WO2020137365A1 - 通信装置、通信装置の制御方法、およびプログラム - Google Patents

通信装置、通信装置の制御方法、およびプログラム Download PDF

Info

Publication number
WO2020137365A1
WO2020137365A1 PCT/JP2019/046994 JP2019046994W WO2020137365A1 WO 2020137365 A1 WO2020137365 A1 WO 2020137365A1 JP 2019046994 W JP2019046994 W JP 2019046994W WO 2020137365 A1 WO2020137365 A1 WO 2020137365A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
transmission rate
wur
communication
unit
Prior art date
Application number
PCT/JP2019/046994
Other languages
English (en)
French (fr)
Inventor
永吾郎 伊奈
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2020137365A1 publication Critical patent/WO2020137365A1/ja
Priority to US17/215,922 priority Critical patent/US11729719B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to wireless communication technology.
  • a communication device uses a WUR transmitter or a receiver (WUR) that operates with more power saving.
  • WUR WUR transmitter or a receiver
  • a configuration including a transmitter or a receiver having a function has been proposed (Patent Document 1).
  • PCR is an abbreviation for Primary Connectivity Radio
  • WUR is an abbreviation for Wake Up Radio.
  • the transmitter/receiver having the PCR function and the transmitter or receiver having the WUR function are also referred to as a PCR unit and a WUR unit, respectively.
  • a WUR mode is specified, and in this mode, an AP (access point) regularly sends a WUR beacon.
  • the STA (station) that has received the WUR beacon transmitted from the AP can maintain the synchronization with the AP without performing communication by the PCR unit.
  • the STA can terminate the WUR mode and transmit the data from the PCR unit to the AP.
  • the AP transmits a WUR Wake-up frame to the STA.
  • the STA receives the WUR Wake-up frame in the WUR section, ends the WUR mode, and can receive the data from the AP in the PCR section.
  • a communication device uses a low data rate as a data rate of a wireless signal used for transmitting a data frame immediately after connection with a partner communication device. Then, the communication device gradually increases the data rate while confirming that the reception response (Ack: Acknowledgement) is returned from the partner communication device. When the communication device cannot receive the Ack, the communication device lowers the data rate and retransmits the wireless signal.
  • Ack Acknowledgement
  • the communication device lowers the data rate and retransmits the wireless signal.
  • frame aggregation introduced in IEEE 802.11n or later That is, the communication device gradually increases the number of frames (data number) to be connected if the transmission of the data frame is successful, and decreases the number of frames or stops the frame aggregation operation if the transmission fails. ..
  • the PCR unit since the PCR unit is disabled in the WUR mode, whether the data rate of the signal used for transmission by the PCR unit or the setting of the frame aggregation is optimum immediately after the WUR mode ends. I do not understand. In particular, when there is a change in the communication path such as the movement of the STA as a communication device during the period in the WUR mode, the data rate and frame aggregation settings used before the transition to the WUR mode are changed. It is likely that you will need to make changes.
  • the STA changes the data rate and the frame aggregation setting again and retransmits the radio signal, and continues such retransmitting operation until it receives Ack from the AP. Repeating retransmission is not desirable from the viewpoint of power consumption, communication speed, space/frequency utilization efficiency of communication, and the like.
  • the WUR mode when the WUR mode is started, the distance between the AP and the STA is long, the selected data rate is relatively low, the number of frames connected by frame aggregation is small, or the frame aggregation operation is invalid. It is supposed to be. It is assumed that the STA moves in this state during the WUR mode and the distance from the AP decreases. In this case, communication at a higher data rate becomes possible, but if the STA sends the AP to the wireless signal with the setting before starting the WUR mode in the PCR unit, the communication speed lower than the communication speed that can be realized originally is used. , Communication time becomes long.
  • the present disclosure provides a technique for appropriately determining the setting related to data transmission after the WUR mode is terminated.
  • the communication device of the present invention has the following configuration as one means for achieving the above object. That is, a first communication means that is a communication device and is connected to another communication device and communicates by using a PCR (Primary Connectivity Radio) function in the IEEE802.11ba standard, and the other communication device and the IEEE802.11ba standard. A value indicating the signal strength or signal quality of the signal from the second communication means that communicates by using the WUR (Wake Up Radio) function and the signal received from the other communication device by the second communication means. And an setting unit that sets the transmission rate of the first communication unit based on the value acquired by the acquisition unit.
  • PCR Primary Connectivity Radio
  • FIG. 3 is a flowchart showing a process of STA in the embodiment.
  • 3 is a flowchart showing a process of STA in the embodiment.
  • FIG. 1 shows an example of the wireless network configuration of this embodiment.
  • the STA 101 is a WUR non-AP STA (wireless LAN terminal) compliant with the IEEE 802.11ba standard, and is a communication device having a PCR unit and a WUR unit in the IEEE 802.11ba standard, as described later.
  • IEEE is an abbreviation for Institute of Electrical and Electronics Engineers.
  • PCR is an abbreviation for Primary Connectivity Radio
  • WUR is an abbreviation for Wake Up Radio.
  • the STA 101 establishes a wireless connection with the AP 102 by performing Association and Authentication based on the IEEE 802.11 series standard using the PCR unit. Further, the STA 101 can perform data communication with the AP 102 by transmitting and receiving a frame compliant with the IEEE 802.11 series standard using the PCR unit.
  • the STA 101 operates in the WUR mode conforming to the IEEE 802.11ba standard, and receives the WUR beacon transmitted from the AP 102 by using the WUR section, thereby maintaining the synchronization with the AP 102.
  • the WUR mode is a mode in which the PCR unit shifts to the Doze state in the IEEE 802.11 series standard and the WUR unit shifts to a communicable state.
  • the STA 101 can suppress the power consumption related to the communication with the AP 102 by setting the PCR unit in the Doze state.
  • the Doze state is a power saving state in which the function of transmitting and receiving signals using the PCR unit with the AP 102 is stopped.
  • the STA 101 operating in the WUR mode can terminate the WUR mode and transmit the data to the AP 102 using the PCR unit when the data to be transmitted to the AP 102 occurs.
  • the WUR unit of the STA 101 receives a WUR Wake Up frame that conforms to the IEEE 802.11ba standard from the AP 102
  • the STA 101 ends the WUR mode and can receive data from the AP 102 using the PCR unit.
  • the STA 101 is moving, and its moving range is within the range in which the AP 102 can communicate (illustrated by a circle 103 in FIG. 1).
  • AP 102 is a WUR AP (wireless LAN access point) that conforms to the IEEE 802.11ba standard, and similarly has a PCR unit and a WUR in the IEEE 802.11ba standard.
  • the PCR unit of the AP 102 builds a wireless network that complies with the IEEE 802.11 series standard.
  • the beacon transmitted by the PCR unit of the AP 102 is a PCR beacon compliant with the IEEE802.11ba standard.
  • the PCR beacon includes information indicating that the AP 102 is compatible with IEEE 802.11ba.
  • the WUR unit of the AP 102 transmits a WUR beacon conforming to the IEEE802.11ba standard.
  • the WUR beacon is transmitted to a plurality of non-AP STAs individually or grouped for each WUR non-AP STA, and also includes TSF information for maintaining synchronization with the AP 102.
  • TSF is an abbreviation for Timing Synchronization Function.
  • the STA 101 may be, for example, an image input device such as an image pickup device (camera, video camera, or the like) or a scanner, or an image output device such as a printer (SFP or MFP), a copy machine, or a projector. Good. Further, it may be a storage device such as a hard disk device or a memory device, or may be an information processing device such as a personal computer or a smartphone. Note that SFP is an abbreviation for Single Function Printer, and MFP is an abbreviation for Multi-Function Printer. Further, it may be an IoT (Internet of Things) device such as a sensor that can be connected to the Internet via the AP 102.
