WO2020137097A1 - 埋設物検出装置および埋設物検出方法 - Google Patents
埋設物検出装置および埋設物検出方法 Download PDFInfo
- Publication number
- WO2020137097A1 WO2020137097A1 PCT/JP2019/040591 JP2019040591W WO2020137097A1 WO 2020137097 A1 WO2020137097 A1 WO 2020137097A1 JP 2019040591 W JP2019040591 W JP 2019040591W WO 2020137097 A1 WO2020137097 A1 WO 2020137097A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic wave
- unit
- reflected wave
- embedded object
- object detection
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/12—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
Definitions
- the present invention relates to a buried object detection device and a buried object detection method.
- a wall scanner an embedded object detection device that detects an embedded object from a reflected wave of an electromagnetic wave emitted toward the concrete while moving the surface of the concrete is used.
- a wall scanner an embedded object detection device that detects an embedded object from a reflected wave of an electromagnetic wave emitted toward the concrete while moving the surface of the concrete.
- the conventional wall scanner has the following problems. That is, in the above conventional wall scanner, for example, the user manually operates the electromagnetic wave radiation stop button when the detection of the embedded object in the concrete is completed. For this reason, when the user forgets to operate the radiation stop button, there is a problem that the electromagnetic waves remain radiated.
- An object of the present invention is to provide an embedded object detection device and an embedded object detection method capable of automatically stopping the emission of electromagnetic waves without a user's operation when finishing the operation of detecting an embedded object. is there.
- An embedded object detection device is an embedded object detection device that detects an embedded object in an object by using data on a reflected wave of an electromagnetic wave emitted toward the object while moving on the surface of the object. Therefore, it is provided with a main body section, a radiation section, a reception section, wheels, a rotation detection section, and a control section.
- the radiating portion is provided on the main body and radiates an electromagnetic wave.
- the receiver is provided in the main body and receives a reflected wave of electromagnetic waves.
- the wheel is attached to the main body and rotates while being in contact with the surface of the object.
- the rotation detection unit is provided in the main body and connected to the wheels, and detects and outputs information about the rotation of the wheels.
- the control unit detects that the input from the rotation detection unit is stopped when the electromagnetic wave is emitted from the emission unit, and the change in the data of the reflected wave received by the reception unit satisfies a predetermined condition. Then, the radiation of the electromagnetic wave from the radiation unit is stopped.
- an embedded object detection device that detects an embedded object such as a reinforcing bar in concrete by detecting the reflected wave by radiating an electromagnetic wave while rotating and moving a wheel in contact with the surface of concrete
- the input from the rotation detection unit that detects the information about the rotation of the wheel is stopped, and the change in the data of the reflected wave received by the reception unit satisfies a predetermined condition
- the control is performed so as to stop the emission of electromagnetic waves.
- the buried object in the target object includes, for example, a reinforcing bar in concrete.
- the information regarding the rotation detected by the rotation detection unit includes, for example, the rotation speed and the rotation direction of the wheel.
- changes in the reflected wave data detected by the control unit include changes in the speed (intensity) of the reflected wave, or changes in the time until the reflected wave is detected after the electromagnetic wave is radiated from the radiation unit. Etc. are included. That is, it is detected that the embedded object detection device is separated from the surface of the target object by detecting the change in the reflected wave data.
- the input from the rotation detection unit is stopped (the rotation of the wheels is stopped), and the change in the received reflected wave data satisfies a predetermined condition (the embedded object detection device is separated from the surface of the object).
- the embedded object detection device is separated from the surface of the object.
- An embedded object detection apparatus is an embedded object detection apparatus that detects an embedded object in an object by using data regarding reflected waves of electromagnetic waves emitted toward the object while moving on the surface of the object. Therefore, it is provided with a main body section, a radiation section, a reception section, wheels, a rotation detection section, and a control section.
- the radiating portion is provided on the main body and radiates an electromagnetic wave.
- the receiver is provided in the main body and receives a reflected wave of electromagnetic waves.
- the wheel is attached to the main body and rotates while being in contact with the surface of the object.
- the rotation detection unit is provided in the main body and connected to the wheels, and detects and outputs information about the rotation of the wheels.
- the control unit detects that the input from the rotation detection unit is stopped while the electromagnetic wave is being radiated from the radiation unit, and stops the radiation of the electromagnetic wave from the radiation unit when a predetermined time has elapsed.
- an embedded object detection device that detects an embedded object such as a reinforcing bar in concrete by detecting the reflected wave by radiating an electromagnetic wave while rotating and moving a wheel in contact with the surface of concrete
- an embedded object detection device that detects an embedded object such as a reinforcing bar in concrete by detecting the reflected wave by radiating an electromagnetic wave while rotating and moving a wheel in contact with the surface of concrete
- input from the rotation detection unit that detects information about wheel rotation is stopped, and if a predetermined time elapses in that state, it is determined that the work of detecting the buried object has ended. Then, control is performed to stop the emission of electromagnetic waves.
- the buried object in the target object includes, for example, a reinforcing bar in concrete.
- the information regarding the rotation detected by the rotation detection unit includes, for example, the rotation speed and the rotation direction of the wheel.
- the detection that the predetermined time has elapsed after the input from the rotation detection unit is stopped means that it is substantially detected that the operation of detecting the embedded object is completed.
- the input from the rotation detection unit is stopped (the rotation of the wheels is stopped) and a predetermined time is stopped, it is determined that the operation of detecting the embedded object is finished, and the emission of electromagnetic waves is stopped. be able to.
- the emission of the electromagnetic wave can be automatically stopped without any operation by the user.
- An embedded object detection device is the embedded object detection device according to the first aspect of the present invention, wherein changes in the reflected wave data include changes in the velocity of the reflected wave received by the receiving unit.
- changes in the reflected wave data include changes in the velocity of the reflected wave received by the receiving unit.
- a change in the velocity of the reflected wave received by the reception unit is detected.
- the velocity of the detected reflected wave changes by a predetermined value or more, for example, compared with the velocity of the reflected wave in a state where the embedded object detection device stored in advance is in contact with the surface of the object. If it is, it can be determined that the embedded object detection device is separated from the surface of the object.
- An embedded object detection device is the embedded object detection device according to the first aspect of the present invention, wherein when the reflected wave data changes, an electromagnetic wave is radiated from the radiation unit and then the reflected wave The change in the time until the detection of is included.
- the change in the time from the emission of the electromagnetic wave from the emission unit to the detection of the reflected wave at the reception unit is detected.
- the time until the reflected wave is detected is compared with, for example, the time until the embedded object detection device, which is stored in advance, detects the reflected wave when the embedded object detection device is in contact with the surface of the object, When the value changes by more than the value, it can be determined that the embedded object detection device is separated from the surface of the object.
- An embedded object detection method is an embedded object detection device that detects an embedded object in an object using data relating to reflected waves of electromagnetic waves emitted toward the object while moving on the surface of the object.
- the embedded object detecting method used includes a rotation detecting step, a radiation step, a receiving step, and a stopping step.
- the rotation detection step the rotation detection unit connected to the wheel provided in the buried object detection device detects information about the rotation of the wheel.
- the radiation step radiates an electromagnetic wave from the radiation unit.
- the receiving section receives the reflected wave of the electromagnetic wave emitted from the emitting section.
- the stop step detects that the input from the rotation detection unit is stopped while the electromagnetic wave is being emitted from the emission unit, and the change in the data of the reflected wave received by the reception unit satisfies a predetermined condition. Then, the radiation of the electromagnetic wave from the radiation unit is stopped.
- an embedded object detection method for detecting an embedded object such as a reinforcing bar in concrete by detecting the reflected wave by radiating an electromagnetic wave while rotating and moving a wheel in contact with the surface of concrete
- the input from the rotation detection unit that detects the information about the rotation of the wheel is stopped, and the change in the data of the reflected wave received by the reception unit satisfies a predetermined condition
- the control is performed so as to stop the emission of electromagnetic waves.
- the buried object in the target object includes, for example, a reinforcing bar in concrete.
- the information regarding the rotation detected by the rotation detection unit includes, for example, the rotation speed and the rotation direction of the wheel.
- changes in the reflected wave data include, for example, changes in the speed (intensity) of the reflected wave, or changes in the time until the reflected wave is detected after the electromagnetic wave is radiated from the radiation section. That is, it is detected that the embedded object detection device is separated from the surface of the target object by detecting the change in the reflected wave data.
- the input from the rotation detection unit is stopped (the rotation of the wheels is stopped), and the change in the received reflected wave data satisfies a predetermined condition (the embedded object detection device is separated from the surface of the object).
- the embedded object detection device is separated from the surface of the object.
- An embedded object detection method is an embedded object detection device that detects an embedded object in an object using data regarding a reflected wave of an electromagnetic wave emitted toward the object while moving on the surface of the object.
- the embedded object detecting method used includes a rotation detecting step, a radiation step, a receiving step, and a stopping step.
- the rotation detection step the rotation detection unit connected to the wheel provided in the buried object detection device detects information about the rotation of the wheel.
- the radiation step radiates an electromagnetic wave from the radiation unit.
- the receiving section receives the reflected wave of the electromagnetic wave emitted from the emitting section.
- the stopping step detects that the input from the rotation detection unit is stopped while the electromagnetic wave is being radiated from the radiation unit, and stops the radiation of the electromagnetic wave from the radiation unit when a predetermined time has elapsed.
- an embedded object detection method for detecting an embedded object such as a reinforcing bar in concrete by detecting the reflected wave by radiating an electromagnetic wave while rotating and moving a wheel in contact with the surface of concrete.
- an embedded object detection method for detecting an embedded object such as a reinforcing bar in concrete by detecting the reflected wave by radiating an electromagnetic wave while rotating and moving a wheel in contact with the surface of concrete.
- the buried object in the target object includes, for example, a reinforcing bar in concrete.
- the information regarding the rotation detected by the rotation detection unit includes, for example, the rotation speed and the rotation direction of the wheel.
- the detection that the predetermined time has elapsed after the input from the rotation detection unit is stopped means that it is substantially detected that the operation of detecting the embedded object is completed.
- the input from the rotation detection unit is stopped (the rotation of the wheels is stopped) and a predetermined time is stopped, it is determined that the operation of detecting the embedded object is finished, and the emission of electromagnetic waves is stopped. be able to.
