行き渡らずにボイドの原因となり、成形物の機械物性が低下してしまう。 The phenoxy resin (A) used as an essential component of the resin composition of the present invention is solid at room temperature and exhibits a melt viscosity of 4000 Pa·s or less in any of the temperature ranges of 160 to 280°C. .. The melt viscosity is preferably 3500 Pa·s or less, more preferably 3000 Pa·s or less. If the melt viscosity exceeds 4000 Pa·s in any temperature range from 160 to 280°C, the fluidity of the phenoxy resin during molding will deteriorate, and the phenoxy resin will not fully spread into the fiber substrate, causing voids. However, the mechanical properties of the molded product deteriorate.
 フェノキシ樹脂は、2価フェノール化合物とエピハロヒドリンとの縮合反応、あるいは2価フェノール化合物と2官能エポキシ樹脂との重付加反応から得られる熱可塑性樹脂であり、溶液中あるいは無溶媒下に従来公知の方法で得ることができる。平均分子量は、質量平均分子量(Mw)として、通常10000~200000であるが、好ましくは20000~100000であり、より好ましくは30000~80000である。Mwが低すぎると成形体の強度が劣り、高すぎると作業性や加工性に劣るものとなり易い。なお、Mwはゲルパーミエーションクロマトグラフィ-(GPC)で測定し、標準ポリスチレン検量線を用いて換算した値を示す。 The phenoxy resin is a thermoplastic resin obtained by a condensation reaction between a dihydric phenol compound and epihalohydrin or a polyaddition reaction between a dihydric phenol compound and a difunctional epoxy resin, which is a conventionally known method in a solution or without a solvent. Can be obtained at The average molecular weight is usually 10,000 to 200,000 as a mass average molecular weight (Mw), preferably 20,000 to 100,000, and more preferably 30,000 to 80,000. If the Mw is too low, the strength of the molded article will be poor, and if it is too high, the workability and workability will tend to be poor. The Mw is a value measured by gel permeation chromatography (GPC) and converted using a standard polystyrene calibration curve.
 また、フェノキシ樹脂の水酸基当量(g/eq) は、通常50~1000であるが、好ましくは50~750であり、特に好ましくは50~500である。水酸基当量は低すぎると水酸基が増えることで吸水率が上がるため、機械物性が低下する懸念がある。水酸基当量が高すぎると水酸基が少ないので強化繊維基材を構成する炭素繊維との濡れ性が低下するほか、架橋剤を使用しても架橋密度を低いため機械物性が上がらない。ここで、本明細書でいう水酸基当量は2級水酸基当量を意味する。 The hydroxyl equivalent (g/eq) of the phenoxy resin is usually 50 to 1000, preferably 50 to 750, particularly preferably 50 to 500. If the hydroxyl group equivalent is too low, the water absorption rate increases due to an increase in the number of hydroxyl groups, and there is a concern that the mechanical properties will deteriorate. If the hydroxyl group equivalent is too high, the number of hydroxyl groups is small, so that the wettability with the carbon fibers constituting the reinforcing fiber substrate is lowered, and even if a crosslinking agent is used, the crosslink density is low and mechanical properties are not improved. Here, the hydroxyl group equivalent as used herein means a secondary hydroxyl group equivalent.
 フェノキシ樹脂のガラス転移温度(Tg)は、65℃~160℃のものが適するが、好ましくは70℃~150℃である。ガラス転移温度が65℃よりも低いと成形性は良くなるが、粉体の貯蔵安定性やプリフォームのタック性に問題が生じる。160℃よりも高いと溶融粘度も高くなり成形性や繊維への充填性が劣り、結果として、より高温のプレス成形が必要とされる。なお、フェノキシ樹脂のガラス転移温度は、示差走査熱量測定装置を用い、10℃/分の昇温条件で、20~280℃の範囲で測定し、セカンドスキャンのピーク値より求められる数値である。 The glass transition temperature (Tg) of the phenoxy resin is suitably 65°C to 160°C, preferably 70°C to 150°C. If the glass transition temperature is lower than 65° C., the moldability will be good, but problems will occur in the storage stability of the powder and the tackiness of the preform. If the temperature is higher than 160° C., the melt viscosity will be high and the moldability and the filling property into the fiber will be poor, and as a result, higher temperature press molding is required. The glass transition temperature of the phenoxy resin is a numerical value obtained from the peak value of the second scan, which is measured in the range of 20 to 280° C. under a temperature rising condition of 10° C./min using a differential scanning calorimeter.
 フェノキシ樹脂としては、上記の物性を満たしたものであれば特に限定されないが、ビスフェノールA型フェノキシ樹脂(例えば、日鉄ケミカル&マテリアル製フェノトートYP-50、YP-50S、YP-55U)、ビスフェノールF型フェノキシ樹脂(例えば、日鉄ケミカル&マテリアル製フェノトートFX-316)、またはビスフェノールAとビスフェノールFの共重合型フェノキシ樹脂(例えば、日鉄ケミカル&マテリアル製YP‐70)、前記以外の特殊フェノキシ樹脂(例えば日鉄ケミカル&マテリアル製フェノトートYPB-43C、FX293等)等が挙げられ、これらを単独または2種以上を混合して使用することができる。 The phenoxy resin is not particularly limited as long as it satisfies the above physical properties, but is a bisphenol A type phenoxy resin (for example, Phenotote YP-50, YP-50S, YP-55U manufactured by Nippon Steel Chemical & Material), bisphenol. F-type phenoxy resin (for example, Phenototo FX-316 manufactured by Nittetsu Chemical & Material), or copolymerization type phenoxy resin of bisphenol A and bisphenol F (for example, YP-70 manufactured by Nittetsu Chemical & Material), and other special Examples thereof include phenoxy resins (for example, Phenothote YPB-43C and FX293 manufactured by Nittetsu Chemical & Materials), and these can be used alone or in combination of two or more.
 本発明の樹脂組成物には、フェノキシ樹脂(A)とともに、マトリックス樹脂のTgの向上等を目的に、無水マレイン酸共重合体が(B)が架橋剤として配合される。
 無水マレイン酸共重合体(B)の酸無水物基は、加水分解により1つの酸無水物基から2つのカルボキシ基を生じるので、フェノキシ樹脂(A)が有するOH基と反応する官能基を2つ以上有すると理解され、フェノキシ樹脂の2級水酸基とエステル結合を形成することによって、フェノキシ樹脂を三次元架橋させる。
 このため、樹脂組成物の架橋硬化物のTgをフェノキシ樹脂単独よりも大きく向上させることができるほか、形成された3次元架橋は加水分解反応により架橋を解くことができるので、FRP成形物にリサイクル性を与えることもできる。すなわち、架橋硬化した場合であっても、マトリックス樹脂の硬化にフェノキシ樹脂(A)と無水マレイン酸共重合体(B)とのエステル結合を利用しているため、加水分解反応を利用することにより、FRP成型物を強化繊維とマトリックス樹脂へと分別し、廃棄することなくリサイクルすることも可能となる。
The resin composition of the present invention contains a maleic anhydride copolymer (B) as a crosslinking agent together with the phenoxy resin (A) for the purpose of improving the Tg of the matrix resin.
The acid anhydride group of the maleic anhydride copolymer (B) is hydrolyzed to form two carboxy groups from one acid anhydride group. Therefore, a functional group that reacts with the OH group of the phenoxy resin (A) is 2 It is understood that the phenoxy resin is three-dimensionally cross-linked by forming an ester bond with the secondary hydroxyl group of the phenoxy resin.
Therefore, the Tg of the crosslinked cured product of the resin composition can be greatly improved as compared with the phenoxy resin alone, and the formed three-dimensional crosslinks can be released by a hydrolysis reaction, so that the FRP molded products can be recycled. You can also give sex. That is, even when cross-linked and cured, since the ester bond between the phenoxy resin (A) and the maleic anhydride copolymer (B) is used for curing the matrix resin, it is possible to use a hydrolysis reaction. , FRP moldings can be separated into reinforcing fibers and matrix resin, and can be recycled without discarding.
 無水マレイン酸共重合体(B)は、フェノキシ樹脂の2級水酸基と反応する無水マレイン酸由来の酸無水物を2つ以上有し、常温で固体であって、昇華性が無いものであれば特に限定されるものではないが、成形物の耐熱性付与や反応性、ハンドリング性の点から、無水マレイン酸と、ポリオレフィンやスチレン、重量平均分子量が5000~10000程度の高分子量エポキシ樹脂、フェノキシ樹脂などとの共重合体が好ましく使用される。特に、無水マレイン酸とスチレンやポリプロピレンとの共重合体は、同じような架橋硬化が可能な酸無水物を2つ以上有する芳香族酸無水物よりも吸湿による反応性の変化が少なく、フェノキシ樹脂やエポキシ樹脂との相溶性も良いので最も好ましい。 The maleic anhydride copolymer (B) has two or more maleic anhydride-derived acid anhydrides that react with the secondary hydroxyl groups of the phenoxy resin, is solid at room temperature, and has no sublimation property. Although not particularly limited, maleic anhydride, polyolefin and styrene, a high molecular weight epoxy resin having a weight average molecular weight of about 5,000 to 10,000, and a phenoxy resin are used from the viewpoint of imparting heat resistance to a molded article, reactivity, and handleability. Copolymers with etc. are preferably used. In particular, a copolymer of maleic anhydride and styrene or polypropylene has less change in reactivity due to moisture absorption than an aromatic acid anhydride having two or more similar acid anhydrides capable of crosslinking and curing, and a phenoxy resin. It is the most preferable because it has good compatibility with epoxy resin.
