WO2020137047A1 - X-ray guide tube production method, x-ray guide tube, and analysis device - Google Patents

X-ray guide tube production method, x-ray guide tube, and analysis device Download PDF

Info

Publication number
WO2020137047A1
WO2020137047A1 PCT/JP2019/037472 JP2019037472W WO2020137047A1 WO 2020137047 A1 WO2020137047 A1 WO 2020137047A1 JP 2019037472 W JP2019037472 W JP 2019037472W WO 2020137047 A1 WO2020137047 A1 WO 2020137047A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
capillary
rays
conduit
guide tube
Prior art date
Application number
PCT/JP2019/037472
Other languages
French (fr)
Japanese (ja)
Inventor
肇 二位
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=71126382&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020137047(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2020562362A priority Critical patent/JP7264917B2/en
Publication of WO2020137047A1 publication Critical patent/WO2020137047A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/02Irradiation devices having no beam-forming means

Definitions

  • the present invention relates to an X-ray conduit manufacturing method, an X-ray conduit, and an analyzer.
  • an analyzer called an X-ray analysis microscope in which X-rays emitted from an X-ray source are narrowed down by an X-ray conduit to irradiate a sample with a minute spot diameter (for example, patents).
  • Reference 1 The X-ray conduit is an optical component that focuses X-rays from the other end of the glass tube and reflects the X-rays incident from the X-ray source on the inner surface of the glass tube.
  • the shape of the inner surface of the glass tube of the X-ray conduit is, for example, cylindrical, conical, spheroidal, or paraboloidal.
  • the conventional X-ray conduit has a problem that the passage efficiency is reduced.
  • the reason is that since the X-ray conduit is a glass thin tube, the total reflection critical angle ⁇ c is small, and therefore the solid angle for capturing X-rays at the incident side end is small, and therefore a large amount of X-rays are collected. This is because it cannot be sent to the output side end. It should be noted that the above reduction in passage efficiency becomes remarkable as the total reflection critical angle ⁇ c becomes smaller as the X-ray energy becomes higher.
  • the purpose of the present invention is to improve the X-ray passage efficiency in the X-ray conduit.
  • a method according to one aspect of the invention is a method of manufacturing an X-ray conduit for emitting X-rays incident from an X-ray source, comprising the steps of: ⁇ Step of preparing a capillary main body having an inner space of the capillary where X-rays are incident ⁇ Step of forming a metal thin film on the inner wall surface of the capillary by an atomic layer deposition method
  • the metal thin film is formed on the inner wall surface of the capillary of the X-ray conduit, the X-ray passing efficiency can be improved. Furthermore, since the metal thin film is formed by the atomic layer deposition method, the film thickness is uniform even in the space inside the elongated capillary.
  • a glass capillary for guiding X-rays is manufactured by a method in which liquid glass is poured into a mold to form a capillary shape, and then heat treatment is performed, or liquid glass is drawn to form a capillary shape. It Since the capillary manufactured by such a manufacturing method has a very small surface roughness, the scattering loss of X-rays can be reduced when used as an X-ray conduit.
  • the atomic layer deposition method is capable of forming a film having a surface roughness approximately the same as the surface roughness of the substrate because of the characteristic that the layers can be formed one by one. Therefore, by applying the present invention, it is possible to form a metal film having a surface roughness almost equal to the small surface roughness of the glass capillary.
  • the aspect ratio of the capillary body may be in the range 500-10000.
  • the metal thin film is formed by the atomic layer deposition method, the film thickness is uniform even in the space inside the elongated capillary.
  • An X-ray conduit is for collecting and emitting X-rays incident from an X-ray source, and includes a capillary body and a metal thin film.
  • the capillary body has a space inside the capillary into which X-rays are incident.
  • the metal thin film is formed on the inner wall surface of the capillary by the atomic layer deposition method.
  • a glass capillary for guiding X-rays is manufactured by a method in which liquid glass is poured into a mold to form a capillary shape, and then heat treatment is performed, or liquid glass is drawn to form a capillary shape.
  • the capillary manufactured by such a manufacturing method has a very small surface roughness, the scattering loss of X-rays can be reduced when used as an X-ray conduit.
  • the atomic layer deposition method is capable of forming a film having a surface roughness approximately the same as the surface roughness of the substrate because of the characteristic that the layers can be formed one by one. Therefore, by applying the present invention, it is possible to form a metal film having a surface roughness almost equal to the small surface roughness of the glass capillary.
  • the metal thin film is formed on the inner wall surface of the capillary of the X-ray conduit, the X-ray passage efficiency can be improved. Moreover, since the metal thin film is formed by the atomic layer deposition method, the film thickness is uniform even in the elongated capillary inner space.
  • the aspect ratio of the capillary body may be in the range 500-10000.
  • the metal thin film is formed by the atomic layer deposition method, the film thickness is uniform even in the elongated capillary inner space.
  • An analysis apparatus includes an X-ray conduit and an X-ray source that irradiates the X-ray conduit with X-rays. The above effect can be obtained with this analyzer.
  • the analyzer may have a plurality of X-ray conduits of different types.
  • the analyzer may further include a switching device that switches a plurality of X-ray conduits according to the purpose of use. In this analyzer, the X-ray conduit can be switched according to the purpose of use.
  • the X-ray conduit manufacturing method, the X-ray conduit, and the analyzer according to the present invention can improve the X-ray passage efficiency.
  • FIG. 3 is a partial cross-sectional view of an X-ray conduit.
  • FIG. 1 is a block diagram showing a schematic configuration of an analyzer.
  • the analyzer 1 is an X-ray analysis microscope that performs qualitative/quantitative analysis of the physical properties of the sample S by irradiating the sample S with primary X-rays and measuring the fluorescent X-rays generated at that time.
  • the analyzer 1 includes a sample box 3 in which a sample S to be analyzed is stored, an X-ray tube 5 that generates X-rays that irradiate the sample S, and a vacuum disposed between the X-ray tube 5 and the sample box 3. And a box 7.
  • the X-ray tube 5 is attached to the upper surface of the vacuum box 7 via a communication part 9.
  • the vacuum box 7 is attached to the upper surface of the sample box 3 via a communication part provided with an X-ray transmission window 11 that allows X-rays to pass satisfactorily.
  • a sample stage 13 is installed at a predetermined position in the sample box 3, and a sample S is placed on it.