  • IoT Internet of Things
  • FIG. 2A is a diagram showing a hardware configuration example of the STA 101
  • FIG. 2B is a diagram showing a functional configuration example of the STA 101.
  • the storage unit 201 is composed of one or more memories such as a ROM and a RAM, and stores programs for performing various operations described later and various information such as communication parameters for wireless communication.
  • storage unit 201 in addition to memories such as ROM and RAM, storage media such as flexible disks, hard disks, optical disks, magneto-optical disks, CD-ROMs, CD-Rs, magnetic tapes, non-volatile memory cards, and DVDs. May be used.
  • memories such as ROM and RAM
  • storage media such as flexible disks, hard disks, optical disks, magneto-optical disks, CD-ROMs, CD-Rs, magnetic tapes, non-volatile memory cards, and DVDs. May be used.
  • the control unit 202 is composed of one or more processors such as a CPU and MPU, and controls the entire STA 101 by executing a program stored in the storage unit 201. Note that the control unit 202 may control the entire STA 101 by cooperation of a program stored in the storage unit 201 and an OS (Operating System). Further, the control unit 202 may include a plurality of processors such as a multi-core, and the plurality of processors may control the entire STA 101.
  • the control unit 202 also controls the functional unit 203 to execute predetermined processing such as imaging, printing, and projection.
  • the functional unit 203 is hardware for the STA 101 to execute a predetermined process.
  • the functional unit 203 is an image capturing unit and performs image capturing processing.
  • the functional unit 203 is a printing unit and performs print processing.
  • the functional unit 203 is a projection unit and performs projection processing.
  • the data processed by the functional unit 203 may be data stored in the storage unit 201 or may be data communicated with another communication device via the communication unit 206 described later.
  • the input unit 204 receives various operations from the user.
  • the output unit 205 performs various outputs to the user.
  • the output by the output unit 205 includes at least one of display on a screen, voice output by a speaker, vibration output, and the like.
  • both the input unit 204 and the output unit 205 may be realized by one module like a touch panel.
  • the communication unit 206 controls the antenna 207 to send and receive wireless signals for wireless communication. Note that the number of antennas 207 is not limited to one and may be plural.
  • the communication unit 206 includes a PCR unit 208 and a WUR unit 209.
  • the PCR unit 208 has a PCR function and controls wireless communication conforming to the IEEE 802.11 series standard.
  • the WUR unit 209 has a WUR function, and periodically waits for reception of a signal such as a WUR beacon or a WUR Wake-up frame when the WUR mode is started. When the WUR Wake-up frame is received, the WUR unit 209 has a function of notifying the PCR unit 208 of this and ending the WUR mode. During the WUR mode, since the PCR unit 208 saves power, the function of transmitting and receiving signals is stopped. Therefore, the function of the communication unit 206 is exclusively handled by the WUR unit 209.
  • the PCR unit 208 and the WUR unit 209 have a function of notifying the control unit 202 of the RSSI value indicating the received signal strength of the received wireless signal, and the past RSSI value is stored in the storage unit 201 via the control unit 202. Can be recorded.
  • RSSI is an abbreviation for Received Signal Strength Indicator.
  • the PCR unit 208 and the WUR unit 209 are configured as independent RF circuits. However, the present invention is not limited to this, and the PCR unit 208 and the WUR unit 209 may be configured as an integrated RF circuit.
  • the STA 101 enables the function of the PCR unit 208 when bringing the PCR into the Awake state. On the other hand, when the PCR is set to the Doze state, the function of the PCR unit 208 is disabled.
  • the STA 101 also performs similar control on the WUR.
  • the RF circuit in which the PCR unit 208 and the WUR unit 209 are integrated operates with less power consumption when the function of the WUR unit 209 is enabled than when the function of the PCR unit 208 is enabled.
  • the case where the PCR unit 208 in the present embodiment is in the Awake state corresponds to the state in which the PCR function is enabled in the RF circuit in which the PCR and the WUR are integrated.
  • the case where the WUR unit 209 in the present embodiment is in the Awake state corresponds to the state in which the WUR function is enabled in the RF circuit in which the PCR and the WUR are integrated.
  • the data rate setting unit 211 determines and sets the data rate used when the PCR unit 208 of the STA 101 transmits a data frame.
  • the RSSI acquisition unit 212 acquires the RSSI of the signal received by the communication unit 206 by measurement processing or the like.
  • the frequency band determination unit 213 determines whether the frequency band of the received signal and the frequency band used by the PCR unit 208 are the same.
  • the WUR mode control unit 214 controls the start, continuation, and end of the WUR mode of the STA 101. In addition, the WUR mode control unit 214 performs control for shifting the state of the PCR unit 208 to the Doze state or the Awake state based on the IEEE 802.11 series standard in response to the change of the WUR mode.
  • FIGS. 3A and 3B are flowcharts showing the processing of the STA 101 in this embodiment. It is assumed that the STA 101 receives a PCR beacon that the AP 102 periodically transmits when establishing a wireless connection with the AP 102.
  • the PCR beacon transmitted from the AP 102 includes information indicating that the AP 102 is compatible with IEEE802.11ba and information regarding a channel (frequency band) used in the WUR mode. Therefore, by receiving the PCR beacon, the STA 101 can determine that the AP 102 that has established the wireless connection is compatible with IEEE802.11ba.
  • the flowcharts shown in FIGS. 3A and 3B are realized by the control unit 202 reading and executing the program stored in the storage unit 201 of the STA 101. Further, some or all of the steps shown in the flowcharts of FIGS. 3A and 3B may be realized by hardware such as ASIC.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • the data rate setting unit 211 of the STA 101 uses the latest value of the data rate used when the PCR unit 208 in the Awake state transmits a data frame to the AP 102 (before starting the WUR mode (for example, immediately before)). Data rate) is recorded in the storage unit 201 (S301).
  • the STA 101 performs a shift process to the WUR mode with the AP 102 (S302). For example, the WUR mode control unit 214 determines to shift the STA 101 to the WUR mode in response to a user operation, the STA 101 not transmitting data for a certain period of time, or the like. As a process of transitioning to the WUR mode, specifically, first, the PCR unit 208 of the STA 101 transmits an Enter WUR Mode Request frame, which is a request to start the WUR mode, to the AP 102.
  • the Enter WUR Mode Request frame includes cycle information (Duty Cycle Period) indicating the cycle (reception interval) of the period in which the WUR unit 209 waits for a signal from the WUR unit of the AP 102.
  • the AP 102 determines the reception interval included in the Enter WUR Mode Request frame received from the STA 101 as the WUR beacon transmission interval (WUR duty Cycle). Then, the AP 102 transmits an Enter WUR Mode Response frame including start timing information (Starting time of the WUR duty Cycle) indicating the start timing of the transmission interval.
  • the PCR unit 208 of the STA 101 receives the Enter WUR Mode Response frame from the AP 102, and transmits the WUR Mode enter frame to the AP 102 if the contents, that is, the contents indicated by the start timing information are agreed. Then, the WUR mode control unit 214 causes the WUR unit 209 to start waiting for a signal at the timing based on the start timing information. Further, the WUR mode control unit 214 shifts the state of the PCR unit 208 to the Doze state (S302). In this way, the STA 101 shifts to the WUR mode. Note that the Enter WUR Mode Request frame and the Enter WUR Mode Response frame are both action frames that comply with the IEEE 802.11 series standard.