 無水マレイン酸共重合体(B)は、その重量平均分子量(Mw)が100000以下であるものが良い。重量平均分子量が100000を超えると溶融時の流動性が低下するために架橋反応が無水マレイン酸共重合体の周辺でしか起こらず、架橋密度が低下するためにFRP成形体の物性が低下してしまうために適さない。一方、重量平均分子量の下限値については特に限定はしないものの、重量平均分子量の低下は耐吸湿性の低下を招く恐れがあるため、少なくとも200以上あればよい。このため、無水マレイン酸共重合体の重量平均分子量は好ましくは200~100000であり、より好ましくは200~50000、さらに好ましくは200~20000である。 The weight average molecular weight (Mw) of the maleic anhydride copolymer (B) is preferably 100,000 or less. When the weight average molecular weight exceeds 100,000, the fluidity at the time of melting is lowered, and therefore the crosslinking reaction occurs only in the vicinity of the maleic anhydride copolymer, and the crosslinking density is lowered, so that the physical properties of the FRP molded article are deteriorated. Not suitable for storage. On the other hand, although the lower limit of the weight average molecular weight is not particularly limited, a decrease in the weight average molecular weight may lead to a decrease in the moisture absorption resistance, and therefore it is at least 200 or more. Therefore, the weight average molecular weight of the maleic anhydride copolymer is preferably 200 to 100,000, more preferably 200 to 50,000, and further preferably 200 to 20,000.
 無水マレイン酸共重合体(B)は、その酸価が150~400であるものが適する。好ましくは170~375であり、より好ましくは200~300である。ここで、酸価は、試料1g中に含まれる酸性成分を中和するのに要する水酸化カリウムのmg数(KOH-mg/g)で表される。酸価が400を超えると溶融粘度が高くなるために架橋反応が起こりにくくなり、150を下回ると架橋点が少なくなるためにTgの上昇が抑えられてしまうため使用には適さない。また、軟化点又はTgは160℃以下であることが好ましく、100~155℃であることがより好ましい。軟化点又はTgが160℃を超えるとフェノキシ樹脂との架橋反応に時間を要することとなるため、高温かつ長時間のプレスが必要となり、FRPの生産性が低下するので好ましくない。
 なお、架橋剤としての無水マレイン酸共重合体(B)は、本発明の効果を阻害しない限り、他の架橋剤、例えばピロメリット酸無水物(PMDA)などの芳香族酸二無水物を併用してもよい。ただし、架橋剤の50重量%未満とする。
The maleic anhydride copolymer (B) preferably has an acid value of 150 to 400. It is preferably 170 to 375, more preferably 200 to 300. Here, the acid value is represented by the number of mg of potassium hydroxide (KOH-mg/g) required to neutralize the acidic component contained in 1 g of the sample. If the acid value exceeds 400, the melt viscosity will be high and the crosslinking reaction will be difficult to occur. If it is less than 150, the number of crosslinking points will be small and the increase in Tg will be suppressed, which is not suitable for use. The softening point or Tg is preferably 160° C. or lower, more preferably 100 to 155° C. If the softening point or Tg exceeds 160° C., the crosslinking reaction with the phenoxy resin requires a long time, which requires pressing at high temperature for a long time, which is not preferable because the productivity of FRP is reduced.
The maleic anhydride copolymer (B) as a cross-linking agent may be used in combination with another cross-linking agent, for example, an aromatic acid dianhydride such as pyromellitic dianhydride (PMDA), as long as the effect of the present invention is not impaired. You may. However, it is less than 50% by weight of the crosslinking agent.
 無水マレイン酸共重合体(B)の配合量は、通常、フェノキシ樹脂(A)の2級水酸基1モルに対して無水マレイン酸共重合体(B)の酸無水物基が0.1~1.6モルの範囲となる量であり、好ましくは0.2~1.4モルの範囲の量であり、より好ましくは0.6~1.2モルの範囲である。無水マレイン酸共重合体(B)の量が少なすぎると架橋密度が低いため、機械物性や耐熱性に劣り、多すぎると未反応の酸無水物基やカルボキシ基が架橋硬化物の物性に悪影響を与える。
 このため、必要に応じてエポキシ樹脂(D)を配合し、無水マレイン酸共重合体(B)の配合量に応じて、エポキシ樹脂(D)の配合量を調整することが好ましい。具体的には、エポキシ樹脂(D)により、フェノキシ樹脂(A)の2級水酸基と無水マレイン酸共重合体(B)との反応による生じるカルボキシ基を反応させることを目的に、エポキシ樹脂(D)の配合量を無水マレイン酸共重合体(B)の酸無水物基との当量比で0.5~1.2の範囲内となるようにするとよい。
The amount of the maleic anhydride copolymer (B) to be blended is usually 0.1-1 mole of the acid anhydride group of the maleic anhydride copolymer (B) per 1 mol of the secondary hydroxyl group of the phenoxy resin (A). The amount is in the range of 0.6 mol, preferably in the range of 0.2 to 1.4 mol, and more preferably in the range of 0.6 to 1.2 mol. If the amount of the maleic anhydride copolymer (B) is too small, the crosslink density is low, resulting in poor mechanical properties and heat resistance. If it is too large, unreacted acid anhydride groups and carboxy groups adversely affect the properties of the crosslinked cured product. give.
Therefore, it is preferable that the epoxy resin (D) is blended as necessary and the blending amount of the epoxy resin (D) is adjusted according to the blending amount of the maleic anhydride copolymer (B). Specifically, the epoxy resin (D) is used for the purpose of reacting the carboxy group generated by the reaction between the secondary hydroxyl group of the phenoxy resin (A) and the maleic anhydride copolymer (B) with the epoxy resin (D). It is advisable that the compounding amount of) is within the range of 0.5 to 1.2 in terms of an equivalent ratio to the acid anhydride group of the maleic anhydride copolymer (B).
 本発明の樹脂組成物は、フェノキシ樹脂(A)、もしくはフェノキシ樹脂(A)とエポキシ樹脂(D)を含む樹脂組成物に無水マレイン酸共重合体(B)を配合するだけでも、架橋樹脂成形物を得ることができるが、架橋反応が確実に行われTgを160℃以上の耐熱性を発現するようにするために硬化触媒(C)の添加を必須とする。 The resin composition of the present invention can be formed into a crosslinked resin by simply adding the maleic anhydride copolymer (B) to the phenoxy resin (A) or the resin composition containing the phenoxy resin (A) and the epoxy resin (D). Although the product can be obtained, it is essential to add the curing catalyst (C) so that the crosslinking reaction is surely performed and the Tg exhibits heat resistance of 160° C. or higher.
 硬化触媒は、常温で固体であり、昇華性が無いものであれば特に限定されるものではなく、例えば、トリエチレンジアミン等の3級アミン、2‐メチルイミダゾール、2‐フェニルイミダゾール、2‐フェニル‐4‐メチルイミダゾール等のイミダゾール類、トリフェニルフォスフィン等の有機フォスフィン類、テトラフェニルホスホニウムテトラフェニルボレート等のテトラフェニルボロン塩、4‐ジメチルアミノピリジンなどのアミノピリジン類などが挙げられる。これらの硬化触媒(促進剤)は、単独で使用してもよいし、2種類以上併用しても良い。 The curing catalyst is not particularly limited as long as it is a solid at room temperature and has no sublimation property. For example, a tertiary amine such as triethylenediamine, 2-methylimidazole, 2-phenylimidazole, 2-phenyl- Examples thereof include imidazoles such as 4-methylimidazole, organic phosphines such as triphenylphosphine, tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate, and aminopyridines such as 4-dimethylaminopyridine. These curing catalysts (accelerators) may be used alone or in combination of two or more.
 硬化触媒(C)の配合量は、フェノキシ樹脂(A)、無水マレイン酸共重合体(B)の合計量100重量部、または、フェノキシ樹脂(A)、無水マレイン酸共重合体(B)、エポキシ樹脂(D)の合計量100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.5~5重量部である。 The compounding amount of the curing catalyst (C) is 100 parts by weight of the total amount of the phenoxy resin (A) and the maleic anhydride copolymer (B), or the phenoxy resin (A) and the maleic anhydride copolymer (B), The total amount of the epoxy resin (D) is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight.
 本発明の樹脂組成物には、上述のとおり、エポキシ樹脂(D)を配合してもよい。エポキシ樹脂を配合することによって、マトリックス樹脂の溶融粘度の低減による強化繊維基材への含浸性の向上や、マトリックス樹脂硬化物の架橋密度の向上を通じた耐熱性を図ることができる。 The epoxy resin (D) may be added to the resin composition of the present invention as described above. By blending the epoxy resin, it is possible to improve the impregnability into the reinforcing fiber base material by reducing the melt viscosity of the matrix resin and the heat resistance by improving the crosslink density of the matrix resin cured product.
 エポキシ樹脂(D)としては、固形のエポキシ樹脂であれば本発明に適用可能であり、例えば2官能性以上のエポキシ樹脂が好ましく、ビスフェノールAタイプエポキシ樹脂(例えば、日鉄ケミカル&マテリアル製エポトートYD-011、YD-7011、YD-900)、ビスフェノールFタイプエポキシ樹脂(例えば、日鉄ケミカル&マテリアル製エポトートYDF-2001)、ジフェニルエーテルタイプエポキシ樹脂(例えば、日鉄ケミカル&マテリアル製YSLV-80DE)、テトラメチルビスフェノールFタイプエポキシ樹脂(例えば、日鉄ケミカル&マテリアル製YSLV-80XY)、ビスフェノールスルフィドタイプエポキシ樹脂(例えば、日鉄ケミカル&マテリアル製YSLV-120TE)、ハイドロキノンタイプエポキシ樹脂(例えば、日鉄ケミカル&マテリアル製エポトートYDC-1312)、フェノールノボラックタイプエポキシ樹脂、(例えば、日鉄ケミカル&マテリアル製エポトートYDPN-638)、オルソクレゾールノボラックタイプエポキシ樹脂(例えば、日鉄ケミカル&マテリアル製エポトートYDCN-701、YDCN-702、YDCN-703、YDCN-704)、アラルキルナフタレンジオールノボラックタイフエポキシ樹脂(例えば、日鉄ケミカル&マテリアル製ESN-355)、トリフェニルメタンタイプエポキシ樹脂(例えば、日本化薬株式会社製EPPN-502H)等が挙げられるが、これらに限定されるものではなく、またこれらは2種類以上混合して使用しても良い。 The epoxy resin (D) is applicable to the present invention as long as it is a solid epoxy resin, for example, a bifunctional or higher epoxy resin is preferable, and a bisphenol A type epoxy resin (for example, Epototo YD manufactured by Nippon Steel Chemical & Material). -011, YD-7011, YD-900), bisphenol F type epoxy resin (for example, Epototo YDF-2001 manufactured by Nippon Steel Chemical & Material), diphenyl ether type epoxy resin (for example, YSLV-80DE manufactured by Nippon Steel Chemical & Material), Tetramethylbisphenol F type epoxy resin (for example, YSLV-80XY by Nippon Steel Chemical & Material), bisphenol sulfide type epoxy resin (for example, YSLV-120TE by Nippon Steel Chemical & Material), hydroquinone type epoxy resin (for example, Nittetsu Chemical & Material Epotote YDC-1312), phenol novolac type epoxy resin, (for example, Nippon Steel Chemical & Material Epototo YDPN-638), orthocresol novolac type epoxy resin (for example, Nippon Steel Chemical & Material Epototo YDCN-701, YDCN-702, YDCN-703, YDCN-704), aralkylnaphthalene diol novolac type epoxy resin (for example, ESN-355 manufactured by Nippon Steel Chemical & Material), triphenylmethane type epoxy resin (for example, EPPN manufactured by Nippon Kayaku Co., Ltd.) -502H) and the like, but not limited thereto, and two or more kinds thereof may be mixed and used.
