WO2020137826A1 - Gate drive circuit and switching device using same - Google Patents

Gate drive circuit and switching device using same Download PDF

Info

Publication number
WO2020137826A1
WO2020137826A1 PCT/JP2019/049901 JP2019049901W WO2020137826A1 WO 2020137826 A1 WO2020137826 A1 WO 2020137826A1 JP 2019049901 W JP2019049901 W JP 2019049901W WO 2020137826 A1 WO2020137826 A1 WO 2020137826A1
Authority
WO
WIPO (PCT)
Prior art keywords
power signal
gate drive
drive circuit
circuit
path
Prior art date
Application number
PCT/JP2019/049901
Other languages
French (fr)
Japanese (ja)
Inventor
榎本 真悟
永井 秀一
康史 河井
昇 根来
田畑 修
成伯 崔
雄太 永冨
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020563177A priority Critical patent/JPWO2020137826A1/en
Publication of WO2020137826A1 publication Critical patent/WO2020137826A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/691Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling

Definitions

  • the present disclosure relates to a gate drive circuit for a power semiconductor device.
  • ⁇ Power electronics technology is making miniaturization of electrical equipment for both consumer and industrial use.
  • a semiconductor switching element for example, an IGBT (Insulated Gate Bipolar Transistor)
  • IGBT Insulated Gate Bipolar Transistor
  • the gate drive circuit is a circuit that drives the gate of the semiconductor switching element.
  • the difference between the control signal of the gate drive circuit and the operating voltage of the semiconductor switching element is large. Therefore, it is necessary to electrically insulate the input side (hereinafter referred to as the primary side) and the output side (hereinafter referred to as the secondary side) of the gate drive circuit. That is, the signal and power on the primary side are transmitted from the primary side to the secondary side via the insulating portion.
  • the primary side input side
  • the secondary side output side
  • a signal indicating the abnormality is isolated from the secondary side. It is necessary to feed back to the primary side via the department.
  • Patent Document 1 shows a configuration in which a secondary side abnormality is fed back to the primary side in a general insulated gate drive circuit. Specifically, a transformer as an insulating element, a secondary side transmission circuit that transmits an AC signal indicating the presence or absence of abnormality to the primary side through the transformer, and a primary side reception circuit that receives the AC signal from the transformer. Is provided, and the abnormality occurring on the secondary side is fed back to the primary side.
  • Patent Document 2 discloses a configuration for feedback in an insulated gate drive circuit using an electromagnetic resonance coupler as an insulating element.
  • Such an insulated gate drive circuit is insulated between the primary side and the secondary side by using an insulating element having a high withstand voltage of about several kV.
  • a secondary side transmission circuit, a transformer, and a primary side reception circuit are provided in order to feed back the secondary side abnormality to the primary side. Therefore, the circuit scale increases and the circuit configuration becomes complicated.
  • Patent Document 2 there is a method of feeding back the state of the secondary side by detecting reflected power generated by changing the load state of the transmission circuit on the primary side on the secondary side. It is shown.
  • this method is used for a path with high transmission power for supplying power to the secondary side, the insertion loss of the impedance element becomes a problem.
  • increasing the impedance change of the impedance element and increasing the change in reflected power only reduces the amount of power transmission to the secondary side.
  • the present invention has been made in view of the above points, and an object thereof is to provide an insulated gate drive circuit that suppresses an increase in circuit scale, reduces the complexity of the circuit configuration, and reduces the influence on transmission power.
  • a gate drive circuit is an insulating gate drive circuit that drives a semiconductor switching element, and includes a transmitter that generates a power signal that serves as a basis for driving the gate of the semiconductor switching element, and the power.
  • a first insulating element that transmits a signal in an electrically insulated state, a receiving section that performs gate driving of the semiconductor switching element based on a power signal that is output from the first insulating element, and a receiving section detects the signal.
  • the gate drive circuit it is possible to suppress an increase in circuit size, reduce the complexity of the circuit configuration, and reduce the influence on the characteristics of the transmission path.
  • FIG. 1 is a block diagram showing a configuration example of a switching device including the gate drive circuit of the first embodiment.
  • FIG. 2A is a diagram showing a first example of a circuit element connected to a coupling terminal of the directional coupler of the first embodiment.
  • FIG. 2B is a diagram showing a second example of the circuit element connected to the coupling terminal of the directional coupler of the first embodiment.
  • FIG. 2C is a diagram showing a third example of the circuit element connected to the coupling terminal of the directional coupler of the first embodiment.
  • FIG. 2D is a diagram showing a fourth example of the circuit element connected to the coupling terminal of the directional coupler of the first embodiment.
  • FIG. 2A is a diagram showing a first example of a circuit element connected to a coupling terminal of the directional coupler of the first embodiment.
  • FIG. 2B is a diagram showing a second example of the circuit element connected to the coupling terminal of the directional coupler of the first embodiment.
  • FIG. 2C
  • FIG. 2E is a diagram showing a fifth example of the circuit element connected to the coupling terminal of the directional coupler of the first embodiment.
  • FIG. 3A is an operation explanatory diagram of the directional coupler.
  • FIG. 3B is a diagram showing pass characteristics in S-parameter notation of the directional coupler.
  • FIG. 3C is a diagram showing the power observed at the coupling terminal and the isolation terminal when the reflection coefficient of the output terminal of the directional coupler is changed.
  • FIG. 4 is an explanatory diagram of the power level of the feedback operation of the first embodiment.
  • FIG. 5 is a block diagram showing a configuration example of a switching device including the gate drive circuit of the second embodiment.
  • FIG. 6A is a diagram showing a first example of an impedance variable element connected to the coupling terminal of the directional coupler of the second embodiment.
  • FIG. 6B is a diagram showing a second example of the impedance variable element connected to the coupling terminal of the directional coupler of the second embodiment.
  • FIG. 6C is a diagram showing a third example of the impedance variable element connected to the coupling terminal of the directional coupler of the second embodiment.
  • FIG. 6D is a diagram showing a fourth example of the impedance variable element connected to the coupling terminal of the directional coupler of the second embodiment.
  • FIG. 6E is a diagram showing a fifth example of the impedance variable element connected to the coupling terminal of the directional coupler of the second embodiment.
  • FIG. 7 is an explanatory diagram of the power level of the feedback operation of the second embodiment.
  • FIG. 8 is a block diagram showing a configuration example of a switching device including the gate drive circuit of the third embodiment.
  • FIG. 9 is a block diagram showing a configuration example of a switching device including the gate drive circuit of the fourth embodiment.
  • FIG. 10A is a circuit diagram showing a first configuration example of the rectifier circuit.
  • FIG. 10B is a circuit diagram showing a second configuration example of the rectifier circuit.
  • FIG. 10C is a circuit diagram showing a third configuration example of the rectifier circuit.
  • FIG. 10D is a circuit diagram showing a fourth configuration example of the rectifier circuit.
  • FIG. 10E is a circuit diagram showing a fifth configuration example of the rectifier circuit.
  • FIG. 10A is a circuit diagram showing a first configuration example of the rectifier circuit.
  • FIG. 10B is a circuit diagram showing a second configuration example of the rectifier circuit.
  • FIG. 10C is a circuit diagram
  • FIG. 11 is a block diagram showing a switching device including a gate drive circuit in the modification.
  • FIG. 12A is a power level explanatory diagram of the feedback operation of the gate drive circuit in the modified example.
  • FIG. 12B is an operation explanatory diagram of the gate drive circuit in the modified example.
  • FIG. 1 is a schematic diagram showing a configuration of a switching device A including a gate drive circuit according to this embodiment.
  • the switching device A includes a power supply 100, a PWM power supply 101, a capacitor 74, a semiconductor switching element 60, a load power supply 102, and an insulated gate drive circuit 1 for driving the semiconductor switching element 60.
  • the switching device A includes a power supply 100, a PWM power supply 101, a capacitor 74, a semiconductor switching element 60, a load power supply 102, and an insulated gate drive circuit 1 for driving the semiconductor switching element 60.
  • the primary side only the transmission part or the power supply 100 for the transmission part of the switching device A is called the primary side, only the reception part or the switching device.
  • the semiconductor switching element 60 of A and the power supply 102 for the receiving unit may be collectively referred to as the secondary side.
  • the gate drive circuit 1 includes a transmitter 10, an insulator 11, and a receiver 12.
  • the transmitter 10 includes an oscillator 50, an amplifier 51, a mixer 52, and a rectifier circuit 82.
  • the insulating portion 11 includes insulating elements 3, 3a, 3b, 3c.
  • the receiving unit 12 includes a receiving circuit 13a, a receiving circuit 13b, a rectifying circuit 20, a directional coupler 70, a circuit element 80, a terminating element 81, and an abnormality detecting section 83.
  • FIG. 1 shows an example in which the receiver 12 includes a rectifier circuit 20 for power supply and two cascode-connected receiver circuits 13a and 13b.
  • the connection node N1 that connects the receiving circuits 13a and 13b is connected to the gate of the semiconductor switching element 60.
  • the receiving circuit 13a connected to the high potential side may be referred to as the first receiving circuit 13a
  • the receiving circuit 13b connected to the low potential side may be referred to as the second receiving circuit 13b.
  • the gate driving circuit 1 alternately switches the first and second receiving circuits 13a and 13b according to the control signal to generate an output pulse voltage and drive the gate of the semiconductor switching element 60. As a result, the gate drive circuit 1 switches the voltage supplied by the load power supply 102.
  • the transmitting unit 10 has a function of generating first and second PWM (Pulse Width Modulation) control signals R11 and R12 as power signals which are the basis of driving the semiconductor switching element 60.
  • the transmitter 10 includes an oscillator 50 that oscillates by receiving the power supply voltage Vi from the power supply 100, and a mixer 52 that receives the output of the oscillator 50.
  • the mixer 52 modulates the output of the oscillator 50 according to the PWM voltage Vm from the PWM power supply 101, and outputs the modulated first and second PWM control signals R11 and R12 to the insulating unit 11.
  • the transmission unit 10 includes an amplifier 51 provided on a path for supplying the drive power of the gate drive circuit 1.
  • the amplifier 51 receives the output of the oscillator 50 of the transmitter 10, and outputs a power signal obtained by amplifying the output as a high frequency signal R13.
  • the insulating unit 11 includes an insulating element 3 for power supply, an insulating element 3a, an insulating element 3b, and an insulating element 3c for feedback.
  • the insulating element 3 for power supply the insulating element 3a, the insulating element 3b, and the insulating element 3c for feedback, for example, a conventionally known electromagnetic resonance coupling element can be applied.
  • the power supply insulating element 3, the insulating elements 3a and 3b, and the feedback insulating element 3c can have the same configuration.
  • the insulation element 3 for power supply may be referred to as a first insulation element 3
  • the insulation element 3c for feedback may be referred to as a second insulation element 3c.
  • the insulating element 3 for power supply is provided in the path for supplying the drive power of the gate drive circuit 1, receives the high frequency signal R13 as a power signal output from the amplifier 51, and is electrically insulated in a state of being
  • the signal is input to the input terminal D1 of the directional coupler 70 in the subsequent stage.
  • the power signal is further transmitted from the output terminal D2 of the directional coupler 70 to the rectifier circuit 20 for power supply.
  • the electrically insulated state is a separated state that conducts AC (especially high frequency signal) but does not conduct DC, and the primary side ground 200 and the secondary side ground 201 are separated. Says the state of being separated.
  • the insulating element 3a receives the first PWM control signal R11 and transmits this signal in an electrically insulated state.
  • the insulating element 3b receives the second PWM control signal R12 and transmits this signal in an electrically insulated state.
  • Receiving circuits 13a and 13b are connected to the outputs of the insulating elements 3a and 3b, respectively.
  • the feedback insulating element 3c is a path for feeding back the high frequency signal R14 of the receiving section 12 to the transmitting section 10 in the opposite direction to the other insulating elements.
  • the high frequency signal R14 is a signal obtained by branching a part of the power signal in the directional coupler 70.
  • the output of the coupling terminal D3 of the directional coupler 70 is connected to the insulating element 3c for feedback via the circuit element 80.
  • the circuit element 80 switches its conduction state according to the control signal C11 indicating the abnormal state from the abnormality detection unit 83. Thereby, the intensity of a part of the power signal passing through the circuit element 80 can be changed.
  • the following circuit portion in the gate drive circuit 1 of FIG. 1 is provided as a transmission circuit for transmitting the abnormal state detected by the receiving side to the transmitting side. That is, the transmission circuit is a circuit portion including the directional coupler 70, the circuit element 80, the termination element 81, the abnormality detection unit 83, the insulating element 3c, and the rectifier circuit 82.
  • This transmission circuit is configured to transmit an abnormal state by branching a part of the power signal using an insulation path (insulation element 3c) different from the path for transmitting the power signal on the insulation element 3. ing.
  • the rectifier circuit 82 is a circuit that receives the feedback signal R14, which is a high frequency power signal, and converts it into a voltage. In other words, by rectifying the feedback signal R14 which is a part of the power signal branched by the directional coupler 70, it is converted into a DC signal having a voltage indicating the presence or absence of the abnormal state or the type of the abnormal state.
  • This DC signal may be a binary signal that can take two voltage values that indicate the presence or absence of an abnormal state, or a multilevel signal that can take three or more voltage values that indicate the type of abnormal state, or a continuous signal. It may be an analog signal that changes dynamically.
  • the isolation terminal D4 of the directional coupler 70 is terminated by a terminating element 81 with a constant impedance (for example, 50 ohm).
  • the abnormality detection unit 83 provided in the reception unit 12 is a circuit that detects an abnormal state E11 on the secondary side and generates a control signal C11, and the conduction state of the circuit element 80 is controlled by the control signal C11.
  • the rectifier circuit 20 supplies the power of the gate drive circuit by converting the output of the insulating element 3 for power supply into a DC voltage and charging the capacitor 74.
  • the capacity of the capacitor 74 is not particularly limited, but is about several ⁇ F, for example.
  • the receiving circuit 13a has a rectifier circuit 2a and a corresponding drive transistor 5a.
  • the receiving circuit 13b has a rectifier circuit 2b and a corresponding drive transistor 5b.
  • rectifier circuit 20 for power supply and the plurality of rectifier circuits 2a and 2b have different diode directions depending on the polarity of the voltage to be generated, but circuits of the same configuration can be applied, and these are collectively referred to. Then, it may be simply referred to as "rectifier circuit 2".
  • the rectifier circuit 2a has an input terminal, an output terminal, and a ground terminal.
  • the input capacitor Ca and the inductor L1 are connected in series between the input terminal and the output terminal.
  • the intermediate node between the input capacitor Ca and the inductor L1 is connected to the ground terminal via the diode d1 in the forward direction. Further, an output capacitor C1 is provided between the output terminal and the ground terminal.
  • the rectifier circuits 2b, 20, 82 may have the same configuration as the rectifier circuit 2a.
  • the rectifier circuit 2a of the first receiver circuit 13a rectifies the first PWM control signal R11 received from the transmitter 10 via the insulating element 3a and outputs it as a voltage pulse signal to the gate of the first drive transistor 5a.
  • the ground terminal of the rectifier circuit 2a is connected to the source of the drive transistor 5a, and the resistance element 4a is provided between the gate and source of the drive transistor 5a.
  • the rectifier circuit 2b of the second receiver circuit 13b rectifies the second PWM control signal R12 received from the transmitter 10 via the insulating element 3b and outputs it as a voltage pulse signal to the gate of the drive transistor 5b.
  • the ground terminal of the rectifier circuit 2b is connected to the source of the drive transistor 5b, and the resistance element 4b is provided between the gate and source of the drive transistor 5b.
  • the rectifier circuits 2a and 2b since the drive transistors 5a and 5b are both N-channel depletion type FETs, the rectifier circuits 2a and 2b generate a negative voltage.
  • the primary side ground 200 and the secondary side ground 201 are electrically separated from each other by the insulating portion 11.
  • FIGS. 2A to 4 are diagrams showing first to fifth examples of circuit elements connected to the coupling terminal D3 of the directional coupler 70 of the first embodiment.
  • the circuit element 80 When the gate drive circuit 1 is operating normally, the circuit element 80 is in a non-conductive state, but when the abnormal state E11 on the secondary side is detected by the abnormality detection unit 83, the circuit element 80 is turned on by the control signal C11. It becomes conductive.
  • the circuit element 80 described as shown in FIG. 2A is an element that changes the conduction state by applying a control signal to the control terminal Vctl, and is, for example, a switch element that is turned on/off by the control signal as shown in FIG. 2B. is there.
  • FIG. 2C it is a switch circuit using semiconductor FETs, and in order to increase the signal change between on and off, there are cases where semiconductor FET switches are connected in series as shown in FIG. 2D.
  • a semiconductor switch configuration of SPDT (Single-Pole-Double-Throw) configuration as shown in FIG. 2E may be adopted.
  • Reference numeral 503 is an inverter inverting circuit that inverts the control signal.
  • Reference numeral 500 is a path for setting the termination impedance of the directional coupler to 50 ohms in the non-communication state, but it can be omitted.
  • Reference numeral 502 is a DC-cut 50 ohm resistor.
  • 501 is a shunt SW portion for improving isolation in the off state, and can be omitted.
  • each switch element has a conduction amount in accordance with a control signal C11 input to the control terminal Vctl, in addition to the switch operation of turning on and off. You may change continuously.
  • FIG. 3A is an operation explanatory diagram of the directional coupler 70.
  • FIG. 3B is a diagram showing a pass characteristic of the directional coupler 70 in S parameter notation.
  • the directional coupler is a 4-terminal element as shown in FIG. 3A, and includes a main path (input terminal D1 to output terminal D2) for transmitting a main signal and a sub path (coupling terminal) for extracting a part of electric power from the main path. D3-isolation terminal D4).
  • the coupling terminal D3 is a terminal for extracting a part of the electric power incident on the input terminal D1
  • the isolation terminal D4 is a terminal for extracting a part of the electric power reflected by the output terminal D2.
  • FIG. 3B shows simulation results of pass characteristics S21, S31, and S41 in the S parameter notation of the directional coupler when the terminating impedance of the coupling terminal D3 is changed at the transmission frequency of 2.45 GHz.
  • the terminals other than the coupling terminal D3 are terminated with 50 ohms.
  • the directional coupler is designed in a 50 ohm system, and when the coupling terminal D3 is 50 ohms, S31 shows about -18 dB, and S41 shows -40 dB or less, which is a good directional characteristic.
  • the terminating impedance of the coupling terminal D3 is, for example, 500 ohms
  • the amount of change in S21 and S31 is small, but S41 greatly changes to ⁇ 20 dB, and the power of the isolation terminal D4 increases.
  • a feedback method can be realized by utilizing the fact that the termination impedance dependency of the coupling terminal D3 of S41 is large, which will be described in the second embodiment described later.
  • FIG. 3C is a diagram showing the power observed at the coupling terminal and the isolation terminal when the reflection coefficient of the output terminal of the directional coupler is changed.
  • FIG. 3C shows a coupling terminal D3 in a case where a signal having a transmission frequency of 2.45 GHz and a power of 27 dBm is input to the input terminal D1 of the directional coupler and the reflection coefficient of the output terminal D2 is changed in the 50 ohm system. It is a simulation result showing the change of the electric power observed at the terminal D4.
  • the power at the coupling terminal D3 hardly changes, but the power observed at the isolation terminal D4 changes greatly.
  • the S21 characteristic of the directional coupler and the load impedance of the amplifier 51 of the transmission unit 10 hardly change as described above even when the state of the circuit element 80 changes before and after the abnormal state is detected.
  • the first PWM control signal S11 transmitted to the receiver 12 is also almost unchanged.
  • the reflection coefficient when the semiconductor switching element 60 side is viewed from the output end of the directional coupler 70 changes. There are cases.
  • the coupling terminal output is used as the feedback signal, there is an advantage that the intensity of the feedback signal does not change even if the reflection coefficient changes, as described with reference to FIG. 3C.
  • the main path of the directional coupler 70 is used only for power transmission, and the output of the coupling terminal of the directional coupler 70 is changed by the circuit element 80.
  • the amount of electric power from the coupling terminal is not affected by the load fluctuation of the output terminal, so that it is possible to prevent erroneous transmission of the abnormal state due to the load fluctuation of the gate drive circuit 1.
  • FIG. 4 is an explanatory diagram of the power level of the feedback operation of the first embodiment.
  • FIG. 4 is a simulation result of power at each node in the normal operation state and the abnormality detection state in the feedback operation of the gate drive circuit in the present embodiment.
  • the gate drive circuit is the insulated gate drive circuit 1 that drives the semiconductor switching element 60, and transmits the power signal that is the basis of the gate drive of the semiconductor switching element 60.
  • Section 10 a first insulating element 3 that transmits a power signal in an electrically insulated state, and a receiving section 12 that performs gate driving of the semiconductor switching element 60 by the power signal output from the first insulating element 3.
  • a transmission circuit for transmitting the state detected by the reception unit 12 side to the transmission unit 10 side, and the transmission circuit uses an insulation element 3c different from the path for transmitting the power signal on the first insulation element 3.
  • the state is transmitted by branching a part of the power signal.
  • the power signal is used without affecting the characteristics of the transmission unit in terms of power transmission, current consumption, breakdown, etc., and without using a transmission circuit that modulates a signal indicating an abnormal state on the secondary side.
  • a gate drive circuit that can stably transmit the abnormal state on the secondary side to the primary side, suppress an increase in the circuit scale, and reduce the complexity of the circuit configuration.
  • the transmission circuit may branch a part of the power signal on the receiving unit 12 side.
  • the transmission circuit may include a directional coupler 70 on the reception unit 12 side that branches a part of the power signal output from the first insulating element 3.
  • the directional coupler 70 has a coupling terminal D3 that outputs a part of the power signal
  • the transfer circuit has a circuit element 80 connected to the coupling terminal D3, and the conduction state of the circuit element 80 is set.
  • the intensity of a part of the power signal may be changed by switching according to the state detected by the receiving unit 12 side.
  • the directional coupler 70 includes a main path for transmitting the power signal input from the first insulating element 3, a sub path for branching a part of the power signal transmitted to the main path, and a sub path.