  • the frequency band determination unit 213 of the STA 101 When shifting to the WUR mode, the frequency band determination unit 213 of the STA 101 has the same frequency band of the WUR beacon received by the WUR unit 209 as the frequency band used for the data frame transmission used by the PCR unit 208. It is determined whether or not (S303).
  • two frequency bands are assumed: a 2.4 GHz band (center frequency is 2.412 GHz to 2.472 GHz) or a 5 GHz band (center frequency is 5.18 GHz to 5.7 GHz).
  • the 5 GHz band is further divided into two (5.18 to 5.32 GHz and 5.5 GHz to 5.7 GHz) or divided into three (5.18 to 5.24 GHz, 5.26 to 5.32 GHz, 5.5 GHz to 5. 7 GHz) may be used.
  • the process proceeds to S314.
  • the data rate setting unit 211 determines to use the data rate recorded in S301 without changing when the PCR unit 208 shifts to the Awake state and transmits data by PCR (S314). ). That is, the data rate setting unit 211 determines to use the data rate used by the PCR unit 208 in the Awake state before shifting to the Doze state in the PCR unit 208 in the Awake state shifting from the Doze state. If the frequency bands used by the PCR unit 208 and the WUR unit 209 are different, it is not accurate to reflect the state change amount obtained in the WUR mode in the data rate for transmission by the PCR unit 208. This is because there are cases.
  • the process proceeds to S304.
  • the RSSI acquisition unit 212 acquires the RSSI in the WUR beacon received by the WUR unit 209 and records it in the storage unit 201 as the RSSI in the initial WUR mode.
  • the process of S304 may be performed before S303.
  • the RSSI acquisition unit 212 acquires the RSSI of the WUR beacon each time the WUR beacon is received and records the RSSI in the storage unit 201 as the latest RSSI (S305).
  • the timing of receiving the WUR beacon is determined based on the period (reception interval) of the period in which the WUR unit 209 waits for a signal from the WUR of the AP 102 and the start timing information included in the Enter WUR Mode Response frame.
  • the WUR mode control unit 214 determines whether or not to end the WUR mode at regular intervals (S306).
  • the WUR mode control unit 214 makes the determination, for example, based on the presence/absence of data to be transmitted from the STA 101 to the AP 102. In this case, the WUR mode control unit 214 determines to end without continuing the WUR mode when there is data to be transmitted, and to continue the WUR mode when there is no data to transmit. Also, when the WUR unit 209 receives the WUR Wake-up frame from the AP 102, the WUR mode control unit 214 can determine to end the WUR mode.
  • the WUR unit 209 receives the WUR beacon again, and the RSSI acquisition unit 212 sets the RSSI of the received WUR beacon as the latest RSSI.
  • the data is recorded in the storage unit 201 (S305).
  • the WUR mode control unit 214 shifts the state of the PCR unit 208 from the Doze state to the Awake state. Shifting the state of the PCR unit 208 to the Awake state is also called activation. Then, the STA 101 restarts communication with the AP 102 via the PCR unit 208 (S307).
  • the processing from S308 subsequent to S307 is processing in which the data rate setting unit 211 determines the data rate used for transmitting the data frame before the activated PCR unit 208 transmits the data frame.
  • the data rate setting unit 211 determines whether the data rate recorded in S301 is the maximum data rate that the STA 101 can use and the latest SSI is equal to or higher than a predetermined level. When these two conditions are satisfied (Yes in S308), it is highly possible that the STA 101 can continue to use the maximum rate, so the data rate setting unit 211 determines not to change the PCR data rate. (S314).
  • the predetermined level used for the comparison with the RSSI is a value of a level sufficient to maintain the maximum data rate.
  • the data rate setting unit 211 determines the next step. After that, the data rate used by the PCR unit 208 is determined. This is because the STA 101 is more likely to have an optimal data rate other than the maximum data rate.
  • the data rate setting unit 211 calculates the difference between the initial RSSI obtained in S304 and the latest RSSI obtained in S305 during the WUR mode as the RSSI change amount (S309). Then, the data rate setting unit 211 determines whether the calculated difference is equal to or more than a predetermined amount (S310).
  • a predetermined amount consider a case where the latest RSSI is larger than the initial RSSI by 4 dB or more, or is smaller than 2 dB or more.
  • the data rate setting unit 211 changes the data rate used in the PCR unit 208 for transmitting the data frame, which is recorded in S301 before shifting to the WUR mode. It is decided to use without using (S314).
  • the data rate setting unit 211 further determines whether the latest RSSI is smaller or larger than the initial RSSI in the WUR mode (S311). That is, the data rate setting unit 211 determines whether the RSSI change due to the RSSI difference is due to an increase in RSSI or a decrease in RSSI.
  • the data rate setting unit 211 decides to use the data rate reduced from the data rate recorded in S301 in correspondence with the amount of change in RSSI.
  • the data rate setting unit 211 uses the Modulation and Coding Scheme (MCS (which is an index of a combination of a modulation scheme and a coding rate) defined in IEEE 802.11 every time the RSSI difference increases by 2 dB. ) Is lowered step by step (S312).
  • MCS Modulation and Coding Scheme
  • the data rate setting unit 211 lowers the data rate from the list of available data rates by one step every 2 dB. To do.
  • the data rate setting unit 211 reduces the data rate used by the PCR unit 208 according to the amount of change in the RSSI of the WUR beacon, so that the PCR unit 208 retransmits the data frame immediately after the WUR mode ends.
  • the frequency of occurrence of can be reduced.
  • communication can be resumed in a state close to the optimum data rate without lowering the data rate more than necessary.
  • the latest RSSI is larger than the initial RSSI (No in S311), it is considered that the communication environment between the STA 101 and the AP 102 is improved compared to when the WUR mode was started.
  • the data frame can be transmitted even at a higher data rate, and if the data frame is transmitted at a low data rate, communication will take longer than necessary, resulting in power consumption and space utilization. Efficiency deteriorates. Therefore, it is desirable to improve the data rate for communication, but if the data rate is too high, the required transmission distance cannot be secured, and there is a possibility that data frame transmission will fail and retransmission will occur. .. Therefore, it is necessary to raise the data rate relatively small with respect to the amount of change in RSSI.
  • the data rate setting unit 211 determines to use the data rate obtained by increasing the data rate recorded in S301 in correspondence with the amount of change in RSSI (the amount of increase is greater than the amount of decrease in S312). Make it smaller).
  • the data rate setting unit 211 increases the MCS by one step each time the RSSI difference increases by 4 dB (S313).
  • the setting of frame aggregation (the number of frames), the number of antennas or the number of spatial multiplexing, and the number of channels bundled when using channel bonding may be adjusted.
  • the RSSI SIR, SINR, RSRP, RSRQ, which may be SIR, SINR, RSRP, RSRQ. Let's try.
  • the RSSI of the WUR beacon has decreased, the number of connected frames is decreased. As a result, it can be expected that the same effect as that of the above embodiment can be obtained.
  • the data rate to be processed in S301 of FIG. 3A and S308 of FIG. 3B is set as the number of frames of frame aggregation, the number of antennas or the number of spatial multiplexing, and the channel bonding.
  • the number of channels bundled at the time of use may be used, or the data rate may be used as shown in FIGS. 3A and 3B.
  • the difference between the initial RSSI and the latest RSSI is obtained in S309, the difference may be calculated using any RSSI of the RSSIs that are periodically received.
  • the data rate is adjusted stepwise, but the data rate may be adjusted by referring to a lookup table or another method. The same applies to the setting of frame aggregation, the number of antennas, and the like as another example of the transmission rate to be adjusted.
  • the present invention supplies a program that implements one or more functions of the above-described embodiments to a system or apparatus via a network or a storage medium, and one or more processors in a computer of the system or apparatus read and execute the program. It can also be realized by the processing. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • a circuit for example, ASIC