 エポキシ樹脂(D)は、更に好ましくは、室温で固体であり、融点が75℃~145℃で、160℃における粘度が1.0Pa・s以下である結晶性エポキシ樹脂が良い。結晶性エポキシ樹脂は、溶融粘度が低く、取り扱いが容易であり、フェノキシ樹脂を必須成分とするマトリックス樹脂の溶融粘度を低下させることができる。溶融粘度が1.0Pa・sを超えると、マトリックス樹脂の強化繊維基材への充填性が劣り、得られる繊維強化プラスチック成形物(FRP成形物)の均質性に劣る。 The epoxy resin (D) is more preferably a crystalline epoxy resin that is solid at room temperature, has a melting point of 75° C. to 145° C., and a viscosity at 160° C. of 1.0 Pa·s or less. The crystalline epoxy resin has a low melt viscosity, is easy to handle, and can reduce the melt viscosity of a matrix resin containing a phenoxy resin as an essential component. When the melt viscosity exceeds 1.0 Pa·s, the filling property of the matrix resin into the reinforced fiber base material is poor, and the obtained fiber reinforced plastic molded product (FRP molded product) is poor in homogeneity.
 エポキシ樹脂(D)が存在する場合は、フェノキシ樹脂(A)、無水マレイン酸共重合体(B)及びエポキシ樹脂(D)の反応は、フェノキシ樹脂(A)中の2級水酸基と無水マレイン酸共重合体(B)の酸無水物基とのエステル化反応、更にはこのエステル化反応により生成した力ルボキシ基とエポキシ樹脂(D)のエポキシ基との反応によって架橋、硬化される。フェノキシ樹脂(A)と無水マレイン酸共重合体(B)との反応によってフェノキシ樹脂架橋体を得ることができるが、エポキシ樹脂(D)の共存によって、フェノキシ樹脂の2級水酸基と無水マレイン酸共重合体(B)の酸無水物基とが反応して生じるカルボキシ基がエポキシ樹脂のエポキシ基と結合して架橋反応の促進や、架橋密度の向上が生じる他、マトリックス樹脂の溶融粘度を低減化して強化繊維基材への含浸性を高められる。それにより、機械強度の向上など優れたFRP成形物を得るために好適なFRP成形用材料となる。
 なお、本発明において、エポキシ樹脂(D)を共存している場合であっても、主成分は熱可塑性樹脂であるフェノキシ樹脂(A)であり、この2級水酸基と無水マレイン酸共重合体(B)の酸無水物基とのエステル化反応が優先していると考えられる。すなわち、無水マレイン酸共重合体(B)とエポキシ樹脂(D)、フェノキシ樹脂(A)が共存する場合、無水マレイン酸共重合体の酸無水物とフェノキシ樹脂の2級水酸基との反応が先ず起こり、次いで未反応の無水マレイン酸共重合体(B)が開環して生じるカルボキシ基とエポキシ樹脂(D)とが反応することで更なる架橋密度の向上が図られる。そのため、本発明のFRP成形用材料は、熱硬化性樹脂であるエポキシ樹脂を主成分とする通常のプリプレグとは異なり、成形性が良好であるとともに、湿度管理を行っていない状態での長期室温保管後でも成形性やFRP成形物の物性を維持しており、貯蔵安定性に優れる。
When the epoxy resin (D) is present, the reaction of the phenoxy resin (A), the maleic anhydride copolymer (B) and the epoxy resin (D) is carried out by reacting the secondary hydroxyl group in the phenoxy resin (A) with maleic anhydride. The copolymer (B) is crosslinked and cured by an esterification reaction with an acid anhydride group, and further by a reaction between the epoxy group of the epoxy resin (D) and a benzyl group produced by this esterification reaction. A phenoxy resin cross-linked product can be obtained by the reaction of the phenoxy resin (A) and the maleic anhydride copolymer (B). However, the coexistence of the epoxy resin (D) results in the secondary hydroxyl group of the phenoxy resin and the maleic anhydride copolymer. The carboxy group formed by the reaction with the acid anhydride group of the polymer (B) is bonded to the epoxy group of the epoxy resin to accelerate the cross-linking reaction and increase the cross-linking density, and reduce the melt viscosity of the matrix resin. Thus, the impregnating property into the reinforcing fiber base material can be enhanced. As a result, it becomes a suitable FRP molding material for obtaining an excellent FRP molded product such as improved mechanical strength.
In the present invention, even when the epoxy resin (D) coexists, the main component is the phenoxy resin (A) which is a thermoplastic resin, and the secondary hydroxyl group and the maleic anhydride copolymer ( It is considered that the esterification reaction of B) with the acid anhydride group has priority. That is, when the maleic anhydride copolymer (B) and the epoxy resin (D) and the phenoxy resin (A) coexist, the reaction between the acid anhydride of the maleic anhydride copolymer and the secondary hydroxyl group of the phenoxy resin is first performed. Then, the unreacted maleic anhydride copolymer (B) is ring-opened to react with the carboxy group and the epoxy resin (D) to further improve the crosslinking density. Therefore, the FRP molding material of the present invention has good moldability, unlike ordinary prepregs containing an epoxy resin as a main component, which is a thermosetting resin, and has long-term room temperature in a state where humidity control is not performed. Even after storage, the moldability and physical properties of FRP molded products are maintained, and storage stability is excellent.
 本発明の樹脂組成物は、樹脂成分として、フェノキシ樹脂を30wt%より多く、好ましくは45wt%以上含む。ここで、樹脂成分としてはフェノキシ樹脂と無水マレイン酸共重合体の他にエポキシ樹脂を含むが、硬化触媒等の非樹脂成分は含まない。また、マトリックス樹脂とは、樹脂成分の他に架橋剤や硬化触媒も含むが、強化繊維基材は含まれない。 The resin composition of the present invention contains a phenoxy resin as a resin component in an amount of more than 30 wt%, preferably 45 wt% or more. Here, the resin component includes an epoxy resin in addition to the phenoxy resin and the maleic anhydride copolymer, but does not include a non-resin component such as a curing catalyst. Further, the matrix resin includes a crosslinking agent and a curing catalyst in addition to the resin component, but does not include the reinforcing fiber base material.
 フェノキシ樹脂(A)と共にエポキシ樹脂(D)を併用する場合、フェノキシ樹脂(A)、エポキシ樹脂(D)の配合量を、フェノキシ樹脂(A)100重量部に対して、エポキシ樹脂(D)を1~35重量部となるように配合するとよい。エポキシ樹脂(D)の配合量は、好ましくは3~30重量部であり、より好ましくは5~25重量部である。エポキシ樹脂(D)の配合量が35重量部を超えるとエポキシ樹脂の硬化に時間を要するため、脱型に必要な強度を短時間で得にくくなる他、FRPのリサイクル性が低下する。また、エポキシ樹脂(D)の配合量が1重量部未満になるとエポキシ樹脂の配合による架橋密度の向上効果が得られなくなり、マトリックス樹脂の硬化物が160℃以上のTgを発現しにくくなる他、マトリックス樹脂の流動性が悪化するため、強化繊維基材への含浸が困難になるおそれがある。 When the epoxy resin (D) is used in combination with the phenoxy resin (A), the blending amount of the phenoxy resin (A) and the epoxy resin (D) is the epoxy resin (D) based on 100 parts by weight of the phenoxy resin (A). It is advisable to add them in an amount of 1 to 35 parts by weight. The blending amount of the epoxy resin (D) is preferably 3 to 30 parts by weight, more preferably 5 to 25 parts by weight. When the blending amount of the epoxy resin (D) exceeds 35 parts by weight, it takes time to cure the epoxy resin, so that it becomes difficult to obtain the strength required for demolding in a short time, and the recyclability of FRP is deteriorated. Further, when the amount of the epoxy resin (D) is less than 1 part by weight, the effect of improving the crosslink density due to the mixture of the epoxy resin cannot be obtained, and the cured product of the matrix resin hardly develops Tg of 160° C. or higher. Since the fluidity of the matrix resin deteriorates, it may be difficult to impregnate the reinforcing fiber base material.