  • An optical element unit 21 (described later) is arranged at a predetermined position in the vacuum box 7.
  • the X-rays generated by the X-ray tube 5 enter the vacuum box 7 through the communicating portion 9, pass through the optical element unit 21 in the vacuum box 7, and further pass through the X-ray transmission window 11.
  • the light enters the sample box 3 through the sample and is irradiated onto the sample S on the sample stage 13.
  • the sample stage 13 is driven by the sample stage drive unit 56 in the X-ray irradiation direction (vertical direction in FIG. 1) and in two directions orthogonal to each other in the plane orthogonal to the irradiation direction (for example, the horizontal direction and the depth in FIG. 1). Direction) and can be moved.
  • the sample stage drive unit 56 is provided inside or outside the sample box 3.
  • the vacuum box 7 is provided with the X-ray detector 35 that detects the fluorescent X-rays generated from the sample S when the sample S is irradiated with the X-rays as described above.
  • the X-ray detector 35 is attached to the vacuum box 7 with the detection surface for detecting fluorescent X-rays facing the X-ray transmission window 11.
  • An observation unit 57 such as a CCD (Charge Coupled Device) camera or an optical microscope is attached to the vacuum box 7.
  • the optical element unit 21 in the vacuum box 7 has a mirror 28, and the observation section 57 is arranged so as to face the mirror 28.
  • the optical element unit 21 narrows the beam diameter and irradiates the sample S with X-rays generated by the X-ray tube 5.
  • the optical element unit 21 is configured by mounting a plurality of X-ray conduits 29, 31 as optical elements on an optical element switching stage 27.
  • the optical element switching stage 27 is a member for switching the plurality of X-ray conduits 29, 31 according to the purpose of use.
  • the X-ray conduits 29 and 31 emit the X-rays generated by the X-ray tube 5 and incident on the inside of the vacuum box 7.
  • the X-ray conduits 29 and 31 are, for example, capillaries formed of glass in a tubular shape, and guide the X-rays incident from one end while reflecting the X-rays on the inner surface and emit the X-rays from the other end.
  • the X-ray conduits 29 and 31 By using the X-ray conduits 29 and 31, a thin and high-intensity X-ray beam system can be realized, and therefore, a minute area can be measured and analyzed at high speed.
  • the mirror 28 is attached to the optical element switching stage 27.
  • the optical element switching stage 27 is configured to be movable in two directions orthogonal to each other in a plane orthogonal to the X-ray irradiation direction (vertical direction in FIG. 1) by the switching stage drive unit 55.
  • the switching stage drive unit 55 is configured by using, for example, a stepping motor. By moving the optical element switching stage 27 by the switching stage drive unit 55, the positions of the X-ray conduits 29 and 31 and the mirror 28 are switched, and the X-ray conduits 29 and 31 arranged at predetermined positions are used.
  • the X-rays generated by the X-ray tube 5 are delivered to the sample S.
  • the X-rays emitted from the X-ray conduits 29 and 31 arranged at predetermined positions pass through the X-ray transmission window 11 and are irradiated onto the upper surface of the sample S, and the X-ray irradiation generates fluorescent X-rays from the sample S. To do.
  • the fluorescent X-rays generated from the sample S reach the X-ray detector 35 through the X-ray transmission window 11 and are detected by the X-ray detector 35.
  • the X-ray detector 35 is a device that detects fluorescent X-rays generated by irradiating the sample S with X-rays, and outputs a signal proportional to the energy of the detected fluorescent X-rays.
  • a signal processing unit 52 that processes the signal output by the X-ray detector 35 is connected.
  • the signal processing unit 52 counts the signals of the respective values output by the X-ray detector 35, and performs the process of generating the relationship between the energy of the fluorescent X-rays and the count number, that is, the spectrum of the fluorescent X-rays.
  • An analysis unit 53 is connected to the signal processing unit 52.
  • the signal processing unit 52 outputs the data indicating the generated spectrum to the analysis unit 53.
  • the analysis unit 53 is configured to include a calculation unit that performs calculation and a memory that stores data.
  • the analysis unit 53 performs qualitative analysis or quantitative analysis of elements contained in the sample S based on the spectrum indicated by the data input from the signal processing unit 52.
  • the X-ray tube 5, the signal processing unit 52, the analysis unit 53, the display unit 54, the switching stage drive unit 55, and the sample stage drive unit 56 are connected to the control unit 51.
  • the control unit 51 is composed of a computer including a calculation unit and a memory.
  • the control unit 51 controls the operations of the X-ray tube 5, the signal processing unit 52, the analysis unit 53, the display unit 54, the switching stage drive unit 55, and the sample stage drive unit 56.
  • the control unit 51 may be configured to receive an instruction from the user and control the operation of each unit of the analyzer 1 according to the received instruction.
  • the display unit 54 may display the spectrum generated by the signal processing unit 52 or the analysis result by the analysis unit 53. Further, the control unit 51 and the analysis unit 53 may be configured by the same computer.
  • the X-ray conduits 29 and 31 are thin tubular ones having a hollow parabolic surface or a cylindrical reflecting surface as a hollow inner surface, and a primary X-ray introduced from the base end is used. , Is emitted from the tip and is irradiated or narrowed down on the sample S with different spot diameters.
  • the X-ray conduits 29 and 31 have capillary bodies 29a and 31a.
  • the capillary bodies 29a and 31a are cylindrical tubes made of glass. That is, the capillary bodies 29a and 31a have the capillary inner space 32 (FIG. 2) which is a hollow hole into which X-rays are incident.
  • the capillary bodies 29a and 31a have mutually different lengths, and in this example, the capillary body 29a is long and the capillary body 31a is short.
  • the length of the capillary bodies 29a and 31a is, for example, in the range of 50 to 100 mm.
  • the diameter of the capillary is, for example, in the range of 10 to 400 ⁇ m.
  • the aspect ratio of the capillary bodies 29a and 31a is, for example, in the range of 500 to 10,000.
  • the aspect ratio is the ratio (h/w) between the height (h) of the inner surface shape of the capillary inner space 32 and the diameter (w) of the circular cross section or a shape close to the circle.
  • Each of the X-ray conduits 29 and 31 has, for example, the same outer diameter and different inner diameter. With this configuration, the diameter of the X-rays emitted from each of the X-ray conduits 29 and 31 on the sample surface (spot diameter ) Can be different.