- the emission of the electromagnetic wave can be automatically stopped without any operation by the user.
- An embedded object detection method is the embedded object detection method according to the fifth aspect of the present invention, wherein changes in the reflected wave data include changes in the velocity of the reflected wave received by the receiving unit.
- changes in the reflected wave data include changes in the velocity of the reflected wave received by the receiving unit.
- a change in the velocity of the reflected wave received by the reception unit is detected.
- the velocity of the detected reflected wave changes by a predetermined value or more, for example, compared with the velocity of the reflected wave in a state where the embedded object detection device stored in advance is in contact with the surface of the object. If it is, it can be determined that the embedded object detection device is separated from the surface of the object.
- An embedded object detection method is the embedded object detection method according to the fifth aspect of the present invention, in which a change in time from when the electromagnetic wave is radiated from the radiation section to when the reflected wave is detected at the reception section is changed. included.
- a change in time from the emission of the electromagnetic wave from the emission unit to the detection of the reflected wave at the reception unit is detected.
- the time until the reflected wave is detected is compared with, for example, the time until the embedded object detection device, which is stored in advance, detects the reflected wave when the embedded object detection device is in contact with the surface of the object, When the value changes by more than the value, it can be determined that the embedded object detection device is separated from the surface of the object.
- the emission of electromagnetic waves can be automatically stopped without any operation by the user.
- FIG. 1 is a perspective view showing a configuration of an embedded object detection device according to an embodiment of the present invention.
- the block diagram which shows the structure of the embedded object detection apparatus of FIG.
- the block diagram which shows the structure of the impulse control module of FIG.
- FIG. 3 is a block diagram showing a configuration of a main control module of FIG. 2.
- the flowchart which shows the flow of a process of the buried object detection method implemented by the buried object detection apparatus of FIG.
- the flowchart which shows the flow of the process of the radiation start control of the electromagnetic wave contained in the buried object detection method of FIG. (A), (b) is a figure which shows the input example from an encoder.
- FIG. 9A is a graph showing the difference between the graph of FIG. 9B and the graph of FIG. 10B.
- B is a graph in which the range of the vertical axis of (a) is reduced.
- FIG. 11 is a flowchart showing a processing flow of radiation stop control of electromagnetic waves included in the buried object detection method of FIG. 10.
- FIG. 11 is a sequence diagram showing a flow of processing of emission stop control of electromagnetic waves in FIG. 10.
- the flowchart which shows the flow of the process of radiation stop control of the electromagnetic wave contained in the buried object detection method which concerns on other embodiment of this invention.
- the flowchart which shows the process flow of the radiation stop control of the electromagnetic wave contained in the buried object detection method which concerns on other embodiment of this invention.
- FIG. 18 is a sequence diagram showing a flow of processing of emission stop control of electromagnetic waves in FIG. 17.
- FIG. 1 is a perspective view showing a state in which the embedded object detection device 1 of the present embodiment is placed on concrete (object) 100.
- FIG. 2 is a block diagram showing a schematic configuration of the embedded object detection device 1 of the present embodiment.
- the embedded object detection apparatus 1 of the present embodiment radiates an electromagnetic wave to the concrete 100 while moving on the surface 100a of an object such as concrete 100, receives the reflected wave, and analyzes the electromagnetic wave to obtain an embedded object in the concrete 100.
- the positions of 101a, 101b, 101c and 101d are detected. Further, in FIG. 1, the moving direction A of the embedded object detection device 1 is indicated by an arrow.
- the embedded objects 101a, 101b, 101c, 101d are reinforcing bars, and are embedded at depths of 20 cm, 15 cm, 10 cm, 5 cm from the surface 100a of the concrete 100, respectively. ..
- the depth direction B of the concrete 100 is indicated by an arrow
- the opposite direction (surface direction C) is indicated by an arrow.
- the four reinforcing bars (embedded objects 101a to 101d) embedded in the concrete 100 are arranged in a direction intersecting the moving direction of the embedded object detection device 1 along a direction substantially parallel to the surface 100a of the concrete 100, respectively. Has been done.
- the embedded object detection device 1 includes a main body part 2, a handle 3, four wheels 4, an impulse control module 5, a main control module 6, an encoder (rotation detection part) 7, and a display part 8. ing.
- the handle 3 is provided on the upper surface of the main body 2.
- the four wheels are rotatably attached to the lower portion of the main body 2.
- the impulse control module 5 controls the timing of emitting an electromagnetic wave toward the concrete 100, the timing of receiving a reflected wave of the emitted electromagnetic wave, and the like.
- the encoder 7 is connected to the wheel 4, detects information about the rotation of the wheel 4, and transmits a signal for controlling the reception timing of the reflected wave to the impulse control module 5 based on the detected information. ..
- the transmitting antenna 11 when starting the detection of the embedded objects 101a to 101d in the concrete 100, the transmitting antenna 11 is used by using the information about the rotation of the wheels 4 input from the encoder 7. Control the start of electromagnetic wave emission.
- the information about the rotation of the wheel 4 includes the rotation speed, the rotation direction, etc. of the wheel 4.
- the electromagnetic wave emission start control will be described later in detail.
- the main control module 6 receives the data regarding the reflected wave received by the impulse control module 5, and detects the buried object.
- the display unit 8 is provided on the upper surface of the main body unit 2 and displays an image or the like indicating the positions of the embedded objects 101a, 101b, 101c, and 101d.
- FIG. 3 is a block diagram showing the configuration of the impulse control module 5.
- the impulse control module 5 has a control unit (radiation control unit) 10, a transmission antenna 11, a reception antenna 12, a pulse generation unit 13, a delay unit 14, and a gate unit 15.
- the control unit 10 is configured by an MPU (Micro Processing Unit) and the like, and commands the pulse generation unit 13 to generate a pulse by using the encoder input as a trigger.
- the pulse generator 13 generates a pulse based on a command from the MPU and outputs it to the transmitting antenna 11.
- the control unit 10 when the worker (user) starts the operation of detecting the embedded object 101 in the concrete 100 using the embedded object detection device 1, the control unit 10 emits electromagnetic waves based on the input status from the encoder 7.
- the electromagnetic wave emission start control is performed to determine whether or not to start. Further, the control unit 10 stops the input from the encoder 7 while performing the detection operation of the embedded object 101 in the concrete 100 using the embedded object detection device 1, and the reflected wave at the receiving antenna 12
- electromagnetic wave emission stop control for stopping emission of electromagnetic waves from the transmitting antenna 11 is performed.
- the transmission antenna 11 is provided on the bottom surface side of the main body 2 and radiates an electromagnetic wave at a constant period based on the pulse period.
- the receiving antenna 12 is provided on the bottom surface side of the main body 2, and mainly receives the reflected wave of the electromagnetic wave radiated from the transmitting antenna 11.
- the gate unit 15 receives the pulse from the delay unit 14, the gate unit 15 captures the reflected wave received by the reception antenna 12 and transmits the reflected wave to the control unit 10.
- the delay unit 14 causes the gate unit 15 to capture the reflected wave at a predetermined interval with respect to the gate unit 15. This predetermined interval is set to 2.5 mm pitch.
- the impulse control module 5 triggers the input from the encoder or 7 to output the electromagnetic wave from the transmitting antenna 11 multiple times. Then, the impulse control module 5 can acquire the reception data for each distance to the reception antenna 12 by delaying the reception timing by using the delay IC of the delay unit 14.
- FIG. 4 is a diagram showing data of reflected waves acquired by the MPU.
- the vertical axis represents the intensity of the received signal in ⁇ 4096 to +4096 gradations with the axis O as the center, and the arrow direction indicates the negative side.
- the horizontal axis indicates the distance from the receiving antenna 12, and the arrow direction (corresponding to the depth direction B) indicates that the distance from the receiving antenna 12 is long. In addition, a long distance corresponds to a large depth.
- the waveform W1 shown in FIG. 4 also includes the reflected wave reflected by the antenna without being radiated into the concrete 100 (p1 etc.), the difference from the reference waveform is calculated. The change in the data of the reflected wave from inside the concrete 100 is extracted.
- the data shown in FIG. 4 is data indicating the strength of the received signal after the encoder 7 receives an input and before the encoder 7 receives the next input.
- the control unit 10 transmits the RF (Radio Frequency) data for one line to the main control module 6 every time the data for one line is accumulated.
- the measurement positions are not exactly the same position, and the depth direction B is also relative to the surface 100a of the concrete 100. Not in a strictly vertical direction.
- FIG. 5 is a block diagram showing the configuration of the main control module 6.
- the main control module 6 includes a reception unit 21, an RF data management unit 22, an embedded object determination unit 24, a determination result registration unit 25, and a display control unit 26.
- the receiving unit 21 receives one line of RF data each time it is transmitted from the impulse control module 5.
- the RF data management unit 22 stores the RF data for one line received by the reception unit 21.
- the embedded object determination unit 24 uses the RF data for one line stored in the RF data management unit 22 to determine the presence or absence of the embedded object 101 and detect the position of the embedded object 101.
- the detection processing of the embedded object 101 in the embedded object determination unit 24 may be performed using a known method based on the RF data of a plurality of lines received by the receiving antenna 12.
- the receiving antenna 12 detects the velocity (intensity) of the reflected wave reflected on the surface of the buried object 101 and the time until the reflected wave is received, and thus the buried object in the concrete 100 is detected.
- the presence or absence of 101 and its position can be detected.
- the determination result registration unit 25 registers the position of the buried object detected by the buried object determination unit 24 in the RF data management unit 22.
- the display control unit 26 controls the display unit 8 so as to display the image in which the signal intensity is gradation-processed by color on the plane of the moving direction A and the depth direction B and the position of the embedded object 101.
- the embedded object detection device 1 described above is used to detect the embedded object 101 in the concrete 100 according to the flowchart shown in FIG.
- step S1 the initialization process is performed, and the input from the encoder 7 and the timer (not shown) is used as a trigger to control the transmitting antenna 11 and the receiving antenna 12 to receive the RF data for one line. To do.