  • the output and transmission circuit is connected to the coupling terminal D3 and changes the strength of a part of the power signal by switching the conduction state according to the state, and the terminating element 81 provided on the receiving unit 12 side and other Second insulation that constitutes a part of the insulation path and transmits a part of the power signal input from the coupling terminal D3 through the terminating element 81 in an electrically insulated state from the reception side to the transmission side.
  • the element 3c may be included.
  • the main path of the directional coupler 70 is used only for power transmission, and the output intensity from the coupling terminal D3 of the directional coupler 70 is changed depending on the conduction state of the circuit element 80.
  • the high frequency signal R13 for power transmission is not deteriorated and overcurrent of the amplifier 51 of the transmission unit 10 and device destruction can be prevented.
  • the electric energy from the coupling terminal D3 is not influenced by the load fluctuation of the output terminal D2, it is possible to prevent the erroneous transmission of the abnormal state due to the load fluctuation of the gate drive circuit 1.
  • a rectifier circuit 82 that outputs a signal having a voltage according to the state by rectifying a part of the power signal may be provided on the transmission unit side.
  • the abnormal state detected on the receiving side can be detected on the transmitting side as a signal having a voltage according to the abnormal state.
  • the first insulating element 3 may be an electromagnetic resonance coupling element.
  • the switching device A includes the above gate drive circuit 1 and the semiconductor switching element 60 driven by the gate drive circuit 1.
  • FIG. 5 is a schematic diagram showing the configuration of the switching device A including the gate drive circuit of the present embodiment.
  • constituent elements that are common are assigned the same reference numerals.
  • the gate drive circuit 1 which is different from FIG. 1 will be described in detail, and the description of the common parts with FIG. 1 may be omitted.
  • the circuit portion including the abnormality detection unit 83, the impedance variable element 84, the insulating element 3c, the directional coupler 70, and the rectifier circuit 82 transmits the abnormal state detected by the reception unit 12 side to the transmission unit 10 side. It is provided as a transmission circuit.
  • the directional coupler 70 is connected to a main path that transmits a power signal and outputs the power signal to the first insulating element 3, a sub path that branches a part of the power signal that is transmitted to the main path, and one end of the sub path. , An isolation terminal D4 for outputting a part of the power signal, and a coupling terminal D3 connected to the other end of the sub path.
  • the impedance variable element 84 is provided on the receiving unit 12 side and changes the impedance according to the abnormal state detected on the receiving unit side.
  • the insulating element 3c has a first terminal on the transmitting side and a second terminal on the receiving side, and constitutes a part of another insulating path.
  • the first terminal is connected to the coupling terminal D3, and the second terminal is connected to the impedance variable element 84.
  • the insulating element 3c is a path for feeding back the abnormal state detected by the receiving unit 12 to the transmitting unit 10 as an impedance change, unlike the other insulating elements in the transmission direction in that it is for feedback.
  • the output of the coupling terminal D3 of the directional coupler 70 provided in the transmission unit 10 is connected to the feedback insulation element 3c and is connected to the impedance variable element 84 provided on the reception unit 12 side.
  • the isolation terminal D4 of the directional coupler 70 is connected to the rectifier circuit 82.
  • the rectifier circuit 82 is a circuit that receives the feedback signal R14, which is a high frequency power signal, and converts it into a voltage.
  • the abnormality detection unit 83 provided in the reception unit 12 is a circuit that detects an abnormal state E11 on the secondary side and generates a control signal C11, and controls the impedance value of the impedance variable element 84 by the control signal C11.
  • FIGS. 6A to 7 are diagrams showing first to fifth examples of the impedance variable element 84 connected to the coupling terminal D3 of the directional coupler 70 of the second embodiment.
  • the impedance variable element 84 is set to a state where the directional coupler 70 has good directivity, for example, 50 ohms.
  • variable impedance element 84 is set by the control signal C11 to a state that deteriorates the directivity of the directional coupler 70, for example, 500 ohms.
  • the terminating impedance of the coupling terminal D3 of the directional coupler 70 is changed, the amount of power output from the isolation terminal D4 of the directional coupler changes.
  • the present embodiment is characterized in that a signal is exchanged from the secondary side to the primary side by changing the impedance termination condition via the insulating element 3 using the characteristic of the directional coupler.
  • the main path of the directional coupler 70 is used only for power transmission, and the termination terminal state of the coupling terminal output of the directional coupler 70 provided in the transmission unit 10 is changed by the impedance variable element 84. Therefore, there is an advantage that power transmission to the secondary side does not deteriorate, and overcurrent of the amplifier 51 of the transmission unit 10 and device destruction can be prevented.
  • the impedance state changed in accordance with the control signal C11 input to the control terminal Vctl may be multivalued or continuously changed. You may let me.
  • variable impedance element 84 for changing the directivity of the directional coupler 70 does not have to be an actual resistance, and may include a reactance component.
  • FIG. 7 is an explanatory diagram of the power level of the feedback operation of the second embodiment.
  • FIG. 7 is a simulation result of power at each node in the normal operation state and the abnormality detection state in the feedback operation of the gate drive circuit in the present embodiment.
  • the present embodiment does not require a directional coupler using a switch element or thick film wiring that operates well at high frequencies in the semiconductor chip used in the receiving unit as in the first embodiment, and is more versatile. There is an advantage that an inexpensive semiconductor process can be used and the degree of freedom in process selection in forming a gate drive circuit is increased.
  • the transmission circuit has, on the transmission unit 10 side, the directional coupler 70 that branches a part of the power signal input to the first insulating element 3.
  • the directional coupler 70 is provided in the transmitting unit 10 and not in the receiving unit 12, for example, when the receiving unit 12 is configured as a semiconductor chip, the directional coupling using thick film wiring is used.
  • a general-purpose and inexpensive semiconductor process can be used without the need to create a container, and the degree of freedom in process selection increases.
  • the directional coupler 70 includes a main path that transmits a power signal and outputs the power signal to the first insulating element 3, a sub path that branches a part of the power signal that is transmitted to the main path, and one end of the sub path. And a coupling terminal D3 connected to the other end of the auxiliary path, the transmission circuit being provided on the receiving unit 12 side,
  • the impedance variable element 84 that changes the impedance according to the state detected on the side, the first terminal on the side of the transmitter 10 and the second terminal on the side of the receiver 12 are provided, and a part of the other insulating path is provided.
  • the second terminal may be connected to the coupling terminal D3, and the second terminal may be connected to the impedance variable element 84.
  • FIG. 8 is a schematic diagram showing the configuration of the switching device A of the present embodiment.
  • constituent elements common to those in FIG. 1 (having the same or similar functions) are designated by the same reference numerals.
  • the gate drive circuit 1 which is different from FIG. 1 will be described in detail, and the description of the common parts with FIG. 1 may be omitted.
  • the gate drive circuit 1 of FIG. 8 is different from that of FIG. 1 in that the directional coupler 70 is connected and an impedance variable element 84 is provided instead of the circuit element 80 and the termination element 81.
  • the circuit portion including the abnormality detecting unit 83, the impedance variable element 84, the directional coupler 70, the insulating element 3c, and the rectifying circuit 82 transmits the abnormal state detected by the receiving unit 12 side to the transmitting unit 10 side. It is provided as a transmission circuit.
  • the directional coupler 70 is connected to a main path for transmitting the power signal from the first insulating element 3, a sub path for branching a part of the power signal transmitted to the main path, and one end of the sub path. , An isolation terminal D4 for outputting a part of the power signal, and a coupling terminal D3 connected to the other end of the sub path.
  • the impedance variable element 84 is connected to the coupling terminal D3 and changes the impedance according to the abnormal state detected by the receiving unit 12 side.
  • the insulating element 3c constitutes a part of another insulating path different from the insulating element 3 and electrically transfers a part of the power signal output from the isolation terminal D4 from the receiving unit 12 side to the transmitting unit 10 side. Transmit in an insulated state.
  • the insulating element 3c is for feedback, and is a path for feeding back the feedback signal R14 of the receiver 12 to the transmitter 10 in the opposite direction to the other insulating elements.
  • the output of the coupling terminal D3 of the directional coupler 70 provided in the receiver is connected to the impedance variable element 84.
  • the isolation terminal D4 of the directional coupler 70 is connected to the insulating element 3c, and the transmitter side of the feedback element 3c is connected to the rectifier circuit 82 and detected as a voltage.
  • the rectifier circuit 82 is a circuit that receives the feedback signal R14, which is a high frequency power signal, and converts it into a voltage.
  • the abnormality detection unit 83 provided in the reception unit 12 is a circuit that detects an abnormal state E11 on the secondary side and generates a control signal C11, and controls the impedance value of the impedance variable element 84 by the control signal C11.
  • the impedance variable element 84 is set to a state where the directional coupler 70 has good directivity, for example, 50 ohms.
  • variable impedance element 84 is set by the control signal C11 to a state that deteriorates the directivity of the directional coupler 70, for example, 500 ohms.
  • the terminating impedance of the coupling terminal D3 of the directional coupler 70 is changed, the amount of power output from the isolation terminal D4 of the directional coupler changes.
  • the present embodiment is characterized in that a signal is exchanged from the secondary side to the primary side by changing the impedance termination condition via the insulating element 3 using the characteristic of the directional coupler.
  • the main path of the directional coupler 70 is used only for power transmission, and the termination terminal state of the coupling terminal output of the directional coupler 70 provided in the transmission unit 10 is changed by the impedance variable element 84. Therefore, there is an advantage that the high frequency signal R13 for power transmission to the secondary side is not deteriorated and overcurrent of the amplifier 51 of the transmission unit 10 and device destruction can be prevented.
  • the impedance state changed according to the control signal C11 input to the control terminal Vctl may be multivalued or may be continuously changed.
  • variable impedance element 84 for changing the directivity of the directional coupler 70 does not have to be an actual resistance, and may include a reactance component.
  • the present embodiment unlike the first embodiment, it is not necessary to create a switch element that operates well at high frequency in the semiconductor chip used in the receiving unit, and the thick film wiring is used also in the semiconductor chip used in the transmitting unit.
  • a more general-purpose and inexpensive semiconductor process can be used, such as no need to make a directional coupler, and the degree of freedom in process selection when configuring a gate drive circuit increases.
  • the directional coupler 70 has the coupling terminal D3 and the isolation terminal D4 that outputs a part of the power signal, and the transmission circuit has the coupling terminal.
  • the impedance variable element 84 connected to D3 is provided, and by switching the impedance of the impedance variable element 84 according to the state detected on the receiving unit 12 side, a part of the power signal output from the isolation terminal D4 is Change the intensity.
  • the directional coupler 70 includes a main path for transmitting the power signal from the first insulating element 3, a sub path for branching a part of the power signal transmitted to the main path, and one end of the sub path. And a coupling terminal D3 connected to the other end of the auxiliary path, and the transmission circuit is connected to the coupling terminal D3 and is connected to the receiving unit side.
  • An impedance element 84 that changes the impedance according to the detected state and a part of another insulation path, and a part of the power signal output from the isolation terminal D4 is transferred from the receiver 12 side to the transmitter 10.
  • a second insulating element 3c that transmits to the side in an electrically insulated state.
  • FIG. 9 is a schematic diagram showing a configuration example of the switching device A including the gate drive circuit of the present embodiment.
  • the same components as those in FIG. 1 (having the same or similar functions) are designated by the same reference numerals.
  • the gate drive circuit 1 which is different from FIG. 1 will be described in detail, and the description of the common parts with FIG. 1 may be omitted.
  • 9 is different from FIG. 1 in that a driver unit 85 is added and that the variable impedance element 84 further outputs a signal dis indicating an abnormality.
  • different points will be mainly described.
  • the driver unit 85 is a circuit that drives the drive transistors 5c and 5d and has a disable terminal. When the signal dis input to the disable terminal indicates an abnormality, the driver unit 85 stops driving the drive transistors 5c and 5d. When the signal dis input to the disable terminal indicates no abnormality, the driver unit 85 The drive of the drive transistors 5c and 5d is not stopped.
  • the feedback insulating element 3c is a path for feeding back the feedback signal R14 of the receiving section 12 to the transmitting section 10 in the opposite direction to the other insulating elements.
  • the circuit element 80 is connected to the output of the coupling terminal D3 of the directional coupler 70, the output thereof is connected to the feedback element 3c, and the transmitter side of the feedback element 3c is connected to the rectifier circuit 82. It is detected as a voltage.
  • the rectifier circuit 82 is a circuit that receives the feedback signal R14, which is a high frequency power signal, and converts it into a voltage.
  • the isolation terminal D4 of the directional coupler 70 is terminated by a terminating element 81 with a constant impedance (for example, 50 ohm).
  • the amplifier 55 amplitude-modulates the output of the oscillator 50 according to the PWM voltage Vm from the PWM power supply 101, and outputs it to the insulating unit 11 as a PWM control signal R15.
  • the configuration of the amplifier 55 is not particularly limited, but, for example, a method of changing the bias state by changing the potential of the base or the gate of the transistor forming the amplifier 55, or a method of changing the power supply to the collector and drain of the transistor are available. is there. Further, the same function may be realized by switching the attenuation amount by using the attenuator or SW alone or in combination with the amplifier.
  • the rectifier circuit 2c rectifies the PWM control signal R15 received from the transmission unit 10 via the insulating element 3a and outputs it as a voltage pulse signal to the driver unit 85.
  • the ground terminal of the rectifier circuit 2c is connected to the secondary side ground 201.
  • the rectifier circuit 2c drives the driver unit 85 and thus generates a positive voltage.
  • the driver unit 85 is a circuit that drives the drive transistors 5c and 5d.
  • the drive transistors 5c and 5d are, for example, high-voltage CMOS transistors, and 5c is a pMOS and 5d is an nMOS. To drive.
  • the circuit element 80 When the gate drive circuit 1 is operating normally, the circuit element 80 is in a non-conductive state, but when the abnormal state E11 on the secondary side is detected by the abnormality detection unit 83, the circuit element 80 is turned on by the control signal C11. The conduction state is established, the abnormal state is fed back to the primary side by a high frequency power signal, the driver section 85 is turned off by the control signal C12, the semiconductor switching element 60 is turned off, and the protection operation is performed on the secondary side.
  • the present embodiment can be configured with a smaller number of insulating elements, can be downsized, and can perform not only the feedback of the abnormal state to the primary side but also the protection operation of the secondary side at the same time. Is possible.
  • the gate drive circuit according to the fourth embodiment stops the gate drive of the reception unit 12 according to the state detected by the reception unit 12 side.
  • FIG. 11 is a block diagram showing a switching device including a configuration of a gate drive circuit in a modified example.
  • the gate drive circuit 1 of FIG. 11 is similar to FIG. 5 of the second embodiment in that the directional coupler 70 is provided on the transmission unit 10 side. However, the gate drive circuit 1 of FIG. 11 differs from that of FIG. 5 in the connection relationship of the directional coupler 70, the point that the second insulating element 3c is not provided, and the point that the impedance element 900 is added. There is. Also, in the gate drive circuit of the modified example, the operation of driving the gate of the semiconductor switching element 60 is the same as that of the first embodiment, but the feedback operation is different. Hereinafter, different points will be mainly described.
  • a circuit portion including the abnormality detecting unit 83, the impedance element 900, the insulating element 3, the directional coupler 70, the terminating element 81, and the rectifying circuit 82 is provided as a transmission circuit.
  • the directional coupler 70 is connected to a main path that transmits a power signal and outputs the power signal to the first insulating element 3, a sub path that branches a part of the power signal that is transmitted to the main path, and one end of the sub path. , An isolation terminal D4 for outputting a part of the power signal, and a coupling terminal D3 that is connected to the other end of the sub path and is terminated.
  • Impedance element 900 changes impedance according to an abnormal state detected on the receiving side, and is connected to first insulating element 3 on the receiving side.
  • the abnormality detection unit 83 provided in the reception unit is a circuit that detects an abnormal state E11 on the secondary side and generates a control signal C11, and controls the state of the impedance element 900 by the control signal C11.
  • the impedance element 900 has a high impedance during normal operation and does not affect power transmission through the main path, but has a low impedance when an abnormality is detected.
  • the reflection coefficient of the output terminal D2 of the directional coupler 70 of the transmission section increases, the output of the isolation terminal D4 increases, and the input power to the rectifier circuit 82 increases.
  • FIG. 12A is a power level explanatory diagram of the feedback operation of the gate drive circuit in the modified example.
  • FIG. 12A shows changes in the load impedance from the output terminal D2 of the directional coupler 70 to the semiconductor switching element 60 side during normal operation and during abnormality detection in the hood back operation.
  • the impedance element 900 has a high impedance and the reflection coefficient is almost zero (it hardly affects the 50 ohm system), but when an abnormality is detected, the impedance element becomes a low impedance and the reflection coefficient is up to about 0.7. It is increasing.
  • FIG. 12B is a simulation result of electric power in each node in the normal operation state and the abnormality detection state in the gate drive circuit of the modified example.
  • the primary side node P5 has a sufficient on/off difference of about 10 dB, so there is no problem as a feedback operation.
  • the gate drive circuit according to the modified example is an insulating type gate drive circuit that drives the semiconductor switching element 60, and includes a transmitter 10 that generates a power signal that is a basis for gate drive of the semiconductor switching element 60.
  • a first insulation element 3 that transmits a power signal in an electrically insulated state
  • a reception unit 12 that performs gate driving of the semiconductor switching element 60 by a power signal output from the first insulation element 3, and a reception unit
  • the directional coupler 70 includes a main path that transmits a power signal and outputs the power signal to the first insulating element 3, a sub path that branches a part of the power signal that is transmitted to the main path, and one end of the sub path. And a coupling terminal D3 connected to the other end of the auxiliary path, which outputs a part of the power signal, and a terminated coupling terminal D3, and the transmission circuit detects on the receiving unit 12 side.
  • An impedance element 900 that changes the impedance according to the state and is connected to the first insulating element 3 on the receiving unit 12 side may be provided.
  • the gate drive circuit 1 according to one or more aspects has been described based on the embodiment, but the present disclosure is not limited to this embodiment. As long as it does not depart from the gist of the present disclosure, various modifications that can be conceived by those skilled in the art are made to the present embodiment, and forms constructed by combining components in different embodiments are also included in the scope of the present disclosure. ..
  • an amplifier that amplifies the output of the oscillator 50 and an output of the amplifier are switched and output to the insulating unit 11 as the first and second PWM control signals R11 and R12. It may be configured to include an SPDT switch that operates.
  • the directional coupler 70 is designed to have 50 ohms, but it may be designed to have an impedance according to the insertion location or an impedance design that can be designed by an interlayer film of a semiconductor process.
  • the isolation terminal may be terminated accordingly.
  • the directional coupler 70 has a good directional property, but a directional coupler having a poor directional property or, eventually, a non-directional capacitance. It is also possible to use loose coupling by.
  • the abnormality detection unit 83 and the variable impedance element 84 are used as a protection function of a general gate drive circuit such as DESAT (detects the desaturation state of the switching element) and UVLO (Under Voltage).
  • Lock Out is a circuit that detects an abnormal condition and converts it into a voltage, and can be easily realized by combining general analog circuits such as a comparator and bandgap regulator.
  • the circuit element 80 is binary control of ON/OFF, but in order to distinguish different abnormal states on the secondary side, or the analog signal itself detected on the secondary side is set to 1. In order to monitor on the secondary side, feedback from the secondary side to the primary side can be realized in multi-valued control or continuous analog control.
  • the abnormal state E11 in the first to fourth embodiments is not limited to an abnormal state, and may be a normal state or some state that does not directly indicate normal or abnormal.
  • the abnormal state E11 may be a voltage value or temperature as the state detected by the receiving unit 12 side.
  • a single shunt type circuit is illustrated as the configuration of the rectifying circuit 2 of the receiving circuit 13 and the rectifying circuit 82 of the feedback unit, but the configuration is not limited to this.
  • a rectifier circuit having such a configuration may be applied.
  • another rectification method such as a voltage doubler type or a bridge type may be applied.
  • 10A to 10E show first to fifth configuration examples of the rectifier circuit 2.
  • the rectifier circuit 2 is a general term for the rectifier circuit 20 and 2a, 2b, and 82.
  • 10A to 10E exemplify circuits that generate a negative potential with respect to the ground terminal in all circuits. A positive potential can be generated by reversing the direction of the diode.
  • the single shunt type shown in FIG. 10A is used as the configuration of the rectifier circuit 2, but the configuration is not limited to this.
  • a single series type shown in FIG. 10B, a double voltage type shown in FIG. 10C, a double current type shown in FIG. 10D, a bridge type shown in FIG. is there.
  • L and C elements other than the diodes in order to maximize the voltage generated in the rectifier circuit 2 with respect to the frequency of the input signal, elements are newly added to the circuit topologies shown in FIGS. 10A to 10E. It may be added or may be partially deleted.
  • the ground connection section may be used as one of the differential signal input terminals.
  • each rectifying circuit is shown by a lumped constant element, but it is also possible to obtain the same effect by using a distributed constant element such as a microstrip line.
  • the electromagnetic resonance coupling element is used as the insulating element 3
  • a capacitive element, a transformer, or the like may be used.
  • the gate drive circuit according to the present disclosure can be used for an inverter, a power converter, a power system, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

