JP6937763B2 - Fiber reinforced plastic molding material, its manufacturing method and molded product - Google Patents

Fiber reinforced plastic molding material, its manufacturing method and molded product Download PDF

Info

Publication number
JP6937763B2
JP6937763B2 JP2018541985A JP2018541985A JP6937763B2 JP 6937763 B2 JP6937763 B2 JP 6937763B2 JP 2018541985 A JP2018541985 A JP 2018541985A JP 2018541985 A JP2018541985 A JP 2018541985A JP 6937763 B2 JP6937763 B2 JP 6937763B2
Authority
JP
Japan
Prior art keywords
fiber
cross
reinforced plastic
resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018541985A
Other languages
Japanese (ja)
Other versions
JPWO2018061516A1 (en
Inventor
晃久 大槻
晃久 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Publication of JPWO2018061516A1 publication Critical patent/JPWO2018061516A1/en
Application granted granted Critical
Publication of JP6937763B2 publication Critical patent/JP6937763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、ハンドリング性、貯蔵安定性、成形性に優れ、かつ成形時間が大幅に短縮できる繊維強化プラスチック成形用材料、その製造方法および成形物に関する。 The present invention relates to a fiber-reinforced plastic molding material which is excellent in handleability, storage stability and moldability, and which can significantly shorten the molding time, a method for producing the same, and a molded product.

ガラス繊維や炭素繊維などの繊維とプラスチックの複合材料である繊維強化プラスチック(FRP)は、軽量且つ高強度で高剛性な特徴を生かし、テニスラケットや自転車、釣竿等のスポーツ・レジャー用で古くから使用されている材料である。近年、繊維強化プラスチック材料の用途は拡大の一途をたどっており、ノートPCやタブレットといった電子機器類の筐体から、産業用ロボット等のアーム、建築構造物の補強材料といったように、民生機器から産業機器にまで展開されている。 Fiber reinforced plastic (FRP), which is a composite material of fibers such as glass fiber and carbon fiber, has long been used for sports and leisure such as tennis rackets, bicycles, and fishing rods, taking advantage of its lightweight, high-strength, and high-rigidity characteristics. The material used. In recent years, the use of fiber-reinforced plastic materials has been steadily expanding, from housings for electronic devices such as notebook PCs and tablets, to arms for industrial robots, and from consumer devices such as reinforcing materials for building structures. It has been expanded to industrial equipment.

さらに、昨今の原油価格の高騰や世界的な環境保全の意識の高まりから、省エネルギー化や省資源化が強く求められており、特に化石燃料を使用する自動車や航空機器等の輸送機器は低燃費化が積極的に進められている。輸送機器の低燃費化は車体や機体の軽量化による効果が非常に大きいため、これらの用途に炭素繊維を用いたFRPが金属材料に代わって使用されるようになっている。 Furthermore, due to the recent rise in crude oil prices and the growing awareness of environmental conservation around the world, energy saving and resource saving are strongly required. In particular, transportation equipment such as automobiles and aviation equipment that use fossil fuels have low fuel consumption. The conversion is being actively promoted. Since the fuel efficiency of transportation equipment is greatly reduced by reducing the weight of the vehicle body and the airframe, FRP using carbon fiber is being used in place of the metal material for these purposes.

FRP材料は、強化繊維基材に液状のマトリックス樹脂組成物を含浸し、硬化させることによって作製されるが、強化繊維基材に含浸する液状の樹脂組成物として、主にエポキシ樹脂等の熱硬化性樹脂が、繊維基材への樹脂組成物の含浸の容易さから使用されている。しかし、マトリックス樹脂として熱硬化性樹脂を使用する場合、一般的に硬化剤を併用することが必須であることから、こうした混合物の貯蔵負荷が大きいことと、金属材料のようなリサイクル性も無いことが問題となっており、その改善が強く求められている。FRP成形用材料として、熱硬化性樹脂を硬化剤と共に溶剤で溶解し、強化繊維基材に含浸後、加熱半硬化(Bステージ)の状態に留めたプリプレグが汎用されているが、プリプレグには上述の課題があった。 The FRP material is produced by impregnating a reinforcing fiber base material with a liquid matrix resin composition and curing it. The liquid resin composition to be impregnated with a reinforcing fiber base material is mainly thermosetting an epoxy resin or the like. A sex resin is used because of the ease of impregnating the fiber base material with the resin composition. However, when a thermosetting resin is used as the matrix resin, it is generally indispensable to use a curing agent together, so that the storage load of such a mixture is large and there is no recyclability like a metal material. Has become a problem, and there is a strong demand for improvement. As a material for FRP molding, a prepreg in which a thermosetting resin is dissolved in a solvent together with a curing agent, impregnated into a reinforcing fiber base material, and then kept in a heat semi-cured (B stage) state is widely used. There was the above-mentioned problem.

そのため、特許文献1では、軟化点が50℃以上であり、且つコーンプレート型粘度計による150℃の溶融粘度が500mPa・s以下である固形エポキシ樹脂と、前記固形エポキシ樹脂以外のビスフェノール型固形エポキシ樹脂と、テトラカルボン酸二無水物と、硬化促進剤とを溶融混練してエポキシ樹脂組成物を得た後、得られたエポキシ樹脂組成物を粉砕して粉体とし、該粉体を強化繊維基材に塗布後、加熱溶融することによって、貯蔵安定性・取扱い作業性・安全性に優れ、且つ機械強度、耐熱性が良好なFRP成形材が得られるFRP成形プリプレグを提案している。しかし、この手法は、二種類の異なる固形エポキシ樹脂を併用することを必須とし、しかも硬化剤を使用しているため、実施例にみられるように硬化促進剤を使用しても硬化時間が1時間と長く、マトリックス樹脂硬化物のTgも150℃以下であるので耐熱性も不十分である。 Therefore, in Patent Document 1, a solid epoxy resin having a softening point of 50 ° C. or higher and a melt viscosity of 150 ° C. by a cone plate type viscometer of 500 mPa · s or less and a bisphenol type solid epoxy other than the solid epoxy resin are used. A resin, a tetracarboxylic dianhydride, and a curing accelerator are melt-kneaded to obtain an epoxy resin composition, and then the obtained epoxy resin composition is crushed into a powder, and the powder is made into a reinforcing fiber. We have proposed an FRP molding prepreg that can obtain an FRP molding material with excellent storage stability, handling workability, and safety, as well as good mechanical strength and heat resistance, by applying it to a base material and then heating and melting it. However, this method requires the use of two different types of solid epoxy resins in combination, and also uses a curing agent. Therefore, as seen in the examples, the curing time is 1 even if a curing accelerator is used. Since the time is long and the Tg of the cured matrix resin is 150 ° C. or lower, the heat resistance is also insufficient.

一方、熱硬化性樹脂に代えて、硬化反応を必要としない熱可塑性樹脂をマトリックス樹脂に使用することによって課題を解決する手法も考えられている。例えば特許文献2では、低分子量の非変化性のポリアミド樹脂を強化基材に粉体の状態で接触させる等の手法で含浸させたFRPのプリプレグを提案している。しかし、使用しているポリアミド樹脂が低分子量であるためFRPの機械物性がやや低く、成形温度が290℃と高温であるため、昇温および降温に時間を要し、FRP成形物を生産性良く製造するには不向きである。 On the other hand, a method of solving the problem by using a thermoplastic resin that does not require a curing reaction as the matrix resin instead of the thermosetting resin is also considered. For example, Patent Document 2 proposes an FRP prepreg impregnated with a low molecular weight, non-changeable polyamide resin by contacting a reinforced base material in a powder state. However, since the polyamide resin used has a low molecular weight, the mechanical properties of FRP are rather low, and the molding temperature is as high as 290 ° C., so it takes time to raise and lower the temperature, and the FRP molded product is highly productive. Not suitable for manufacturing.

また、特許文献3においては、高い成形性をもつ高耐熱性の新規なフェノキシ樹脂が開示されており、強化繊維基材にホットメルト法もしくはソルベント法で含浸し、成形加工用のFRPのプリプレグを製造することが記載されている。しかし、この手法は、特殊な縮環構造含有フェノキシ樹脂を必須としており、この縮環構造含有フェノキシ樹脂は成形物のガラス転移温度(Tg)が最高でも150℃程度であるため、自動車等における過酷な環境下で使用する部材に適用するには不十分である。 Further, Patent Document 3 discloses a novel phenoxy resin having high moldability and high heat resistance, and impregnates a reinforcing fiber base material by a hot melt method or a solvent method to impregnate an FRP prepreg for molding processing. It is described to manufacture. However, this method requires a special fused ring structure-containing phenoxy resin, and this condensed ring structure-containing phenoxy resin has a glass transition temperature (Tg) of a molded product of about 150 ° C. at the maximum, so that it is harsh in automobiles and the like. It is insufficient to be applied to members used in various environments.

以上のようにFRP成形用材料としては、比較的低い温度で溶融して大幅な成形時間の短縮が可能なもの(高成形性・高生産性)が求められる一方、得られた成型品は、過酷な環境でも使用できる高い特性(高靱性・高耐熱性・長寿命)を持つことも必要とされている。 As described above, as a material for FRP molding, a material that can be melted at a relatively low temperature and can significantly reduce the molding time (high moldability and high productivity) is required, while the obtained molded product is It is also required to have high properties (high toughness, high heat resistance, long life) that can be used even in harsh environments.

そこで、成形加工時の熱を利用した架橋反応により、低Tgの熱可塑性樹脂を高Tg化させる手法が現在考えられている。例えば特許文献4では、熱可塑性樹脂であるフェノキシ樹脂、エポキシ樹脂に架橋剤を加えて熱を加えることで、架橋反応を起こし、耐熱性を向上させることができるフェノキシ樹脂組成物が開示されている。しかし、この材料によって架橋フェノキシ樹脂成形体を得た実施例はあるが、FRP成形用材料としての検討はなされていない。このフェノキシ樹脂組成物もTgを向上するための架橋反応には成形加工時の熱履歴では不足なため、30〜60分の熱処理が別途必要であるとともに、成形を行う前段階の材料の混練において内在する架橋剤との反応が進行してゲル化しやすいため、強化繊維基材へ如何に含浸させるかという課題がある。 Therefore, a method of increasing the Tg of a low Tg thermoplastic resin by a cross-linking reaction using heat during molding is currently being considered. For example, Patent Document 4 discloses a phenoxy resin composition capable of causing a cross-linking reaction and improving heat resistance by adding a cross-linking agent to a thermoplastic resin such as a phenoxy resin or an epoxy resin and applying heat. .. However, although there are examples in which a crosslinked phenoxy resin molded product is obtained from this material, it has not been studied as a material for FRP molding. This phenoxy resin composition also requires a separate heat treatment for 30 to 60 minutes because the heat history at the time of molding is insufficient for the cross-linking reaction to improve Tg, and in the kneading of the materials in the pre-molding stage. Since the reaction with the internal cross-linking agent proceeds and gelation is likely to occur, there is a problem of how to impregnate the reinforcing fiber base material.

特開2006−232915号公報Japanese Unexamined Patent Publication No. 2006-232915 特表2012−503693号公報Special Table 2012-503693 特開2010−126694号公報Japanese Unexamined Patent Publication No. 2010-126694 WO2014/157132号WO2014 / 157132

本発明の目的は、フェノキシ樹脂の特徴である良成形性を持ちつつ、架橋反応によって課題であった高温環境下における力学特性の変化を抑えることができるFRP成形用材料であって、過酷な環境でも使用できる高い耐熱性と、優れた常温および熱間における機械強度を有するFRP成形体を得ることができるFRP成形用材料とその製造方法を提供することにある。 An object of the present invention is a material for FRP molding, which has good moldability, which is a characteristic of phenoxy resin, and can suppress a change in mechanical properties in a high temperature environment, which has been a problem due to a cross-linking reaction, and is a harsh environment. However, it is an object of the present invention to provide an FRP molding material capable of obtaining an FRP molded body having high heat resistance and excellent mechanical strength at room temperature and hot water, and a method for producing the same.

本発明者はこの課題を解決すべく鋭意検討を行った結果、マトリックス樹脂組成物を構成する成分として、反応性熱可塑性樹脂であるフェノキシ樹脂を主成分とし、これにエポキシ樹脂、及び相溶性の高いエーテル基やエステル基を分子内にもつ芳香族酸無水物系架橋剤を使用し、これらを粉砕、配合したマトリックス樹脂組成物粉末を強化繊維基材に付着させてなる繊維強化プラスチック成形用材料とすることで、良好な成形性及び保存安定性を維持しつつ、常温および熱間における高い機械強度の発現と、過酷な使用環境にも耐えうるTgで160℃以上という高い耐熱性を有するFRP成形体を得られることを見出した。 As a result of diligent studies to solve this problem, the present inventor has phenoxy resin, which is a reactive thermoplastic resin, as a main component as a component constituting the matrix resin composition, and epoxy resin and compatibility with the phenoxy resin. A material for molding fiber-reinforced plastics, which is made by adhering a matrix resin composition powder containing a high ether group or ester group in the molecule, crushing and blending an aromatic acid anhydride-based cross-linking agent to a reinforcing fiber base material. By doing so, while maintaining good moldability and storage stability, FRP has high mechanical strength at room temperature and hot, and high heat resistance of 160 ° C or higher at Tg that can withstand harsh usage environments. We have found that a molded product can be obtained.