  • the inner diameter of the capillary inner space 32 is small (for example, 10 ⁇ m), so that the X-ray conduit 29 has a small focused spot diameter.
  • the capillary body 31a has a large inner diameter of the capillary inner space 32 (for example, 100 ⁇ m), and therefore the X-ray conduit 31 has a large focused spot diameter.
  • the X-ray conduit 29 collects and irradiates X-rays in a narrower area, so that analysis can be performed with higher resolution.
  • the X-ray conduit 31 makes it possible to irradiate more intense X-rays, and to perform measurement faster.
  • FIG. 2 is a partial cross-sectional view of the X-ray conduit.
  • a base material for example, Cr
  • the metal thin film 33 is made of, for example, silver, gold or platinum. Further, the metal thin film 33 is formed with a uniform thickness. The thickness of the metal thin film 33 is, for example, several tens nm to several ⁇ m, preferably 0.1 to 3 ⁇ m.
  • the critical angle ⁇ c can be increased as compared with the case where the inner peripheral surface is, for example, glass.
  • the solid angle for capturing X-rays on the incident side end face becomes wider, and more X-rays can be collected and sent to the emission side end face.
  • the passage efficiency is significantly improved even with high-energy X-rays, and a sufficiently large X-ray intensity can be obtained at the exit-side end face.
  • ⁇ c 1.64 ⁇ 10 ⁇ 3 ⁇
  • ⁇ c 1.64 ⁇ 10 ⁇ 3 ⁇
  • ⁇ c 1.64 ⁇ 10 ⁇ 3 ⁇
  • ⁇ c 1.64 ⁇ 10 ⁇ 3 ⁇
  • ⁇ c critical angle
  • density of inner wall material of capillary
  • wavelength of incident X-ray
  • the energy is inversely proportional to the wavelength ⁇ in the above equation, so that the higher the energy, the smaller the critical angle, and the more the X-ray dose that penetrates inside the capillary.
  • this phenomenon occurs in both types of monocapillaries and polycapillaries, this phenomenon is remarkable because the inner wall of the capillary is generally thinner in the polycapillary than in the monocapillary.
  • the metal thin film 33 is formed on the inner peripheral surface 32a (capillary inner wall surface) of the capillary main body 29a, so that it is more critical than the conventional glass capillary tube.
  • the angle ⁇ c can be set large.
  • the metal thin film 33 is formed by the atomic layer deposition method as described later, the film thickness in the elongated capillary inner space 32 is more uniform than in the case of being formed by another manufacturing method (for example, plating). ing.
  • the X-ray conduit 29 and the X-ray conduit 31 may have different materials for the metal thin film depending on the analysis target.
  • an X-ray conduit formed with a metal thin film having a fluorescent X-ray peak that does not overlap with the fluorescent X-ray peak of the target measurement object in the fluorescent X-ray energy spectrum can be selected.
  • FIG. 3 is a schematic diagram of a film forming apparatus. The following description is the same for the X-ray conduit 31.
  • the film forming apparatus 71 uses the ALD method.
  • the ALD (Atomic Layer Deposition) method is a film forming method for forming a thin film by chemical substitution through periodic supply of each reactant.
  • the film forming apparatus 71 has a film forming chamber 72.
  • the capillary main body 29 a is mounted on the mounting table 73.
  • the mounting table 73 is supported by the supporting portion 75.
  • the film forming chamber 72 is provided with a reactive gas (H 2 O) inlet port 77, a source gas inlet port 79 as a raw material of a metal compound, and a purge gas inlet port 81.
  • An exhaust port 83 for exhausting the gas in the film forming chamber 72 is provided on the right side surface of the film forming chamber 72.
  • FIG. 4 is a flowchart of the film forming method.
  • step S1 after the capillary main body 29a is installed in the film forming chamber 72, a raw material gas that is a raw material of the metal thin film 33 is supplied to the capillary main body 29a.
  • step S2 the raw material A in the reaction chamber is exhausted by purging the inert gas.
  • step S3 the reactive gas is supplied to the film forming chamber 72.
  • the reactive gas oxygen, water vapor or the like can be used.
  • an atomic layer of oxygen is formed on the atomic layer made of the raw material.
  • step S4 in order to remove by-products and reactive gas generated in the gas phase, the gas is exhausted by purging with an inert gas.
  • step S5 a film thickness measuring device (not shown) provided in the film forming device 71 confirms whether the metal thin film 33 has reached a predetermined film thickness.
  • the above film forming method further has an advantage that the film forming raw material is a gas, so that the raw material can be reliably sent to the inner space of the capillary even if the capillary is thin.
  • the vapor deposition method and the plating method in the case of a thin capillary, it is difficult to enter the film-forming raw material because the capillary has a narrow inlet, and therefore it is difficult to form a film.
  • the present invention can be widely applied to an X-ray conduit used for focusing or collimating X-rays in an X-ray analyzer or the like that uses X-rays for analysis.
  • Analysis device 21 Optical element unit 29: X-ray conduit 29a: Capillary main body 31: X-ray conduit 31a: Capillary main body 33: Metal thin film 35: X-ray detector 71: Film-forming device S: Sample

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The present invention increases X-ray transmission efficiency in an X-ray guide tube. This X-ray guide tube production method produces an X-ray guide tube 29 for emitting X-rays incident from an X-ray source, and comprises the following steps: a step for preparing a capillary body 29a that has an internal capillary space 32 to which X-rays are incident; and a step for forming a thin metal film 33 on an inner circumferential surface 32a by using atomic layer deposition.

Description

X線導管の製造方法、X線導管、分析装置X-ray conduit manufacturing method, X-ray conduit, and analyzer
 本発明は、X線導管の製造方法、X線導管、分析装置に関する。 The present invention relates to an X-ray conduit manufacturing method, an X-ray conduit, and an analyzer.
 従来、X線源から射出されるX線を、X線導管によって絞り、微小スポット径にしてサンプルに照射するようにしたX線分析顕微鏡と称される分析装置が知られている(例えば、特許文献1を参照)。
 X線導管は、X線源から入射されたX線をガラス管内面でX線を反射することにより、ガラス管の他端部からX線を集光して導き出す光学部品である。X線導管は、例えば、ガラス管内面の形状が円筒状、円錐状、回転楕円面や回転放物線面である。
Conventionally, an analyzer called an X-ray analysis microscope is known in which X-rays emitted from an X-ray source are narrowed down by an X-ray conduit to irradiate a sample with a minute spot diameter (for example, patents). Reference 1).