An insulated gate drive circuit (1) which drives a semiconductor switching element comprises: a transmission unit (10) which generates a power signal that acts as the basis for gate driving of a semiconductor switching element; a first insulated element (3) which transmits a power signal in an electrically insulated state; a receiving unit (12) which performs gate driving of a semiconductor switching element by means of a power signal output from the first insulated element (3); and a transmission circuit for transmitting the state detected by the receiving unit side to the transmission unit side. The transmission circuit transmits the abovementioned state by branching part of the power signal using an insulated path (3c) distinct from the path which transmits the power signal on the first insulated element (3).

Description

ゲート駆動回路およびそれを用いたスイッチング装置Gate drive circuit and switching device using the same
 本開示は、パワー半導体デバイスのゲート駆動回路に関する。 The present disclosure relates to a gate drive circuit for a power semiconductor device.
 パワーエレクトロニクス技術により、民生用、産業用を問わず電気機器の小型化が進んでいる。このような機器で用いられるインバータ回路では、半導体スイッチング素子(例えば、IGBT(Insulated Gate Bipolar Transistor))を用いて、数kHz~数MHz程度の周波数で大電力をスイッチングする。ゲート駆動回路は、上記半導体スイッチング素子のゲートを駆動する回路である。 ▽ Power electronics technology is making miniaturization of electrical equipment for both consumer and industrial use. In an inverter circuit used in such a device, a semiconductor switching element (for example, an IGBT (Insulated Gate Bipolar Transistor)) is used to switch large power at a frequency of several kHz to several MHz. The gate drive circuit is a circuit that drives the gate of the semiconductor switching element.
 上記のようなインバータ回路では、ゲート駆動回路の制御信号と、半導体スイッチング素子の動作電圧との差が大きい。そのため、ゲート駆動回路の入力側(以下、一次側という)と出力側(以下、二次側という)とを電気的に絶縁する必要がある。すなわち、一次側の信号および電力は、一次側から絶縁部を介して二次側に伝達される。このようなゲート駆動回路を用いたスイッチング装置においては、二次側で検出したゲート駆動回路自身の出力異常や半導体スイッチング素子60の動作異常が発生した場合、異常を示す信号を二次側から絶縁部を介して一次側にフィードバックする必要がある。 In the above inverter circuit, the difference between the control signal of the gate drive circuit and the operating voltage of the semiconductor switching element is large. Therefore, it is necessary to electrically insulate the input side (hereinafter referred to as the primary side) and the output side (hereinafter referred to as the secondary side) of the gate drive circuit. That is, the signal and power on the primary side are transmitted from the primary side to the secondary side via the insulating portion. In a switching device using such a gate drive circuit, when an output abnormality of the gate drive circuit itself or an operation abnormality of the semiconductor switching element 60 detected on the secondary side occurs, a signal indicating the abnormality is isolated from the secondary side. It is necessary to feed back to the primary side via the department.
 特許文献1では、一般的な絶縁型のゲート駆動回路において、二次側異常を一次側にフィードバックする構成が示されている。具体的には、絶縁素子としてのトランスと、異常の有無を示す交流信号を、トランスを介して一次側に送信する二次側の送信回路と、トランスから交流信号を受信する一次側の受信回路を備え、二次側で生じた異常を一次側にフィードバックする。 Patent Document 1 shows a configuration in which a secondary side abnormality is fed back to the primary side in a general insulated gate drive circuit. Specifically, a transformer as an insulating element, a secondary side transmission circuit that transmits an AC signal indicating the presence or absence of abnormality to the primary side through the transformer, and a primary side reception circuit that receives the AC signal from the transformer. Is provided, and the abnormality occurring on the secondary side is fed back to the primary side.
 特許文献2では、絶縁素子として電磁界共鳴結合器を用いた絶縁型のゲート駆動回路におけるフィードバックする構成が示されている。 Patent Document 2 discloses a configuration for feedback in an insulated gate drive circuit using an electromagnetic resonance coupler as an insulating element.
特許第5303167号公報Japanese Patent No. 5303167 特許第5861056号公報Japanese Patent No. 5861056
 ところで、このような絶縁型のゲート駆動回路は、一次側と二次側の間は、数kV程度の高耐圧の絶縁素子を用いて絶縁されている。特許文献1においては、二次側異常を一次側にフィードバックするために、二次側の送信回路、トランス、および一次側の受信回路を備える。そのため、回路規模が増大し、回路構成が複雑となる。 By the way, such an insulated gate drive circuit is insulated between the primary side and the secondary side by using an insulating element having a high withstand voltage of about several kV. In Patent Document 1, a secondary side transmission circuit, a transformer, and a primary side reception circuit are provided in order to feed back the secondary side abnormality to the primary side. Therefore, the circuit scale increases and the circuit configuration becomes complicated.
 より簡易な方法として、特許文献2では、一次側の送信回路の負荷状態を二次側で変化させることにより生じる反射電力を一次側で検出することで、二次側の状態をフィードバックする方法が示されている。この方式を二次側への電力供給のための伝送電力の大きい経路に用いた場合、インピーダンス素子の挿入損失が問題になる。さらには、通常動作時と異常検出時のしきい値を十分確保するため、インピーダンス素子のインピーダンス変化を大きくして、反射電力の変化を大きくすると二次側への電力伝送量が減少するだけでなく、送信回路の消費電流の増大や過負荷による送信回路での半導体デバイスの一次側の破壊が問題になる。 As a simpler method, in Patent Document 2, there is a method of feeding back the state of the secondary side by detecting reflected power generated by changing the load state of the transmission circuit on the primary side on the secondary side. It is shown. When this method is used for a path with high transmission power for supplying power to the secondary side, the insertion loss of the impedance element becomes a problem. Furthermore, in order to secure a sufficient threshold value during normal operation and during abnormality detection, increasing the impedance change of the impedance element and increasing the change in reflected power only reduces the amount of power transmission to the secondary side. However, an increase in current consumption of the transmission circuit and a breakdown of the primary side of the semiconductor device in the transmission circuit due to overload pose a problem.
 本発明は係る点に鑑みてなされたもので、回路規模の増大を抑制し、回路構成の複雑さを低減し、伝送電力への影響を低減する絶縁型のゲート駆動回路を提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to provide an insulated gate drive circuit that suppresses an increase in circuit scale, reduces the complexity of the circuit configuration, and reduces the influence on transmission power. And
 本発明の一態様に係るゲート駆動回路は、半導体スイッチング素子を駆動する絶縁型のゲート駆動回路であって、前記半導体スイッチング素子のゲート駆動の基礎となる電力信号を生成する送信部と、前記電力信号を電気的に絶縁された状態で伝送する第1絶縁素子と、前記第1絶縁素子から出力される電力信号により、前記半導体スイッチング素子のゲート駆動を行う受信部と、受信部側で検出した状態を送信部側に伝達する伝達回路とを備え、前記伝達回路は、前記第1絶縁素子上の前記電力信号を伝送する経路とは別の絶縁経路を用いて、前記電力信号の一部を分岐させることにより前記状態を伝達する。 A gate drive circuit according to one aspect of the present invention is an insulating gate drive circuit that drives a semiconductor switching element, and includes a transmitter that generates a power signal that serves as a basis for driving the gate of the semiconductor switching element, and the power. A first insulating element that transmits a signal in an electrically insulated state, a receiving section that performs gate driving of the semiconductor switching element based on a power signal that is output from the first insulating element, and a receiving section detects the signal. A transmission circuit for transmitting the state to the transmission unit side, wherein the transmission circuit uses the insulating path different from the path for transmitting the power signal on the first insulating element to partially transmit the power signal. The state is transmitted by branching.
 本開示に係るゲート駆動回路によれば、回路規模の増大を抑制し、回路構成の複雑さを低減し、送信経路の特性への影響を低減することができる。 According to the gate drive circuit according to the present disclosure, it is possible to suppress an increase in circuit size, reduce the complexity of the circuit configuration, and reduce the influence on the characteristics of the transmission path.
図1は、第1実施形態のゲート駆動回路を含むスイッチング装置の構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of a switching device including the gate drive circuit of the first embodiment. 図2Aは、第1実施形態の方向性結合器の結合端子に接続される回路素子の第1例を示す図である。FIG. 2A is a diagram showing a first example of a circuit element connected to a coupling terminal of the directional coupler of the first embodiment. 図2Bは、第1実施形態の方向性結合器の結合端子に接続される回路素子の第2例を示す図である。FIG. 2B is a diagram showing a second example of the circuit element connected to the coupling terminal of the directional coupler of the first embodiment. 図2Cは、第1実施形態の方向性結合器の結合端子に接続される回路素子の第3例を示す図である。FIG. 2C is a diagram showing a third example of the circuit element connected to the coupling terminal of the directional coupler of the first embodiment. 図2Dは、第1実施形態の方向性結合器の結合端子に接続される回路素子の第4例を示す図である。FIG. 2D is a diagram showing a fourth example of the circuit element connected to the coupling terminal of the directional coupler of the first embodiment. 図2Eは、第1実施形態の方向性結合器の結合端子に接続される回路素子の第5例を示す図である。FIG. 2E is a diagram showing a fifth example of the circuit element connected to the coupling terminal of the directional coupler of the first embodiment. 図3Aは、方向性結合器の動作説明図である。FIG. 3A is an operation explanatory diagram of the directional coupler. 図3Bは、方向性結合器のSパラメータ表記の通過特性を示す図である。FIG. 3B is a diagram showing pass characteristics in S-parameter notation of the directional coupler. 図3Cは、方向性結合器の出力端子の反射係数を変化させたときの結合端子およびアイソレーション端子で観測される電力を示す図である。FIG. 3C is a diagram showing the power observed at the coupling terminal and the isolation terminal when the reflection coefficient of the output terminal of the directional coupler is changed. 図4は、第1実施形態のフィードバック動作の電力レベルの説明図である。FIG. 4 is an explanatory diagram of the power level of the feedback operation of the first embodiment. 図5は、第2実施形態のゲート駆動回路を含むスイッチング装置の構成例を示すブロック図である。FIG. 5 is a block diagram showing a configuration example of a switching device including the gate drive circuit of the second embodiment. 図6Aは、第2実施形態の方向性結合器の結合端子に接続されるインピーダンス可変素子の第1例を示す図である。FIG. 6A is a diagram showing a first example of an impedance variable element connected to the coupling terminal of the directional coupler of the second embodiment. 図6Bは、第2実施形態の方向性結合器の結合端子に接続されるインピーダンス可変素子の第2例を示す図である。FIG. 6B is a diagram showing a second example of the impedance variable element connected to the coupling terminal of the directional coupler of the second embodiment. 図6Cは、第2実施形態の方向性結合器の結合端子に接続されるインピーダンス可変素子の第3例を示す図である。FIG. 6C is a diagram showing a third example of the impedance variable element connected to the coupling terminal of the directional coupler of the second embodiment. 図6Dは、第2実施形態の方向性結合器の結合端子に接続されるインピーダンス可変素子の第4例を示す図である。FIG. 6D is a diagram showing a fourth example of the impedance variable element connected to the coupling terminal of the directional coupler of the second embodiment. 図6Eは、第2実施形態の方向性結合器の結合端子に接続されるインピーダンス可変素子の第5例を示す図である。FIG. 6E is a diagram showing a fifth example of the impedance variable element connected to the coupling terminal of the directional coupler of the second embodiment. 図7は、第2実施形態のフィードバック動作の電力レベルの説明図である。FIG. 7 is an explanatory diagram of the power level of the feedback operation of the second embodiment. 図8は、第3実施形態のゲート駆動回路を含むスイッチング装置の構成例を示すブロック図である。FIG. 8 is a block diagram showing a configuration example of a switching device including the gate drive circuit of the third embodiment. 図9は、第4実施形態のゲート駆動回路を含むスイッチング装置の構成例を示すブロック図である。FIG. 9 is a block diagram showing a configuration example of a switching device including the gate drive circuit of the fourth embodiment. 図10Aは、整流回路の第1の構成例を示す回路図である。FIG. 10A is a circuit diagram showing a first configuration example of the rectifier circuit. 図10Bは、整流回路の第2の構成例を示す回路図である。FIG. 10B is a circuit diagram showing a second configuration example of the rectifier circuit. 図10Cは、整流回路の第3の構成例を示す回路図である。FIG. 10C is a circuit diagram showing a third configuration example of the rectifier circuit. 図10Dは、整流回路の第4の構成例を示す回路図である。FIG. 10D is a circuit diagram showing a fourth configuration example of the rectifier circuit. 図10Eは、整流回路の第5の構成例を示す回路図である。FIG. 10E is a circuit diagram showing a fifth configuration example of the rectifier circuit. 図11は、変形例におけるゲート駆動回路を含むスイッチング装置を示すブロック図である。FIG. 11 is a block diagram showing a switching device including a gate drive circuit in the modification. 図12Aは、変形例におけるゲート駆動回路のフィードバック動作の電力レベル説明図である。FIG. 12A is a power level explanatory diagram of the feedback operation of the gate drive circuit in the modified example. 図12Bは、変形例におけるゲート駆動回路の動作説明図である。FIG. 12B is an operation explanatory diagram of the gate drive circuit in the modified example.
 以下、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, steps, order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the constituent elements in the following embodiments, the constituent elements that are not described in the independent claim indicating the highest concept are described as arbitrary constituent elements.
 <第1実施形態>
 [1.1 ゲート駆動回路の構成]
 図1は、本実施形態のゲート駆動回路を含むスイッチング装置Aの構成を示す概略図である。図1に示すように、スイッチング装置Aは、電源100と、PWM電源101と、コンデンサ74と、半導体スイッチング素子60と、負荷電源102と、半導体スイッチング素子60を駆動する絶縁型のゲート駆動回路1とを備える。
<First Embodiment>
[1.1 Structure of Gate Drive Circuit]
FIG. 1 is a schematic diagram showing a configuration of a switching device A including a gate drive circuit according to this embodiment. As shown in FIG. 1, the switching device A includes a power supply 100, a PWM power supply 101, a capacitor 74, a semiconductor switching element 60, a load power supply 102, and an insulated gate drive circuit 1 for driving the semiconductor switching element 60. With.
 以下の説明では、絶縁型のゲート駆動回路1の絶縁状態を説明するため、送信部のみ、あるいはスイッチング装置Aの送信部用の電源100まで含めて一次側と呼び、受信部のみ、あるいはスイッチング装置Aの半導体スイッチング素子60や受信部用の電源102まで含めて二次側と呼ぶ場合がある。 In the following description, in order to explain the insulation state of the insulation type gate drive circuit 1, only the transmission part or the power supply 100 for the transmission part of the switching device A is called the primary side, only the reception part or the switching device. The semiconductor switching element 60 of A and the power supply 102 for the receiving unit may be collectively referred to as the secondary side.
 ゲート駆動回路1は、送信部10と、絶縁部11と、受信部12とを備える。送信部10は、発振器50、増幅器51、ミキサー52、および整流回路82を備える。絶縁部11は、絶縁素子3、3a、3b、3cを備える。受信部12は、受信回路13a、受信回路13b、整流回路20、方向性結合器70、回路素子80、終端素子81、および異常検知部83を備える。 The gate drive circuit 1 includes a transmitter 10, an insulator 11, and a receiver 12. The transmitter 10 includes an oscillator 50, an amplifier 51, a mixer 52, and a rectifier circuit 82. The insulating portion 11 includes insulating elements 3, 3a, 3b, 3c. The receiving unit 12 includes a receiving circuit 13a, a receiving circuit 13b, a rectifying circuit 20, a directional coupler 70, a circuit element 80, a terminating element 81, and an abnormality detecting section 83.
 図1では、受信部12が、電源用の整流回路20と、カスコード接続された2つの受信回路13a、13bとを備える例を示している。そして、受信回路13a、13b間を接続する接続ノードN1が、半導体スイッチング素子60のゲートに接続されている。 FIG. 1 shows an example in which the receiver 12 includes a rectifier circuit 20 for power supply and two cascode-connected receiver circuits 13a and 13b. The connection node N1 that connects the receiving circuits 13a and 13b is connected to the gate of the semiconductor switching element 60.
 以下の説明では、高電位側に接続される受信回路13aを第1受信回路13aと呼び、低電位側に接続される受信回路13bを第2受信回路13bと呼ぶ場合がある。 In the following description, the receiving circuit 13a connected to the high potential side may be referred to as the first receiving circuit 13a, and the receiving circuit 13b connected to the low potential side may be referred to as the second receiving circuit 13b.
 そして、ゲート駆動回路1は、制御信号に応じて第1及び第2受信回路13a、13bを交互にスイッチングさせることで、出力パルス電圧を発生し、半導体スイッチング素子60のゲートを駆動する。これにより、ゲート駆動回路1は、負荷電源102によって供給される電圧のスイッチングを行う。 The gate driving circuit 1 alternately switches the first and second receiving circuits 13a and 13b according to the control signal to generate an output pulse voltage and drive the gate of the semiconductor switching element 60. As a result, the gate drive circuit 1 switches the voltage supplied by the load power supply 102.
 送信部10は、半導体スイッチング素子60の駆動の基礎となる電力信号としての第1、第2PWM(Pulse Width Modulation)制御信号R11、R12を生成する機能を有する。具体的に、送信部10は、電源100からの電源電圧Viを受けて発振する発振器50と、発振器50の出力を受けるミキサー52を備える。ミキサー52は、PWM電源101からのPWM電圧Vmに応じて発振器50の出力を変調し、第1及び第2PWM制御信号R11、R12として絶縁部11に出力する。さらに、送信部10は、ゲート駆動回路1の駆動電力を供給する経路に設けられた増幅器51を備えている。増幅器51は、送信部10の発振器50の出力を受け、それを増幅した電力信号を、高周波信号R13として出力する。 The transmitting unit 10 has a function of generating first and second PWM (Pulse Width Modulation) control signals R11 and R12 as power signals which are the basis of driving the semiconductor switching element 60. Specifically, the transmitter 10 includes an oscillator 50 that oscillates by receiving the power supply voltage Vi from the power supply 100, and a mixer 52 that receives the output of the oscillator 50. The mixer 52 modulates the output of the oscillator 50 according to the PWM voltage Vm from the PWM power supply 101, and outputs the modulated first and second PWM control signals R11 and R12 to the insulating unit 11. Further, the transmission unit 10 includes an amplifier 51 provided on a path for supplying the drive power of the gate drive circuit 1. The amplifier 51 receives the output of the oscillator 50 of the transmitter 10, and outputs a power signal obtained by amplifying the output as a high frequency signal R13.
 絶縁部11は、電源用の絶縁素子3と、絶縁素子3aと、絶縁素子3bと、フィードバック用の絶縁素子3cを備える。電源用の絶縁素子3、絶縁素子3a、絶縁素子3bと、フィードバック用の絶縁素子3cには、例えば、従来から知られている電磁界共鳴結合素子を適用することができる。電源用の絶縁素子3、絶縁素子3a、3b、フィードバック用の絶縁素子3cは、同じ構成を採用することが可能である。電源用の絶縁素子3は第1絶縁素子3と呼び、フィードバック用の絶縁素子3cを第2絶縁素子3cと呼ぶことがある。 The insulating unit 11 includes an insulating element 3 for power supply, an insulating element 3a, an insulating element 3b, and an insulating element 3c for feedback. For the insulating element 3 for power supply, the insulating element 3a, the insulating element 3b, and the insulating element 3c for feedback, for example, a conventionally known electromagnetic resonance coupling element can be applied. The power supply insulating element 3, the insulating elements 3a and 3b, and the feedback insulating element 3c can have the same configuration. The insulation element 3 for power supply may be referred to as a first insulation element 3, and the insulation element 3c for feedback may be referred to as a second insulation element 3c.
 電源用の絶縁素子3は、ゲート駆動回路1の駆動電力を供給する経路に設けられており、増幅器51から出力された電力信号としての高周波信号R13を受け、電気的に絶縁された状態で、後段の方向性結合器70の入力端子D1に入力する。電力信号は、さらに、方向性結合器70の出力端子D2から電源用の整流回路20に伝送される。なお、電気的に絶縁された状態とは、交流的(特に高周波信号)には導通するが、直流的には導通しない分離された状態であり、一次側接地200と二次側接地201とが分離されている状態を言う。 The insulating element 3 for power supply is provided in the path for supplying the drive power of the gate drive circuit 1, receives the high frequency signal R13 as a power signal output from the amplifier 51, and is electrically insulated in a state of being The signal is input to the input terminal D1 of the directional coupler 70 in the subsequent stage. The power signal is further transmitted from the output terminal D2 of the directional coupler 70 to the rectifier circuit 20 for power supply. Note that the electrically insulated state is a separated state that conducts AC (especially high frequency signal) but does not conduct DC, and the primary side ground 200 and the secondary side ground 201 are separated. Says the state of being separated.
 絶縁素子3aは、第1PWM制御信号R11を受け、この信号を電気的に絶縁された状態で伝送する。絶縁素子3bは、第2PWM制御信号R12を受け、この信号を電気的に絶縁された状態で伝送する。絶縁素子3a、3bの出力には、それぞれ、受信回路13a、13bが接続されている。 The insulating element 3a receives the first PWM control signal R11 and transmits this signal in an electrically insulated state. The insulating element 3b receives the second PWM control signal R12 and transmits this signal in an electrically insulated state. Receiving circuits 13a and 13b are connected to the outputs of the insulating elements 3a and 3b, respectively.
 フィードバック用の絶縁素子3cは、他の絶縁素子とは逆方向に受信部12の高周波信号R14を送信部10にフィードバックする経路である。高周波信号R14は、方向性結合器70において電力信号の一部を分岐させた信号である。 The feedback insulating element 3c is a path for feeding back the high frequency signal R14 of the receiving section 12 to the transmitting section 10 in the opposite direction to the other insulating elements. The high frequency signal R14 is a signal obtained by branching a part of the power signal in the directional coupler 70.
 方向性結合器70の結合端子D3の出力には、回路素子80を介してフィードバック用の絶縁素子3cに接続される。回路素子80は、その導通状態を、異常検知部83からの異常状態を示す制御信号C11に応じて切り替える。これにより、回路素子80を通過する電力信号の一部の強度を変化させることができる。 The output of the coupling terminal D3 of the directional coupler 70 is connected to the insulating element 3c for feedback via the circuit element 80. The circuit element 80 switches its conduction state according to the control signal C11 indicating the abnormal state from the abnormality detection unit 83. Thereby, the intensity of a part of the power signal passing through the circuit element 80 can be changed.
 図1のゲート駆動回路1において次の回路部分は、受信部側で検出した異常状態を送信部側に伝達する伝達回路として設けられる。すなわち、伝達回路は、方向性結合器70、回路素子80、終端素子81、異常検知部83、絶縁素子3c、整流回路82を備える回路部分である。この伝達回路は、絶縁素子3上の電力信号を伝送する経路とは別の絶縁経路(絶縁素子3c)を用いて、電力信号の一部を分岐させることにより異常状態を伝達するように構成されている。 The following circuit portion in the gate drive circuit 1 of FIG. 1 is provided as a transmission circuit for transmitting the abnormal state detected by the receiving side to the transmitting side. That is, the transmission circuit is a circuit portion including the directional coupler 70, the circuit element 80, the termination element 81, the abnormality detection unit 83, the insulating element 3c, and the rectifier circuit 82. This transmission circuit is configured to transmit an abnormal state by branching a part of the power signal using an insulation path (insulation element 3c) different from the path for transmitting the power signal on the insulation element 3. ing.