 本発明の樹脂組成物は、フェノキシ樹脂及び無水マレイン酸共重合体と共にエポキシ樹脂を含む場合であっても、常温で固形であり、その溶融粘度は160~280℃の温度域のいずれかにおいて3000Pa・s以下であることが必要である。好ましくはその溶融粘度が2500Pa・s以下、30Pa・s以上であり、2200Pa・s以下、30Pa・s以上であるとより好ましい。溶融粘度が3000Pa・sを超えると熱プレスによる成形時に強化繊維基材へのマトリックス樹脂の含浸が不十分となり、内部ボイド等の欠陥を生じるほか、成形物のマトリックス樹脂の物性にバラつきも生じるため、FRP成形体の機械物性が低下する。また、溶融粘度が低すぎると樹脂組成物の流れ性が大きくなりすぎるためにFRP成形体の繊維体積含有量の制御が難しくなり、所望の数値からずれるような事態となるため、30Pa・s以上であることが好ましい。 The resin composition of the present invention is solid at room temperature even when it contains an epoxy resin together with a phenoxy resin and a maleic anhydride copolymer, and its melt viscosity is 3000 Pa in any temperature range of 160 to 280°C.・It must be s or less. The melt viscosity is preferably 2500 Pa·s or less and 30 Pa·s or more, and more preferably 2200 Pa·s or less and 30 Pa·s or more. If the melt viscosity exceeds 3000 Pa·s, the reinforcing fiber base material will not be sufficiently impregnated with the matrix resin during molding by hot pressing, and defects such as internal voids will occur and the physical properties of the matrix resin of the molded product will also vary. , The mechanical properties of the FRP molded product deteriorate. Further, if the melt viscosity is too low, the flowability of the resin composition becomes too large, which makes it difficult to control the fiber volume content of the FRP molded product, which may deviate from the desired value. Is preferred.
 本発明の樹脂組成物は、温度上昇につれて溶融粘度が低下した後、架橋反応の開始によって溶融粘度が急上昇する。よって、通常は、成形温度である160~280℃の温度域において、架橋反応開始前の最低溶融粘度が3000Pa・s以下であればよい。上述したように、160~280℃温度範囲のいずれかにおいてマトリックス樹脂の溶融粘度が3000Pa・s以下であれば、所望のFRP成形体を得ることができる。但し、フェノキシ樹脂単独の溶融粘度が160~280℃の温度範囲のいずれかにおいて3000Pa・s以下であったとしても、無水マレイン酸共重合体によって架橋反応が早期に開始し、マトリックス樹脂としての溶融粘度が上記温度域のいずれにおいても3000Pa・sを超える場合がある。よって、フェノキシ樹脂の溶融粘度ではなく、マトリックス樹脂の溶融粘度が、上記温度域のいずれかにおいて3000Pa・s以下であることが必要である。
 フェノキシ樹脂の種類によって、溶融粘度が3000Pa・s以下となる温度が多少変動するが、少なくとも成形温度である160~280℃の温度域のいずれかにおいて、溶融粘度が3000Pa・s以下であれば、FRP成形可能である。なお、成形温度はより高温、例えば300℃でも成形できるが、架橋反応が早まることによって3000Pa・sを超える事態となり易い。
The melt viscosity of the resin composition of the present invention decreases as the temperature rises, and then the melt viscosity rapidly increases due to the initiation of the crosslinking reaction. Therefore, normally, in the temperature range of 160 to 280° C. which is the molding temperature, the minimum melt viscosity before the start of the crosslinking reaction may be 3000 Pa·s or less. As described above, when the melt viscosity of the matrix resin is 3000 Pa·s or less in any of the 160 to 280°C temperature range, a desired FRP molded product can be obtained. However, even if the melt viscosity of the phenoxy resin alone is 3000 Pa·s or less in any of the temperature ranges of 160 to 280° C., the crosslinking reaction is initiated early by the maleic anhydride copolymer, and the melt as the matrix resin is melted. The viscosity may exceed 3000 Pa·s in any of the above temperature ranges. Therefore, the melt viscosity of the matrix resin, not the melt viscosity of the phenoxy resin, must be 3000 Pa·s or less in any of the above temperature ranges.
Depending on the type of phenoxy resin, the temperature at which the melt viscosity becomes 3000 Pa·s or less fluctuates somewhat, but if the melt viscosity is 3000 Pa·s or less at least in the temperature range of 160 to 280° C., which is the molding temperature, FRP molding is possible. Although the molding temperature can be higher, for example, 300° C., it is likely to exceed 3000 Pa·s due to the accelerated crosslinking reaction.
 本発明の樹脂組成物には、難燃剤および難燃助剤が配合されていてもよい。難燃剤は、常温で固体であり、昇華性が無いものであればよく、例えば水酸化カルシウムといった無機系難燃剤や、リン酸アンモニウム類やリン酸エステル化合物といった有機系および無機系のリン系難燃剤、トリアジン化合物等の含窒素系難燃剤、臭素化フェノキシ樹脂等の含臭素系難燃剤などが挙げられる。なかでも臭素化フェノキシ樹脂やリン含有フェノキシ樹脂は、難燃剤兼マトリックス樹脂として使用することが可能なことから好ましく使用することができる。
 難燃剤(および難燃助剤)の配合量については、難燃剤の種類や所望の難燃性の程度によって適宜選択されるが、マトリックス樹脂100重量部に対して概ね0.01~50重量部の範囲内で、マトリックス樹脂の付着性やFRP成形物の物性を損なわない程度で配合することが好ましい。
A flame retardant and a flame retardant aid may be blended in the resin composition of the present invention. Any flame retardant may be used as long as it is a solid at room temperature and has no sublimation property. For example, an inorganic flame retardant such as calcium hydroxide or an organic or inorganic phosphorus flame retardant such as ammonium phosphates or phosphate ester compounds. Examples thereof include a flame retardant, a nitrogen-containing flame retardant such as a triazine compound, and a brominated flame retardant such as a brominated phenoxy resin. Among them, a brominated phenoxy resin and a phosphorus-containing phenoxy resin can be preferably used because they can be used as a flame retardant/matrix resin.
The blending amount of the flame retardant (and the flame retardant aid) is appropriately selected depending on the kind of the flame retardant and the desired degree of flame retardancy, but is generally 0.01 to 50 parts by weight with respect to 100 parts by weight of the matrix resin. Within the range, it is preferable to mix them in such an amount that the adhesion of the matrix resin and the physical properties of the FRP molded product are not impaired.
 さらに、本発明の樹脂組成物には、マトリックス樹脂粉末の繊維基材への良好な付着性や成形後のFRP成形物の物性を損なわない範囲において、フェノキシ樹脂以外の熱可塑性樹脂粉末、例えば、ポリ塩化ビニリデン樹脂、天然ゴム、合成ゴム等の粉末や、種々の無機フィラー、体質顔料、着色剤、酸化防止剤、紫外線防止剤等その他添加物を配合することもできる。 Furthermore, in the resin composition of the present invention, a thermoplastic resin powder other than a phenoxy resin, for example, in a range that does not impair the good adhesion of the matrix resin powder to the fiber base material and the physical properties of the FRP molded product after molding, for example, Powders of polyvinylidene chloride resin, natural rubber, synthetic rubber, etc., and various additives such as various inorganic fillers, extender pigments, colorants, antioxidants, UV inhibitors and the like can also be added.
 本発明の樹脂組成物は、FRP成形用材料のマトリックス樹脂となるものであり、公知の方法を用いて強化繊維基材に付着もしくは含浸されるが、溶剤を使用しない方法を用いることが好ましい。このような方法として強化繊維基材にフィルム化した樹脂組成物を溶融含浸する方法(圧入法、フィルムスタック法)や、樹脂組成物を紡糸した連続繊維を強化繊維と混織する方法(コミングル法)、粉末化した樹脂組成物を強化繊維基材に散布・塗工する方法(パウダーコーティング法、粉体塗装法)が挙げられる。なかでもパウダーコーティング法は、FRP成形用材料を作製する際に強化繊維が折損しにくく、柔軟性があり、通気性があるために高多層に積層されても内部気泡が発生しにくいFRP成形用材料が得られるのでより好ましい方法である。 The resin composition of the present invention serves as the matrix resin of the FRP molding material, and is adhered or impregnated on the reinforcing fiber base material by a known method, but it is preferable to use a method that does not use a solvent. As such a method, a method of melt-impregnating a resin composition formed into a film on a reinforcing fiber substrate (press-fitting method, film stack method) or a method of mixing continuous fibers spun with the resin composition with a reinforcing fiber (commingle method) ), and a method (powder coating method, powder coating method) of spraying/coating the powdered resin composition on the reinforcing fiber base material. Among them, the powder coating method is for FRP molding, in which the reinforcing fibers are less likely to break when manufacturing the FRP molding material, have flexibility, and have breathability, so that internal bubbles are less likely to be generated even when laminated in a high multilayer. This is a more preferable method because a material can be obtained.
 本発明の樹脂組成物を使用したFRP成形用材料(プリプレグ)におけるマトリックス樹脂の付着量(樹脂割合:RC)は、重量比で20~50%、好ましくは25~45%であり、より好ましくは25~40%である。RCが50%を超えるとFRPの引張・曲げ弾性率等の機械物性が低下してしまい、20%を下回ると樹脂の付着量が極端に少ないことから基材内部へのマトリックス樹脂の含浸が不十分になり、熱物性、機械物性ともに低くなる懸念がある。 The adhesion amount (resin ratio: RC) of the matrix resin in the FRP molding material (prepreg) using the resin composition of the present invention is 20 to 50% by weight, preferably 25 to 45%, and more preferably 25-40%. When RC exceeds 50%, mechanical properties such as tensile and flexural modulus of FRP are deteriorated, and when it is less than 20%, the resin adhesion amount is extremely small. There is a concern that it will be sufficient and that both thermophysical properties and mechanical properties will deteriorate.
 本発明の樹脂組成物を使用したFRP成形用材料は、強化繊維基材の少なくとも一部が樹脂組成物により被覆されている。あるいは、強化繊維基材の少なくとも一部に樹脂組成物が含浸されている。 In the FRP molding material using the resin composition of the present invention, at least a part of the reinforcing fiber base material is covered with the resin composition. Alternatively, at least a part of the reinforcing fiber base material is impregnated with the resin composition.