- step S2 the control unit 10 executes the electromagnetic wave emission start control for determining whether to radiate the electromagnetic wave from the transmitting antenna 11 based on the information about the rotation of the wheel 4 received from the encoder 7.
- step S3 the emission stop control of the electromagnetic wave is performed based on the change in the waveform of the reflected wave received by the receiving antenna 12 after the emission start condition of the electromagnetic wave is satisfied and the emission of the electromagnetic wave is started in step S2. Carry out.
- step S4 after determining in step S3 whether or not to stop the emission of electromagnetic waves, it is determined whether or not to end the search for the embedded object 101 in the concrete 100.
- step S5 the presence or absence of the embedded object 101 in the concrete 100 and its position are detected using the RF data for one line of the reflected wave received by the receiving antenna 12, and the process ends.
- the control unit 10 included in the impulse control module 5 starts emitting electromagnetic waves from the transmission antenna 11 based on the input status from the encoder 7. Decide whether or not.
- step S11 the control unit 10 determines whether or not there is an input from the encoder 7.
- step S12 the process proceeds to step S12, and step S11 is repeated until the input is made.
- step S12 the control unit 10 detects whether or not the encoder 7 continuously inputs N times or more in the same direction, so that the rotation of the wheels 4 on the surface 100a of the concrete 100 is stable. It is determined whether or not there is.
- the input continuous N times or more in the same direction includes, for example, a case where there are five or more inputs in the rotation direction indicating movement to the right in the figure, as shown in FIG. 8A. ..
- the embedded object detection device 1 is moved in different directions depending on the worker (user), as shown in FIG. 8B, the first input is made after the moving direction (rotational direction) is changed. It is counted as one time, and if there is continuous input from the same direction in the same direction, the process proceeds to step S13. Therefore, in the example shown in FIG. 8B, the right input, the right input, the left input, the right input, and so on are counted as the first input from the fourth input, and from there, the input is input five times to the right continuously. Therefore, the process proceeds to step S13.
- step S13 the control unit 10 determines in step S12 that the input from the encoder 7 is stable, that is, the rotation of the wheels 4 is stable, and thus radiates a temporary electromagnetic wave for a predetermined time.
- the transmission antenna 11 is controlled via the pulse generator 13.
- step S14 the data for one line, which receives the reflected wave of the electromagnetic wave radiated from the transmitting antenna 11 in step S13, is received from the receiving antenna 12.
- step S15 the control unit 10 uses the waveform of the data for one line of the reflected wave of the temporary electromagnetic wave received from the reception antenna 12 to determine whether or not the data indicates the inside of air.
- the data in the air means a state in which the embedded object detection device 1 is lifted by an operator or the like and is separated from the surface 100a of the concrete 100. Further, the principle for detecting that the embedded object detection device 1 is separated from the surface 100a of the concrete 100 will be described.
- the wheels 4 of the buried object detection device 1 are in contact with the surface 100a of the concrete 100, the radiated electromagnetic wave passes through the inside from the surface 100a of the concrete 100, as shown in FIG. 9A. Then, the reflected wave is received by the receiving antenna 12.
- FIG. 9B shows the velocity (vertical axis) of the reflected wave with respect to the depth (horizontal axis) from the surface 100a of the concrete 100 at this time.
- FIG. 10( b) shows the velocity (vertical axis) of the reflected wave with respect to the depth (horizontal axis) from the surface 100 a of the concrete 100 at this time.
- the difference between the graph shown in FIG. 9B and the graph shown in FIG. 10B is shown as a graph shown in FIG.
- FIG. 11B the range of the vertical axis of the graph shown in FIG. 11A is narrowed to show the change of the graph in an easy-to-understand manner. That is, as shown in FIG. 11B, a case where the embedded object detection device 1 is in contact with the surface 100a of the concrete 100 (see FIG. 9A) and a case where the embedded object detection apparatus 1 is separated (FIG. 10A). It can be seen that there is a large difference in the velocity (intensity) of the received wave near the surface 100a of the concrete 100.
- the waveform is compared with the waveform when the surface 100a of the concrete 100 is contacted (see FIG. 9B), and when the peak has a smaller peak than the graph showing the difference shown in FIG.
- the buried object detection apparatus 1 determines that it is near the surface 100a of the concrete 100, and proceeds to step S16.
- the buried object detection apparatus 1 is currently separated from the surface 100a of the concrete 100 and is determined to be in the air, It proceeds to step S17.
- step S16 since it is determined in step S15 that the embedded object detection device 1 is near the surface 100a of the concrete 100, the control unit 10 causes the embedded object detection device 1 to move stably, and It is determined that it is near the surface 100a of the concrete 100, and control is performed so that the transmitting antenna 11 emits an electromagnetic wave.
- the electromagnetic wave emitted here and the temporary electromagnetic wave emitted in step S13 may have the same intensity, or may have different intensities such as weakening the temporary electromagnetic wave.
- step S17 since it is determined in step S15 that the embedded object detection device 1 is separated from the surface 100a of the concrete 100 and is in the air, the control unit 10 controls the transmission antenna 11 to generate an electromagnetic wave. Stop the radiation. With this, when the detection of the embedded object 101 in the concrete 100 is started, it is possible to automatically radiate an electromagnetic wave without an operation by a worker.
- the embedded object detection device 1 described above is used to control the emission stop of electromagnetic waves from the transmitting antenna 11 in accordance with the flowchart shown in FIG. 12 and the sequence diagram shown in FIG.
- step S21 it is detected whether or not electromagnetic waves are emitted.
- the process proceeds to step S22, and if the emission of the electromagnetic wave is already stopped, the process ends.
- the radiation of electromagnetic waves is input from the encoder 7 to the control unit 10 by the operator operating the embedded object detection device 1 on the surface 100a of the concrete 100, and the control unit This is carried out by transmitting an electromagnetic wave radiation instruction to the transmitting antenna 11.
- step S22 since it is detected that electromagnetic waves are being radiated, it is detected whether or not the input from the encoder 7 has stopped. If the input from the encoder 7 is stopped, the process proceeds to step S23. If the input from the encoder 7 is continued, the process waits until the input from the encoder 7 is stopped.
- step S23 it is determined whether or not the exploration surface separation comparison data used for detecting that the embedded object detection device 1 is separated from the surface 100a of the concrete 100 has been initialized. If it has been initialized, the process proceeds to step S24. On the other hand, if it has not been initialized, the process proceeds to step S25 to initialize the comparison data with 1-line data.
- the exploration surface separation comparison data for example, a graph or the like showing data of reflected waves (see FIG. 9B) in a state where the above-mentioned embedded object detection device 1 is in contact with the surface 100a of the concrete 100 may be used. it can.
- step S24 the data of one line of the reflected wave received by the receiving antenna 12 (for example, the graph of FIG. 10B) is compared with the previously stored search surface separation comparison data. , It is determined whether there is a difference (change) equal to or larger than a predetermined threshold value. Here, if there is a difference (change) equal to or greater than the predetermined threshold value, the process proceeds to step S26.
- the embedded object detection device 1 is in a state of being separated from the surface 100a (see FIG. 10A) with reference to a state of contacting the surface 100a of the concrete 100 (see FIG. 9A).
- the process of determining whether or not it can be similarly performed using the graph shown in FIG.
- step S26 the control unit 10 confirms the emission of the electromagnetic wave in step S21, confirms the stop of the input from the encoder 7 in step S22, and confirms that the reflected wave data is compared with the comparison data in step S24. By confirming that there is a difference equal to or more than the threshold value, it is determined that the embedded object detection device 1 is separated from the surface 100a of the concrete 100, and the transmission antenna is transmitted via the pulse generation unit 13 so as to stop the emission of electromagnetic waves. Control 11
- the emission of electromagnetic waves can be automatically stopped without any operation by the operator.
- the electromagnetic waves by preventing the electromagnetic waves from being radiated except during work, it is possible to suppress wasteful power consumption and prevent the service life of components such as circuit elements of the transmitting antenna 11 from being deteriorated.
- step S12 of FIG. 7 an example in which the stability of the rotation of the wheels 4 is detected on the condition that the input from the encoder 7 is continuous N times or more has been described.
- the present invention is not limited to this.
- the stability of the rotation of the wheels may be detected on the condition that the input from the encoder is stable within a predetermined range of the rotation speed of the wheels for a predetermined time or more. ..
- control unit when the control unit detects that the rotation of the wheels is stable based on the input state from the encoder, the control unit controls to start the emission of the electromagnetic wave from the transmitting antenna. Good.
- the stable rotation of the wheels means, for example, that the rotation directions of the wheels are the same direction for a predetermined number of times (predetermined pulses) or more, as shown in step S12 of FIG. 15, or in step S112 of FIG.
- the rotation speed of the wheel is stable within a predetermined range, and a combination thereof is included.
- step S123 a timer that measures the time after the encoder 7 is stopped is initialized, and in step S124, the input from the encoder 7 is stopped.
- the control unit 10 may control the emission of the electromagnetic wave from the transmitting antenna 11 to be stopped in step S125 when the predetermined time has elapsed.
- the control unit 10 may control the transmission antenna 11 so that the emission of electromagnetic waves from the transmission antenna 11 is stopped when the number of times of data transmission performed at intervals of 100 ms exceeds a predetermined number.
- the embedded object detection device 1 in which the four wheels 4 are attached to the main body 2 is used to detect the embedded object 101 in the concrete 100 has been described.
- the present invention is not limited to this.
- the number of wheels attached to the main body is not limited to four, and may be one, two, three, or five or more.
- the buried object 101 detected by the buried object detection device 1 has been described by taking an example in which the reinforcing bars in the concrete 100 are used.
- the present invention is not limited to this, and may be used for detecting foreign substances in other materials.
