WO2020137385A1 - Support structure, and rotating compressor comprising same - Google Patents

Support structure, and rotating compressor comprising same Download PDF

Info

Publication number
WO2020137385A1
WO2020137385A1 PCT/JP2019/047277 JP2019047277W WO2020137385A1 WO 2020137385 A1 WO2020137385 A1 WO 2020137385A1 JP 2019047277 W JP2019047277 W JP 2019047277W WO 2020137385 A1 WO2020137385 A1 WO 2020137385A1
Authority
WO
WIPO (PCT)
Prior art keywords
supported
resin member
support
contact
support structure
Prior art date
Application number
PCT/JP2019/047277
Other languages
French (fr)
Japanese (ja)
Inventor
大佑 平塚
祥司郎 中
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2020137385A1 publication Critical patent/WO2020137385A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/02Casings or enclosures characterised by the material thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof

Definitions

  • the present disclosure relates to a support structure and a rotary compressor including the support structure.
  • Patent Document 1 discloses a compressor including a casing that constitutes a support and a stator of an electric motor that constitutes a supported body.
  • the linear expansion coefficient of the casing and the linear expansion coefficient of the stator are different from each other.
  • Patent Document 1 discloses that a member having a larger linear expansion coefficient than the stator is provided between the stator and the casing in order to prevent the stator from coming off the casing due to a difference in linear expansion coefficient. ing.
  • the purpose of the present disclosure is to prevent the supported body from coming off the support body due to the temperature rise.
  • the first aspect of the present disclosure is supported by a support (20,50) having a wall (21,50a) and a wall (21,50a) of the support (20,50) in contact with the support.
  • a support structure (11) provided with supported objects (41, 42, 61 to 63) is targeted.
  • a portion of the supported body (41, 42, 61 to 63) that contacts the wall portion (21, 50a) of the support body (20, 50) is supported by the supported contact portion (61, 42).
  • 62a, 63) provided on at least one of the support (20, 50) and the supported body (41, 42, 61-63), and the supported contact portion (61, 62a, 63) and the wall.
  • the supported contact portion (61, 62a, 63) in the first direction orthogonal to the facing direction of the portion (21, 50a), and the supported contact portion (61, 62a) in the facing direction. , 63) for promoting thermal expansion.
  • the expansion control section (70) suppresses thermal expansion of the supported contact portions (61, 62a, 63) in the first direction, and the supported contact portion (61) in the opposing direction. , 62a, 63) thermal expansion is promoted.
  • the supported contact portions (61, 62a, 63) and the wall portions (21, 50a) are kept in contact with each other when the temperature rises.
  • the supported contact portions (61, 62a, 63) and the wall portions (21, 50a) do not separate from each other due to thermal expansion when the temperature rises. Therefore, it is possible to prevent the supported bodies (41, 42, 61 to 63) from coming off the support bodies (20, 50) due to the temperature rise.
  • a second aspect of the present disclosure is the first aspect, wherein the expansion control section (70) is in contact with the supported contact section (61, 62a, 63) in the first direction and is compressed. It is characterized in that thermal expansion of the supported contact portions (61, 62a, 63) is suppressed by applying a load.
  • the Poisson effect promotes thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction orthogonal to the first direction.
  • a third aspect of the present disclosure is the second aspect, wherein the expansion control section (70) contacts a portion of the supported contact section (61, 62a, 63) in the facing direction. Is characterized by.
  • the degree to which the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction can be controlled can be controlled.
  • the thermal expansion is most promoted when the expansion control section (70) contacts the entire supported contact sections (61, 62a, 63) in the facing direction.
  • the thermal expansion is not promoted at all when the expansion control section (70) does not contact the supported contact sections (61, 62a, 63). Based on these relationships, the degree to which the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction can be controlled can be controlled.
  • a fourth aspect of the present disclosure is the expansion control unit according to any one of the first to third aspects, wherein a direction orthogonal to the facing direction and orthogonal to the first direction is a second direction. (70) suppresses thermal expansion of the supported contact portions (61, 62a, 63) in the first direction and the second direction and supports the supported contact portions (61, 62a, 63) in the facing direction. It is characterized by promoting the thermal expansion of.
  • the expansion controller (70) suppresses thermal expansion of the supported contact parts (61, 62a, 63) in the first direction and the second direction.
  • the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction can be promoted more strongly than in the case where the thermal expansion of the supported contact portions (61, 62a, 63) is suppressed only in the first direction. ..
  • the material forming the supported contact portion is a fiber reinforced resin or LCP resin. It is characterized by
  • a sixth aspect of the present disclosure is the method according to any one of the first to fifth aspects, wherein the expansion control section (70) is provided in the support body (20, 50), and in the first direction. It is characterized by having a first stepped portion (71) that suppresses thermal expansion of the supported contact portion (61, 62a, 63) due to contact with the supported contact portion (61, 62a, 63).
  • the thermal expansion of the supported contact portion (61, 62a, 63) in the first direction is suppressed.
  • the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction is promoted.
  • the first step portion (71) is provided on the support body (20, 50) and protrudes in the facing direction from a first suppressing member (72). ).
  • the thermal expansion of the supported contact portion (61, 62a, 63) in the first direction is suppressed by the contact between the first suppressing member (72) and the supported contact portion (61, 62a, 63).
  • the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction is promoted.
  • the first step portion (71) is constituted by a first recess (73, 81) formed in the support body (20, 50). It is characterized by being
  • the heat of the supported contact portion (61, 62a, 63) in the first direction is generated by the contact between the side wall of the first recess (73, 81) and the supported contact portion (61, 62a, 63). Expansion is suppressed, and thermal expansion of the supported contact portions (61, 62a, 63) in the opposing direction is promoted.
  • a ninth aspect of the present disclosure is the method according to any one of the first to eighth aspects, wherein the support (20,50) and the supported contact portion (61,62a,63) are bonded to each other. It is characterized by being.
  • a tenth aspect of the present disclosure is the method according to any one of the first to ninth aspects, wherein a linear expansion coefficient of a material forming the supported contact portions (61, 62a, 63) in the facing direction is The linear expansion coefficient of the material forming the wall portions (21, 50a) of the support (20, 50) is smaller than the linear expansion coefficient.
  • the supported contact portions (61, 62a, 63) have a small linear expansion coefficient in the facing direction, the supported contact portions (61, 62a, 63) face the wall portions (21, 50a) of the support body (20, 50) at the time of temperature rise. Thermal expansion hardly occurs in the direction.
  • the expansion control section (70) promotes thermal expansion of the supported contact sections (61, 62a, 63) in the opposing direction, the supported bodies (41, 42, 61... 63) is prevented from coming off the support (20,50).
  • the supported contact portions (61, 62a, 63) are less likely to shrink in the facing direction than the wall portions (21, 50a) of the support body (20, 50) when the temperature decreases. Therefore, the supported bodies (41, 42, 61 to 63) are prevented from coming off the support bodies (20, 50) due to the temperature decrease.
  • An eleventh aspect of the present disclosure is the method according to any one of the first to ninth aspects, wherein the linear expansion coefficient of the material forming the supported contact portions (61, 62a, 63) in the facing direction is The linear expansion coefficient of the material forming the wall portions (21, 50a) of the support (20, 50) is larger than that of the material.
  • the supported contact portions (61, 62a, 63) have a large linear expansion coefficient in the facing direction
  • the supported contact portions (61, 62a, 63) face the wall portions (21, 50a) of the support body (20, 50) at the time of temperature rise. Thermal expansion easily occurs in the direction.
  • the expansion control section (70) promotes thermal expansion of the supported contact sections (61, 62a, 63) in the opposing direction, so that the temperature of the supported body (41, 42, 61) is increased due to the temperature rise. It is further prevented that ⁇ 63) comes off the support (20,50).
  • a twelfth aspect of the present disclosure is the method according to any one of the first to ninth aspects, wherein a part of the supported contact portions (61, 62a, 63) has a linear expansion coefficient in the facing direction,
  • the wall portion (21, 50a) of the support (20, 50) is made of a material having a coefficient of linear expansion smaller than that of the material, and the other part of the supported contact portion (61, 62a, 63) is The material is characterized in that the linear expansion coefficient in the facing direction is larger than the linear expansion coefficient of the material forming the wall portion (21, 50a) of the support (20, 50).
  • a portion of the supported contact portions (61, 62a, 63) made of the material having a small linear expansion coefficient is the wall portion (21, 50) of the support (20, 50) when the temperature decreases. Heat shrinkage is less likely to occur in the opposite direction than 50a). Therefore, the supported bodies (41, 42, 61 to 63) are prevented from coming off the support bodies (20, 50) due to the temperature decrease.
  • the part composed of the material having the large linear expansion coefficient is higher than the wall part (21, 50a) of the support (20, 50) when the temperature rises. Thermal expansion easily occurs in the opposite direction. Therefore, the supported bodies (41, 42, 61 to 63) are further prevented from coming off the support bodies (20, 50) due to the temperature rise.
  • a thirteenth aspect of the present disclosure is the method according to any one of the first to twelfth aspects, wherein the supported body (41, 42, 61 to 63) has the supported contact portion (61, 62a, 63). ), the main body portion is opposed to the wall portion (21, 50a) of the support (20, 50) and is made of a material different from the constituent material of the supported contact portion (61, 62a, 63). It is characterized by having (41, 42).
  • the supported contact parts (61, 62a, 63) are arranged between the main body part (41, 42) and the wall part (21, 50a).
  • the expansion control unit (70) allows the supported body (41, 42, 61 to 63) having the main body section (41, 42) and the supported contact section (61, 62a, 63) to be removed from the support body (20, 50). It is prevented from coming off.
  • a fourteenth aspect of the present disclosure is the thirteenth aspect, wherein the expansion control section (70) is provided in the main body section (41, 42) and the supported contact section (61, 41) in the first direction. 62a, 63) is characterized by having a second step portion (74) for suppressing thermal expansion of the supported contact portion (61, 62a, 63).
  • the thermal expansion of the supported contact portion (61, 62a, 63) in the first direction is suppressed by the contact between the second step portion (74) and the supported contact portion (61, 62a, 63).
  • the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction is promoted.
  • a fifteenth aspect of the present disclosure is the second suppression member (75) according to the fourteenth aspect, wherein the second step portion (74) is provided in the main body portion (41, 42) and projects in the facing direction. ) Is configured by.
  • the thermal expansion of the supported contact portion (61, 62a, 63) in the first direction is suppressed by the contact between the second suppressing member (75) and the supported contact portion (61, 62a, 63).
  • the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction is promoted.
  • a sixteenth aspect of the present disclosure is the fourteenth aspect, wherein the second step portion (74) is formed of a second recess (76, 82) formed in the body portion (41, 42). It is characterized by being
  • the contact between the side wall of the second recess (76, 82) and the supported contact portion (61, 62a, 63) causes heat of the supported contact portion (61, 62a, 63) in the first direction. Expansion is suppressed, and thermal expansion of the supported contact portions (61, 62a, 63) in the opposing direction is promoted.
  • the seventeenth aspect of the present disclosure is directed to a rotary compressor (10) including the support structure (11) according to any one of the thirteenth to sixteenth aspects.
  • the rotary compressor (10) includes a tubular casing (20) that constitutes the support (20, 50) and a body portion (41, 42) of the supported body (41, 42, 61 to 63). ) And a supported contact portion (61, 62a, 63) of the supported body (41, 42, 61 to 63), and the casing (20). ) And the stator (41), and insulating members (61, 63) for insulating the two from each other.
  • the expansion control section (70) keeps the insulating member (61, 62) in contact with the wall section (21, 50a) of the casing (20).
  • the stator (41) of the electric motor (40) is supported by the casing (20) via the insulating members (61, 62) and cannot be removed from the casing (20).
  • An eighteenth aspect of the present disclosure is a rotary compressor (10) including the support structure (11) according to any one of the thirteenth to sixteenth aspects, or the rotary compressor (10 of the sixteenth aspect. ) Is targeted.
  • This rotary compressor (10) includes a drive shaft (50) that constitutes the support (20, 50) and a main body portion (41, 42) of the supported body (41, 42, 61 to 63).
  • An electric motor (40) having a rotor (42) and a supported contact portion (61, 62a, 63) of the supported body (41, 42, 61 to 63), and the drive shaft (50).
  • insulating members (61, 63) located between the rotor and the rotor (42) to insulate them from each other.
  • the expansion control unit (70) keeps the insulating member (61, 63) in contact with the wall portion (50a) of the drive shaft (50).
  • the rotor (42) of the electric motor (40) is supported by the drive shaft (50) via the insulating members (61, 63) and cannot be separated from the drive shaft (50).
  • a nineteenth aspect of the present disclosure is the method according to any one of the first to eleventh aspects, wherein the entire supported body (41, 42, 61 to 63) is the supported contact portion (61, 62a). , 63) and the same material.
  • FIG. 1 is a front view schematically showing the rotary compressor of the first embodiment.
  • FIG. 2 is a plan sectional view schematically showing the support structure of Embodiment 1, and shows a section taken along line II-II of FIG.
  • FIG. 3 is a partial cross-sectional view schematically showing the support structure of Embodiment 1, showing a cross section taken along line III-III of FIG.
  • FIG. 4 is a plan sectional view schematically showing a support structure of Modification 1 of Embodiment 1.
  • FIG. 5 is a partial cross-sectional view schematically showing a support structure of Modification 2 of Embodiment 1.
  • FIG. 6 is a partial cross-sectional view schematically showing a support structure of Modification 3 of Embodiment 1.
  • FIG. 7 is a partial cross-sectional view schematically showing the support structure of Modification 4 of Embodiment 1.
  • FIG. 8 is a partial cross-sectional view schematically showing a support structure of Modification 5 of Embodiment 1.
  • FIG. 9 is a partial cross-sectional view schematically showing a support structure of Modification 6 of Embodiment 1.
  • FIG. 10 is a plan sectional view schematically showing the support structure of the second embodiment.
  • FIG. 11 is a partial cross-sectional view schematically showing the support structure of Embodiment 2, and shows a cross section taken along line XI-XI of FIG.
  • FIG. 12 is a partial cross-sectional view schematically showing the support structure of Modification 1 of Embodiment 2.
  • FIG. 13 is a partial cross-sectional view schematically showing a support structure of Modification 2 of Embodiment 2.
  • FIG. 14 is a partial cross-sectional view schematically showing a support structure of Modification 3 of Embodiment 2.
  • FIG. 15 is a partial cross-sectional view schematically showing a support structure of Modification 4 of Embodiment 2.
  • FIG. 16 is a partial cross-sectional view schematically showing a support structure of Modification 5 of Embodiment 2.
  • FIG. 17 is a plan sectional view schematically showing a support structure of a first modified example of the other embodiment.
  • the rotary compressor (10) of the present embodiment is configured as a scroll compressor.
  • the rotary compressor (10) may be another type of rotary compressor.
  • the rotary compressor (10) includes a casing (20), a compression mechanism (30), an electric motor (40), and a drive shaft (50).
  • the casing (20) is a substantially cylindrical closed container that extends vertically.
  • the casing (20) includes a cylindrical wall portion (21), an upper lid (22) that closes the upper end of the wall portion (21), and a lower lid (24) that closes the lower end of the wall portion (21). ..
  • the upper lid (22) is provided with a suction pipe (23) for sucking a fluid into the casing (20).
  • the wall (21) is provided with a discharge pipe (25) for discharging the compressed fluid to the outside of the casing (20).
  • the casing (20) is made of an iron-based material such as cast iron or carbon steel.
  • the extending direction of the casing (20) is not limited to the vertical direction.
  • the casing (20) constitutes a support.
  • the wall portion (21) has four supporting contact portions (21a).
  • the compression mechanism (30) is housed inside the casing (20).
  • the compression mechanism (30) includes a fixed scroll and a movable scroll (not shown).
  • the movable scroll makes an eccentric rotary motion with respect to the fixed scroll. Due to this eccentric rotational movement, the fluid is sucked from the suction pipe (23), the sucked fluid is compressed, and the compressed fluid is discharged from the discharge pipe (25).
  • the electric motor (40) is the drive source of the compression mechanism (30).
  • the electric motor (40) includes a stator (41) shown in FIGS. 2 and 3, and a rotor (not shown).
  • the electric motor (40) rotationally drives the compression mechanism (30) via the drive shaft (50).
  • the stator (41) is supported by being sandwiched by the wall portion (21) of the casing (20) together with the resin member (61) at a plurality of locations (four locations in this example) in the circumferential direction. To be done. In other words, the stator (41) and the resin member (61) are in contact with and supported by the wall portion (21) of the casing (20).
  • the stator (41) has a laminated structure in which a large number of steel plates are laminated in the axial direction. In the axial direction of the casing (20), the length of the stator (41) is substantially equal to the length of the resin member (61).
  • the stator (41) constitutes the main body of the supported body.
  • the resin member (61) constitutes an insulating member and also constitutes a supported contact portion.
  • the stator (41) and the resin member (61) form a supported body.
  • the detailed structure of the stator (41) such as a through hole provided in the center of the stator (41) for accommodating the rotor is omitted.
  • the shape of the stator (41) in FIG. 2 is merely an example.
  • the drive shaft (50) is a rod-shaped member that connects the movable scroll of the compression mechanism (30) and the rotor of the electric motor (40).
  • the drive shaft (50) is made of an iron-based material such as cast iron or carbon steel.
  • the rotary motion of the electric motor (40) is transmitted to the compression mechanism (30) via the drive shaft (50), whereby the movable scroll of the compression mechanism (30) performs the above-described eccentric rotary motion.
  • the rotary compressor (10) further includes a support structure (11).
  • the support structure (11) is composed of the casing (20) and the stator (41), the resin member (61), the circumferential direction suppression plate (78), and the axial direction suppression plate (75).
  • the circumferential restraint plate (78) and the axial restraint plate (75) each constitute an expansion controller.
  • the resin member (61) is a plate member sandwiched between the wall portion (21) of the casing (20) and the stator (41) of the electric motor (40).
  • the resin member (61) is made of an insulating resin and electrically insulates the casing (20) and the stator (41).
  • This insulating resin is, for example, fiber reinforced resin or LCP resin.
  • the resin member (61) has anisotropy regarding the coefficient of linear expansion.
  • the casing (20) is isotropic with respect to the linear expansion coefficient. Specifically, the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the wall portion (21) in the axial direction of the casing (20). In the axial direction of the casing (20), the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the stator (41).
  • the axial direction of the casing (20) is the first direction. In other words, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the wall portion (21) in the first direction. In the first direction, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the main body portion (41) of the supported body.
  • the linear expansion coefficient of the material forming the resin member (61) is smaller than the linear expansion coefficient of the material forming the support body (20, 50) between the wall portions (21).
  • the “between the wall parts (21)” is between a part of the wall part (21) and another part of the wall part (21) that faces the part with the supported body interposed therebetween.
  • the “support (20) between the wall portions (21)” is the support body (20) that constitutes the space between the wall portions (21).
  • the "linear expansion coefficient of the material forming the support (20) between the wall portions (21)” is the linear expansion coefficient of the material. ..
  • the "linear expansion coefficient of the material forming the support body (20) between the wall portions (21)” is the linear expansion coefficient of each material and the support body. It is a coefficient determined by the shape of (20). This coefficient can be obtained by calculating the rate of change of the distance between the wall portions (21) per unit temperature in a test or analysis. In other words, the "coefficient of linear expansion of the material forming the support (20) between the wall portions (21)” is the rate of change in the distance between the wall portions (21) per unit temperature.
  • the linear expansion coefficient of the material forming the resin member (61) is smaller than the linear expansion coefficient of the material forming the stator (41) in the radial direction of the casing (20).
  • the radial direction of the casing (20) is the direction in which the resin member (61) and the wall portion (21) face each other.
  • the linear expansion coefficient of the material forming the supported contact portion (61) is the wall portion (21). It is smaller than the linear expansion coefficient of the material forming the support body (20).
  • the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the wall portion (21) in the circumferential direction of the casing (20).
  • the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the stator (41).
  • the circumferential direction of the casing (20) is the second direction.
  • the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the wall portion (21) in the second direction.
  • the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the main body portion (41) of the supported body.
  • the anisotropy of the linear expansion coefficient of the material forming the resin member (61) is determined by the orientation direction of the fibrous substance contained in the material forming the resin member (61) or the material forming the resin member (61). Occurs according to the orientation direction of the molecular chain of.
  • the center points of the outer surfaces of the resin member (61) adjacent in the circumferential direction of the casing (20) are aligned with each other.
  • the direction in which they are connected linearly is the adjacent direction (one of which is shown by the broken line in FIG. 2).
  • the adjacent direction is the center point of the inner surface of the supporting contact portion (21a) adjacent in the circumferential direction of the casing (20) (in other words, the contact surface of the supporting contact portion (21a) with the resin member (61)) in plan view. It is also the direction that connects the two in a straight line.
  • the two adjacent resin members (61) or the supporting contact portions (21a) in the circumferential direction are adjacent to each other.
  • the rate of change of the distance between the outer surfaces of the adjacent resin members (61) per unit temperature is smaller than the rate of change of the distance between the inner surfaces of the adjacent support contact portions (21a) per unit temperature.
  • the rate of change of the distance between the outer surfaces of the resin member (61) per unit temperature is smaller than the rate of change of the distance between the inner surfaces of the supporting contact portion (21a) per unit temperature.
  • the support contact portion increases as the ambient temperature of the resin member (61) and the support contact portion (21a) increases.
  • the casing (20), the stator (41), and the resin member (61) thermally expand so that the (21a) moves away from the resin member (61). This is because the linear expansion coefficient of the support body (20) between the wall portions (21) is larger than the linear expansion coefficient of the supported body in the radial direction of the casing (20).
  • Linear expansion coefficient of supported body means that the linear expansion coefficients of the stator (41) and the resin member (61) included in the supported body are ⁇ 1 and ⁇ 2, respectively, and the supported body is supported in the radial direction of the casing (20).
  • the circumferential restraint plate (78) is a plate-shaped member that restrains thermal expansion of the resin member (61) in the circumferential direction of the casing (20).
  • the circumferential direction suppression plate (78) extends in a direction orthogonal to the radial direction of the casing (20) in the plan view shown in FIG. In this orthogonal direction, one end of the circumferential restraint plate (78) is fixed to the wall portion (21) by, for example, welding, and the other end of the circumferential restraint plate (78) contacts the side surface of the resin member (61). ing.
  • the circumferential restraint plate (78) constitutes a third restraint member.
  • the axial restraint plate (75) is a plate-shaped member that restrains thermal expansion of the resin member (61) in the axial direction of the casing (20). As shown in FIG. 3, the axial restraint plate (75) is fixed to the upper and lower ends of the stator (41) and protrudes radially outward of the casing (20) with respect to the outer peripheral surface of the stator (41). There is. A second step (74) is formed between the protruding portion and the outer peripheral surface of the stator (41). The projecting portion is in contact with the end of the resin member (61) in the axial direction of the casing (20).
  • the axial restraint plate (75) is in contact with a part of the end of the resin member (61) in the radial direction of the casing (20) (particularly, a part on the inner side in the radial direction).
  • the said protrusion part does not need to be in contact with the edge part of the resin member (61) in a normal temperature state and a low temperature state, if it contacts the edge part of the resin member (61) in a high temperature state.
  • the axial restraint plate (75) constitutes a second restraint member.
  • the circumferential restraint plate (78) and the axial restraint plate (75) promote the thermal expansion of the resin member (61) in the radial direction of the casing (20) by the Poisson effect.
  • the circumferential direction suppression plate (78) suppresses thermal expansion of the resin member (61) by contacting the resin member (61) in the circumferential direction of the casing (20) and applying a compressive load.
  • thermal expansion of the resin member (61) is promoted in the radial direction of the casing (20).
  • the axial suppression plate (75) contacts the resin member (61) in the axial direction of the casing (20) and applies a compressive load to suppress thermal expansion of the resin member (61), and the casing ( The thermal expansion of the resin member (61) is promoted in the radial direction of 20). As a result, the resin member (61) and the wall portion (21) are kept in contact with each other, and the resin member (61) and the stator (41) are kept in contact with each other.
  • the support structure (11) of the present embodiment includes a casing (20) having a wall portion (21), a stator (41) and a resin member which are supported in contact with the wall portion (21) of the casing (20). (61) and is provided in the casing (20) and the stator (41) to suppress thermal expansion of the resin member (61) in the axial direction and the circumferential direction of the casing (20), and A circumferential direction suppression plate (78) and an axial direction suppression plate (75) that promote thermal expansion of the resin member (61) in the radial direction of the casing (20) are provided.
  • the circumferential direction suppression plate (78) and the axial direction suppression plate (75) suppress the thermal expansion of the resin member (61) in the axial direction and the circumferential direction of the casing (20) and also in the radial direction of the casing (20).
  • the thermal expansion of the resin member (61) is accelerated.
  • the resin member (61) and the wall portion (21) are kept in contact with each other, and the resin member (61) and the stator (41) are kept in contact with each other.
  • the resin member (61) and the wall portion (21) do not separate from each other due to thermal expansion. Therefore, the stator (41) and the resin member (61) are prevented from coming off the casing (20) due to the temperature rise.
  • the circumferential direction suppression plate (78) and the axial direction suppression plate (75) are arranged such that the resin member (61) is arranged in the axial direction and the circumferential direction of the casing (20).
  • the resin member (61) is suppressed in thermal expansion by making contact with and applying a compressive load. Therefore, the Poisson effect promotes thermal expansion of the resin member (61) in the radial direction of the casing (20) orthogonal to the axial direction and the circumferential direction of the casing (20).
  • the axial restraint plate (75) contacts a part of the resin member (61) in the radial direction of the casing (20).
  • the axial restraint plate (75) and the resin member (61) are configured to come into contact with each other in a partial region of the region where the resin member (61) is arranged.
  • the axial restraint plate (75) and the resin member (61) are configured so as not to come into contact with each other. Therefore, the degree to which the thermal expansion of the resin member (61) in the radial direction is promoted can be controlled.
  • the thermal expansion is most promoted when the axial restraint plate (75) contacts the entire radial direction of the resin member (61).
  • the supported body (41, 61) faces the wall portion (21) of the casing (20) with the resin member (61) interposed therebetween, and
  • the stator (41) is made of a material different from the constituent material of the resin member (61). Therefore, the resin member (61) is arranged between the stator (41) and the wall portion (21).
  • the circumferential restraint plate (78) and the axial restraint plate (75) prevent the supported bodies (41, 61) having the stator (41) and the resin member (61) from coming off the casing (20). ..
  • the resin member (in the axial direction of the casing (20) is provided between the axial direction suppression plate (75) and the outer peripheral surface of the stator (41).
  • a second step portion (74) is formed which suppresses thermal expansion of the resin member (61) by contact with the end portion of 61). Therefore, thermal expansion of the resin member (61) in the axial direction is suppressed by the contact between the axial direction suppression plate (75) and the end of the resin member (61), and the resin member (in the radial direction of the casing (20) ( The thermal expansion of 61) is promoted.
  • the linear expansion coefficient of the material forming the resin member (61) is the same as that of the support (20) between the wall portions (21). ) Is smaller than the linear expansion coefficient of the material of which it is composed. Therefore, as the ambient temperature of the resin member (61) and the support member (20) decreases, the support member (20) between the wall portions (21) in the radial direction of the casing (20) is better than the resin member (61). Also tries to shrink greatly.
  • a compressive load due to thermal contraction of the wall portion (21) is applied to the resin member (61). By applying a compressive load to the resin member (61), the resin member (61) contracts toward the stator (41), and the resin member (61) and the stator (41) are kept in contact with each other. Be done.
  • the linear expansion coefficient of the material forming the resin member (61) is the wall portion (21) of the casing (20) in the radial direction of the casing (20). Is smaller than the linear expansion coefficient of the material constituting the. Therefore, when the temperature rises, the resin member (61) is less likely to thermally expand in the radial direction than the wall portion (21) of the casing (20). On the other hand, since the radial direction thermal expansion of the resin member (61) is promoted by the circumferential direction suppression plate (78) and the axial direction suppression plate (75), the stator (41) and The resin member (61) is prevented from coming off the casing (20).
  • the resin member (61) is less likely to thermally contract in the radial direction than the wall portion (21) of the casing (20) when the temperature decreases. Therefore, the stator (41) and the resin member (61) are prevented from coming off the casing (20) due to the temperature decrease.
  • Embodiment 1- A modified example 1 of the first embodiment will be described.
  • the rotary compressor (10) of this modification is different from that of the first embodiment in the number of supporting contact portions (21a).
  • differences from the first embodiment will be mainly described.
  • the stator (41) is supported by being sandwiched by the wall portion (21) of the casing (20) together with the resin member (61) at a plurality of locations (three locations in this example) in the circumferential direction. To be done. In other words, the stator (41) and the resin member (61) are in contact with and supported by the wall portion (21) of the casing (20) at three locations in the circumferential direction.