 強化繊維基材を構成する繊維としては、炭素繊維、ボロン繊維、シリコンカーバイト繊維、ガラス繊維及びアラミド繊維からなる群の中から選ばれる少なくとも1種の繊維であり、2種以上の繊維を含むものであってもよい。繊維は、強度が高く、熱伝導性の良い炭素繊維が好ましく、特に、ピッチ系の炭素繊維は、高強度であるだけでなく高熱伝導性でもあり、発生した熱を素早く拡散することができるのでより好ましい。 The fiber constituting the reinforcing fiber base material is at least one fiber selected from the group consisting of carbon fiber, boron fiber, silicon carbide fiber, glass fiber and aramid fiber, and includes two or more fibers. It may be one. The fiber is preferably a carbon fiber having high strength and good thermal conductivity, and in particular, the pitch-based carbon fiber is not only high in strength but also high in thermal conductivity, so that the generated heat can be quickly diffused. More preferable.
 強化繊維基材の形態は、特に制限されるものでは無く、例えば一方向材、平織りや綾織などのクロス、三次元クロス、チョップドストランドマット、数千本以上のフィラメントよりなるトウ、あるいは不織布等を使用することができる。これらの強化繊維基材は、1種類で用いることもできるし、2種類以上を併用することも可能である。本発明のFRP成形用材料は、少なくとも強化繊維基材の一部が上記熱可塑性樹脂組成物により被覆または含浸されている。強化繊維基材への被覆または含浸をパウダーコーティング法で行う場合、開繊処理された強化繊維基材を使用することが好ましい。開繊処理により、パウダーコーティングやフィルムスタック法による成形用材料作成時、及び、その後の成形加工時において、マトリックス樹脂の強化繊維基材の内部への含浸がより行われやすくなるため、成形物とした場合により高い物性が期待できる。 The form of the reinforcing fiber substrate is not particularly limited, and for example, a unidirectional material, a cloth such as plain weave or twill, a three-dimensional cloth, a chopped strand mat, a tow consisting of several thousand or more filaments, or a non-woven fabric is used. Can be used. These reinforcing fiber bases may be used alone or in combination of two or more. In the FRP molding material of the present invention, at least a part of the reinforcing fiber base material is covered or impregnated with the thermoplastic resin composition. When the coating or impregnation of the reinforcing fiber base material is performed by the powder coating method, it is preferable to use the opened reinforcing fiber base material. The fiber opening process makes it easier to impregnate the inside of the reinforced fiber base material with the matrix resin when forming the molding material by powder coating or the film stack method, and during the subsequent molding process. Higher physical properties can be expected.
 強化繊維は、その表面にサイジング材(集束剤)やカップリング剤等を付着させたものがマトリックス樹脂の強化繊維への濡れ性や、取り扱い性を向上させることができるので好ましい。サイジング剤としては、例えば、無水マレイン酸系化合物、ウレタン系化合物、アクリル系化合物、エポキシ系化合物、フェノール系化合物またはこれら化合物の誘導体などが挙げられ、中でもエポキシ系化合物を含有するサイジング剤が好適に使用可能である。カップリング剤としては、例えば、アミノ系、エポキシ系、クロル系、メルカプト系、カチオン系のシランカップリング剤などが挙げられ、アミノ系シラン系カップリング剤が好適に使用可能である。サイジング材とカップリング剤の含有量は、強化繊維100重量部に対し、その合計量で0.1~10重量部、より好ましくは0.5~6重量部である。この含有量であれば、マトリックス樹脂との濡れ性、取り扱い性が優れる。 The reinforcing fibers are preferably those having a sizing material (a sizing agent) or a coupling agent attached to the surface thereof, because the wettability of the matrix resin with the reinforcing fibers and the handleability can be improved. Examples of the sizing agent include maleic anhydride-based compounds, urethane-based compounds, acryl-based compounds, epoxy-based compounds, phenol-based compounds or derivatives of these compounds, among which sizing agents containing epoxy-based compounds are preferred. It can be used. Examples of the coupling agent include amino-based, epoxy-based, chloro-based, mercapto-based, and cationic-based silane coupling agents, and amino-based silane-based coupling agents can be preferably used. The content of the sizing material and the coupling agent is 0.1 to 10 parts by weight, and more preferably 0.5 to 6 parts by weight, based on 100 parts by weight of the reinforcing fiber. With this content, the wettability with the matrix resin and the handleability are excellent.
 本発明の樹脂組成物を使用したFRP成形用材料を、単独でもしくは複数積層し、加熱かつ加圧することにより、FRP成形物を簡便に製造することができる。すなわち、熱プレスによる加圧成形により、賦形とマトリックス樹脂の強化繊維基材への完全な含浸を同時に行うことが可能となる。FRP成形用材料を使用した成形は、加熱加圧成形である限り、目的とするFRP成形物の大きさや形状に合わせて、オートクレーブ成型や金型を使用した熱プレス成型等の各種成形法を適宜選択して実施することができる。 The FRP molded product can be easily produced by heating the single FRP molding material using the resin composition of the present invention or by laminating a plurality of materials and heating and pressing. That is, it becomes possible to simultaneously perform shaping and complete impregnation of the matrix resin into the reinforcing fiber base material by pressure molding by hot pressing. Molding using the FRP molding material can be carried out by various molding methods such as autoclave molding and hot press molding using a metal mold, depending on the size and shape of the desired FRP molded product, as long as it is heat and pressure molding. It can be selected and implemented.
 加熱加圧成形での成形温度は、例えば160~280℃、好ましくは180℃~270℃、より好ましくは180℃~260℃である。成形温度が上限温度を超えると、必要以上の過剰な熱を加えるため、樹脂の過剰な流れ出しや熱劣化の恐れがある他、昇温や冷却に時間を要するので成形時間(タクトタイム)が長くなり生産性が悪くなる。一方、下限温度を下回るとマトリックス樹脂の溶融粘度が高いため、強化繊維基材へのマトリックス樹脂の含浸性が悪くなる。成形時間については、通常10~60分で行うことができる。 The molding temperature in the heat and pressure molding is, for example, 160 to 280°C, preferably 180°C to 270°C, more preferably 180°C to 260°C. If the molding temperature exceeds the upper limit temperature, excessive heat will be applied more than necessary, and there is a risk of excessive resin outflow and thermal deterioration.Moreover, the time required for heating and cooling will increase the molding time (tact time). The productivity will deteriorate. On the other hand, when the temperature is lower than the lower limit temperature, the melt viscosity of the matrix resin is high, so that the impregnability of the matrix resin into the reinforcing fiber base material is deteriorated. The molding time is usually 10 to 60 minutes.
 製造されたFRP成形物の脱型温度は、マトリックス樹脂の種類や配合、生産性などを考慮して設定されるが、例えば100~120℃である。本発明の樹脂組成物は、フェノキシ樹脂の2級水酸基を利用した架橋反応によって成形前よりも耐熱性が大きく上昇するため、このように脱型温度を高くすることができる。
 また、フェノキシ樹脂と無水マレイン酸共重合体との架橋反応は熱履歴の長さに応じて進行するため、例えばプレス時間を短縮する代わりに、後工程で行われる熱処理を利用して、再度熱履歴を加えることによって架橋反応を完結させることもできる。
The demolding temperature of the manufactured FRP molded product is set in consideration of the type and composition of the matrix resin, the productivity, etc., but is 100 to 120° C., for example. The resin composition of the present invention has a much higher heat resistance than that before molding due to the crosslinking reaction utilizing the secondary hydroxyl group of the phenoxy resin, and thus the demolding temperature can be increased.
Further, since the crosslinking reaction between the phenoxy resin and the maleic anhydride copolymer proceeds according to the length of thermal history, for example, instead of shortening the pressing time, a heat treatment performed in a later step is used to reheat The crosslinking reaction can also be completed by adding history.
 以下に実施例及び比較例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。なお、各種物性の試験及び測定方法は、以下のとおりである。 Hereinafter, the present invention will be described more specifically by showing Examples and Comparative Examples, but the present invention is not limited to the description of these Examples. The tests and measuring methods for various physical properties are as follows.
平均粒子径(d50)
 マトリックス樹脂などの微粉末等の平均粒子径は、レーザー回折-散乱式粒子径分布測定装置(マイクロトラックMT3300EX、日機装社製)により、体積基準で累積体積が50%となるときの粒子径を測定した。
Average particle size (d50)
The average particle size of fine powders such as matrix resin is measured by a laser diffraction-scattering particle size distribution measuring device (Microtrac MT3300EX, manufactured by Nikkiso Co., Ltd.) when the cumulative volume is 50% on a volume basis. did.
溶融粘度
 レオメータ(Anton Paar社製)を用いて、5mmのサンプルをパラレルプレートに挟み、5℃/minで昇温しながら、周波数:1Hz、負荷ひずみ:0.5%の条件にて、30~270℃における溶融粘度を測定した。
 なお、表1には前記測定温度範囲における溶融粘度の最小値を記載している。
Melt Viscosity Using a rheometer (manufactured by Anton Paar), a 5 mm 3 sample was sandwiched between parallel plates, and the temperature was raised at 5° C./min while the frequency was 1 Hz and the load strain was 0.5%. The melt viscosity at ˜270° C. was measured.
In addition, Table 1 shows the minimum value of the melt viscosity in the measurement temperature range.
樹脂組成物の耐吸湿性
 樹脂組成物粉末0.5gをアルミカップに入れ、35℃、80%RHに調整した恒温恒湿試験器に放置し、1hr、2hr、5hr、24hr、48hr、72hr、168hr経過後に都度取り出してその性状の変化を確認した。
 吸湿により粉末にダマが生じていたり、性状が大きく変化したものは耐吸湿性が悪いということで×とし、粉末性状に特に変化が見られないものは耐吸湿性が良いということで○とした。
Moisture absorption resistance of resin composition 0.5 g of resin composition powder was placed in an aluminum cup and left in a constant temperature and humidity tester adjusted to 35° C. and 80% RH, and left for 1 hr, 2 hr, 5 hr, 24 hr, 48 hr, 72 hr, After 168 hours, it was taken out each time and the change in its properties was confirmed.
If the powder is lumped due to moisture absorption, or if the properties have changed significantly, the moisture absorption resistance is poor, and it is indicated as ×.If the powder properties are not particularly changed, it is indicated as good moisture absorption resistance. ..