 整流回路82は高周波電力信号であるフィードバック信号R14を受けて、電圧に変換する回路である。言い換えれば、方向性結合器70によって分岐された電力信号の一部であるフィードバック信号R14を整流することにより、異常状態の有無または異常状態の種類を示す電圧を有する直流信号に変換する。この直流信号は、異常状態の有無を示す2つの電圧値を取り得る二値信号でもよいし、異常状態の種類を示す3以上の電圧値を取り得る多値信号であってもよいし、連続的に変化するアナログ信号であってもよい。 The rectifier circuit 82 is a circuit that receives the feedback signal R14, which is a high frequency power signal, and converts it into a voltage. In other words, by rectifying the feedback signal R14 which is a part of the power signal branched by the directional coupler 70, it is converted into a DC signal having a voltage indicating the presence or absence of the abnormal state or the type of the abnormal state. This DC signal may be a binary signal that can take two voltage values that indicate the presence or absence of an abnormal state, or a multilevel signal that can take three or more voltage values that indicate the type of abnormal state, or a continuous signal. It may be an analog signal that changes dynamically.
 方向性結合器70のアイソレーション端子D4は、終端素子81により一定インピーダンス(例えば50ohm)で終端されている。 The isolation terminal D4 of the directional coupler 70 is terminated by a terminating element 81 with a constant impedance (for example, 50 ohm).
 受信部12に設けられた異常検知部83は、二次側の異常状態E11を検出し、制御信号C11を生成する回路であり、その制御信号C11により回路素子80の導通状態を制御する。 The abnormality detection unit 83 provided in the reception unit 12 is a circuit that detects an abnormal state E11 on the secondary side and generates a control signal C11, and the conduction state of the circuit element 80 is controlled by the control signal C11.
 整流回路20は、電源用の絶縁素子3の出力を正電圧に直流変換し、コンデンサ74を充電することで、ゲート駆動回路の電源を供給する。コンデンサ74の容量の大きさは、特に限定されないが、例えば、数μF程度である。 The rectifier circuit 20 supplies the power of the gate drive circuit by converting the output of the insulating element 3 for power supply into a DC voltage and charging the capacitor 74. The capacity of the capacitor 74 is not particularly limited, but is about several μF, for example.
 受信回路13aは、整流回路2aと、対応して設けられた駆動トランジスタ5aとを有する。 The receiving circuit 13a has a rectifier circuit 2a and a corresponding drive transistor 5a.
 受信回路13bは、整流回路2bと、対応して設けられた駆動トランジスタ5bとを有する。 The receiving circuit 13b has a rectifier circuit 2b and a corresponding drive transistor 5b.
 なお、電源用の整流回路20と、複数の整流回路2a、2bには、発生させる電圧の極性によりダイオード部の方向は異なるが、同じ構成の回路を適用することが可能であり、これらを総称して、単に「整流回路2」という場合がある。 It should be noted that the rectifier circuit 20 for power supply and the plurality of rectifier circuits 2a and 2b have different diode directions depending on the polarity of the voltage to be generated, but circuits of the same configuration can be applied, and these are collectively referred to. Then, it may be simply referred to as "rectifier circuit 2".
 整流回路2aは、入力端子、出力端子、及び接地端子を有する。入力端子と出力端子との間に、入力コンデンサCaとインダクタL1が直列に接続される。そして、入力コンデンサCaとインダクタL1との間の中間ノードが、順方向のダイオードd1を介して接地端子に接続される。さらに、出力端子と接地端子との間に出力コンデンサC1が設けられている。整流回路2b、20、82も整流回路2aと同様の構成でよい。 The rectifier circuit 2a has an input terminal, an output terminal, and a ground terminal. The input capacitor Ca and the inductor L1 are connected in series between the input terminal and the output terminal. The intermediate node between the input capacitor Ca and the inductor L1 is connected to the ground terminal via the diode d1 in the forward direction. Further, an output capacitor C1 is provided between the output terminal and the ground terminal. The rectifier circuits 2b, 20, 82 may have the same configuration as the rectifier circuit 2a.
 第1受信回路13aの整流回路2aでは、絶縁素子3aを介して送信部10から受けた第1PWM制御信号R11を整流し、電圧パルス信号として第1駆動トランジスタ5aのゲートに出力する。整流回路2aの接地端子は、駆動トランジスタ5aのソースに接続され、駆動トランジスタ5aのゲート-ソース間に抵抗素子4aが設けられている。 The rectifier circuit 2a of the first receiver circuit 13a rectifies the first PWM control signal R11 received from the transmitter 10 via the insulating element 3a and outputs it as a voltage pulse signal to the gate of the first drive transistor 5a. The ground terminal of the rectifier circuit 2a is connected to the source of the drive transistor 5a, and the resistance element 4a is provided between the gate and source of the drive transistor 5a.
 同様に、第2受信回路13bの整流回路2bでは、絶縁素子3bを介して送信部10から受けた第2PWM制御信号R12を整流し、電圧パルス信号として駆動トランジスタ5bのゲートに出力する。整流回路2bの接地端子は、駆動トランジスタ5bのソースに接続され、駆動トランジスタ5bのゲート-ソース間に抵抗素子4bが設けられている。 Similarly, the rectifier circuit 2b of the second receiver circuit 13b rectifies the second PWM control signal R12 received from the transmitter 10 via the insulating element 3b and outputs it as a voltage pulse signal to the gate of the drive transistor 5b. The ground terminal of the rectifier circuit 2b is connected to the source of the drive transistor 5b, and the resistance element 4b is provided between the gate and source of the drive transistor 5b.
 本実施例においては、駆動トランジスタ5a、5bはともにNチャネルのディプレション型FETを用いているため、整流回路2a、2bは負電圧を生成する。 In this embodiment, since the drive transistors 5a and 5b are both N-channel depletion type FETs, the rectifier circuits 2a and 2b generate a negative voltage.
 なお、言うまでもなく、一次側接地200と二次側接地201は絶縁部11により、互いに電気的に分離されている。 Needless to say, the primary side ground 200 and the secondary side ground 201 are electrically separated from each other by the insulating portion 11.
 [1.2 フィードバック動作]
 次に、本実施形態に係るゲート駆動回路1のフィードバック動作について、図2A~図4を参照しつつ具体的に説明する。図2A~図2Eは、第1実施形態の方向性結合器70の結合端子D3に接続される回路素子の第1例~第5例を示す図である。
[1.2 Feedback operation]
Next, the feedback operation of the gate drive circuit 1 according to the present embodiment will be specifically described with reference to FIGS. 2A to 4. 2A to 2E are diagrams showing first to fifth examples of circuit elements connected to the coupling terminal D3 of the directional coupler 70 of the first embodiment.
 ゲート駆動回路1が通常に動作している場合、回路素子80は非導通状態であるが、二次側の異常状態E11が異常検知部83により検出されると、制御信号C11により回路素子80が導通状態となる。 When the gate drive circuit 1 is operating normally, the circuit element 80 is in a non-conductive state, but when the abnormal state E11 on the secondary side is detected by the abnormality detection unit 83, the circuit element 80 is turned on by the control signal C11. It becomes conductive.
 本実施例において、図2Aのように記載した回路素子80は制御端子Vctlに制御信号を印加することで導通状態を変化させる素子であり、例えば図2Bのような制御信号でオンオフするスイッチ素子である。 In the present embodiment, the circuit element 80 described as shown in FIG. 2A is an element that changes the conduction state by applying a control signal to the control terminal Vctl, and is, for example, a switch element that is turned on/off by the control signal as shown in FIG. 2B. is there.
 より具体的には、図2Cのように、半導体FETを用いたスイッチ回路であり、オンオフ間の信号変化を大きくするため、図2Dのように半導体FETスイッチを直列接続する場合ある。 More specifically, as shown in FIG. 2C, it is a switch circuit using semiconductor FETs, and in order to increase the signal change between on and off, there are cases where semiconductor FET switches are connected in series as shown in FIG. 2D.
 さらには、図2EのようなSPDT(Single-Pole-Double-Throw)構成の半導体スイッチ構成もとりうる。503は制御信号を反転するインバータ反転回路である。500は、非道通状態時に方向性結合器の終端インピーダンスを50オームに設定する経路であるが、省略することもできる。502は直流カットした50オーム抵抗である。また、501はオフ状態のアイソレーションを改善するシャントSW部分であり、省略することもできる。 Furthermore, a semiconductor switch configuration of SPDT (Single-Pole-Double-Throw) configuration as shown in FIG. 2E may be adopted. Reference numeral 503 is an inverter inverting circuit that inverts the control signal. Reference numeral 500 is a path for setting the termination impedance of the directional coupler to 50 ohms in the non-communication state, but it can be omitted. Reference numeral 502 is a DC-cut 50 ohm resistor. Further, 501 is a shunt SW portion for improving isolation in the off state, and can be omitted.
 なお、図2A~図2Dに示した回路素子80の構成例において、各スイッチ素子は、オンおよびオフするスイッチ動作に加えて、制御端子Vctlに入力される制御信号C11に応じて、導通量を連続的に変化させてもよい。 In the configuration example of the circuit element 80 shown in FIGS. 2A to 2D, each switch element has a conduction amount in accordance with a control signal C11 input to the control terminal Vctl, in addition to the switch operation of turning on and off. You may change continuously.
 また、図3Aは、方向性結合器70の動作説明図である。図3Bは、方向性結合器70のSパラメータ表記の通過特性を示す図である。方向性結合器は、図3Aに示すように4端子の素子であり、主信号を伝送する主経路(入力端子D1-出力端子D2)と主経路の一部の電力を取り出す副経路(結合端子D3-アイソレーション端子D4)を有する。結合端子D3は入力端子D1に入射する電力の一部を取り出す端子であり、アイソレーション端子D4は出力端子D2で反射する電力の一部を取り出す端子である。 Further, FIG. 3A is an operation explanatory diagram of the directional coupler 70. FIG. 3B is a diagram showing a pass characteristic of the directional coupler 70 in S parameter notation. The directional coupler is a 4-terminal element as shown in FIG. 3A, and includes a main path (input terminal D1 to output terminal D2) for transmitting a main signal and a sub path (coupling terminal) for extracting a part of electric power from the main path. D3-isolation terminal D4). The coupling terminal D3 is a terminal for extracting a part of the electric power incident on the input terminal D1, and the isolation terminal D4 is a terminal for extracting a part of the electric power reflected by the output terminal D2.
 図3Bは、送信周波数2.45GHzにおいて結合端子D3の終端インピーダンスを変化させた場合の方向性結合器のSパラメータ表記での通過特性S21、S31、S41のシミュレーション結果を示す。なお、この例では、結合端子D3以外の端子は50オーム終端である。通常、方向性結合器は50オーム系で設計され、結合端子D3が50オームの場合、S31は-18dB程度に対し、S41は-40dB以下と良好な方向性を示している。結合端子D3の終端インピーダンスを例えば500オームの場合、S21やS31の変化量は小さいが、S41は-20dBと大きく変化し、アイソレーション端子D4の電力が増加する。 FIG. 3B shows simulation results of pass characteristics S21, S31, and S41 in the S parameter notation of the directional coupler when the terminating impedance of the coupling terminal D3 is changed at the transmission frequency of 2.45 GHz. In this example, the terminals other than the coupling terminal D3 are terminated with 50 ohms. Usually, the directional coupler is designed in a 50 ohm system, and when the coupling terminal D3 is 50 ohms, S31 shows about -18 dB, and S41 shows -40 dB or less, which is a good directional characteristic. When the terminating impedance of the coupling terminal D3 is, for example, 500 ohms, the amount of change in S21 and S31 is small, but S41 greatly changes to −20 dB, and the power of the isolation terminal D4 increases.
 前述で説明したSPDT構成の片側を省略することが可能であるのは、S21やS31特性に対し、S31の結合端子D3の終端インピーダンス依存性が小さいためである。 The reason why one side of the SPDT configuration described above can be omitted is that the termination impedance dependency of the coupling terminal D3 of S31 is small with respect to the characteristics of S21 and S31.
 また、S41の結合端子D3の終端インピーダンス依存性が大きいことを利用したフィードバック方式も実現可能であるので、後述の第2実施形態で説明する。 Also, a feedback method can be realized by utilizing the fact that the termination impedance dependency of the coupling terminal D3 of S41 is large, which will be described in the second embodiment described later.
 図3Cは、方向性結合器の出力端子の反射係数を変化させたときの結合端子およびアイソレーション端子で観測される電力を示す図である。図3Cは、50オーム系において、送信周波数2.45GHz、電力27dBmの信号を方向性結合器の入力端子D1に入力し、出力端子D2の反射係数を変化させた場合の結合端子D3、アイソレーション端子D4で観測した電力の変化を表すシミュレーション結果である。 FIG. 3C is a diagram showing the power observed at the coupling terminal and the isolation terminal when the reflection coefficient of the output terminal of the directional coupler is changed. FIG. 3C shows a coupling terminal D3 in a case where a signal having a transmission frequency of 2.45 GHz and a power of 27 dBm is input to the input terminal D1 of the directional coupler and the reflection coefficient of the output terminal D2 is changed in the 50 ohm system. It is a simulation result showing the change of the electric power observed at the terminal D4.
 出力端子D2の反射係数変化に対し、結合端子D3の電力は殆ど変化しないが、アイソレーション端子D4で観測した電力は大きく変化している。 Despite the change in the reflection coefficient of the output terminal D2, the power at the coupling terminal D3 hardly changes, but the power observed at the isolation terminal D4 changes greatly.
 本実施例では、異常状態の検出前後において、回路素子80の状態が変化した場合でも、前述のとおり方向性結合器のS21特性や、送信部10の増幅器51の負荷インピーダンスは殆ど変化しないため、受信部12に伝送される第1PWM制御信号S11もほとんど不変である。 In the present embodiment, the S21 characteristic of the directional coupler and the load impedance of the amplifier 51 of the transmission unit 10 hardly change as described above even when the state of the circuit element 80 changes before and after the abnormal state is detected. The first PWM control signal S11 transmitted to the receiver 12 is also almost unchanged.
 さらに実際の動作においては、図1のゲート駆動回路1の負荷となる半導体スイッチング素子60の駆動状態が変動すると、方向性結合器70の出力端から半導体スイッチング素子60側をみた反射係数が変化する場合がある。本実施例では、フィードバック信号として結合端子出力を用いているため、図3Cを用いて説明した通り、反射係数が変化してもフィードバック信号の強度は変化しないという利点を有する。 Further, in the actual operation, when the driving state of the semiconductor switching element 60, which is the load of the gate drive circuit 1 in FIG. 1, changes, the reflection coefficient when the semiconductor switching element 60 side is viewed from the output end of the directional coupler 70 changes. There are cases. In this embodiment, since the coupling terminal output is used as the feedback signal, there is an advantage that the intensity of the feedback signal does not change even if the reflection coefficient changes, as described with reference to FIG. 3C.
 これに対し、本実施形態のスイッチング装置Aでは、方向性結合器70の主経路は電力伝送のみに用い、方向性結合器70の結合端子出力を回路素子80で伝送状態を変化させるため、二次側への電力伝送が劣化することが無く、送信部10の増幅器51の過電流やデバイス破壊を防止できるという利点がある。また、前述の通り、結合端子からの電力量は、出力端子の負荷変動に影響されないため、ゲート駆動回路1の負荷変動による異常状態の誤伝送も防止することが可能である。 On the other hand, in the switching device A of the present embodiment, the main path of the directional coupler 70 is used only for power transmission, and the output of the coupling terminal of the directional coupler 70 is changed by the circuit element 80. There is an advantage that power transmission to the next side is not deteriorated and overcurrent of the amplifier 51 of the transmission unit 10 and device destruction can be prevented. Further, as described above, the amount of electric power from the coupling terminal is not affected by the load fluctuation of the output terminal, so that it is possible to prevent erroneous transmission of the abnormal state due to the load fluctuation of the gate drive circuit 1.
 図4は、第1実施形態のフィードバック動作の電力レベルの説明図である。図4は本実施例におけるゲート駆動回路のフィードバック動作における通常動作状態、異常検出状態での各ノードにおける電力のシミュレーション結果である。 FIG. 4 is an explanatory diagram of the power level of the feedback operation of the first embodiment. FIG. 4 is a simulation result of power at each node in the normal operation state and the abnormality detection state in the feedback operation of the gate drive circuit in the present embodiment.
 一次側のノードP5において、15dB程度と十分なオンオフ差が得られており、フィードバック動作としては問題ない上に、二次側の整流回路直前のノードP3においても、伝送電力量の変化はなく、二次側への十分な電力伝送が実現できる。 At the node P5 on the primary side, a sufficient on/off difference of about 15 dB is obtained, and there is no problem as a feedback operation, and at the node P3 immediately before the rectifier circuit on the secondary side, there is no change in the amount of transmission power. Sufficient power transmission to the secondary side can be realized.
 以上のように第1実施形態に係るゲート駆動回路は、半導体スイッチング素子60を駆動する絶縁型のゲート駆動回路1であって、半導体スイッチング素子60のゲート駆動の基礎となる電力信号を生成する送信部10と、電力信号を電気的に絶縁された状態で伝送する第1絶縁素子3と、第1絶縁素子3から出力される電力信号により、半導体スイッチング素子60のゲート駆動を行う受信部12と、受信部12側で検出した状態を送信部10側に伝達する伝達回路とを備え、伝達回路は、第1絶縁素子3上の電力信号を伝送する経路とは別の絶縁素子3cを用いて、電力信号の一部を分岐させることにより前記状態を伝達する。 As described above, the gate drive circuit according to the first embodiment is the insulated gate drive circuit 1 that drives the semiconductor switching element 60, and transmits the power signal that is the basis of the gate drive of the semiconductor switching element 60. Section 10, a first insulating element 3 that transmits a power signal in an electrically insulated state, and a receiving section 12 that performs gate driving of the semiconductor switching element 60 by the power signal output from the first insulating element 3. , A transmission circuit for transmitting the state detected by the reception unit 12 side to the transmission unit 10 side, and the transmission circuit uses an insulation element 3c different from the path for transmitting the power signal on the first insulation element 3. , The state is transmitted by branching a part of the power signal.
 これによれば、回路規模の増大を抑制し、回路構成の複雑さを低減し、送信経路の特性への影響を低減することができる。例えば、電力伝送、消費電流、破壊等の観点において送信部の特性に影響を与えることなく、また、二次側に異常状態を示す信号を変調する送信回路を用いることなく、電力信号を利用することにより、二次側の異常状態を一次側に安定して伝達できるゲート駆動回路を実現することができ、回路規模の増大を抑制し、回路構成の複雑さを低減することができる。 According to this, it is possible to suppress the increase of the circuit scale, reduce the complexity of the circuit configuration, and reduce the influence on the characteristics of the transmission path. For example, the power signal is used without affecting the characteristics of the transmission unit in terms of power transmission, current consumption, breakdown, etc., and without using a transmission circuit that modulates a signal indicating an abnormal state on the secondary side. As a result, it is possible to realize a gate drive circuit that can stably transmit the abnormal state on the secondary side to the primary side, suppress an increase in the circuit scale, and reduce the complexity of the circuit configuration.
 ここで、伝達回路は、受信部12側において、電力信号の一部を分岐させてもよい。 Here, the transmission circuit may branch a part of the power signal on the receiving unit 12 side.
 ここで、伝達回路は、受信部12側に、第1絶縁素子3から出力される電力信号の一部を分岐させる方向性結合器70を有していてもよい。 Here, the transmission circuit may include a directional coupler 70 on the reception unit 12 side that branches a part of the power signal output from the first insulating element 3.
 ここで、方向性結合器70は、電力信号の一部を出力する結合端子D3を有し、伝達回路は、結合端子D3に接続された回路素子80を有し、回路素子80の導通状態を、受信部12側で検出した状態に応じて切り替えることにより、電力信号の一部の強度を変化させてもよい。 Here, the directional coupler 70 has a coupling terminal D3 that outputs a part of the power signal, and the transfer circuit has a circuit element 80 connected to the coupling terminal D3, and the conduction state of the circuit element 80 is set. The intensity of a part of the power signal may be changed by switching according to the state detected by the receiving unit 12 side.
 ここで、方向性結合器70は、第1絶縁素子3から入力される電力信号を伝送するための主経路と、主経路に伝送される電力信号の一部を分岐させる副経路と、副経路の一端に接続された結合端子D3と、副経路の他端に接続されたアイソレーション端子D4とを有し、アイソレーション端子D4は、終端処理され、結合端子D3は、電力信号の一部を出力し、伝達回路は、結合端子D3に接続され、状態に応じて導通状態を切り替えることにより電力信号の一部の強度を変化させる、受信部12側に設けられた終端素子81と、他の絶縁経路の一部を構成し、結合端子D3から終端素子81を介して入力される電力信号の一部を、受信部側から送信部側へ電気的に絶縁された状態で伝送する第2絶縁素子3cと、を有していてもよい。 Here, the directional coupler 70 includes a main path for transmitting the power signal input from the first insulating element 3, a sub path for branching a part of the power signal transmitted to the main path, and a sub path. Has a coupling terminal D3 connected to one end thereof and an isolation terminal D4 connected to the other end of the sub path, the isolation terminal D4 is terminated, and the coupling terminal D3 receives a part of the power signal. The output and transmission circuit is connected to the coupling terminal D3 and changes the strength of a part of the power signal by switching the conduction state according to the state, and the terminating element 81 provided on the receiving unit 12 side and other Second insulation that constitutes a part of the insulation path and transmits a part of the power signal input from the coupling terminal D3 through the terminating element 81 in an electrically insulated state from the reception side to the transmission side. The element 3c may be included.
 これによれば、方向性結合器70の主経路は電力伝送のみに用い、方向性結合器70の結合端子D3からの出力強度を回路素子80の導通状態によって変化させるため、二次側への電力伝送用の高周波信号R13が劣化することが無く、送信部10の増幅器51の過電流やデバイス破壊を防止できるという利点がある。また、結合端子D3からの電力量は、出力端子D2の負荷変動に影響されないため、ゲート駆動回路1の負荷変動による異常状態の誤伝送も防止することが可能である。 According to this, the main path of the directional coupler 70 is used only for power transmission, and the output intensity from the coupling terminal D3 of the directional coupler 70 is changed depending on the conduction state of the circuit element 80. There is an advantage that the high frequency signal R13 for power transmission is not deteriorated and overcurrent of the amplifier 51 of the transmission unit 10 and device destruction can be prevented. Further, since the electric energy from the coupling terminal D3 is not influenced by the load fluctuation of the output terminal D2, it is possible to prevent the erroneous transmission of the abnormal state due to the load fluctuation of the gate drive circuit 1.
 ここで、ゲート駆動回路1において、電力信号の一部を整流することにより状態に応じた電圧をもつ信号を出力する整流回路82を送信部側に備えてもよい。 Here, in the gate drive circuit 1, a rectifier circuit 82 that outputs a signal having a voltage according to the state by rectifying a part of the power signal may be provided on the transmission unit side.
 これによれば、受信部側で検出された異常状態を、異常状態に応じた電圧をもつ信号として送信部側で検出することができる。 According to this, the abnormal state detected on the receiving side can be detected on the transmitting side as a signal having a voltage according to the abnormal state.
 ここで、第1絶縁素子3は、電磁界共鳴結合素子であってもよい。 Here, the first insulating element 3 may be an electromagnetic resonance coupling element.
 また、第1実施形態に係るスイッチング装置Aは、上記のゲート駆動回路1と、ゲート駆動回路1で駆動される半導体スイッチング素子60とを備える。 Further, the switching device A according to the first embodiment includes the above gate drive circuit 1 and the semiconductor switching element 60 driven by the gate drive circuit 1.
 <第2実施形態>
 第1実施形態では、受信部12側に方向性結合器70を備えるゲート駆動回路1の構成例について説明した。これに対して、第2実施形態では、送信部10側に方向性結合器70を備えるゲート駆動回路1の構成例について説明する。
<Second Embodiment>