  • the part of the wall (21) of the casing (20) that comes into contact with the resin member (61) constitutes the support contact part (21a).
  • the wall portion (21) has three supporting contact portions (21a). The number of supporting contact portions (21a) may be set arbitrarily.
  • the center points of the outer surfaces of the resin member (61) adjacent to each other in the circumferential direction of the casing (20) are aligned with each other.
  • the direction in which they are connected in a straight line is the adjacent direction (one of which is indicated by a broken line in FIG. 4).
  • the adjacent direction is the center point of the inner surface of the supporting contact portion (21a) adjacent in the circumferential direction of the casing (20) (in other words, the contact surface of the supporting contact portion (21a) with the resin member (61)) in plan view. It is also the direction that connects the two in a straight line.
  • the two adjacent resin members (61) or the supporting contact portions (21a) in the circumferential direction are adjacent to each other.
  • the rate of change of the distance between the outer surfaces of the adjacent resin members (61) per unit temperature is smaller than the rate of change of the distance between the inner surfaces of the adjacent support contact portions (21a) per unit temperature.
  • the support contact portion (21a) increases.
  • the wall portion (21), the stator (41) and the resin member (61) are thermally expanded so that (a) moves away from the resin member (61).
  • the circumferential direction suppression plate (78) contacts the resin member (61) in the circumferential direction of the casing (20) and applies a compressive load to suppress the thermal expansion of the resin member (61), and the casing ( The thermal expansion of the resin member (61) is promoted in the radial direction of 20).
  • the axial suppression plate (75) contacts the resin member (61) in the axial direction of the casing (20) and applies a compressive load to suppress thermal expansion of the resin member (61), and the casing ( The thermal expansion of the resin member (61) is promoted in the radial direction of 20).
  • the resin member (61) and the wall portion (21) are kept in contact with each other, and the resin member (61) and the stator (41) are kept in contact with each other.
  • the axial restraint plate (75) has the same structure as that of the first embodiment.
  • Embodiment 1- A modified example 2 of the first embodiment will be described.
  • the rotary compressor (10) of the present modified example is different from that of the first embodiment in that an axial restraint ring (72) is provided in place of the axial restraint plate (75).
  • differences from the first embodiment will be mainly described.
  • the axial restraint ring (72) is an annular member that restrains thermal expansion of the resin member (61) in the axial direction of the casing (20). As shown in FIG. 5, the axial restraint ring (72) is fixed to the wall portion (21) of the casing (20) by, for example, press fitting. The axial restraint ring (72) projects inward in the radial direction of the casing (20) rather than the inner peripheral surface of the wall portion (21). A first step portion (71) is formed between the protruding portion and the inner peripheral surface of the wall portion (21). The projecting portion is in contact with the end of the resin member (61) in the axial direction of the casing (20).
  • the axial restraint ring (72) is in contact with a part of the end portion of the resin member (61) in the radial direction of the casing (20).
  • the said protrusion part does not need to be in contact with the edge part of the resin member (61) in a normal temperature state and a low temperature state, if it contacts the edge part of the resin member (61) in a high temperature state.
  • the axial restraint ring (72) constitutes a first restraint member.
  • the circumferential direction suppression plate (78) contacts the resin member (61) in the circumferential direction of the casing (20) and applies a compressive load to suppress the thermal expansion of the resin member (61), and the casing ( The thermal expansion of the resin member (61) is promoted in the radial direction of 20).
  • the axial restraint ring (72) contacts the resin member (61) in the axial direction of the casing (20) and applies a compressive load to restrain thermal expansion of the resin member (61), and the casing ( The thermal expansion of the resin member (61) is promoted in the radial direction of 20).
  • the resin member (61) and the wall portion (21) are kept in contact with each other, and the resin member (61) and the stator (41) are kept in contact with each other.
  • the circumferential direction suppression plate (78) has the same configuration as that of the above embodiment.
  • the axial restraining ring (72) provided on the wall portion (21) of the casing (20) has the resin member (61) in the axial direction of the casing (20). (4) suppresses thermal expansion of the resin member (61) by contact with the end portion of (1). Therefore, the thermal expansion of the resin member (61) in the axial direction of the casing (20) is suppressed by the contact between the axial suppression ring (72) and the end of the resin member (61), and the radial direction of the casing (20). The thermal expansion of the resin member (61) is accelerated.
  • the length of the resin member (61) is shorter than the length of the stator (41) in the axial direction of the casing (20).
  • the axial restraint ring (72) is arranged so as to contact the end portion of the resin member (61) in the axial direction of the casing (20).
  • the length of the resin member (61) may be longer than the length of the stator (41) in the axial direction of the casing (20).
  • a stator recess (76) is formed on the outer peripheral surface of the stator (41).
  • the stator recess (76) may be formed, for example, by having a plurality of steel plates forming the stator (41) having different outer diameters.
  • the length of the stator recess (76) is substantially equal to the length of the resin member (61).
  • the resin member (61) is arranged so as to fit in the stator recess (76).
  • a second stepped portion (74) is formed by the stator recess (76).
  • the stator recess (76) constitutes a second recess.
  • the stator recess (76) formed in the stator (41) is brought into contact with the end of the resin member (61) in the axial direction, so that the resin member ( Suppress the thermal expansion of 61). Therefore, the contact between the side wall of the stator recess (76) and the end of the resin member (61) suppresses thermal expansion of the resin member (61) in the axial direction of the casing (20), and the diameter of the casing (20). Thermal expansion of the resin member (61) in the direction is promoted.
  • Embodiment 1- A modified example 5 of the first embodiment will be described.
  • the rotary compressor (10) of the present modification is different from the second modification of the first embodiment in the configuration of the first step portion (71).
  • differences from the second modification of the first embodiment will be mainly described.
  • a casing recess (73) is formed on the inner peripheral surface of the wall (21) of the casing (20). In the axial direction of the casing (20), the length of the casing recess (73) is substantially equal to the length of the resin member (61).
  • the resin member (61) is arranged so as to fit in the casing recess (73).
  • a first step portion (71) is formed by the casing recess (73).
  • the casing recess (73) constitutes a first recess.
  • the casing recess (73) formed in the wall (21) of the casing (20) has an end of the resin member (61) in the axial direction of the casing (20).
  • the thermal expansion of the resin member (61) is suppressed by contact with the portion. Therefore, due to the contact between the side wall of the casing recess (73) and the end of the resin member (61), thermal expansion of the resin member (61) in the axial direction of the casing (20) is suppressed, and the radial direction of the casing (20). The thermal expansion of the resin member (61) is accelerated.
  • the support structure (11) includes an insulator (63) instead of the resin member (61).
  • the insulator (63) is configured by alternately stacking a plurality (five in this example) of small expansion parts (63a) and a plurality (four in this example) of large expansion parts (63b). To be done.
  • the insulator (63) constitutes an insulating member and also constitutes a supported contact portion.
  • the small expansion section (63a) has the function of making it difficult for the stator (41) to come off the casing (20) when the temperature drops.
  • the small expansion section (63a) extends from the inner peripheral surface of the casing (20) to the outer peripheral surface of the stator (41).
  • the linear expansion coefficient of the small expansion section (63a) in the facing direction is smaller than the linear expansion coefficient of the material forming the wall section (21) of the casing (20).
  • the small expansion section (63a) is made of ceramic, but may be made of an insulating material other than this.
  • the large expansion section (63b) has the function of making it difficult for the stator (41) to come off the casing (20) when the temperature rises.
  • the large expansion section (63b) extends from the inner peripheral surface of the casing (20) to the outer peripheral surface of the stator (41).
  • the large expansion portion (63b) has a linear expansion coefficient in the facing direction larger than that of the material forming the wall portion (21) of the casing (20).
  • the large expansion part (63b) is made of an insulating resin, but may be made of an insulating material other than this.
  • the small expansion part (63a) of the insulator (63) is made of a material whose linear expansion coefficient in the facing direction constitutes the wall part (21) of the casing (20).
  • the stator (41) is prevented from coming off the casing (20) due to the temperature decrease.
  • the large expansion part (63b) of the insulator (63) is more likely to thermally expand in the facing direction than the wall part (21) of the casing (20) when the temperature rises. Therefore, the stator (41) is prevented from coming off the casing (20) due to the temperature rise.
  • the second embodiment will be described.
  • the rotary compressor (10) of the present embodiment differs from that of the first embodiment in the structure of the support structure.
  • differences from the first embodiment will be mainly described.
  • the support structure (11) includes a drive shaft (50), a rotor (42) of the electric motor (40), a resin member (61), and an axial restraint plate (75). Composed of and.
  • the drive shaft (50) constitutes a support.
  • the axial restraint plate (75) constitutes an expansion controller.
  • the rotor (42) and the resin member (61) are supported in contact with the wall portion (50a) of the drive shaft (50) (in other words, the support contact portion (50a)).
  • the rotor (42) has a laminated structure in which a large number of steel plates are laminated in the axial direction.
  • the rotor (42) has a plurality of permanent magnets (not shown).
  • the length of the rotor (42) is substantially equal to the length of the resin member (61) in the axial direction of the drive shaft (50).
  • the rotor (42) constitutes the main body of the supported body.
  • the resin member (61) constitutes an insulating member and also constitutes a supported contact portion.
  • the rotor (42) and the resin member (61) form a supported body.
  • the shape of the rotor in FIG. 10 is merely an example.
  • the resin member (61) is a cylindrical member sandwiched between the wall portion (50a) of the drive shaft (50) and the rotor (42) of the electric motor (40).
  • the resin member (61) is made of an insulating resin and electrically insulates the drive shaft (50) and the rotor (42).
  • This insulating resin is, for example, fiber reinforced resin or LCP resin. It should be noted that, instead of the cylindrical resin member (61), a plurality of resin members that are spaced apart in the circumferential direction of the drive shaft (50) may be provided.
  • the resin member (61) has anisotropy regarding the coefficient of linear expansion.
  • the drive shaft (50) is isotropic with respect to the linear expansion coefficient. Specifically, in the axial direction of the drive shaft (50), the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the drive shaft (50). The linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the rotor (42) in the axial direction of the drive shaft (50).
  • the axial direction of the drive shaft (50) is the first direction.
  • the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the wall portion (50a) of the support body (50).
  • the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the main body portion (42) of the supported body.
  • the linear expansion coefficient of the material forming the resin member (61) is smaller than the linear expansion coefficient of the material forming the support body (50) between the wall portions (50a).
  • the “between the wall parts (50a)” is between a part of the wall part (50a) and another part of the wall part (50a) separated from the part.
  • the “support (50) between the wall portions (50a)” is a support body (50) that constitutes between the wall portions (50a).
  • the “linear expansion coefficient of the material forming the support (50) between the wall portions (50a)” is the linear expansion coefficient of the material. ..
  • the “linear expansion coefficient of the material forming the support body (50) between the wall portions (50a)” is the linear expansion coefficient of each material and the support body. It is a coefficient determined by the shape of (50). This coefficient can be obtained by calculating the rate of change of the distance between the wall parts (50a) per unit temperature in a test or analysis.
  • the “coefficient of linear expansion of the material forming the support body (50) between the wall portions (50a)” is the rate of change of the distance between the wall portions (50a) per unit temperature.
  • the linear expansion coefficient of the material forming the resin member (61) is smaller than the linear expansion coefficient of the material forming the rotor (41).
  • the radial direction of the drive shaft (50) is the opposing direction of the resin member (61) and the wall portion (50a). In other words, in the direction in which the supported contact portion (61) and the wall portion (50a) of the support body (50) face each other, the linear expansion coefficient of the material forming the supported contact portion (61) is the wall portion (50a). It is smaller than the linear expansion coefficient of the material forming the support body (50).
  • the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the drive shaft (50).
  • the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the rotor (42).
  • the circumferential direction of the drive shaft (50) is the second direction. In other words, in the second direction, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the wall portion (50a). In the second direction, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the main body portion (42) of the supported body.
  • the anisotropy of the linear expansion coefficient of the material forming the resin member (61) is determined by the orientation direction of the fibrous substance contained in the material forming the resin member (61) or the material forming the resin member (61). Occurs according to the orientation direction of the molecular chain of.
  • the direction in which any two points of the resin member (61) are linearly connected is defined as the adjacent direction (one of which is shown by the broken line in FIG. 10).
  • the adjacent direction is a straight line when two arbitrary points on the wall portion (50a) of the drive shaft (50) (in other words, the contact surface with the resin member (61) of the support contact portion (50a)) are seen in a plan view. It is also the direction to tie.
  • the adjacent direction illustrated in FIG. 10 coincides with the radial direction of the drive shaft (50).
  • the distance between the outer surfaces of the resin member (61) per unit temperature in the adjacent direction with respect to the resin member (61) or the supporting contact portion (50a). Is smaller than the rate of change in the distance between the inner surfaces of the rotor (42) per unit temperature.
  • the rotor (42) separates from the resin member (61) as the ambient temperature of the resin member (61) and the rotor (42) rises.
  • the rotor (42) and the resin member (61) thermally expand as they go. This is because the linear expansion coefficient of the rotor (42) is larger than the linear expansion coefficient of the resin member (61) in the radial direction of the drive shaft (50).
  • the axial restraint plate (75) is a plate-shaped member that restrains thermal expansion of the resin member (61) in the axial direction of the drive shaft (50). As shown in FIG. 11, the axial restraint plate (75) is fixed to the upper and lower ends of the rotor (42) and is located more radially inward of the drive shaft (50) than the inner peripheral surface of the rotor (42). It is protruding. A second step portion (74) is formed between the protruding portion and the inner peripheral surface of the rotor (42). The projecting portion is in contact with the end of the resin member (61) in the axial direction of the drive shaft (50).
  • the axial suppression plate (75) is in contact with a part of the end portion of the resin member (61) in the radial direction of the drive shaft (50) (particularly, a part on the outer side in the radial direction).
  • the said protrusion part does not need to be in contact with the edge part of the resin member (61) in a normal temperature state and a low temperature state, if it contacts the edge part of the resin member (61) in a high temperature state.
  • the axial restraint plate (75) constitutes a second restraint member.
  • the axial restraint plate (75) promotes thermal expansion of the resin member (61) in the radial direction of the drive shaft (50) by the Poisson effect. Specifically, the axial direction suppression plate (75) suppresses thermal expansion of the resin member (61) by contacting the resin member (61) in the axial direction of the drive shaft (50) and applying a compressive load. And promotes thermal expansion of the resin member (61) in the radial direction of the drive shaft (50). As a result, the resin member (61) and the wall portion (50a) of the drive shaft (50) are kept in contact with each other, and the resin member (61) and the rotor (42) are kept in contact with each other.
  • the support structure (11) of the present embodiment also provides the same effect as that of the first embodiment.
  • Embodiment 2- A modified example 1 of the second embodiment will be described.
  • the rotary compressor (10) of the present modified example is different from that of the second embodiment in that an axial restraint ring (72) is provided in place of the axial restraint plate (75).
  • differences from the second embodiment will be mainly described.
  • the axial restraint ring (72) is an annular member that restrains thermal expansion of the resin member (61) in the axial direction of the drive shaft (50). As shown in FIG. 12, the axial restraint ring (72) is fixed to the wall portion (50a) of the drive shaft (50) by, for example, an interference fit. The axial restraint ring (72) projects more radially outward of the drive shaft (50) than the wall portion (50a). A first step portion (71) is formed between the protruding portion and the wall portion (50a). The projecting portion is in contact with the end of the resin member (61) in the axial direction of the drive shaft (50).
  • the axial restraint ring (72) is in contact with a part of the end of the resin member (61) in the radial direction of the drive shaft (50).
  • the said protrusion part does not need to be in contact with the edge part of the resin member (61) in a normal temperature state and a low temperature state, if it contacts the edge part of the resin member (61) in a high temperature state.
  • the axial restraint ring (72) constitutes a first restraint member.
  • the axial restraint ring (72) is in contact with the resin member (61) in the axial direction of the drive shaft (50) and applies a compressive load to restrain thermal expansion of the resin member (61) and to drive the resin member (61).
  • the thermal expansion of the resin member (61) is promoted in the radial direction of the shaft (50).
  • the resin member (61) and the wall portion (50a) are kept in contact with each other, and the resin member (61) and the rotor (42) are kept in contact with each other.
  • the length of the resin member (61) is shorter than the length of the rotor (42) in the axial direction of the drive shaft (50).
  • the axial restraint ring (72) is arranged so as to come into contact with the end of the resin member (61) in the axial direction of the drive shaft (50).
  • the length of the resin member (61) may be longer than the length of the rotor (42) in the axial direction of the drive shaft (50).
  • a rotor recess (82) is formed on the inner peripheral surface of the rotor (42).
  • the rotor recess (82) may be formed, for example, by having a plurality of steel plates forming the rotor (42) having different inner diameters.
  • the length of the rotor recess (82) in the axial direction of the drive shaft (50) is substantially equal to the length of the resin member (61).
  • the resin member (61) is arranged to fit in the rotor recess (82).
  • the rotor recess (82) forms the second step (74).
  • the rotor recess (82) constitutes a second recess.
  • the rotor recess (82) formed in the rotor (42) comes into contact with the end portion of the resin member (61) in the axial direction, so that the resin member ( Suppress the thermal expansion of 61). Therefore, the contact between the side wall of the rotor recess (82) and the end of the resin member (61) suppresses thermal expansion of the resin member (61) in the axial direction of the drive shaft (50), and the drive shaft (50). The thermal expansion of the resin member (61) in the radial direction is accelerated.
  • the drive shaft recess (81) is formed in the wall portion (50a) of the drive shaft (50). In the axial direction of the drive shaft (50), the length of the drive shaft recess (81) is substantially equal to the length of the resin member (61). The resin member (61) is arranged to fit into the drive shaft recess (81). The drive shaft recess (81) forms a first step portion (71). The drive shaft recess (81) constitutes a first recess.
  • the drive shaft recess (81) formed in the wall portion (50a) of the drive shaft (50) has the resin member (61) in the axial direction of the drive shaft (50). (4) suppresses thermal expansion of the resin member (61) by contact with the end portion of (1). Therefore, the thermal expansion of the resin member (61) in the axial direction of the drive shaft (50) is suppressed by the contact between the side wall of the drive shaft recess (81) and the end of the resin member (61), and the drive shaft (50). The thermal expansion of the resin member (61) in the radial direction is accelerated.
  • the support structure (11) includes an insulator (63) instead of the resin member (61).
  • the insulator (63) is configured by alternately stacking a plurality (five in this example) of small expansion parts (63a) and a plurality (four in this example) of large expansion parts (63b). To be done.
  • the insulator (63) constitutes an insulating member and also constitutes a supported contact portion.
  • the small expansion section (63a) has the function of making it difficult for the rotor (42) to come off the drive shaft (50) when the temperature rises.
  • the small expansion section (63a) extends from the outer peripheral surface (in other words, the wall section (50a)) of the drive shaft (50) to the inner peripheral surface of the rotor (42).
  • the linear expansion coefficient of the small expansion section (63a) in the facing direction is smaller than the linear expansion coefficient of the material forming the drive shaft (50).
  • the small expansion section (63a) is made of ceramic, but may be made of an insulating material other than this.
  • the large expansion section (63b) has the function of making it difficult for the rotor (42) to come off the drive shaft (50) when the temperature drops.
  • the large expansion section (63b) extends from the outer peripheral surface of the drive shaft (50) to the inner peripheral surface of the rotor (42).
  • the large expansion section (63b) has a coefficient of linear expansion in the facing direction larger than that of the material forming the drive shaft (50).
  • the large expansion part (63b) is made of an insulating resin, but may be made of an insulating material other than this.
  • the small expansion portion (63a) of the insulator (63) has a linear expansion coefficient in the facing direction higher than that of the material forming the drive shaft (50). It is made of a small material, and the large expansion portion (63b) of the insulator (63) is made of a material having a linear expansion coefficient in the facing direction larger than that of the material forming the drive shaft (50). It Therefore, the small expansion part (63a) of the insulator (63) is less likely to thermally expand in the facing direction than the drive shaft (50) when the temperature rises. Therefore, the rotor (42) is prevented from coming off the drive shaft (50) due to the temperature rise.
  • the large expansion part (63b) of the insulator (63) is more likely to be thermally contracted in the facing direction than the drive shaft (50) when the temperature decreases. Therefore, the rotor (42) is prevented from coming off the drive shaft (50) due to the temperature decrease.
  • the above embodiment may have the following configurations.
  • the support structure (11) of the first modified example includes a casing (20), a resin member (62), and an expansion control bar (79).
  • the casing (20) extends in the axial direction (direction orthogonal to the paper surface in FIG. 17).
  • the casing (20) includes three wall portions (21) each extending in the axial direction.
  • the three wall portions (21) are integrally connected in a U-shape (or C-shape) in a plan view.
  • the casing (20) constitutes a support.
  • the resin member (62) is a plate-like member supported by being sandwiched between two wall portions (21) facing each other.
  • the resin member (62) extends between the two wall portions (21) facing each other and extends in the axial direction.
  • the resin member (62) is entirely made of the same resin material.
  • the portion of the resin member (62) that contacts the wall portion (21) constitutes the supported contact portion (62a).
  • a portion of the wall portion (21) that comes into contact with the resin member (62) constitutes a support contact portion (21a).
  • the expansion control bar (79) has a resin member (in the left-right direction in FIG. 17) orthogonal to the facing direction (the vertical direction in FIG. 17) of the supported contact portion (62a) and the supporting contact portion (21a). 62) A member for suppressing thermal expansion.
  • the expansion control bar (79) is an elongated prismatic member extending in the axial direction.
  • the expansion control bar (79) is fixed to the wall portion (21) so as to sandwich the supported contact portion (62a) of the resin member (62) in the first direction.
  • the two expansion control bars (79) corresponding to one supported contact portion (62a) form a third step portion (77) between the wall portion (21) and the expansion control bar (79).
  • the expansion control bar (79) constitutes an expansion control section.
  • the resin member (62) has anisotropy regarding the linear expansion coefficient.
  • the casing (20) is isotropic with respect to the linear expansion coefficient. Specifically, in the direction in which the resin member (62) and the wall portion (21) face each other, the linear expansion coefficient of the material forming the resin member (62) is determined by the support (20,50) between the wall portions (21). Is smaller than the linear expansion coefficient of the material constituting the. In the first direction, the linear expansion coefficient of the material forming the resin member (62) is larger than the linear expansion coefficient of the material forming the wall portion (21).
  • the anisotropy of the linear expansion coefficient of the material forming the resin member (62) constitutes the orientation direction of the fibrous substance contained in the material forming the resin member (62) or the resin member (62). It occurs corresponding to the orientation direction of the molecular chains of the material.
  • the rate of change of the distance between the both end surfaces of the resin member (62) per unit temperature in the facing direction is equal to that of the distance between the inner surfaces of the support contact portion (21a). It is smaller than the rate of change per unit temperature.
  • the supporting contact portion (21a) moves away from the resin member (62).
  • the wall portion (21) and the resin member (62) thermally expand. This is because the linear expansion coefficient of the wall portion (21) is larger than the linear expansion coefficient of the resin member (62) in the facing direction.
  • the expansion control bar (79) suppresses thermal expansion of the resin member (62) by coming into contact with the resin member (62) in the first direction and applying a compressive load to the resin member (62), and also in the facing direction, the resin.
  • the thermal expansion of the member (62) is promoted. This keeps the resin member (62) and the wall portion (21) in contact with each other.
  • the expansion control section (70) is provided on the casing (20) or the stator (41), or on the drive shaft (50) or the rotor (42).
  • the expansion control section (70) may be configured by a component that is indirectly fixed to the casing (20). In this case, the casing (20) and the component make up a support.
  • the expansion control section (70) is provided on the casing (20) or the stator (41), or on the drive shaft (50) or the rotor (42).
  • the expansion control section (70) may be provided in the casing (20) and the stator (41), or the expansion control section (70) may be provided in the drive shaft (50) and the rotor (42). May be.
  • thermal expansion of the resin member (61) is suppressed in the axial direction (first direction) and the circumferential direction (second direction) of the casing (20) or the drive shaft (50).
  • thermal expansion of the resin member (61) may be suppressed in the axial direction or the circumferential direction of the casing (20) or the drive shaft (50).
  • the first direction is not limited to the axial direction of the casing (20) or the drive shaft (50) as long as it is a direction orthogonal to the facing direction of the resin member (61) and the wall portion (21, 50a).
  • the second direction is not limited to the circumferential direction of the casing (20) or the drive shaft (50).
  • the axial restraint plate (75), the circumferential restraint plate (78), and the axial restraint ring (72) are formed in a plate shape.
  • these components may be replaced by any shaped component having a similar function.
  • the casing (20) may be formed by combining a plurality of members having different constituent materials.
  • the supporting contact portion (21a) and the portion other than the supporting contact portion (21a) may be made of different materials.
  • the axial restraint plate (75), the circumferential restraint plate (78), and the axial restraint ring (72) are configured to come into contact with the ends of the resin member (61).
  • these constituent elements may be configured to come into contact with portions other than the ends of the resin member (61).
  • these components may be an uneven surface formed on the inner surface of the casing.
  • the resin member (61) is formed in a plate shape.
  • the resin member (61) may be formed in a C shape (or a U shape) in a plan view.
  • the resin member (61) may be formed in a cylindrical shape.
  • the adjoining direction of the above embodiment may be a direction that linearly connects arbitrary positions of the wall portions (21) facing each other with the supported body sandwiched therebetween in a plan view.
  • the supported contact portion (61, 62a, 63) and the wall portion (21, 50a) face each other, the direction in which the wall portion (21, 50a) and the center of gravity of the supported member are linearly connected, or the supported member is supported. It is conceivable that the direction substantially perpendicular to the contact surface between the contact portion (61, 62a, 63) and the wall portion (21, 50a) is the adjacent direction.
  • the resin member (61) may be formed integrally with the stator (41) or the rotor (42) or may be formed separately. In order to integrally form the stator (41) or the rotor (42) and the resin member (61), for example, the stator (41) or the rotor (42) and the resin member (61) may be bonded together. Alternatively, the resin member (61) may be formed on the stator (41) or the rotor (42) by injection molding. When the resin member (61) is formed by injection molding, the resin member (61) may be formed by injection molding only on the stator (41) or the rotor (42). The resin member (61) may be formed on the casing (20) or on the rotor (42) and the drive shaft (50) by injection molding.
  • the main body of the supported body is composed of the stator (41) or the rotor (42).
  • the main body of the supported body may be composed of the compression mechanism (30).
  • the casing (20) and the resin members (61, 62a) or the insulator (63) may be adhered to each other.
  • the drive shaft (50) and the resin member (61) or the insulator (63) may be adhered to each other.
  • a method of adhesion a method using heat welding or an adhesive can be applied, and the method is not limited to these.
  • the magnitude relationship between the linear expansion coefficient of the resin member (61) and the linear expansion coefficient of the casing (20) or the drive shaft (50) is not limited to that described above, and may be set arbitrarily.
  • the linear expansion coefficient of the material forming the resin member (61) in the radial direction of the casing (20) or the drive shaft (50), is the linear expansion of the material forming the casing (20) or the drive shaft (50). It may be larger than the coefficient.
  • the linear expansion coefficient of the material forming the resin member (61) forms the casing (20) or the drive shaft (50) in the axial direction or the circumferential direction of the casing (20) or the drive shaft (50). It may be smaller than the linear expansion coefficient of the material.
  • the resin member (61) has anisotropy with respect to the linear expansion coefficient, but the resin member (61) may have isotropicity with respect to the linear expansion coefficient.
  • At least one of the support structure (11) including the casing (20) and the stator (41) and the support structure (11) including the drive shaft (50) and the rotor (42) is configured according to the present technique. Just do it.
  • both support structures (11) may be constructed according to the present technique.
  • the support structure (11) of the present technology can be applied to any application other than the rotary compressor.
  • the present disclosure is useful for a support structure and a rotary compressor including the support structure.
  • Rotary compressor 11 Support structure 20 Casing (support) 21 Wall 40 Electric motor 41 Stator (main body) 42 Rotor (main body) 50 Drive shaft (support) 50a wall (support contact) 61 Resin member (insulating member, supported contact part) 62 Resin material (supported body) 62a Supported contact part 63 Insulator (insulating member, supported contact part) 70 Expansion control section 71 First step section 72 Axial restraint ring (first restraint member) 73 Casing recess (first recess) 74 Second stepped portion 75 Axial restraint plate (second restraint member) 76 Stator recess (second recess) 81 Drive shaft recess (first recess) 82 Rotor recess (second recess)