すなわち、本発明は、マトリックス樹脂組成物及び強化繊維基材からなる繊維強化プラスチック成形用材料であって、マトリックス樹脂組成物が、フェノキシ樹脂(A)、エポキシ樹脂(B)及び架橋剤(C)を必須成分とし、フェノキシ樹脂(A)100重量部に対してエポキシ樹脂(B)を9〜85重量部含有し、架橋剤(C)が下記一般式(1)〜(3)で示される少なくとも1種のテトラカルボン酸二無水物であり、フェノキシ樹脂(A)の2級水酸基1モルに対して架橋剤(C)の酸無水物基0.6〜1.3モルの範囲となるように含有すること、マトリックス樹脂組成物が常温固形で、160℃〜220℃の温度域のいずれかにおける溶融粘度が3000Pa・s以下であること、繊維強化プラスチック成形用材料がマトリックス樹脂組成物を20〜50wt%含有し、且つマトリックス樹脂組成物の微粉末が強化繊維基材の表面に付着していることを特徴とする繊維強化プラスチック成形用材料である。

Figure 0006937763

式中、Xは、O、−CH−又は−C(CH)−を表す。

Figure 0006937763

Figure 0006937763

一般式(2)及び式(3)において、Yは、−(CH−、−(Ph)−、−Ph−CH2−Ph−、又は−Ph−C(CH3)2−Ph−を表し、Phはフェニレン基であり、mは1から4の整数である。That is, the present invention is a fiber-reinforced plastic molding material composed of a matrix resin composition and a reinforcing fiber base material, wherein the matrix resin composition is a phenoxy resin (A), an epoxy resin (B), and a cross-linking agent (C). Is contained as an essential component, 9 to 85 parts by weight of the epoxy resin (B) is contained with respect to 100 parts by weight of the phenoxy resin (A), and the cross-linking agent (C) is at least represented by the following general formulas (1) to (3). It is one kind of tetracarboxylic acid dianhydride, and the acid anhydride group of the cross-linking agent (C) is in the range of 0.6 to 1.3 mol with respect to 1 mol of the secondary hydroxyl group of the phenoxy resin (A). The matrix resin composition is solid at room temperature, the melt viscosity in any of the temperature ranges of 160 ° C. to 220 ° C. is 3000 Pa · s or less, and the material for fiber-reinforced plastic molding is 20 to 20 to 20 to It is a fiber-reinforced plastic molding material containing 50 wt% and having fine powder of a matrix resin composition adhered to the surface of a reinforcing fiber base material.
Figure 0006937763

In the formula, X represents O, −CH 2− or −C (CH 3 ) −.

Figure 0006937763

Figure 0006937763

In the general formulas (2) and (3), Y is − (CH 2 ) m −, − (Ph) m −, −Ph−CH 2 −Ph−, or −Ph−C (CH 3 ) 2 −. It represents Ph-, Ph is a phenylene group, and m is an integer from 1 to 4.

上記繊維強化プラスチック成形用材料は、以下のいずれか一つ以上を満たすことが望ましい。
1)架橋剤(C)が、溶融したフェノキシ樹脂(A)及びエポキシ樹脂(B)に可溶であること。
2)架橋又は硬化されたマトリックス樹脂組成物の架橋硬化物のガラス転移温度(Tg)が160℃以上を示すものであること。
3)フェノキシ樹脂(A)のガラス転移温度(Tg)が65℃〜150℃であること。
4)フェノキシ樹脂(A)、エポキシ樹脂(B)及び架橋剤(C)が粉末状で存在し、フェノキシ樹脂(A)とエポキシ樹脂(B)の粉末の平均粒子径(D50)が10〜150μmであり、かつ架橋剤(C)の粉末の平均粒子径の1〜1.5倍であること。
5)強化繊維基材が炭素繊維、ボロン繊維、シリコンカーバイト繊維、ガラス繊維およびアラミド繊維よりなる群から選ばれた1種または2種以上であること。
It is desirable that the fiber-reinforced plastic molding material satisfies any one or more of the following.
1) The cross-linking agent (C) is soluble in the molten phenoxy resin (A) and epoxy resin (B).
2) The glass transition temperature (Tg) of the crosslinked cured product of the crosslinked or cured matrix resin composition shall be 160 ° C or higher.
3) The glass transition temperature (Tg) of the phenoxy resin (A) is 65 ° C to 150 ° C.
4) The phenoxy resin (A), the epoxy resin (B) and the cross-linking agent (C) are present in powder form, and the average particle size (D50) of the powder of the phenoxy resin (A) and the epoxy resin (B) is 10 to 150 μm. And it is 1 to 1.5 times the average particle size of the powder of the cross-linking agent (C).
5) The reinforcing fiber base material is one or more selected from the group consisting of carbon fiber, boron fiber, silicon carbide fiber, glass fiber and aramid fiber.

本発明の他の態様は、上記繊維強化プラスチック成形用材料の架橋硬化物である。マトリックス樹脂組成物の架橋硬化物のガラス転移温度(Tg)が160℃以上である架橋硬化物であることが好ましい。 Another aspect of the present invention is a crosslinked cured product of the fiber-reinforced plastic molding material. It is preferable that the crosslinked cured product of the matrix resin composition has a glass transition temperature (Tg) of 160 ° C. or higher.

また、本発明は、繊維強化プラスチック成形用材料の製造方法であって、フェノキシ樹脂(A)、エポキシ樹脂(B)及び架橋剤(C)をそれぞれ別個に粉砕して粉末とした後、これらの粉末を混合して常温固形のマトリックス樹脂組成物微粉末を得て、これをマトリックス樹脂組成物の割合を20〜50wt%の範囲となるように粉体塗装によって強化繊維基材に付着させたことを特徴とする繊維強化プラスチック成形用材料の製造方法である。粉体塗装が、静電場を利用した粉体塗装であることが好ましい。 Further, the present invention is a method for producing a material for molding a fiber reinforced plastic, in which a phenoxy resin (A), an epoxy resin (B) and a cross-linking agent (C) are separately pulverized into powders, and then these are used. The powder was mixed to obtain a fine powder of a matrix resin composition solid at room temperature, which was adhered to the reinforcing fiber base material by powder coating so that the ratio of the matrix resin composition was in the range of 20 to 50 wt%. It is a method for producing a material for molding a fiber reinforced plastic, which is characterized by the above. It is preferable that the powder coating is a powder coating using an electrostatic field.

さらに、本発明は、上記繊維強化プラスチック成形用材料を加熱、加圧して成形することを特徴とする繊維強化プラスチック成形物の製造方法である。 Further, the present invention is a method for producing a fiber-reinforced plastic molded product, which comprises heating and pressurizing the material for molding a fiber-reinforced plastic.

本発明によれば、従来の熱硬化性樹脂を使用した繊維強化プラスチック(FRP)成型用材料に比べて、常温での貯蔵安定性に優れ、かつタック性のない作業性が良好なFRP成形用材料を得ることができるほか、機械強度が高く、かつ長期にわたって熱間における機械強度を維持することが可能なFRP成形物を得ることができる。
また、本発明のFRP成形用材料は、熱プレスによる加圧成形により、フェノキシ樹脂とエポキシ樹脂が別々に架橋硬化するのではなく、一体的に賦形とマトリックス樹脂組成物の架橋と硬化を同時に行うことが可能であり、さらにマトリックス樹脂組成物の硬化物の樹脂軟化点がTgの−25℃以内とすることが可能であるため、100℃以上の高温で脱型することができ、FRP製造プロセスの大幅な短縮化を可能にし、生産性を大きく向上させることが可能である。
さらに、本発明のFRP成形用材料を加熱成形して得られるFRP成形体は、各種用途へ使用された後に処分が必要となった場合においても、マトリックス樹脂組成物の硬化にフェノキシ樹脂(A)と架橋剤(C)のエステル結合を利用しているため、加水分解反応を利用することによりFRP成形物を強化繊維とマトリックス樹脂組成物へと分別し、廃棄することなくリサイクルすることも可能である。
本発明の架橋反応の機構としては、定かではないが、次の2段階反応と考えられる。すなわち、第一段階として、フェノキシ樹脂の2級水酸基と架橋剤の酸無水物とが反応し、次いで第二段階として、第一段階反応により生成したカルボン酸基と、フェノキシ樹脂又はエポキシ樹脂のエポキシ基又は2級水酸基のエステル化反応が起こり、本発明の優れた効果を発現したものと解することができる。なお、本発明においては、主成分であるフェノキシ樹脂の2級水酸基による架橋反応が大半であって、エポキシ樹脂が酸無水物硬化している割合は少ないと想定される。
According to the present invention, for FRP molding, which is superior in storage stability at room temperature and has good workability without tackiness, as compared with conventional fiber reinforced plastic (FRP) molding materials using thermosetting resins. In addition to being able to obtain a material, it is possible to obtain an FRP molded product having high mechanical strength and capable of maintaining the mechanical strength in hot water for a long period of time.
Further, in the FRP molding material of the present invention, the phenoxy resin and the epoxy resin are not separately crosslinked and cured by pressure molding by a hot press, but the shaping and the matrix resin composition are integrally crosslinked and cured at the same time. Further, since the resin softening point of the cured product of the matrix resin composition can be set within −25 ° C. of Tg, it can be demolded at a high temperature of 100 ° C. or higher, and FRP production can be performed. It is possible to significantly shorten the process and greatly improve productivity.
Further, the FRP molded product obtained by heat-molding the FRP molding material of the present invention is a phenoxy resin (A) for curing the matrix resin composition even when it needs to be disposed of after being used for various purposes. Since the ester bond between the fiber and the cross-linking agent (C) is used, it is possible to separate the FRP molded product into a reinforcing fiber and a matrix resin composition by using a hydrolysis reaction and recycle it without discarding it. be.
Although the mechanism of the cross-linking reaction of the present invention is not clear, it is considered to be the following two-step reaction. That is, in the first step, the secondary hydroxyl group of the phenoxy resin reacts with the acid anhydride of the cross-linking agent, and then in the second step, the carboxylic acid group generated by the first step reaction and the epoxy of the phenoxy resin or the epoxy resin. It can be understood that the esterification reaction of the group or the secondary hydroxyl group has occurred and the excellent effect of the present invention has been exhibited. In the present invention, it is assumed that most of the cross-linking reactions of the phenoxy resin, which is the main component, are carried out by the secondary hydroxyl groups, and the ratio of the epoxy resin cured with an acid anhydride is small.

以下、本発明を詳細に説明する。
本発明のFRP成形用材料のマトリックス樹脂は、フェノキシ樹脂(A)とエポキシ樹脂(B)と、架橋剤(C)を必須成分として構成される無溶剤系の常温固形のフェノキシ樹脂組成物であり、(A)、(B)、(C)の各成分は、反応性が維持された状態のまま、強化繊維基材に付着されている。
Hereinafter, the present invention will be described in detail.
The matrix resin of the material for FRP molding of the present invention is a solvent-free room temperature solid phenoxy resin composition composed of a phenoxy resin (A), an epoxy resin (B), and a cross-linking agent (C) as essential components. , (A), (B), and (C) are attached to the reinforcing fiber base material while maintaining the reactivity.

本発明のFRP成形用材料において、マトリックス樹脂組成物に必須成分として使用されるフェノキシ樹脂(A)は、常温において固形であり、かつ200℃における溶融粘度が1×10Pa・s以下であるものが適する。溶融粘度は、好ましくは1×10〜6×10Pa・sであり、より好ましくは2×10〜3×10Pa・sである。溶融粘度が1×10Pa・sを超えると、成形加工時の熱による樹脂の流動性が悪いため、繊維基材内に樹脂が十分行き渡らずにボイドの原因となり、成形物の機械物性が低下してしまう。In the FRP molding material of the present invention, the phenoxy resin (A) used as an essential component in the matrix resin composition is solid at room temperature and has a melt viscosity at 200 ° C. of 1 × 10 4 Pa · s or less. Things are suitable. The melt viscosity is preferably 1 × 10 2 to 6 × 10 3 Pa · s, and more preferably 2 × 10 2 to 3 × 10 3 Pa · s. If the melt viscosity exceeds 1 × 10 4 Pa · s, the fluidity of the resin due to heat during molding is poor, and the resin does not spread sufficiently in the fiber base material, causing voids and mechanical properties of the molded product. It will drop.