In the first embodiment, the configuration example of the gate drive circuit 1 including the directional coupler 70 on the receiving unit 12 side has been described. On the other hand, in the second embodiment, a configuration example of the gate drive circuit 1 including the directional coupler 70 on the transmission unit 10 side will be described.
 [2.1 ゲート駆動回路の構成]
 図5は、本実施形態のゲート駆動回路を含むスイッチング装置Aの構成を示す概略図である。図5において、図1と共通(同一又は類似の機能を有する)の構成要素には、同じ符号を付している。以下の説明では、図1との相違点であるゲート駆動回路1について詳細に説明するものとし、図1との共通部分についての説明を省略する場合がある。
[2.1 Structure of Gate Drive Circuit]
FIG. 5 is a schematic diagram showing the configuration of the switching device A including the gate drive circuit of the present embodiment. In FIG. 5, constituent elements that are common (have the same or similar functions) as in FIG. 1 are assigned the same reference numerals. In the following description, the gate drive circuit 1 which is different from FIG. 1 will be described in detail, and the description of the common parts with FIG. 1 may be omitted.
 図5において、異常検知部83、インピーダンス可変素子84、絶縁素子3c、方向性結合器70および整流回路82を含む回路部分は、受信部12側で検出した異常状態を送信部10側に伝達する伝達回路として設けられている。 In FIG. 5, the circuit portion including the abnormality detection unit 83, the impedance variable element 84, the insulating element 3c, the directional coupler 70, and the rectifier circuit 82 transmits the abnormal state detected by the reception unit 12 side to the transmission unit 10 side. It is provided as a transmission circuit.
 方向性結合器70は、電力信号を伝送して第1絶縁素子3に出力する主経路と、主経路に伝送される電力信号の一部を分岐させる副経路と、副経路の一端に接続され、電力信号の一部を出力するアイソレーション端子D4と、副経路の他端に接続された結合端子D3とを有する。 The directional coupler 70 is connected to a main path that transmits a power signal and outputs the power signal to the first insulating element 3, a sub path that branches a part of the power signal that is transmitted to the main path, and one end of the sub path. , An isolation terminal D4 for outputting a part of the power signal, and a coupling terminal D3 connected to the other end of the sub path.
 インピーダンス可変素子84は、受信部12側に設けられ、受信部側で検出した異常状態に応じてインピーダンスを変化させる。 The impedance variable element 84 is provided on the receiving unit 12 side and changes the impedance according to the abnormal state detected on the receiving unit side.
 絶縁素子3cは、送信部側の第1端子と、受信部側の第2端子とを有し、他の絶縁経路の一部を構成する。第1端子は、結合端子D3に接続され、第2端子は、インピーダンス可変素子84に接続される。この絶縁素子3cは、フィードバック用である点で伝送方向が他の絶縁素子とは違い、受信部12で検出された異常状態をインピーダンス変化として送信部10にフィードバックする経路である。送信部10に設けられた方向性結合器70の結合端子D3の出力は、フィードバック用の絶縁素子3cに接続され、受信部12側に設けられたインピーダンス可変素子84に接続されている。 The insulating element 3c has a first terminal on the transmitting side and a second terminal on the receiving side, and constitutes a part of another insulating path. The first terminal is connected to the coupling terminal D3, and the second terminal is connected to the impedance variable element 84. The insulating element 3c is a path for feeding back the abnormal state detected by the receiving unit 12 to the transmitting unit 10 as an impedance change, unlike the other insulating elements in the transmission direction in that it is for feedback. The output of the coupling terminal D3 of the directional coupler 70 provided in the transmission unit 10 is connected to the feedback insulation element 3c and is connected to the impedance variable element 84 provided on the reception unit 12 side.
 方向性結合器70のアイソレーション端子D4は、整流回路82に接続されている。整流回路82は高周波電力信号であるフィードバック信号R14を受けて、電圧に変換する回路である。 The isolation terminal D4 of the directional coupler 70 is connected to the rectifier circuit 82. The rectifier circuit 82 is a circuit that receives the feedback signal R14, which is a high frequency power signal, and converts it into a voltage.
 受信部12に設けられた異常検知部83は、二次側の異常状態E11を検出し、制御信号C11を生成する回路であり、その制御信号C11によりインピーダンス可変素子84のインピーダンス値を制御する。 The abnormality detection unit 83 provided in the reception unit 12 is a circuit that detects an abnormal state E11 on the secondary side and generates a control signal C11, and controls the impedance value of the impedance variable element 84 by the control signal C11.
 [2.2 フィードバック動作]
 次に、本実施形態に係るゲート駆動回路1のフィードバック動作について、図6A~図7を参照しつつ具体的に説明する。図6A~図6Eは、第2実施形態の方向性結合器70の結合端子D3に接続されるインピーダンス可変素子84の第1例~第5例を示す図である。
[2.2 Feedback operation]
Next, the feedback operation of the gate drive circuit 1 according to the present embodiment will be specifically described with reference to FIGS. 6A to 7. 6A to 6E are diagrams showing first to fifth examples of the impedance variable element 84 connected to the coupling terminal D3 of the directional coupler 70 of the second embodiment.
 ゲート駆動回路1が通常に動作している場合、インピーダンス可変素子84は方向性結合器70の方向性が良い状態、たとえば50オームに設定される。 When the gate drive circuit 1 is operating normally, the impedance variable element 84 is set to a state where the directional coupler 70 has good directivity, for example, 50 ohms.
 二次側の異常状態E11が異常検知部83により検出されると、制御信号C11によりインピーダンス可変素子84は、方向性結合器70の方向性を劣化させる状態、例えば500オームに設定される。先に図3Bを用いて説明したように、方向性結合器70の結合端子D3の終端インピーダンスを変化させると、方向結合器のアイソレーション端子D4から出力される電力量が変化する。本実施例は、係る方向性結合器の特性を利用して絶縁素子3を介したインピーダンス終端条件の変化により、二次側から一次側への信号のやりとりを行うことを特徴とする。 When the abnormal state E11 on the secondary side is detected by the abnormality detection unit 83, the variable impedance element 84 is set by the control signal C11 to a state that deteriorates the directivity of the directional coupler 70, for example, 500 ohms. As described above with reference to FIG. 3B, when the terminating impedance of the coupling terminal D3 of the directional coupler 70 is changed, the amount of power output from the isolation terminal D4 of the directional coupler changes. The present embodiment is characterized in that a signal is exchanged from the secondary side to the primary side by changing the impedance termination condition via the insulating element 3 using the characteristic of the directional coupler.
 本実施形態のスイッチング装置Aでは、方向性結合器70の主経路は電力伝送のみに用い、送信部10に設けた方向性結合器70の結合端子出力をインピーダンス可変素子84で終端状態を変化させるため、二次側への電力伝送が劣化することが無く、送信部10の増幅器51の過電流やデバイス破壊を防止できるという利点がある。 In the switching device A of the present embodiment, the main path of the directional coupler 70 is used only for power transmission, and the termination terminal state of the coupling terminal output of the directional coupler 70 provided in the transmission unit 10 is changed by the impedance variable element 84. Therefore, there is an advantage that power transmission to the secondary side does not deteriorate, and overcurrent of the amplifier 51 of the transmission unit 10 and device destruction can be prevented.
 なお、図6A~図6Eに示したインピーダンス可変素子84の構成例において、制御端子Vctlに入力される制御信号C11に応じて変化させるインピーダンス状態は、多値であってもよく、連続的に変化させてもよい。 In the configuration example of the variable impedance element 84 shown in FIGS. 6A to 6E, the impedance state changed in accordance with the control signal C11 input to the control terminal Vctl may be multivalued or continuously changed. You may let me.
 なお、方向性結合器70の方向性を変化させるためのインピーダンス可変素子84の値としては、実抵抗である必要はなく、リアクタンス成分を含んでも良い。 The value of the variable impedance element 84 for changing the directivity of the directional coupler 70 does not have to be an actual resistance, and may include a reactance component.
 図7は、第2実施形態のフィードバック動作の電力レベルの説明図である。図7は本実施例におけるゲート駆動回路のフィードバック動作における通常動作状態、異常検出状態での各ノードにおける電力のシミュレーション結果である。 FIG. 7 is an explanatory diagram of the power level of the feedback operation of the second embodiment. FIG. 7 is a simulation result of power at each node in the normal operation state and the abnormality detection state in the feedback operation of the gate drive circuit in the present embodiment.
 一次側のノードP5において、20dB程度と十分なオンオフ差が得られており、フィードバック動作としては問題ない上に、二次側の整流回路直前のノードP3においても、伝送電力量の変化はなく、二次側への十分な電力伝送が実現できる。 At the node P5 on the primary side, a sufficient on/off difference of about 20 dB is obtained, and there is no problem in the feedback operation, and there is no change in the amount of transmission power even at the node P3 immediately before the rectifier circuit on the secondary side. Sufficient power transmission to the secondary side can be realized.
 本実施形態は、第1実施形態のように受信部に用いる半導体チップにおいて、高周波で良好に動作するスイッチ素子や厚膜配線を使った方向性結合器を作成する必要がなく、より汎用的な安価な半導体プロセスを利用でき、ゲート駆動回路を構成する際のプロセス選択の自由度が増えるという利点がある。 The present embodiment does not require a directional coupler using a switch element or thick film wiring that operates well at high frequencies in the semiconductor chip used in the receiving unit as in the first embodiment, and is more versatile. There is an advantage that an inexpensive semiconductor process can be used and the degree of freedom in process selection in forming a gate drive circuit is increased.
 以上のように第2実施形態に係るゲート駆動回路において、伝達回路は、送信部10側に、第1絶縁素子3に入力される電力信号の一部を分岐させる方向性結合器70を有する。 As described above, in the gate drive circuit according to the second embodiment, the transmission circuit has, on the transmission unit 10 side, the directional coupler 70 that branches a part of the power signal input to the first insulating element 3.
 これによれば、例えば、方向性結合器70を送信部10に備え受信部12には備えないので、例えば、受信部12を半導体チップとして構成する場合に、厚膜配線を使った方向性結合器を作成する必要がなく、より汎用的な安価な半導体プロセスを利用でき、プロセス選択の自由度が増えるという利点がある。 According to this, for example, since the directional coupler 70 is provided in the transmitting unit 10 and not in the receiving unit 12, for example, when the receiving unit 12 is configured as a semiconductor chip, the directional coupling using thick film wiring is used. There is an advantage that a general-purpose and inexpensive semiconductor process can be used without the need to create a container, and the degree of freedom in process selection increases.
 ここで、方向性結合器70は、電力信号を伝送して第1絶縁素子3に出力する主経路と、主経路に伝送される電力信号の一部を分岐させる副経路と、副経路の一端に接続され、電力信号の一部を出力するアイソレーション端子D4と、副経路の他端に接続された結合端子D3とを有し、伝達回路は、受信部12側に設けられ、受信部12側で検出した状態に応じてインピーダンスを変化させるインピーダンス可変素子84と、送信部10側の第1端子と、受信部12側の第2端子とを有し、上記他の絶縁経路の一部を構成する第2絶縁素子3cとを備え、第1端子は、結合端子D3に接続され、第2端子は、インピーダンス可変素子84に接続されてもよい。 Here, the directional coupler 70 includes a main path that transmits a power signal and outputs the power signal to the first insulating element 3, a sub path that branches a part of the power signal that is transmitted to the main path, and one end of the sub path. And a coupling terminal D3 connected to the other end of the auxiliary path, the transmission circuit being provided on the receiving unit 12 side, The impedance variable element 84 that changes the impedance according to the state detected on the side, the first terminal on the side of the transmitter 10 and the second terminal on the side of the receiver 12 are provided, and a part of the other insulating path is provided. The second terminal may be connected to the coupling terminal D3, and the second terminal may be connected to the impedance variable element 84.
 <第3実施形態>
 第3実施形態では、第1実施形態の図1における回路素子80および終端素子81の代わりに、インピーダンス可変素子84を備える構成例について説明する。
<Third Embodiment>
In the third embodiment, a configuration example in which an impedance variable element 84 is provided instead of the circuit element 80 and the termination element 81 in FIG. 1 of the first embodiment will be described.
 [3.1 ゲート駆動回路の構成]
 図8は、本実施形態のスイッチング装置Aの構成を示す概略図である。図8において、図1と共通(同一又は類似の機能を有する)の構成要素には、同じ符号を付している。以下の説明では、図1との相違点であるゲート駆動回路1について詳細に説明するものとし、図1との共通部分についての説明を省略する場合がある。図8のゲート駆動回路1は、図1と比べて、方向性結合器70の接続関係と、回路素子80および終端素子81の代わりにインピーダンス可変素子84を備える点とが異なっている。
[3.1 Configuration of Gate Drive Circuit]
FIG. 8 is a schematic diagram showing the configuration of the switching device A of the present embodiment. In FIG. 8, constituent elements common to those in FIG. 1 (having the same or similar functions) are designated by the same reference numerals. In the following description, the gate drive circuit 1 which is different from FIG. 1 will be described in detail, and the description of the common parts with FIG. 1 may be omitted. The gate drive circuit 1 of FIG. 8 is different from that of FIG. 1 in that the directional coupler 70 is connected and an impedance variable element 84 is provided instead of the circuit element 80 and the termination element 81.
 図8において、異常検知部83、インピーダンス可変素子84、方向性結合器70、絶縁素子3c、整流回路82を含む回路部分は、受信部12側で検出した異常状態を送信部10側に伝達する伝達回路として設けられている。 In FIG. 8, the circuit portion including the abnormality detecting unit 83, the impedance variable element 84, the directional coupler 70, the insulating element 3c, and the rectifying circuit 82 transmits the abnormal state detected by the receiving unit 12 side to the transmitting unit 10 side. It is provided as a transmission circuit.
 方向性結合器70は、第1絶縁素子3からの電力信号を伝送するための主経路と、主経路に伝送される電力信号の一部を分岐させる副経路と、副経路の一端に接続され、電力信号の一部を出力するアイソレーション端子D4と、副経路の他端に接続された結合端子D3とを有する。 The directional coupler 70 is connected to a main path for transmitting the power signal from the first insulating element 3, a sub path for branching a part of the power signal transmitted to the main path, and one end of the sub path. , An isolation terminal D4 for outputting a part of the power signal, and a coupling terminal D3 connected to the other end of the sub path.
 インピーダンス可変素子84は、結合端子D3に接続され、受信部12側で検出した異常状態に応じてインピーダンスを変化させる。 The impedance variable element 84 is connected to the coupling terminal D3 and changes the impedance according to the abnormal state detected by the receiving unit 12 side.
 絶縁素子3cは、絶縁素子3とは異なる他の絶縁経路の一部を構成し、アイソレーション端子D4から出力される電力信号の一部を、受信部12側から送信部10側へ電気的に絶縁された状態で伝送する。この絶縁素子3cは、フィードバック用であり、他の絶縁素子とは逆方向に受信部12のフィードバック信号R14を送信部10にフィードバックする経路である。受信部に設けられた方向性結合器70の結合端子D3の出力は、インピーダンス可変素子84に接続されている。 The insulating element 3c constitutes a part of another insulating path different from the insulating element 3 and electrically transfers a part of the power signal output from the isolation terminal D4 from the receiving unit 12 side to the transmitting unit 10 side. Transmit in an insulated state. The insulating element 3c is for feedback, and is a path for feeding back the feedback signal R14 of the receiver 12 to the transmitter 10 in the opposite direction to the other insulating elements. The output of the coupling terminal D3 of the directional coupler 70 provided in the receiver is connected to the impedance variable element 84.
 方向性結合器70のアイソレーション端子D4は、絶縁素子3cに接続されており、フィードバック素子3cの送信部側は、整流回路82に接続され電圧として検出される。整流回路82は高周波電力信号であるフィードバック信号R14を受けて、電圧に変換する回路である。 The isolation terminal D4 of the directional coupler 70 is connected to the insulating element 3c, and the transmitter side of the feedback element 3c is connected to the rectifier circuit 82 and detected as a voltage. The rectifier circuit 82 is a circuit that receives the feedback signal R14, which is a high frequency power signal, and converts it into a voltage.
 受信部12に設けられた異常検知部83は、二次側の異常状態E11を検出し、制御信号C11を生成する回路であり、その制御信号C11によりインピーダンス可変素子84のインピーダンス値を制御する。 The abnormality detection unit 83 provided in the reception unit 12 is a circuit that detects an abnormal state E11 on the secondary side and generates a control signal C11, and controls the impedance value of the impedance variable element 84 by the control signal C11.
 [3.2 フィードバック動作]
 次に、本実施形態に係るゲート駆動回路1のフィードバック動作について、図6A~図7を参照しつつ具体的に説明する。
[3.2 Feedback operation]
Next, the feedback operation of the gate drive circuit 1 according to the present embodiment will be specifically described with reference to FIGS. 6A to 7.
 ゲート駆動回路1が通常に動作している場合、インピーダンス可変素子84は方向性結合器70の方向性が良い状態、たとえば50オームに設定される。 When the gate drive circuit 1 is operating normally, the impedance variable element 84 is set to a state where the directional coupler 70 has good directivity, for example, 50 ohms.
 二次側の異常状態E11が異常検知部83により検出されると、制御信号C11によりインピーダンス可変素子84は、方向性結合器70の方向性を劣化させる状態、例えば500オームに設定される。先に図3Bを用いて説明したように、方向性結合器70の結合端子D3の終端インピーダンスを変化させると、方向結合器のアイソレーション端子D4から出力される電力量が変化する。本実施例は、係る方向性結合器の特性を利用して絶縁素子3を介したインピーダンス終端条件の変化により、二次側から一次側への信号のやりとりを行うことを特徴とする。 When the abnormal state E11 on the secondary side is detected by the abnormality detection unit 83, the variable impedance element 84 is set by the control signal C11 to a state that deteriorates the directivity of the directional coupler 70, for example, 500 ohms. As described above with reference to FIG. 3B, when the terminating impedance of the coupling terminal D3 of the directional coupler 70 is changed, the amount of power output from the isolation terminal D4 of the directional coupler changes. The present embodiment is characterized in that a signal is exchanged from the secondary side to the primary side by changing the impedance termination condition via the insulating element 3 using the characteristic of the directional coupler.
 本実施形態のスイッチング装置Aでは、方向性結合器70の主経路は電力伝送のみに用い、送信部10に設けた方向性結合器70の結合端子出力をインピーダンス可変素子84で終端状態を変化させるため、二次側への電力伝送用の高周波信号R13が劣化することが無く、送信部10の増幅器51の過電流やデバイス破壊を防止できるという利点がある。 In the switching device A of the present embodiment, the main path of the directional coupler 70 is used only for power transmission, and the termination terminal state of the coupling terminal output of the directional coupler 70 provided in the transmission unit 10 is changed by the impedance variable element 84. Therefore, there is an advantage that the high frequency signal R13 for power transmission to the secondary side is not deteriorated and overcurrent of the amplifier 51 of the transmission unit 10 and device destruction can be prevented.
 なお、本実施形態のインピーダンス可変素子84において、制御端子Vctlに入力される制御信号C11に応じて変化させるインピーダンス状態は、多値であってもよく、連続的に変化させてもよい。 In the variable impedance element 84 of the present embodiment, the impedance state changed according to the control signal C11 input to the control terminal Vctl may be multivalued or may be continuously changed.
 なお、方向性結合器70の方向性を変化させるためのインピーダンス可変素子84の値としては、実抵抗である必要はなく、リアクタンス成分を含んでも良い。 The value of the variable impedance element 84 for changing the directivity of the directional coupler 70 does not have to be an actual resistance, and may include a reactance component.
 本実施形態は、第1実施形態のように受信部に用いる半導体チップにおいて、高周波で良好に動作するスイッチ素子を作成する必要がなく、送信部に用いる半導体チップにおいても、厚膜配線を使った方向性結合器を作成する必要がないなど、より汎用的な安価な半導体プロセスを利用でき、ゲート駆動回路を構成する際のプロセス選択の自由度が増える利点がある。 In the present embodiment, unlike the first embodiment, it is not necessary to create a switch element that operates well at high frequency in the semiconductor chip used in the receiving unit, and the thick film wiring is used also in the semiconductor chip used in the transmitting unit. There is an advantage that a more general-purpose and inexpensive semiconductor process can be used, such as no need to make a directional coupler, and the degree of freedom in process selection when configuring a gate drive circuit increases.
 以上のように第3実施形態に係るゲート駆動回路において、方向性結合器70は、結合端子D3と、電力信号の一部を出力するアイソレーション端子D4とを有し、伝達回路は、結合端子D3に接続されたインピーダンス可変素子84を有し、インピーダンス可変素子84のインピーダンスを、受信部12側で検出した状態に応じて切り替えることにより、アイソレーション端子D4から出力される電力信号の一部の強度を変化させる。 As described above, in the gate drive circuit according to the third embodiment, the directional coupler 70 has the coupling terminal D3 and the isolation terminal D4 that outputs a part of the power signal, and the transmission circuit has the coupling terminal. The impedance variable element 84 connected to D3 is provided, and by switching the impedance of the impedance variable element 84 according to the state detected on the receiving unit 12 side, a part of the power signal output from the isolation terminal D4 is Change the intensity.
 ここで、方向性結合器70は、第1絶縁素子3からの電力信号を伝送するための主経路と、主経路に伝送される電力信号の一部を分岐させる副経路と、副経路の一端に接続され、電力信号の一部を出力するアイソレーション端子D4と、副経路の他端に接続された結合端子D3とを有し、伝達回路は、結合端子D3に接続され、受信部側で検出した状態に応じてインピーダンスを変化させるインピーダンス素子84と、他の絶縁経路の一部を構成し、アイソレーション端子D4から出力される記電力信号の一部を、受信部12側から送信部10側へ電気的に絶縁された状態で伝送する第2絶縁素子3cと、を有していてもよい。 Here, the directional coupler 70 includes a main path for transmitting the power signal from the first insulating element 3, a sub path for branching a part of the power signal transmitted to the main path, and one end of the sub path. And a coupling terminal D3 connected to the other end of the auxiliary path, and the transmission circuit is connected to the coupling terminal D3 and is connected to the receiving unit side. An impedance element 84 that changes the impedance according to the detected state and a part of another insulation path, and a part of the power signal output from the isolation terminal D4 is transferred from the receiver 12 side to the transmitter 10. And a second insulating element 3c that transmits to the side in an electrically insulated state.
 <第4実施形態>
 第4実施形態では、第1実施形態の構成に加えて、受信部12側で異常状態を検知した場合に、受信部12のゲート駆動を停止する構成例について説明する。
<Fourth Embodiment>
In the fourth embodiment, in addition to the configuration of the first embodiment, a configuration example in which the gate drive of the receiving unit 12 is stopped when the receiving unit 12 detects an abnormal state will be described.
 [4.1 ゲート駆動回路の構成]
 図9は、本実施形態のゲート駆動回路を含むスイッチング装置Aの構成例を示す概略図である。図9において、図1と共通(同一又は類似の機能を有する)の構成要素には、同じ符号を付している。以下の説明では、図1との相違点であるゲート駆動回路1について詳細に説明するものとし、図1との共通部分についての説明を省略する場合がある。図9は、図1と比べて、ドライバ部85が追加されている点と、インピーダンス可変素子84がさらに異常を示す信号disを出力する点とが異なっている。以下、異なる点を中心に説明する。
[4.1 Configuration of Gate Drive Circuit]
FIG. 9 is a schematic diagram showing a configuration example of the switching device A including the gate drive circuit of the present embodiment. In FIG. 9, the same components as those in FIG. 1 (having the same or similar functions) are designated by the same reference numerals. In the following description, the gate drive circuit 1 which is different from FIG. 1 will be described in detail, and the description of the common parts with FIG. 1 may be omitted. 9 is different from FIG. 1 in that a driver unit 85 is added and that the variable impedance element 84 further outputs a signal dis indicating an abnormality. Hereinafter, different points will be mainly described.