Abstract

This support structure (11) comprises a support body (20, 50) having a wall part (21, 50a), and a supported body (41, 42, 61-63) that is supported contacting the wall part (21, 50a) of the support body (20, 50). The support structure (11) comprises expansion control parts (70) provided to the support body (20, 50) and/or the supported body (41, 42, 61-63). The expansion control parts (70) suppress the thermal expansion of supported contact parts (61, 62a, 63) in a first direction orthogonal to the facing direction of the supported contact parts (61, 62a, 63) and the wall part (21, 50a), and promote the thermal expansion of the supported contact parts (61, 62a, 63) in the facing direction. As a result, the supported body can be prevented from detaching from the support body due to temperature increase.

Description

支持構造およびそれを備えた回転式圧縮機Support structure and rotary compressor including the same
 本開示は、支持構造およびそれを備えた回転式圧縮機に関するものである。 The present disclosure relates to a support structure and a rotary compressor including the support structure.
 従来より、支持体とこれに支持される被支持体とを備えた支持構造が知られている。例えば、特許文献1には、支持体を構成するケーシングと、被支持体を構成する電動機の固定子とを備えた圧縮機が開示されている。この圧縮機では、ケーシングの線膨張係数と固定子の線膨張係数とが互いに異なる。特許文献1には、線膨張係数の違いに起因して固定子がケーシングから外れるのを防ぐために、固定子よりも線膨張係数が大きい部材を固定子とケーシングとの間に設けることが開示されている。 Conventionally, a support structure including a support body and a supported body supported by the support body has been known. For example, Patent Document 1 discloses a compressor including a casing that constitutes a support and a stator of an electric motor that constitutes a supported body. In this compressor, the linear expansion coefficient of the casing and the linear expansion coefficient of the stator are different from each other. Patent Document 1 discloses that a member having a larger linear expansion coefficient than the stator is provided between the stator and the casing in order to prevent the stator from coming off the casing due to a difference in linear expansion coefficient. ing.
特開2001-289173号公報JP 2001-289173 A
 しかしながら、特許文献1の圧縮機では、上記部材が設けられることによりケーシングから固定子が外れにくくなるとは言え、温度が上昇すると、当該部材またはケーシングから固定子が外れる可能性が依然として残っている。 However, in the compressor of Patent Document 1, although it is difficult to remove the stator from the casing by providing the member, there is still a possibility that the stator may be removed from the member or the casing when the temperature rises.
 本開示の目的は、温度上昇のために支持体から被支持体が外れるのを阻止することにある。 The purpose of the present disclosure is to prevent the supported body from coming off the support body due to the temperature rise.
 本開示の第1の態様は、壁部(21,50a)を有する支持体(20,50)と、該支持体(20,50)の壁部(21,50a)に接触して支持された被支持体(41,42,61~63)とを備えた支持構造(11)を対象とする。この支持構造(11)は、上記被支持体(41,42,61~63)における上記支持体(20,50)の壁部(21,50a)に接触する部分を被支持接触部(61,62a,63)として、上記支持体(20,50)および上記被支持体(41,42,61~63)の少なくとも一方に設けられ、上記被支持接触部(61,62a,63)と上記壁部(21,50a)との対向方向と直交する第1方向における上記被支持接触部(61,62a,63)の熱膨張を抑制し、かつ上記対向方向における上記被支持接触部(61,62a,63)の熱膨張を促進する膨張制御部(70)を備える。 The first aspect of the present disclosure is supported by a support (20,50) having a wall (21,50a) and a wall (21,50a) of the support (20,50) in contact with the support. A support structure (11) provided with supported objects (41, 42, 61 to 63) is targeted. In this support structure (11), a portion of the supported body (41, 42, 61 to 63) that contacts the wall portion (21, 50a) of the support body (20, 50) is supported by the supported contact portion (61, 42). 62a, 63) provided on at least one of the support (20, 50) and the supported body (41, 42, 61-63), and the supported contact portion (61, 62a, 63) and the wall. The supported contact portion (61, 62a, 63) in the first direction orthogonal to the facing direction of the portion (21, 50a), and the supported contact portion (61, 62a) in the facing direction. , 63) for promoting thermal expansion.
 第1の態様では、温度上昇時に、膨張制御部(70)によって、第1方向における被支持接触部(61,62a,63)の熱膨張が抑制されると共に対向方向における被支持接触部(61,62a,63)の熱膨張が促進される。後者の熱膨張の促進により、温度上昇時に、被支持接触部(61,62a,63)と壁部(21,50a)とが互いに接触した状態が保たれる。換言すると、温度上昇時に、熱膨張によって被支持接触部(61,62a,63)と壁部(21,50a)とが互いに離れてしまうことがない。このため、温度上昇に起因して被支持体(41,42,61~63)が支持体(20,50)から外れてしまうことが阻止される。 In the first aspect, when the temperature rises, the expansion control section (70) suppresses thermal expansion of the supported contact portions (61, 62a, 63) in the first direction, and the supported contact portion (61) in the opposing direction. , 62a, 63) thermal expansion is promoted. By promoting the latter thermal expansion, the supported contact portions (61, 62a, 63) and the wall portions (21, 50a) are kept in contact with each other when the temperature rises. In other words, the supported contact portions (61, 62a, 63) and the wall portions (21, 50a) do not separate from each other due to thermal expansion when the temperature rises. Therefore, it is possible to prevent the supported bodies (41, 42, 61 to 63) from coming off the support bodies (20, 50) due to the temperature rise.
 本開示の第2の態様は、上記第1の態様において、上記膨張制御部(70)は、上記第1方向において、上記被支持接触部(61,62a,63)に対して接触して圧縮荷重を加えることにより、上記被支持接触部(61,62a,63)の熱膨張を抑制することを特徴とする。 A second aspect of the present disclosure is the first aspect, wherein the expansion control section (70) is in contact with the supported contact section (61, 62a, 63) in the first direction and is compressed. It is characterized in that thermal expansion of the supported contact portions (61, 62a, 63) is suppressed by applying a load.
 第2の態様では、ポアソン効果により、第1方向と直交する対向方向において、被支持接触部(61,62a,63)の熱膨張が促進される。 In the second aspect, the Poisson effect promotes thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction orthogonal to the first direction.
 本開示の第3の態様は、上記第2の態様において、上記膨張制御部(70)は、上記被支持接触部(61,62a,63)の上記対向方向における一部に対して接触することを特徴とする。 A third aspect of the present disclosure is the second aspect, wherein the expansion control section (70) contacts a portion of the supported contact section (61, 62a, 63) in the facing direction. Is characterized by.
 第3の態様では、被支持接触部(61,62a,63)の対向方向における熱膨張が促進される程度をコントロールすることができる。ここで、当該熱膨張が最も促進されるのは、被支持接触部(61,62a,63)の対向方向における全体に対して膨張制御部(70)が接触する場合である。一方、当該熱膨張が全く促進されないのは、被支持接触部(61,62a,63)に対して膨張制御部(70)が仮に接触しない場合である。これらの関係に基づいて、被支持接触部(61,62a,63)の対向方向における熱膨張が促進される程度をコントロールできる。 In the third aspect, the degree to which the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction can be controlled can be controlled. Here, the thermal expansion is most promoted when the expansion control section (70) contacts the entire supported contact sections (61, 62a, 63) in the facing direction. On the other hand, the thermal expansion is not promoted at all when the expansion control section (70) does not contact the supported contact sections (61, 62a, 63). Based on these relationships, the degree to which the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction can be controlled can be controlled.
 本開示の第4の態様は、上記第1~第3の態様のいずれか1つにおいて、上記対向方向と直交し、かつ上記第1方向と直交する方向を第2方向として、上記膨張制御部(70)は、上記第1方向および上記第2方向における上記被支持接触部(61,62a,63)の熱膨張を抑制しかつ上記対向方向における上記被支持接触部(61,62a,63)の熱膨張を促進することを特徴とする。 A fourth aspect of the present disclosure is the expansion control unit according to any one of the first to third aspects, wherein a direction orthogonal to the facing direction and orthogonal to the first direction is a second direction. (70) suppresses thermal expansion of the supported contact portions (61, 62a, 63) in the first direction and the second direction and supports the supported contact portions (61, 62a, 63) in the facing direction. It is characterized by promoting the thermal expansion of.
 第4の態様では、膨張制御部(70)により、第1方向および第2方向における被支持接触部(61,62a,63)の熱膨張が抑制される。第1方向のみにおいて被支持接触部(61,62a,63)の熱膨張が抑制される場合に比べて、対向方向における被支持接触部(61,62a,63)の熱膨張をより強く促進できる。 In the fourth aspect, the expansion controller (70) suppresses thermal expansion of the supported contact parts (61, 62a, 63) in the first direction and the second direction. The thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction can be promoted more strongly than in the case where the thermal expansion of the supported contact portions (61, 62a, 63) is suppressed only in the first direction. ..
 本開示の第5の態様は、上記第1~第4の態様のいずれか1つにおいて、上記被支持接触部(61,62a,63)を構成する材料は、繊維強化樹脂またはLCP樹脂であることを特徴とする。 According to a fifth aspect of the present disclosure, in any one of the first to fourth aspects, the material forming the supported contact portion (61, 62a, 63) is a fiber reinforced resin or LCP resin. It is characterized by
 本開示の第6の態様は、上記第1~第5の態様のいずれか1つにおいて、上記膨張制御部(70)は、上記支持体(20,50)に設けられ、上記第1方向において上記被支持接触部(61,62a,63)との接触により上記被支持接触部(61,62a,63)の熱膨張を抑制する第1段差部(71)を有することを特徴とする。 A sixth aspect of the present disclosure is the method according to any one of the first to fifth aspects, wherein the expansion control section (70) is provided in the support body (20, 50), and in the first direction. It is characterized by having a first stepped portion (71) that suppresses thermal expansion of the supported contact portion (61, 62a, 63) due to contact with the supported contact portion (61, 62a, 63).
 第6の態様では、第1段差部(71)と被支持接触部(61,62a,63)との接触により、第1方向における被支持接触部(61,62a,63)の熱膨張が抑制され、対向方向における被支持接触部(61,62a,63)の熱膨張が促進される。 In the sixth aspect, due to the contact between the first stepped portion (71) and the supported contact portion (61, 62a, 63), thermal expansion of the supported contact portion (61, 62a, 63) in the first direction is suppressed. Thus, the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction is promoted.
 本開示の第7の態様は、上記第6の態様において、上記第1段差部(71)は、上記支持体(20,50)に設けられ、上記対向方向に突出する第1抑制部材(72)により構成されていることを特徴とする。 In a seventh aspect of the present disclosure according to the sixth aspect, the first step portion (71) is provided on the support body (20, 50) and protrudes in the facing direction from a first suppressing member (72). ).
 第7の態様では、第1抑制部材(72)と被支持接触部(61,62a,63)との接触により、第1方向における被支持接触部(61,62a,63)の熱膨張が抑制され、対向方向における被支持接触部(61,62a,63)の熱膨張が促進される。 In the seventh aspect, the thermal expansion of the supported contact portion (61, 62a, 63) in the first direction is suppressed by the contact between the first suppressing member (72) and the supported contact portion (61, 62a, 63). Thus, the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction is promoted.
 本開示の第8の態様は、上記第6の態様において、上記第1段差部(71)は、上記支持体(20,50)に形成された第1凹部(73,81)によって構成されていることを特徴とする。 According to an eighth aspect of the present disclosure, in the sixth aspect, the first step portion (71) is constituted by a first recess (73, 81) formed in the support body (20, 50). It is characterized by being
 第8の態様では、第1凹部(73,81)の側壁と被支持接触部(61,62a,63)との接触により、第1方向における被支持接触部(61,62a,63)の熱膨張が抑制され、対向方向における被支持接触部(61,62a,63)の熱膨張が促進される。 In the eighth aspect, the heat of the supported contact portion (61, 62a, 63) in the first direction is generated by the contact between the side wall of the first recess (73, 81) and the supported contact portion (61, 62a, 63). Expansion is suppressed, and thermal expansion of the supported contact portions (61, 62a, 63) in the opposing direction is promoted.
 本開示の第9の態様は、上記第1~第8の態様のいずれか1つにおいて、上記支持体(20,50)と上記被支持接触部(61,62a,63)とは、互いに接着されていることを特徴とする。 A ninth aspect of the present disclosure is the method according to any one of the first to eighth aspects, wherein the support (20,50) and the supported contact portion (61,62a,63) are bonded to each other. It is characterized by being.
 第9の態様では、支持体(20,50)と被支持接触部(61,62a,63)との間で、接着による強固な固定が実現される。したがって、温度上昇または温度低下に起因して被支持体(41,42,61~63)が支持体(20,50)から外れてしまうことが阻止される。 In the ninth aspect, firm fixing by adhesion is realized between the support body (20, 50) and the supported contact portion (61, 62a, 63). Therefore, it is possible to prevent the supported body (41, 42, 61 to 63) from coming off the support body (20, 50) due to the temperature increase or the temperature decrease.
 本開示の第10の態様は、上記第1~第9の態様のいずれか1つにおいて、上記対向方向において、上記被支持接触部(61,62a,63)を構成する材料の線膨張係数は、上記支持体(20,50)の壁部(21,50a)を構成する材料の線膨張係数よりも小さいことを特徴とする。 A tenth aspect of the present disclosure is the method according to any one of the first to ninth aspects, wherein a linear expansion coefficient of a material forming the supported contact portions (61, 62a, 63) in the facing direction is The linear expansion coefficient of the material forming the wall portions (21, 50a) of the support (20, 50) is smaller than the linear expansion coefficient.
 第10の態様では、被支持接触部(61,62a,63)は、対向方向の線膨張係数が小さいため、温度上昇時に支持体(20,50)の壁部(21,50a)よりも対向方向において熱膨張しにくい。これに対し、膨張制御部(70)により被支持接触部(61,62a,63)の対向方向の熱膨張が促進されるので、温度上昇に起因して被支持体(41,42,61~63)が支持体(20,50)から外れることが阻止される。一方、被支持接触部(61,62a,63)は、温度低下時に支持体(20,50)の壁部(21,50a)よりも対向方向において熱収縮しにくい。よって、温度低下に起因して被支持体(41,42,61~63)が支持体(20,50)から外れることが阻止される。 In the tenth aspect, since the supported contact portions (61, 62a, 63) have a small linear expansion coefficient in the facing direction, the supported contact portions (61, 62a, 63) face the wall portions (21, 50a) of the support body (20, 50) at the time of temperature rise. Thermal expansion hardly occurs in the direction. On the other hand, since the expansion control section (70) promotes thermal expansion of the supported contact sections (61, 62a, 63) in the opposing direction, the supported bodies (41, 42, 61... 63) is prevented from coming off the support (20,50). On the other hand, the supported contact portions (61, 62a, 63) are less likely to shrink in the facing direction than the wall portions (21, 50a) of the support body (20, 50) when the temperature decreases. Therefore, the supported bodies (41, 42, 61 to 63) are prevented from coming off the support bodies (20, 50) due to the temperature decrease.
 本開示の第11の態様は、上記第1~第9の態様のいずれか1つにおいて、上記対向方向において、上記被支持接触部(61,62a,63)を構成する材料の線膨張係数は、上記支持体(20,50)の壁部(21,50a)を構成する材料の線膨張係数よりも大きいことを特徴とする。 An eleventh aspect of the present disclosure is the method according to any one of the first to ninth aspects, wherein the linear expansion coefficient of the material forming the supported contact portions (61, 62a, 63) in the facing direction is The linear expansion coefficient of the material forming the wall portions (21, 50a) of the support (20, 50) is larger than that of the material.
 第11の態様では、被支持接触部(61,62a,63)は、対向方向の線膨張係数が大きいため、温度上昇時に支持体(20,50)の壁部(21,50a)よりも対向方向において熱膨張しやすい。これに加えて、膨張制御部(70)により被支持接触部(61,62a,63)の対向方向の熱膨張が促進されるので、温度上昇に起因して被支持体(41,42,61~63)が支持体(20,50)から外れることがより一層阻止される。 In the eleventh aspect, since the supported contact portions (61, 62a, 63) have a large linear expansion coefficient in the facing direction, the supported contact portions (61, 62a, 63) face the wall portions (21, 50a) of the support body (20, 50) at the time of temperature rise. Thermal expansion easily occurs in the direction. In addition to this, the expansion control section (70) promotes thermal expansion of the supported contact sections (61, 62a, 63) in the opposing direction, so that the temperature of the supported body (41, 42, 61) is increased due to the temperature rise. It is further prevented that ~63) comes off the support (20,50).
 本開示の第12の態様は、上記第1~第9の態様のいずれか1つにおいて、上記被支持接触部(61,62a,63)の一部は、上記対向方向における線膨張係数が、上記支持体(20,50)の壁部(21,50a)を構成する材料の線膨張係数よりも小さい材料で構成され、上記被支持接触部(61,62a,63)の他の一部は、上記対向方向における線膨張係数が、上記支持体(20,50)の壁部(21,50a)を構成する材料の線膨張係数よりも大きい材料で構成されることを特徴とする。 A twelfth aspect of the present disclosure is the method according to any one of the first to ninth aspects, wherein a part of the supported contact portions (61, 62a, 63) has a linear expansion coefficient in the facing direction, The wall portion (21, 50a) of the support (20, 50) is made of a material having a coefficient of linear expansion smaller than that of the material, and the other part of the supported contact portion (61, 62a, 63) is The material is characterized in that the linear expansion coefficient in the facing direction is larger than the linear expansion coefficient of the material forming the wall portion (21, 50a) of the support (20, 50).
 第12の態様では、被支持接触部(61,62a,63)のうち上記の線膨張係数が小さい材料で構成される部分は、温度低下時に支持体(20,50)の壁部(21,50a)よりも対向方向において熱収縮しにくい。よって、温度低下に起因して被支持体(41,42,61~63)が支持体(20,50)から外れることが阻止される。一方、被支持接触部(61,62a,63)のうち上記の線膨張係数が大きい材料で構成される部分は、温度上昇時に支持体(20,50)の壁部(21,50a)よりも対向方向において熱膨張しやすい。よって、温度上昇に起因して被支持体(41,42,61~63)が支持体(20,50)から外れることがより一層阻止される。 In the twelfth aspect, a portion of the supported contact portions (61, 62a, 63) made of the material having a small linear expansion coefficient is the wall portion (21, 50) of the support (20, 50) when the temperature decreases. Heat shrinkage is less likely to occur in the opposite direction than 50a). Therefore, the supported bodies (41, 42, 61 to 63) are prevented from coming off the support bodies (20, 50) due to the temperature decrease. On the other hand, among the supported contact parts (61, 62a, 63), the part composed of the material having the large linear expansion coefficient is higher than the wall part (21, 50a) of the support (20, 50) when the temperature rises. Thermal expansion easily occurs in the opposite direction. Therefore, the supported bodies (41, 42, 61 to 63) are further prevented from coming off the support bodies (20, 50) due to the temperature rise.
 本開示の第13の態様は、上記第1~第12の態様のいずれか1つにおいて、上記被支持体(41,42,61~63)は、上記被支持接触部(61,62a,63)を挟んで上記支持体(20,50)の壁部(21,50a)と対向し、かつ上記被支持接触部(61,62a,63)の構成材料とは異なる材料で構成された本体部(41,42)を有することを特徴とする。 A thirteenth aspect of the present disclosure is the method according to any one of the first to twelfth aspects, wherein the supported body (41, 42, 61 to 63) has the supported contact portion (61, 62a, 63). ), the main body portion is opposed to the wall portion (21, 50a) of the support (20, 50) and is made of a material different from the constituent material of the supported contact portion (61, 62a, 63). It is characterized by having (41, 42).
 第13の態様では、本体部(41,42)と壁部(21,50a)との間に被支持接触部(61,62a,63)が配置される。膨張制御部(70)により、本体部(41,42)および被支持接触部(61,62a,63)を有する被支持体(41,42,61~63)が支持体(20,50)から外れることが阻止される。 In the thirteenth aspect, the supported contact parts (61, 62a, 63) are arranged between the main body part (41, 42) and the wall part (21, 50a). The expansion control unit (70) allows the supported body (41, 42, 61 to 63) having the main body section (41, 42) and the supported contact section (61, 62a, 63) to be removed from the support body (20, 50). It is prevented from coming off.
 本開示の第14の態様は、上記第13の態様において、上記膨張制御部(70)は、上記本体部(41,42)に設けられ、上記第1方向において上記被支持接触部(61,62a,63)との接触により上記被支持接触部(61,62a,63)の熱膨張を抑制する第2段差部(74)を有することを特徴とする。 A fourteenth aspect of the present disclosure is the thirteenth aspect, wherein the expansion control section (70) is provided in the main body section (41, 42) and the supported contact section (61, 41) in the first direction. 62a, 63) is characterized by having a second step portion (74) for suppressing thermal expansion of the supported contact portion (61, 62a, 63).
 第14の態様では、第2段差部(74)と被支持接触部(61,62a,63)との接触により、第1方向における被支持接触部(61,62a,63)の熱膨張が抑制され、対向方向における被支持接触部(61,62a,63)の熱膨張が促進される。 In the fourteenth aspect, the thermal expansion of the supported contact portion (61, 62a, 63) in the first direction is suppressed by the contact between the second step portion (74) and the supported contact portion (61, 62a, 63). Thus, the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction is promoted.
 本開示の第15の態様は、上記第14の態様において、上記第2段差部(74)は、上記本体部(41,42)に設けられ、上記対向方向に突出する第2抑制部材(75)によって構成されていることを特徴とする。 A fifteenth aspect of the present disclosure is the second suppression member (75) according to the fourteenth aspect, wherein the second step portion (74) is provided in the main body portion (41, 42) and projects in the facing direction. ) Is configured by.
 第15の態様では、第2抑制部材(75)と被支持接触部(61,62a,63)との接触により、第1方向における被支持接触部(61,62a,63)の熱膨張が抑制され、対向方向における被支持接触部(61,62a,63)の熱膨張が促進される。 In the fifteenth aspect, the thermal expansion of the supported contact portion (61, 62a, 63) in the first direction is suppressed by the contact between the second suppressing member (75) and the supported contact portion (61, 62a, 63). Thus, the thermal expansion of the supported contact portions (61, 62a, 63) in the facing direction is promoted.
 本開示の第16の態様は、上記第14の態様において、上記第2段差部(74)は、上記本体部(41,42)に形成された第2凹部(76,82)によって構成されていることを特徴とする。 A sixteenth aspect of the present disclosure is the fourteenth aspect, wherein the second step portion (74) is formed of a second recess (76, 82) formed in the body portion (41, 42). It is characterized by being
 第15の態様では、第2凹部(76,82)の側壁と被支持接触部(61,62a,63)との接触により、第1方向における被支持接触部(61,62a,63)の熱膨張が抑制され、対向方向における被支持接触部(61,62a,63)の熱膨張が促進される。 In the fifteenth aspect, the contact between the side wall of the second recess (76, 82) and the supported contact portion (61, 62a, 63) causes heat of the supported contact portion (61, 62a, 63) in the first direction. Expansion is suppressed, and thermal expansion of the supported contact portions (61, 62a, 63) in the opposing direction is promoted.
 本開示の第17の態様は、上記第13~第16の態様のいずれか1つの支持構造(11)を備えた回転式圧縮機(10)を対象とする。この回転式圧縮機(10)は、上記支持体(20,50)を構成する筒状のケーシング(20)と、上記被支持体(41,42,61~63)の本体部(41,42)を構成する固定子(41)を有する電動機(40)と、上記被支持体(41,42,61~63)の被支持接触部(61,62a,63)を構成し、上記ケーシング(20)と上記固定子(41)との間に位置して両者を互いに絶縁する絶縁部材(61,63)とを備える。 The seventeenth aspect of the present disclosure is directed to a rotary compressor (10) including the support structure (11) according to any one of the thirteenth to sixteenth aspects. The rotary compressor (10) includes a tubular casing (20) that constitutes the support (20, 50) and a body portion (41, 42) of the supported body (41, 42, 61 to 63). ) And a supported contact portion (61, 62a, 63) of the supported body (41, 42, 61 to 63), and the casing (20). ) And the stator (41), and insulating members (61, 63) for insulating the two from each other.
 第17の態様では、膨張制御部(70)により、絶縁部材(61,62)がケーシング(20)の壁部(21,50a)に接触した状態が保たれる。電動機(40)の固定子(41)は、絶縁部材(61,62)を介してケーシング(20)に支持され、当該ケーシング(20)から外れない。 In the seventeenth aspect, the expansion control section (70) keeps the insulating member (61, 62) in contact with the wall section (21, 50a) of the casing (20). The stator (41) of the electric motor (40) is supported by the casing (20) via the insulating members (61, 62) and cannot be removed from the casing (20).
 本開示の第18の態様は、上記第13~第16の態様のいずれか1つの支持構造(11)を備えた回転式圧縮機(10)または上記第16の態様の回転式圧縮機(10)を対象とする。この回転式圧縮機(10)は、上記支持体(20,50)を構成する駆動軸(50)と、上記被支持体(41,42,61~63)の本体部(41,42)を構成する回転子(42)を有する電動機(40)と、上記被支持体(41,42,61~63)の被支持接触部(61,62a,63)を構成し、上記駆動軸(50)と上記回転子(42)との間に位置して両者を互いに絶縁する絶縁部材(61,63)とを備える。 An eighteenth aspect of the present disclosure is a rotary compressor (10) including the support structure (11) according to any one of the thirteenth to sixteenth aspects, or the rotary compressor (10 of the sixteenth aspect. ) Is targeted. This rotary compressor (10) includes a drive shaft (50) that constitutes the support (20, 50) and a main body portion (41, 42) of the supported body (41, 42, 61 to 63). An electric motor (40) having a rotor (42) and a supported contact portion (61, 62a, 63) of the supported body (41, 42, 61 to 63), and the drive shaft (50). And insulating members (61, 63) located between the rotor and the rotor (42) to insulate them from each other.
 第18の態様では、膨張制御部(70)により、絶縁部材(61,63)が駆動軸(50)の壁部(50a)に接触した状態が保たれる。電動機(40)の回転子(42)は、絶縁部材(61,63)を介して駆動軸(50)に支持され、当該駆動軸(50)から外れない。 In the eighteenth aspect, the expansion control unit (70) keeps the insulating member (61, 63) in contact with the wall portion (50a) of the drive shaft (50). The rotor (42) of the electric motor (40) is supported by the drive shaft (50) via the insulating members (61, 63) and cannot be separated from the drive shaft (50).
 本開示の第19の態様は、上記第1~第11の態様のいずれか1つにおいて、上記被支持体(41,42,61~63)の全体が、上記被支持接触部(61,62a,63)の構成材料と同じ材料で構成されていることを特徴とする。 A nineteenth aspect of the present disclosure is the method according to any one of the first to eleventh aspects, wherein the entire supported body (41, 42, 61 to 63) is the supported contact portion (61, 62a). , 63) and the same material.
図1は、実施形態1の回転式圧縮機を概略的に示す正面図である。FIG. 1 is a front view schematically showing the rotary compressor of the first embodiment. 図2は、実施形態1の支持構造を概略的に示す平面断面図であって、図1のII-II線に沿った断面を示す。FIG. 2 is a plan sectional view schematically showing the support structure of Embodiment 1, and shows a section taken along line II-II of FIG. 図3は、実施形態1の支持構造を概略的に示す部分断面図であって、図2のIII-III線に沿った断面を示す。FIG. 3 is a partial cross-sectional view schematically showing the support structure of Embodiment 1, showing a cross section taken along line III-III of FIG. 図4は、実施形態1の変形例1の支持構造を概略的に示す平面断面図である。FIG. 4 is a plan sectional view schematically showing a support structure of Modification 1 of Embodiment 1. 図5は、実施形態1の変形例2の支持構造を概略的に示す部分断面図である。FIG. 5 is a partial cross-sectional view schematically showing a support structure of Modification 2 of Embodiment 1. 図6は、実施形態1の変形例3の支持構造を概略的に示す部分断面図である。FIG. 6 is a partial cross-sectional view schematically showing a support structure of Modification 3 of Embodiment 1. 図7は、実施形態1の変形例4の支持構造を概略的に示す部分断面図である。FIG. 7 is a partial cross-sectional view schematically showing the support structure of Modification 4 of Embodiment 1. 図8は、実施形態1の変形例5の支持構造を概略的に示す部分断面図である。FIG. 8 is a partial cross-sectional view schematically showing a support structure of Modification 5 of Embodiment 1. 図9は、実施形態1の変形例6の支持構造を概略的に示す部分断面図である。FIG. 9 is a partial cross-sectional view schematically showing a support structure of Modification 6 of Embodiment 1. 図10は、実施形態2の支持構造を概略的に示す平面断面図である。FIG. 10 is a plan sectional view schematically showing the support structure of the second embodiment. 図11は、実施形態2の支持構造を概略的に示す部分断面図であって、図10のXI-XI線に沿った断面を示す。FIG. 11 is a partial cross-sectional view schematically showing the support structure of Embodiment 2, and shows a cross section taken along line XI-XI of FIG. 図12は、実施形態2の変形例1の支持構造を概略的に示す部分断面図である。FIG. 12 is a partial cross-sectional view schematically showing the support structure of Modification 1 of Embodiment 2. 図13は、実施形態2の変形例2の支持構造を概略的に示す部分断面図である。FIG. 13 is a partial cross-sectional view schematically showing a support structure of Modification 2 of Embodiment 2. 図14は、実施形態2の変形例3の支持構造を概略的に示す部分断面図である。FIG. 14 is a partial cross-sectional view schematically showing a support structure of Modification 3 of Embodiment 2. 図15は、実施形態2の変形例4の支持構造を概略的に示す部分断面図である。FIG. 15 is a partial cross-sectional view schematically showing a support structure of Modification 4 of Embodiment 2. 図16は、実施形態2の変形例5の支持構造を概略的に示す部分断面図である。FIG. 16 is a partial cross-sectional view schematically showing a support structure of Modification 5 of Embodiment 2. 図17は、その他の実施形態の第1変形例の支持構造を概略的に示す平面断面図である。FIG. 17 is a plan sectional view schematically showing a support structure of a first modified example of the other embodiment.
 《実施形態1》
 実施形態1について説明する。本実施形態の回転式圧縮機(10)は、スクロール圧縮機として構成されている。なお、回転式圧縮機(10)は、その他の種類の回転式圧縮機であってもよい。
<<Embodiment 1>>
The first embodiment will be described. The rotary compressor (10) of the present embodiment is configured as a scroll compressor. The rotary compressor (10) may be another type of rotary compressor.
 図1に示すように、回転式圧縮機(10)は、ケーシング(20)と、圧縮機構(30)と、電動機(40)と、駆動軸(50)とを備える。 As shown in FIG. 1, the rotary compressor (10) includes a casing (20), a compression mechanism (30), an electric motor (40), and a drive shaft (50).
 ケーシング(20)は、上下に延びる実質的に円筒状の密閉容器である。ケーシング(20)は、円筒状の壁部(21)と、壁部(21)の上端を閉塞する上蓋(22)と、壁部(21)の下端を閉塞する下蓋(24)とを備える。上蓋(22)には、ケーシング(20)内に流体を吸い込むための吸入管(23)が設けられる。壁部(21)には、圧縮後の流体をケーシング(20)外に吐出するための吐出管(25)が設けられる。ケーシング(20)は、例えば鋳鉄や炭素鋼などの鉄系の材料で構成される。なお、ケーシング(20)が延びる方向は、上下方向に限定されない。ケーシング(20)は、支持体を構成している。 The casing (20) is a substantially cylindrical closed container that extends vertically. The casing (20) includes a cylindrical wall portion (21), an upper lid (22) that closes the upper end of the wall portion (21), and a lower lid (24) that closes the lower end of the wall portion (21). .. The upper lid (22) is provided with a suction pipe (23) for sucking a fluid into the casing (20). The wall (21) is provided with a discharge pipe (25) for discharging the compressed fluid to the outside of the casing (20). The casing (20) is made of an iron-based material such as cast iron or carbon steel. The extending direction of the casing (20) is not limited to the vertical direction. The casing (20) constitutes a support.
 ケーシング(20)の壁部(21)における後述の樹脂部材(61)と接触する部分は、支持接触部(21a)を構成する。この例では、壁部(21)は、4つの支持接触部(21a)を有する。 A part of the wall portion (21) of the casing (20) that comes into contact with a resin member (61) described later constitutes a support contact portion (21a). In this example, the wall portion (21) has four supporting contact portions (21a).
 圧縮機構(30)は、ケーシング(20)の内部に収容される。圧縮機構(30)は、不図示の固定スクロールおよび可動スクロールを備える。圧縮機構(30)は、可動スクロールが固定スクロールに対して偏心回転運動を行う。この偏心回転運動により、吸入管(23)から流体が吸入され、吸入された流体が圧縮され、そして圧縮された流体が吐出管(25)から吐出される。 The compression mechanism (30) is housed inside the casing (20). The compression mechanism (30) includes a fixed scroll and a movable scroll (not shown). In the compression mechanism (30), the movable scroll makes an eccentric rotary motion with respect to the fixed scroll. Due to this eccentric rotational movement, the fluid is sucked from the suction pipe (23), the sucked fluid is compressed, and the compressed fluid is discharged from the discharge pipe (25).