フェノキシ樹脂(A)は、2価フェノール化合物とエピハロヒドリンとの縮合反応、あるいは2価フェノール化合物と2官能エポキシ樹脂との重付加反応から得られる熱可塑性樹脂であり、溶媒中あるいは無溶媒下に従来公知の方法で得ることができる。平均分子量は、質量平均分子量(Mw)として、通常10,000〜200,000であるが、好ましくは、20,000〜100,000であり、より好ましくは30,000〜80,000である。Mwが低すぎると成形体の強度が劣り、高すぎると作業性や加工性に劣るものとなり易い。なお、Mwはゲルパーミエーションクロマトグラフィーで測定し、標準ポリスチレン検量線を用いて換算した値を示す。 The phenoxy resin (A) is a thermoplastic resin obtained by a condensation reaction between a dihydric phenol compound and epihalohydrin or a polyaddition reaction between a divalent phenol compound and a bifunctional epoxy resin, and is conventionally used in a solvent or in the absence of a solvent. It can be obtained by a known method. The average molecular weight, as the mass average molecular weight (Mw), is usually 10,000 to 200,000, preferably 20,000 to 100,000, and more preferably 30,000 to 80,000. If Mw is too low, the strength of the molded product is inferior, and if it is too high, workability and workability are likely to be inferior. In addition, Mw shows the value measured by gel permeation chromatography and converted using the standard polystyrene calibration curve.

フェノキシ樹脂(A)の水酸基当量(g/eq)は、通常50〜1000であるが、好ましくは100〜750であり、特に好ましくは200〜500である。水酸基当量が低すぎると水酸基が増えることで吸水率が上がるため、機械物性が低下する懸念があるので好ましくなく、高すぎると架橋密度が不足して耐熱性が低下する。 The hydroxyl group equivalent (g / eq) of the phenoxy resin (A) is usually 50 to 1000, preferably 100 to 750, and particularly preferably 200 to 500. If the hydroxyl group equivalent is too low, the number of hydroxyl groups increases and the water absorption rate increases, which is not preferable because there is a concern that the mechanical properties may deteriorate. If the hydroxyl group equivalent is too high, the crosslink density is insufficient and the heat resistance is lowered.

フェノキシ樹脂(A)のガラス転移点(Tg)は、65℃〜150℃以下のものが適するが、好ましくは70℃〜100℃、より好ましくは80℃〜100℃である。ガラス転移点が65℃よりも低いと成形性は良くなるが、粉体の貯蔵安定性やFRP成形材料のタック性に問題が生じる。150℃よりも高いと溶融粘度も高くなり成形性や繊維への充填性が劣り、結果として、より高温のプレス成形が必要とされる。なお、フェノキシ樹脂のガラス転移温度は、示差走査熱量測定装置(DSC)を用い、10℃/分の昇温条件で、20〜280℃の範囲で測定し、セカンドスキャンのピーク値より計算された数値である。 The glass transition point (Tg) of the phenoxy resin (A) is preferably 65 ° C. to 150 ° C. or lower, preferably 70 ° C. to 100 ° C., and more preferably 80 ° C. to 100 ° C. If the glass transition point is lower than 65 ° C., the moldability is improved, but there are problems in the storage stability of the powder and the tackiness of the FRP molding material. If the temperature is higher than 150 ° C., the melt viscosity becomes high and the moldability and the filling property into the fiber are inferior, and as a result, press molding at a higher temperature is required. The glass transition temperature of the phenoxy resin was measured in the range of 20 to 280 ° C. using a differential scanning calorimetry device (DSC) under a heating condition of 10 ° C./min, and was calculated from the peak value of the second scan. It is a numerical value.

フェノキシ樹脂(A)としては、上記の物性を満たしたものであれば特に限定されないが、ビスフェノールA型フェノキシ樹脂(例えば、新日鉄住金化学株式会社製フェノトートYP−50、フェノトートYP−50S、フェノトートYP−55U)、ビスフェノールF型フェノキシ樹脂(例えば、新日鉄住金化学株式会社製フェノトートFX−316)、もしくは、ビスフェノールAとビスフェノールFの共重合型フェノキシ樹脂(例えば、新日鉄住金化学株式会社製YP−70)、前記以外の特殊フェノキシ樹脂(例えば、新日鉄住金化学株式会社製YPB−43C、FX−293)等が挙げられ、これらを単独または2種以上混合して使用することができる。 The phenoxy resin (A) is not particularly limited as long as it satisfies the above physical properties, but is a bisphenol A type phenoxy resin (for example, Phenototo YP-50, Phenototo YP-50S, Phenoto manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.). Tote YP-55U), bisphenol F type phenoxy resin (for example, Phenotote FX-316 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), or bisphenol A and bisphenol F copolymerized phenoxy resin (for example, YP manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) -70), special phenoxy resins other than the above (for example, YPB-43C manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., FX-293) and the like can be mentioned, and these can be used alone or in combination of two or more.

本発明のFRP成形用材料に使用するマトリックス樹脂組成物において、フェノキシ樹脂(A)と共にエポキシ樹脂(B)を配合する。エポキシ樹脂(B)が併存することにより、マトリックス樹脂組成物の溶融粘度を低減化して強化繊維基材への含浸性を高める他、硬化成形物の強度物性等も高めることができる。
この場合、マトリックス樹脂組成物の溶融粘度は、基本的にフェノキシ樹脂の溶融粘度に依存するが、エポキシ樹脂の配合量や架橋剤の種類などの影響を受ける。例えば、エポキシ樹脂の配合量が多いとマトリックス樹脂組成物の溶融粘度は低下し、架橋剤が不適当なものであれば溶融粘度は早発反応により下がらないので、適宜、調整する必要がある。
エポキシ樹脂(B)は、2官能性以上のエポキシ樹脂が好ましく、ビスフェノールAタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYD−011、エポトートYD−7011、エポトートYD−900)、ビスフェノールFタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYDF−2001)、ジフェニルエーテルタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製YSLV−80DE)、テトラメチルビスフェノールFタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製YSLV−80XY)、ビスフェノールスルフィドタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製YSLV−120TE)、ハイドロキノンタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYDC−1312)、フェノールノボラックタイプエポキシ樹脂、(例えば、新日鉄住金化学株式会社製エポトートYDPN−638)、オルソクレゾールノボラックタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製エポトートYDCN−701、エポトートYDCN−702、エポトートYDCN−703、エポトートYDCN−704)、アラルキルナフタレンジオールノボラックタイプエポキシ樹脂(例えば、新日鉄住金化学株式会社製ESN−355)、トリフェニルメタンタイプエポキシ樹脂(例えば、日本化薬株式会社製EPPN−502H)等が挙げられるが、これらの限定されるものではなく、またこれらは2種類以上混合して使用しても良い。
In the matrix resin composition used for the FRP molding material of the present invention, the epoxy resin (B) is blended together with the phenoxy resin (A). When the epoxy resin (B) coexists, the melt viscosity of the matrix resin composition can be reduced to enhance the impregnation property of the reinforcing fiber base material, and the strength and physical characteristics of the cured molded product can also be enhanced.
In this case, the melt viscosity of the matrix resin composition basically depends on the melt viscosity of the phenoxy resin, but is affected by the blending amount of the epoxy resin and the type of the cross-linking agent. For example, if the blending amount of the epoxy resin is large, the melt viscosity of the matrix resin composition decreases, and if the cross-linking agent is inappropriate, the melt viscosity does not decrease due to the premature reaction, so it is necessary to adjust appropriately.
The epoxy resin (B) is preferably a bifunctional or higher functional epoxy resin, and is a bisphenol A type epoxy resin (for example, Epototo YD-011, Epototo YD-7011, Epototo YD-900 manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.), Bisphenol F type. Epoxy resin (for example, Epototo YDF-2001 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), diphenyl ether type epoxy resin (for example, YSLV-80DE manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), tetramethylbisphenol F type epoxy resin (for example, Nippon Steel & Sumikin Chemical Co., Ltd.) YSLV-80XY manufactured by Nippon Steel & Sumitomo Metal Corporation (for example, YSLV-120TE manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), hydroquinone type epoxy resin (for example, Epototo YDC-1312 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), phenol novolac type epoxy resin, (For example, Epototo YDPN-638 manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.), Orthocresol Novolac type epoxy resin (for example, Epototo YDCN-701 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., Epototo YDCN-702, Epototo YDCN-703, Epototo YDCN-704) , Aralkyl naphthalenediol novolak type epoxy resin (for example, ESN-355 manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd.), triphenylmethane type epoxy resin (for example, EPPN-502H manufactured by Nippon Kayaku Co., Ltd.), etc., but these are limited. These are not used, and two or more of these may be mixed and used.

また、マトリックス樹脂組成物を粉体として保存するために、エポキシ樹脂(B)についても、さらに好ましくは、室温で固体であり、融点が75℃〜145℃で、160℃における溶融粘度が1.0Pa・s以下である結晶性エポキシ樹脂が良い。1.0Pa・sを超えると、マトリックス樹脂組成物の強化繊維基材への充填性が劣り、得られる成形体の均質性に劣るため好ましくない。
なお、結晶性エポキシ樹脂は、その溶融粘度が固形エポキシ樹脂よりも遥かに低いため、結晶性エポキシ樹脂を配合することによりマトリックス樹脂の含浸性を向上させることができる。そのため、高溶融粘度のフェノキシ樹脂を使用することができる。
Further, in order to store the matrix resin composition as a powder, the epoxy resin (B) is more preferably solid at room temperature, has a melting point of 75 ° C. to 145 ° C., and has a melt viscosity at 160 ° C. of 1. A crystalline epoxy resin having a value of 0 Pa · s or less is preferable. If it exceeds 1.0 Pa · s, the filling property of the matrix resin composition into the reinforcing fiber base material is inferior, and the homogeneity of the obtained molded product is inferior, which is not preferable.
Since the melt viscosity of the crystalline epoxy resin is much lower than that of the solid epoxy resin, the impregnation property of the matrix resin can be improved by blending the crystalline epoxy resin. Therefore, a phenoxy resin having a high melt viscosity can be used.

本発明で用いる架橋剤(C)は、フェノキシ樹脂が有する2級水酸基およびエポキシ樹脂のエポキシ基と反応する官能基を2以上有するものであり、上記一般式(1)〜(3)で表される酸無水物である。一つの酸無水物基は、加水分解により2つのカルボキシ基を生じるので、上記官能基を2つ有すると理解される。
なお、架橋剤としての酸無水物は、フェノキシ樹脂の2級水酸基とエステル結合を形成することによって、フェノキシ樹脂を三次元架橋させる。そのため、熱硬化性樹脂の硬化の如き強固な架橋とは異なり、加水分解反応により架橋を解くことができるので、リサイクル性に支障は生じない。
The cross-linking agent (C) used in the present invention has two or more functional groups that react with the secondary hydroxyl group of the phenoxy resin and the epoxy group of the epoxy resin, and is represented by the above general formulas (1) to (3). Acid anhydride. It is understood that one acid anhydride group has two of the above functional groups because hydrolysis produces two carboxy groups.
The acid anhydride as a cross-linking agent three-dimensionally cross-links the phenoxy resin by forming an ester bond with the secondary hydroxyl group of the phenoxy resin. Therefore, unlike strong cross-linking such as curing of a thermosetting resin, the cross-linking can be broken by a hydrolysis reaction, so that there is no problem in recyclability.