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Connectivity Radio)機能を用いて通信する第1の通信手段と、該他の通信装置とIEEE802.11ba規格におけるWUR(Wake Up Radio)機能を用いて通信する第2の通信手段とを有する通信装置は、該第2の通信手段により該他の通信装置から受信された信号から、当該信号の信号強度もしくは信号品質を示す値を取得し、該値に基づいて、該第1の通信手段による伝送レートを設定する。

Description

通信装置、通信装置の制御方法、およびプログラム
 本発明は、無線通信技術に関する。
 現在、規格化が進められているIEEE802.11baでは、通信装置が、従来の無線LAN送受信器(PCR機能を有する送受信器)に加えて、より省電力で動作するWUR送信器又は受信器(WUR機能を有する送信器又は受信器)を備えること構成が提案されている(特許文献1)。なお、PCRはPrimary Connectivity Radioの略であり、WURはWake Up Radioの略である。また、以下の説明において、PCRの機能を有する送受信器と、WURの機能を有する送信器又は受信器を、それぞれPCR部とWUR部とも称す。
 また、IEEE802.11baでは、WURモードが規定されており、当該モードではAP(アクセスポイント)は定期的にWURビーコンを送信する。APから送信されたWURビーコンを受信したSTA(ステーション)は、PCR部による通信を行うことなく、APとの同期を維持することができる。ここで、WURモード中にSTAからAPに送信したいデータが発生した場合には、STAはWURモードを終了し、PCR部からAPにデータを送信することができる。また、WURモード中にAPからSTAに送信したいデータが発生した場合には、APはSTAにWUR Wake-upフレームを送信する。これに応じてSTAはWUR部でWUR Wake-upフレームを受信し、WURモードを終了して、APからのデータをPCR部で受信することができるようになる。
米国特許出願公開第2018/0234918号公報
 一般的に、無線LAN通信においては、通信装置は、相手通信装置との接続直後には、データフレームの送信に使用する無線信号のデータレートとして低いデータレートを用いる。そして、通信装置は、相手通信装置から受信応答(Ack:Acknowlighement)が返されていることを確認しながら、徐々にデータレートを上げていく。通信装置は、Ackを受け取れない場合にはデータレートを下げて、無線信号を再度送信する。また、IEEE 802.11n以降で導入されているフレームアグリゲーションについても同様である。すなわち、通信装置は、データフレームの送信が成功していれば徐々に連結するフレーム数(データ数)を増加させていき、送信に失敗すれば、フレーム数を減少、あるいはフレームアグリゲーション動作を停止させる。
 一方で、通信装置は、WURモード中はPCR部が無効化されているため、WURモード終了直後にPCR部により送信に使用される信号のデータレートやフレームアグリゲーションの設定が最適であるかどうかは分からない。特に、WURモードになっていた期間中に、通信装置としてのSTAが移動するなど通信経路に変化があった場合には、WURモードになる以前に使用していたデータレートやフレームアグリゲーションの設定から変更する必要が発生する可能性が高い。
 例えば、WURモードが開始された際にはAPとSTAの距離が近いことから、選択されるデータレートが高く、フレームアグリゲーションで連結されるフレーム数が多くなっているとする。この状態でSTAがWURモードに移行し、WURモード期間中にSTAが移動し、APとの距離が離れる場合を想定する。この場合、WURモードを終了後にSTAがPCR部でWURモード開始前の設定のまま無線信号をAPに送信しても、APでは信号を受け取れない事態が発生し得る。よって、STAは改めてデータレートやフレームアグリゲーションの設定を変更して無線信号を再送し、このような再送作業をAPからのAckを受け取るまで続けることになる。再送を繰り返すことは、消費電力の観点、通信速度の観点、通信の空間/周波数利用効率の観点などから望ましいことではない。
 他の例として、WURモードが開始された際にはAPとSTAの距離が遠く、選択されるデータレートは比較的低く、フレームアグリゲーションで連結されるフレーム数も少ないか、あるいはフレームアグリゲーション動作が無効になっているとする。この状態でWURモード期間中にSTAが移動し、APとの距離が近づく場合を想定する。この場合、より高いデータレートでの通信が可能になるが、STAがPCR部でWURモード開始前の設定のまま無線信号にAPを送信すると、本来実現できる通信速度よりも遅い通信速度を使用し、通信時間が長くなってしまう。
 本開示は、上記課題に鑑み、WURモードを終了した後のデータ送信に関する設定を適切に決定するための技術を提供する。
 上記目的を達成するための一手段として、本発明の通信装置は以下の構成を有する。すなわち、通信装置であって、他の通信装置と接続し、IEEE802.11ba規格におけるPCR(Primary Connectivity Radio)機能を用いて通信する第1の通信手段と、前記他の通信装置とIEEE802.11ba規格におけるWUR(Wake Up Radio)機能を用いて通信する第2の通信手段と、前記第2の通信手段により前記他の通信装置から受信された信号から、当該信号の信号強度もしくは信号品質を示す値を取得する取得手段と、前記取得手段により取得された前記値に基づいて、前記第1の通信手段による伝送レートを設定する設定手段と、を有する。
 本発明によれば、WURモードを終了した後のデータ送信に関する設定を適切に決定することが可能となる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
実施形態における無線ネットワーク構成例を示す図。 STAのハードウェア構成例を示す図 STAの機能構成例を示す図。 実施形態におけるSTAの処理を示すフローチャート。 実施形態におけるSTAの処理を示すフローチャート。
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものでない。実施形態には複数の特徴が記載されているが、これらの複数の特徴の全てが発明に必須のものとは限らず、また、複数の特徴は任意に組み合わせられてもよい。さらに、添付図面においては、同一若しくは同様の構成に同一の参照番号を付し、重複した説明は省略する。
 (ネットワーク構成)
 図1に本実施形態の無線ネットワーク構成例を示す。STA101は、IEEE802.11ba規格に準拠したWUR non-AP STA(無線LAN端末)であり、後述するように、IEEE802.11ba規格におけるPCR部とWUR部とを有する通信装置である。ここで、IEEEはInstitute of Electrical and Electronics Engineersの略である。また、PCRはPrimary Connectivity Radioの略であり、WURはWake Up Radioの略である。
 また、STA101は、PCR部を用いてIEEE802.11シリーズ規格に準拠したAssociationおよびAuthentication等を行うことにより、AP102と無線接続を確立している。また、STA101は、PCR部を用いてIEEE802.11シリーズ規格に準拠したフレームを送受信することにより、AP102とデータ通信を行うことができる。
 更に、STA101は、IEEE802.11ba規格に準拠したWURモードで動作し、AP102から送信されるWURビーコンをWUR部を用いて受信することで、AP102との同期を維持している。WURモードとは、PCR部をIEEE802.11シリーズ規格におけるDoze状態に移行させ、WUR部を通信可能な状態に移行させるモードである。WURモードの間、STA101はPCR部をDoze状態にすることで、AP102との通信に係る消費電力を抑制することができる。なお、Doze状態とは、AP102とのPCR部を用いた信号の送受信する機能を停止する省電力状態である。
 なお、WURモードで動作しているSTA101は、AP102に送信したいデータが発生した場合には、WURモードを終了し、PCR部を用いてAP102にデータを送信することができる。また、STA101のWUR部が、AP102からIEEE802.11ba規格に準拠したWUR Wake Upフレームを受信した場合、STA101はWURモードを終了し、PCR部を用いてAP102からデータを受信することができる。なお、本実施形態において、STA101は移動しており、その移動範囲はAP102が通信可能な範囲内(図1に円103で図示)であるとする。
 AP102は、IEEE802.11ba規格に準拠したWUR AP(無線LANアクセスポイント)であり、同様にIEEE802.11ba規格におけるPCR部とWURとを有する。AP102のPCR部は、IEEE802.11シリーズ規格に準拠した無線ネットワークを構築する。また、AP102のPCR部が送信するビーコンとは、IEEE802.11ba規格に準拠したPCRビーコンである。PCRビーコンには、AP102がIEEE802.11baに対応していることを示す情報が含まれている。また、AP102のWUR部は、IEEE802.11ba規格に準拠したWURビーコンを送信する。WURビーコンは、WUR non-AP STA毎に個別、あるいはグループ化された複数のnon-AP STAに送信され、また、AP102との同期を維持するためのTSF情報を含む。なお、TSFとは、Timing Synchronization Functionの略である。
 なお、STA101は、例えば、撮像装置(カメラやビデオカメラ等)やスキャナ等の画像入力装置であってもよいし、プリンタ(SFPやMFP)やコピー機、プロジェクタ等の画像出力装置であってもよい。また、ハードディスク装置やメモリ装置などの記憶装置であってもよいし、パーソナルコンピュータやスマートフォンなどの情報処理装置であってもよい。なお、SFPはSingle Function Printerの略であり、MFPはMulti-Function Printerの略である。また、AP102を介してインターネットに接続可能なセンサー等のIoT(Internet of Things)機器であってもよい。
 (STAの構成)