 電動機(40)は、圧縮機構(30)の駆動源である。電動機(40)は、図2および図3に示す固定子(41)と、不図示の回転子とを備える。電動機(40)は、駆動軸(50)を介して圧縮機構(30)を回転駆動する。 The electric motor (40) is the drive source of the compression mechanism (30). The electric motor (40) includes a stator (41) shown in FIGS. 2 and 3, and a rotor (not shown). The electric motor (40) rotationally drives the compression mechanism (30) via the drive shaft (50).
 固定子(41)は、図2に示すように、周方向における複数箇所(この例では、4箇所)で、樹脂部材(61)と共にケーシング(20)の壁部(21)に挟まれて支持される。換言すると、固定子(41)および樹脂部材(61)は、ケーシング(20)の壁部(21)に接触して支持される。固定子(41)は、多数の鋼板が軸方向に積層された積層構造を有する。ケーシング(20)の軸方向において、固定子(41)の長さは、樹脂部材(61)の長さと実質的に等しい。固定子(41)は、被支持体の本体部を構成している。樹脂部材(61)は、絶縁部材を構成し、かつ被支持接触部を構成している。固定子(41)および樹脂部材(61)は、被支持体を構成している。なお、図2では、固定子(41)の中央に設けられて回転子を収容する貫通孔など、固定子(41)の詳細な構造を省略して図示している。図2における固定子(41)の形状は、あくまで例示的なものである。 As shown in FIG. 2, the stator (41) is supported by being sandwiched by the wall portion (21) of the casing (20) together with the resin member (61) at a plurality of locations (four locations in this example) in the circumferential direction. To be done. In other words, the stator (41) and the resin member (61) are in contact with and supported by the wall portion (21) of the casing (20). The stator (41) has a laminated structure in which a large number of steel plates are laminated in the axial direction. In the axial direction of the casing (20), the length of the stator (41) is substantially equal to the length of the resin member (61). The stator (41) constitutes the main body of the supported body. The resin member (61) constitutes an insulating member and also constitutes a supported contact portion. The stator (41) and the resin member (61) form a supported body. In FIG. 2, the detailed structure of the stator (41) such as a through hole provided in the center of the stator (41) for accommodating the rotor is omitted. The shape of the stator (41) in FIG. 2 is merely an example.
 駆動軸(50)は、圧縮機構(30)の可動スクロールと電動機(40)の回転子とを連結する棒状部材である。駆動軸(50)は、例えば鋳鉄や炭素鋼などの鉄系の材料で構成される。電動機(40)の回転運動は、駆動軸(50)を介して圧縮機構(30)に伝達され、これにより圧縮機構(30)の可動スクロールが上述の偏心回転運動を行う。 The drive shaft (50) is a rod-shaped member that connects the movable scroll of the compression mechanism (30) and the rotor of the electric motor (40). The drive shaft (50) is made of an iron-based material such as cast iron or carbon steel. The rotary motion of the electric motor (40) is transmitted to the compression mechanism (30) via the drive shaft (50), whereby the movable scroll of the compression mechanism (30) performs the above-described eccentric rotary motion.
 図2および図3に示すように、回転式圧縮機(10)は、支持構造(11)をさらに備える。支持構造(11)は、上記のケーシング(20)および固定子(41)と、樹脂部材(61)と、周方向抑制板(78)と、軸方向抑制板(75)とによって構成される。周方向抑制板(78)および軸方向抑制板(75)は、それぞれが膨張制御部を構成している。 As shown in FIGS. 2 and 3, the rotary compressor (10) further includes a support structure (11). The support structure (11) is composed of the casing (20) and the stator (41), the resin member (61), the circumferential direction suppression plate (78), and the axial direction suppression plate (75). The circumferential restraint plate (78) and the axial restraint plate (75) each constitute an expansion controller.
 樹脂部材(61)は、ケーシング(20)の壁部(21)と電動機(40)の固定子(41)との間に挟まれた板状部材である。樹脂部材(61)は、絶縁性樹脂で構成され、ケーシング(20)と固定子(41)とを電気的に絶縁する。この絶縁性樹脂は、例えば繊維強化樹脂またはLCP樹脂である。 The resin member (61) is a plate member sandwiched between the wall portion (21) of the casing (20) and the stator (41) of the electric motor (40). The resin member (61) is made of an insulating resin and electrically insulates the casing (20) and the stator (41). This insulating resin is, for example, fiber reinforced resin or LCP resin.
 樹脂部材(61)は、線膨張係数に関して異方性を有する。ケーシング(20)は、線膨張係数に関して等方性を有する。具体的に、ケーシング(20)の軸方向において、樹脂部材(61)を構成する材料の線膨張係数は、壁部(21)を構成する材料の線膨張係数よりも大きい。ケーシング(20)の軸方向において、樹脂部材(61)を構成する材料の線膨張係数は、固定子(41)を構成する材料の線膨張係数よりも大きい。ケーシング(20)の軸方向は、第1方向である。換言すると、第1方向において、被支持接触部(61)を構成する材料の線膨張係数は、壁部(21)を構成する材料の線膨張係数よりも大きい。第1方向において、被支持接触部(61)を構成する材料の線膨張係数は、被支持体の本体部(41)を構成する材料の線膨張係数よりも大きい。 The resin member (61) has anisotropy regarding the coefficient of linear expansion. The casing (20) is isotropic with respect to the linear expansion coefficient. Specifically, the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the wall portion (21) in the axial direction of the casing (20). In the axial direction of the casing (20), the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the stator (41). The axial direction of the casing (20) is the first direction. In other words, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the wall portion (21) in the first direction. In the first direction, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the main body portion (41) of the supported body.
 ケーシング(20)の径方向において、樹脂部材(61)を構成する材料の線膨張係数は、壁部(21)間の支持体(20,50)を構成する材料の線膨張係数よりも小さい。「壁部(21)間」とは、壁部(21)の一部分と、被支持体を挟んで当該一部分と対向する壁部(21)の他部分との間のことである。「壁部(21)間の支持体(20)」とは、壁部(21)間を構成する支持体(20)のことである。当該支持体(20)が単一の材料で構成されている場合、「壁部(21)間の支持体(20)を構成する材料の線膨張係数」は、当該材料の線膨張係数である。当該支持体(20)が複数の材料で構成されている場合、「壁部(21)間の支持体(20)を構成する材料の線膨張係数」は、各材料の線膨張係数と支持体(20)の形状によって決まる係数である。この係数は、試験または解析にて、壁部(21)間の距離の単位温度あたりの変化率を算出することで求められる。換言すると、「壁部(21)間の支持体(20)を構成する材料の線膨張係数」は、壁部(21)間の距離の単位温度あたりの変化率である。ケーシング(20)の径方向において、樹脂部材(61)を構成する材料の線膨張係数は、固定子(41)を構成する材料の線膨張係数よりも小さい。ケーシング(20)の径方向は、樹脂部材(61)と壁部(21)との対向方向である。換言すると、被支持接触部(61)と支持体(20)の壁部(21)との対向方向において、被支持接触部(61)を構成する材料の線膨張係数は、壁部(21)間の支持体(20)を構成する材料の線膨張係数よりも小さい。 In the radial direction of the casing (20), the linear expansion coefficient of the material forming the resin member (61) is smaller than the linear expansion coefficient of the material forming the support body (20, 50) between the wall portions (21). The “between the wall parts (21)” is between a part of the wall part (21) and another part of the wall part (21) that faces the part with the supported body interposed therebetween. The "support (20) between the wall portions (21)" is the support body (20) that constitutes the space between the wall portions (21). When the support (20) is made of a single material, the "linear expansion coefficient of the material forming the support (20) between the wall portions (21)" is the linear expansion coefficient of the material. .. When the support body (20) is composed of a plurality of materials, the "linear expansion coefficient of the material forming the support body (20) between the wall portions (21)" is the linear expansion coefficient of each material and the support body. It is a coefficient determined by the shape of (20). This coefficient can be obtained by calculating the rate of change of the distance between the wall portions (21) per unit temperature in a test or analysis. In other words, the "coefficient of linear expansion of the material forming the support (20) between the wall portions (21)" is the rate of change in the distance between the wall portions (21) per unit temperature. The linear expansion coefficient of the material forming the resin member (61) is smaller than the linear expansion coefficient of the material forming the stator (41) in the radial direction of the casing (20). The radial direction of the casing (20) is the direction in which the resin member (61) and the wall portion (21) face each other. In other words, in the direction in which the supported contact portion (61) and the wall portion (21) of the support (20) face each other, the linear expansion coefficient of the material forming the supported contact portion (61) is the wall portion (21). It is smaller than the linear expansion coefficient of the material forming the support body (20).
 ケーシング(20)の周方向において、樹脂部材(61)を構成する材料の線膨張係数は、壁部(21)を構成する材料の線膨張係数よりも大きい。ケーシング(20)の周方向において、樹脂部材(61)を構成する材料の線膨張係数は、固定子(41)を構成する材料の線膨張係数よりも大きい。ケーシング(20)の周方向は、第2方向である。換言すると、第2方向において、被支持接触部(61)を構成する材料の線膨張係数は、壁部(21)を構成する材料の線膨張係数よりも大きい。第2方向において、被支持接触部(61)を構成する材料の線膨張係数は、被支持体の本体部(41)を構成する材料の線膨張係数よりも大きい。 The linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the wall portion (21) in the circumferential direction of the casing (20). In the circumferential direction of the casing (20), the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the stator (41). The circumferential direction of the casing (20) is the second direction. In other words, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the wall portion (21) in the second direction. In the second direction, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the main body portion (41) of the supported body.
 上述の樹脂部材(61)を構成する材料の線膨張係数の異方性は、樹脂部材(61)を構成する材料が含有する繊維状物質の配向方向、または樹脂部材(61)を構成する材料の分子鎖の配向方向に対応して生じる。 The anisotropy of the linear expansion coefficient of the material forming the resin member (61) is determined by the orientation direction of the fibrous substance contained in the material forming the resin member (61) or the material forming the resin member (61). Occurs according to the orientation direction of the molecular chain of.
 図2に示す平面視において、ケーシング(20)の周方向に隣り合う樹脂部材(61)の外面(換言すると、樹脂部材(61)における壁部(21)との接触面)の中心点同士を直線的に結ぶ方向を隣接方向とする(その1つを図2に破線で示す)。隣接方向は、平面視において、ケーシング(20)の周方向に隣り合う支持接触部(21a)の内面(換言すると、支持接触部(21a)における樹脂部材(61)との接触面)の中心点同士を直線的に結ぶ方向でもある。 In the plan view shown in FIG. 2, the center points of the outer surfaces of the resin member (61) adjacent in the circumferential direction of the casing (20) (in other words, the contact surface of the resin member (61) with the wall portion (21)) are aligned with each other. The direction in which they are connected linearly is the adjacent direction (one of which is shown by the broken line in FIG. 2). The adjacent direction is the center point of the inner surface of the supporting contact portion (21a) adjacent in the circumferential direction of the casing (20) (in other words, the contact surface of the supporting contact portion (21a) with the resin member (61)) in plan view. It is also the direction that connects the two in a straight line.
 このとき、周方向抑制板(78)および軸方向抑制板(75)が存在しない場合には、周方向に隣り合う任意の2つの樹脂部材(61)または支持接触部(21a)に関し、その隣接方向において、隣り合う樹脂部材(61)の外面間の距離の単位温度あたりの変化率は、隣り合う支持接触部(21a)の内面間の距離の単位温度あたりの変化率よりも小さい。さらに、周方向抑制板(78)および軸方向抑制板(75)が存在しない場合には、径方向に対向する任意の2つの樹脂部材(61)または支持接触部(21a)に関し、その対向方向において、樹脂部材(61)の外面間の距離の単位温度あたりの変化率は、支持接触部(21a)の内面間の距離の単位温度あたりの変化率よりも小さい。 At this time, when the circumferential direction suppression plate (78) and the axial direction suppression plate (75) do not exist, the two adjacent resin members (61) or the supporting contact portions (21a) in the circumferential direction are adjacent to each other. In the direction, the rate of change of the distance between the outer surfaces of the adjacent resin members (61) per unit temperature is smaller than the rate of change of the distance between the inner surfaces of the adjacent support contact portions (21a) per unit temperature. Further, in the case where the circumferential direction restraint plate (78) and the axial direction restraint plate (75) are not present, with respect to any two resin members (61) or support contact portions (21a) facing in the radial direction, the facing direction In, the rate of change of the distance between the outer surfaces of the resin member (61) per unit temperature is smaller than the rate of change of the distance between the inner surfaces of the supporting contact portion (21a) per unit temperature.
 これらを換言すると、周方向抑制板(78)および軸方向抑制板(75)が存在しない場合には、樹脂部材(61)および支持接触部(21a)の周囲温度が上昇するにつれて、支持接触部(21a)が樹脂部材(61)から離れていくようにケーシング(20)と固定子(41)および樹脂部材(61)とが熱膨張する。これは、ケーシング(20)の径方向において、壁部(21)間の支持体(20)の線膨張係数が、被支持体の線膨張係数よりも大きいためである。「被支持体の線膨張係数」とは、被支持体が含む固定子(41)および樹脂部材(61)の各々の線膨張係数をα1、α2とし、ケーシング(20)の径方向において被支持体のうち固定子(41)および樹脂部材(61)の各々が占める長さの割合をP1、P2(P1+P2=1)とした場合に、α1×P1+α2×P2の式で表される数値である。この式は、任意の構成要素が複数の材料で構成される場合に拡張可能であり、かつ任意の方向に拡張可能である。 In other words, when the circumferential restraint plate (78) and the axial restraint plate (75) are not present, the support contact portion increases as the ambient temperature of the resin member (61) and the support contact portion (21a) increases. The casing (20), the stator (41), and the resin member (61) thermally expand so that the (21a) moves away from the resin member (61). This is because the linear expansion coefficient of the support body (20) between the wall portions (21) is larger than the linear expansion coefficient of the supported body in the radial direction of the casing (20). "Linear expansion coefficient of supported body" means that the linear expansion coefficients of the stator (41) and the resin member (61) included in the supported body are α1 and α2, respectively, and the supported body is supported in the radial direction of the casing (20). When the ratio of the length occupied by each of the stator (41) and the resin member (61) in the body is P1, P2 (P1+P2=1), it is a numerical value represented by the formula α1×P1+α2×P2. .. This equation is extensible when any component is composed of multiple materials and is extensible in any direction.
 周方向抑制板(78)は、ケーシング(20)の周方向における樹脂部材(61)の熱膨張を抑制する板状部材である。周方向抑制板(78)は、図2に示す平面視において、ケーシング(20)の径方向と直交する方向に延びている。この直交方向において、周方向抑制板(78)の一端は、壁部(21)に例えば溶接により固定され、周方向抑制板(78)の他端は、樹脂部材(61)の側面に接触している。なお、周方向抑制板(78)の他端は、高温状態で樹脂部材(61)の側面に接触するのであれば、常温状態および低温状態で樹脂部材(61)の側面に接触していなくてもよい。周方向抑制板(78)は、第3抑制部材を構成している。 The circumferential restraint plate (78) is a plate-shaped member that restrains thermal expansion of the resin member (61) in the circumferential direction of the casing (20). The circumferential direction suppression plate (78) extends in a direction orthogonal to the radial direction of the casing (20) in the plan view shown in FIG. In this orthogonal direction, one end of the circumferential restraint plate (78) is fixed to the wall portion (21) by, for example, welding, and the other end of the circumferential restraint plate (78) contacts the side surface of the resin member (61). ing. If the other end of the circumferential direction restraint plate (78) contacts the side surface of the resin member (61) in a high temperature state, it does not contact the side surface of the resin member (61) in a normal temperature state and a low temperature state. Good. The circumferential restraint plate (78) constitutes a third restraint member.
 軸方向抑制板(75)は、ケーシング(20)の軸方向における樹脂部材(61)の熱膨張を抑制する板状部材である。軸方向抑制板(75)は、図3に示すように、固定子(41)の上下端に固定され、固定子(41)の外周面よりもケーシング(20)の径方向外方に突出している。この突出部分と固定子(41)の外周面との間に第2段差部(74)が形成される。当該突出部分は、ケーシング(20)の軸方向において樹脂部材(61)の端部に接触している。軸方向抑制板(75)は、樹脂部材(61)の端部の、ケーシング(20)の径方向における一部(特に、径方向内側の一部)に対して接触している。なお、当該突出部分は、高温状態で樹脂部材(61)の端部に接触するのであれば、常温状態および低温状態で樹脂部材(61)の端部に接触していなくてもよい。軸方向抑制板(75)は、第2抑制部材を構成している。 The axial restraint plate (75) is a plate-shaped member that restrains thermal expansion of the resin member (61) in the axial direction of the casing (20). As shown in FIG. 3, the axial restraint plate (75) is fixed to the upper and lower ends of the stator (41) and protrudes radially outward of the casing (20) with respect to the outer peripheral surface of the stator (41). There is. A second step (74) is formed between the protruding portion and the outer peripheral surface of the stator (41). The projecting portion is in contact with the end of the resin member (61) in the axial direction of the casing (20). The axial restraint plate (75) is in contact with a part of the end of the resin member (61) in the radial direction of the casing (20) (particularly, a part on the inner side in the radial direction). In addition, the said protrusion part does not need to be in contact with the edge part of the resin member (61) in a normal temperature state and a low temperature state, if it contacts the edge part of the resin member (61) in a high temperature state. The axial restraint plate (75) constitutes a second restraint member.
 周方向抑制板(78)および軸方向抑制板(75)は、ポアソン効果により、ケーシング(20)の径方向において樹脂部材(61)の熱膨張を促進する。具体的に、周方向抑制板(78)は、ケーシング(20)の周方向において樹脂部材(61)に対して接触して圧縮荷重を加えることにより当該樹脂部材(61)の熱膨張を抑制し、かつケーシング(20)の径方向において当該樹脂部材(61)の熱膨張を促進する。軸方向抑制板(75)は、ケーシング(20)の軸方向において樹脂部材(61)に対して接触して圧縮荷重を加えることにより当該樹脂部材(61)の熱膨張を抑制し、かつケーシング(20)の径方向において当該樹脂部材(61)の熱膨張を促進する。これらにより、樹脂部材(61)と壁部(21)とが互いに接触し、かつ樹脂部材(61)と固定子(41)とが互いに接触した状態が保たれる。 The circumferential restraint plate (78) and the axial restraint plate (75) promote the thermal expansion of the resin member (61) in the radial direction of the casing (20) by the Poisson effect. Specifically, the circumferential direction suppression plate (78) suppresses thermal expansion of the resin member (61) by contacting the resin member (61) in the circumferential direction of the casing (20) and applying a compressive load. In addition, thermal expansion of the resin member (61) is promoted in the radial direction of the casing (20). The axial suppression plate (75) contacts the resin member (61) in the axial direction of the casing (20) and applies a compressive load to suppress thermal expansion of the resin member (61), and the casing ( The thermal expansion of the resin member (61) is promoted in the radial direction of 20). As a result, the resin member (61) and the wall portion (21) are kept in contact with each other, and the resin member (61) and the stator (41) are kept in contact with each other.
  -実施形態1の効果-
 本実施形態の支持構造(11)は、壁部(21)を有するケーシング(20)と、該ケーシング(20)の壁部(21)に接触して支持された固定子(41)および樹脂部材(61)とを備え、上記ケーシング(20)および上記固定子(41)に設けられ、上記ケーシング(20)の軸方向および周方向における上記樹脂部材(61)の熱膨張を抑制し、かつ上記ケーシング(20)の径方向における上記樹脂部材(61)の熱膨張を促進する周方向抑制板(78)および軸方向抑制板(75)を備える。したがって、周方向抑制板(78)および軸方向抑制板(75)によって、ケーシング(20)の軸方向および周方向における樹脂部材(61)の熱膨張が抑制されると共にケーシング(20)の径方向における樹脂部材(61)の熱膨張が促進される。後者の熱膨張の促進により、樹脂部材(61)と壁部(21)とが互いに接触し、かつ樹脂部材(61)と固定子(41)とが互いに接触した状態が保たれる。換言すると、熱膨張によって樹脂部材(61)と壁部(21)とが互いに離れてしまうことがない。このため、温度上昇に起因して固定子(41)および樹脂部材(61)がケーシング(20)から外れてしまうことが阻止される。
-Effects of the first embodiment-
The support structure (11) of the present embodiment includes a casing (20) having a wall portion (21), a stator (41) and a resin member which are supported in contact with the wall portion (21) of the casing (20). (61) and is provided in the casing (20) and the stator (41) to suppress thermal expansion of the resin member (61) in the axial direction and the circumferential direction of the casing (20), and A circumferential direction suppression plate (78) and an axial direction suppression plate (75) that promote thermal expansion of the resin member (61) in the radial direction of the casing (20) are provided. Therefore, the circumferential direction suppression plate (78) and the axial direction suppression plate (75) suppress the thermal expansion of the resin member (61) in the axial direction and the circumferential direction of the casing (20) and also in the radial direction of the casing (20). The thermal expansion of the resin member (61) is accelerated. By promoting the latter thermal expansion, the resin member (61) and the wall portion (21) are kept in contact with each other, and the resin member (61) and the stator (41) are kept in contact with each other. In other words, the resin member (61) and the wall portion (21) do not separate from each other due to thermal expansion. Therefore, the stator (41) and the resin member (61) are prevented from coming off the casing (20) due to the temperature rise.
 また、本実施形態の支持構造(11)は、上記周方向抑制板(78)および軸方向抑制板(75)が、上記ケーシング(20)の軸方向および周方向において、上記樹脂部材(61)に対して接触して圧縮荷重を加えることにより、上記樹脂部材(61)の熱膨張を抑制する。したがって、ポアソン効果により、ケーシング(20)の軸方向および周方向と直交するケーシング(20)の径方向において、樹脂部材(61)の熱膨張が促進される。 Further, in the support structure (11) of the present embodiment, the circumferential direction suppression plate (78) and the axial direction suppression plate (75) are arranged such that the resin member (61) is arranged in the axial direction and the circumferential direction of the casing (20). The resin member (61) is suppressed in thermal expansion by making contact with and applying a compressive load. Therefore, the Poisson effect promotes thermal expansion of the resin member (61) in the radial direction of the casing (20) orthogonal to the axial direction and the circumferential direction of the casing (20).
 また、本実施形態の支持構造(11)は、上記軸方向抑制板(75)が、上記樹脂部材(61)の上記ケーシング(20)の径方向における一部に対して接触する。換言すると、平面視において、樹脂部材(61)が配置される領域のうち、一部の領域において上記軸方向抑制板(75)と上記樹脂部材(61)とが接触するように構成され、それ以外の領域においては上記軸方向抑制板(75)と上記樹脂部材(61)とが接触しないように構成される。したがって、樹脂部材(61)の当該径方向における熱膨張が促進される程度をコントロールすることができる。ここで、当該熱膨張が最も促進されるのは、樹脂部材(61)の当該径方向における全体に対して軸方向抑制板(75)が接触する場合である。換言すると、平面視において、樹脂部材(61)が配置される領域のうち、全ての領域において軸方向抑制板(75)と樹脂部材(61)とが接触するように構成される場合において、当該熱膨張が最も促進される。一方、当該熱膨張が全く促進されないのは、樹脂部材(61)に対して軸方向抑制板(75)が仮に接触しない場合である。これらの関係に基づいて、樹脂部材(61)のケーシング(20)の径方向における熱膨張が促進される程度をコントロールできる。 In the support structure (11) of the present embodiment, the axial restraint plate (75) contacts a part of the resin member (61) in the radial direction of the casing (20). In other words, in a plan view, the axial restraint plate (75) and the resin member (61) are configured to come into contact with each other in a partial region of the region where the resin member (61) is arranged. In regions other than the above, the axial restraint plate (75) and the resin member (61) are configured so as not to come into contact with each other. Therefore, the degree to which the thermal expansion of the resin member (61) in the radial direction is promoted can be controlled. Here, the thermal expansion is most promoted when the axial restraint plate (75) contacts the entire radial direction of the resin member (61). In other words, in a plan view, in the case where the axial restraint plate (75) and the resin member (61) are configured to come into contact with each other in all the regions where the resin member (61) is arranged, Thermal expansion is most promoted. On the other hand, the thermal expansion is not promoted at all when the axial restraint plate (75) does not contact the resin member (61). Based on these relationships, the degree to which the thermal expansion of the resin member (61) in the radial direction of the casing (20) is accelerated can be controlled.
 また、本実施形態の支持構造(11)は、上記被支持体(41,61)が、上記樹脂部材(61)を挟んで上記ケーシング(20)の壁部(21)と対向し、かつ上記樹脂部材(61)の構成材料とは異なる材料で構成された固定子(41)を有する。したがって、固定子(41)と壁部(21)との間に樹脂部材(61)が配置される。周方向抑制板(78)および軸方向抑制板(75)により、固定子(41)および樹脂部材(61)を有する被支持体(41,61)がケーシング(20)から外れることが阻止される。 In the support structure (11) of the present embodiment, the supported body (41, 61) faces the wall portion (21) of the casing (20) with the resin member (61) interposed therebetween, and The stator (41) is made of a material different from the constituent material of the resin member (61). Therefore, the resin member (61) is arranged between the stator (41) and the wall portion (21). The circumferential restraint plate (78) and the axial restraint plate (75) prevent the supported bodies (41, 61) having the stator (41) and the resin member (61) from coming off the casing (20). ..
 また、本実施形態の支持構造(11)は、上記軸方向抑制板(75)と上記固定子(41)の外周面との間には、上記ケーシング(20)の軸方向において上記樹脂部材(61)の端部との接触により上記樹脂部材(61)の熱膨張を抑制する第2段差部(74)が形成されている。したがって、軸方向抑制板(75)と樹脂部材(61)の端部との接触により、当該軸方向における樹脂部材(61)の熱膨張が抑制され、ケーシング(20)の径方向における樹脂部材(61)の熱膨張が促進される。 Further, in the support structure (11) of the present embodiment, the resin member (in the axial direction of the casing (20) is provided between the axial direction suppression plate (75) and the outer peripheral surface of the stator (41). A second step portion (74) is formed which suppresses thermal expansion of the resin member (61) by contact with the end portion of 61). Therefore, thermal expansion of the resin member (61) in the axial direction is suppressed by the contact between the axial direction suppression plate (75) and the end of the resin member (61), and the resin member (in the radial direction of the casing (20) ( The thermal expansion of 61) is promoted.
 また、本実施形態の支持構造(11)は、上記ケーシング(20)の径方向において、上記樹脂部材(61)を構成する材料の線膨張係数が、壁部(21)間の支持体(20)を構成する材料の線膨張係数よりも小さい。したがって、樹脂部材(61)および支持体(20)の周囲温度が低下するにつれて、ケーシング(20)の径方向において壁部(21)間の支持体(20)の方が樹脂部材(61)よりも大きく熱収縮しようとする。ケーシング(20)の径方向において、壁部(21)の熱収縮に起因した圧縮荷重が樹脂部材(61)に加わる。圧縮荷重が樹脂部材(61)に加わることで、固定子(41)に向かって樹脂部材(61)が収縮し、樹脂部材(61)と固定子(41)とが互いに接触した状態が保たれる。 Further, in the support structure (11) of the present embodiment, in the radial direction of the casing (20), the linear expansion coefficient of the material forming the resin member (61) is the same as that of the support (20) between the wall portions (21). ) Is smaller than the linear expansion coefficient of the material of which it is composed. Therefore, as the ambient temperature of the resin member (61) and the support member (20) decreases, the support member (20) between the wall portions (21) in the radial direction of the casing (20) is better than the resin member (61). Also tries to shrink greatly. In the radial direction of the casing (20), a compressive load due to thermal contraction of the wall portion (21) is applied to the resin member (61). By applying a compressive load to the resin member (61), the resin member (61) contracts toward the stator (41), and the resin member (61) and the stator (41) are kept in contact with each other. Be done.
 また、本実施形態の支持構造(11)は、上記ケーシング(20)の径方向において、上記樹脂部材(61)を構成する材料の線膨張係数が、上記ケーシング(20)の壁部(21)を構成する材料の線膨張係数よりも小さい。したがって、温度上昇時にケーシング(20)の壁部(21)よりも樹脂部材(61)の方が当該径方向において熱膨張しにくい。これに対し、周方向抑制板(78)および軸方向抑制板(75)により樹脂部材(61)の当該径方向の熱膨張が促進されるので、温度上昇に起因して固定子(41)および樹脂部材(61)がケーシング(20)から外れることが阻止される。一方、樹脂部材(61)は、温度低下時にケーシング(20)の壁部(21)よりも径方向において熱収縮しにくい。よって、温度低下に起因して固定子(41)および樹脂部材(61)がケーシング(20)から外れることが阻止される。 Further, in the support structure (11) of the present embodiment, the linear expansion coefficient of the material forming the resin member (61) is the wall portion (21) of the casing (20) in the radial direction of the casing (20). Is smaller than the linear expansion coefficient of the material constituting the. Therefore, when the temperature rises, the resin member (61) is less likely to thermally expand in the radial direction than the wall portion (21) of the casing (20). On the other hand, since the radial direction thermal expansion of the resin member (61) is promoted by the circumferential direction suppression plate (78) and the axial direction suppression plate (75), the stator (41) and The resin member (61) is prevented from coming off the casing (20). On the other hand, the resin member (61) is less likely to thermally contract in the radial direction than the wall portion (21) of the casing (20) when the temperature decreases. Therefore, the stator (41) and the resin member (61) are prevented from coming off the casing (20) due to the temperature decrease.
  -実施形態1の変形例1-
 実施形態1の変形例1について説明する。本変形例の回転式圧縮機(10)は、支持接触部(21a)の数が上記実施形態1と異なる。以下、上記実施形態1と異なる点について主に説明する。
-Modification 1 of Embodiment 1-
A modified example 1 of the first embodiment will be described. The rotary compressor (10) of this modification is different from that of the first embodiment in the number of supporting contact portions (21a). Hereinafter, differences from the first embodiment will be mainly described.
 図4に示すように、固定子(41)は、周方向における複数箇所(この例では、3箇所)で、樹脂部材(61)と共にケーシング(20)の壁部(21)に挟まれて支持される。換言すると、固定子(41)および樹脂部材(61)は、周方向における3箇所で、ケーシング(20)の壁部(21)に接触して支持される。 As shown in FIG. 4, the stator (41) is supported by being sandwiched by the wall portion (21) of the casing (20) together with the resin member (61) at a plurality of locations (three locations in this example) in the circumferential direction. To be done. In other words, the stator (41) and the resin member (61) are in contact with and supported by the wall portion (21) of the casing (20) at three locations in the circumferential direction.
 ケーシング(20)の壁部(21)における樹脂部材(61)と接触する部分は、支持接触部(21a)を構成する。この例では、壁部(21)は、3つの支持接触部(21a)を有する。なお、支持接触部(21a)の数は、任意に設定されてもよい。 The part of the wall (21) of the casing (20) that comes into contact with the resin member (61) constitutes the support contact part (21a). In this example, the wall portion (21) has three supporting contact portions (21a). The number of supporting contact portions (21a) may be set arbitrarily.
 図4に示す平面視において、ケーシング(20)の周方向に隣り合う樹脂部材(61)の外面(換言すると、樹脂部材(61)における壁部(21)との接触面)の中心点同士を直線的に結ぶ方向を隣接方向とする(その1つを図4に破線で示す)。隣接方向は、平面視において、ケーシング(20)の周方向に隣り合う支持接触部(21a)の内面(換言すると、支持接触部(21a)における樹脂部材(61)との接触面)の中心点同士を直線的に結ぶ方向でもある。 In the plan view shown in FIG. 4, the center points of the outer surfaces of the resin member (61) adjacent to each other in the circumferential direction of the casing (20) (in other words, the contact surface of the resin member (61) with the wall portion (21)) are aligned with each other. The direction in which they are connected in a straight line is the adjacent direction (one of which is indicated by a broken line in FIG. 4). The adjacent direction is the center point of the inner surface of the supporting contact portion (21a) adjacent in the circumferential direction of the casing (20) (in other words, the contact surface of the supporting contact portion (21a) with the resin member (61)) in plan view. It is also the direction that connects the two in a straight line.