 ドライバ部85は、駆動トランジスタ5c、5dを駆動する回路であり、ディスエーブル端子を有する。ディスエーブル端子に入力される信号disが異常を示す場合、ドライバ部85は駆動トランジスタ5c、5dの駆動を停止し、ディスエーブル端子に入力される信号disが異常を示さない場合、ドライバ部85は駆動トランジスタ5c、5dの駆動を停止しない。 The driver unit 85 is a circuit that drives the drive transistors 5c and 5d and has a disable terminal. When the signal dis input to the disable terminal indicates an abnormality, the driver unit 85 stops driving the drive transistors 5c and 5d. When the signal dis input to the disable terminal indicates no abnormality, the driver unit 85 The drive of the drive transistors 5c and 5d is not stopped.
 フィードバック用の絶縁素子3cは、他の絶縁素子とは逆方向に受信部12のフィードバック信号R14を送信部10にフィードバックする経路である。方向性結合器70の結合端子D3の出力には、回路素子80が接続されており、その出力がフィードバック素子3cに接続されており、フィードバック素子3cの送信部側は、整流回路82に接続され電圧として検出される。整流回路82は高周波電力信号であるフィードバック信号R14を受けて、電圧に変換する回路である。 The feedback insulating element 3c is a path for feeding back the feedback signal R14 of the receiving section 12 to the transmitting section 10 in the opposite direction to the other insulating elements. The circuit element 80 is connected to the output of the coupling terminal D3 of the directional coupler 70, the output thereof is connected to the feedback element 3c, and the transmitter side of the feedback element 3c is connected to the rectifier circuit 82. It is detected as a voltage. The rectifier circuit 82 is a circuit that receives the feedback signal R14, which is a high frequency power signal, and converts it into a voltage.
 方向性結合器70のアイソレーション端子D4は、終端素子81で一定インピーダンス(例えば50ohm)に終端されている。 The isolation terminal D4 of the directional coupler 70 is terminated by a terminating element 81 with a constant impedance (for example, 50 ohm).
 増幅器55は、PWM電源101からのPWM電圧Vmに応じて発振器50の出力を振幅変調し、PWM制御信号R15として絶縁部11に出力する。 The amplifier 55 amplitude-modulates the output of the oscillator 50 according to the PWM voltage Vm from the PWM power supply 101, and outputs it to the insulating unit 11 as a PWM control signal R15.
 増幅器55の構成は特に限定されないが、例えば、増幅器55を構成するトランジスタのベースまたはゲートの電位を変化させてバイアス状態を変化させる方法や、トランジスタのコレクタやドレインに供給する電源を変化させる方法がある。また、アッテネータやSWを単体で、あるいは増幅器と組み合わせて減衰量を切り替えることにより、同様の機能を実現するようにしてもよい。 The configuration of the amplifier 55 is not particularly limited, but, for example, a method of changing the bias state by changing the potential of the base or the gate of the transistor forming the amplifier 55, or a method of changing the power supply to the collector and drain of the transistor are available. is there. Further, the same function may be realized by switching the attenuation amount by using the attenuator or SW alone or in combination with the amplifier.
 整流回路2cでは、絶縁素子3aを介して送信部10から受けたPWM制御信号R15を整流し、電圧パルス信号としてドライバ部85に出力する。整流回路2cの接地端子は、二次側接地201に接続されている。本実施例においては、整流回路2cはドライバ部85を駆動するため正電圧を発生する。 The rectifier circuit 2c rectifies the PWM control signal R15 received from the transmission unit 10 via the insulating element 3a and outputs it as a voltage pulse signal to the driver unit 85. The ground terminal of the rectifier circuit 2c is connected to the secondary side ground 201. In the present embodiment, the rectifier circuit 2c drives the driver unit 85 and thus generates a positive voltage.
 ドライバ部85は、駆動トランジスタ5c、5dを駆動する回路であり、駆動トランジスタ5c、5dは例えば高耐圧のCMOSトランジスタであり、5cにpMOS、5dにnMOSを使用し、半導体スイッチング素子60のゲートを駆動する。 The driver unit 85 is a circuit that drives the drive transistors 5c and 5d. The drive transistors 5c and 5d are, for example, high-voltage CMOS transistors, and 5c is a pMOS and 5d is an nMOS. To drive.
 ゲート駆動回路1が通常に動作している場合、回路素子80は非導通状態であるが、二次側の異常状態E11が異常検知部83により検出されると、制御信号C11により回路素子80が導通状態となり、一次側に異常状態を高周波電力信号でフィードバックするとともに、制御信号C12によりドライバ部85をオフ状態とし、半導体スイッチング素子60をオフ状態とし、二次側での保護動作を行う。 When the gate drive circuit 1 is operating normally, the circuit element 80 is in a non-conductive state, but when the abnormal state E11 on the secondary side is detected by the abnormality detection unit 83, the circuit element 80 is turned on by the control signal C11. The conduction state is established, the abnormal state is fed back to the primary side by a high frequency power signal, the driver section 85 is turned off by the control signal C12, the semiconductor switching element 60 is turned off, and the protection operation is performed on the secondary side.
 本実施形態は、第1実施形態に比べて絶縁素子の数が少なく構成でき、小型化を実現できるとともに、一次側への異常状態のフィードバックだけでなく、二次側の保護動作も同時に行うことが可能である。 Compared with the first embodiment, the present embodiment can be configured with a smaller number of insulating elements, can be downsized, and can perform not only the feedback of the abnormal state to the primary side but also the protection operation of the secondary side at the same time. Is possible.
 以上のように第4実施形態に係るゲート駆動回路は、受信部12側で検知した状態に応じて、受信部12のゲート駆動を停止する。 As described above, the gate drive circuit according to the fourth embodiment stops the gate drive of the reception unit 12 according to the state detected by the reception unit 12 side.
 これによれば、受信部12側に異常状態が生じたときに、受信部12の動作を停止するのでゲート駆動回路1を保護することができる。 According to this, when the abnormal state occurs on the receiving unit 12 side, the operation of the receiving unit 12 is stopped, so that the gate drive circuit 1 can be protected.
 [4.2 変形例]
 次に、ゲート駆動回路の変形例について説明する。
[4.2 Modification]
Next, a modified example of the gate drive circuit will be described.
 図11は、変形例におけるゲート駆動回路の構成を含むスイッチング装置を示すブロック図である。図11のゲート駆動回路1は、方向性結合器70が送信部10側に設けられる点が、第2実施形態の図5と類似している。けれども、図11のゲート駆動回路1は、図5と比べて、方向性結合器70の接続関係と、第2絶縁素子3cを備えない点と、インピーダンス素子900が追加された点とが異なっている。また、変形例のゲート駆動回路においても、半導体スイッチング素子60のゲートを駆動する動作は、第1実施形態と同じであるが、フィードバックの動作は異なっている。以下、異なる点を中心に説明する。 FIG. 11 is a block diagram showing a switching device including a configuration of a gate drive circuit in a modified example. The gate drive circuit 1 of FIG. 11 is similar to FIG. 5 of the second embodiment in that the directional coupler 70 is provided on the transmission unit 10 side. However, the gate drive circuit 1 of FIG. 11 differs from that of FIG. 5 in the connection relationship of the directional coupler 70, the point that the second insulating element 3c is not provided, and the point that the impedance element 900 is added. There is. Also, in the gate drive circuit of the modified example, the operation of driving the gate of the semiconductor switching element 60 is the same as that of the first embodiment, but the feedback operation is different. Hereinafter, different points will be mainly described.
 図11において、異常検知部83、インピーダンス素子900、絶縁素子3、方向性結合器70、終端素子81および整流回路82を含む回路部分を伝達回路として設けられている。 In FIG. 11, a circuit portion including the abnormality detecting unit 83, the impedance element 900, the insulating element 3, the directional coupler 70, the terminating element 81, and the rectifying circuit 82 is provided as a transmission circuit.
 方向性結合器70は、電力信号を伝送して第1絶縁素子3に出力する主経路と、主経路に伝送される電力信号の一部を分岐させる副経路と、副経路の一端に接続され、電力信号の一部を出力するアイソレーション端子D4と、副経路の他端に接続され、終端処理された結合端子D3とを有する。 The directional coupler 70 is connected to a main path that transmits a power signal and outputs the power signal to the first insulating element 3, a sub path that branches a part of the power signal that is transmitted to the main path, and one end of the sub path. , An isolation terminal D4 for outputting a part of the power signal, and a coupling terminal D3 that is connected to the other end of the sub path and is terminated.
 インピーダンス素子900は、受信部側で検出した異常状態に応じてインピーダンスを変化させ、受信部側で第1絶縁素子3に接続される。具体的には、受信部に設けられた異常検知部83は、二次側の異常状態E11を検出し、制御信号C11を生成する回路であり、その制御信号C11によりインピーダンス素子900の状態を制御する。具体的には、インピーダンス素子900は、通常動作時には高インピーダンスであり主経路の電力伝送に影響しないが、異常検出時は低インピーダンスとなる。 Impedance element 900 changes impedance according to an abnormal state detected on the receiving side, and is connected to first insulating element 3 on the receiving side. Specifically, the abnormality detection unit 83 provided in the reception unit is a circuit that detects an abnormal state E11 on the secondary side and generates a control signal C11, and controls the state of the impedance element 900 by the control signal C11. To do. Specifically, the impedance element 900 has a high impedance during normal operation and does not affect power transmission through the main path, but has a low impedance when an abnormality is detected.
 このインピーダンス変化により送信部の方向性結合器70の出力端子D2の反射係数が増大し、アイソレーション端子D4の出力が増大し、整流回路82への入力電力が増大する。 Due to this impedance change, the reflection coefficient of the output terminal D2 of the directional coupler 70 of the transmission section increases, the output of the isolation terminal D4 increases, and the input power to the rectifier circuit 82 increases.
 図12Aは、変形例におけるゲート駆動回路のフィードバック動作の電力レベル説明図である。図12Aは、フードバック動作において通常動作時と異常検出時における方向性結合器70の出力端子D2から半導体スイッチング素子60側をみた負荷インピーダンスの変化を示す。通常動作時は、インピーダンス素子900が高インピーダンスとなり、反射係数は殆どゼロ(50オーム系に殆ど影響しない)であるが、異常検出時には、インピーダンス素子が低インピーダンスとなり、反射係数が0.7程度まで増大している。 FIG. 12A is a power level explanatory diagram of the feedback operation of the gate drive circuit in the modified example. FIG. 12A shows changes in the load impedance from the output terminal D2 of the directional coupler 70 to the semiconductor switching element 60 side during normal operation and during abnormality detection in the hood back operation. During normal operation, the impedance element 900 has a high impedance and the reflection coefficient is almost zero (it hardly affects the 50 ohm system), but when an abnormality is detected, the impedance element becomes a low impedance and the reflection coefficient is up to about 0.7. It is increasing.
 この方式において、安定したフィードバックを行うためには、反射係数の変動を大きくし、整流回路82への入力電力の差異を大きくする必要がある。ただし、電力伝送用の高周波信号R13による二次側電源のための受信側への電力伝送量が減少するので、バランスをとる必要がある。 In this method, in order to perform stable feedback, it is necessary to increase the fluctuation of the reflection coefficient and increase the difference in the input power to the rectifier circuit 82. However, since the amount of power transmitted to the receiving side for the secondary side power source by the high frequency signal R13 for power transmission decreases, it is necessary to make a balance.
 図12Bは、変形例のゲート駆動回路における通常動作状態、異常検出状態での各ノードにおける電力のシミュレーション結果である。 FIG. 12B is a simulation result of electric power in each node in the normal operation state and the abnormality detection state in the gate drive circuit of the modified example.
 一次側のノードP5において、10dB程度と十分なオンオフ差が得られており、フィードバック動作としては問題ない。 ∙ The primary side node P5 has a sufficient on/off difference of about 10 dB, so there is no problem as a feedback operation.
 以上のように変形例に係るゲート駆動回路は、半導体スイッチング素子60を駆動する絶縁型のゲート駆動回路であって、半導体スイッチング素子60のゲート駆動の基礎となる電力信号を生成する送信部10と、電力信号を電気的に絶縁された状態で伝送する第1絶縁素子3と、第1絶縁素子3から出力される電力信号により、半導体スイッチング素子60のゲート駆動を行う受信部12と、受信部12側で検出した状態を送信部側に伝達する伝達回路とを備え、伝達回路は、電力信号の一部を分岐させる方向性結合器70を有し、電力信号の一部によって状態を伝達する。 As described above, the gate drive circuit according to the modified example is an insulating type gate drive circuit that drives the semiconductor switching element 60, and includes a transmitter 10 that generates a power signal that is a basis for gate drive of the semiconductor switching element 60. A first insulation element 3 that transmits a power signal in an electrically insulated state, a reception unit 12 that performs gate driving of the semiconductor switching element 60 by a power signal output from the first insulation element 3, and a reception unit A transmission circuit for transmitting the state detected on the 12 side to the transmission section side, the transmission circuit having a directional coupler 70 for branching a part of the power signal, and transmitting the state by a part of the power signal. ..
 ここで、方向性結合器70は、電力信号を伝送して第1絶縁素子3に出力する主経路と、主経路に伝送される電力信号の一部を分岐させる副経路と、副経路の一端に接続され、電力信号の一部を出力するアイソレーション端子D4と、副経路の他端に接続され、終端処理された結合端子D3とを有し、伝達回路は、受信部12側で検出した状態に応じてインピーダンスを変化させ、受信部12側で第1絶縁素子3に接続されたインピーダンス素子900を備えてもよい。 Here, the directional coupler 70 includes a main path that transmits a power signal and outputs the power signal to the first insulating element 3, a sub path that branches a part of the power signal that is transmitted to the main path, and one end of the sub path. And a coupling terminal D3 connected to the other end of the auxiliary path, which outputs a part of the power signal, and a terminated coupling terminal D3, and the transmission circuit detects on the receiving unit 12 side. An impedance element 900 that changes the impedance according to the state and is connected to the first insulating element 3 on the receiving unit 12 side may be provided.
 一つまたは複数の態様に係るゲート駆動回路1について、実施形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。 The gate drive circuit 1 according to one or more aspects has been described based on the embodiment, but the present disclosure is not limited to this embodiment. As long as it does not depart from the gist of the present disclosure, various modifications that can be conceived by those skilled in the art are made to the present embodiment, and forms constructed by combining components in different embodiments are also included in the scope of the present disclosure. ..
 たとえば、上記第1~第3実施形態において、ミキサー52に代えて、発振器50の出力を増幅する増幅器と、増幅器の出力を切り替えて第1及び第2PWM制御信号R11、R12として絶縁部11に出力するSPDTスイッチとを備える構成にしてもよい。 For example, in the first to third embodiments described above, instead of the mixer 52, an amplifier that amplifies the output of the oscillator 50 and an output of the amplifier are switched and output to the insulating unit 11 as the first and second PWM control signals R11 and R12. It may be configured to include an SPDT switch that operates.
 上記第1~第4実施形態において、方向性結合器70は50オーム設計としたが、挿入箇所に応じたインピーダンス設計、または半導体プロセスの層間膜で設計可能なインピーダンス設計としてもよく、それぞれのインピーダンスに応じて、アイソレーション端子を終端するとよい。 In the above-described first to fourth embodiments, the directional coupler 70 is designed to have 50 ohms, but it may be designed to have an impedance according to the insertion location or an impedance design that can be designed by an interlayer film of a semiconductor process. The isolation terminal may be terminated accordingly.
 また、半導体スイッチング素子60の駆動状態に対する誤検出を防止するためには、方向性結合器70は方向性の良いものが望ましいが、方向性が悪い方向性結合器や、ひいては方向性のない容量による疎結合を用いることも可能である。 Further, in order to prevent erroneous detection of the driving state of the semiconductor switching element 60, it is desirable that the directional coupler 70 has a good directional property, but a directional coupler having a poor directional property or, eventually, a non-directional capacitance. It is also possible to use loose coupling by.
 また、第1~第4実施形態においては、異常検知部83、インピーダンス可変素子84は、一般的なゲート駆動回路の保護機能として用いられるDESAT(スイッチング素子のDesaturation状態を検出)やUVLO(Under Voltage Lock Out)などの方式での異常状態を検出し、電圧に変換する回路であり、比較器やバンドギャップレギュレータなど一般的なアナログ回路の組み合わせにより、容易に実現可能である。 In addition, in the first to fourth embodiments, the abnormality detection unit 83 and the variable impedance element 84 are used as a protection function of a general gate drive circuit such as DESAT (detects the desaturation state of the switching element) and UVLO (Under Voltage). Lock Out) is a circuit that detects an abnormal condition and converts it into a voltage, and can be easily realized by combining general analog circuits such as a comparator and bandgap regulator.
 また、第1~第4実施形態では、回路素子80はオンオフの2値制御としたが、2次側での異なる異常状態を区別するため、あるいは、2次側で検出したアナログ信号そのものを1次側でモニタするために、多値制御や連続的なアナログ制御での二次側から一次側へのフィードバックも実現可能である。 Further, in the first to fourth embodiments, the circuit element 80 is binary control of ON/OFF, but in order to distinguish different abnormal states on the secondary side, or the analog signal itself detected on the secondary side is set to 1. In order to monitor on the secondary side, feedback from the secondary side to the primary side can be realized in multi-valued control or continuous analog control.
 なお、第1~第4実施形態における異常状態E11は、異常な状態に限らず、正常な状態でもよいし、正常か異常かを直接的に示さない何らかの状態であってもよい。例えば、異常状態E11は、受信部12側で検出した状態として、電圧値または温度であってもよい。 The abnormal state E11 in the first to fourth embodiments is not limited to an abnormal state, and may be a normal state or some state that does not directly indicate normal or abnormal. For example, the abnormal state E11 may be a voltage value or temperature as the state detected by the receiving unit 12 side.
 また、上記第1~第4実施形態では、受信回路13の整流回路2やフィードバック部の整流回路82の構成として、シングルシャント型の回路を例示したがこれに限定されない。例えば、ダイオードのアノードとカソードを反対に接続することで正電圧を生成できるので、そのような構成の整流回路を適用するようにしてもよい。また、倍電圧型やブリッジ型などの、他の整流方式を適用してもよい。 In addition, in the above-described first to fourth embodiments, a single shunt type circuit is illustrated as the configuration of the rectifying circuit 2 of the receiving circuit 13 and the rectifying circuit 82 of the feedback unit, but the configuration is not limited to this. For example, since a positive voltage can be generated by connecting the anode and cathode of the diode in reverse, a rectifier circuit having such a configuration may be applied. Further, another rectification method such as a voltage doubler type or a bridge type may be applied.
 図10A~図10Eは、整流回路2の第1~第5の構成例を示している。ここで整流回路2は、整流回路20と、2a、2b、82の総称である。図10A~図10Eでは、すべての回路において、接地端子に対して負電位を生成する回路を例示している。なお、ダイオードの向きを反対にすることで、正電位を発生することができる。 10A to 10E show first to fifth configuration examples of the rectifier circuit 2. Here, the rectifier circuit 2 is a general term for the rectifier circuit 20 and 2a, 2b, and 82. 10A to 10E exemplify circuits that generate a negative potential with respect to the ground terminal in all circuits. A positive potential can be generated by reversing the direction of the diode.
 上記実施形態では、整流回路2の構成として、図10Aに示すシングルシャント型を用いているが、これに限定されない。例えば、図10Bに示すシングルシリーズ型、図10Cに示す倍電圧型、図10Dに示す倍電流型、図10Eに示すブリッジ型等の異なる回路トポロジーからなる整流回路を用いて構成することも可能である。 In the above embodiment, the single shunt type shown in FIG. 10A is used as the configuration of the rectifier circuit 2, but the configuration is not limited to this. For example, a single series type shown in FIG. 10B, a double voltage type shown in FIG. 10C, a double current type shown in FIG. 10D, a bridge type shown in FIG. is there.
 また、ダイオード以外のL、C素子について、入力信号の周波数に対して、整流回路2で発生する電圧を最大化するために、図10A~図10Eで示した回路トポロジーに対し、新たに素子を付加する形態としてもよいし、逆に一部を削除する形態としてもよい。 Further, regarding L and C elements other than the diodes, in order to maximize the voltage generated in the rectifier circuit 2 with respect to the frequency of the input signal, elements are newly added to the circuit topologies shown in FIGS. 10A to 10E. It may be added or may be partially deleted.
 図10Eのブリッジ型においては、シングルエンド型の信号入力の場合の回路を示しており、左下の容量素子は削除することができる。また、入力信号が差動信号となる場合は、接地接続部を差動信号入力端子のひとつとして使用するとよい。 In the bridge type of FIG. 10E, a circuit for single-ended type signal input is shown, and the lower left capacitive element can be deleted. When the input signal is a differential signal, the ground connection section may be used as one of the differential signal input terminals.
 また、図10A~図10Eの例においては、各整流回路のトポロジーを集中定数素子で示したが、マイクロストリップライン等の分布定数素子を使い、同様の効果を得ることも可能である。 Further, in the examples of FIGS. 10A to 10E, the topology of each rectifying circuit is shown by a lumped constant element, but it is also possible to obtain the same effect by using a distributed constant element such as a microstrip line.
 また、上記第1~第4実施形態では、絶縁素子3として、電磁界共鳴結合素子を用いる例を示したが、容量素子やトランス等を用いるようにしてもよい。 Further, in the above-described first to fourth embodiments, the example in which the electromagnetic resonance coupling element is used as the insulating element 3 is shown, but a capacitive element, a transformer, or the like may be used.
 本開示にかかるゲート駆動回路は、インバータ、電力変換器やパワーシステム等に利用され得る。 The gate drive circuit according to the present disclosure can be used for an inverter, a power converter, a power system, and the like.
 1 ゲート駆動回路
 2,2a,2b,2c,20 整流回路
 3,3a,3b,3c 絶縁素子
 5,5a,5b 駆動トランジスタ
 5c 駆動トランジスタ(Pチャネル)
 5d 駆動トランジスタ(Nチャネル)
 10 送信部
 12 受信部
 60 半導体スイッチング素子
 70 方向性結合器
 82 整流回路(フィードバック用)
 83 異常検知部
 84 インピーダンス可変素子
 85 ドライバ部
 100 電源1
 101 PWM電源
 102 電源2
 200 一次側接地
 201 二次側接地
 300 FLT端子
 500 SPDTスイッチの片側経路
 501 アイソレーションSW
 502 50オーム終端
 503 インバータ反転回路
 900 インピーダンス素子
 A スイッチング装置
 C11,C12 制御信号
 D1 入力端子
 D2 出力端子
 D3 結合端子
 D4 アイソレーション端子
 E11 異常状態
 R11 第1PWM制御信号(高周波電力信号)
 R12 第2PWM制御信号(高周波電力信号)
 R13 電源用電力(高周波電力信号)
 R14 フィードバック信号(高周波電力信号)
1 gate drive circuit 2, 2a, 2b, 2c, 20 rectifier circuit 3, 3a, 3b, 3c insulating element 5, 5a, 5b drive transistor 5c drive transistor (P channel)
5d drive transistor (N channel)
10 transmitter 12 receiver 60 semiconductor switching element 70 directional coupler 82 rectifier circuit (for feedback)
83 Abnormality Detection Section 84 Impedance Variable Element 85 Driver Section 100 Power Supply 1
101 PWM power supply 102 Power supply 2
200 Primary side ground 201 Secondary side ground 300 FLT terminal 500 One side path of SPDT switch 501 Isolation SW
502 50 ohm termination 503 Inverter inverting circuit 900 Impedance element A Switching device C11, C12 Control signal D1 Input terminal D2 Output terminal D3 Coupling terminal D4 Isolation terminal E11 Abnormal state R11 First PWM control signal (high frequency power signal)
R12 second PWM control signal (high frequency power signal)
R13 power supply power (high frequency power signal)
R14 feedback signal (high frequency power signal)