- the embedded object detection device of the present invention has the effect of automatically stopping the emission of electromagnetic waves when the operation of detecting an embedded object is completed, without the user's operation. It is widely applicable to various devices and methods for performing.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Geophysics And Detection Of Objects (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
埋設物検出装置(1)は、本体部(2)、送信アンテナ(11)、受信アンテナ(12)、車輪(4)、エンコーダ(7)、制御部(10)を備える。送信アンテナ(11)は、本体部(2)に設けられ電磁波を放射する。受信アンテナ(12)は、電磁波の反射波を受信する。車輪(4)は、本体部(2)に取り付けられコンクリート(100)の表面(100a)に接触した状態で回転する。エンコーダ(7)は、車輪(4)に接続され、車輪(4)の回転に関する情報を検出して出力する。制御部(10)は、送信アンテナ(11)から電磁波が放射されている時、エンコーダ(7)からの入力が停止したことを検出し、かつ受信アンテナ(12)において受信した反射波のデータの変化が所定の条件を満たした場合、送信アンテナ(11)からの電磁波の放射を停止させる。
Description
本発明は、埋設物検出装置および埋設物検出方法に関する。
例えば、コンクリート内の埋設物を探索する装置として、コンクリートの表面を移動させながら、コンクリートに向かって放射した電磁波の反射波から埋設物を検出するウォールスキャナ(埋設物検出装置)が用いられている(例えば、特許文献1参照)。
しかしながら、上記従来のウォールスキャナは、以下に示すような問題点を有している。
すなわち、上記従来のウォールスキャナでは、例えば、コンクリート中の埋設物の検出を終了する際に、ユーザが手動で電磁波の放射停止ボタンを操作していた。このため、ユーザが放射停止ボタンを操作することを忘れてしまった場合には、電磁波が放射された状態のままになってしまうという問題があった。
すなわち、上記従来のウォールスキャナでは、例えば、コンクリート中の埋設物の検出を終了する際に、ユーザが手動で電磁波の放射停止ボタンを操作していた。このため、ユーザが放射停止ボタンを操作することを忘れてしまった場合には、電磁波が放射された状態のままになってしまうという問題があった。
本発明の課題は、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することが可能な埋設物検出装置および埋設物検出方法を提供することにある。
第1の発明に係る埋設物検出装置は、対象物の表面を移動しながら対象物に向かって放射した電磁波の反射波に関するデータを用いて対象物内の埋設物を検出する埋設物検出装置であって、本体部と、放射部と、受信部と、車輪と、回転検出部と、制御部と、を備えている。放射部は、本体部に設けられ、電磁波を放射する。受信部は、本体部に設けられ、電磁波の反射波を受信する。車輪は、本体部に取り付けられており、対象物の表面に接触した状態で回転する。回転検出部は、本体部に設けられ、車輪に接続されており、車輪の回転に関する情報を検出して出力する。制御部は、放射部から電磁波が放射されている時、回転検出部からの入力が停止したことを検出し、かつ、受信部において受信した反射波のデータの変化が所定の条件を満たした場合に、放射部からの電磁波の放射を停止させる。
ここでは、例えば、コンクリートの表面に接触させた車輪を回転させて移動しながら電磁波を放射し、その反射波を検出することでコンクリート内の鉄筋等の埋設物を検出する埋設物検出装置において、電磁波が放射されている状態で、車輪の回転に関する情報を検出する回転検出部からの入力が停止しており、受信部において受信した反射波のデータの変化が所定の条件を満たした場合に、埋設物の検出作業が終了したと判断して、電磁波の放射を停止するように制御する。
ここで、対象物内の埋設物には、例えば、コンクリート内の鉄筋等が含まれる。また、回転検出部において検出される回転に関する情報には、例えば、車輪の回転速度、回転方向等が含まれる。
さらに、制御部において検出される反射波のデータの変化には、例えば、反射波の速度(強度)の変化、あるいは放射部から電磁波が放射された後、反射波を検出するまでの時間の変化等が含まれる。つまり、反射波のデータの変化を検出することで、埋設物検出装置が対象物の表面から離間したことを検出する。
これにより、回転検出部からの入力が停止(車輪の回転が停止)し、かつ、受信した反射波のデータの変化が所定の条件を満たす(埋設物検出装置が対象物の表面から離間した)場合には、埋設物の検出作業が終了したと判断して、電磁波の放射を停止することができる。
この結果、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができる。
この結果、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができる。
第2の発明に係る埋設物検出装置は、対象物の表面を移動しながら対象物に向かって放射した電磁波の反射波に関するデータを用いて対象物内の埋設物を検出する埋設物検出装置であって、本体部と、放射部と、受信部と、車輪と、回転検出部と、制御部と、を備えている。放射部は、本体部に設けられ、電磁波を放射する。受信部は、本体部に設けられ、電磁波の反射波を受信する。車輪は、本体部に取り付けられており、対象物の表面に接触した状態で回転する。回転検出部は、本体部に設けられ、車輪に接続されており、車輪の回転に関する情報を検出して出力する。制御部は、放射部から電磁波が放射されている時、回転検出部からの入力が停止したことを検出し、かつ、所定時間が経過した場合に、放射部からの電磁波の放射を停止させる。
ここでは、例えば、コンクリートの表面に接触させた車輪を回転させて移動しながら電磁波を放射し、その反射波を検出することでコンクリート内の鉄筋等の埋設物を検出する埋設物検出装置において、電磁波が放射されている状態で、車輪の回転に関する情報を検出する回転検出部からの入力が停止しており、その状態で所定時間が経過した場合に、埋設物の検出作業が終了したと判断して、電磁波の放射を停止するように制御する。
ここで、対象物内の埋設物には、例えば、コンクリート内の鉄筋等が含まれる。また、回転検出部において検出される回転に関する情報には、例えば、車輪の回転速度、回転方向等が含まれる。
さらに、回転検出部からの入力が停止してから所定時間が経過したことの検出は、実質的に、埋設物の検出作業が終了したことを検出することを意味する。
これにより、回転検出部からの入力が停止(車輪の回転が停止)し、かつ、所定時間が停止した場合には、埋設物の検出作業が終了したと判断して、電磁波の放射を停止することができる。
この結果、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができる。
これにより、回転検出部からの入力が停止(車輪の回転が停止)し、かつ、所定時間が停止した場合には、埋設物の検出作業が終了したと判断して、電磁波の放射を停止することができる。
この結果、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができる。
第3の発明に係る埋設物検出装置は、第1の発明に係る埋設物検出装置であって、反射波のデータの変化には、受信部において受信した反射波の速度の変化が含まれる。
ここでは、埋設物検出装置が対象物の表面から離間したことを検出するために、受信部において受信した反射波の速度の変化を検出する。
これにより、検出された反射波の速度が、例えば、予め記憶されている埋設物検出装置が対象物の表面に接触している状態における反射波の速度と比較して、所定値以上、変化している場合には、埋設物検出装置が対象物の表面から離間していると判断することができる。
ここでは、埋設物検出装置が対象物の表面から離間したことを検出するために、受信部において受信した反射波の速度の変化を検出する。
これにより、検出された反射波の速度が、例えば、予め記憶されている埋設物検出装置が対象物の表面に接触している状態における反射波の速度と比較して、所定値以上、変化している場合には、埋設物検出装置が対象物の表面から離間していると判断することができる。
第4の発明に係る埋設物検出装置は、第1の発明に係る埋設物検出装置であって、反射波のデータの変化には、放射部から電磁波が放射されてから受信部においてその反射波を検出するまでの時間の変化が含まれる。
ここでは、埋設物検出装置が対象物の表面から離間したことを検出するために、放射部から電磁波が放射されてから受信部においてその反射波を検出するまでの時間の変化を検出する。
これにより、反射波を検出するまでの時間が、例えば、予め記憶されている埋設物検出装置が対象物の表面に接触している状態における反射波を検出するまでの時間と比較して、所定値以上、変化している場合には、埋設物検出装置が対象物の表面から離間していると判断することができる。
第5の発明に係る埋設物検出方法は、対象物の表面を移動しながら対象物に向かって放射した電磁波の反射波に関するデータを用いて対象物内の埋設物を検出する埋設物検出装置を用いた埋設物検出方法であって、回転検出ステップと、放射ステップと、受信ステップと、停止ステップと、を備えている。回転検出ステップは、埋設物検出装置に設けられた車輪に接続された回転検出部において、車輪の回転に関する情報を検出する。放射ステップは、放射部から電磁波を放射する。受信ステップは、放射部から放射された電磁波の反射波を受信部において受信する。停止ステップは、放射部から電磁波が放射されている時に、回転検出部からの入力が停止したことを検出し、かつ、受信部において受信した反射波のデータの変化が所定の条件を満たした場合に、放射部からの電磁波の放射を停止させる。
ここでは、例えば、コンクリートの表面に接触させた車輪を回転させて移動しながら電磁波を放射し、その反射波を検出することでコンクリート内の鉄筋等の埋設物を検出する埋設物検出方法において、電磁波が放射されている状態で、車輪の回転に関する情報を検出する回転検出部からの入力が停止しており、受信部において受信した反射波のデータの変化が所定の条件を満たした場合に、埋設物の検出作業が終了したと判断して、電磁波の放射を停止するように制御する。
ここで、対象物内の埋設物には、例えば、コンクリート内の鉄筋等が含まれる。また、回転検出部において検出される回転に関する情報には、例えば、車輪の回転速度、回転方向等が含まれる。
さらに、反射波のデータの変化には、例えば、反射波の速度(強度)の変化、あるいは放射部から電磁波が放射された後、反射波を検出するまでの時間の変化等が含まれる。つまり、反射波のデータの変化を検出することで、埋設物検出装置が対象物の表面から離間したことを検出する。
これにより、回転検出部からの入力が停止(車輪の回転が停止)し、かつ、受信した反射波のデータの変化が所定の条件を満たす(埋設物検出装置が対象物の表面から離間した)場合には、埋設物の検出作業が終了したと判断して、電磁波の放射を停止することができる。
この結果、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができる。
この結果、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができる。