 このとき、周方向抑制板(78)および軸方向抑制板(75)が存在しない場合には、周方向に隣り合う任意の2つの樹脂部材(61)または支持接触部(21a)に関し、その隣接方向において、隣り合う樹脂部材(61)の外面間の距離の単位温度あたりの変化率は、隣り合う支持接触部(21a)の内面間の距離の単位温度あたりの変化率よりも小さい。換言すると、周方向抑制板(78)および軸方向抑制板(75)が存在しない場合には、樹脂部材(61)および支持接触部(21a)の周囲温度が上昇するにつれて、支持接触部(21a)が樹脂部材(61)から離れていくように壁部(21)と固定子(41)および樹脂部材(61)とが熱膨張する。 At this time, when the circumferential direction suppression plate (78) and the axial direction suppression plate (75) do not exist, the two adjacent resin members (61) or the supporting contact portions (21a) in the circumferential direction are adjacent to each other. In the direction, the rate of change of the distance between the outer surfaces of the adjacent resin members (61) per unit temperature is smaller than the rate of change of the distance between the inner surfaces of the adjacent support contact portions (21a) per unit temperature. In other words, when the circumferential restraint plate (78) and the axial restraint plate (75) are not present, as the ambient temperature of the resin member (61) and the support contact portion (21a) increases, the support contact portion (21a) increases. The wall portion (21), the stator (41) and the resin member (61) are thermally expanded so that (a) moves away from the resin member (61).
 周方向抑制板(78)は、ケーシング(20)の周方向において樹脂部材(61)に対して接触して圧縮荷重を加えることにより当該樹脂部材(61)の熱膨張を抑制し、かつケーシング(20)の径方向において当該樹脂部材(61)の熱膨張を促進する。軸方向抑制板(75)は、ケーシング(20)の軸方向において樹脂部材(61)に対して接触して圧縮荷重を加えることにより当該樹脂部材(61)の熱膨張を抑制し、かつケーシング(20)の径方向において当該樹脂部材(61)の熱膨張を促進する。これらにより、樹脂部材(61)と壁部(21)とが互いに接触し、かつ樹脂部材(61)と固定子(41)とが互いに接触した状態が保たれる。なお、軸方向抑制板(75)は、図4には示されていないが、上記実施形態1と同様に構成される。 The circumferential direction suppression plate (78) contacts the resin member (61) in the circumferential direction of the casing (20) and applies a compressive load to suppress the thermal expansion of the resin member (61), and the casing ( The thermal expansion of the resin member (61) is promoted in the radial direction of 20). The axial suppression plate (75) contacts the resin member (61) in the axial direction of the casing (20) and applies a compressive load to suppress thermal expansion of the resin member (61), and the casing ( The thermal expansion of the resin member (61) is promoted in the radial direction of 20). As a result, the resin member (61) and the wall portion (21) are kept in contact with each other, and the resin member (61) and the stator (41) are kept in contact with each other. Although not shown in FIG. 4, the axial restraint plate (75) has the same structure as that of the first embodiment.
  -実施形態1の変形例2-
 実施形態1の変形例2について説明する。本変形例の回転式圧縮機(10)は、軸方向抑制板(75)に代えて軸方向抑制リング(72)が設けられる点で上記実施形態1と異なる。以下、上記実施形態1と異なる点について主に説明する。
-Modification of Embodiment 1-
A modified example 2 of the first embodiment will be described. The rotary compressor (10) of the present modified example is different from that of the first embodiment in that an axial restraint ring (72) is provided in place of the axial restraint plate (75). Hereinafter, differences from the first embodiment will be mainly described.
 軸方向抑制リング(72)は、ケーシング(20)の軸方向における樹脂部材(61)の熱膨張を抑制する環状部材である。軸方向抑制リング(72)は、図5に示すように、ケーシング(20)の壁部(21)に例えば圧入により固定される。軸方向抑制リング(72)は、壁部(21)の内周面よりもケーシング(20)の径方向内方に突出している。この突出部分と壁部(21)の内周面との間に第1段差部(71)が形成される。当該突出部分は、ケーシング(20)の軸方向において樹脂部材(61)の端部に接触している。軸方向抑制リング(72)は、樹脂部材(61)の端部の、ケーシング(20)の径方向における一部に対して接触している。なお、当該突出部分は、高温状態で樹脂部材(61)の端部に接触するのであれば、常温状態および低温状態で樹脂部材(61)の端部に接触していなくてもよい。軸方向抑制リング(72)は、第1抑制部材を構成している。 The axial restraint ring (72) is an annular member that restrains thermal expansion of the resin member (61) in the axial direction of the casing (20). As shown in FIG. 5, the axial restraint ring (72) is fixed to the wall portion (21) of the casing (20) by, for example, press fitting. The axial restraint ring (72) projects inward in the radial direction of the casing (20) rather than the inner peripheral surface of the wall portion (21). A first step portion (71) is formed between the protruding portion and the inner peripheral surface of the wall portion (21). The projecting portion is in contact with the end of the resin member (61) in the axial direction of the casing (20). The axial restraint ring (72) is in contact with a part of the end portion of the resin member (61) in the radial direction of the casing (20). In addition, the said protrusion part does not need to be in contact with the edge part of the resin member (61) in a normal temperature state and a low temperature state, if it contacts the edge part of the resin member (61) in a high temperature state. The axial restraint ring (72) constitutes a first restraint member.
 周方向抑制板(78)は、ケーシング(20)の周方向において樹脂部材(61)に対して接触して圧縮荷重を加えることにより当該樹脂部材(61)の熱膨張を抑制し、かつケーシング(20)の径方向において当該樹脂部材(61)の熱膨張を促進する。軸方向抑制リング(72)は、ケーシング(20)の軸方向において樹脂部材(61)に対して接触して圧縮荷重を加えることにより当該樹脂部材(61)の熱膨張を抑制し、かつケーシング(20)の径方向において当該樹脂部材(61)の熱膨張を促進する。これらにより、樹脂部材(61)と壁部(21)とが互いに接触し、かつ樹脂部材(61)と固定子(41)とが互いに接触した状態が保たれる。なお、周方向抑制板(78)は、図5には示されていないが、上記実施形態と同様に構成される。 The circumferential direction suppression plate (78) contacts the resin member (61) in the circumferential direction of the casing (20) and applies a compressive load to suppress the thermal expansion of the resin member (61), and the casing ( The thermal expansion of the resin member (61) is promoted in the radial direction of 20). The axial restraint ring (72) contacts the resin member (61) in the axial direction of the casing (20) and applies a compressive load to restrain thermal expansion of the resin member (61), and the casing ( The thermal expansion of the resin member (61) is promoted in the radial direction of 20). As a result, the resin member (61) and the wall portion (21) are kept in contact with each other, and the resin member (61) and the stator (41) are kept in contact with each other. Although not shown in FIG. 5, the circumferential direction suppression plate (78) has the same configuration as that of the above embodiment.
 本変形例の支持構造(11)は、上記ケーシング(20)の壁部(21)に設けられた上記軸方向抑制リング(72)が、上記ケーシング(20)の軸方向において上記樹脂部材(61)の端部との接触により上記樹脂部材(61)の熱膨張を抑制する。したがって、軸方向抑制リング(72)と樹脂部材(61)の端部との接触により、ケーシング(20)の軸方向における樹脂部材(61)の熱膨張が抑制され、ケーシング(20)の径方向における樹脂部材(61)の熱膨張が促進される。 In the support structure (11) of the present modification, the axial restraining ring (72) provided on the wall portion (21) of the casing (20) has the resin member (61) in the axial direction of the casing (20). (4) suppresses thermal expansion of the resin member (61) by contact with the end portion of (1). Therefore, the thermal expansion of the resin member (61) in the axial direction of the casing (20) is suppressed by the contact between the axial suppression ring (72) and the end of the resin member (61), and the radial direction of the casing (20). The thermal expansion of the resin member (61) is accelerated.
  -実施形態の変形例3-
 実施形態1の変形例3について説明する。本変形例の回転式圧縮機(10)は、樹脂部材(61)の軸方向長さが上記実施形態1の変形例2と異なる。以下、上記実施形態1の変形例2と異なる点について主に説明する。
-Modification of Embodiment 3-
A modified example 3 of the first embodiment will be described. In the rotary compressor (10) of this modification, the axial length of the resin member (61) is different from that of Modification 2 of the first embodiment. Hereinafter, differences from the second modification of the first embodiment will be mainly described.
 図6に示すように、ケーシング(20)の軸方向において、樹脂部材(61)の長さは、固定子(41)の長さよりも短い。これに対応して、軸方向抑制リング(72)は、ケーシング(20)の軸方向において、樹脂部材(61)の端部に接触するように配置される。なお、ケーシング(20)の軸方向において、樹脂部材(61)の長さは、固定子(41)の長さよりも長くてもよい。 As shown in FIG. 6, the length of the resin member (61) is shorter than the length of the stator (41) in the axial direction of the casing (20). Correspondingly, the axial restraint ring (72) is arranged so as to contact the end portion of the resin member (61) in the axial direction of the casing (20). The length of the resin member (61) may be longer than the length of the stator (41) in the axial direction of the casing (20).
  -実施形態1の変形例4-
 実施形態1の変形例4について説明する。本変形例の回転式圧縮機(10)は、第2段差部(74)の構成が上記実施形態1と異なる。以下、上記実施形態1と異なる点について主に説明する。
-Modification 4 of Embodiment 1-
A modified example 4 of the first embodiment will be described. The rotary compressor (10) of the present modification is different from the first embodiment in the configuration of the second step portion (74). Hereinafter, differences from the first embodiment will be mainly described.
 図7に示すように、固定子(41)の外周面に固定子凹部(76)が形成されている。固定子凹部(76)は、例えば、固定子(41)を構成する複数の鋼板の外径が互いに異なることにより形成されてもよい。ケーシング(20)の軸方向において、固定子凹部(76)の長さは、樹脂部材(61)の長さと実質的に等しい。この固定子凹部(76)内に、樹脂部材(61)が嵌まり込むように配置されている。固定子凹部(76)により第2段差部(74)が形成される。固定子凹部(76)は、第2凹部を構成している。 As shown in FIG. 7, a stator recess (76) is formed on the outer peripheral surface of the stator (41). The stator recess (76) may be formed, for example, by having a plurality of steel plates forming the stator (41) having different outer diameters. In the axial direction of the casing (20), the length of the stator recess (76) is substantially equal to the length of the resin member (61). The resin member (61) is arranged so as to fit in the stator recess (76). A second stepped portion (74) is formed by the stator recess (76). The stator recess (76) constitutes a second recess.
 本変形例の支持構造(11)は、上記固定子(41)に形成された固定子凹部(76)が、上記軸方向において上記樹脂部材(61)の端部との接触により上記樹脂部材(61)の熱膨張を抑制する。したがって、固定子凹部(76)の側壁と樹脂部材(61)の端部との接触により、ケーシング(20)の軸方向における樹脂部材(61)の熱膨張が抑制され、ケーシング(20)の径方向における樹脂部材(61)の熱膨張が促進される。 In the support structure (11) of the present modification, the stator recess (76) formed in the stator (41) is brought into contact with the end of the resin member (61) in the axial direction, so that the resin member ( Suppress the thermal expansion of 61). Therefore, the contact between the side wall of the stator recess (76) and the end of the resin member (61) suppresses thermal expansion of the resin member (61) in the axial direction of the casing (20), and the diameter of the casing (20). Thermal expansion of the resin member (61) in the direction is promoted.
  -実施形態1の変形例5-
 実施形態1の変形例5について説明する。本変形例の回転式圧縮機(10)は、第1段差部(71)の構成が上記実施形態1の変形例2と異なる。以下、上記実施形態1の変形例2と異なる点について主に説明する。
-Variation 5 of Embodiment 1-
A modified example 5 of the first embodiment will be described. The rotary compressor (10) of the present modification is different from the second modification of the first embodiment in the configuration of the first step portion (71). Hereinafter, differences from the second modification of the first embodiment will be mainly described.
 図8に示すように、ケーシング(20)の壁部(21)の内周面にケーシング凹部(73)が形成されている。ケーシング(20)の軸方向において、ケーシング凹部(73)の長さは、樹脂部材(61)の長さと実質的に等しい。このケーシング凹部(73)内に、樹脂部材(61)が嵌まり込むように配置されている。ケーシング凹部(73)により第1段差部(71)が形成される。ケーシング凹部(73)は、第1凹部を構成している。 As shown in FIG. 8, a casing recess (73) is formed on the inner peripheral surface of the wall (21) of the casing (20). In the axial direction of the casing (20), the length of the casing recess (73) is substantially equal to the length of the resin member (61). The resin member (61) is arranged so as to fit in the casing recess (73). A first step portion (71) is formed by the casing recess (73). The casing recess (73) constitutes a first recess.
 本変形例の支持構造(11)は、上記ケーシング(20)の壁部(21)に形成されたケーシング凹部(73)が、上記ケーシング(20)の軸方向において上記樹脂部材(61)の端部との接触により上記樹脂部材(61)の熱膨張を抑制する。したがって、ケーシング凹部(73)の側壁と樹脂部材(61)の端部との接触により、ケーシング(20)の軸方向における樹脂部材(61)の熱膨張が抑制され、ケーシング(20)の径方向における樹脂部材(61)の熱膨張が促進される。 In the support structure (11) of the present modification, the casing recess (73) formed in the wall (21) of the casing (20) has an end of the resin member (61) in the axial direction of the casing (20). The thermal expansion of the resin member (61) is suppressed by contact with the portion. Therefore, due to the contact between the side wall of the casing recess (73) and the end of the resin member (61), thermal expansion of the resin member (61) in the axial direction of the casing (20) is suppressed, and the radial direction of the casing (20). The thermal expansion of the resin member (61) is accelerated.
  -実施形態1の変形例6-
 実施形態1の変形例6について説明する。本変形例の回転式圧縮機(10)は、絶縁部材の構成が上記実施形態1と異なる。以下、上記実施形態1と異なる点について主に説明する。
-Modification 6 of Embodiment 1-
A modified example 6 of the first embodiment will be described. The rotary compressor (10) of the present modification is different from the first embodiment in the structure of the insulating member. Hereinafter, differences from the first embodiment will be mainly described.
 図9に示すように、支持構造(11)は、樹脂部材(61)に代えて絶縁体(63)を備える。絶縁体(63)は、複数(この例では、5つ)の小膨張部(63a)と、複数(この例では、4つ)の大膨張部(63b)とが、交互に積層されて構成される。絶縁体(63)は、絶縁部材を構成し、かつ被支持接触部を構成している。 As shown in FIG. 9, the support structure (11) includes an insulator (63) instead of the resin member (61). The insulator (63) is configured by alternately stacking a plurality (five in this example) of small expansion parts (63a) and a plurality (four in this example) of large expansion parts (63b). To be done. The insulator (63) constitutes an insulating member and also constitutes a supported contact portion.
 小膨張部(63a)は、温度低下時に固定子(41)をケーシング(20)から外れにくくする機能を有する。小膨張部(63a)は、ケーシング(20)の内周面から固定子(41)の外周面まで延びている。小膨張部(63a)は、対向方向における線膨張係数が、ケーシング(20)の壁部(21)を構成する材料の線膨張係数よりも小さい。小膨張部(63a)は、セラミックで構成されるが、これ以外の絶縁材料で構成されてもよい。 The small expansion section (63a) has the function of making it difficult for the stator (41) to come off the casing (20) when the temperature drops. The small expansion section (63a) extends from the inner peripheral surface of the casing (20) to the outer peripheral surface of the stator (41). The linear expansion coefficient of the small expansion section (63a) in the facing direction is smaller than the linear expansion coefficient of the material forming the wall section (21) of the casing (20). The small expansion section (63a) is made of ceramic, but may be made of an insulating material other than this.
 大膨張部(63b)は、温度上昇時に固定子(41)をケーシング(20)から外れにくくする機能を有する。大膨張部(63b)は、ケーシング(20)の内周面から固定子(41)の外周面まで延びている。大膨張部(63b)は、対向方向における線膨張係数が、ケーシング(20)の壁部(21)を構成する材料の線膨張係数よりも大きい。大膨張部(63b)は、絶縁性樹脂で構成されるが、これ以外の絶縁材料で構成されてもよい。 The large expansion section (63b) has the function of making it difficult for the stator (41) to come off the casing (20) when the temperature rises. The large expansion section (63b) extends from the inner peripheral surface of the casing (20) to the outer peripheral surface of the stator (41). The large expansion portion (63b) has a linear expansion coefficient in the facing direction larger than that of the material forming the wall portion (21) of the casing (20). The large expansion part (63b) is made of an insulating resin, but may be made of an insulating material other than this.
 本変形例の支持構造(11)は、上記絶縁体(63)の小膨張部(63a)が、上記対向方向における線膨張係数が上記ケーシング(20)の壁部(21)を構成する材料の線膨張係数よりも小さい材料で構成され、上記絶縁体(63)の大膨張部(63b)が、上記対向方向における線膨張係数が上記ケーシング(20)の壁部(21)を構成する材料の線膨張係数よりも大きい材料で構成される。したがって、絶縁体(63)の小膨張部(63a)は、温度低下時にケーシング(20)の壁部(21)よりも対向方向において熱収縮しにくい。よって、温度低下に起因して固定子(41)がケーシング(20)から外れることが阻止される。一方、絶縁体(63)の大膨張部(63b)は、温度上昇時にケーシング(20)の壁部(21)よりも対向方向において熱膨張しやすい。よって、温度上昇に起因して固定子(41)がケーシング(20)から外れることが阻止される。 In the support structure (11) of the present modification, the small expansion part (63a) of the insulator (63) is made of a material whose linear expansion coefficient in the facing direction constitutes the wall part (21) of the casing (20). A material having a coefficient of linear expansion smaller than that of the material of which the large expansion portion (63b) of the insulator (63) has a linear expansion coefficient in the facing direction of the wall portion (21) of the casing (20). It is composed of a material having a coefficient of linear expansion larger than that of the material. Therefore, the small expansion part (63a) of the insulator (63) is less likely to thermally contract in the facing direction than the wall part (21) of the casing (20) when the temperature decreases. Therefore, the stator (41) is prevented from coming off the casing (20) due to the temperature decrease. On the other hand, the large expansion part (63b) of the insulator (63) is more likely to thermally expand in the facing direction than the wall part (21) of the casing (20) when the temperature rises. Therefore, the stator (41) is prevented from coming off the casing (20) due to the temperature rise.
 《実施形態2》
 実施形態2について説明する。本実施形態の回転式圧縮機(10)は、支持構造の構成が上記実施形態1と異なる。以下、上記実施形態1と異なる点について主に説明する。
<<Embodiment 2>>
The second embodiment will be described. The rotary compressor (10) of the present embodiment differs from that of the first embodiment in the structure of the support structure. Hereinafter, differences from the first embodiment will be mainly described.
 図10および図11に示すように、支持構造(11)は、駆動軸(50)と、電動機(40)の回転子(42)と、樹脂部材(61)と、軸方向抑制板(75)とによって構成される。駆動軸(50)は、支持体を構成している。軸方向抑制板(75)は、膨張制御部を構成している。 As shown in FIGS. 10 and 11, the support structure (11) includes a drive shaft (50), a rotor (42) of the electric motor (40), a resin member (61), and an axial restraint plate (75). Composed of and. The drive shaft (50) constitutes a support. The axial restraint plate (75) constitutes an expansion controller.
 回転子(42)および樹脂部材(61)は、駆動軸(50)の壁部(50a)(換言すると、支持接触部(50a))に接触して支持される。回転子(42)は、多数の鋼板が軸方向に積層された積層構造を有する。回転子(42)は、複数の永久磁石(図示せず)を有する。駆動軸(50)の軸方向において、回転子(42)の長さは、樹脂部材(61)の長さと実質的に等しい。回転子(42)は、被支持体の本体部を構成している。樹脂部材(61)は、絶縁部材を構成し、かつ被支持接触部を構成している。回転子(42)および樹脂部材(61)は、被支持体を構成している。図10における回転子の形状は、あくまで例示的なものである。 The rotor (42) and the resin member (61) are supported in contact with the wall portion (50a) of the drive shaft (50) (in other words, the support contact portion (50a)). The rotor (42) has a laminated structure in which a large number of steel plates are laminated in the axial direction. The rotor (42) has a plurality of permanent magnets (not shown). The length of the rotor (42) is substantially equal to the length of the resin member (61) in the axial direction of the drive shaft (50). The rotor (42) constitutes the main body of the supported body. The resin member (61) constitutes an insulating member and also constitutes a supported contact portion. The rotor (42) and the resin member (61) form a supported body. The shape of the rotor in FIG. 10 is merely an example.
 樹脂部材(61)は、駆動軸(50)の壁部(50a)と電動機(40)の回転子(42)との間に挟まれた円筒状の部材である。樹脂部材(61)は、絶縁性樹脂で構成され、駆動軸(50)と回転子(42)とを電気的に絶縁する。この絶縁性樹脂は、例えば繊維強化樹脂またはLCP樹脂である。なお、円筒状の樹脂部材(61)に代えて、駆動軸(50)の周方向に離間した複数の樹脂部材を設けてもよい。 The resin member (61) is a cylindrical member sandwiched between the wall portion (50a) of the drive shaft (50) and the rotor (42) of the electric motor (40). The resin member (61) is made of an insulating resin and electrically insulates the drive shaft (50) and the rotor (42). This insulating resin is, for example, fiber reinforced resin or LCP resin. It should be noted that, instead of the cylindrical resin member (61), a plurality of resin members that are spaced apart in the circumferential direction of the drive shaft (50) may be provided.
 樹脂部材(61)は、線膨張係数に関して異方性を有する。駆動軸(50)は、線膨張係数に関して等方性を有する。具体的に、駆動軸(50)の軸方向において、樹脂部材(61)を構成する材料の線膨張係数は、駆動軸(50)を構成する材料の線膨張係数よりも大きい。駆動軸(50)の軸方向において、樹脂部材(61)を構成する材料の線膨張係数は、回転子(42)を構成する材料の線膨張係数よりも大きい。駆動軸(50)の軸方向は、第1方向である。換言すると、第1方向において、被支持接触部(61)を構成する材料の線膨張係数は、支持体(50)の壁部(50a)を構成する材料の線膨張係数よりも大きい。第1方向において、被支持接触部(61)を構成する材料の線膨張係数は、被支持体の本体部(42)を構成する材料の線膨張係数よりも大きい。 The resin member (61) has anisotropy regarding the coefficient of linear expansion. The drive shaft (50) is isotropic with respect to the linear expansion coefficient. Specifically, in the axial direction of the drive shaft (50), the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the drive shaft (50). The linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the rotor (42) in the axial direction of the drive shaft (50). The axial direction of the drive shaft (50) is the first direction. In other words, in the first direction, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the wall portion (50a) of the support body (50). In the first direction, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the main body portion (42) of the supported body.
 駆動軸(50)の径方向において、樹脂部材(61)を構成する材料の線膨張係数は、壁部(50a)間の支持体(50)を構成する材料の線膨張係数よりも小さい。「壁部(50a)間」とは、壁部(50a)の一部分と、当該一部分と離間した壁部(50a)の他部分との間のことである。「壁部(50a)間の支持体(50)」とは、壁部(50a)間を構成する支持体(50)のことである。当該支持体(50)が単一の材料で構成されている場合、「壁部(50a)間の支持体(50)を構成する材料の線膨張係数」は、当該材料の線膨張係数である。当該支持体(50)が複数の材料で構成されている場合、「壁部(50a)間の支持体(50)を構成する材料の線膨張係数」は、各材料の線膨張係数と支持体(50)の形状によって決まる係数である。この係数は、試験または解析にて、壁部(50a)間の距離の単位温度あたりの変化率を算出することで求められる。換言すると、「壁部(50a)間の支持体(50)を構成する材料の線膨張係数」は、壁部(50a)間の距離の単位温度あたりの変化率である。駆動軸(50)の径方向において、樹脂部材(61)を構成する材料の線膨張係数は、回転子(41)を構成する材料の線膨張係数よりも小さい。駆動軸(50)の径方向は、樹脂部材(61)と壁部(50a)との対向方向である。換言すると、被支持接触部(61)と支持体(50)の壁部(50a)との対向方向において、被支持接触部(61)を構成する材料の線膨張係数は、壁部(50a)間の支持体(50)を構成する材料の線膨張係数よりも小さい。 In the radial direction of the drive shaft (50), the linear expansion coefficient of the material forming the resin member (61) is smaller than the linear expansion coefficient of the material forming the support body (50) between the wall portions (50a). The “between the wall parts (50a)” is between a part of the wall part (50a) and another part of the wall part (50a) separated from the part. The "support (50) between the wall portions (50a)" is a support body (50) that constitutes between the wall portions (50a). When the support (50) is made of a single material, the “linear expansion coefficient of the material forming the support (50) between the wall portions (50a)” is the linear expansion coefficient of the material. .. When the support body (50) is composed of a plurality of materials, the “linear expansion coefficient of the material forming the support body (50) between the wall portions (50a)” is the linear expansion coefficient of each material and the support body. It is a coefficient determined by the shape of (50). This coefficient can be obtained by calculating the rate of change of the distance between the wall parts (50a) per unit temperature in a test or analysis. In other words, the “coefficient of linear expansion of the material forming the support body (50) between the wall portions (50a)” is the rate of change of the distance between the wall portions (50a) per unit temperature. In the radial direction of the drive shaft (50), the linear expansion coefficient of the material forming the resin member (61) is smaller than the linear expansion coefficient of the material forming the rotor (41). The radial direction of the drive shaft (50) is the opposing direction of the resin member (61) and the wall portion (50a). In other words, in the direction in which the supported contact portion (61) and the wall portion (50a) of the support body (50) face each other, the linear expansion coefficient of the material forming the supported contact portion (61) is the wall portion (50a). It is smaller than the linear expansion coefficient of the material forming the support body (50).
 駆動軸(50)の周方向において、樹脂部材(61)を構成する材料の線膨張係数は、駆動軸(50)を構成する材料の線膨張係数よりも大きい。駆動軸(50)の周方向において、樹脂部材(61)を構成する材料の線膨張係数は、回転子(42)を構成する材料の線膨張係数よりも大きい。駆動軸(50)の周方向は、第2方向である。換言すると、第2方向において、被支持接触部(61)を構成する材料の線膨張係数は、壁部(50a)を構成する材料の線膨張係数よりも大きい。第2方向において、被支持接触部(61)を構成する材料の線膨張係数は、被支持体の本体部(42)を構成する材料の線膨張係数よりも大きい。 In the circumferential direction of the drive shaft (50), the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the drive shaft (50). In the circumferential direction of the drive shaft (50), the linear expansion coefficient of the material forming the resin member (61) is larger than the linear expansion coefficient of the material forming the rotor (42). The circumferential direction of the drive shaft (50) is the second direction. In other words, in the second direction, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the wall portion (50a). In the second direction, the linear expansion coefficient of the material forming the supported contact portion (61) is larger than the linear expansion coefficient of the material forming the main body portion (42) of the supported body.
 上述の樹脂部材(61)を構成する材料の線膨張係数の異方性は、樹脂部材(61)を構成する材料が含有する繊維状物質の配向方向、または樹脂部材(61)を構成する材料の分子鎖の配向方向に対応して生じる。 The anisotropy of the linear expansion coefficient of the material forming the resin member (61) is determined by the orientation direction of the fibrous substance contained in the material forming the resin member (61) or the material forming the resin member (61). Occurs according to the orientation direction of the molecular chain of.
 図10に示す平面視において、樹脂部材(61)の任意の2つの点を直線的に結ぶ方向を隣接方向とする(その1つを図10に破線で示す)。隣接方向は、平面視において、駆動軸(50)の壁部(50a)(換言すると、支持接触部(50a)における樹脂部材(61)との接触面)における任意の2つの点を直線的に結ぶ方向でもある。図10に例示する隣接方向は、駆動軸(50)の径方向と一致している。 In the plan view shown in FIG. 10, the direction in which any two points of the resin member (61) are linearly connected is defined as the adjacent direction (one of which is shown by the broken line in FIG. 10). The adjacent direction is a straight line when two arbitrary points on the wall portion (50a) of the drive shaft (50) (in other words, the contact surface with the resin member (61) of the support contact portion (50a)) are seen in a plan view. It is also the direction to tie. The adjacent direction illustrated in FIG. 10 coincides with the radial direction of the drive shaft (50).
 このとき、軸方向抑制板(75)が存在しない場合には、樹脂部材(61)または支持接触部(50a)に関し、その隣接方向において、樹脂部材(61)の外面間の距離の単位温度あたりの変化率は、回転子(42)の内面間の距離の単位温度あたりの変化率よりも小さい。換言すると、軸方向抑制板(75)が存在しない場合には、樹脂部材(61)および回転子(42)の周囲温度が上昇するにつれて、回転子(42)が樹脂部材(61)から離れていくように回転子(42)と樹脂部材(61)とが熱膨張する。これは、駆動軸(50)の径方向において、回転子(42)の線膨張係数が、樹脂部材(61)の線膨張係数よりも大きいためである。 At this time, when the axial restraint plate (75) does not exist, the distance between the outer surfaces of the resin member (61) per unit temperature in the adjacent direction with respect to the resin member (61) or the supporting contact portion (50a). Is smaller than the rate of change in the distance between the inner surfaces of the rotor (42) per unit temperature. In other words, in the absence of the axial restraint plate (75), the rotor (42) separates from the resin member (61) as the ambient temperature of the resin member (61) and the rotor (42) rises. The rotor (42) and the resin member (61) thermally expand as they go. This is because the linear expansion coefficient of the rotor (42) is larger than the linear expansion coefficient of the resin member (61) in the radial direction of the drive shaft (50).
 軸方向抑制板(75)は、駆動軸(50)の軸方向における樹脂部材(61)の熱膨張を抑制する板状部材である。軸方向抑制板(75)は、図11に示すように、回転子(42)の上下端に固定され、回転子(42)の内周面よりも駆動軸(50)の径方向内方に突出している。この突出部分と回転子(42)の内周面との間に第2段差部(74)が形成される。当該突出部分は、駆動軸(50)の軸方向において樹脂部材(61)の端部に接触している。軸方向抑制板(75)は、樹脂部材(61)の端部の、駆動軸(50)の径方向における一部(特に、径方向外側の一部)に対して接触している。なお、当該突出部分は、高温状態で樹脂部材(61)の端部に接触するのであれば、常温状態および低温状態で樹脂部材(61)の端部に接触していなくてもよい。軸方向抑制板(75)は、第2抑制部材を構成している。 The axial restraint plate (75) is a plate-shaped member that restrains thermal expansion of the resin member (61) in the axial direction of the drive shaft (50). As shown in FIG. 11, the axial restraint plate (75) is fixed to the upper and lower ends of the rotor (42) and is located more radially inward of the drive shaft (50) than the inner peripheral surface of the rotor (42). It is protruding. A second step portion (74) is formed between the protruding portion and the inner peripheral surface of the rotor (42). The projecting portion is in contact with the end of the resin member (61) in the axial direction of the drive shaft (50). The axial suppression plate (75) is in contact with a part of the end portion of the resin member (61) in the radial direction of the drive shaft (50) (particularly, a part on the outer side in the radial direction). In addition, the said protrusion part does not need to be in contact with the edge part of the resin member (61) in a normal temperature state and a low temperature state, if it contacts the edge part of the resin member (61) in a high temperature state. The axial restraint plate (75) constitutes a second restraint member.
 軸方向抑制板(75)は、ポアソン効果により、駆動軸(50)の径方向において樹脂部材(61)の熱膨張を促進する。具体的に、軸方向抑制板(75)は、駆動軸(50)の軸方向において樹脂部材(61)に対して接触して圧縮荷重を加えることにより当該樹脂部材(61)の熱膨張を抑制し、かつ駆動軸(50)の径方向において当該樹脂部材(61)の熱膨張を促進する。これらにより、樹脂部材(61)と駆動軸(50)の壁部(50a)とが互いに接触し、かつ樹脂部材(61)と回転子(42)とが互いに接触した状態が保たれる。 The axial restraint plate (75) promotes thermal expansion of the resin member (61) in the radial direction of the drive shaft (50) by the Poisson effect. Specifically, the axial direction suppression plate (75) suppresses thermal expansion of the resin member (61) by contacting the resin member (61) in the axial direction of the drive shaft (50) and applying a compressive load. And promotes thermal expansion of the resin member (61) in the radial direction of the drive shaft (50). As a result, the resin member (61) and the wall portion (50a) of the drive shaft (50) are kept in contact with each other, and the resin member (61) and the rotor (42) are kept in contact with each other.
  -実施形態2の効果-
 本実施形態の支持構造(11)によっても、上記実施形態1と同様の効果が得られる。
-Effects of the second embodiment-
The support structure (11) of the present embodiment also provides the same effect as that of the first embodiment.
  -実施形態2の変形例1-
 実施形態2の変形例1について説明する。本変形例の回転式圧縮機(10)は、軸方向抑制板(75)に代えて軸方向抑制リング(72)が設けられる点で上記実施形態2と異なる。以下、上記実施形態2と異なる点について主に説明する。
-Modification 1 of Embodiment 2-
A modified example 1 of the second embodiment will be described. The rotary compressor (10) of the present modified example is different from that of the second embodiment in that an axial restraint ring (72) is provided in place of the axial restraint plate (75). Hereinafter, differences from the second embodiment will be mainly described.