Claims (15)

  1.  半導体スイッチング素子を駆動する絶縁型のゲート駆動回路であって、
     前記半導体スイッチング素子のゲート駆動の基礎となる電力信号を生成する送信部と、
     前記電力信号を電気的に絶縁された状態で伝送する第1絶縁素子と、
     前記第1絶縁素子から出力される電力信号により、前記半導体スイッチング素子のゲート駆動を行う受信部と、
     受信部側で検出した状態を送信部側に伝達する伝達回路とを備え、
     前記伝達回路は、
     前記第1絶縁素子上の前記電力信号を伝送する経路とは別の絶縁経路を用いて、
     前記電力信号の一部を分岐させることにより前記状態を伝達する
    ゲート駆動回路。
    An insulated gate drive circuit for driving a semiconductor switching element,
    A transmitter that generates a power signal that is the basis of gate driving of the semiconductor switching device;
    A first insulating element for transmitting the power signal in an electrically insulated state;
    A receiver for driving the gate of the semiconductor switching element by a power signal output from the first insulating element;
    A transmission circuit for transmitting the state detected on the receiving side to the transmitting side,
    The transmission circuit is
    Using an insulating path different from the path for transmitting the power signal on the first insulating element,
    A gate driving circuit for transmitting the state by branching a part of the power signal.
  2.  請求項1に記載のゲート駆動回路において、
     前記伝達回路は、前記受信部側において、前記電力信号の前記一部を分岐させる
    ゲート駆動回路。
    The gate drive circuit according to claim 1,
    The transmission circuit is a gate drive circuit that branches the part of the power signal on the reception unit side.
  3.  請求項2に記載のゲート駆動回路において、
     前記伝達回路は、前記受信部側に、前記第1絶縁素子から出力される前記電力信号の前記一部を分岐させる方向性結合器を有する
    ゲート駆動回路。
    The gate drive circuit according to claim 2,
    The said drive circuit is a gate drive circuit which has a directional coupler by which the said receiving part side branches the said one part of the said electric power signal output from the said 1st isolation element.
  4.  請求項3に記載のゲート駆動回路において、
     前記方向性結合器は、前記電力信号の前記一部を出力する結合端子を有し、
     前記伝達回路は、前記結合端子に接続された回路素子を有し、
     前記回路素子の導通状態を、受信部側で検出した前記状態に応じて切り替えることにより、前記電力信号の前記一部の強度を変化させる
    ゲート駆動回路。
    The gate drive circuit according to claim 3,
    The directional coupler has a coupling terminal that outputs the part of the power signal,
    The transmission circuit has a circuit element connected to the coupling terminal,
    A gate drive circuit that changes the intensity of the part of the power signal by switching the conduction state of the circuit element according to the state detected by the receiving unit side.
  5.  請求項3に記載のゲート駆動回路において、
     前記方向性結合器は、
     前記第1絶縁素子から入力される前記電力信号を伝送するための主経路と、
     前記主経路に伝送される前記電力信号の前記一部を分岐させる副経路と、
     前記副経路の一端に接続された結合端子と、
     前記副経路の他端に接続されたアイソレーション端子とを有し、
     前記アイソレーション端子は、終端処理され、
     前記結合端子は、前記電力信号の前記一部を出力し、
     前記伝達回路は、
     前記結合端子に接続され、前記状態に応じて導通状態を切り替えることにより前記電力信号の前記一部の強度を変化させる、前記受信部側に設けられた回路素子と、
     前記他の絶縁経路の一部を構成し、前記結合端子から前記回路素子を介して入力される前記電力信号の前記一部を、前記受信部側から前記送信部側へ電気的に絶縁された状態で伝送する第2絶縁素子と、を有する
    ゲート駆動回路。
    The gate drive circuit according to claim 3,
    The directional coupler is
    A main path for transmitting the power signal input from the first isolation element;
    A sub path for branching the part of the power signal transmitted to the main path;
    A coupling terminal connected to one end of the sub path,
    An isolation terminal connected to the other end of the sub-path,
    The isolation terminal is terminated,
    The coupling terminal outputs the portion of the power signal,
    The transmission circuit is
    A circuit element provided on the receiving unit side, which is connected to the coupling terminal and changes the intensity of the part of the power signal by switching the conduction state according to the state,
    The other part of the insulating path is formed, and the part of the power signal input from the coupling terminal via the circuit element is electrically insulated from the receiving unit side to the transmitting unit side. And a second insulating element that transmits in the state.
  6.  請求項3に記載のゲート駆動回路において、
     前記方向性結合器は、
     結合端子と、
     前記電力信号の前記一部を出力するアイソレーション端子とを有し、
     前記伝達回路は、前記結合端子に接続されたインピーダンス素子を有し、
     前記インピーダンス素子のインピーダンスを、受信部側で検出した前記状態に応じて切り替えることにより、前記アイソレーション端子から出力される前記電力信号の前記一部の強度を変化させる
    ゲート駆動回路。
    The gate drive circuit according to claim 3,
    The directional coupler is
    A coupling terminal,
    An isolation terminal for outputting the part of the power signal,
    The transmission circuit has an impedance element connected to the coupling terminal,
    A gate drive circuit that changes the intensity of the part of the power signal output from the isolation terminal by switching the impedance of the impedance element according to the state detected by the receiving unit side.
  7.  請求項3に記載のゲート駆動回路において、
     前記方向性結合器は、
     前記第1絶縁素子からの前記電力信号を伝送するための主経路と、
     前記主経路に伝送される前記電力信号の前記一部を分岐させる副経路と、
     前記副経路の一端に接続され、前記電力信号の前記一部を出力するアイソレーション端子と、
     前記副経路の他端に接続された結合端子とを有し、
     前記伝達回路は、
     前記結合端子に接続され、前記受信部側で検出した前記状態に応じてインピーダンスを変化させるインピーダンス素子と、
     前記他の絶縁経路の一部を構成し、前記アイソレーション端子から出力される前記電力信号の前記一部を、前記受信部側から前記送信部側へ電気的に絶縁された状態で伝送する第2絶縁素子と、を有する
    ゲート駆動回路。
    The gate drive circuit according to claim 3,
    The directional coupler is
    A main path for transmitting the power signal from the first isolation element;
    A sub path for branching the part of the power signal transmitted to the main path;
    An isolation terminal connected to one end of the sub-path and outputting the part of the power signal;
    A coupling terminal connected to the other end of the sub path,
    The transmission circuit is
    An impedance element that is connected to the coupling terminal and changes impedance according to the state detected on the receiving unit side,
    A part of the other insulating path, which transmits the part of the power signal output from the isolation terminal in an electrically insulated state from the receiving unit side to the transmitting unit side. A gate drive circuit having two insulating elements.
  8.  請求項1に記載のゲート駆動回路において、
     前記伝達回路は、前記送信部側に、前記第1絶縁素子に入力される前記電力信号の前記一部を分岐させる方向性結合器を有する
    ゲート駆動回路。
    The gate drive circuit according to claim 1,
    The said drive circuit is a gate drive circuit which has a directional coupler which branches the said part of the said electric power signal input into the said 1st isolation element in the said transmission part side.
  9.  請求項8に記載のゲート駆動回路において、
     前記方向性結合器は、
     前記電力信号を伝送して前記第1絶縁素子に出力する主経路と、
     前記主経路に伝送される前記電力信号の前記一部を分岐させる副経路と、
     前記副経路の一端に接続され、前記電力信号の前記一部を出力するアイソレーション端子と、
     前記副経路の他端に接続された結合端子とを有し、
     前記伝達回路は、
     前記受信部側に設けられ、前記受信部側で検出した前記状態に応じてインピーダンスを変化させるインピーダンス素子と、
     前記送信部側の第1端子と、前記受信部側の第2端子とを有し、前記他の絶縁経路の一部を構成する第2絶縁素子とを備え、
     前記第1端子は、前記結合端子に接続され、
     前記第2端子は、前記インピーダンス可変素子に接続される
    ゲート駆動回路。
    The gate drive circuit according to claim 8,
    The directional coupler is
    A main path for transmitting the power signal and outputting it to the first insulating element;
    A sub path for branching the part of the power signal transmitted to the main path;
    An isolation terminal connected to one end of the sub-path and outputting the part of the power signal;
    A coupling terminal connected to the other end of the sub path,
    The transmission circuit is
    An impedance element that is provided on the receiving unit side and changes impedance according to the state detected on the receiving unit side,
    A first terminal on the transmitter side and a second terminal on the receiver side, and a second insulating element forming a part of the other insulating path,
    The first terminal is connected to the coupling terminal,
    The second terminal is a gate drive circuit connected to the variable impedance element.
  10.  半導体スイッチング素子を駆動する絶縁型のゲート駆動回路であって、
     前記半導体スイッチング素子のゲート駆動の基礎となる電力信号を生成する送信部と、
     前記電力信号を電気的に絶縁された状態で伝送する第1絶縁素子と、
     前記第1絶縁素子から出力される電力信号により、前記半導体スイッチング素子のゲート駆動を行う受信部と、
     受信部側で検出した状態を送信部側に伝達する伝達回路とを備え、
     前記伝達回路は、
     前記電力信号の一部を分岐させる方向性結合器を有し、
     前記電力信号の前記一部によって前記状態を伝達する
    ゲート駆動回路。
    An insulated gate drive circuit for driving a semiconductor switching element,
    A transmitter that generates a power signal that is the basis of gate driving of the semiconductor switching device;
    A first insulating element for transmitting the power signal in an electrically insulated state;
    A receiver for driving the gate of the semiconductor switching element by a power signal output from the first insulating element;
    A transmission circuit for transmitting the state detected on the receiving side to the transmitting side,
    The transmission circuit is
    A directional coupler for branching a part of the power signal,
    A gate drive circuit for transmitting the state according to the part of the power signal.
  11.  請求項10に記載のゲート駆動回路において、
     前記方向性結合器は、
     前記電力信号を伝送して前記第1絶縁素子に出力する主経路と、
     前記主経路に伝送される前記電力信号の前記一部を分岐させる副経路と、
     前記副経路の一端に接続され、前記電力信号の前記一部を出力するアイソレーション端子と、
     前記副経路の他端に接続され、終端処理された結合端子とを有し、
     前記伝達回路は、
     前記受信部側で検出した前記状態に応じてインピーダンスを変化させ、前記受信部側で前記第1絶縁素子に接続されたインピーダンス素子を備える
    ゲート駆動回路。
    The gate drive circuit according to claim 10,
    The directional coupler is
    A main path for transmitting the power signal and outputting it to the first insulating element;
    A sub path for branching the part of the power signal transmitted to the main path;
    An isolation terminal connected to one end of the sub-path and outputting the part of the power signal;
    Connected to the other end of the sub-path and having a terminated coupling terminal,
    The transmission circuit is
    A gate drive circuit comprising an impedance element that changes impedance according to the state detected on the receiving side and is connected to the first insulating element on the receiving side.
  12.  請求項1から11のいずれか1項に記載のゲート駆動回路において、
     前記電力信号の前記一部を整流することにより前記状態に応じた電圧をもつ信号を出力する整流回路を前記送信部側に備える
    ゲート駆動回路。
    The gate drive circuit according to any one of claims 1 to 11,
    A gate drive circuit comprising a rectifying circuit on the transmitter side, which outputs a signal having a voltage according to the state by rectifying the part of the power signal.
  13.  請求項1から12のいずれか1項に記載のゲート駆動回路において、
     前記受信部側で検知した状態に応じて、前記受信部の前記ゲート駆動を停止する
    ゲート駆動回路。
    The gate drive circuit according to any one of claims 1 to 12,
    A gate drive circuit that stops the gate drive of the receiving unit according to the state detected by the receiving unit side.
  14.  請求項1から13のいずれか1項に記載のゲート駆動回路において、
     前記第1絶縁素子は、電磁界共鳴結合素子である
    ゲート駆動回路。
    The gate drive circuit according to any one of claims 1 to 13,
    The first insulating element is a gate drive circuit that is an electromagnetic resonance coupling element.
  15.  請求項1から14のいずれか1項に記載のゲート駆動回路と、
     前記ゲート駆動回路で駆動される半導体スイッチング素子とを備える
    スイッチング装置。
    A gate drive circuit according to any one of claims 1 to 14,
    A switching device comprising: a semiconductor switching element driven by the gate drive circuit.
PCT/JP2019/049901 2018-12-28 2019-12-19 Gate drive circuit and switching device using same WO2020137826A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020563177A JPWO2020137826A1 (en) 2018-12-28 2019-12-19 Gate drive circuit and switching device using it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018247949 2018-12-28
JP2018-247949 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020137826A1 true WO2020137826A1 (en) 2020-07-02