 STA101の構成を図2Aと図2Bを用いて説明する。図2Aは、STA101のハードウェア構成例を示す図であり、図2BはSTA101の機能構成例を示す図である。まず、STA101のハードウェア構成について説明する。図2Aにおいて、記憶部201はROMやRAM等の1以上のメモリにより構成され、後述する各種動作を行うためのプログラムや、無線通信のための通信パラメータ等の各種情報を記憶する。なお、記憶部201として、ROM、RAM等のメモリの他に、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD-ROM、CD-R、磁気テープ、不揮発性のメモリカード、DVDなどの記憶媒体を用いてもよい。
 制御部202はCPUやMPU等の1以上のプロセッサにより構成され、記憶部201に記憶されたプログラムを実行することによりSTA101全体を制御する。なお、制御部202は、記憶部201に記憶されたプログラムとOS(Operating System)との協働によりSTA101全体を制御するようにしてもよい。また、制御部202がマルチコア等の複数のプロセッサを備え、複数のプロセッサによりSTA101全体を制御するようにしてもよい。
 また、制御部202は、機能部203を制御して、撮像や印刷、投影等の所定の処理を実行する。機能部203は、STA101が所定の処理を実行するためのハードウェアである。例えば、STA101がカメラである場合、機能部203は撮像部であり、撮像処理を行う。また、例えば、STA101がプリンタである場合、機能部203は印刷部であり、印刷処理を行う。また、例えば、STA101がプロジェクタである場合、機能部203は投影部であり、投影処理を行う。機能部203が処理するデータは、記憶部201に記憶されているデータであってもよいし、後述する通信部206を介して他の通信装置と通信したデータであってもよい。
 入力部204は、ユーザからの各種操作の受付を行う。出力部205は、ユーザに対して各種出力を行う。ここで、出力部205による出力とは、画面上への表示や、スピーカーによる音声出力、振動出力等の少なくとも1つを含む。なお、タッチパネルのように入力部204と出力部205の両方を1つのモジュールで実現するようにしてもよい。通信部206は、アンテナ207を制御して、無線通信のための無線信号の送受信を行う。なお、アンテナ207の数は1に限定されず、複数であってもよい。
 さらに、通信部206はPCR部208とWUR部209を含む。PCR部208は、PCR機能を有し、IEEE802.11シリーズ規格に準拠した無線通信の制御を行う。また、WUR部209は、WUR機能を有し、WURモードが開始された場合に、WURビーコンやWUR Wake-upフレーム等の信号の受信を周期的に待ち受ける。そして、WUR部209は、WUR Wake-upフレームを受信した際には、これをPCR部208に通知すると共に、WURモードを終了させる機能を持つ。WURモードの期間は、PCR部208が省電力のため、信号の送受信する機能を停止している。従って、通信部206の機能は専らWUR部209が受け持つことになる。PCR部208とWUR部209は、受信した無線信号の受信信号強度を示すRSSIの値を制御部202へ通知する機能を有し、制御部202を介して過去のRSSIの値を記憶部201に記録することができる。なお、RSSIとは、Recieved Signal Strength Indicatorの略である。
 なお、PCR部208とWUR部209は夫々独立したRF回路として構成される。しかし、これに限らず、PCR部208とWUR部209とは一体のRF回路として構成されてもよい。この場合に、STA101は、PCRをAwake状態にする場合、PCR部208の機能をイネーブルにする。一方、PCRをDoze状態にする場合、PCR部208の機能をディセーブルにする。STA101は、WURについても同様の制御を行う。PCR部208とWUR部209が一体となっているRF回路は、WUR部209の機能がイネーブルになっている場合、PCR部208の機能がイネーブルになっている場合よりも省電力で動作する。なお、本実施形態におけるPCR部208がAwake状態になっている場合とは、PCRとWURとが一体となったRF回路においてPCR機能がイネーブルになっている状態と対応する。また、本実施形態におけるWUR部209がAwake状態になっている場合とは、PCRとWURとが一体となったRF回路において、WUR機能がイネーブルになっている状態と対応する。
 続いて、STA101の機能構成について説明する。図2Bにおいて、データレート設定部211は、STA101のPCR部208がデータフレームを送信する際に使用するデータレートを決定し、設定する。RSSI取得部212は、通信部206により受信された信号のRSSIを、測定処理等により取得する。周波数帯域判定部213は、受信した信号の周波数帯域と、PCR部208が使用していた周波数帯域が同じであるかどうかを判定する。WURモード制御部214は、STA101のWURモードの開始、継続、終了を制御する。また、WURモード制御部214は、WURモードの変更に応じて、PCR部208の状態を、IEEE802.11シリーズ規格に準拠したDoze状態やAwake状態へ移行させるための制御を行う。
 (処理の流れ)
 次に、STA101がIEEE802.11baに対応しているAP102と無線接続を確立した場合の処理について説明する。なお、本実施形態では、WURモードから復帰したAwake状態におけるPCR部208による伝送レート(伝送速度、通信速度)の調整として、データレートの調節を例に説明する。
 図3Aと図3Bは、本実施形態におけるSTA101の処理を示すフローチャートである。なお、STA101は、AP102と無線接続を確立する際に、AP102が定期的に送信するPCRビーコンを受信しているものとする。ここで、AP102から送信されるPCRビーコンには、AP102がIEEE802.11baに対応していることを示す情報や、WURモードで使用するChannel(周波数帯域)に関する情報が含まれている。従って、STA101はPCRビーコンを受信することで、無線接続を確立したAP102がIEEE802.11baに対応していると判定することができる。図3Aと図3Bに示すフローチャートは、STA101の記憶部201に記憶されたプログラムを制御部202が読み出して実行することで実現される。また、図3Aと図3Bのフローチャートに示すステップの一部または全部を例えばASIC等のハードウェアで実現する構成としてもよい。ここで、ASICとは、Application Specific Integrated Circuitの略である。
 まず、STA101のデータレート設定部211は、Awake状態であるPCR部208がAP102に対してデータフレームを送信する際に使用しているデータレートの最新値(WURモードを開始する前(例えば直前)のデータレート)を記憶部201に記録する(S301)。
 次に、WURモード制御部214がSTA101をWURモードへ移行させると決定したことを受けて、STA101はAP102との間でWURモードへの移行処理を行う(S302)。例えばWURモード制御部214は、ユーザによる操作やSTA101が一定時間データを送信しないこと等を受けて、STA101をWURモードへ移行させると決定する。WURモードへの移行処理として、具体的にはまず、STA101のPCR部208は、WURモードの開始要求であるEnter WUR Mode RequestフレームをAP102へ送信する。当該Enter WUR Mode Requestフレームには、WUR部209がAP102のWUR部からの信号を待ち受ける期間の周期(受信間隔)を示す周期情報(Duty Cycle Period)が含まれる。AP102は、STA101から受信したEnter WUR Mode Requestフレームに含まれる受信間隔を、WURビーコンの送信間隔(WUR duty Cycle)として決定する。そして、AP102は、当該送信間隔の開始タイミングを示す開始タイミング情報(Starting time of the WUR duty Cycle)を含むEnter WUR Mode Responseフレームを送信する。
 STA101のPCR部208は、AP102からEnter WUR Mode Responseフレームを受信し、その内容、すなわち開始タイミング情報が示す内容に合意するのであれば、WUR Mode enterフレームをAP102に送信する。そして、WURモード制御部214は、開始タイミング情報に基づくタイミングで、WUR部209による信号の待ち受けを開始させる。さらに、WURモード制御部214は、PCR部208の状態をDoze状態に移行させる(S302)。このようにして、STA101はWURモードへ移行する。なお、Enter WUR Mode Requestフレーム、および、Enter WUR Mode Responseフレームは、いずれもIEEE802.11シリーズ規格に準拠したアクションフレームである。
 WURモードへ移行した際、STA101の周波数帯域判定部213は、WUR部209により受信されているWURビーコンの周波数帯域がPCR部208で使用していたデータフレーム送信のための周波数帯域と同じであるかどうかを判定する(S303)。ここで周波数帯域とは、2.4GHz帯(中心周波数が2.412GHzから2.472GHz)か、5GHz帯(中心周波数が5.18GHzから5.7GHz)かの2通りを想定している。5GHz帯をさらに2分割(5.18~5.32GHzと5.5GHz~5.7GHz)、あるいは3分割(5.18~5.24GHz、5.26~5.32GHz、5.5GHz~5.7GHz)した周波数帯域を用いてもよい。
 WURビーコンの周波数帯域とPCR部208によるデータフレーム送信のための周波数帯域が異なる場合(S303のNo)、処理はS314へ進む。S314において、データレート設定部211は、PCR部208がAwake状態に移行してPCRでデータ送信を行う際に、S301で記録されているデータレートを変更せずに使用することを決定する(S314)。すなわち、データレート設定部211は、Doze状態に移行する前のAwake状態のPCR部208で使用されたデータレートを、Doze状態から移行したAwake状態のPCR部208で使用することを決定する。これは、PCR部208とWUR部209で使用する周波数帯域が異なる場合、WURモード時で得られた状態変化量をPCR部208による送信のためのデータレートに反映させることは、正確性に欠けることがあるためである。