第6の発明に係る埋設物検出方法は、対象物の表面を移動しながら対象物に向かって放射した電磁波の反射波に関するデータを用いて対象物内の埋設物を検出する埋設物検出装置を用いた埋設物検出方法であって、回転検出ステップと、放射ステップと、受信ステップと、停止ステップと、を備えている。回転検出ステップは、埋設物検出装置に設けられた車輪に接続された回転検出部において、車輪の回転に関する情報を検出する。放射ステップは、放射部から電磁波を放射する。受信ステップは、放射部から放射された電磁波の反射波を受信部において受信する。停止ステップは、放射部から電磁波が放射されている時に、回転検出部からの入力が停止したことを検出し、かつ、所定時間が経過した場合に、放射部からの電磁波の放射を停止させる。
ここでは、例えば、コンクリートの表面に接触させた車輪を回転させて移動しながら電磁波を放射し、その反射波を検出することでコンクリート内の鉄筋等の埋設物を検出する埋設物検出方法において、電磁波が放射されている状態で、車輪の回転に関する情報を検出する回転検出部からの入力が停止しており、その状態で所定時間が経過した場合に、埋設物の検出作業が終了したと判断して、電磁波の放射を停止するように制御する。
ここで、対象物内の埋設物には、例えば、コンクリート内の鉄筋等が含まれる。また、回転検出部において検出される回転に関する情報には、例えば、車輪の回転速度、回転方向等が含まれる。
さらに、回転検出部からの入力が停止してから所定時間が経過したことの検出は、実質的に、埋設物の検出作業が終了したことを検出することを意味する。
これにより、回転検出部からの入力が停止(車輪の回転が停止)し、かつ、所定時間が停止した場合には、埋設物の検出作業が終了したと判断して、電磁波の放射を停止することができる。
この結果、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができる。
これにより、回転検出部からの入力が停止(車輪の回転が停止)し、かつ、所定時間が停止した場合には、埋設物の検出作業が終了したと判断して、電磁波の放射を停止することができる。
この結果、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができる。
第7の発明に係る埋設物検出方法は、第5の発明に係る埋設物検出方法であって、反射波のデータの変化には、受信部において受信した反射波の速度の変化が含まれる。
ここでは、埋設物検出装置が対象物の表面から離間したことを検出するために、受信部において受信した反射波の速度の変化を検出する。
これにより、検出された反射波の速度が、例えば、予め記憶されている埋設物検出装置が対象物の表面に接触している状態における反射波の速度と比較して、所定値以上、変化している場合には、埋設物検出装置が対象物の表面から離間していると判断することができる。
ここでは、埋設物検出装置が対象物の表面から離間したことを検出するために、受信部において受信した反射波の速度の変化を検出する。
これにより、検出された反射波の速度が、例えば、予め記憶されている埋設物検出装置が対象物の表面に接触している状態における反射波の速度と比較して、所定値以上、変化している場合には、埋設物検出装置が対象物の表面から離間していると判断することができる。
第8の発明に係る埋設物検出方法は、第5の発明に係る埋設物検出方法であって、放射部から電磁波が放射されてから受信部においてその反射波を検出するまでの時間の変化が含まれる。
ここでは、埋設物検出装置が対象物の表面から離間したことを検出するために、放射部から電磁波が放射されてから受信部においてその反射波を検出するまでの時間の変化を検出する。
ここでは、埋設物検出装置が対象物の表面から離間したことを検出するために、放射部から電磁波が放射されてから受信部においてその反射波を検出するまでの時間の変化を検出する。
これにより、反射波を検出するまでの時間が、例えば、予め記憶されている埋設物検出装置が対象物の表面に接触している状態における反射波を検出するまでの時間と比較して、所定値以上、変化している場合には、埋設物検出装置が対象物の表面から離間していると判断することができる。
(発明の効果)
本発明に係る埋設物検出装置によれば、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができる。
本発明に係る埋設物検出装置によれば、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができる。
本発明の一実施形態に係る埋設物検出装置1について、図1~図13を用いて説明すれば以下の通りである。
図1は、本実施形態の埋設物検出装置1をコンクリート(対象物)100上に配置した状態を示す斜視図である。図2は、本実施形態の埋設物検出装置1の概略構成を示すブロック図である。
図1は、本実施形態の埋設物検出装置1をコンクリート(対象物)100上に配置した状態を示す斜視図である。図2は、本実施形態の埋設物検出装置1の概略構成を示すブロック図である。
(1-1.埋設物検出装置1の構成)
本実施形態の埋設物検出装置1は、コンクリート100等の対象物の表面100aを移動しながら電磁波をコンクリート100に放射し、その反射波を受信して解析することによって、コンクリート100内の埋設物101a,101b,101c,101dの位置を検出する。そして、図1では、埋設物検出装置1の移動方向Aが矢印で示されている。
本実施形態の埋設物検出装置1は、コンクリート100等の対象物の表面100aを移動しながら電磁波をコンクリート100に放射し、その反射波を受信して解析することによって、コンクリート100内の埋設物101a,101b,101c,101dの位置を検出する。そして、図1では、埋設物検出装置1の移動方向Aが矢印で示されている。
なお、図1に示す例では、埋設物101a,101b,101c,101dは、鉄筋であって、例えば、コンクリート100の表面100aから20cm,15cm,10cm,5cmの深さ位置にそれぞれ埋設されている。図1では、コンクリート100の深さ方向Bが矢印で示されており、その反対向き(表面方向C)が矢印で示されている。
コンクリート100内に埋設された4本の鉄筋(埋設物101a~101d)は、それぞれ、コンクリート100の表面100aに略平行な方向に沿って、埋設物検出装置1の移動方向に交差する向きで配置されている。
埋設物検出装置1は、本体部2と、把手3と、4つの車輪4と、インパルス制御モジュール5と、メイン制御モジュール6と、エンコーダ(回転検出部)7と、表示部8と、を備えている。
把手3は、本体部2の上面に設けられている。4つの車輪は、回転可能な状態で、本体部2の下部に取り付けられている。作業者(ユーザ)は、コンクリート100内部の埋設物を検出する際には、把手3を把持して車輪4を回転させながら、コンクリート100の表面100a上で埋設物検出装置1を移動させる。
インパルス制御モジュール5は、コンクリート100に向けて電磁波を放射するタイミング、および放射した電磁波の反射波を受信するタイミング等の制御を行う。
エンコーダ7は、車輪4に接続されており、車輪4の回転に関する情報を検出し、その検出された情報に基づいて、インパルス制御モジュール5に反射波の受信タイミングを制御するための信号を送信する。
エンコーダ7は、車輪4に接続されており、車輪4の回転に関する情報を検出し、その検出された情報に基づいて、インパルス制御モジュール5に反射波の受信タイミングを制御するための信号を送信する。
ここで、本実施形態の埋設物検出装置1では、コンクリート100内の埋設物101a~101dの検出を開始する際に、エンコーダ7から入力される車輪4の回転に関する情報を用いて、送信アンテナ11から電磁波の放射開始制御を行う。
なお、車輪4の回転に関する情報には、車輪4の回転速度、回転方向等が含まれる。そして、電磁波の放射開始制御については、後段にて詳述する。
メイン制御モジュール6は、インパルス制御モジュール5で受信された反射波に関するデータを受け取り、埋設物の検出を行う。
表示部8は、本体部2の上面に設けられており、埋設物101a,101b,101c,101dの位置を示す画像等を表示する。
メイン制御モジュール6は、インパルス制御モジュール5で受信された反射波に関するデータを受け取り、埋設物の検出を行う。
表示部8は、本体部2の上面に設けられており、埋設物101a,101b,101c,101dの位置を示す画像等を表示する。
(1-2.インパルス制御モジュール5)
図3は、インパルス制御モジュール5の構成を示すブロック図である。
図3は、インパルス制御モジュール5の構成を示すブロック図である。
インパルス制御モジュール5は、制御部(放射制御部)10と、送信アンテナ11と、受信アンテナ12と、パルス発生部13と、ディレイ部14と、ゲート部15と、を有している。
制御部10は、MPU(Micro Processing Unit)等によって構成されており、エンコーダ入力をトリガとして、パルス発生部13にパルスの発生を指令する。パルス発生部13は、MPUからの指令に基づいてパルスを発生させ、送信アンテナ11に出力する。
また、制御部10は、作業者(ユーザ)が埋設物検出装置1を用いてコンクリート100内の埋設物101の検出作業を開始する際に、エンコーダ7からの入力状況に基づいて、電磁波の放射を開始するか否かを決定する電磁波放射開始制御を行う。さらに、制御部10は、埋設物検出装置1を用いてコンクリート100内の埋設物101の検出作業を実施している際に、エンコーダ7からの入力が停止し、かつ受信アンテナ12において反射波のデータの変化を検出した場合に、送信アンテナ11からの電磁波の放射を停止させる電磁波放射停止制御を行う。
なお、電磁波放射開始制御および電磁波放射停止制御の内容については、後段にて詳述する。
送信アンテナ11は、本体部2の底面側に設けられており、パルスの周期に基づいて、一定周期で電磁波を放射する。
送信アンテナ11は、本体部2の底面側に設けられており、パルスの周期に基づいて、一定周期で電磁波を放射する。
受信アンテナ12は、本体部2の底面側に設けられており、主に、送信アンテナ11から放射された電磁波の反射波を受信する。
ゲート部15は、ディレイ部14からのパルスを受信すると、受信アンテナ12で受信した反射波を取り込み、制御部10へと送信する。
ゲート部15は、ディレイ部14からのパルスを受信すると、受信アンテナ12で受信した反射波を取り込み、制御部10へと送信する。
ディレイ部14は、ゲート部15に対して所定間隔で、ゲート部15に反射波を取り込ませる。この所定間隔は、2.5mmピッチに設定されている。
これにより、インパルス制御モジュール5は、エンコーダか7からの入力をトリガとして、送信アンテナ11から電磁波を複数回出力する。そして、インパルス制御モジュール5は、ディレイ部14によるディレイICを用いて受信タイミングを遅らせることで受信アンテナ12との距離ごとの受信データを取得することができる。
これにより、インパルス制御モジュール5は、エンコーダか7からの入力をトリガとして、送信アンテナ11から電磁波を複数回出力する。そして、インパルス制御モジュール5は、ディレイ部14によるディレイICを用いて受信タイミングを遅らせることで受信アンテナ12との距離ごとの受信データを取得することができる。
図4は、MPUが取得する反射波のデータを示す図である。縦軸は、軸Oを中心として、-4096~+4096階調で受信信号の強度を示し、矢印方向がマイナス側を示す。横軸は、受信アンテナ12との距離を示し、矢印方向(深さ方向Bに対応)が受信アンテナ12からの距離が長いことを示す。また、距離が長いとは、深さが大きいことに相当する。
なお、詳しくは後述するが、図4に示す波形W1には、コンクリート100内に放射されずにアンテナで反射した反射波も含まれる(p1等)ため、基準波形との差分を算出することにより、コンクリート100内からの反射波のデータの変化が抽出される。