酸無水物は、常温で固体であり、昇華性の低いものであれば架橋剤(C)として使用することができるが、本発明においては、成形物への耐熱性の付与や架橋密度の増加という視点から、芳香族テトラカルボン酸二無水物であり、一般式(1)〜(3)で示される少なくとも一つの芳香族テトラカルボン酸二無水物である。

Figure 0006937763

(式中、Xは、O、−CH−、−C(CH)−、−(Ph)−、−Ph−CH2−Ph−、又は−Ph−C(CH3)2−Ph−を表し、Phはフェニレン基であり、mは1から4の整数である)
Figure 0006937763

Figure 0006937763

式中、Yは、−(CH−、−(Ph)−、−Ph−CH2−Ph−、又は−Ph−C(CH3)2−Ph−を表し、Phはフェニレン基であり、mは1から4の整数である。
なお、X、Yの説明において、−(Ph)−、−Ph−CH2−Ph−、又は−Ph−C(CH3)2−Ph−を構造式で示せば以下のようなものであるが、結合手は、構造式で示したp位に限らず、m位でもo位であってもよく、架橋剤が溶融されたフェノキシ樹脂とエポキシ樹脂に溶解し、マトリックス樹脂組成物が透明になるのであれば、使用できる。
Figure 0006937763
The acid anhydride can be used as a cross-linking agent (C) as long as it is solid at room temperature and has low sublimation properties, but in the present invention, heat resistance is imparted to the molded product and the cross-linking density is increased. From this point of view, it is an aromatic tetracarboxylic acid dianhydride, and is at least one aromatic tetracarboxylic acid dianhydride represented by the general formulas (1) to (3).
Figure 0006937763

(In the formula, X is O, -CH 2- , -C (CH 3 )-,-(Ph) m- , -Ph-CH 2- Ph-, or -Ph-C (CH 3 ) 2 -Ph. Represents −, Ph is a phenylene group, and m is an integer from 1 to 4)
Figure 0006937763

Figure 0006937763

In the formula, Y represents − (CH 2 ) m −, − (Ph) m −, −Ph−CH 2 −Ph−, or −Ph−C (CH 3 ) 2 −Ph−, where Ph is a phenylene group. And m is an integer from 1 to 4.
In the explanation of X and Y, if − (Ph) m −, −Ph−CH 2 −Ph−, or −Ph−C (CH 3 ) 2 −Ph− is expressed by the structural formula, it is as follows. However, the bond is not limited to the p-position shown in the structural formula, but may be at the m-position or the o-position. The cross-linking agent is dissolved in the melted phenoxy resin and epoxy resin, and the matrix resin composition is transparent. If it becomes, it can be used.
Figure 0006937763

これら一般式(1)〜(3)で示される芳香族テトラカルボン酸二無水物は、架橋剤そのものが熱により溶融するまではマトリックス樹脂組成物の主成分であるフェノキシ樹脂やエポキシ樹脂に相溶しにくいものが多いため、架橋反応が低温から開始してしまうことによる溶融粘度の増加が起きない。このため、成形加工時にマトリックス樹脂組成物が溶融して十分に低粘度になってから架橋反応が開始されるため、強化繊維基材へのマトリックス樹脂の含浸性が良好であるほか、架橋反応が速やかに過不足なく行われるため、未反応のままマトリックス樹脂中に異物として残留することが無く、残留した架橋剤(C)を起点とした成形物の機械強度や熱間における機械強度の低下といった問題を生じない。
なお、架橋剤(C)とフェノキシ樹脂(A)およびエポキシ樹脂(B)との相溶性については、これらの混合物であるマトリックス樹脂組成物を200℃で溶解して混練し、冷却後の反応硬化物の目視観察にて透明性を評価することで行った。
The aromatic tetracarboxylic acid dianhydrides represented by the general formulas (1) to (3) are compatible with the phenoxy resin and the epoxy resin, which are the main components of the matrix resin composition, until the cross-linking agent itself is melted by heat. Since many of them are difficult to do, the melt viscosity does not increase due to the crosslinking reaction starting from a low temperature. Therefore, the cross-linking reaction is started after the matrix resin composition is melted during the molding process and becomes sufficiently low in viscosity. Therefore, the cross-linking reaction is good in addition to the good impregnation property of the matrix resin into the reinforcing fiber base material. Since it is carried out promptly and without excess or deficiency, it does not remain as a foreign substance in the matrix resin in an unreacted state, and the mechanical strength of the molded product starting from the residual cross-linking agent (C) and the mechanical strength in hot water are reduced. Does not cause any problems.
Regarding the compatibility of the cross-linking agent (C) with the phenoxy resin (A) and the epoxy resin (B), the matrix resin composition which is a mixture of these is melted at 200 ° C., kneaded, and reacted and cured after cooling. This was done by evaluating the transparency by visually observing the object.

このような芳香族テトラカルボン酸二無水物としては、4,4’‐オキシジフタル酸無水物や4,5’‐オキシジフタル酸無水物、5,5’‐メチレンビス(イソベンゾフラン‐1,3‐ジオン)、5,5’‐イソプロピリデンビス(イソベンゾフラン‐1,3‐ジオン)、エチレングリコールビスアンヒドロトリメリテート、ビス(1,3‐ジオキソイソベンゾフラン‐5‐カルボン酸)テトラメチレン、4,5’‐[1,4‐フェニレンビス(オキシ)]ビス(イソベンゾフラン‐1,3‐ジオン)、4,4’‐(m‐フェニレンビスオキシ)ビス(イソベンゾフラン‐1,3‐ジオン)、5,5’‐[1,3‐フェニレンビス(オキシ)]ビス(イソベンゾフラン‐1,3‐ジオン)、3,3’‐(p‐フェニレンジオキシ)二フタル酸無水物、5,5‐[1,2‐フェニレンビス(オキシ)]ビス(イソベンゾフラン‐1,3‐ジオン)、4,4’‐[2,1‐フェニレンビス(オキシ)]ビス(イソベンゾフラン‐1,3‐ジオン)、4,4’‐(p‐フェニレンジオキシ)二フタル酸無水物、5,5′‐[ビフェニル‐4,4’‐ジイルビス(オキシ)]ビス(イソベンゾフラン‐1,3‐ジオン)、5,5’‐[ビフェニル‐2,2’‐ジイルビス(オキシ)]ビス(イソベンゾフラン‐1,3‐ジオン)、ビスフェノールA,ジフタル酸無水物、2,2’−ジ(4−トリメリトイルオキシ)ビフェニル二無水物、2,2’−ビス(4−ヒドロキシフェニル)プロパンジベンゾエート-3,3’,4,4’−テトラカルボン酸二無水物、ビス(1,3‐ジオキソイソベンゾフラン‐5‐カルボン酸)イソプロピリデンビス(4,1‐フェニレン)、3,3’−ジフェニル−4,4’−ビフェノール−ビス(トリメリテートアンハイドライト)等が挙げられるが、なかでも4,4’−オキシジフタル酸無水物やエチレングリコールビスアンヒドロトリメリテート、4,4’−(1−メチルエチリデン) ジフタル酸無水物から選ばれる少なくとも1種類の芳香族テトラカルボン酸二無水物が架橋剤(C)として最も好ましい。 Examples of such aromatic tetracarboxylic dianhydrides include 4,4'-oxydiphthalic anhydride, 4,5'-oxydiphthalic anhydride, and 5,5'-methylenebis (isobenzofuran-1,3-dione). , 5,5'-Isopropylidenebis (isobenzofuran-1,3-dione), ethylene glycol bisanhydrotrimeritate, bis (1,3-dioxoisobenzofuran-5-carboxylic acid) tetramethylene, 4, 5'-[1,4-phenylene bis (oxy)] bis (isobenzofuran-1,3-dione), 4,4'-(m-phenylene bisoxy) bis (isobenzofuran-1,3-dione), 5,5'-[1,3-phenylenebis (oxy)] bis (isobenzofuran-1,3-dione), 3,3'-(p-phenylenedioxy) diphthalic anhydride, 5,5- [1,2-Phenylenebis (oxy)] bis (isobenzofuran-1,3-dione), 4,4'-[2,1-phenylenebis (oxy)] bis (isobenzofuran-1,3-dione) 4,4'-(p-phenylenedioxy) diphthalic anhydride, 5,5'-[biphenyl-4,4'-diylbis (oxy)] bis (isobenzofuran-1,3-dione), 5 , 5'-[biphenyl-2,2'-diylbis (oxy)] bis (isobenzofuran-1,3-dione), bisphenol A, diphthalic anhydride, 2,2'-di (4-trimelitoyloxy) ) Biphenyl dianhydride, 2,2'-bis (4-hydroxyphenyl) propandibenzoate-3,3', 4,4'-tetracarboxylic acid dianhydride, bis (1,3-dioxoisobenzofuran-) 5-carboxylic acid) isopropylidenebis (4,1-phenylene), 3,3'-diphenyl-4,4'-biphenol-bis (trimeritateanhydride), etc., among which 4,4 At least one aromatic tetracarboxylic dianhydride selected from ′ -oxydiphthalic anhydride, ethylene glycol bisanhydrotrimeritate, and 4,4 ′-(1-methylethylidene) diphthalic anhydride is a cross-linking agent ( Most preferable as C).

フェノキシ樹脂(A)、エポキシ樹脂(B)及び架橋剤(C)の反応は、フェノキシ樹脂(A)中の2級水酸基と架橋剤(C)の酸無水物基とのエステル化反応、更にはこのエステル化反応により生成したカルボキシル基とエポキシ樹脂(B)のエポキシ基との反応によって架橋、硬化される。フェノキシ樹脂(A)と架橋剤(C)との反応によってフェノキシ樹脂架橋体を得ることができるが、エポキシ樹脂(B)の共存によってマトリックス樹脂組成物の溶融粘度を低減化して強化繊維基材への含浸性を高められる他、架橋反応の促進や、架橋密度の向上、機械強度の向上など優れたFRP成形体を得るために好適なFRP成形用材料となる。なお、本発明においては、エポキシ樹脂(B)を共存してはいるが、熱可塑性樹脂であるフェノキシ樹脂(A)を主成分としており、この2級水酸基と架橋剤(C)の酸無水物基とのエステル化反応が優先していると考えられる。すなわち、架橋剤(C)として使用される酸無水物とエポキシ樹脂(B)との反応は時間がかかるため、フェノキシ樹脂(A)の2級水酸基による架橋反応が先に起こり、架橋剤(C)である酸無水物が失活してしまうとエポキシ樹脂(B)との反応性は大きく低下してしまうと考えられる。そのため、本発明のFRP成形用材料は、熱硬化性樹脂であるエポキシ樹脂を主成分とする通常のFRP成形用材料とは異なり、長期室温保管後でも成形性やFRP成形物の物性を維持しており、貯蔵安定性に優れる。 The reaction of the phenoxy resin (A), the epoxy resin (B) and the cross-linking agent (C) is an esterification reaction between the secondary hydroxyl group in the phenoxy resin (A) and the acid anhydride group of the cross-linking agent (C), and further. It is crosslinked and cured by the reaction between the carboxyl group generated by this esterification reaction and the epoxy group of the epoxy resin (B). A phenoxy resin crosslinked product can be obtained by reacting the phenoxy resin (A) with the cross-linking agent (C), but the coexistence of the epoxy resin (B) reduces the melt viscosity of the matrix resin composition to form a reinforcing fiber base material. It is a material for FRP molding suitable for obtaining an excellent FRP molded product such as promotion of a cross-linking reaction, improvement of a cross-linking density, and improvement of mechanical strength, in addition to being able to enhance the impregnation property of the resin. In the present invention, although the epoxy resin (B) coexists, the main component is the phenoxy resin (A) which is a thermoplastic resin, and the secondary hydroxyl group and the acid anhydride of the cross-linking agent (C) are used as the main components. It is considered that the esterification reaction with the group is prioritized. That is, since the reaction between the acid anhydride used as the cross-linking agent (C) and the epoxy resin (B) takes time, the cross-linking reaction by the secondary hydroxyl group of the phenoxy resin (A) occurs first, and the cross-linking agent (C) ) Is deactivated, it is considered that the reactivity with the epoxy resin (B) is greatly reduced. Therefore, the FRP molding material of the present invention is different from the usual FRP molding material containing an epoxy resin which is a thermosetting resin as a main component, and maintains the moldability and the physical properties of the FRP molded product even after long-term storage at room temperature. It has excellent storage stability.

また、本発明のフェノキシ樹脂組成物には、硬化促進剤(D)を配合することもできる。硬化促進剤(D)は、常温で固体であり、昇華性が無いものであれば特に限定はされるものではなく、例えば、トリエチレンジアミン等の3級アミン、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニルー4−メチルイミダゾール等のイミダゾール類、トリフェニルフォスフィン等の有機フォスフィン類、テトラフェニルホスホニウムテトラフェニルボレート等のテトラフェニルボロン塩などが挙げられる。これらの硬化促進剤(D)は、単独で使用してもよいし、2種類以上併用しても良い。また本発明の製造プロセスの観点から、触媒活性温度が130℃以上である常温で固体のイミダゾール類の潜在性触媒である硬化促進剤を用いることが好ましい。 Further, the curing accelerator (D) can also be added to the phenoxy resin composition of the present invention. The curing accelerator (D) is not particularly limited as long as it is solid at room temperature and does not have sublimation properties. For example, a tertiary amine such as triethylenediamine, 2-methylimidazole, or 2-phenylimidazole is used. , 2-Phenyl-4-methylimidazole and other imidazoles, triphenylphosphine and other organic phosphines, tetraphenylphosphonium tetraphenylborate and other tetraphenylborone salts, and the like. These curing accelerators (D) may be used alone or in combination of two or more. From the viewpoint of the production process of the present invention, it is preferable to use a curing accelerator which is a latent catalyst for imidazoles solid at room temperature having a catalytic activity temperature of 130 ° C. or higher.