 軸方向抑制リング(72)は、駆動軸(50)の軸方向における樹脂部材(61)の熱膨張を抑制する環状部材である。軸方向抑制リング(72)は、図12に示すように、駆動軸(50)の壁部(50a)に例えば締まり嵌めにより固定される。軸方向抑制リング(72)は、壁部(50a)よりも駆動軸(50)の径方向外方に突出している。この突出部分と壁部(50a)との間に第1段差部(71)が形成される。当該突出部分は、駆動軸(50)の軸方向において樹脂部材(61)の端部に接触している。軸方向抑制リング(72)は、樹脂部材(61)の端部の、駆動軸(50)の径方向における一部に対して接触している。なお、当該突出部分は、高温状態で樹脂部材(61)の端部に接触するのであれば、常温状態および低温状態で樹脂部材(61)の端部に接触していなくてもよい。軸方向抑制リング(72)は、第1抑制部材を構成している。 The axial restraint ring (72) is an annular member that restrains thermal expansion of the resin member (61) in the axial direction of the drive shaft (50). As shown in FIG. 12, the axial restraint ring (72) is fixed to the wall portion (50a) of the drive shaft (50) by, for example, an interference fit. The axial restraint ring (72) projects more radially outward of the drive shaft (50) than the wall portion (50a). A first step portion (71) is formed between the protruding portion and the wall portion (50a). The projecting portion is in contact with the end of the resin member (61) in the axial direction of the drive shaft (50). The axial restraint ring (72) is in contact with a part of the end of the resin member (61) in the radial direction of the drive shaft (50). In addition, the said protrusion part does not need to be in contact with the edge part of the resin member (61) in a normal temperature state and a low temperature state, if it contacts the edge part of the resin member (61) in a high temperature state. The axial restraint ring (72) constitutes a first restraint member.
 軸方向抑制リング(72)は、駆動軸(50)の軸方向において樹脂部材(61)に対して接触して圧縮荷重を加えることにより当該樹脂部材(61)の熱膨張を抑制し、かつ駆動軸(50)の径方向において当該樹脂部材(61)の熱膨張を促進する。これにより、樹脂部材(61)と壁部(50a)とが互いに接触し、かつ樹脂部材(61)と回転子(42)とが互いに接触した状態が保たれる。 The axial restraint ring (72) is in contact with the resin member (61) in the axial direction of the drive shaft (50) and applies a compressive load to restrain thermal expansion of the resin member (61) and to drive the resin member (61). The thermal expansion of the resin member (61) is promoted in the radial direction of the shaft (50). As a result, the resin member (61) and the wall portion (50a) are kept in contact with each other, and the resin member (61) and the rotor (42) are kept in contact with each other.
  -実施形態2の変形例2-
 実施形態2の変形例2について説明する。本変形例の回転式圧縮機(10)は、樹脂部材(61)の軸方向長さが上記実施形態2の変形例1と異なる。以下、上記実施形態2の変形例1と異なる点について主に説明する。
-Modification 2 of Embodiment 2-
A modified example 2 of the second embodiment will be described. In the rotary compressor (10) of this modification, the axial length of the resin member (61) is different from that of Modification 1 of the second embodiment. Hereinafter, differences from the first modification of the second embodiment will be mainly described.
 図13に示すように、駆動軸(50)の軸方向において、樹脂部材(61)の長さは、回転子(42)の長さよりも短い。これに対応して、軸方向抑制リング(72)は、駆動軸(50)の軸方向において、樹脂部材(61)の端部に接触するように配置される。なお、駆動軸(50)の軸方向において、樹脂部材(61)の長さは、回転子(42)の長さよりも長くてもよい。 As shown in FIG. 13, the length of the resin member (61) is shorter than the length of the rotor (42) in the axial direction of the drive shaft (50). Correspondingly, the axial restraint ring (72) is arranged so as to come into contact with the end of the resin member (61) in the axial direction of the drive shaft (50). The length of the resin member (61) may be longer than the length of the rotor (42) in the axial direction of the drive shaft (50).
  -実施形態2の変形例3-
 実施形態2の変形例3について説明する。本変形例の回転式圧縮機(10)は、第2段差部(74)の構成が上記実施形態2と異なる。以下、上記実施形態2と異なる点について主に説明する。
-Modification 3 of Embodiment 2
A modified example 3 of the second embodiment will be described. The rotary compressor (10) of the present modification is different from the second embodiment in the configuration of the second step portion (74). Hereinafter, differences from the second embodiment will be mainly described.
 図14に示すように、回転子(42)の内周面に回転子凹部(82)が形成されている。回転子凹部(82)は、例えば、回転子(42)を構成する複数の鋼板の内径が互いに異なることにより形成されてもよい。駆動軸(50)の軸方向において、回転子凹部(82)の長さは、樹脂部材(61)の長さと実質的に等しい。この回転子凹部(82)内に、樹脂部材(61)が嵌まり込むように配置されている。回転子凹部(82)により第2段差部(74)が形成される。回転子凹部(82)は、第2凹部を構成している。 As shown in FIG. 14, a rotor recess (82) is formed on the inner peripheral surface of the rotor (42). The rotor recess (82) may be formed, for example, by having a plurality of steel plates forming the rotor (42) having different inner diameters. The length of the rotor recess (82) in the axial direction of the drive shaft (50) is substantially equal to the length of the resin member (61). The resin member (61) is arranged to fit in the rotor recess (82). The rotor recess (82) forms the second step (74). The rotor recess (82) constitutes a second recess.
 本変形例の支持構造(11)は、上記回転子(42)に形成された回転子凹部(82)が、上記軸方向において上記樹脂部材(61)の端部との接触により上記樹脂部材(61)の熱膨張を抑制する。したがって、回転子凹部(82)の側壁と樹脂部材(61)の端部との接触により、駆動軸(50)の軸方向における樹脂部材(61)の熱膨張が抑制され、駆動軸(50)の径方向における樹脂部材(61)の熱膨張が促進される。 In the support structure (11) of the present modification, the rotor recess (82) formed in the rotor (42) comes into contact with the end portion of the resin member (61) in the axial direction, so that the resin member ( Suppress the thermal expansion of 61). Therefore, the contact between the side wall of the rotor recess (82) and the end of the resin member (61) suppresses thermal expansion of the resin member (61) in the axial direction of the drive shaft (50), and the drive shaft (50). The thermal expansion of the resin member (61) in the radial direction is accelerated.
  -実施形態2の変形例4-
 実施形態2の変形例4について説明する。本変形例の回転式圧縮機(10)は、第1段差部(71)の構成が上記実施形態2の変形例1と異なる。以下、上記実施形態2の変形例1と異なる点について主に説明する。
-Modification 4 of Embodiment 2-
A modified example 4 of the second embodiment will be described. The rotary compressor (10) of the present modification is different from the first modification of the second embodiment in the configuration of the first step portion (71). Hereinafter, differences from the first modification of the second embodiment will be mainly described.
 図15に示すように、駆動軸(50)の壁部(50a)に駆動軸凹部(81)が形成されている。駆動軸(50)の軸方向において、駆動軸凹部(81)の長さは、樹脂部材(61)の長さと実質的に等しい。この駆動軸凹部(81)内に、樹脂部材(61)が嵌まり込むように配置されている。駆動軸凹部(81)により第1段差部(71)が形成される。駆動軸凹部(81)は、第1凹部を構成している。 As shown in FIG. 15, the drive shaft recess (81) is formed in the wall portion (50a) of the drive shaft (50). In the axial direction of the drive shaft (50), the length of the drive shaft recess (81) is substantially equal to the length of the resin member (61). The resin member (61) is arranged to fit into the drive shaft recess (81). The drive shaft recess (81) forms a first step portion (71). The drive shaft recess (81) constitutes a first recess.
 本変形例の支持構造(11)は、上記駆動軸(50)の壁部(50a)に形成された駆動軸凹部(81)が、上記駆動軸(50)の軸方向において上記樹脂部材(61)の端部との接触により上記樹脂部材(61)の熱膨張を抑制する。したがって、駆動軸凹部(81)の側壁と樹脂部材(61)の端部との接触により、駆動軸(50)の軸方向における樹脂部材(61)の熱膨張が抑制され、駆動軸(50)の径方向における樹脂部材(61)の熱膨張が促進される。 In the support structure (11) of the present modification, the drive shaft recess (81) formed in the wall portion (50a) of the drive shaft (50) has the resin member (61) in the axial direction of the drive shaft (50). (4) suppresses thermal expansion of the resin member (61) by contact with the end portion of (1). Therefore, the thermal expansion of the resin member (61) in the axial direction of the drive shaft (50) is suppressed by the contact between the side wall of the drive shaft recess (81) and the end of the resin member (61), and the drive shaft (50). The thermal expansion of the resin member (61) in the radial direction is accelerated.
  -実施形態2の変形例5-
 実施形態2の変形例5について説明する。本変形例の回転式圧縮機(10)は、絶縁部材の構成が上記実施形態2と異なる。以下、上記実施形態2と異なる点について主に説明する。
-Variation 5 of Embodiment 2
A modified example 5 of the second embodiment will be described. The rotary compressor (10) of this modification is different from that of the second embodiment in the structure of the insulating member. Hereinafter, differences from the second embodiment will be mainly described.
 図16に示すように、支持構造(11)は、樹脂部材(61)に代えて絶縁体(63)を備える。絶縁体(63)は、複数(この例では、5つ)の小膨張部(63a)と、複数(この例では、4つ)の大膨張部(63b)とが、交互に積層されて構成される。絶縁体(63)は、絶縁部材を構成し、かつ被支持接触部を構成している。 As shown in FIG. 16, the support structure (11) includes an insulator (63) instead of the resin member (61). The insulator (63) is configured by alternately stacking a plurality (five in this example) of small expansion parts (63a) and a plurality (four in this example) of large expansion parts (63b). To be done. The insulator (63) constitutes an insulating member and also constitutes a supported contact portion.
 小膨張部(63a)は、温度上昇時に回転子(42)を駆動軸(50)から外れにくくする機能を有する。小膨張部(63a)は、駆動軸(50)の外周面(換言すると、壁部(50a))から回転子(42)の内周面まで延びている。小膨張部(63a)は、対向方向における線膨張係数が、駆動軸(50)を構成する材料の線膨張係数よりも小さい。小膨張部(63a)は、セラミックで構成されるが、これ以外の絶縁材料で構成されてもよい。 The small expansion section (63a) has the function of making it difficult for the rotor (42) to come off the drive shaft (50) when the temperature rises. The small expansion section (63a) extends from the outer peripheral surface (in other words, the wall section (50a)) of the drive shaft (50) to the inner peripheral surface of the rotor (42). The linear expansion coefficient of the small expansion section (63a) in the facing direction is smaller than the linear expansion coefficient of the material forming the drive shaft (50). The small expansion section (63a) is made of ceramic, but may be made of an insulating material other than this.
 大膨張部(63b)は、温度低下時に回転子(42)を駆動軸(50)から外れにくくする機能を有する。大膨張部(63b)は、駆動軸(50)の外周面から回転子(42)の内周面まで延びている。大膨張部(63b)は、対向方向における線膨張係数が、駆動軸(50)を構成する材料の線膨張係数よりも大きい。大膨張部(63b)は、絶縁性樹脂で構成されるが、これ以外の絶縁材料で構成されてもよい。 The large expansion section (63b) has the function of making it difficult for the rotor (42) to come off the drive shaft (50) when the temperature drops. The large expansion section (63b) extends from the outer peripheral surface of the drive shaft (50) to the inner peripheral surface of the rotor (42). The large expansion section (63b) has a coefficient of linear expansion in the facing direction larger than that of the material forming the drive shaft (50). The large expansion part (63b) is made of an insulating resin, but may be made of an insulating material other than this.
 本変形例の支持構造(11)は、上記絶縁体(63)の小膨張部(63a)が、上記対向方向における線膨張係数が上記駆動軸(50)を構成する材料の線膨張係数よりも小さい材料で構成され、上記絶縁体(63)の大膨張部(63b)が、上記対向方向における線膨張係数が上記駆動軸(50)を構成する材料の線膨張係数よりも大きい材料で構成される。したがって、絶縁体(63)の小膨張部(63a)は、温度上昇時に駆動軸(50)よりも対向方向において熱膨張しにくい。よって、温度上昇に起因して回転子(42)が駆動軸(50)から外れることが阻止される。一方、絶縁体(63)の大膨張部(63b)は、温度低下時に駆動軸(50)よりも対向方向において熱収縮しやすい。よって、温度低下に起因して回転子(42)が駆動軸(50)から外れることが阻止される。 In the support structure (11) of the present modified example, the small expansion portion (63a) of the insulator (63) has a linear expansion coefficient in the facing direction higher than that of the material forming the drive shaft (50). It is made of a small material, and the large expansion portion (63b) of the insulator (63) is made of a material having a linear expansion coefficient in the facing direction larger than that of the material forming the drive shaft (50). It Therefore, the small expansion part (63a) of the insulator (63) is less likely to thermally expand in the facing direction than the drive shaft (50) when the temperature rises. Therefore, the rotor (42) is prevented from coming off the drive shaft (50) due to the temperature rise. On the other hand, the large expansion part (63b) of the insulator (63) is more likely to be thermally contracted in the facing direction than the drive shaft (50) when the temperature decreases. Therefore, the rotor (42) is prevented from coming off the drive shaft (50) due to the temperature decrease.
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
<<Other Embodiments>>
The above embodiment may have the following configurations.
  -第1変形例-
 例えば、図17に示すように、第1変形例の支持構造(11)は、ケーシング(20)と、樹脂部材(62)と、膨張制御バー(79)とを備える。
-First Modification-
For example, as shown in FIG. 17, the support structure (11) of the first modified example includes a casing (20), a resin member (62), and an expansion control bar (79).
 ケーシング(20)は、軸方向(図17における紙面直交方向)に延びている。ケーシング(20)は、それぞれが軸方向に延びる3つの壁部(21)を備える。当該3つの壁部(21)は、一体的に平面視でU字状(または、C字状)に連結されている。ケーシング(20)は、支持体を構成している。 The casing (20) extends in the axial direction (direction orthogonal to the paper surface in FIG. 17). The casing (20) includes three wall portions (21) each extending in the axial direction. The three wall portions (21) are integrally connected in a U-shape (or C-shape) in a plan view. The casing (20) constitutes a support.
 樹脂部材(62)は、互いに対向する2つの壁部(21)の間に挟まれて支持された板状部材である。樹脂部材(62)は、互いに対向する2つの壁部(21)間を延びかつ軸方向に延びている。樹脂部材(62)は、全体が同じ樹脂材料で構成されている。 The resin member (62) is a plate-like member supported by being sandwiched between two wall portions (21) facing each other. The resin member (62) extends between the two wall portions (21) facing each other and extends in the axial direction. The resin member (62) is entirely made of the same resin material.
 樹脂部材(62)における壁部(21)と接触する部分は、被支持接触部(62a)を構成している。壁部(21)における樹脂部材(62)と接触する部分は、支持接触部(21a)を構成している。この例では、被支持接触部(62a)および支持接触部(21a)は、2つずつ存在している。 The portion of the resin member (62) that contacts the wall portion (21) constitutes the supported contact portion (62a). A portion of the wall portion (21) that comes into contact with the resin member (62) constitutes a support contact portion (21a). In this example, there are two supported contact portions (62a) and two supporting contact portions (21a).
 膨張制御バー(79)は、被支持接触部(62a)と支持接触部(21a)との対向方向(図17における上下方向)と直交する第1方向(図17における左右方向)において樹脂部材(62)の熱膨張を抑制するための部材である。膨張制御バー(79)は、軸方向に延びる細長い角柱状の部材である。膨張制御バー(79)は、樹脂部材(62)の被支持接触部(62a)を第1方向において挟むように、壁部(21)に固定されている。1つの被支持接触部(62a)に対応する2つの膨張制御バー(79)により、壁部(21)との間に第3段差部(77)が形成される。膨張制御バー(79)は、膨張制御部を構成している。 The expansion control bar (79) has a resin member (in the left-right direction in FIG. 17) orthogonal to the facing direction (the vertical direction in FIG. 17) of the supported contact portion (62a) and the supporting contact portion (21a). 62) A member for suppressing thermal expansion. The expansion control bar (79) is an elongated prismatic member extending in the axial direction. The expansion control bar (79) is fixed to the wall portion (21) so as to sandwich the supported contact portion (62a) of the resin member (62) in the first direction. The two expansion control bars (79) corresponding to one supported contact portion (62a) form a third step portion (77) between the wall portion (21) and the expansion control bar (79). The expansion control bar (79) constitutes an expansion control section.
 樹脂部材(62)は、線膨張係数に関して異方性を有する。ケーシング(20)は、線膨張係数に関して等方性を有する。具体的に、樹脂部材(62)と壁部(21)との対向方向において、樹脂部材(62)を構成する材料の線膨張係数は、壁部(21)間の支持体(20,50)を構成する材料の線膨張係数よりも小さい。第1方向において、樹脂部材(62)を構成する材料の線膨張係数は、壁部(21)を構成する材料の線膨張係数よりも大きい。このような樹脂部材(62)を構成する材料の線膨張係数の異方性は、樹脂部材(62)を構成する材料が含有する繊維状物質の配向方向、または樹脂部材(62)を構成する材料の分子鎖の配向方向に対応して生じる。 The resin member (62) has anisotropy regarding the linear expansion coefficient. The casing (20) is isotropic with respect to the linear expansion coefficient. Specifically, in the direction in which the resin member (62) and the wall portion (21) face each other, the linear expansion coefficient of the material forming the resin member (62) is determined by the support (20,50) between the wall portions (21). Is smaller than the linear expansion coefficient of the material constituting the. In the first direction, the linear expansion coefficient of the material forming the resin member (62) is larger than the linear expansion coefficient of the material forming the wall portion (21). The anisotropy of the linear expansion coefficient of the material forming the resin member (62) constitutes the orientation direction of the fibrous substance contained in the material forming the resin member (62) or the resin member (62). It occurs corresponding to the orientation direction of the molecular chains of the material.
 膨張制御バー(79)が存在しない場合には、上記対向方向において、樹脂部材(62)の両端面間の距離の単位温度あたりの変化率は、支持接触部(21a)の内面間の距離の単位温度あたりの変化率よりも小さい。換言すると、膨張制御バー(79)が存在しない場合には、樹脂部材(62)および支持接触部(21a)の周囲温度が上昇するにつれて、支持接触部(21a)が樹脂部材(62)から離れていくように壁部(21)と樹脂部材(62)とが熱膨張する。これは、対向方向において、壁部(21)の線膨張係数が、樹脂部材(62)の線膨張係数よりも大きいためである。 When the expansion control bar (79) is not present, the rate of change of the distance between the both end surfaces of the resin member (62) per unit temperature in the facing direction is equal to that of the distance between the inner surfaces of the support contact portion (21a). It is smaller than the rate of change per unit temperature. In other words, in the absence of the expansion control bar (79), as the ambient temperature of the resin member (62) and the supporting contact portion (21a) rises, the supporting contact portion (21a) moves away from the resin member (62). As it goes, the wall portion (21) and the resin member (62) thermally expand. This is because the linear expansion coefficient of the wall portion (21) is larger than the linear expansion coefficient of the resin member (62) in the facing direction.
 膨張制御バー(79)は、上記第1方向において樹脂部材(62)に対して接触して圧縮荷重を加えることにより当該樹脂部材(62)の熱膨張を抑制し、かつ上記対向方向において当該樹脂部材(62)の熱膨張を促進する。これにより、樹脂部材(62)と壁部(21)とが互いに接触した状態が保たれる。 The expansion control bar (79) suppresses thermal expansion of the resin member (62) by coming into contact with the resin member (62) in the first direction and applying a compressive load to the resin member (62), and also in the facing direction, the resin. The thermal expansion of the member (62) is promoted. This keeps the resin member (62) and the wall portion (21) in contact with each other.
  -第2変形例-
 例えば、上記実施形態では、ケーシング(20)もしくは固定子(41)に、または駆動軸(50)もしくは回転子(42)に膨張制御部(70)が設けられる。しかし、例えば、ケーシング(20)に対して間接的に固定された構成要素によって膨張制御部(70)が構成されていてもよい。この場合、ケーシング(20)および当該構成要素によって支持体が構成される。
-Second modification-
For example, in the above embodiment, the expansion control section (70) is provided on the casing (20) or the stator (41), or on the drive shaft (50) or the rotor (42). However, for example, the expansion control section (70) may be configured by a component that is indirectly fixed to the casing (20). In this case, the casing (20) and the component make up a support.
  -第3変形例-
 例えば、上記実施形態では、ケーシング(20)もしくは固定子(41)に、または駆動軸(50)もしくは回転子(42)に膨張制御部(70)が設けられる。しかし、例えば、ケーシング(20)および固定子(41)に膨張制御部(70)が設けられてもよいし、駆動軸(50)および回転子(42)に膨張制御部(70)が設けられてもよい。一例として、ケーシング(20)に軸方向抑制リング(72)を設けると共に、固定子(41)に軸方向抑制板(75)を設けることが考えられる。
-Third Modification-
For example, in the above embodiment, the expansion control section (70) is provided on the casing (20) or the stator (41), or on the drive shaft (50) or the rotor (42). However, for example, the expansion control section (70) may be provided in the casing (20) and the stator (41), or the expansion control section (70) may be provided in the drive shaft (50) and the rotor (42). May be. As an example, it is conceivable to provide the casing (20) with the axial restraint ring (72) and to provide the stator (41) with the axial restraint plate (75).
  -第4変形例-
 例えば、上記実施形態では、ケーシング(20)または駆動軸(50)の軸方向(第1方向)および周方向(第2方向)において樹脂部材(61)の熱膨張が抑制される。しかし、樹脂部材(61)は、ケーシング(20)または駆動軸(50)の軸方向または周方向において熱膨張が抑制されてもよい。なお、第1方向は、樹脂部材(61)と壁部(21,50a)との対向方向と直交する方向であればよく、ケーシング(20)または駆動軸(50)の軸方向に限られない。同様に、第2方向は、ケーシング(20)または駆動軸(50)の周方向に限られない。
-Fourth modification-
For example, in the above embodiment, thermal expansion of the resin member (61) is suppressed in the axial direction (first direction) and the circumferential direction (second direction) of the casing (20) or the drive shaft (50). However, thermal expansion of the resin member (61) may be suppressed in the axial direction or the circumferential direction of the casing (20) or the drive shaft (50). The first direction is not limited to the axial direction of the casing (20) or the drive shaft (50) as long as it is a direction orthogonal to the facing direction of the resin member (61) and the wall portion (21, 50a). .. Similarly, the second direction is not limited to the circumferential direction of the casing (20) or the drive shaft (50).
 -第5変形例-
 例えば、上記実施形態では、軸方向抑制板(75)、周方向抑制板(78)、および軸方向抑制リング(72)は板状に形成されている。しかし、これらの構成要素は、同様の機能を有する任意の形状の構成要素によって置換されてもよい。
-Fifth Modification-
For example, in the above embodiment, the axial restraint plate (75), the circumferential restraint plate (78), and the axial restraint ring (72) are formed in a plate shape. However, these components may be replaced by any shaped component having a similar function.
 -第6変形例-
 例えば、ケーシング(20)は、構成材料が異なる複数の部材を組み合わせて形成されたものであってもよい。一例として、ケーシング(20)の壁部(21)において、支持接触部(21a)と支持接触部(21a)以外の部分とが互いに異なる材料で構成されることが考えられる。
-Sixth Modification-
For example, the casing (20) may be formed by combining a plurality of members having different constituent materials. As an example, in the wall portion (21) of the casing (20), the supporting contact portion (21a) and the portion other than the supporting contact portion (21a) may be made of different materials.
 -第7変形例-
 例えば、上記実施形態では、軸方向抑制板(75)、周方向抑制板(78)、および軸方向抑制リング(72)は樹脂部材(61)の端部に接触するよう構成されている。しかし、これらの構成要素は、樹脂部材(61)の端部以外に接触するよう構成してもよい。例えば、これらの構成要素は、ケーシング内面に形成した凹凸面としてもよい。
-Seventh modification-
For example, in the above embodiment, the axial restraint plate (75), the circumferential restraint plate (78), and the axial restraint ring (72) are configured to come into contact with the ends of the resin member (61). However, these constituent elements may be configured to come into contact with portions other than the ends of the resin member (61). For example, these components may be an uneven surface formed on the inner surface of the casing.
 -第8変形例-
 例えば、上記実施形態では、板状に樹脂部材(61)が形成されている。しかし、平面視でC字状(またはU字状)に樹脂部材(61)を形成してもよい。また、円筒状に樹脂部材(61)を形成してもよい。この場合、上記実施形態の隣接方向を、平面視において、被支持体を挟んで向かい合う壁部(21)の任意の位置同士を直線的に結ぶ方向とすればよい。一例として、被支持接触部(61,62a,63)と壁部(21,50a)との対向方向、壁部(21,50a)と被支持体の重心を直線的に結ぶ方向、または被支持接触部(61,62a,63)と壁部(21,50a)の接触面と略直角をなす方向を隣接方向とすることが考えられる。
-Eighth modification-
For example, in the above embodiment, the resin member (61) is formed in a plate shape. However, the resin member (61) may be formed in a C shape (or a U shape) in a plan view. Further, the resin member (61) may be formed in a cylindrical shape. In this case, the adjoining direction of the above embodiment may be a direction that linearly connects arbitrary positions of the wall portions (21) facing each other with the supported body sandwiched therebetween in a plan view. As one example, the supported contact portion (61, 62a, 63) and the wall portion (21, 50a) face each other, the direction in which the wall portion (21, 50a) and the center of gravity of the supported member are linearly connected, or the supported member is supported. It is conceivable that the direction substantially perpendicular to the contact surface between the contact portion (61, 62a, 63) and the wall portion (21, 50a) is the adjacent direction.
 -第9変形例-
 例えば、樹脂部材(61)は、固定子(41)または回転子(42)と一体に形成されてもよいし、別体として形成されてもよい。固定子(41)または回転子(42)と樹脂部材(61)とを一体に構成するには、例えば固定子(41)または回転子(42)と樹脂部材(61)とを接着してもよいし、射出成形によって固定子(41)または回転子(42)に樹脂部材(61)を形成してもよい。射出成形によって樹脂部材(61)を形成する場合、固定子(41)または回転子(42)のみに対して射出形成によって樹脂部材(61)を形成してもよいし、固定子(41)とケーシング(20)に対して、または回転子(42)と駆動軸(50)に対して射出成形によって樹脂部材(61)を形成してもよい。
-Ninth Modification-
For example, the resin member (61) may be formed integrally with the stator (41) or the rotor (42) or may be formed separately. In order to integrally form the stator (41) or the rotor (42) and the resin member (61), for example, the stator (41) or the rotor (42) and the resin member (61) may be bonded together. Alternatively, the resin member (61) may be formed on the stator (41) or the rotor (42) by injection molding. When the resin member (61) is formed by injection molding, the resin member (61) may be formed by injection molding only on the stator (41) or the rotor (42). The resin member (61) may be formed on the casing (20) or on the rotor (42) and the drive shaft (50) by injection molding.
 -第10変形例-
 例えば、上記実施形態では、被支持体の本体部は固定子(41)または回転子(42)で構成されている。しかし、被支持体の本体部は、圧縮機構(30)で構成してもよい。また、被支持体の本体部を固定子(41)または回転子(42)で構成した支持構造(11)と、被支持体の本体部を圧縮機構(30)で構成した支持構造(11)とを、ひとつの回転式圧縮機に適用してもよい。
-Tenth Modification-
For example, in the above embodiment, the main body of the supported body is composed of the stator (41) or the rotor (42). However, the main body of the supported body may be composed of the compression mechanism (30). Further, a support structure (11) in which the main body of the supported body is composed of a stator (41) or a rotor (42), and a support structure (11) in which the main body of the supported body is composed of a compression mechanism (30). And may be applied to one rotary compressor.
 -第11変形例-
 例えば、ケーシング(20)と樹脂部材(61,62a)または絶縁体(63)とが、互いに接着されていてもよい。それに代えてまたは加えて、駆動軸(50)と樹脂部材(61)または絶縁体(63)とが、互いに接着されていてもよい。ここで、接着の方法は、熱溶着または接着剤を用いた方法を適用可能であるし、これらに限定されるものでもない。
-Eleventh Modification-
For example, the casing (20) and the resin members (61, 62a) or the insulator (63) may be adhered to each other. Alternatively or additionally, the drive shaft (50) and the resin member (61) or the insulator (63) may be adhered to each other. Here, as a method of adhesion, a method using heat welding or an adhesive can be applied, and the method is not limited to these.
 -第12変形例-
 例えば、樹脂部材(61)の線膨張係数と、ケーシング(20)または駆動軸(50)の線膨張係数との大小関係は、上述したものに限らず、任意に設定されてもよい。一例として、ケーシング(20)または駆動軸(50)の径方向において、樹脂部材(61)を構成する材料の線膨張係数が、ケーシング(20)または駆動軸(50)を構成する材料の線膨張係数よりも大きくてもよい。別の例として、ケーシング(20)または駆動軸(50)の軸方向または周方向において、樹脂部材(61)を構成する材料の線膨張係数が、ケーシング(20)または駆動軸(50)を構成する材料の線膨張係数よりも小さくてもよい。
-Twelfth Modification-
For example, the magnitude relationship between the linear expansion coefficient of the resin member (61) and the linear expansion coefficient of the casing (20) or the drive shaft (50) is not limited to that described above, and may be set arbitrarily. As an example, in the radial direction of the casing (20) or the drive shaft (50), the linear expansion coefficient of the material forming the resin member (61) is the linear expansion of the material forming the casing (20) or the drive shaft (50). It may be larger than the coefficient. As another example, the linear expansion coefficient of the material forming the resin member (61) forms the casing (20) or the drive shaft (50) in the axial direction or the circumferential direction of the casing (20) or the drive shaft (50). It may be smaller than the linear expansion coefficient of the material.
 -第13変形例-
 例えば、上記実施形態では、樹脂部材(61)が線膨張係数に関して異方性を有するが、樹脂部材(61)は、線膨張係数に関して等方性を有してもよい。
-Thirteenth modification-
For example, in the above-described embodiment, the resin member (61) has anisotropy with respect to the linear expansion coefficient, but the resin member (61) may have isotropicity with respect to the linear expansion coefficient.
 -第14変形例-
 ケーシング(20)および固定子(41)を含む支持構造(11)と、駆動軸(50)および回転子(42)を含む支持構造(11)とは、少なくとも一方が本願技術にしたがって構成されていればよい。一例として、両方の支持構造(11)が、本願技術にしたがって構成されていてもよい。
-Fourteenth Modification-
At least one of the support structure (11) including the casing (20) and the stator (41) and the support structure (11) including the drive shaft (50) and the rotor (42) is configured according to the present technique. Just do it. As an example, both support structures (11) may be constructed according to the present technique.
 -第15変形例-
 本願技術の支持構造(11)は、回転式圧縮機以外の任意の用途に適用できる。例えば、軸受(被支持体)とこれを収容するハウジング(支持体)に、本願技術の支持構造(11)を適用することが考えられる。
-Fifteenth Modification-
The support structure (11) of the present technology can be applied to any application other than the rotary compressor. For example, it is conceivable to apply the support structure (11) of the present technology to a bearing (supported body) and a housing (supporting body) that houses the bearing.
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。 Although the embodiments and modifications have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims. Further, the above-described embodiments and modified examples may be appropriately combined or replaced as long as the functions of the object of the present disclosure are not impaired.
 以上説明したように、本開示は、支持構造およびそれを備えた回転式圧縮機について有用である。 As described above, the present disclosure is useful for a support structure and a rotary compressor including the support structure.
 10 回転式圧縮機
 11 支持構造
 20 ケーシング(支持体)
 21 壁部
 40 電動機
 41 固定子(本体部)
 42 回転子(本体部)
 50 駆動軸(支持体)
 50a 壁部(支持接触部)
 61 樹脂部材(絶縁部材、被支持接触部)
 62 樹脂部材(被支持体)
 62a 被支持接触部
 63 絶縁体(絶縁部材、被支持接触部)
 70 膨張制御部
 71 第1段差部
 72 軸方向抑制リング(第1抑制部材)
 73 ケーシング凹部(第1凹部)
 74 第2段差部
 75 軸方向抑制板(第2抑制部材)
 76 固定子凹部(第2凹部)
 81 駆動軸凹部(第1凹部)
 82 回転子凹部(第2凹部)
10 Rotary compressor 11 Support structure 20 Casing (support)
21 Wall 40 Electric motor 41 Stator (main body)
42 Rotor (main body)
50 Drive shaft (support)
50a wall (support contact)
61 Resin member (insulating member, supported contact part)
62 Resin material (supported body)
62a Supported contact part 63 Insulator (insulating member, supported contact part)
70 Expansion control section 71 First step section 72 Axial restraint ring (first restraint member)
73 Casing recess (first recess)
74 Second stepped portion 75 Axial restraint plate (second restraint member)
76 Stator recess (second recess)
81 Drive shaft recess (first recess)
82 Rotor recess (second recess)