Family

ID=71126213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049901 WO2020137826A1 (en) 2018-12-28 2019-12-19 Gate drive circuit and switching device using same

Country Status (2)

Country Link
JP (1) JPWO2020137826A1 (en)
WO (1) WO2020137826A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100787A1 (en) * 2022-11-09 2024-05-16 日本電信電話株式会社 Wireless communication transceiver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533167B1 (en) * 1969-11-20 1978-02-03
WO2015029363A1 (en) * 2013-08-27 2015-03-05 パナソニックIpマネジメント株式会社 Gate driving circuit
JP5861056B2 (en) * 2013-08-23 2016-02-16 パナソニックIpマネジメント株式会社 Gate drive circuit
JP2016158240A (en) * 2015-02-24 2016-09-01 パナソニック株式会社 Driving device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533167B1 (en) * 1969-11-20 1978-02-03
JP5861056B2 (en) * 2013-08-23 2016-02-16 パナソニックIpマネジメント株式会社 Gate drive circuit
WO2015029363A1 (en) * 2013-08-27 2015-03-05 パナソニックIpマネジメント株式会社 Gate driving circuit
JP2016158240A (en) * 2015-02-24 2016-09-01 パナソニック株式会社 Driving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100787A1 (en) * 2022-11-09 2024-05-16 日本電信電話株式会社 Wireless communication transceiver

Also Published As

Publication number Publication date
JPWO2020137826A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US8289085B2 (en) Amplifier circuit
US9362963B2 (en) Radio-frequency signal reception circuit and isolated signal transmission apparatus
JP6544580B2 (en) High frequency receiving circuit and isolated signal transmission apparatus
US20100225378A1 (en) Radio frequency switching circuit and semiconductor device
JP5861056B2 (en) Gate drive circuit
JPH0775328B2 (en) High frequency switch
CN115360831B (en) Apparatus, control circuit and adaptive control method for wireless power receiver
JP2012249090A (en) High-frequency switch
EP3605725A1 (en) Electromagnetic resonance coupler and gate drive circuit using same, and signal transmission device
WO2020137826A1 (en) Gate drive circuit and switching device using same
JP5426434B2 (en) Transceiver module
JP2010521830A (en) RF switch and device comprising RF switch
CN101371440B (en) Method and system for high power switching
JP5481461B2 (en) switch
CN113872584A (en) Switch circuit, circuit board assembly and electronic equipment
JP2011211589A (en) High frequency switch circuit
US10158280B2 (en) Signal generation circuit
CN113765538B (en) Switching circuit
US9438130B2 (en) Semiconductor device, switching system, and matrix converter
WO2021024778A1 (en) Transmission device, power device drive circuit, and signal transmission method
US20110025579A1 (en) Semiconductor device, and radio frequency switch and radio frequency module using the semiconductor device
JP3288227B2 (en) Antenna shared circuit
CN112865496B (en) Control circuit, control method and voltage conversion circuit
US20230246644A1 (en) Devices and methods related to diode switch control
KR100695969B1 (en) Rf switch amd apparatus with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904535

Country of ref document: EP

Kind code of ref document: A1