The X-ray conduit is an optical component that focuses X-rays from the other end of the glass tube and reflects the X-rays incident from the X-ray source on the inner surface of the glass tube. The shape of the inner surface of the glass tube of the X-ray conduit is, for example, cylindrical, conical, spheroidal, or paraboloidal.
特許第5005461号Patent No.
 従来のX線導管では、通過効率が低下するという問題がある。その理由は、X線導管がガラス製の細管であるので、全反射臨界角θcが小さく、そのため入射側端でX線を取り込むための立体角が小さくなっており、したがって多くのX線を集めて出射側端まで送ることができないからである。なお、上記の通過効率低減は、X線のエネルギーが高くなると、全反射臨界角θcがさらに小さくなるので、顕著になる。  The conventional X-ray conduit has a problem that the passage efficiency is reduced. The reason is that since the X-ray conduit is a glass thin tube, the total reflection critical angle θc is small, and therefore the solid angle for capturing X-rays at the incident side end is small, and therefore a large amount of X-rays are collected. This is because it cannot be sent to the output side end. It should be noted that the above reduction in passage efficiency becomes remarkable as the total reflection critical angle θc becomes smaller as the X-ray energy becomes higher.
 本発明の目的は、X線導管において、X線の通過効率を高めることにある。 The purpose of the present invention is to improve the X-ray passage efficiency in the X-ray conduit.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。 A plurality of modes will be explained below as means for solving the problems. These aspects can be arbitrarily combined as needed.
 本発明の一見地に係る方法は、X線源から入射されたX線を出射するためのX線導管を製造する方法であって、下記のステップを備えている。
 ◎X線が入射されるキャピラリ内空間を有するキャピラリ本体を準備するステップ
 ◎キャピラリ内壁面に原子層堆積法によって金属薄膜を成膜するステップ
A method according to one aspect of the invention is a method of manufacturing an X-ray conduit for emitting X-rays incident from an X-ray source, comprising the steps of:
◎Step of preparing a capillary main body having an inner space of the capillary where X-rays are incident ◎Step of forming a metal thin film on the inner wall surface of the capillary by an atomic layer deposition method
 この方法では、金属薄膜がX線導管のキャピラリ内壁面に形成されるので、X線の通過効率を高めることができる。
 さらに、金属薄膜は、原子層堆積法によって形成されているので、細長いキャピラリ内空間内でも膜厚が均一になっている。
 例えば、X線を導くためのガラス製のキャピラリは、金型に液状ガラスを流し込んでキャピラリ状に成形した後に加熱処理を施したり、液状ガラスを引き延ばしてキャピラリ状に成形したりする手法で製造される。このような製造方法によって製造されたキャピラリは表面粗さが非常に小さいので、X線導管として用いた場合、X線の散乱損失を小さくすることができる。一方、原子層堆積法は、一層ずつ成膜ができるという特徴から、基板の表面粗さとほぼ同程度の表面粗さを持つ膜を成膜することができる。そのため、本発明を適用することで、ガラス製キャピラリの小さな表面粗さとほぼ同程度の表面粗さを有する金属膜を成膜することができる。
In this method, since the metal thin film is formed on the inner wall surface of the capillary of the X-ray conduit, the X-ray passing efficiency can be improved.
Furthermore, since the metal thin film is formed by the atomic layer deposition method, the film thickness is uniform even in the space inside the elongated capillary.
For example, a glass capillary for guiding X-rays is manufactured by a method in which liquid glass is poured into a mold to form a capillary shape, and then heat treatment is performed, or liquid glass is drawn to form a capillary shape. It Since the capillary manufactured by such a manufacturing method has a very small surface roughness, the scattering loss of X-rays can be reduced when used as an X-ray conduit. On the other hand, the atomic layer deposition method is capable of forming a film having a surface roughness approximately the same as the surface roughness of the substrate because of the characteristic that the layers can be formed one by one. Therefore, by applying the present invention, it is possible to form a metal film having a surface roughness almost equal to the small surface roughness of the glass capillary.
 キャピラリ本体のアスペクト比は、500~10000の範囲であってもよい。
 この方法では、金属薄膜は、原子層堆積法によって形成されているので、細長いキャピラリ内空間内でも膜厚が均一になっている。
The aspect ratio of the capillary body may be in the range 500-10000.
In this method, since the metal thin film is formed by the atomic layer deposition method, the film thickness is uniform even in the space inside the elongated capillary.
 本発明の他の見地に係るX線導管は、X線源から入射されたX線を集光して出射するためのものであって、キャピラリ本体と、金属薄膜とを備えている。
 キャピラリ本体は、X線が入射されるキャピラリ内空間を有する。
 金属薄膜は、キャピラリ内壁面に原子層堆積法によって成膜されている。
 例えば、X線を導くためのガラス製のキャピラリは、金型に液状ガラスを流し込んでキャピラリ状に成形した後に加熱処理を施したり、液状ガラスを引き延ばしてキャピラリ状に成形したりする手法で製造される。このような製造方法によって製造されたキャピラリは表面粗さが非常に小さいので、X線導管として用いた場合、X線の散乱損失を小さくすることができる。一方、原子層堆積法は、一層ずつ成膜ができるという特徴から、基板の表面粗さとほぼ同程度の表面粗さを持つ膜を成膜することができる。そのため、本発明を適用することで、ガラス製キャピラリの小さな表面粗さとほぼ同程度の表面粗さを有する金属膜を成膜することができる。
An X-ray conduit according to another aspect of the present invention is for collecting and emitting X-rays incident from an X-ray source, and includes a capillary body and a metal thin film.
The capillary body has a space inside the capillary into which X-rays are incident.
The metal thin film is formed on the inner wall surface of the capillary by the atomic layer deposition method.
For example, a glass capillary for guiding X-rays is manufactured by a method in which liquid glass is poured into a mold to form a capillary shape, and then heat treatment is performed, or liquid glass is drawn to form a capillary shape. It Since the capillary manufactured by such a manufacturing method has a very small surface roughness, the scattering loss of X-rays can be reduced when used as an X-ray conduit. On the other hand, the atomic layer deposition method is capable of forming a film having a surface roughness approximately the same as the surface roughness of the substrate because of the characteristic that the layers can be formed one by one. Therefore, by applying the present invention, it is possible to form a metal film having a surface roughness almost equal to the small surface roughness of the glass capillary.