樹脂組成物のガラス転移温度(Tg)
 樹脂組成物粉末を圧縮成形して6mmΦ×2mmtのサイズの試験片を作製し、動的粘弾性測定装置(Perkin Elmer製 DMA 7e)を用いて、5℃/分の昇温条件、25~250℃の範囲で測定し、得られるtanδの極大ピークをガラス転移点とした。
Glass transition temperature (Tg) of resin composition
The resin composition powder was compression-molded to prepare a test piece having a size of 6 mmΦ×2 mmt, and using a dynamic viscoelasticity measuring device (DMA 7e manufactured by Perkin Elmer), a temperature rising condition of 5° C./min, 25 to 250. The maximum peak of tan δ obtained by measuring in the range of °C was taken as the glass transition point.
樹脂組成物の耐熱性
 樹脂組成物のガラス転移点温度を動的粘弾性測定装置で測定した際の測定前後におけるプローブの移動量にて評価した。プローブの移動量が0.5mm未満を◎、1mm未満を○、1mm以上を×とした。
Heat Resistance of Resin Composition The glass transition temperature of the resin composition was evaluated by the amount of movement of the probe before and after the measurement when measured with a dynamic viscoelasticity measuring device. When the amount of movement of the probe was less than 0.5 mm, it was marked with ⊚, when less than 1 mm was marked with ◯, and when 1 mm or more was marked with x.
FRP成形物のガラス転移温度(Tg)
 FRP成形用材料を積層して熱プレスすることにより作製した厚さ2mmの積層板から、ダイヤモンドカッターを用いて幅10mm、長さ10mmの試験片を作製し、上記動的粘弾性測定装置を用いて5℃/分の昇温条件、25~250℃の範囲で測定し、得られるtanδの極大ピークをガラス転移点とした。
Glass transition temperature (Tg) of FRP molded product
Using a diamond cutter, a test piece having a width of 10 mm and a length of 10 mm was prepared from a laminated plate having a thickness of 2 mm prepared by laminating FRP molding materials and hot pressing, and using the above-mentioned dynamic viscoelasticity measuring device. Was measured at a temperature rising condition of 5° C./min under the range of 25 to 250° C., and the maximum peak of tan δ obtained was taken as the glass transition point.
樹脂割合(RC:%)
 マトリックス樹脂付着前の強化繊維クロスの重量(W1)と、樹脂付着後のFRP成形用材料の重量(W2)から下記の式を用いて算出した。
樹脂割合(RC:%)=(W2-W1)/W2×100
W1:樹脂付着前の強化繊維クロス重量
W2:樹脂付着後のFRP成形用材料の重量
Resin ratio (RC:%)
It was calculated from the weight (W1) of the reinforcing fiber cloth before the matrix resin was attached and the weight (W2) of the FRP molding material after the resin was attached, using the following formula.
Resin ratio (RC:%)=(W2-W1)/W2×100
W1: Weight of reinforcing fiber cloth before resin adhesion W2: Weight of FRP molding material after resin adhesion
繊維体積含有率(Vf:%)
 FRPの繊維体積含有量は、JIS K 7075:1991 炭素繊維強化プラスチックの繊維含有率及び空洞率試験方法に基づいて燃焼法により測定した。
Fiber volume content (Vf:%)
The fiber volume content of FRP was measured by the combustion method based on the JIS K 7075:1991 carbon fiber reinforced plastic fiber content and void content test method.
機械強度
 JIS K 7074:1988 炭素繊維強化プラスチックの曲げ試験方法に基づいて、得られたFRP積層板の機械物性を測定した。
Mechanical Strength JIS K 7074:1988 The mechanical properties of the obtained FRP laminated plate were measured based on the bending test method of carbon fiber reinforced plastic.
保存安定性(P/P保存性)
 温度35℃、湿度80%RHに設定した恒温恒湿器にFRP成形用材料を24hr放置後、フッ素樹脂シート上に10枚重ねて、200℃に加熱したプレス機で5MPa、5分間プレスして積層板を作製し、熱物性や機械物性の評価を行った。放置前のFRP成形材料を用いた積層板との比較を行い、物性の差が±10%の範囲内であれば合格とし、表中に○と表記した。
Storage stability (P/P storage stability)
After leaving the FRP molding material for 24 hours in a thermo-hygrostat set to a temperature of 35° C. and a humidity of 80% RH, 10 sheets were stacked on a fluororesin sheet and pressed with a press machine heated to 200° C. for 5 MPa for 5 minutes. A laminated board was prepared and evaluated for thermophysical properties and mechanical properties. A comparison was made with a laminated plate using the FRP molding material before standing, and if the difference in physical properties was within ±10%, it was regarded as acceptable, and was marked as ◯ in the table.
ポストキュアの有無
 熱プレス機で5MPa、260℃、10min成形したFRP成形材料を240℃のオーブンにて1時間熱処理を行い、熱処理前後のTgを測定した。処理前のTgが160℃以上かつ、処理前後のTgの差が10℃以内であればポストキュアを不要とした。
Presence or absence of post cure The FRP molding material molded at 5 MPa, 260° C. for 10 minutes with a heat press was heat-treated in an oven at 240° C. for 1 hour, and Tg before and after the heat treatment was measured. If the Tg before the treatment was 160° C. or higher and the difference between the Tg before and after the treatment was within 10° C., post cure was not required.
 実施例及び比較例で使用した材料は、以下のとおりである。 The materials used in the examples and comparative examples are as follows.
フェノキシ樹脂(A)
(A-1)フェノトートYP-50S(日鉄ケミカル&マテリアル製ビスフェノールA型、Mw=60000、水酸基当量=284)、Tg=84℃、200℃における溶融粘度=400Pa・s
Phenoxy resin (A)
(A-1) Phenothote YP-50S (bisphenol A type manufactured by Nittetsu Chemical & Materials, Mw=60,000, hydroxyl equivalent=284), Tg=84° C., melt viscosity at 200° C.=400 Pa·s
無水マレイン酸共重合体(B)
 (B-1):SMAレジンEF-30(川原油化社製、Mw:9500、酸価:282、Tg:125℃)
(B-2):SMAレジンEF-40(川原油化社製、Mw:11000、酸価:210、Tg:115℃)
(B-3):SMAレジンEF-80(川原油化社製、Mw:14000、酸価:120、Tg:104℃)
(B-4):XIBOND160(POLY SCOPE社製、酸価:250、Mw:115000、Tg:150℃)
Maleic anhydride copolymer (B)
(B-1): SMA resin EF-30 (manufactured by Kawara Yuka, Mw: 9500, acid value: 282, Tg: 125° C.)
(B-2): SMA resin EF-40 (manufactured by Kawara Yuka Co., Ltd., Mw: 11000, acid value: 210, Tg: 115° C.)
(B-3): SMA resin EF-80 (manufactured by Kawahara Yuka Co., Ltd., Mw: 14000, acid value: 120, Tg: 104° C.)
(B-4): XIBOND160 (manufactured by POLY SCOPE, acid value: 250, Mw: 115000, Tg: 150° C.)
エポキシ樹脂(D)
 (D-1):YSLV‐80XY(日鉄ケミカル&マテリアル製テトラメチルビスフェノールF型、エポキシ当量:192、融点:72℃)
Epoxy resin (D)
(D-1): YSLV-80XY (Tetramethylbisphenol F type, manufactured by Nittetsu Chemical & Materials, epoxy equivalent: 192, melting point: 72°C)
硬化触媒(C)
(C-1):4‐ジメチルアミノピリジン(DMAP、広栄化学工業社製)
(C-2):2,4‐ジアミノ‐6‐[2’‐メチルイミダゾリル‐(1’)]‐エチル‐s‐トリアジン(キュアゾール 2MZ-A、四国化成社製)
Curing catalyst (C)
(C-1): 4-dimethylaminopyridine (DMAP, manufactured by Koei Chemical Industry Co., Ltd.)
(C-2): 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine (Cureazole 2MZ-A, manufactured by Shikoku Kasei)
芳香族酸二無水物
(E-1):エチレングリコールビスアンヒドロトリメリテート(新日本理化製、酸無水物当量:207、融点:160℃、TEMG)
Aromatic acid dianhydride (E-1): ethylene glycol bisanhydrotrimellitate (manufactured by Shin Nippon Rika, acid anhydride equivalent: 207, melting point: 160°C, TEMG)
実施例1
 フェノキシ樹脂(A-1)、無水マレイン酸共重合体(B-1)、硬化触媒(C-1)をそれぞれ粉砕、分級して平均粒子径d50が80μm(A、B、Cの平均粒径はほぼ同じ)である粉体にしたものを、フェノキシ樹脂(A-1)の2級水酸基と無水マレイン酸共重合体(B-1)の酸無水物基のモル比が1:1となるようにして、表1に示す割合(重量部)でドライブレンドし、マトリックス樹脂組成物粉末を作製した。次いで、炭素繊維(東邦テナックス社製、STANDARD Modulus type HTS40 3K)からなる開繊処理された平織の強化繊維基材に、静電場において、電荷100kV、吹き付け空気圧0.32MPaの条件で粉体塗装を行った。その後、オーブンで180℃、1分間加熱溶融して樹脂を熱融着させ、FRP成形用材料を得た。得られたFRP成形用材料の樹脂割合(RC)は33%であった。
 上記FRP成形用材料を積層して熱プレス機で5MPa、260℃、10minの条件で加圧成形した厚み1mmのFRP硬化物について、各種物性を測定した。これらの結果を表1に示す。
Example 1
The phenoxy resin (A-1), the maleic anhydride copolymer (B-1), and the curing catalyst (C-1) were crushed and classified, respectively, and the average particle diameter d50 was 80 μm (the average particle diameter of A, B, and C). The phenoxy resin (A-1) has a secondary hydroxyl group and the maleic anhydride copolymer (B-1) has an acid anhydride group molar ratio of 1:1. In this manner, dry blending was carried out in the proportions (parts by weight) shown in Table 1 to prepare a matrix resin composition powder. Then, a plain weave reinforcing fiber base material made of carbon fiber (STANDARD Modulus type HTS40 3K, manufactured by Toho Tenax Co., Ltd.) was subjected to powder coating under an electrostatic field under conditions of an electric charge of 100 kV and a blowing air pressure of 0.32 MPa. went. Thereafter, the resin was heat-melted in an oven at 180° C. for 1 minute to heat-bond the resin to obtain an FRP molding material. The resin ratio (RC) of the obtained FRP molding material was 33%.