さらに、本発明のFRP成形用材料には、強化繊維基材への良好な付着性や成形後のFRP成形体の物性を損なわない範囲において、他の熱可塑性樹脂粉末、例えばポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、天然ゴム、合成ゴム等の粉末や、種々の無機フィラー、体質顔料、着色剤、酸化防止剤、紫外線防止剤等その他添加物を配合することもできる。 Further, the FRP molding material of the present invention includes other thermoplastic resin powders such as polyvinyl chloride resin, as long as the good adhesion to the reinforcing fiber base material and the physical properties of the FRP molded product after molding are not impaired. Powders such as polyvinyl chloride resin, natural rubber, and synthetic rubber, and other additives such as various inorganic fillers, extender pigments, colorants, antioxidants, and ultraviolet antioxidants can also be blended.

本発明のFRP成形用材料のマトリックス樹脂組成物は、必須成分であるフェノキシ樹脂(A)、エポキシ樹脂(B)及び架橋剤(C)、さらに必要に応じて硬化促進剤(D)や耐湿顔料、着色剤、その他の添加剤を、所定の大きさに粉砕した後、所定の配合割合で混合し、このマトリックス樹脂組成物の微粉末を強化繊維基材に粉体の状態で付着させることで得られる。 The matrix resin composition of the material for FRP molding of the present invention contains essential components such as phenoxy resin (A), epoxy resin (B) and cross-linking agent (C), and if necessary, a curing accelerator (D) and a moisture-resistant pigment. , Colorants, and other additives are crushed to a predetermined size, mixed at a predetermined blending ratio, and the fine powder of this matrix resin composition is adhered to the reinforcing fiber base material in the powder state. can get.

本発明のマトリックス組成物は、エポキシ樹脂(B)を、フェノキシ樹脂(A)100重量部に対して、5〜85重量部となるように配合する。好ましくは9〜83重量部であり、より好ましくは10〜70重量部である。エポキシ樹脂(B)の配合量が85重量部を超えると、エポキシ樹脂の硬化に時間を要するため、脱型に必要な強度を短時間で得にくくなる他、FRPのリサイクル性が低下する。また、エポキシ樹脂(B)の配合量が5重量部未満になるとエポキシ樹脂の配合による効果が得られなくなり、マトリックス樹脂組成物の硬化物が160℃以上のTgを発現しにくくなる。 In the matrix composition of the present invention, the epoxy resin (B) is blended in an amount of 5 to 85 parts by weight with respect to 100 parts by weight of the phenoxy resin (A). It is preferably 9 to 83 parts by weight, more preferably 10 to 70 parts by weight. If the blending amount of the epoxy resin (B) exceeds 85 parts by weight, it takes time to cure the epoxy resin, so that it becomes difficult to obtain the strength required for demolding in a short time, and the recyclability of FRP is lowered. Further, if the blending amount of the epoxy resin (B) is less than 5 parts by weight, the effect of blending the epoxy resin cannot be obtained, and the cured product of the matrix resin composition is less likely to express Tg at 160 ° C. or higher.

マトリックス樹脂組成物は、常温で固形であり、その溶融粘度は160〜220℃の温度域のいずれかで3000Pa・s以下である。160〜220℃の温度域は、通常の熱プレス成形を行う温度域である。好ましくは2900Pa・s以下、より好ましくは2800Pa・sである。溶融粘度が3000Pa・sを超えると、熱プレスによる成形時に強化繊維基材へのマトリックス樹脂組成物の含浸が不十分となり、内部ボイド等の欠陥を生じ、FRPの機械物性が低下する。
なお、溶融粘度は、マトリックス樹脂組成物中のフェノキシ樹脂(A)およびエポキシ樹脂(B)と架橋剤(C)が反応すると急激に上昇する。そのため、フェノキシ樹脂(A)とエポキシ樹脂(B)が十分溶融しないうちに架橋剤(C)との反応を開始してしまうと、溶融粘度が3000Pa・s以下にならず、強化繊維基材へのマトリックス樹脂の含浸不良を起こして成形体中にボイドを生じる。よって、架橋剤(C)の融点は、150℃以上、好ましくは成形温度(160〜220℃)の範囲であることが望ましい。
The matrix resin composition is solid at room temperature, and its melt viscosity is 3000 Pa · s or less in any of the temperature ranges of 160 to 220 ° C. The temperature range of 160 to 220 ° C. is a temperature range in which normal hot press molding is performed. It is preferably 2900 Pa · s or less, more preferably 2800 Pa · s. If the melt viscosity exceeds 3000 Pa · s, the reinforcing fiber base material is insufficiently impregnated with the matrix resin composition during molding by hot pressing, causing defects such as internal voids and deteriorating the mechanical properties of the FRP.
The melt viscosity sharply increases when the phenoxy resin (A) and the epoxy resin (B) in the matrix resin composition react with the cross-linking agent (C). Therefore, if the reaction between the phenoxy resin (A) and the epoxy resin (B) is started before the epoxy resin (B) is sufficiently melted, the melt viscosity does not become 3000 Pa · s or less, and the reinforcing fiber base material is used. Poor impregnation of the matrix resin in the above causes voids in the molded product. Therefore, the melting point of the cross-linking agent (C) is preferably in the range of 150 ° C. or higher, preferably the molding temperature (160 to 220 ° C.).

架橋剤(C)の配合量は、通常、フェノキシ樹脂(A)の2級水酸基1モルに対して酸無水物基0.6〜1.3モルの範囲の量であり、好ましくは0.9〜1.3モルの範囲の量であり、より好ましくは0.9〜1.1モルの範囲である。酸無水物基の量が少なすぎるとフェノキシ樹脂(A)の2級水酸基に対して反応性の酸無水物基が不足するため、架橋密度が低く剛性が劣り、多すぎるとフェノキシ樹脂(A)の2級水酸基に対して酸無水物が過剰になり未反応の酸無水物が硬化特性や架橋密度に悪影響を与える。なお、架橋剤の酸無水物基(COOH)によって直接フェノキシ樹脂を架橋するだけでなく、エポキシ樹脂を介してフェノキシ樹脂を架橋する2種類の形態が併存していると考えられ、架橋剤の酸無水物基および、酸無水物基が開環したカルボキシル基はフェノキシ樹脂の2級水酸基とエポキシ樹脂のエポキシ基で消費され、硬化物中に残存するカルボキシル基はほぼ無いと想定される。 The blending amount of the cross-linking agent (C) is usually in the range of 0.6 to 1.3 mol of the acid anhydride group with respect to 1 mol of the secondary hydroxyl group of the phenoxy resin (A), and is preferably 0.9. The amount is in the range of ~ 1.3 mol, more preferably in the range of 0.9 to 1.1 mol. If the amount of the acid anhydride group is too small, the acid anhydride group reactive with respect to the secondary hydroxyl group of the phenoxy resin (A) is insufficient, so that the crosslink density is low and the rigidity is inferior. The acid anhydride becomes excessive with respect to the secondary hydroxyl group of the above, and the unreacted acid anhydride adversely affects the curing characteristics and the cross-linking density. In addition to directly cross-linking the phenoxy resin with the acid anhydride group (COOH) of the cross-linking agent, it is considered that two types of cross-linking of the phenoxy resin via the epoxy resin coexist, and the acid of the cross-linking agent It is assumed that the anhydride group and the carboxyl group in which the acid anhydride group is opened are consumed by the secondary hydroxyl group of the phenoxy resin and the epoxy group of the epoxy resin, and there is almost no carboxyl group remaining in the cured product.

必須成分(A)〜(C)の他に、硬化促進剤(D)を使用する場合、(D)の配合量はフェノキシ樹脂(A)、エポキシ樹脂(B)及び架橋剤(C)の合計量100重量部に対して、0.1〜5重量部とする。その他の添加剤については、マトリックス樹脂組成物粉末の基材への付着や、成形物の特性を損なわない範囲内となるよう適宜調整して添加される。 When a curing accelerator (D) is used in addition to the essential components (A) to (C), the blending amount of (D) is the total of the phenoxy resin (A), the epoxy resin (B) and the cross-linking agent (C). The amount is 0.1 to 5 parts by weight with respect to 100 parts by weight. Other additives are appropriately adjusted and added so as not to adhere the matrix resin composition powder to the base material or impair the characteristics of the molded product.

さらに、本発明のFRP成形用材料には難燃剤が添加されていることが望ましい。難燃剤は常温で固体であって昇華性が無いものであれば特に限定はされないが、非ハロゲン系難燃剤の使用が環境や健康などの影響から好ましく、例えば水酸化カルシウムといった無機系難燃剤や、リン酸アンモニウム類やリン酸エステル化合物といった有機系および無機系のリン系難燃剤、トリアジン化合物等の含窒素系難燃剤、臭素化フェノキシ樹脂等の含臭素系難燃剤などが挙げられる。なかでも臭素化フェノキシ樹脂やリン含有フェノキシ樹脂は、難燃剤兼マトリックス樹脂として使用することが可能なことから好ましく使用することができる。難燃剤の配合量については、難燃剤の種類や所望の難燃性の程度によって適宜選択されるが、マトリックス樹脂組成物100重量部に対して概ね0.01〜10重量部の範囲内で、マトリックス樹脂組成物の付着性やFRPの物性を損なわない程度で配合することが好ましい。 Further, it is desirable that a flame retardant is added to the FRP molding material of the present invention. The flame retardant is not particularly limited as long as it is solid at room temperature and does not sublimate, but the use of a non-halogen flame retardant is preferable from the viewpoint of the environment and health, and for example, an inorganic flame retardant such as calcium hydroxide or , Organic and inorganic phosphorus flame retardants such as ammonium phosphates and phosphoric acid ester compounds, nitrogen-containing flame retardants such as triazine compounds, and bromine-containing flame retardants such as brominated phenoxy resin. Among them, the brominated phenoxy resin and the phosphorus-containing phenoxy resin can be preferably used because they can be used as a flame retardant and a matrix resin. The amount of the flame retardant to be blended is appropriately selected depending on the type of the flame retardant and the desired degree of flame retardancy, but is generally in the range of 0.01 to 10 parts by weight with respect to 100 parts by weight of the matrix resin composition. It is preferable to blend the matrix resin composition to the extent that it does not impair the adhesiveness of the matrix resin composition and the physical properties of the FRP.

本発明のFRP成形用材料の製造方法において、マトリックス樹脂組成物を構成する各成分は、微粉末とされ、強化繊維基材に付着している。そのため、各成分は粉砕して微粉末とされる。その粉砕は、低温乾燥粉砕機(セントリドライミル)等の粉砕混合機が好適であるが、これに制限されるものではない。また、粉砕に際しては各成分を粉砕してから混合しても良いし、あらかじめ各成分を配合した後に粉砕しても良いが、前者が好ましい。この場合、各微粉末が後述の平均粒子径になるように、粉砕条件を設定するとよい。このようにして得られる粉体としては、平均粒子径が10〜100μmであって、好ましくは40〜80μmであり、より好ましくは40〜50μmである。平均粒子径が100μmを超えると、静電場における粉体塗装による強化繊維基材への付着において、樹脂が繊維に衝突する際のエネルギーが大きくなり、強化繊維基材への付着率が低下してしまう。また10μm未満であると、随伴気流によって粒子が飛散してしまい付着効率が低下するほか、大気中を浮遊する微粉樹脂が作業環境の悪化を引き起こす可能性がある。また、このとき、フェノキシ樹脂(A)およびエポキシ樹脂(B)粉末の平均粒子径が架橋剤(C)の平均粒子径の1〜1.5倍であることが好ましい。架橋剤(C)粉末の粒子径をフェノキシ樹脂(A)とエポキシ樹脂(B)の各粉末よりも微細にすることにより、強化繊維基材の内部にまで架橋剤が付着されるとともに、(A)、(B)成分の粒子の周囲に架橋剤(C)が万遍なく存在することで、架橋反応を確実に進行させることができる。 In the method for producing a material for FRP molding of the present invention, each component constituting the matrix resin composition is made into a fine powder and adheres to the reinforcing fiber base material. Therefore, each component is pulverized into a fine powder. The pulverization is preferably performed by a pulverizer / mixer such as a low-temperature drying pulverizer (Sentry Dry Mill), but the pulverization is not limited thereto. Further, at the time of crushing, each component may be crushed and then mixed, or each component may be mixed in advance and then crushed, but the former is preferable. In this case, it is advisable to set the pulverization conditions so that each fine powder has an average particle size described later. The powder thus obtained has an average particle size of 10 to 100 μm, preferably 40 to 80 μm, and more preferably 40 to 50 μm. When the average particle size exceeds 100 μm, the energy when the resin collides with the fibers increases in the adhesion to the reinforcing fiber base material by powder coating in an electrostatic field, and the adhesion rate to the reinforcing fiber base material decreases. It ends up. If it is less than 10 μm, the particles are scattered by the accompanying airflow and the adhesion efficiency is lowered, and the fine powder resin floating in the atmosphere may cause deterioration of the working environment. At this time, it is preferable that the average particle size of the phenoxy resin (A) and epoxy resin (B) powder is 1 to 1.5 times the average particle size of the cross-linking agent (C). By making the particle size of the cross-linking agent (C) powder smaller than that of the phenoxy resin (A) and epoxy resin (B) powders, the cross-linking agent is adhered to the inside of the reinforcing fiber base material, and (A). ), The cross-linking agent (C) is evenly present around the particles of the component (B), so that the cross-linking reaction can surely proceed.