 このX線導管では、金属薄膜がX線導管のキャピラリ内壁面に形成されるので、X線の通過効率を高めることができる。
 さらに、金属薄膜は、原子層堆積法によって形成されているので、細長いキャピラリ内空間でも膜厚が均一になっている。
In this X-ray conduit, since the metal thin film is formed on the inner wall surface of the capillary of the X-ray conduit, the X-ray passage efficiency can be improved.
Moreover, since the metal thin film is formed by the atomic layer deposition method, the film thickness is uniform even in the elongated capillary inner space.
 キャピラリ本体のアスペクト比は、500~10000の範囲であってもよい。
 このX線導管では、金属薄膜は、原子層堆積法によって形成されているので、細長いキャピラリ内空間内でも膜厚が均一になっている。
The aspect ratio of the capillary body may be in the range 500-10000.
In this X-ray conduit, since the metal thin film is formed by the atomic layer deposition method, the film thickness is uniform even in the elongated capillary inner space.
 本発明の他の見地に係る分析装置は、X線導管と、X線導管に対してX線を照射するX線源と、を備えている。
 この分析装置では、上記効果が得られる。
An analysis apparatus according to another aspect of the present invention includes an X-ray conduit and an X-ray source that irradiates the X-ray conduit with X-rays.
The above effect can be obtained with this analyzer.
 分析装置は、種類の異なるX線導管を複数有していてもよい。
 分析装置は、使用目的に従って複数のX線導管を切り替える切替装置をさらに備えていてもよい。
 この分析装置では、X線導管を使用目的に従って切り替えることができる。
The analyzer may have a plurality of X-ray conduits of different types.
The analyzer may further include a switching device that switches a plurality of X-ray conduits according to the purpose of use.
In this analyzer, the X-ray conduit can be switched according to the purpose of use.
 本発明に係るX線導管の製造方法、X線導管、分析装置では、X線の通過効率を高めることができる。 The X-ray conduit manufacturing method, the X-ray conduit, and the analyzer according to the present invention can improve the X-ray passage efficiency.
分析装置の概略構成を示すブロック図。The block diagram which shows the schematic structure of an analyzer. X線導管の部分的断面図。FIG. 3 is a partial cross-sectional view of an X-ray conduit. 成膜装置の模式図。The schematic diagram of a film-forming apparatus. 成膜方法のフローチャート。The flowchart of the film-forming method.
1.第1実施形態
(1)分析装置の概略説明
 図1を用いて、分析装置1を説明する。図1は、分析装置の概略構成を示すブロック図である。
 分析装置1は、試料Sに一次X線を照射し、その際に発生する蛍光X線を測定することにより、試料Sに係る物性等の定性・定量分析を行うX線分析顕微鏡である。
1. First Embodiment (1) Schematic Description of Analytical Apparatus The analytical apparatus 1 will be described with reference to FIG. FIG. 1 is a block diagram showing a schematic configuration of an analyzer.
The analyzer 1 is an X-ray analysis microscope that performs qualitative/quantitative analysis of the physical properties of the sample S by irradiating the sample S with primary X-rays and measuring the fluorescent X-rays generated at that time.
 分析装置1は、分析対象の試料Sが収納される試料箱3と、試料Sに照射するX線を発生させるX線管5と、X線管5及び試料箱3の間に配置される真空箱7とを備えている。
 X線管5は真空箱7の上面に連通部9を介して取り付けられている。真空箱7は試料箱3の上面に、X線を良好に透過させるX線透過窓11が設けられた連通部を介して取り付けられている。
The analyzer 1 includes a sample box 3 in which a sample S to be analyzed is stored, an X-ray tube 5 that generates X-rays that irradiate the sample S, and a vacuum disposed between the X-ray tube 5 and the sample box 3. And a box 7.
The X-ray tube 5 is attached to the upper surface of the vacuum box 7 via a communication part 9. The vacuum box 7 is attached to the upper surface of the sample box 3 via a communication part provided with an X-ray transmission window 11 that allows X-rays to pass satisfactorily.
 試料箱3内には所定位置に試料ステージ13が設置されており、その上に試料Sが載置される。真空箱7内には所定位置に、光学素子ユニット21(後述)が配置されている。このような構成により、X線管5で発生されたX線は、連通部9を通って真空箱7内に入射し、真空箱7内の光学素子ユニット21を通り、更にX線透過窓11を通って試料箱3内に入射し、試料ステージ13上の試料Sに照射される。
 試料ステージ13は、試料ステージ駆動部56によって、X線の照射方向(図1では上下方向)と、照射方向に直交する面内で、互いに直交する二方向(例えば、図1では左右方向及び奥行き方向)とに移動できるように構成されている。試料ステージ駆動部56は試料箱3の内部又は外部に設けられている。
A sample stage 13 is installed at a predetermined position in the sample box 3, and a sample S is placed on it. An optical element unit 21 (described later) is arranged at a predetermined position in the vacuum box 7. With such a configuration, the X-rays generated by the X-ray tube 5 enter the vacuum box 7 through the communicating portion 9, pass through the optical element unit 21 in the vacuum box 7, and further pass through the X-ray transmission window 11. The light enters the sample box 3 through the sample and is irradiated onto the sample S on the sample stage 13.
The sample stage 13 is driven by the sample stage drive unit 56 in the X-ray irradiation direction (vertical direction in FIG. 1) and in two directions orthogonal to each other in the plane orthogonal to the irradiation direction (for example, the horizontal direction and the depth in FIG. 1). Direction) and can be moved. The sample stage drive unit 56 is provided inside or outside the sample box 3.
 真空箱7には、前述のようにX線が試料Sに照射されることによって試料Sから発生する蛍光X線を検出するX線検出器35が取り付けられている。図1に示す例では、X線検出器35は、蛍光X線を検出するための検出面をX線透過窓11に向けた状態で、真空箱7に取り付けられている。
 また真空箱7には、CCD(Charge Coupled Device)カメラ又は光学顕微鏡等の観察部57が取り付けられている。後述するように、真空箱7内の光学素子ユニット21はミラー28を有しており、観察部57はミラー28に対向して配置されている。
The vacuum box 7 is provided with the X-ray detector 35 that detects the fluorescent X-rays generated from the sample S when the sample S is irradiated with the X-rays as described above. In the example shown in FIG. 1, the X-ray detector 35 is attached to the vacuum box 7 with the detection surface for detecting fluorescent X-rays facing the X-ray transmission window 11.