また、図4に示すデータは、エンコーダ7の入力があった後、エンコーダ7から次の入力があるまでの受信信号の強度を示すデータである。受信タイミングを除々に遅らせることによって、受信アンテナ12からの距離が長い位置からの反射波を受信するが、エンコーダ7からの入力があると、受信タイミングの遅延が元に戻され、再び受信タイミングを除々に遅らせる。すなわち、移動方向Aにおける所定の計測位置(エンコーダ7からの入力があった位置)における深さ方向Bの反射波を受信することになる。このような図4に示すエンコーダ7の入力があった後、次のエンコーダの入力があるまでに受信した反射波のデータを、1ライン分のデータという。制御部10は、1ライン分のデータが貯まるごとに、その1ライン分のRF(Radio Frequency)データをメイン制御モジュール6へ送信する。
なお、埋設物検出装置1は、作業者(ユーザ)によってコンクリート100の表面100a上を移動しているため、計測位置は厳密に同じ位置ではなく、深さ方向Bもコンクリート100の表面100aに対して厳密に垂直な方向ではない。
(1-3.メイン制御モジュール6)
図5は、メイン制御モジュール6の構成を示すブロック図である。
メイン制御モジュール6は、受信部21と、RFデータ管理部22と、埋設物判定部24と、判定結果登録部25と、表示制御部26と、を有している。
図5は、メイン制御モジュール6の構成を示すブロック図である。
メイン制御モジュール6は、受信部21と、RFデータ管理部22と、埋設物判定部24と、判定結果登録部25と、表示制御部26と、を有している。
受信部21は、インパルス制御モジュール5から送信されるごとに、1ライン分のRFデータを受信する。
RFデータ管理部22は、受信部21が受信した1ライン分のRFデータを記憶する。
RFデータ管理部22は、受信部21が受信した1ライン分のRFデータを記憶する。
埋設物判定部24は、RFデータ管理部22において記憶された1ライン分のRFデータを用いて、埋設物101の有無を判定するとともに、埋設物101の位置を検出する。
なお、埋設物判定部24における埋設物101の検出処理については、受信アンテナ12において受信した複数の1ライン分のRFデータに基づいて、既知の方法を用いて実施すればよい。具体的には、例えば、埋設物101が鉄筋等の金属である場合には、送信アンテナ11から放射された電磁波は、その表面において反射される。このため、受信アンテナ12において、このような埋設物101の表面で反射された反射波の速度(強度)と、反射波を受信するまでの時間とを検出することで、コンクリート100内の埋設物101の有無およびその位置を検出することができる。
なお、埋設物判定部24における埋設物101の検出処理については、受信アンテナ12において受信した複数の1ライン分のRFデータに基づいて、既知の方法を用いて実施すればよい。具体的には、例えば、埋設物101が鉄筋等の金属である場合には、送信アンテナ11から放射された電磁波は、その表面において反射される。このため、受信アンテナ12において、このような埋設物101の表面で反射された反射波の速度(強度)と、反射波を受信するまでの時間とを検出することで、コンクリート100内の埋設物101の有無およびその位置を検出することができる。
判定結果登録部25は、埋設物判定部24によって検出された埋設物の位置をRFデータ管理部22に登録する。
表示制御部26は、移動方向Aと深さ方向Bの平面において信号強度を色で階調処理した画像、および埋設物101の位置を表示するように、表示部8の制御を行う。
表示制御部26は、移動方向Aと深さ方向Bの平面において信号強度を色で階調処理した画像、および埋設物101の位置を表示するように、表示部8の制御を行う。
<埋設物検出処理の流れ>
本実施形態の埋設物検出方法では、上述した埋設物検出装置1を用いて、図6に示すフローチャートに従って、コンクリート100内の埋設物101の検出を行う。
本実施形態の埋設物検出方法では、上述した埋設物検出装置1を用いて、図6に示すフローチャートに従って、コンクリート100内の埋設物101の検出を行う。
すなわち、ステップS1では、初期化処理を実施して、エンコーダ7、タイマ(図示せず)からの入力をトリガとして、送信アンテナ11および受信アンテナ12を制御して、1ライン分のRFデータを受信する。
次に、ステップS2では、制御部10が、エンコーダ7から受信した車輪4の回転に関する情報に基づいて、送信アンテナ11から電磁波を放射するか否かを判定する電磁波放射開始制御を実施する。
なお、電磁波放射開始制御については、図7を用いて後段にて詳述する。
次に、ステップS3では、ステップS2において、電磁波の放射開始条件を満たしており電磁波の放射が開始された後、受信アンテナ12において受信した反射波の波形の変化に基づいて、電磁波の放射停止制御を実施する。
次に、ステップS3では、ステップS2において、電磁波の放射開始条件を満たしており電磁波の放射が開始された後、受信アンテナ12において受信した反射波の波形の変化に基づいて、電磁波の放射停止制御を実施する。
なお、電磁波放射停止制御については、図12等を用いて後段にて詳述する。
次に、ステップS4では、ステップS3において、電磁波の放射を停止させるか否かを決定した後、コンクリート100内の埋設物101の探索を終了するか否かを判定する。
次に、ステップS4では、ステップS3において、電磁波の放射を停止させるか否かを決定した後、コンクリート100内の埋設物101の探索を終了するか否かを判定する。
ここで、引き続き探索を継続する場合には、ステップS2へ戻り、探索を終了する場合にはステップS5へ進む。
次に、ステップS5では、受信アンテナ12において受信された反射波の1ライン分のRFデータを用いて、コンクリート100内における埋設物101の有無、およびその位置を検出して、処理を終了する。
次に、ステップS5では、受信アンテナ12において受信された反射波の1ライン分のRFデータを用いて、コンクリート100内における埋設物101の有無、およびその位置を検出して、処理を終了する。
<電磁波放射開始制御の流れ>
本実施形態の埋設物検出方法では、上述した図6のステップS2の電磁波放射開始制御を、図7に示すフローチャートに従って実施する。
本実施形態の埋設物検出方法では、上述した図6のステップS2の電磁波放射開始制御を、図7に示すフローチャートに従って実施する。
すなわち、本実施形態の埋設物検出装置1では、上述したように、インパルス制御モジュール5に含まれる制御部10が、エンコーダ7からの入力状況に基づいて、送信アンテナ11から電磁波の放射を開始するか否かを決定する。
より具体的には、ステップS11では、まず、制御部10が、エンコーダ7からの入力があるか否かを判定する。ここで、エンコーダ7からの入力がある場合には、ステップS12へ進み、入力があるまでステップS11を繰り返す。
次に、ステップS12では、制御部10は、エンコーダ7から、同じ方向にN回以上連続して入力されたか否かを検出することで、コンクリート100の表面100aにおいて車輪4の回転が安定しているか否かを判定する。
ここで、同じ方向にN回以上連続した入力とは、例えば、図8(a)に示すように、図中右方向への移動を示す回転方向の入力が5回以上ある場合等が含まれる。
また、作業者(ユーザ)によって異なる方向に埋設物検出装置1を移動させている場合には、図8(b)に示すように、移動方向(回転方向)が変化してから最初の入力を1回としてカウントし、そこから連続して同じ方向に連続して入力があった場合には、ステップS13へ進む。よって、図8(b)に示す例では、右、右、左、右・・・と4つ目の入力から1回目の入力としてカウントし、そこから連続して右へ5回の入力があったため、ステップS13へ進む。
また、作業者(ユーザ)によって異なる方向に埋設物検出装置1を移動させている場合には、図8(b)に示すように、移動方向(回転方向)が変化してから最初の入力を1回としてカウントし、そこから連続して同じ方向に連続して入力があった場合には、ステップS13へ進む。よって、図8(b)に示す例では、右、右、左、右・・・と4つ目の入力から1回目の入力としてカウントし、そこから連続して右へ5回の入力があったため、ステップS13へ進む。
次に、ステップS13では、制御部10は、ステップS12において、エンコーダ7からの入力が安定したこと、つまり、車輪4の回転が安定していると判定したため、仮の電磁波を所定時間だけ放射するように、パルス発生部13を介して送信アンテナ11を制御する。
次に、ステップS14では、ステップS13において送信アンテナ11から放射された電磁波の反射波を受信した1ライン分のデータを、受信アンテナ12から受信する。
次に、ステップS15では、制御部10は、受信アンテナ12から受信した仮の電磁波の反射波の1ライン分のデータの波形を用いて、空気中を示すデータであるか否かを判定する。
次に、ステップS15では、制御部10は、受信アンテナ12から受信した仮の電磁波の反射波の1ライン分のデータの波形を用いて、空気中を示すデータであるか否かを判定する。
ここで、空気中を示すデータは、作業者によって埋設物検出装置1が持ち上げられる等して、コンクリート100の表面100aから離間した状態を意味する。
また、埋設物検出装置1がコンクリート100の表面100aから離間したことを検出するための原理について説明する。
また、埋設物検出装置1がコンクリート100の表面100aから離間したことを検出するための原理について説明する。
例えば、埋設物検出装置1の車輪4がコンクリート100の表面100aに接触している状態では、図9(a)に示すように、放射された電磁波は、コンクリート100の表面100aから内部を通過して、その反射波が受信アンテナ12で受信される。
このとき、空気の誘電率を1とすると、コンクリート100の誘電率7であることから、コンクリート100中を移動した電磁波は減衰されて空気中を移動するよりも速度が遅くなる。
図9(b)は、このときの、コンクリート100の表面100aからの深さ(横軸)に対する反射波の速度(縦軸)を示している。
一方、埋設物検出装置1の車輪4がコンクリート100の表面100aから離間した状態では、図10(a)に示すように、放射された電磁波は、空気中を移動して受信アンテナ12で受信される。
一方、埋設物検出装置1の車輪4がコンクリート100の表面100aから離間した状態では、図10(a)に示すように、放射された電磁波は、空気中を移動して受信アンテナ12で受信される。
同様に、空気の誘電率を1とすると、コンクリート100の誘電率7であることから、空気中を移動した電磁波はほとんど減衰されず、コンクリート100内を通過した電磁波よりも速度が速くなる。
図10(b)は、このときの、コンクリート100の表面100aからの深さ(横軸)に対する反射波の速度(縦軸)を示している。
ここで、図9(b)に示すグラフと、図10(b)に示すグラフとの差分は、図11(a)に示すグラフとして示される。
ここで、図9(b)に示すグラフと、図10(b)に示すグラフとの差分は、図11(a)に示すグラフとして示される。
そして、図11(b)は、図11(a)に示すグラフの縦軸の範囲を狭めて、グラフの変化が分かりやすく示している。
すなわち、図11(b)に示すように、埋設物検出装置1がコンクリート100の表面100aに接触している場合(図9(a)参照)と、離間している場合(図10(a)参照)とでは、コンクリート100の表面100a付近の受信波の速度(強度)が大きな差が見られることが分かる。
すなわち、図11(b)に示すように、埋設物検出装置1がコンクリート100の表面100aに接触している場合(図9(a)参照)と、離間している場合(図10(a)参照)とでは、コンクリート100の表面100a付近の受信波の速度(強度)が大きな差が見られることが分かる。