マトリックス樹脂組成物の粉末は、粉体塗装法により、強化繊維基材に付着されることによって、本発明のFRP成形用材料が得られる。粉体塗装法には流動床を利用した流動塗装法と静電場を利用した静電塗装法があり、本発明ではそのどちらの方法も利用することができるが、強化繊維基材への付着の均一性から静電場を利用した静電塗装法が好適である。 The powder of the matrix resin composition is adhered to the reinforcing fiber base material by the powder coating method to obtain the FRP molding material of the present invention. The powder coating method includes a fluidized coating method using a fluidized bed and an electrostatic coating method using an electrostatic field. In the present invention, either method can be used, but adhesion to the reinforcing fiber base material can be used. From the viewpoint of uniformity, an electrostatic coating method using an electrostatic field is preferable.

強化繊維基材へのマトリックス樹脂組成物粉末の樹脂付着量は、樹脂割合(RC)が、20〜50wt%なるように塗工されるが、好ましくは25%〜40%であり、より好ましくは25%〜30%である。樹脂付着率50%を超えるとFRPの引張・曲げ弾性率等の機械物性が低下してしまい、10%を下回ると樹脂の付着量が極端に少ないことから基材内部へのマトリックス樹脂の含浸が不十分になり、熱物性、機械物性ともに低くなる。 The amount of the matrix resin composition powder adhered to the reinforcing fiber base material is coated so that the resin ratio (RC) is 20 to 50 wt%, but is preferably 25% to 40%, more preferably 25% to 40%. It is 25% to 30%. If the resin adhesion rate exceeds 50%, the mechanical properties such as the tensile and bending elastic modulus of the FRP deteriorate, and if it is less than 10%, the amount of resin adhered is extremely small, so that the matrix resin is impregnated inside the substrate. It becomes insufficient, and both thermal and mechanical properties become low.

粉体塗装されたマトリックス樹脂組成物の粉体は、加熱溶融により強化繊維基材に固定されるが、粉体を塗工した後に加熱融着する冷間塗装と、あらかじめ加熱された強化繊維に粉体を塗工、融着する熱間塗装のいずれを用いても良い。この加熱溶融によって、強化繊維基材表面のマトリックス樹脂を溶融させることで、基材への密着性を高め、塗装された樹脂粉末の脱落が防止される。ただし、得られるFRP材料においてマトリックス樹脂は強化繊維基材の表面に集中しており、加熱加圧成形後の成形体のように強化繊維基材の内部にまで行き渡っていない。なお、粉体塗装を行った後の加熱時間は、FRP成形用材料のマトリックス樹脂組成物が流動性および反応性を保持できる範囲内であれば特に制限はされないが、1〜2分間が適する。すなわち、成形時よりも遥かに短時間で熱処理を行うことによって、架橋剤と樹脂とを反応させずにフェノキシ樹脂やエポキシ樹脂などを強化繊維基材に熱融着により固定し、粉落ちを防止する。溶融温度は150〜240℃であり、好ましくは160〜220℃、より好ましくは、180〜200℃である。溶融温度が上限を超えると硬化反応が進行してしまう可能性があり、また下限を下回ると熱融着が不十分となり、FRP成形用材料の取扱時にマトリクックス樹脂の粉落ち、脱落等が発生する。 The powder of the matrix resin composition coated with powder is fixed to the reinforcing fiber base material by heating and melting, but it is applied to cold coating in which the powder is applied and then heat-sealed, and to preheated reinforcing fibers. Either hot coating, in which powder is applied or fused, may be used. By melting the matrix resin on the surface of the reinforcing fiber base material by this heat melting, the adhesion to the base material is enhanced and the coated resin powder is prevented from falling off. However, in the obtained FRP material, the matrix resin is concentrated on the surface of the reinforcing fiber base material, and does not reach the inside of the reinforcing fiber base material as in the molded product after heat and pressure molding. The heating time after powder coating is not particularly limited as long as the matrix resin composition of the FRP molding material can maintain fluidity and reactivity, but 1 to 2 minutes is suitable. That is, by performing the heat treatment in a much shorter time than at the time of molding, the phenoxy resin, the epoxy resin, etc. are fixed to the reinforcing fiber base material by heat fusion without reacting the cross-linking agent and the resin, and powder falling is prevented. do. The melting temperature is 150-240 ° C, preferably 160-220 ° C, more preferably 180-200 ° C. If the melting temperature exceeds the upper limit, the curing reaction may proceed, and if it falls below the lower limit, heat fusion becomes insufficient, and powder falling or falling off of the matrix resin occurs when handling the FRP molding material. do.

強化繊維基材には、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミナ繊維、鉱物繊維、炭化ケイ素繊維等が使用できるが、静電塗装法を利用するにあたっては導電性をもつことが必要なことから、炭素繊維が好ましい。また、強化繊維基材の形態は、特に制限されるものでは無く、例えば一方向材、平織りや綾織などのクロス、三次元クロス、チョップドストランドマット、数千本以上のフィラメントよりなるトウ、或いは不織布等を使用することができる。これらの強化繊維基材は、1種類で用いることもできるし、2種類以上を併用することも可能である。 Carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, mineral fiber, silicon carbide fiber, etc. can be used as the reinforcing fiber base material, but it is necessary to have conductivity in order to use the electrostatic coating method. Therefore, carbon fiber is preferable. The form of the reinforcing fiber base material is not particularly limited, and is, for example, a unidirectional material, a cloth such as plain weave or twill weave, a three-dimensional cloth, a chopped strand mat, a tow made of thousands or more filaments, or a non-woven fabric. Etc. can be used. These reinforcing fiber base materials can be used alone or in combination of two or more.

このようにして作製した本発明のFRP成形用材料を単独、もしくは積層し、加熱かつ加圧することによりFRP成形物が簡便に製造される。また、積層に際してアルミやステンレス等の金属箔などを層間や最外層に積層することもできる。本発明のFRP成形用材料は、熱プレスによる加圧成形により、賦形とマトリックス樹脂の架橋と硬化を同時に行うことが可能である。
FRP成形用材料を使用した成形は、加熱加圧成形である限り、目的とする成形物の大きさや形状に合わせて、オートクレーブ成形や金型を使用した熱プレス成形等の各種成形法を適宜選択して実施することができる。成形温度は150〜240℃、好ましくは、160℃〜220℃、より好ましくは180℃〜200℃である。なお、成形温度が上記範囲の上限温度を超えると、過剰な熱を加えてしまうため樹脂の分解が起きる可能性があり、また下限温度を下回るとマトリックス樹脂組成物の溶融粘度が高いため、繊維への付着性含浸性が悪くなる。なお、成形時間については、通常30〜60分であるが、10分程度の短時間であっても、主成分としてのフェノキシ樹脂(A)の2級水酸基を利用した架橋剤(C)との反応によって、脱型を行える強度を得ることができる。ただし、エポキシ樹脂(B)の硬化反応を完結させるためには、例えば200〜250℃で30〜60分程度、ポストキュアすることが好ましい。
The FRP molded product of the present invention produced in this manner can be easily produced by using it alone or by laminating it, heating and pressurizing it. Further, when laminating, a metal foil such as aluminum or stainless steel can be laminated between layers or the outermost layer. The FRP molding material of the present invention can be shaped and crosslinked and cured of the matrix resin at the same time by pressure molding by a hot press.
For molding using FRP molding materials, as long as it is heat and pressure molding, various molding methods such as autoclave molding and hot press molding using a mold are appropriately selected according to the size and shape of the target molded product. Can be carried out. The molding temperature is 150 to 240 ° C., preferably 160 ° C. to 220 ° C., more preferably 180 ° C. to 200 ° C. If the molding temperature exceeds the upper limit temperature in the above range, excessive heat is applied and the resin may be decomposed. If the molding temperature is lower than the lower limit temperature, the melt viscosity of the matrix resin composition is high, so that the fiber Adhesion to the impregnation property deteriorates. The molding time is usually 30 to 60 minutes, but even for a short time of about 10 minutes, the molding time is different from that of the cross-linking agent (C) using the secondary hydroxyl group of the phenoxy resin (A) as the main component. By the reaction, the strength for demolding can be obtained. However, in order to complete the curing reaction of the epoxy resin (B), it is preferable to post-cure at 200 to 250 ° C. for about 30 to 60 minutes, for example.

本発明のFRP成形用材料は、マトリックス樹脂組成物がフェノキシ樹脂の2級水酸基を利用した架橋反応によって成形前よりも耐熱性が大きく上昇し、Tgが160℃以上の成形物を得られる。マトリックス樹脂組成物の硬化物の軟化点は、Tgから概ね−25℃以内にあるため、例えば金型を使用した熱プレス成形において、金型からの成形物の脱型温度は、マトリックス樹脂組成物の硬化物のTgから−30℃以下の範囲であれば可能であり、好ましくは硬化物のTgから−35℃以下、より好ましくはTgから−40℃以下である。なお、脱形温度が上記範囲の上限温度を超えると賦形を保つことができず、また脱形温度が低すぎると冷却に要する時間が長くなるためタクトタイムが長くなり、生産性が低下する。
なお、軟化点とは、マトリックス樹脂硬化物のDMAによって測定される貯蔵弾性率(E’)が減衰する変曲点の温度のことを示す。
In the FRP molding material of the present invention, the heat resistance of the matrix resin composition is greatly increased as compared with that before molding by the cross-linking reaction using the secondary hydroxyl group of the phenoxy resin, and a molded product having a Tg of 160 ° C. or higher can be obtained. Since the softening point of the cured product of the matrix resin composition is within approximately -25 ° C. from Tg, for example, in hot press molding using a mold, the demolding temperature of the molded product from the mold is the matrix resin composition. It is possible if it is in the range of −30 ° C. or lower from the Tg of the cured product, preferably −35 ° C. or lower, more preferably Tg to −40 ° C. or lower from the Tg of the cured product. If the demolding temperature exceeds the upper limit temperature in the above range, the shaping cannot be maintained, and if the demolding temperature is too low, the time required for cooling becomes long, so that the tact time becomes long and the productivity decreases. ..
The softening point indicates the temperature of the inflection point at which the storage elastic modulus (E') measured by DMA of the cured matrix resin is attenuated.

本発明の繊維強化プラスチック成形用材料の硬化物は、FRP成形用材料を加熱硬化させて得られるものであり、上記架橋が発達したものである。この硬化物は、上繊維強化プラスチック成形用材料中のマトリックス樹脂の硬化物と強化繊維基材を含み、これらが強固に結合して所定の強度等の特性を与える。そして、このマトリックス樹脂組成物の架橋硬化物のガラス転移温度は160℃以上であることがよい。 The cured product of the fiber-reinforced plastic molding material of the present invention is obtained by heating and curing the FRP molding material, and the above-mentioned cross-linking is developed. This cured product contains a cured product of the matrix resin in the material for molding the upper fiber reinforced plastic and the reinforcing fiber base material, and these are firmly bonded to each other to give properties such as predetermined strength. The glass transition temperature of the crosslinked cured product of this matrix resin composition is preferably 160 ° C. or higher.

本発明の繊維強化プラスチック成形物の製造方法は、上記繊維強化プラスチック成形用材料を加熱、加圧して硬化、成形するものである。 The method for producing a fiber-reinforced plastic molded product of the present invention is to heat and pressurize the material for molding fiber-reinforced plastic to cure and mold the material.

以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。 Examples will be shown below and the present invention will be described in more detail, but the present invention is not limited to the description of these examples.

実施例及び比較例で使用した材料は、以下のとおりである。 The materials used in the examples and comparative examples are as follows.