Claims (19)

  1.  壁部(21,50a)を有する支持体(20,50)と、該支持体(20,50)の壁部(21,50a)に接触して支持された被支持体(41,42,61~63)とを備えた支持構造(11)であって、
     上記被支持体(41,42,61~63)における上記支持体(20,50)の壁部(21,50a)に接触する部分を被支持接触部(61,62a,63)として、
     上記支持体(20,50)および上記被支持体(41,42,61~63)の少なくとも一方に設けられ、上記被支持接触部(61,62a,63)と上記壁部(21,50a)との対向方向と直交する第1方向における上記被支持接触部(61,62a,63)の熱膨張を抑制し、かつ上記対向方向における上記被支持接触部(61,62a,63)の熱膨張を促進する膨張制御部(70)を備える
    ことを特徴とする支持構造。
    A support (20,50) having a wall (21,50a) and a supported body (41,42,61) supported in contact with the wall (21,50a) of the support (20,50). A support structure (11) comprising:
    A portion of the supported body (41, 42, 61 to 63) that comes into contact with the wall portion (21, 50a) of the support body (20, 50) is used as a supported contact portion (61, 62a, 63).
    Provided on at least one of the support (20,50) and the supported body (41,42,61 to 63), the supported contact portion (61,62a,63) and the wall portion (21,50a) Suppresses thermal expansion of the supported contact portion (61, 62a, 63) in a first direction orthogonal to the opposing direction to and also supports thermal expansion of the supported contact portion (61, 62a, 63) in the opposing direction. A support structure comprising an expansion control section (70) for promoting the expansion.
  2.  請求項1おいて、
     上記膨張制御部(70)は、上記第1方向において、上記被支持接触部(61,62a,63)に対して接触して圧縮荷重を加えることにより、上記被支持接触部(61,62a,63)の熱膨張を抑制する
    ことを特徴とする支持構造。
    In claim 1,
    The expansion control section (70) contacts the supported contact section (61, 62a, 63) in the first direction to apply a compressive load to the supported contact section (61, 62a, 63). 63) A support structure characterized by suppressing thermal expansion.
  3.  請求項2において、
     上記膨張制御部(70)は、上記被支持接触部(61,62a,63)の上記対向方向における一部に対して接触する
    ことを特徴とする支持構造。
    In claim 2,
    The expansion control section (70) is in contact with a part of the supported contact section (61, 62a, 63) in the facing direction, and is a supporting structure.
  4.  請求項1~3のいずれか1項において、
     上記対向方向と直交し、かつ上記第1方向と直交する方向を第2方向として、
     上記膨張制御部(70)は、上記第1方向および上記第2方向における上記被支持接触部(61,62a,63)の熱膨張を抑制しかつ上記対向方向における上記被支持接触部(61,62a,63)の熱膨張を促進する
    ことを特徴とする支持構造。
    In any one of claims 1 to 3,
    A direction orthogonal to the facing direction and orthogonal to the first direction is defined as a second direction,
    The expansion control section (70) suppresses thermal expansion of the supported contact sections (61, 62a, 63) in the first direction and the second direction and the supported contact sections (61, 62a, 63) in the facing direction. 62a, 63) A support structure characterized by accelerating the thermal expansion of (62a, 63).
  5.  請求項1~4のいずれか1項において、
     上記被支持接触部(61,62a,63)を構成する材料は、繊維強化樹脂またはLCP樹脂である
    ことを特徴とする支持構造。
    In any one of claims 1 to 4,
    The support structure, wherein the material forming the supported contact portions (61, 62a, 63) is fiber reinforced resin or LCP resin.
  6.  請求項1~5のいずれか1項において、
     上記膨張制御部(70)は、上記支持体(20,50)に設けられ、上記第1方向において上記被支持接触部(61,62a,63)との接触により上記被支持接触部(61,62a,63)の熱膨張を抑制する第1段差部(71)を有する
    ことを特徴とする支持構造。
    In any one of claims 1 to 5,
    The expansion control section (70) is provided on the support body (20, 50), and is brought into contact with the supported contact section (61, 62a, 63) in the first direction to support the supported contact section (61, 62). 62a, 63) having a first step portion (71) for suppressing thermal expansion of the support structure.
  7.  請求項6において、
     上記第1段差部(71)は、上記支持体(20,50)に設けられ、上記対向方向に突出する第1抑制部材(72)により構成されている
    ことを特徴とする支持構造。
    In claim 6,
    The support structure, wherein the first step portion (71) is provided on the support body (20, 50) and is configured by a first suppressing member (72) protruding in the facing direction.
  8.  請求項6において、
     上記第1段差部(71)は、上記支持体(20,50)に形成された第1凹部(73,81)によって構成されている
    ことを特徴とする支持構造。
    In claim 6,
    The support structure, wherein the first step portion (71) is constituted by a first recess (73, 81) formed in the support body (20, 50).
  9.  請求項1~8のいずれか1項において、
     上記支持体(20,50)と上記被支持接触部(61,62a,63)とは、互いに接着されている
    ことを特徴とする支持構造。
    In any one of claims 1 to 8,
    The support structure, wherein the support (20, 50) and the supported contact portion (61, 62a, 63) are adhered to each other.
  10.  請求項1~9のいずれか1項において、
     上記対向方向において、上記被支持接触部(61,62a,63)を構成する材料の線膨張係数は、上記支持体(20,50)の壁部(21,50a)を構成する材料の線膨張係数よりも小さい
    ことを特徴とする支持構造。
    In any one of claims 1 to 9,
    In the facing direction, the linear expansion coefficient of the material forming the supported contact portion (61, 62a, 63) is the linear expansion coefficient of the material forming the wall portion (21, 50a) of the support body (20, 50). A support structure characterized by being smaller than a coefficient.
  11.  請求項1~9のいずれか1項において、
     上記対向方向において、上記被支持接触部(61,62a,63)を構成する材料の線膨張係数は、上記支持体(20,50)の壁部(21,50a)を構成する材料の線膨張係数よりも大きい
    ことを特徴とする支持構造。
    In any one of claims 1 to 9,
    In the facing direction, the linear expansion coefficient of the material forming the supported contact portion (61, 62a, 63) is the linear expansion coefficient of the material forming the wall portion (21, 50a) of the support body (20, 50). A support structure characterized by being larger than a coefficient.
  12.  請求項1~9のいずれか1項において、
     上記被支持接触部(61,62a,63)の一部は、上記対向方向における線膨張係数が、上記支持体(20,50)の壁部(21,50a)を構成する材料の線膨張係数よりも小さい材料で構成され、
     上記被支持接触部(61,62a,63)の他の一部は、上記対向方向における線膨張係数が、上記支持体(20,50)の壁部(21,50a)を構成する材料の線膨張係数よりも大きい材料で構成される
    ことを特徴とする支持構造。
    In any one of claims 1 to 9,
    A part of the supported contact portion (61, 62a, 63) has a coefficient of linear expansion in the facing direction, and a coefficient of linear expansion of a material forming the wall portion (21, 50a) of the support (20, 50). Composed of smaller materials,
    The other part of the supported contact portion (61, 62a, 63) is made of a material whose linear expansion coefficient in the facing direction constitutes the wall portion (21, 50a) of the support body (20, 50). A support structure characterized by being made of a material having a coefficient of expansion larger than that of the material.
  13.  請求項1~12のいずれか1項において、
     上記被支持体(41,42,61~63)は、上記被支持接触部(61,62a,63)を挟んで上記支持体(20,50)の壁部(21,50a)と対向し、かつ上記被支持接触部(61,62a,63)の構成材料とは異なる材料で構成された本体部(41,42)を有する
    ことを特徴とする支持構造。
    In any one of claims 1 to 12,
    The supported body (41, 42, 61 to 63) faces the wall portion (21, 50a) of the support body (20, 50) with the supported contact portion (61, 62a, 63) interposed therebetween, Further, the support structure is characterized by having a main body portion (41, 42) made of a material different from the constituent material of the supported contact portions (61, 62a, 63).
  14.  請求項13において、
     上記膨張制御部(70)は、上記本体部(41,42)に設けられ、上記第1方向において上記被支持接触部(61,62a,63)との接触により上記被支持接触部(61,62a,63)の熱膨張を抑制する第2段差部(74)を有する
    ことを特徴とする支持構造。
    In claim 13,
    The expansion control section (70) is provided on the main body section (41, 42), and is brought into contact with the supported contact section (61, 62a, 63) in the first direction to support the supported contact section (61, 42). 62a, 63) having a second step portion (74) for suppressing thermal expansion of the support structure.
  15.  請求項14において、
     上記第2段差部(74)は、上記本体部(41,42)に設けられ、上記対向方向に突出する第2抑制部材(75)によって構成されている
    ことを特徴とする支持構造。
    In claim 14,
    The support structure, wherein the second step portion (74) is provided on the main body portion (41, 42) and is constituted by a second suppressing member (75) protruding in the facing direction.
  16.  請求項14において、
     上記第2段差部(74)は、上記本体部(41,42)に形成された第2凹部(76,82)によって構成されている
    ことを特徴とする支持構造。
    In claim 14,
    The support structure, wherein the second step portion (74) is constituted by a second recess (76, 82) formed in the body portion (41, 42).
  17.  請求項13~16のいずれか1項に記載の支持構造(11)を備えた回転式圧縮機(10)であって、
     上記支持体(20,50)を構成する筒状のケーシング(20)と、
     上記被支持体(41,42,61~63)の本体部(41,42)を構成する固定子(41)を有する電動機(40)と、
     上記被支持体(41,42,61~63)の被支持接触部(61,62a,63)を構成し、上記ケーシング(20)と上記固定子(41)との間に位置して両者を互いに絶縁する絶縁部材(61,63)とを備える
    ことを特徴とする回転式圧縮機。
    A rotary compressor (10) comprising the support structure (11) according to any one of claims 13 to 16,
    A tubular casing (20) constituting the support (20, 50),
    An electric motor (40) having a stator (41) constituting the main body (41, 42) of the supported body (41, 42, 61 to 63);
    The supported contact portions (61, 62a, 63) of the supported bodies (41, 42, 61 to 63) are formed, and they are located between the casing (20) and the stator (41). A rotary compressor comprising: insulating members (61, 63) that insulate each other.
  18.  請求項13~16のいずれか1項に記載の支持構造(11)を備えた回転式圧縮機(10)または請求項17に記載の回転式圧縮機(10)であって、
     上記支持体(20,50)を構成する駆動軸(50)と、
     上記被支持体(41,42,61~63)の本体部(41,42)を構成する回転子(42)を有する電動機(40)と、
     上記被支持体(41,42,61~63)の被支持接触部(61,62a,63)を構成し、上記駆動軸(50)と上記回転子(42)との間に位置して両者を互いに絶縁する絶縁部材(61,63)とを備える
    ことを特徴とする回転式圧縮機。
    A rotary compressor (10) comprising the support structure (11) according to any one of claims 13 to 16 or a rotary compressor (10) according to claim 17,
    A drive shaft (50) constituting the support (20,50),
    An electric motor (40) having a rotor (42) constituting the main body (41, 42) of the supported body (41, 42, 61 to 63);
    The supported contact portions (61, 62a, 63) of the supported bodies (41, 42, 61-63) are formed, and are located between the drive shaft (50) and the rotor (42). An insulating member (61, 63) that insulates each other from each other.
  19.  請求項1~11のいずれか1項において、
     上記被支持体(41,42,61~63)の全体が、上記被支持接触部(61,62a,63)の構成材料と同じ材料で構成されている
    ことを特徴とする支持構造。
    In any one of claims 1 to 11,
    A supporting structure characterized in that the whole of the supported bodies (41, 42, 61 to 63) is made of the same material as the constituent material of the supported contact portions (61, 62a, 63).
PCT/JP2019/047277 2018-12-28 2019-12-03 Support structure, and rotating compressor comprising same WO2020137385A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-247064 2018-12-28
JP2018247064 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020137385A1 true WO2020137385A1 (en) 2020-07-02