よって、本実施形態の埋設物検出装置1および埋設物検出方法では、ステップS14において受信アンテナ12が受信した電磁波の速度(強度)と、予め記憶部(図示せず)等に記憶されている基準波形(コンクリート100の表面100aに接触時の波形(図9(b)参照)とを比較する。そして、図11(b)に示す差分を示すグラフよりもピークが小さいグラフとなった場合には、現在、埋設物検出装置1はコンクリート100の表面100a付近にあると判定し、ステップS16へ進む。
一方、図11(b)に示す差分を示すグラフに近似したグラフとなった場合には、現在、埋設物検出装置1はコンクリート100の表面100aから離間して、空気中にあると判定し、ステップS17へ進む。
次に、ステップS16では、ステップS15において、埋設物検出装置1がコンクリート100の表面100a付近にあると判定されたため、制御部10は、埋設物検出装置1が安定して移動しており、かつコンクリート100の表面100a付近にあると判断し、送信アンテナ11から電磁波を放射するように制御を行う。
なお、ここで放射される電磁波と、ステップS13において放射される仮の電磁波は、同じ強度であってもよいし、例えば、仮の電磁波を弱くする等、異なる強度であってもよい。
次に、ステップS17では、ステップS15において、埋設物検出装置1がコンクリート100の表面100aから離間して空気中にあると判定されたため、制御部10は、送信アンテナ11を制御して、電磁波の放射を停止させる。
これにより、コンクリート100内の埋設物101の検出を開始する際に、作業者による操作なしで自動的に電磁波を放射することができる。
これにより、コンクリート100内の埋設物101の検出を開始する際に、作業者による操作なしで自動的に電磁波を放射することができる。
<電磁波放射停止制御の流れ>
本実施形態の埋設物検出方法では、上述した埋設物検出装置1を用いて、図12に示すフローチャートおよび図13に示すシーケンス図に従って、送信アンテナ11からの電磁波の放射停止制御を行う。
本実施形態の埋設物検出方法では、上述した埋設物検出装置1を用いて、図12に示すフローチャートおよび図13に示すシーケンス図に従って、送信アンテナ11からの電磁波の放射停止制御を行う。
すなわち、ステップS21では、電磁波が放射されているか否かを検出する。ここで、電磁波の放射が確認されると、ステップS22へ進み、電磁波の放射がすでに停止されている場合には、処理を終了する。
ここで、電磁波の放射は、図13に示すように、コンクリート100の表面100aにおいて、作業者が埋設物検出装置1を操作することでエンコーダ7から制御部10に対して入力が有り、制御部10が送信アンテナ11に対して電磁波放射指示を送信することで行われる。
そして、コンクリート100の表面100aにおいて、作業者が埋設物検出装置1を操作するたびに、エンコーダ7から制御部10に対して入力が有り、エンコーダ7からの入力があるたびに、受信アンテナ12から制御部10に対して反射波のデータが送信される。
次に、ステップS22では、電磁波が放射されていることが検出されたため、エンコーダ7からの入力が停止したか否かを検出する。ここで、エンコーダ7からの入力が停止している場合には、ステップS23へ進み、エンコーダ7からの入力が継続している場合には、エンコーダ7からの入力が停止するまで待機する。
次に、ステップS23では、埋設物検出装置1がコンクリート100の表面100aから離間していることを検出するために用いられる探査面離間比較データが初期化されているか否かを判定する。ここで、初期化されている場合には、ステップS24へ進む。一方、初期化されていない場合には、ステップS25へ進み、1ラインデータによって比較データを初期化する。
なお、探査面離間比較データとしては、例えば、上述した埋設物検出装置1がコンクリート100の表面100aに接触した状態における反射波のデータ(図9(b)参照)を示すグラフ等を用いることができる。
次に、ステップS24では、受信アンテナ12において受信された反射波の1ライン分のデータ(例えば、図10(b)のグラフ)と、予め記憶されている探査面離間比較データとを比較して、所定の閾値以上の差(変化)があったか否かを判定する。ここで、所定の閾値以上の差(変化)があった場合には、ステップS26へ進む。
より具体的には、図13に示すように、エンコーダ7からの制御部10への入力が停止してから100msごとに行われる受信アンテナ12からのデータ送信(1)~(3)のうち、(1)のデータと(3)のデータとが所定の閾値以上の差(変化)があると判断した場合に、ステップS26へ進む。
なお、埋設物検出装置1がコンクリート100の表面100aに接触している状態(図9(a)参照)を基準にして、表面100aから離間した状態(図10(a)参照)であるか否かを判定する処理については、上述した図11(b)に示すグラフを用いて同様に実施することができる。
次に、ステップS26では、制御部10は、ステップS21において電磁波の放射を確認し、ステップS22においてエンコーダ7からの入力の停止を確認し、かつ、ステップS24において反射波のデータが比較データと所定の閾値以上の差があることを確認したことで、埋設物検出装置1がコンクリート100の表面100aから離間したと判断し、電磁波の放射を停止させるように、パルス発生部13を介して送信アンテナ11を制御する。
これにより、コンクリート100内の埋設物101の検出作業を終了する際に、作業者による操作なしで、自動的に電磁波の放射を停止することができる。また、作業中以外に電磁波が放射されることを防止することで、無駄な電力消費を抑制し、送信アンテナ11の回路素子等の部品の寿命劣化を防止することができる。
[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
(A)
上記実施形態では、図7のステップS12に示すように、エンコーダ7からの入力がN回以上連続していることを条件として、車輪4の回転の安定を検出した例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
上記実施形態では、図7のステップS12に示すように、エンコーダ7からの入力がN回以上連続していることを条件として、車輪4の回転の安定を検出した例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、図14のステップS112に示すように、車輪の回転の安定を、エンコーダからの入力が車輪の回転速度が所定の範囲内で所定時間以上安定していることを条件として検出してもよい。
(B)
上記実施形態では、エンコーダ7からの入力が同じ方向にN回以上連続したものである場合に、送信アンテナ11から仮の電磁波を放射させ、受信アンテナ12においてその反射波を受信し、その受信状況に基づいて、制御部10が、送信アンテナ11からの電磁波の放射を開始するか否かを決定する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
上記実施形態では、エンコーダ7からの入力が同じ方向にN回以上連続したものである場合に、送信アンテナ11から仮の電磁波を放射させ、受信アンテナ12においてその反射波を受信し、その受信状況に基づいて、制御部10が、送信アンテナ11からの電磁波の放射を開始するか否かを決定する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、図15に示すように、制御部が、エンコーダからの入力状況に基づいて、車輪の回転が安定したことを検出した場合に、送信アンテナからの電磁波の放射を開始するように制御してもよい。
すなわち、図15に示す方法では、送信アンテナから仮の電磁波を放射させて受信アンテナにおいて受信した反射波の波形を用いた電磁波の放射開始制御を実施することなく、エンコーダからの入力状況のみを用いて、電磁波の放射開始制御を実施してもよい。
なお、車輪の回転の安定とは、例えば、図15のステップS12に示すように、車輪の回転方向が所定回数(所定パルス)以上、同じ方向であること、または、図16のステップS112に示すように、車輪の回転速度が所定の範囲内で安定していること、およびこれらの組合せであることが含まれる。
(C)
上記実施形態では、図12に示すように、エンコーダ7からの入力停止と、埋設物検出装置1がコンクリート100の表面100aに接触した状態における反射波のデータと比較して、その変化(差)が所定の閾値以上であることを条件として、電磁波放射停止制御を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
上記実施形態では、図12に示すように、エンコーダ7からの入力停止と、埋設物検出装置1がコンクリート100の表面100aに接触した状態における反射波のデータと比較して、その変化(差)が所定の閾値以上であることを条件として、電磁波放射停止制御を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、図17に示すように、ステップS21,S22の後の処理として、ステップS123において、エンコーダ7が停止してからの時間を計測するタイマを初期化し、ステップS124において、エンコーダ7からの入力停止からの経過時間が所定時間を経過した場合に、ステップS125において、制御部10が、送信アンテナ11からの電磁波の放射を停止させるように制御してもよい。
より具体的には、図18に示すように、エンコーダ7からの最後の入力があってから、100msごとに受信アンテナ12から制御部10に対してデータ送信を行い、所定時間が経過する、すなわち、100ms間隔で行われるデータ送信の回数が所定回数以上になると、制御部10が、送信アンテナ11からの電磁波の放射を停止するように、送信アンテナ11を制御してもよい。
(D)
上記実施形態では、本体部2に4つの車輪4が取り付けられた埋設物検出装置1を用いて、コンクリート100内の埋設物101を検出する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、本体部に取り付けられる車輪は、4つに限らず、1つ、2つ、3つあるいは5つ以上であってもよい。
上記実施形態では、本体部2に4つの車輪4が取り付けられた埋設物検出装置1を用いて、コンクリート100内の埋設物101を検出する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、本体部に取り付けられる車輪は、4つに限らず、1つ、2つ、3つあるいは5つ以上であってもよい。
(E)
上記実施形態では、埋設物検出装置1によって検出される埋設物101として、コンクリート100内の鉄筋を用いた例を挙げて説明した。しかし、本発明はこれに限定されるものではなく、他の材料中の異物を検出する用途に使用されてもよい。
上記実施形態では、埋設物検出装置1によって検出される埋設物101として、コンクリート100内の鉄筋を用いた例を挙げて説明した。しかし、本発明はこれに限定されるものではなく、他の材料中の異物を検出する用途に使用されてもよい。
本発明の埋設物検出装置は、埋設物の検出作業を終了する際に、ユーザによる操作なしで、自動的に電磁波の放射を停止することができるという効果を奏することから、埋設物の検出を行う各種装置および方法に対して広く適用可能である。
1 埋設物検出装置
2 本体部
3 把手
4 車輪
5 インパルス制御モジュール
6 メイン制御モジュール
7 エンコーダ(回転検出部)
8 表示部
10 制御部
11 送信アンテナ(放射部)
12 受信アンテナ(受信部)
13 パルス発生部
14 ディレイ部
15 ゲート部
21 受信部
22 RFデータ管理部
24 埋設物判定部
25 判定結果登録部
26 表示制御部
100 コンクリート
100a 表面
101a~101d 埋設物
2 本体部
3 把手
4 車輪
5 インパルス制御モジュール
6 メイン制御モジュール