フェノキシ樹脂(A)
(A−1):フェノトートYP−50S(新日鉄住金化学株式会社製ビスフェノールA型、Mw=40,000、水酸基当量=284)、200℃における溶融粘度=3,000Pa・s、ガラス転移温度(Tg)=83℃
エポキシ樹脂(B)
(B−1):YSLV−80XY(新日鉄住金化学株式会社製テトラメチルビスフェノールF型、エポキシ当量=192、融点=72℃)
架橋剤(C)
(C−1):エチレングリコールビスアンヒドロトリメリテート
(酸無水物当量:207、融点:160℃、TEMG)
(C−2):4,4’−オキシジフタル酸無水物
(酸無水物当量:153、融点:225℃、OPDA)
(C−3):ビスフェノールA,ジフタル酸無水物

Figure 0006937763

(酸無水物当量:260、融点:184℃、SABIC社製BisDA)
(C−4):4,4’−ビフタル酸無水物
(酸無水物当量:147、融点:229℃、BPDA)
(C−5):3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物
(酸無水物当量:161、融点:218℃、BTDA)
(C−6):3,3’,4,4’‐ジフェニルスルホンテトラカルボン酸二無水物
(酸無水物当量:179、融点:≧287℃、DSDA)Phenoxy resin (A)
(A-1): Phenototo YP-50S (Bisphenol A type manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., Mw = 40,000, hydroxyl group equivalent = 284), melt viscosity at 200 ° C. = 3,000 Pa · s, glass transition temperature (A-1) Tg) = 83 ° C
Epoxy resin (B)
(B-1): YSLV-80XY (Tetramethylbisphenol F type manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., epoxy equivalent = 192, melting point = 72 ° C.)
Crosslinking agent (C)
(C-1): Ethylene glycol bisuanhydrotrimeritate
(Acid anhydride equivalent: 207, melting point: 160 ° C, TEMG)
(C-2): 4,4'-oxydiphthalic anhydride
(Acid anhydride equivalent: 153, melting point: 225 ° C, OPDA)
(C-3): Bisphenol A, diphthalic anhydride
Figure 0006937763

(Acid anhydride equivalent: 260, melting point: 184 ° C, BisDA manufactured by SABIC)
(C-4): 4,4'-biphthalic anhydride
(Acid anhydride equivalent: 147, melting point: 229 ° C, BPDA)
(C-5): 3,3', 4,4'-benzophenone tetracarboxylic dianhydride
(Acid anhydride equivalent: 161, melting point: 218 ° C, BTDA)
(C-6): 3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydride
(Acid anhydride equivalent: 179, melting point: ≧ 287 ° C, DSDA)

各種物性の試験及び測定方法は、以下のとおりである。 The testing and measuring methods for various physical properties are as follows.

溶融粘度
マトリックス樹脂組成物等の溶融粘度は、レオメータ(Anton Paar社製)を用いて、サンプルサイズ4.3cm3をパラレルプレートに挟み、50℃/minで昇温しながら、周波数:1Hz、負荷ひずみ:5%の条件にて、160℃における溶融粘度を測定した。
Melt Viscosity The melt viscosity of the matrix resin composition, etc. is determined by sandwiching a sample size of 4.3 cm3 between parallel plates using a rheometer (manufactured by Antonio Par) and raising the temperature at 50 ° C./min while measuring frequency: 1 Hz and load strain. : The melt viscosity at 160 ° C. was measured under the condition of 5%.

平均粒子径
マトリックス樹脂組成物粉末等の平均粒子径は、レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3300EX、日機装社製)により、体積基準にて平均粒子径(D50)の測定を行った。
Average particle size The average particle size of the matrix resin composition powder, etc. is measured by volume-based average particle size (D50) using a laser diffraction / scattering type particle size distribution measuring device (Microtrack MT3300EX, manufactured by Nikkiso Co., Ltd.). rice field.

樹脂(A)、(B)と架橋剤(C)との相溶性(透明性)
フェノキシ樹脂(A)、エポキシ樹脂(B)に架橋剤(C)を配合したマトリックス樹脂組成物を200℃で溶解して混練し、冷却後の反応硬化物の目視観察にて透明性を評価することで行った。
Compatibility (transparency) between the resins (A) and (B) and the cross-linking agent (C)
A matrix resin composition in which a cross-linking agent (C) is mixed with a phenoxy resin (A) and an epoxy resin (B) is dissolved at 200 ° C. and kneaded, and the transparency is evaluated by visual observation of the reaction-cured product after cooling. I went there.

プリフォームシートのタック性
得られたFRP成形用材料の表面を指で触って、タック性のないものを合格とし、表1に○として表記した。
Tackiness of Preform Sheet The surface of the obtained FRP molding material was touched with a finger, and those without tackiness were accepted and marked with ◯ in Table 1.

樹脂割合(RC:%)
マトリックス樹脂組成物付着前の炭素繊維クロスの重量(W1)と、樹脂組成物付着後のFRP成形用材料の重量(W2)から下記の式を用いて算出した。
樹脂割合(RC:%)=(W2−W1)/W2×100
W1:マトリックス樹脂組成物付着前の強化繊維重量
W2:マトリックス樹脂組成物付着後のFRP成形用材料の重量
Resin ratio (RC:%)
It was calculated from the weight of the carbon fiber cloth (W1) before the matrix resin composition was attached and the weight of the FRP molding material (W2) after the resin composition was attached using the following formula.
Resin ratio (RC:%) = (W2-W1) / W2 × 100
W1: Weight of reinforcing fiber before attachment of matrix resin composition W2: Weight of FRP molding material after attachment of matrix resin composition

ガラス転移温度(Tg)、樹脂軟化温度
厚さ2mm、幅10mm、長さ10mmの試験片を、動的粘弾性測定装置(DMA、Perkin Elmer社製 DMA 7e)を用いて、5℃/分の昇温条件、25〜250℃の範囲で測定し、得られるtanδの極大ピークをガラス転移点とした。
なお、樹脂軟化温度は、成形硬化物の同様な試験片を、DMAによって測定した貯蔵弾性率(E’)が減衰する変曲点の温度とした。成形硬化後の脱型可能温度を示す。
Glass transition temperature (Tg), resin softening temperature A test piece having a thickness of 2 mm, a width of 10 mm, and a length of 10 mm was measured at 5 ° C./min using a dynamic viscoelasticity measuring device (DMA, DMA 7e manufactured by Perkin Elmer). The temperature was measured in the temperature range of 25 to 250 ° C., and the maximum peak of tan δ obtained was taken as the glass transition point.
The resin softening temperature was set to the temperature of the inflection point at which the storage elastic modulus (E') measured by DMA was attenuated in the same test piece of the molded cured product. Shows the temperature at which mold can be removed after molding and curing.

機械物性
FRP成形用材料を、テフロン(登録商標)シート上に13枚重ねて、200℃に加熱したプレス機で5MPaにて10分間プレスしFRP積層板を作製した後、オーブンで1時間アフターキュアを行い、JIS K 7074:1988 繊維強化プラスチックの曲げ試験方法に基づいて、得られたFRP積層板の機械物性(曲げ弾性率、曲げ強度)を測定した。
Mechanical properties 13 sheets of FRP molding material are stacked on a Teflon (registered trademark) sheet and pressed at 5 MPa for 10 minutes with a press machine heated to 200 ° C. to prepare an FRP laminated board, and then aftercured in an oven for 1 hour. The mechanical properties (bending elastic modulus, bending strength) of the obtained FRP laminated plate were measured based on the bending test method of JIS K 7074: 1988 fiber reinforced plastic.

樹脂含浸性
FRP成形用材料を、テフロンシート上に13枚重ねて、200℃に加熱したプレス機で5MPaにて5分間プレスして積層板を作製したのち、オーブンで1時間アフターキュアを行い、ダイヤモンドカッターを用いて10mm角の細片を数枚切り出した。切り出した細片は#1000以上の耐水研磨紙で切断面を研磨した後、光学顕微鏡により観察を行いボイドの有無を確認した。
13 sheets of resin-impregnated FRP molding material were stacked on a Teflon sheet and pressed at 5 MPa for 5 minutes with a press machine heated to 200 ° C. to prepare a laminated board, and then aftercured in an oven for 1 hour. Several pieces of 10 mm square were cut out using a diamond cutter. The cut surface of the cut pieces was polished with # 1000 or more water-resistant abrasive paper, and then observed with an optical microscope to confirm the presence or absence of voids.

FRP成形用材料の室温保存安定性
常温の室内に3か月間保管したFRP成形用材料を、テフロンシート上に13枚重ねて、200℃に加熱したプレス機で5MPa、5分間プレスして積層板を作製したのち、オーブンで1時間アフターキュアを行い、熱物性や機械物性の評価を行った。3か月前に作製した積層板との比較を行い、物性の誤差が±10%の範囲内であれば合格とし、表1に○と表記した。
Stability of FRP molding materials stored at room temperature 13 sheets of FRP molding materials stored in a room at room temperature for 3 months were stacked on a Teflon sheet and pressed at 5 MPa for 5 minutes with a press machine heated to 200 ° C. After that, after-cure was performed in an oven for 1 hour to evaluate the thermal and mechanical properties. A comparison was made with the laminated board manufactured three months ago, and if the error in the physical properties was within the range of ± 10%, it was accepted and marked with ◯ in Table 1.

CFRPの長期耐熱性試験
機械物性の測定のための試験片と同様にして作成した試験片を100℃の温度環境下で500hr保持したのち、JIS K 7074:1988 繊維強化プラスチックの曲げ試験方法に基づいて機械強度測定を行った。
Long-term heat resistance test of CFRP A test piece prepared in the same manner as the test piece for measuring mechanical properties is held for 500 hours in a temperature environment of 100 ° C., and then based on the bending test method of JIS K 7074: 1988 fiber reinforced plastic. The mechanical strength was measured.

実施例1
フェノキシ樹脂(A)として(A−1)、エポキシ樹脂(B)として(B−1)、架橋剤(C)として(C−1)をそれぞれ粉砕、分級して平均粒子径D50が80μm(A、B、Cの平均粒径はほぼ同じ)である粉体にしたものを、表1に示す割合(重量部)でドライブレンドし、炭素繊維(東邦テナックス社製、STANDARD Modulus type HTS40 3K)からなる開繊処理された平織の強化繊維基材に、静電場において、電荷70kV、吹き付け空気圧0.32MPaの条件で粉体塗装を行った。その後、オーブンで170℃、1分間加熱溶融して樹脂を熱融着させ、FRP成形用材料を得た。得られたFRP成形用材料の樹脂割合(RC)は27%であった。
こうして得られたFRP成形用材料及びFRP硬化物について、各種物性を測定した。これらの結果を表1に示す。
Example 1
(A-1) as the phenoxy resin (A), (B-1) as the epoxy resin (B), and (C-1) as the cross-linking agent (C) are crushed and classified to have an average particle size D50 of 80 μm (A). , B, C have almost the same average particle size), dry-blended at the ratio (part by weight) shown in Table 1, and from carbon fiber (STANDARD Modulus type HTS40 3K, manufactured by Toho Tenax Co., Ltd.). The plain-woven reinforced fiber base material which had been subjected to the fiber-spreading treatment was powder-coated in an electrostatic field under the conditions of a charge of 70 kV and a sprayed air pressure of 0.32 MPa. Then, the resin was heat-melted by heating and melting at 170 ° C. for 1 minute in an oven to obtain a material for FRP molding. The resin ratio (RC) of the obtained FRP molding material was 27%.
Various physical properties of the FRP molding material and the FRP cured product thus obtained were measured. These results are shown in Table 1.

実施例2、3及び比較例1〜3
架橋剤(C)として(C−1)に替えて、(C−2)(C−3)(C−4)(C−5)(C−6)を使用すること以外、実施例1と同様にして、FRP成形用材料、さらにはFRP積層板を得て、各種物性を評価した。その結果も表1に示す。
なお、比較例3の曲げ弾性率と曲げ強度、長期耐熱については、マトリックス樹脂が脆いため、測定することができなかった。
Examples 2 and 3 and Comparative Examples 1 to 3
Except for using (C-2), (C-3), (C-4), (C-5), and (C-6) instead of (C-1) as the cross-linking agent (C), the same as in Example 1. Similarly, a material for FRP molding and further an FRP laminated board were obtained, and various physical properties were evaluated. The results are also shown in Table 1.
The flexural modulus, bending strength, and long-term heat resistance of Comparative Example 3 could not be measured because the matrix resin was brittle.

Figure 0006937763
Figure 0006937763

表1で得られた結果から、架橋剤(C)としてC−1、C−2、C−3を用いたマトリックス樹脂組成物の微粉末を強化繊維基材に付着させたFRP成形用材料より得られるCFRPは、Tg160℃以上の優れた耐熱性を示すともに、マトリックス樹脂組成物の溶融粘度が低いため、強化繊維基材への含浸性が良好であり、高い機械強度を示す。さらに、架橋剤のフェノキシ樹脂およびエポキシ樹脂への相溶性が良好なため、反応性が良好であり、固形物として残留することがないために100℃の熱間条件に長期間晒されても機械強度の低下が小さい。このように本実施例のFRP成形用材料は高い耐熱性と常温および熱間における機械物性を備えたFRP成形物を得ることができることから、FRP成形用材料として非常に優れている。 From the results obtained in Table 1, from the FRP molding material in which the fine powder of the matrix resin composition using C-1, C-2, and C-3 as the cross-linking agent (C) was adhered to the reinforcing fiber base material. The obtained CFRP exhibits excellent heat resistance of Tg of 160 ° C. or higher, and has a low melt viscosity of the matrix resin composition, so that it has good impregnation property into the reinforcing fiber base material and exhibits high mechanical strength. Further, since the cross-linking agent has good compatibility with the phenoxy resin and the epoxy resin, the reactivity is good, and since it does not remain as a solid substance, the machine is exposed to hot conditions of 100 ° C. for a long period of time. The decrease in strength is small. As described above, the FRP molding material of this example is very excellent as an FRP molding material because it can obtain an FRP molded product having high heat resistance and mechanical properties at room temperature and hot.