 WURビーコンの周波数帯域とPCR部208によるデータフレーム送信のための周波数帯域が同じ場合(S303のYes)、処理はS304へ進む。S304において、RSSI取得部212は、WUR部209により受信されたWURビーコンにおけるRSSIを取得し、WURモード初期のRSSIとして記憶部201に記録する。なおS304の処理はS303の前に行われてもよい。RSSI取得部212は、WURモード中には、WURビーコンを受信する度に、そのRSSIを取得し、最新のRSSIとして記憶部201に記録する(S305)。なお、WURビーコンを受信するタイミングは、WUR部209がAP102のWURからの信号を待ち受ける期間の周期(受信間隔)と、Enter WUR Mode Responseフレームに含まれる開始タイミング情報とに基づいて決定される。
 WURモード中に、WURモード制御部214は、一定期間毎にWURモードを終了するかどうかを判定する(S306)。WURモード制御部214は、例えば、STA101からAP102に送信するデータの有無に基づいて、当該判定を行う。この場合、WURモード制御部214は、送信するデータがある場合にはWURモードを継続せず終了すると判定し、送信するデータがない場合にはWURモードを継続すると判定する。また、WUR部209がAP102からWUR Wake-upフレームを受信した場合にも、WURモード制御部214は、WURモードを終了すると判定することができる。
 S306の判定の結果、WURモードを継続する場合(S306のNo)、WUR部209は再度WURビーコンを受信したことに応じて、RSSI取得部212は、受信したWURビーコンのRSSIを最新のRSSIとして記憶部201に記録する(S305)。一方、S306の判定の結果、WURモードを終了する場合は(S306のYes)、WURモード制御部214は、PCR部208の状態をDoze状態からAwake状態に移行させる。PCR部208の状態をAwake状態に移行させることを、アクティブ化とも呼ぶ。そして、STA101は、PCR部208を介してAP102との通信を再開する(S307)。
 S307に続くS308以降の処理は、アクティブ化されたPCR部208がデータフレームを送信する前に、当該データフレームの送信に使用するデータレートをデータレート設定部211が決定する処理である。S308では、データレート設定部211は、S301で記録されたデータレートが、STA101が使用可能な最大のデータレートであり、かつ、最新のSSIが所定レベル以上あるかどうかを判定する。この2つの条件を満たす場合(S308のYes)、STA101が継続して最大レートを使い続けることができる可能性が高いため、データレート設定部211は、PCRのデータレートは変更しないことを決定する(S314)。なお、RSSIとの比較に用いた上記所定レベルは、最大のデータレートを維持するのに十分な水準の値とする。一方、S301で記録されたデータレートが使用可能な最大のもの以外であるか、最新のWURビーコンのRSSIが所定レベル未満である場合(S308のNo)、データレート設定部211は、次のステップ以降においてPCR部208が使用するデータレートを決定する。これは、STA101が最大データレート以外のデータレートが最適である可能性が高まるからである。
 次に、データレート設定部211は、WURモード中にS304で得られた初期のRSSIとS305で得られた最新のRSSIの差分を、RSSIの変化量として算出する(S309)。そして、データレート設定部211は、算出した差分が所定量以上あるかどうかの判定を行う(S310)。ここでは所定量の例として、最新のRSSIが初期のRSSIに対して4dB以上大きくなった、あるいは2dB以上小さくなった場合を考える。
 差分が所定量未満の場合(S310のNo)、データレート設定部211は、PCR部208がデータフレームの送信に使用するデータレートとして、WURモードに移行する前にS301で記録したものを変更せずに使用することを決定する(S314)。一方で、差分が所定量以上の場合(S310のYes)、データレート設定部211はさらに、WURモードの初期のRSSIに対して最新のRSSI小さいか、大きいかを判定する(S311)。すなわち、データレート設定部211は、RSSIの差分に起因するRSSIの変化が、RSSIの増加によるものか、RSSIの減少によるものかを判定する。
 最新のRSSIが初期のRSSIよりも小さくなっている(RSSIの変化がRSSIの減少によるものである)場合(S311のYes)、STA101とAP102との間の通信環境が悪化していると考えられる。主な原因としてはSTA101とAP102との距離が離れたこと、STA101とAP102との間に障害物が配置されたこと、などが想定される。このように通信環境が悪化している状況においては、データレートを低下させて、より遠くまで伝送が可能となるようにする必要がある。また、データレートの変化量が小さいと、必要な伝送距離が確保できず、再送が必要となる可能性もある。そのため、RSSIの変化量に対して比較的大きくデータレートを引き下げる必要がある。
 以上を考慮し、データレート設定部211は、RSSIの変化量に対応させてS301で記録したデータレートを減少させたデータレートを用いることを決定する。ここでは一例として、データレート設定部211は、RSSIの差分が2dB増加する毎にIEEE802.11で規定されるModulation and Coding Scheme(MCS(変調方式と符号化率などの組み合わせをインデックス化したもの))を1段階ずつ引き下げるようにする(S312)。また、IEEE802.11n以前に規定された、MCSで規定されないOFDMあるいはDSSS、CCKのデータレートに関しても、データレート設定部211は、使用可能なデータレートのリストから2dB毎に1段階ずつ引き下げるようにする。このように、データレート設定部211は、WURビーコンのRSSIの変化量に応じてPCR部208が使用するデータレートを引き下げることにより、WURモード終了直後でのPCR部208によるデータフレームの送信において再送が発生する頻度を低減させることができる。また同時に、必要以上にデータレートを下げることなく、最適なデータレートに近い状態で通信を再開することができる。
 一方、最新のRSSIの方が初期のRSSIよりも大きくなっている場合(S311のNo)、STA101とAP102との間の通信環境は、WURモード開始時よりも改善されていると考えられる。この場合、より高いデータレートでもデータフレームの送信が可能になっている可能性が高く、低いデータレートのままデータフレームの送信を行うと、必要以上に通信に時間がかかり、消費電力や空間利用効率が悪化してしまう。そのため、データレートを向上させて通信を行うことが望ましいが、データレートを上げ過ぎてしまうと必要な伝送距離が確保できずに、データフレームの送信に失敗し、再送が発生する可能性もある。そのため、RSSIの変化量に対して比較的小さくデータレートを引き上げる必要がある。
 以上を考慮し、データレート設定部211は、RSSIの変化量に対応させてS301で記録したデータレートを増加させたデータレートを用いることを決定する(増加させる量は、S312で減少させる量より小さくする)。ここでは、一例として、データレート設定部211は、RSSIの差分が4dB増加する毎にMCSを1段階ずつ引き上げるようにする(S313)。これにより、WURモード終了直後でのPCRのデータフレームの送信においても、再送の発生を抑えながら、より高いデータレートを使用して効率的に通信を行うことができる。
 なお、上述の実施形態では、WURビーコンのRSSI(受信信号強度)を使用した一連の流れを説明してきたが、このような受信信号強度に限らず、受信信号品質等、受信信号の性質を示す指標を用いてもよい。例えば、SNR(Signal to Noise Ratio)、SINR(Singal to Noise Interference Ratio)、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)を使用しても同様な効果が期待できる。
 また、上述の実施形態では、MCSを変更することでデータレートのみを調節しているが、その他の伝送レートに関する設定を調節してもよい。例えば、フレームアグリゲーションの設定(フレーム数)や、アンテナ数または空間多重数や、チャネルポンディング使用時に束ねるチャネル数を調節してもよい。フレームアグリゲーションのフレーム数を調整する場合は、WURモード終了時にWURビーコンのRSSI(SIR、SINR、RSRP、RSRQでもよい。以下同様。)が増加していれば、フレームアグリゲーションで連結するフレーム数を増加させようにする。一方、WURビーコンのRSSIが減少していれば、連結するフレーム数を減少させるようにする。これにより、上記実施形態と同様な効果が得られることが期待できる。なお、このようなその他の設定を調節する際は、図3AのS301と図3BのS308において処理対象となるデータレートとして、フレームアグリゲーションのフレーム数や、アンテナ数または空間多重数や、チャネルポンディング使用時に束ねるチャネル数を用いてもよいし、図3Aと図3Bに示すようにデータレートを用いてもよい。
 また、上述の実施形態では、図3AのS303において、PCR部208とWUR部209の周波数帯域が異なる場合を除外しているが、必ずしも除外せず、周波数帯域が同一の場合と同様に実施した場合でも、効果は期待できる。また、S309では初期のRSSIと最新のRSSIの差分を求めているが、周期的に受信するRSSIのいずれかのRSSIを用いて差分を算出するようにしてもよい。また、S312やS313では、段階的にデータレートが調節されたが、ルックアップテーブルの参照や他の方法によりデータレートが調整されるようにしてもよい。調整する伝送レートの他の例としてのフレームアグリゲーションの設定やアンテナ数等についても同様である。
(その他の実施例) 
 本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。
 本願は、2018年12月27日提出の日本国特許出願特願2018-245380を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (13)