An observation unit 57 such as a CCD (Charge Coupled Device) camera or an optical microscope is attached to the vacuum box 7. As will be described later, the optical element unit 21 in the vacuum box 7 has a mirror 28, and the observation section 57 is arranged so as to face the mirror 28.
 光学素子ユニット21は、X線管5にて発生されたX線を、ビーム径を絞って試料Sに対して照射するものである。光学素子ユニット21は、光学素子切替ステージ27に、光学素子として複数のX線導管29、31が装着されて構成されている。光学素子切替ステージ27は、使用目的に従って複数のX線導管29、31を切り替えるための部材である。
 X線導管29、31は、X線管5にて発生されて真空箱7内に入射されたX線を出射する。X線導管29、31は、例えばガラスによって筒状(管状)に形成されたキャピラリであり、一端から入射されたX線を内面で反射させながら導光し、他端から出射する。
The optical element unit 21 narrows the beam diameter and irradiates the sample S with X-rays generated by the X-ray tube 5. The optical element unit 21 is configured by mounting a plurality of X-ray conduits 29, 31 as optical elements on an optical element switching stage 27. The optical element switching stage 27 is a member for switching the plurality of X-ray conduits 29, 31 according to the purpose of use.
The X-ray conduits 29 and 31 emit the X-rays generated by the X-ray tube 5 and incident on the inside of the vacuum box 7. The X-ray conduits 29 and 31 are, for example, capillaries formed of glass in a tubular shape, and guide the X-rays incident from one end while reflecting the X-rays on the inner surface and emit the X-rays from the other end.
 X線導管29、31を用いることで細くて強度の高いX線ビーム方式を実現でき、したがって微小領域を高速測定・分析できる。
 光学素子切替ステージ27には、X線導管29、31のほかにミラー28が取り付けられている。
By using the X-ray conduits 29 and 31, a thin and high-intensity X-ray beam system can be realized, and therefore, a minute area can be measured and analyzed at high speed.
In addition to the X-ray conduits 29 and 31, the mirror 28 is attached to the optical element switching stage 27.
 光学素子切替ステージ27は、切替ステージ駆動部55によって、X線の照射方向(図1における上下方向)に直交する面内で、互いに直交する二方向に移動できるように構成されている。切替ステージ駆動部55は、例えばステッピングモータを用いて構成されている。
 切替ステージ駆動部55によって光学素子切替ステージ27を移動させることにより、各X線導管29、31とミラー28との位置が切り替えられ、所定位置に配置されたX線導管29、31を介して、X線管5で発生したX線が試料Sに届けられる。
 所定位置に配置されたX線導管29、31から出射されたX線は、X線透過窓11を通過して試料Sの上面に照射され、X線の照射によって試料Sから蛍光X線が発生する。試料Sから発生した蛍光X線はX線透過窓11を通してX線検出器35へ到達し、X線検出器35にて検出される。
The optical element switching stage 27 is configured to be movable in two directions orthogonal to each other in a plane orthogonal to the X-ray irradiation direction (vertical direction in FIG. 1) by the switching stage drive unit 55. The switching stage drive unit 55 is configured by using, for example, a stepping motor.
By moving the optical element switching stage 27 by the switching stage drive unit 55, the positions of the X-ray conduits 29 and 31 and the mirror 28 are switched, and the X-ray conduits 29 and 31 arranged at predetermined positions are used. The X-rays generated by the X-ray tube 5 are delivered to the sample S.
The X-rays emitted from the X-ray conduits 29 and 31 arranged at predetermined positions pass through the X-ray transmission window 11 and are irradiated onto the upper surface of the sample S, and the X-ray irradiation generates fluorescent X-rays from the sample S. To do. The fluorescent X-rays generated from the sample S reach the X-ray detector 35 through the X-ray transmission window 11 and are detected by the X-ray detector 35.
 X線検出器35は、X線を試料Sに照射することにより発生する蛍光X線を検出する装置であり、検出した蛍光X線のエネルギーに比例した信号を出力する。X線検出器35には、X線検出器35が出力した信号を処理する信号処理部52が接続されている。信号処理部52は、X線検出器35が出力した各値の信号をカウントし、蛍光X線のエネルギーとカウント数との関係、即ち蛍光X線のスペクトルを生成する処理を行う。信号処理部52には分析部53が接続されている。信号処理部52は、生成したスペクトルを示すデータを分析部53へ出力する。分析部53は、演算を行う演算部及びデータを記憶するメモリを含んで構成されている。分析部53は、信号処理部52から入力されたデータが示すスペクトルに基づいて、試料Sに含まれる元素の定性分析又は定量分析を行う。 The X-ray detector 35 is a device that detects fluorescent X-rays generated by irradiating the sample S with X-rays, and outputs a signal proportional to the energy of the detected fluorescent X-rays. To the X-ray detector 35, a signal processing unit 52 that processes the signal output by the X-ray detector 35 is connected. The signal processing unit 52 counts the signals of the respective values output by the X-ray detector 35, and performs the process of generating the relationship between the energy of the fluorescent X-rays and the count number, that is, the spectrum of the fluorescent X-rays. An analysis unit 53 is connected to the signal processing unit 52. The signal processing unit 52 outputs the data indicating the generated spectrum to the analysis unit 53. The analysis unit 53 is configured to include a calculation unit that performs calculation and a memory that stores data. The analysis unit 53 performs qualitative analysis or quantitative analysis of elements contained in the sample S based on the spectrum indicated by the data input from the signal processing unit 52.
 X線管5、信号処理部52、分析部53、表示部54、切替ステージ駆動部55及び試料ステージ駆動部56は、制御部51に接続されている。制御部51は、演算部及びメモリを含んだコンピュータで構成されている。制御部51は、X線管5、信号処理部52、分析部53、表示部54、切替ステージ駆動部55及び試料ステージ駆動部56の動作を制御する。制御部51は、使用者からの指示を受け付け、受け付けた指示に応じて分析装置1の各部の動作を制御する構成であってもよい。表示部54は、信号処理部52が生成したスペクトル又は分析部53による分析結果を表示してもよい。また、制御部51及び分析部53は同一のコンピュータで構成されていてもよい。 The X-ray tube 5, the signal processing unit 52, the analysis unit 53, the display unit 54, the switching stage drive unit 55, and the sample stage drive unit 56 are connected to the control unit 51. The control unit 51 is composed of a computer including a calculation unit and a memory. The control unit 51 controls the operations of the X-ray tube 5, the signal processing unit 52, the analysis unit 53, the display unit 54, the switching stage drive unit 55, and the sample stage drive unit 56. The control unit 51 may be configured to receive an instruction from the user and control the operation of each unit of the analyzer 1 according to the received instruction. The display unit 54 may display the spectrum generated by the signal processing unit 52 or the analysis result by the analysis unit 53. Further, the control unit 51 and the analysis unit 53 may be configured by the same computer.