産業上の利用分野Industrial application fields

本発明の繊維強化プラスチック成形用材料は、繊維強化プラスチック(FRP)材料として、自動車や航空機器等の輸送機器の車体や機体、ノートPCやタブレットといった電子機器類の筐体から、産業用ロボット等のアーム、建築構造物の補強材料、また釣竿やロードバイクの車体といったスポーツ・レジャー分野など、幅広い分野で利用できる。
The fiber-reinforced plastic molding material of the present invention is a fiber-reinforced plastic (FRP) material that can be used as a body or body of transportation equipment such as automobiles and aviation equipment, from housings of electronic devices such as notebook PCs and tablets, to industrial robots and the like. It can be used in a wide range of fields such as arms, reinforcing materials for building structures, and sports and leisure fields such as fishing rods and road bike bodies.

Claims (10)

マトリックス樹脂組成物及び強化繊維基材からなる繊維強化プラスチック成形用材料であって、マトリックス樹脂組成物が、フェノキシ樹脂(A)、エポキシ樹脂(B)及び架橋剤(C)を必須成分とし、フェノキシ樹脂(A)100重量部に対してエポキシ樹脂(B)を9〜85重量部含有し、架橋剤(C)が下記一般式(1)〜(3)で示される少なくとも1種のテトラカルボン酸二無水物であり、フェノキシ樹脂(A)の2級水酸基1モルに対して架橋剤(C)の酸無水物基0.6〜1.3モルの範囲となるように含有すること、マトリックス樹脂組成物が常温固形で、160℃〜220℃の温度域のいずれかにおける溶融粘度が3000Pa・s以下であり、架橋又は硬化されたマトリックス樹脂組成物の架橋硬化物のガラス転移温度(Tg)が160℃以上を示すこと、繊維強化プラスチック成形用材料がマトリックス樹脂組成物を20〜50wt%含有し、且つマトリックス樹脂組成物の微粉末が強化繊維基材の表面に付着していることを特徴とする繊維強化プラスチック成形用材料。
Figure 0006937763

式中、Xは、O、−CH−又は−C(CH)−を表す。
Figure 0006937763

Figure 0006937763

一般式(2)及び式(3)において、Yは、−(CH−、−(Ph)−、−Ph−CH2−Ph−、又は−Ph−C(CH3)2−Ph−を表し、Phはフェニレン基であり、mは1から4の整数である。
A material for molding a fiber-reinforced plastic composed of a matrix resin composition and a reinforcing fiber base material, wherein the matrix resin composition contains a phenoxy resin (A), an epoxy resin (B) and a cross-linking agent (C) as essential components, and phenoxy. The epoxy resin (B) is contained in an amount of 9 to 85 parts by weight based on 100 parts by weight of the resin (A), and the cross-linking agent (C) is at least one tetracarboxylic acid represented by the following general formulas (1) to (3). It is a dianhydride and is contained in a range of 0.6 to 1.3 mol of the acid anhydride group of the cross-linking agent (C) with respect to 1 mol of the secondary hydroxyl group of the phenoxy resin (A). in the composition solid state at room temperature, 160 ° C. to 220 Ri der melt viscosity of 3000 Pa · s or less at any temperature range of ° C., crosslinked or glass transition temperature of the cured cross-linked cured product of the matrix resin composition (Tg) Is 160 ° C. or higher, the fiber-reinforced plastic molding material contains 20 to 50 wt% of the matrix resin composition, and the fine powder of the matrix resin composition adheres to the surface of the reinforcing fiber base material. A material for molding fiber-reinforced plastics.
Figure 0006937763

In the formula, X represents O, −CH 2− or −C (CH 3 ) −.
Figure 0006937763

Figure 0006937763

In the general formulas (2) and (3), Y is − (CH 2 ) m −, − (Ph) m −, −Ph−CH 2 −Ph−, or −Ph−C (CH 3 ) 2 −. It represents Ph-, Ph is a phenylene group, and m is an integer from 1 to 4.
架橋剤(C)が、溶融したフェノキシ樹脂(A)及びエポキシ樹脂(B)に可溶である請求項1に記載の繊維強化プラスチック成形用材料。 The fiber-reinforced plastic molding material according to claim 1, wherein the cross-linking agent (C) is soluble in the molten phenoxy resin (A) and epoxy resin (B). フェノキシ樹脂(A)のガラス転移温度(Tg)が65℃〜150℃である請求項1又は2に記載の繊維強化プラスチック成形用材料。 The fiber-reinforced plastic molding material according to claim 1 or 2 , wherein the glass transition temperature (Tg) of the phenoxy resin (A) is 65 ° C. to 150 ° C. フェノキシ樹脂(A)、エポキシ樹脂(B)及び架橋剤(C)が粉末状で存在し、フェノキシ樹脂(A)とエポキシ樹脂(B)の粉末の平均粒子径(D50)が10〜150μmであり、かつ架橋剤(C)の粉末の平均粒子径の1〜1.5倍である請求項1〜のいずれか一項に記載の繊維強化プラスチック成形用材料。 The phenoxy resin (A), the epoxy resin (B) and the cross-linking agent (C) are present in powder form, and the average particle size (D50) of the powder of the phenoxy resin (A) and the epoxy resin (B) is 10 to 150 μm. The material for molding a fiber-reinforced plastic according to any one of claims 1 to 3 , which is 1 to 1.5 times the average particle size of the powder of the cross-linking agent (C). 強化繊維基材が炭素繊維、ボロン繊維、シリコンカーバイト繊維、ガラス繊維およびアラミド繊維よりなる群から選ばれた1種または2種以上である請求項1〜のいずれか一項に記載の繊維強化プラスチック成形用材料。 The fiber according to any one of claims 1 to 4 , wherein the reinforcing fiber base material is one or more selected from the group consisting of carbon fiber, boron fiber, silicon carbide fiber, glass fiber and aramid fiber. Material for reinforced plastic molding. 請求項1〜のいずれか一項に記載の繊維強化プラスチック成形用材料の硬化物。 The cured product of the fiber-reinforced plastic molding material according to any one of claims 1 to 5. マトリックス樹脂組成物の架橋硬化物のガラス転移温度(Tg)が160℃以上である請求項に記載の硬化物。 The cured product according to claim 6 , wherein the crosslinked cured product of the matrix resin composition has a glass transition temperature (Tg) of 160 ° C. or higher. 請求項1〜のいずれか一項に記載の繊維強化プラスチック成形用材料の製造方法であって、フェノキシ樹脂(A)、エポキシ樹脂(B)及び架橋剤(C)をそれぞれ別個に粉砕して粉末とした後、これらの粉末を混合して常温固形のマトリックス樹脂組成物微粉末を得て、これをマトリックス樹脂組成物の割合を20〜50wt%の範囲となるように粉体塗装によって強化繊維基材に付着させたことを特徴とする繊維強化プラスチック成形用材料の製造方法。 The method for producing a fiber-reinforced plastic molding material according to any one of claims 1 to 5 , wherein the phenoxy resin (A), the epoxy resin (B), and the cross-linking agent (C) are separately pulverized. After making powder, these powders are mixed to obtain a fine powder of a matrix resin composition that is solid at room temperature, and this is reinforced by powder coating so that the ratio of the matrix resin composition is in the range of 20 to 50 wt%. A method for producing a material for molding a fiber-reinforced plastic, which is characterized by being adhered to a base material. 粉体塗装が、静電場を利用した粉体塗装である請求項に記載の繊維強化プラスチック成形用材料の製造方法。 The method for producing a fiber-reinforced plastic molding material according to claim 8 , wherein the powder coating is powder coating using an electrostatic field. 請求項1〜のいずれか一項に記載の繊維強化プラスチック成形用材料を加熱、加圧して成形することを特徴とする繊維強化プラスチック成形物の製造方法。 A method for producing a fiber-reinforced plastic molded product, which comprises heating and pressurizing the fiber-reinforced plastic molding material according to any one of claims 1 to 5.
JP2018541985A 2016-09-28 2017-08-21 Fiber reinforced plastic molding material, its manufacturing method and molded product Active JP6937763B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016189816 2016-09-28
JP2016189816 2016-09-28
PCT/JP2017/029710 WO2018061516A1 (en) 2016-09-28 2017-08-21 Fiber-reinforced plastic molding material, method for producing same, and molded product

Publications (2)

Publication Number Publication Date
JPWO2018061516A1 JPWO2018061516A1 (en) 2019-07-04
JP6937763B2 true JP6937763B2 (en) 2021-09-22

Family

ID=61760511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018541985A Active JP6937763B2 (en) 2016-09-28 2017-08-21 Fiber reinforced plastic molding material, its manufacturing method and molded product

Country Status (3)

Country Link
JP (1) JP6937763B2 (en)
TW (1) TWI746621B (en)
WO (1) WO2018061516A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7326228B2 (en) * 2020-07-06 2023-08-15 株式会社イノアックコーポレーション Fiber-reinforced resin molding and its manufacturing method
CN111690234A (en) * 2020-07-27 2020-09-22 上海樱花塑料制品有限公司 Preparation process and formula of high-temperature-resistant ton barrel

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100374487C (en) * 2002-12-27 2008-03-12 日东纺绩株式会社 Method for producing fiber-reinforced thermoplastic plastic and fiber-reinforced thermoplastic prastic
WO2013187185A1 (en) * 2012-06-12 2013-12-19 新日鉄住金化学株式会社 Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
WO2014157132A1 (en) * 2013-03-28 2014-10-02 新日鉄住金化学株式会社 Phenoxy resin composition and cured product thereof
WO2015083714A1 (en) * 2013-12-02 2015-06-11 三菱レイヨン株式会社 Epoxy resin composition, and film, prepreg, and fiber-reinforced plastic using same
US10961360B2 (en) * 2014-01-10 2021-03-30 Komatsu Matere Co., Ltd. Fiber-reinforced resin material and molded fiber-reinforced resin body obtained using the same
CN107428970B (en) * 2015-03-26 2021-09-10 日铁化学材料株式会社 Material for fiber-reinforced plastic molding, method for producing same, and molded article

Also Published As

Publication number Publication date
JPWO2018061516A1 (en) 2019-07-04
TW201827520A (en) 2018-08-01
WO2018061516A1 (en) 2018-04-05
TWI746621B (en) 2021-11-21

Similar Documents

Publication Publication Date Title
JP6731987B2 (en) Fiber reinforced plastic molding
JP6953438B2 (en) Metal-fiber reinforced resin material composite, its manufacturing method and adhesive sheet
JP6856157B2 (en) Sheet molding compound, and fiber reinforced composite material
WO2016159147A1 (en) Epoxy resin composition, prepreg, carbon fiber-reinforced composite material, and manufacturing methods therefor
CN113613878B (en) Fiber-reinforced plastic laminate molded body and method for producing same
JPWO2020137945A1 (en) Resin compositions, fiber reinforced plastic molding materials and moldings
WO2019026724A1 (en) Sheet molding compound, prepreg, and fiber-reinforced composite material
JP6937763B2 (en) Fiber reinforced plastic molding material, its manufacturing method and molded product
JP2021100807A (en) Fiber-reinforced plastic laminate molding and its manufacturing method
KR20200024747A (en) Preforms for fiber reinforced composites, thermosetting resin compositions, fiber reinforced composites and fiber reinforced composites
Jubsilp et al. Thermosetting matrix based glass and carbon fiber composites
JP6447791B1 (en) Sheet molding compounds, prepregs and fiber reinforced composites
JP6944804B2 (en) Manufacturing method of prepreg for fiber reinforced plastic molding
JP6493633B1 (en) Thermosetting resin composition for fiber reinforced composite material, preform, fiber reinforced composite material and method for producing fiber reinforced composite material
JP2023175486A (en) Method for producing fiber-reinforced plastic molding material and method for producing fiber-reinforced plastic molded body
Nair et al. Dual-cure propargyl novolac-epoxy resins: synthesis and properties
WO2020071360A1 (en) Sheet molding compound, fiber-reinforced composite material and method for producing fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210831

R150 Certificate of patent or registration of utility model

Ref document number: 6937763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150