  1.  通信装置であって、
     他の通信装置と接続し、IEEE802.11ba規格におけるPCR(Primary Connectivity Radio)機能を用いて通信する第1の通信手段と、
     前記他の通信装置とIEEE802.11ba規格におけるWUR(Wake Up Radio)機能を用いて通信する第2の通信手段と、
     前記第2の通信手段により前記他の通信装置から受信された信号から、当該信号の信号強度もしくは信号品質を示す値を取得する取得手段と、
     前記取得手段により取得された前記値に基づいて、前記第1の通信手段による伝送レートを設定する設定手段と、
    を有することを特徴とする通信装置。
  2.  前記第1の通信手段を省電力状態に移行させるWURモードを開始するか、前記WURモードを終了して前記第1の通信手段を通信可能な状態に移行させるかを制御するモード制御手段を更に有し、
     前記設定手段は、前記値に基づいて、前記モード制御手段により前記WURモードが開始された後に前記WURモードが終了された際の前記第1の通信手段による伝送レートである第2の伝送レートを設定することを特徴とする請求項1に記載の通信装置。
  3.  前記モード制御手段により前記WURモードが開始される直前における前記第1の通信手段による伝送レートである第1の伝送レートが前記通信装置により使用可能な最大の伝送レートであり、かつ、前記値が所定のレベル以上である場合に、前記設定手段は、前記第1の伝送レートを、前記第2の伝送レートとして設定することを特徴とする請求項2に記載の通信装置。
  4.  前記第1の伝送レートが前記最大の伝送レートではない、または、前記値が所定のレベル以上でない場合に、前記取得手段により取得された前記値の変化の量が所定量以上であるかを判定する判定手段を更に有し、
     前記設定手段は、前記変化の量が前記所定量以上である場合に、前記第1の伝送レートを変更して、前記第2の伝送レートとして設定することを特徴とする請求項3に記載の通信装置。
  5.  前記判定手段は、前記変化が前記値の増加によるものか減少するものかを更に判定し、
     前記設定手段は、前記変化の量が前記所定量以上であって、前記変化が前記値の増加によるものである場合に、前記第1の伝送レートに対して前記変化の量に対応して増加させた伝送レートを、前記第2の伝送レートとして設定することを特徴とする請求項4に記載の通信装置。
  6.  前記設定手段は、前記変化の量が前記所定量以上であって、前記変化が前記値の減少によるものである場合に、前記第1の伝送レートに対して前記変化の量に対応して減少させた伝送レートを、前記第2の伝送レートとして設定することを特徴とする請求項4または5に記載の通信装置。
  7.  前記変化の量に対応して増加させる量は、前記変化の量に対応して減少させる量より小さいことを特徴とする請求項5または6に記載の通信装置。
  8.  前記変化の量に対応する量は、前記変化の量に対して段階的に変化することを特徴とする請求項5から7のいずれか1項に記載の通信装置。
  9.  前記第1の通信手段が用いる周波数帯域と前記第2の通信手段が用いる周波数帯域とが異なる場合、前記設定手段は、前記第1の伝送レートを、前記第2の伝送レートとして設定することを特徴とする請求項1から8のいずれか1項に記載の通信装置。
  10.  前記伝送レートは、前記通信装置により使用される変調方式および符号化率、フレームアグリゲーションによって連結されるフレーム数、アンテナ数のうちのいずれかを変更することにより変更されることを特徴とする請求項4から9のいずれか1項に記載の通信装置。
  11.  前記信号はWURビーコンであることを特徴とする請求項1から10のいずれか1項に記載の通信装置。
  12.  他の通信装置と接続し、IEEE802.11ba規格におけるPCR(Primary Connectivity Radio)機能を用いて通信する第1の通信手段と、前記他の通信装置とIEEE802.11ba規格におけるWUR(Wake Up Radio)機能を用いて通信する第2の通信手段と、を有する通信装置の制御方法であって、
     前記第2の通信手段により前記他の通信装置から受信された信号から、当該信号の信号強度もしくは信号品質を示す値を取得する取得工程と、
     前記取得工程において取得された前記値に基づいて、前記第1の通信手段による伝送レートを設定する設定工程と、
    を有することを特徴とする通信装置の制御方法。
  13.  コンピュータを、請求項1から11のいずれか1項に記載の通信装置として機能させるためのプログラム。
PCT/JP2019/046994 2018-12-27 2019-12-02 通信装置、通信装置の制御方法、およびプログラム WO2020137365A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/215,922 US11729719B2 (en) 2018-12-27 2021-03-29 Communication apparatus, method of controlling the same, and non-transitory computer-readable storage medium for setting transmission rate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018245380A JP7332288B2 (ja) 2018-12-27 2018-12-27 通信装置、通信装置の制御方法、およびプログラム
JP2018-245380 2018-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/215,922 Continuation US11729719B2 (en) 2018-12-27 2021-03-29 Communication apparatus, method of controlling the same, and non-transitory computer-readable storage medium for setting transmission rate