(2)X線導管の詳細説明
 X線導管29、31は、中空内面を回転放物面状、または円筒状の反射面とした細い管状のものであり、基端から導入した一次X線を、先端から射出して試料S上で異なるスポット径で照射させ、又は絞る。
 X線導管29、31は、キャピラリ本体29a、31aを有している。キャピラリ本体29a、31aは、ガラス製の円筒管である。つまり、キャピラリ本体29a、31aは、X線が入射される中空孔であるキャピラリ内空間32(図2)を有する。キャピラリ本体29a、31aは、互いに長さが異なり、この例では、キャピラリ本体29aが長く、キャピラリ本体31aが短い。
(2) Detailed description of X-ray conduit The X-ray conduits 29 and 31 are thin tubular ones having a hollow parabolic surface or a cylindrical reflecting surface as a hollow inner surface, and a primary X-ray introduced from the base end is used. , Is emitted from the tip and is irradiated or narrowed down on the sample S with different spot diameters.
The X-ray conduits 29 and 31 have capillary bodies 29a and 31a. The capillary bodies 29a and 31a are cylindrical tubes made of glass. That is, the capillary bodies 29a and 31a have the capillary inner space 32 (FIG. 2) which is a hollow hole into which X-rays are incident. The capillary bodies 29a and 31a have mutually different lengths, and in this example, the capillary body 29a is long and the capillary body 31a is short.
 キャピラリ本体29a、31aの長さは、例えば、50~100mmの範囲にある。
 キャピラリの直径は、例えば、10~400μmの範囲にある。
The length of the capillary bodies 29a and 31a is, for example, in the range of 50 to 100 mm.
The diameter of the capillary is, for example, in the range of 10 to 400 μm.
 キャピラリ本体29a、31aのアスペクト比は、例えば、500~10000の範囲にある。ここで、アスペクト比とは、キャピラリ内空間32の内面形状の高さ(h)と、水平方向断面形状の円形又は円形に近い形状の直径(w)の比(h/w)である。 The aspect ratio of the capillary bodies 29a and 31a is, for example, in the range of 500 to 10,000. Here, the aspect ratio is the ratio (h/w) between the height (h) of the inner surface shape of the capillary inner space 32 and the diameter (w) of the circular cross section or a shape close to the circle.
 X線導管29、31のそれぞれは、例えば同じ外径及び異なる内径を有しており、この構成により、X線導管29、31のそれぞれから出射するX線のサンプル表面上での径(スポット径)を異ならせることができる。キャピラリ本体29aは、キャピラリ内空間32の内径が小さく(例えば、10μm)、そのためX線導管29は集光スポット径が小さい。キャピラリ本体31aは、キャピラリ内空間32の内径が大きく(例えば、100μm)、そのためX線導管31は集光スポット径が大きい。すなわち、X線導管29によって、より細い領域にX線を集光して照射することにより、より高い分解能で分析を行うことができる。一方、X線導管31によって、より強力なX線を照射することができ、より早く測定を行うことができる。 Each of the X-ray conduits 29 and 31 has, for example, the same outer diameter and different inner diameter. With this configuration, the diameter of the X-rays emitted from each of the X-ray conduits 29 and 31 on the sample surface (spot diameter ) Can be different. In the capillary body 29a, the inner diameter of the capillary inner space 32 is small (for example, 10 μm), so that the X-ray conduit 29 has a small focused spot diameter. The capillary body 31a has a large inner diameter of the capillary inner space 32 (for example, 100 μm), and therefore the X-ray conduit 31 has a large focused spot diameter. That is, the X-ray conduit 29 collects and irradiates X-rays in a narrower area, so that analysis can be performed with higher resolution. On the other hand, the X-ray conduit 31 makes it possible to irradiate more intense X-rays, and to perform measurement faster.
 図2に示すように、キャピラリ本体29aのキャピラリ内空間32の内周面32a(キャピラリ内壁面の一例)には、金属薄膜33が形成されている。図2は、X線導管の部分的断面図である。なお、ガラスと金属薄膜との間には、下地材(例えば、Cr)が形成されていてもよい。
 金属薄膜33は、例えば銀、金、白金からなる。また、金属薄膜33は、均一の厚さで形成されている。金属薄膜33の厚みは、例えば、数十nm~数μmであり、好ましくは0.1~3μmである。
As shown in FIG. 2, a metal thin film 33 is formed on the inner peripheral surface 32a of the capillary inner space 32 of the capillary body 29a (an example of the inner wall surface of the capillary). FIG. 2 is a partial cross-sectional view of the X-ray conduit. A base material (for example, Cr) may be formed between the glass and the metal thin film.
The metal thin film 33 is made of, for example, silver, gold or platinum. Further, the metal thin film 33 is formed with a uniform thickness. The thickness of the metal thin film 33 is, for example, several tens nm to several μm, preferably 0.1 to 3 μm.
 金属薄膜33を設けることで、内周面が例えばガラスのままである場合に比べて、臨界角θcを大きくできる。それによって、入射側端面でのX線を取り込むための立体角が広くなり、より多くのX線を集めて出射側端面まで送ることができる。その結果、特に高エネルギーのX線であっても通過効率が大幅に改善され、出射側端面において十分に大きなX線強度を得ることができる。 By providing the metal thin film 33, the critical angle θc can be increased as compared with the case where the inner peripheral surface is, for example, glass. As a result, the solid angle for capturing X-rays on the incident side end face becomes wider, and more X-rays can be collected and sent to the emission side end face. As a result, the passage efficiency is significantly improved even with high-energy X-rays, and a sufficiently large X-ray intensity can be obtained at the exit-side end face.