7 エンコーダ(回転検出部)
8 表示部
10 制御部
11 送信アンテナ(放射部)
12 受信アンテナ(受信部)
13 パルス発生部
14 ディレイ部
15 ゲート部
21 受信部
22 RFデータ管理部
24 埋設物判定部
25 判定結果登録部
26 表示制御部
100 コンクリート
100a 表面
101a~101d 埋設物
Claims (8)
- 対象物の表面を移動しながら前記対象物に向かって放射した電磁波の反射波に関するデータを用いて前記対象物内の埋設物を検出する埋設物検出装置であって、
本体部と、
前記本体部に設けられ、前記電磁波を放射する放射部と、
前記本体部に設けられ、前記電磁波の前記反射波を受信する受信部と、
前記本体部に取り付けられており、前記対象物の表面に接触した状態で回転する車輪と、
前記本体部に設けられ、前記車輪に接続されており、前記車輪の回転に関する情報を検出して出力する回転検出部と、
前記放射部から前記電磁波が放射されている時、前記回転検出部からの入力が停止したことを検出し、かつ、前記受信部において受信した前記反射波のデータの変化が所定の条件を満たした場合に、前記放射部からの前記電磁波の放射を停止させる制御部と、
を備えている埋設物検出装置。 - 対象物の表面を移動しながら前記対象物に向かって放射した電磁波の反射波に関するデータを用いて前記対象物内の埋設物を検出する埋設物検出装置であって、
本体部と、
前記本体部に設けられ、前記電磁波を放射する放射部と、
前記本体部に設けられ、前記電磁波の前記反射波を受信する受信部と、
前記本体部に取り付けられており、前記対象物の表面に接触した状態で回転する車輪と、
前記本体部に設けられ、前記車輪に接続されており、前記車輪の回転に関する情報を検出して出力する回転検出部と、
前記放射部から前記電磁波が放射されている時、前記回転検出部からの入力が停止したことを検出し、かつ、所定時間が経過した場合に、前記放射部からの前記電磁波の放射を停止させる制御部と、
を備えている埋設物検出装置。 - 前記反射波のデータの変化には、前記受信部において受信した前記反射波の速度の変化が含まれる、
請求項1に記載の埋設物検出装置。 - 前記反射波のデータの変化には、前記放射部から電磁波が放射されてから前記受信部においてその反射波を検出するまでの時間の変化が含まれる、
請求項1に記載の埋設物検出装置。 - 対象物の表面を移動しながら前記対象物に向かって放射した電磁波の反射波に関するデータを用いて前記対象物内の埋設物を検出する埋設物検出装置を用いた埋設物検出方法であって、
前記埋設物検出装置に設けられた車輪に接続された回転検出部において、前記車輪の回転に関する情報を検出する回転検出ステップと、
放射部から前記電磁波を放射する放射ステップと、
前記放射部から放射された前記電磁波の前記反射波を受信部において受信する受信ステップと、
前記放射部から前記電磁波が放射されている時に、前記回転検出部からの入力が停止したことを検出し、かつ、前記受信部において受信した前記反射波のデータの変化が所定の条件を満たした場合に、前記放射部からの前記電磁波の放射を停止させる停止ステップと、
を備えている埋設物検出方法。 - 対象物の表面を移動しながら前記対象物に向かって放射した電磁波の反射波に関するデータを用いて前記対象物内の埋設物を検出する埋設物検出装置を用いた埋設物検出方法であって、
前記埋設物検出装置に設けられた車輪に接続された回転検出部において、前記車輪の回転に関する情報を検出する回転検出ステップと、
放射部から前記電磁波を放射する放射ステップと、
前記放射部から放射された前記電磁波の前記反射波を受信部において受信する受信ステップと、
前記放射部から前記電磁波が放射されている時に、前記回転検出部からの入力が停止したことを検出し、かつ、所定時間が経過した場合に、前記放射部からの前記電磁波の放射を停止させる停止ステップと、
を備えている埋設物検出方法。 - 前記反射波のデータの変化には、前記受信部において受信した前記反射波の速度の変化が含まれる、
請求項5に記載の埋設物検出方法。 - 前記反射波のデータの変化には、前記放射部から電磁波が放射されてから前記受信部においてその反射波を検出するまでの時間の変化が含まれる、
請求項5に記載の埋設物検出方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-246954 | 2018-12-28 | ||
JP2018246954A JP7003908B2 (ja) | 2018-12-28 | 2018-12-28 | 埋設物検出装置および埋設物検出方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020137097A1 true WO2020137097A1 (ja) | 2020-07-02 |
Family
ID=71127918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/040591 WO2020137097A1 (ja) | 2018-12-28 | 2019-10-16 | 埋設物検出装置および埋設物検出方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7003908B2 (ja) |
WO (1) | WO2020137097A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS638683U (ja) * | 1986-05-09 | 1988-01-20 | ||
JPH01274090A (ja) * | 1988-04-27 | 1989-11-01 | Komatsu Ltd | 地中埋設物の探査装置 |
JPH0384489A (ja) * | 1989-08-29 | 1991-04-10 | Nippon Telegr & Teleph Corp <Ntt> | 埋設物探知装置 |
JPH0340585U (ja) * | 1989-08-31 | 1991-04-18 | ||
JPH03291590A (ja) * | 1990-04-09 | 1991-12-20 | Nippon Telegr & Teleph Corp <Ntt> | 地中探査装置 |
JPH04235375A (ja) * | 1991-01-11 | 1992-08-24 | Nippon Telegr & Teleph Corp <Ntt> | 埋設物探知における漏れ電界防止方法 |
JPH0538585U (ja) * | 1991-10-25 | 1993-05-25 | 株式会社小松製作所 | 埋設物探査装置 |
-
2018
- 2018-12-28 JP JP2018246954A patent/JP7003908B2/ja active Active
-
2019
- 2019-10-16 WO PCT/JP2019/040591 patent/WO2020137097A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS638683U (ja) * | 1986-05-09 | 1988-01-20 | ||
JPH01274090A (ja) * | 1988-04-27 | 1989-11-01 | Komatsu Ltd | 地中埋設物の探査装置 |
JPH0384489A (ja) * | 1989-08-29 | 1991-04-10 | Nippon Telegr & Teleph Corp <Ntt> | 埋設物探知装置 |
JPH0340585U (ja) * | 1989-08-31 | 1991-04-18 | ||
JPH03291590A (ja) * | 1990-04-09 | 1991-12-20 | Nippon Telegr & Teleph Corp <Ntt> | 地中探査装置 |
JPH04235375A (ja) * | 1991-01-11 | 1992-08-24 | Nippon Telegr & Teleph Corp <Ntt> | 埋設物探知における漏れ電界防止方法 |
JPH0538585U (ja) * | 1991-10-25 | 1993-05-25 | 株式会社小松製作所 | 埋設物探査装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7003908B2 (ja) | 2022-01-21 |
JP2020106459A (ja) | 2020-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10809714B2 (en) | Cleaning robot and remote controller included therein | |
JP6424522B2 (ja) | 車載装置、車載測距システム | |
EP1760564B1 (en) | System and method for returning robot cleaner to charger | |
JP6264631B2 (ja) | 清掃ロボットの制御方法および清掃ロボット | |
TWI597039B (zh) | 掃地機器人的控制方法 | |
US11428801B2 (en) | Moving device and object detection method thereof | |
JP6085987B2 (ja) | 清掃ロボットの制御方法および清掃ロボット | |
EP3130938B1 (en) | Object detection device and object detection method | |
WO2020137098A1 (ja) | 埋設物検出装置および埋設物検出方法 | |
JP2005052962A (ja) | ロボットシステム | |
KR20200142546A (ko) | 전자기 방사선을 이용하여 측정 대상을 측정하기 위한 방법 및 THz 측정 장치 | |
US20220214431A1 (en) | Light control device, light control method and program | |
WO2020137097A1 (ja) | 埋設物検出装置および埋設物検出方法 | |
JP6736682B2 (ja) | センサ装置、センシング方法、プログラム及び記憶媒体 | |
JP7342469B2 (ja) | 埋設物検出装置および埋設物検出方法 | |
JP2007327814A (ja) | パルスレーダ装置 | |
KR100537077B1 (ko) | 자율이동운송수단의 환경인식 및 환경대응을 위한스마트태그 시스템 및 그 제어방법 | |
JP2004340615A (ja) | 標定レーダ装置 | |
WO2017187922A1 (ja) | 自走式掃除機器および自走式掃除機器の制御方法 | |
JP7419687B2 (ja) | 埋設物検出装置および埋設物検出方法 | |
JP7310380B2 (ja) | 埋設物検出装置および埋設物検出方法 | |
JP2006003229A (ja) | 測定位置制御装置及び方法 | |
KR20060011220A (ko) | 이동장치의 위치 분석 장치 및 방법 | |
JP2003302209A (ja) | 光測長装置 | |
KR102565413B1 (ko) | 차량유도장치 및 차량유도방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19904328 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19904328 Country of ref document: EP Kind code of ref document: A1 |