Publications (1)

Publication Number Publication Date
WO2020137365A1 true WO2020137365A1 (ja) 2020-07-02

Family

ID=71128004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046994 WO2020137365A1 (ja) 2018-12-27 2019-12-02 通信装置、通信装置の制御方法、およびプログラム

Country Status (3)

Country Link
US (1) US11729719B2 (ja)
JP (1) JP7332288B2 (ja)
WO (1) WO2020137365A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092072A1 (ja) * 2020-10-26 2022-05-05 株式会社 Preferred Networks 通信制御装置、移動体、基地局、及び通信制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189933A1 (ja) * 2015-05-27 2016-12-01 ソニー株式会社 通信装置および通信方法
US20170094600A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Apparatus, system and method of communicating a wakeup packet
WO2018038532A1 (ko) * 2016-08-23 2018-03-01 한국전자통신연구원 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130706B2 (en) * 2005-05-26 2015-09-08 Unwired Planet, Llc Method and apparatus for signal quality loss compensation in multiplexing transmission systems
EP3566341B1 (en) * 2017-01-03 2021-10-06 Nokia Technologies Oy Waking up a dozing wireless device
US20180234918A1 (en) 2017-02-14 2018-08-16 Qualcomm Incorporated Wakeup radio synchronization techniques
US20180309538A1 (en) 2017-04-25 2018-10-25 Qualcomm Incorporated Data rate selection for wake-up radio transmissions
US11564169B2 (en) * 2017-07-05 2023-01-24 Apple Inc. Wake-up-radio link adaptation
US20200187120A1 (en) * 2017-07-07 2020-06-11 Nokia Technologies Oy Controlling connectivity for dozing of wireless device
US11589309B2 (en) * 2018-01-12 2023-02-21 Intel Corporation Methods and arrangements to support wake-up radio packet transmission
US11032770B2 (en) * 2018-01-16 2021-06-08 Apple Inc. Wake-up-radio discovery frame

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016189933A1 (ja) * 2015-05-27 2016-12-01 ソニー株式会社 通信装置および通信方法
US20170094600A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Apparatus, system and method of communicating a wakeup packet
WO2018038532A1 (ko) * 2016-08-23 2018-03-01 한국전자통신연구원 무선랜에서 저전력 모드를 지원하는 통신 노드의 동작 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092072A1 (ja) * 2020-10-26 2022-05-05 株式会社 Preferred Networks 通信制御装置、移動体、基地局、及び通信制御方法

Also Published As

Publication number Publication date
US20210219236A1 (en) 2021-07-15
JP2020108019A (ja) 2020-07-09
US11729719B2 (en) 2023-08-15
JP7332288B2 (ja) 2023-08-23

Similar Documents

Publication Publication Date Title
US9402265B1 (en) Synchronized interference mitigation scheme for heterogeneous wireless networks
US20180220382A1 (en) Wireless communication apparatus
KR101287648B1 (ko) 전력 제어 방법 및 송신 전력 변경 시스템
CN111279626A (zh) 电子装置、无线通信方法以及计算机可读介质
US7991392B2 (en) Communication system, information processing apparatus, and communication control method
WO2020029950A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
KR102571604B1 (ko) 무선 통신을 위한 전자 디바이스 및 방법
US11832166B2 (en) Communication apparatus, control method, and storage medium
US8046021B2 (en) Communication system, communication apparatus, and communication method to minimize interference by transmission power control
US20230007716A1 (en) Communication apparatus, communication method, and storage medium
WO2021090718A1 (ja) 通信装置、情報処理方法
CN116325952A (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US8081998B2 (en) Communication apparatus and communication control method with power adjustment to avoid interference between apparatuses on first and second networks
WO2022194082A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20070268867A1 (en) Access Point Polling Systems and Methods
WO2020137365A1 (ja) 通信装置、通信装置の制御方法、およびプログラム
US8989074B2 (en) Communication apparatus, communication method, and communication system
JP2023053311A (ja) 通信装置、通信装置の制御方法、およびプログラム
JP5068590B2 (ja) 無線データ通信システム、無線データ送信装置、無線データ受信装置
US20240188094A1 (en) Electronic device, communication method, storage medium and computer program product
JP3660171B2 (ja) 通信装置及び通信方法
US11211981B2 (en) Control apparatus, method of controlling the same, and communication system
US20240088951A1 (en) Opportunistic sounding for low latency applications
US20240224349A1 (en) Communication apparatus, control method, and storage medium
US20230008481A1 (en) Communication apparatus, communication method, and non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905296

Country of ref document: EP

Kind code of ref document: A1