Various physical properties were measured for a 1 mm-thick FRP cured product obtained by stacking the above FRP molding materials and press-molding them with a hot press machine under the conditions of 5 MPa, 260° C. and 10 min. The results are shown in Table 1.
実施例2
 フェノキシ樹脂(A-1)の2級水酸基と無水マレイン酸共重合体(B-1)の酸無水物基のモル比が1:0.2となるようにした以外は実施例1と同様にして、マトリックス樹脂組成物およびFRP成形材料(RC:31%)、FRP硬化物について、各種物性を測定した。これらの結果を表1に示す。
Example 2
Same as Example 1 except that the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-1) was set to 1:0.2. Then, various physical properties of the matrix resin composition, the FRP molding material (RC: 31%), and the FRP cured product were measured. The results are shown in Table 1.
実施例3
 フェノキシ樹脂(A-1)の2級水酸基と無水マレイン酸共重合体(B-1)の酸無水物基のモル比が1:1.4となるようにした以外は実施例1と同様にして、マトリックス樹脂組成物およびFRP成形材料(RC:30%)、FRP硬化物について、各種物性を測定した。これらの結果を表1に示す。
Example 3
Same as Example 1 except that the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-1) was set to 1:1.4. Then, various physical properties of the matrix resin composition, the FRP molding material (RC: 30%), and the FRP cured product were measured. The results are shown in Table 1.
実施例4
 フェノキシ樹脂(A-1)、無水マレイン酸共重合体(B-1)、硬化触媒(C-1)に加え、エポキシ樹脂(D-1)をそれぞれ粉砕、分級して平均粒子径d50が80μm(A-1、B-1、C-1、D-1の平均粒径はほぼ同じ)である粉体にしたものを、表1に示す割合(重量部)でドライブレンドし、マトリックス樹脂組成物粉末を作製したこと以外は実施例1と同様にして、マトリックス樹脂組成物およびFRP成形材料(RC:32%)、FRP硬化物について、各種物性を測定した。これらの結果を表1に示す。
Example 4
In addition to the phenoxy resin (A-1), the maleic anhydride copolymer (B-1) and the curing catalyst (C-1), the epoxy resin (D-1) was crushed and classified, and the average particle diameter d50 was 80 μm. (A-1, B-1, C-1, and D-1 have almost the same average particle size) Powder was dry-blended at the ratio (parts by weight) shown in Table 1 to obtain a matrix resin composition. Various physical properties of the matrix resin composition, the FRP molding material (RC: 32%), and the FRP cured product were measured in the same manner as in Example 1 except that the material powder was produced. The results are shown in Table 1.
実施例5
 硬化触媒(C-1)の配合量を3重量部とした以外は実施例1と同様にして、マトリックス樹脂組成物およびFRP成形材料(RC:33%)、FRP硬化物について、各種物性を測定した。これらの結果を表1に示す。
Example 5
Various physical properties of the matrix resin composition, FRP molding material (RC: 33%), and FRP cured product were measured in the same manner as in Example 1 except that the amount of the curing catalyst (C-1) blended was 3 parts by weight. did. The results are shown in Table 1.
実施例6
 硬化触媒(C-1)を(C-2)に変更し、配合量を3重量部とした以外は実施例1と同様にして、マトリックス樹脂組成物およびFRP成形材料(RC:33%)、FRP硬化物について、各種物性を測定した。これらの結果を表1に示す。
Example 6
A matrix resin composition and a FRP molding material (RC: 33%) were prepared in the same manner as in Example 1 except that the curing catalyst (C-1) was changed to (C-2) and the compounding amount was 3 parts by weight. Various physical properties of the FRP cured product were measured. The results are shown in Table 1.
実施例7
 フェノキシ樹脂(A-1)、無水マレイン酸共重合体(B-2)、硬化触媒(C-1)に加え、エポキシ樹脂(D-1)をそれぞれ粉砕、分級して平均粒子径d50が80μm(A、B、Cの平均粒径はほぼ同じ)である粉体にしたものを、フェノキシ樹脂(A-1)の2級水酸基と無水マレイン酸共重合体(B-2)の酸無水物基のモル比が1:0.2となるように配合してドライブレンドし、マトリックス樹脂組成物粉末を作製したこと以外は実施例1と同様にしてFRP成形材料(RC:33%)、FRP硬化物について、各種物性を測定した。これらの結果を表1に示す。
Example 7
In addition to the phenoxy resin (A-1), the maleic anhydride copolymer (B-2) and the curing catalyst (C-1), the epoxy resin (D-1) was crushed and classified to obtain an average particle diameter d50 of 80 μm. (A, B, and C have approximately the same average particle size) The powdered powder is used as an acid anhydride of the secondary hydroxyl group of the phenoxy resin (A-1) and the maleic anhydride copolymer (B-2). FRP molding material (RC: 33%), FRP were prepared in the same manner as in Example 1 except that the matrix resin composition powder was prepared by mixing and dry blending so that the molar ratio of the groups was 1:0.2. Various physical properties of the cured product were measured. The results are shown in Table 1.
比較例1
 フェノキシ樹脂(A-1)、エポキシ樹脂(D-1)、芳香族酸二無水物(E-1)をそれぞれ粉砕、分級して平均粒子径d50が80μm(A、D、Eの平均粒径はほぼ同じ)である粉体にしたものを、フェノキシ樹脂(A-1)の2級水酸基と芳香族酸二無水物(E-1)の酸無水物基のモル比が1:1、エポキシ樹脂(D-1)のエポキシ基と芳香族酸二無水物(E-1)のモル比が1:0.6となるようにして、表2に示す割合(重量部)でドライブレンドし、マトリックス樹脂組成物粉末を作製した。次いで、炭素繊維(東邦テナックス社製、STANDARD Modulus type HTS40 3K)からなる開繊処理された平織の強化繊維基材に、静電場において、電荷100kV、吹き付け空気圧0.32MPaの条件で粉体塗装を行った。その後、オーブンで180℃、1分間加熱溶融して樹脂を熱融着させ、FRP成形用材料を得た。得られたFRP成形用材料の樹脂割合(RC)は30%であった。
 上記FRP成形用材料を積層して熱プレス機で5MPa、260℃、10minの条件で加圧成形した厚み1mmのFRP硬化物について、各種物性を測定した。これらの結果を表2に示す。
Comparative Example 1
The phenoxy resin (A-1), the epoxy resin (D-1), and the aromatic dianhydride (E-1) were crushed and classified, respectively, and the average particle diameter d50 was 80 μm (the average particle diameter of A, D, and E). Powders of the phenoxy resin (A-1) and the acid anhydride group of the aromatic dianhydride (E-1) in a molar ratio of 1:1 and epoxy. The epoxy groups of the resin (D-1) and the aromatic dianhydride (E-1) were dry-blended at a ratio (parts by weight) shown in Table 2 such that the molar ratio was 1:0.6. A matrix resin composition powder was produced. Then, a plain weave reinforcing fiber base material made of carbon fiber (STANDARD Modulus type HTS40 3K, manufactured by Toho Tenax Co., Ltd.) was subjected to powder coating under an electrostatic field under conditions of an electric charge of 100 kV and a blowing air pressure of 0.32 MPa. went. Thereafter, the resin was heat-melted in an oven at 180° C. for 1 minute to heat-bond the resin to obtain an FRP molding material. The resin ratio (RC) of the obtained FRP molding material was 30%.
Various physical properties were measured for a 1 mm-thick FRP cured product obtained by stacking the above FRP molding materials and press-molding them with a hot press machine under the conditions of 5 MPa, 260° C. and 10 min. The results are shown in Table 2.
比較例2
 フェノキシ樹脂(A-1)の2級水酸基と無水マレイン酸共重合体(B-1)の酸無水物基のモル比が1:0.05となるようにした以外は実施例1と同様にして、マトリックス樹脂組成物およびFRP成形材料(RC:29%)、FRP硬化物について、各種物性を測定した。これらの結果を表2に示す。
Comparative example 2
Same as Example 1 except that the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-1) was set to 1:0.05. Then, various physical properties of the matrix resin composition, the FRP molding material (RC: 29%), and the FRP cured product were measured. The results are shown in Table 2.
比較例3
 フェノキシ樹脂(A-1)の2級水酸基と無水マレイン酸共重合体(B-1)の酸無水物基のモル比が1:9となるようにした以外は実施例1と同様にして、マトリックス樹脂組成物およびFRP成形材料(RC:29%)、FRP硬化物について、各種物性を測定した。これらの結果を表2に示す。
Comparative Example 3
Example 1 was repeated except that the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-1) was set to 1:9. Various physical properties of the matrix resin composition, FRP molding material (RC: 29%), and FRP cured product were measured. The results are shown in Table 2.
比較例4
 無水マレイン酸共重合体として(B-3)を用い、フェノキシ樹脂(A-1)の2級水酸基と無水マレイン酸共重合体(B-3)の酸無水物基のモル比が1:0.2となるように配合してドライブレンドしたこと以外は実施例1と同様にしてFRP成形材料(RC:33%)、FRP硬化物について、各種物性を測定した。これらの結果を表2に示す。
Comparative Example 4
(B-3) was used as the maleic anhydride copolymer, and the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-3) was 1:0. Various physical properties of the FRP molding material (RC: 33%) and the FRP cured product were measured in the same manner as in Example 1 except that the components were blended so as to be 0.2 and dry-blended. The results are shown in Table 2.