Family

ID=71126575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047277 WO2020137385A1 (en) 2018-12-28 2019-12-03 Support structure, and rotating compressor comprising same

Country Status (2)

Country Link
JP (1) JP6791342B2 (en)
WO (1) WO2020137385A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070477A1 (en) * 2020-09-30 2022-04-07 Hapsmobile Inc. Methods and systems for bonding a stator lamination stack to a stator housing of an electric motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197235A (en) * 1989-01-25 1990-08-03 Matsushita Electric Works Ltd Motor
JPH0595666A (en) * 1991-10-02 1993-04-16 Toshiba Corp Electromagnetic pump
JPH06307440A (en) * 1993-04-26 1994-11-01 Komatsu Zenoah Co Bearing case for expansion correcting
JP2633239B2 (en) * 1986-12-12 1997-07-23 松下電器産業株式会社 Mold motor
JP2000220640A (en) * 1999-01-29 2000-08-08 Ibiden Co Ltd Motor and turbo-molecular pump
JP2006187063A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Rotor structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633239B2 (en) * 1986-12-12 1997-07-23 松下電器産業株式会社 Mold motor
JPH02197235A (en) * 1989-01-25 1990-08-03 Matsushita Electric Works Ltd Motor
JPH0595666A (en) * 1991-10-02 1993-04-16 Toshiba Corp Electromagnetic pump
JPH06307440A (en) * 1993-04-26 1994-11-01 Komatsu Zenoah Co Bearing case for expansion correcting
JP2000220640A (en) * 1999-01-29 2000-08-08 Ibiden Co Ltd Motor and turbo-molecular pump
JP2006187063A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Rotor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070477A1 (en) * 2020-09-30 2022-04-07 Hapsmobile Inc. Methods and systems for bonding a stator lamination stack to a stator housing of an electric motor

Also Published As

Publication number Publication date
JP6791342B2 (en) 2020-11-25
JP2020110039A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
US8299661B2 (en) Rotor of brushless motor
JP5231790B2 (en) Motor rotor and motor
US8033007B2 (en) Method of making rotor of brushless motor
JP7131564B2 (en) Rotors, motors and electric power steering devices
JP2008039183A (en) Shaft support device for vacuum pump
JP2004124941A5 (en)
JP2018517092A (en) Compressor
JP6662593B2 (en) Compression band shim pack for stator core, associated stator and generator
WO2020137385A1 (en) Support structure, and rotating compressor comprising same
US20070120434A1 (en) Synchronous reluctance motor and compressor having the same
JP2001268831A (en) Permanent magnet rotor
JP2013096280A5 (en)
JP2020115712A (en) Rotor
JP2009177957A (en) Permanent magnet field motor
US20160356271A1 (en) Electric pump
JP2007244175A (en) Outer rotor type motor and compressor
KR20160000857A (en) Motor
JP2007318924A (en) Stator fixing structure of electric motor
JP2007124742A (en) Rotor with permanent magnet, and motor using the same
JP7235042B2 (en) Rotors, motors and electric power steering devices
JP7132486B2 (en) stator core and compressor
JP2020114077A (en) Permanent magnet embedded type rotor and method for manufacturing the same
KR970072655A (en) Piezoelectric resonator
JP2014134109A (en) Seal type compressor
JPH08140293A (en) Rotating electric machine and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904025

Country of ref document: EP

Kind code of ref document: A1