比較例5
 無水マレイン酸共重合体として(B-4)を用い、フェノキシ樹脂(A-1)の2級水酸基と無水マレイン酸共重合体(B-4)の酸無水物基のモル比が1:1となるように配合してドライブレンドしたこと以外は実施例1と同様にしてFRP成形材料(RC:30%)、FRP硬化物について、各種物性を測定した。これらの結果を表2に示す。
Comparative Example 5
Using (B-4) as the maleic anhydride copolymer, the molar ratio of the secondary hydroxyl group of the phenoxy resin (A-1) to the acid anhydride group of the maleic anhydride copolymer (B-4) is 1:1. Various physical properties of the FRP molding material (RC: 30%) and the FRP cured product were measured in the same manner as in Example 1 except that the components were blended so as to be dry-blended. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表1、表2より、本発明の実施例1~7は、比較例2~4よりもTgおよび耐熱性に優れ、比較例5よりも機械物性に優れるCFRPを提供することができる。また、比較例1の芳香族酸二無水物架橋剤を使用した樹脂組成物とほぼ同等のTgと耐熱性を示すとともに、耐湿性に優れ、ポストキュアを必要としないといった比較例1には見られなかった優れた効果を持つことが分かる。 From Tables 1 and 2, Examples 1 to 7 of the present invention can provide CFRPs having higher Tg and heat resistance than Comparative Examples 2 to 4 and better mechanical properties than Comparative Example 5. In addition, in Comparative Example 1 which has almost the same Tg and heat resistance as the resin composition using the aromatic dianhydride cross-linking agent of Comparative Example 1, excellent moisture resistance and does not require post cure. It turns out that it has an excellent effect that was not achieved.
 本発明の繊維強化プラスチック成形用材料は、繊維強化プラスチック(FRP)材料として、ノートPCやタブレットといった電子機器類の筐体から、産業用ロボット等のアーム、建築構造物の補強材料、またスポーツレジャー分野など、幅広い分野で利用できる。 The fiber-reinforced plastic molding material of the present invention is used as a fiber-reinforced plastic (FRP) material for housing electronic devices such as notebook PCs and tablets, arms for industrial robots, reinforcing materials for building structures, and sports leisure. It can be used in a wide range of fields including fields.

Claims (7)

  1.  繊維強化プラスチック成形用材料として強化繊維基材とともに使用される樹脂組成物であって、フェノキシ樹脂(A)と、架橋剤としての無水マレイン酸共重合体(B)と、硬化触媒(C)とを必須成分として含み、前記無水マレイン酸共重合体(B)は、重量平均分子量が100000以下、かつ酸価が150~400KOH-mg/gであり、フェノキシ樹脂(A)の2級水酸基と、無水マレイン酸共重合体(B)の酸無水物基が、モル比で1/0.1~1/1.6となるように配合されていることを特徴とする樹脂組成物。 A resin composition used together with a reinforced fiber substrate as a material for molding a fiber reinforced plastic, comprising a phenoxy resin (A), a maleic anhydride copolymer (B) as a crosslinking agent, and a curing catalyst (C). As an essential component, the maleic anhydride copolymer (B) has a weight average molecular weight of 100,000 or less, an acid value of 150 to 400 KOH-mg/g, and a secondary hydroxyl group of the phenoxy resin (A), A resin composition, wherein the acid anhydride group of the maleic anhydride copolymer (B) is mixed in a molar ratio of 1/0.1 to 1/1.6.
  2.  無水マレイン酸共重合体(B)が、スチレンとの共重合体である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the maleic anhydride copolymer (B) is a copolymer with styrene.
  3.  樹脂組成物がエポキシ樹脂(D)をさらに含む請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the resin composition further comprises an epoxy resin (D).
  4.  架橋又は硬化された樹脂組成物のガラス転移温度(Tg)が160℃以上を示す請求項1~3のいずれか一項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the crosslinked or cured resin composition has a glass transition temperature (Tg) of 160°C or higher.
  5.  強化繊維基材の少なくとも一部が請求項1~4のいずれか一項に記載の樹脂組成物により被覆または含浸された繊維強化プラスチック成形用材料。 A fiber-reinforced plastic molding material in which at least a part of a reinforcing fiber base material is coated or impregnated with the resin composition according to any one of claims 1 to 4.
  6.  強化繊維基材を構成する繊維が、炭素繊維、ボロン繊維、シリコンカーバイト繊維、ガラス繊維及びアラミド繊維よりなる群の中から選ばれる1種または2種以上の繊維を含むものである請求項5に記載の繊維強化プラスチック成形用材料。 The fiber constituting the reinforcing fiber base material contains one or more fibers selected from the group consisting of carbon fiber, boron fiber, silicon carbide fiber, glass fiber and aramid fiber. Fiber reinforced plastic molding material.
  7.  請求項5又は6に記載の繊維強化プラスチック成形用材料を成形させてなることを特徴とする繊維強化プラスチック成形物。
     
    A fiber-reinforced plastic molded product obtained by molding the fiber-reinforced plastic molding material according to claim 5 or 6.
PCT/JP2019/050297 2018-12-26 2019-12-23 Resin composition, fiber-reinforced plastic molding material, and molded article WO2020137945A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563239A JPWO2020137945A1 (en) 2018-12-26 2019-12-23 Resin compositions, fiber reinforced plastic molding materials and moldings

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018242503 2018-12-26
JP2018-242503 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137945A1 true WO2020137945A1 (en) 2020-07-02

Family

ID=71127256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050297 WO2020137945A1 (en) 2018-12-26 2019-12-23 Resin composition, fiber-reinforced plastic molding material, and molded article

Country Status (3)

Country Link
JP (1) JPWO2020137945A1 (en)
TW (1) TW202033659A (en)
WO (1) WO2020137945A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113831852A (en) * 2021-09-15 2021-12-24 深圳市纽菲斯新材料科技有限公司 Glue-coated copper foil and preparation method and application thereof
JP7279272B1 (en) 2022-03-31 2023-05-22 日鉄ケミカル&マテリアル株式会社 FIBER REINFORCED SHEET AND METHOD FOR BENDING FIBER REINFORCED SHEET
JP7326228B2 (en) 2020-07-06 2023-08-15 株式会社イノアックコーポレーション Fiber-reinforced resin molding and its manufacturing method
WO2023188703A1 (en) * 2022-03-31 2023-10-05 日鉄ケミカル&マテリアル株式会社 Fiber-reinforced sheet and method for bending fiber-reinforced sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143445A (en) * 1995-11-21 1997-06-03 Hitachi Chem Co Ltd Connecting member for circuit
JP2014218633A (en) * 2013-05-10 2014-11-20 藤森工業株式会社 Adhesive resin composition, adhesive resin molded body, and adhesive resin laminated body
WO2016152856A1 (en) * 2015-03-26 2016-09-29 新日鉄住金化学株式会社 Fiber-reinforced plastic molding material, method for producing same, and molded article
WO2018173678A1 (en) * 2017-03-23 2018-09-27 新日鉄住金化学株式会社 Adhesion improver for carbon-fiber-reinforced resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143445A (en) * 1995-11-21 1997-06-03 Hitachi Chem Co Ltd Connecting member for circuit
JP2014218633A (en) * 2013-05-10 2014-11-20 藤森工業株式会社 Adhesive resin composition, adhesive resin molded body, and adhesive resin laminated body
WO2016152856A1 (en) * 2015-03-26 2016-09-29 新日鉄住金化学株式会社 Fiber-reinforced plastic molding material, method for producing same, and molded article
WO2018173678A1 (en) * 2017-03-23 2018-09-27 新日鉄住金化学株式会社 Adhesion improver for carbon-fiber-reinforced resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7326228B2 (en) 2020-07-06 2023-08-15 株式会社イノアックコーポレーション Fiber-reinforced resin molding and its manufacturing method
CN113831852A (en) * 2021-09-15 2021-12-24 深圳市纽菲斯新材料科技有限公司 Glue-coated copper foil and preparation method and application thereof
JP7279272B1 (en) 2022-03-31 2023-05-22 日鉄ケミカル&マテリアル株式会社 FIBER REINFORCED SHEET AND METHOD FOR BENDING FIBER REINFORCED SHEET
WO2023188703A1 (en) * 2022-03-31 2023-10-05 日鉄ケミカル&マテリアル株式会社 Fiber-reinforced sheet and method for bending fiber-reinforced sheet

Also Published As

Publication number Publication date
JPWO2020137945A1 (en) 2021-11-11
TW202033659A (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6731986B2 (en) Phenoxy resin powder for fiber reinforced plastic molding materials
WO2020137945A1 (en) Resin composition, fiber-reinforced plastic molding material, and molded article
TWI591109B (en) Epoxy resin composition, molded article, prepreg, fiber reinforced Composites and structures
KR20120000063A (en) Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and housing for electronic or electrical component
CN113613878B (en) Fiber-reinforced plastic laminate molded body and method for producing same
JP2018204035A (en) Phenoxy resin composition and cured article thereof
JP2006291095A (en) Epoxy resin composition for fiber reinforced composite materials
WO2021200793A1 (en) Fiber-reinforced plastic molding material
JP4894339B2 (en) Epoxy resin composition for fiber reinforced composite materials
JP2006291094A (en) Epoxy resin composition for reinforced composite material
JP6937763B2 (en) Fiber reinforced plastic molding material, its manufacturing method and molded product
CN112262174A (en) Epoxy resin formulations
JP2006291093A (en) Epoxy resin composition for fiber-reinforced composite material
WO2019187135A1 (en) Thermosetting resin composition, prepreg, resin-coated metal foil, laminate, printed wiring board, and semiconductor package
JP6913399B2 (en) Thermosetting resin composition, fiber reinforced resin composite material and its manufacturing method
JP2021100807A (en) Fiber-reinforced plastic laminate molding and its manufacturing method
JP2006291092A (en) Epoxy resin composition for fiber-reinforced composite material
JP2023175486A (en) Method for producing fiber-reinforced plastic molding material and method for producing fiber-reinforced plastic molded body
WO2023089997A1 (en) Curable composition, cured product, fiber reinforced composite material, and fiber reinforced resin molded article
WO2022158559A1 (en) Fiber-reinforced plastic molding material and molded object thereof
JP2006028375A (en) Epoxy resin composition, prepreg, molded article and method for producing epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563239

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903408

Country of ref document: EP

Kind code of ref document: A1