 本実施形態の効果の意義をさらに詳細に説明する。
 臨界角θcを求める式は、下記の通りである。
 θc=1.64×10-3λ√ρ(θc:臨界角、ρ:キャピラリ内壁面材料の密度、λ:入射X線の波長)
 従来、X線源から放射されるX線をより多くキャピラリ内に取り込むべく、X線源にキャピラリを近づけた場合、キャピラリ内部への入射角が大きなX線は、キャピラリ内部の臨界角よりも入射角が大きくなるので、キャピラリ内部を突き抜けることがある。この現象は、特に高エネルギーのX線で特に顕著になる。この理由は、エネルギーが上述の式の波長λに反比例するため、高エネルギーになるほど、臨界角が小さくなり、キャピラリ内部を突き抜けるX線量が増えるためである。なお、モノキャピラリ、ポリキャピラリのいずれの種類においてもこの現象が起こるが、一般的にモノキャピラリよりもポリキャピラリの方がキャピラリ内壁が薄いので、この現象が顕著になる。
 本実施形態におけるX線導管29、31であれば、キャピラリ本体29aの内周面32a(キャピラリ内壁面)に金属薄膜33を成膜しているので、従来のガラス細管製のキャピラリに比べて臨界角θcを大きく設定できる。
The significance of the effect of this embodiment will be described in more detail.
The formula for obtaining the critical angle θc is as follows.
θc=1.64×10 −3 λ√ρ (θc: critical angle, ρ: density of inner wall material of capillary, λ: wavelength of incident X-ray)
Conventionally, when a capillary is brought closer to the X-ray source in order to capture more X-rays emitted from the X-ray source into the capillary, the X-ray with a large incident angle inside the capillary is incident than the critical angle inside the capillary. Since the corner becomes large, it may penetrate through the inside of the capillary. This phenomenon becomes particularly noticeable with high-energy X-rays. The reason for this is that the energy is inversely proportional to the wavelength λ in the above equation, so that the higher the energy, the smaller the critical angle, and the more the X-ray dose that penetrates inside the capillary. Although this phenomenon occurs in both types of monocapillaries and polycapillaries, this phenomenon is remarkable because the inner wall of the capillary is generally thinner in the polycapillary than in the monocapillary.
In the case of the X-ray conduits 29 and 31 in the present embodiment, the metal thin film 33 is formed on the inner peripheral surface 32a (capillary inner wall surface) of the capillary main body 29a, so that it is more critical than the conventional glass capillary tube. The angle θc can be set large.
 下記の表に示すように、本実施形態の一実施例としてキャピラリ内壁面に金属薄膜としてPtを用いた場合は、従来のキャピラリ内壁面がSiOの場合に比べて、同一のエネルギーに対して臨界角及び立体角が大きくなっていることが分かる。
Figure JPOXMLDOC01-appb-T000001
 
 金属薄膜33は、後述するように原子層堆積法によって形成されているので、細長いキャピラリ内空間32内でも膜厚が他の製造方法(例えば、メッキ)によって形成された場合よりもさらに均一になっている。
 X線導管29とX線導管31は、分析対象によって金属薄膜の材料が異なるものとしてもよい。例えば、X線導管の選択において、蛍光X線エネルギースペクトルにおいて、対象測定物の蛍光X線のピークと重ならない蛍光X線のピークを有する金属薄膜が形成されたX線導管を選ぶことができる。
As shown in the table below, when Pt is used as the metal thin film on the inner wall surface of the capillary as an example of the present embodiment, compared with the case where the inner wall surface of the conventional capillary is SiO 2 , the same energy is applied. It can be seen that the critical angle and the solid angle are large.
Figure JPOXMLDOC01-appb-T000001

Since the metal thin film 33 is formed by the atomic layer deposition method as described later, the film thickness in the elongated capillary inner space 32 is more uniform than in the case of being formed by another manufacturing method (for example, plating). ing.
The X-ray conduit 29 and the X-ray conduit 31 may have different materials for the metal thin film depending on the analysis target. For example, in selecting the X-ray conduit, an X-ray conduit formed with a metal thin film having a fluorescent X-ray peak that does not overlap with the fluorescent X-ray peak of the target measurement object in the fluorescent X-ray energy spectrum can be selected.
(3)成膜装置
 図3を用いて、X線導管29の製造する成膜装置71を説明する。図3は、成膜装置の模式図である。なお、以下の説明は、X線導管31の場合も同じである。
 成膜装置71は、ALD法を用いる。ALD(Atomic Layer Deposition:原子層堆積)法は、各反応物の周期的な供給を通じた化学的置換により薄膜を形成する成膜方法である。
(3) Film Forming Apparatus A film forming apparatus 71 for manufacturing the X-ray conduit 29 will be described with reference to FIG. FIG. 3 is a schematic diagram of a film forming apparatus. The following description is the same for the X-ray conduit 31.
The film forming apparatus 71 uses the ALD method. The ALD (Atomic Layer Deposition) method is a film forming method for forming a thin film by chemical substitution through periodic supply of each reactant.
 成膜装置71は、成膜室72を有している。成膜室72内では、キャピラリ本体29aが、載置台73上に載置されている。載置台73は、支持部75によって支持されている。成膜室72には、反応性ガス(HO)導入口77、金属化合物の原料となる原料ガス導入口79,パージガス導入口81が設けられている。成膜室72の右側面には成膜室72内のガスを排気する排気口83が設けられている。 The film forming apparatus 71 has a film forming chamber 72. In the film forming chamber 72, the capillary main body 29 a is mounted on the mounting table 73. The mounting table 73 is supported by the supporting portion 75. The film forming chamber 72 is provided with a reactive gas (H 2 O) inlet port 77, a source gas inlet port 79 as a raw material of a metal compound, and a purge gas inlet port 81. An exhaust port 83 for exhausting the gas in the film forming chamber 72 is provided on the right side surface of the film forming chamber 72.
(4)成膜方法
 図4を用いて、キャピラリ内空間32の壁面に原子層堆積法によって金属薄膜33を成膜する成膜方法を説明する。図4は、成膜方法のフローチャートである。
 ステップS1では、成膜室72にキャピラリ本体29aを設置した後、金属薄膜33の原料となる原料ガスをキャピラリ本体29aへ供給する。
(4) Film Forming Method A film forming method for forming the metal thin film 33 on the wall surface of the capillary inner space 32 by the atomic layer deposition method will be described with reference to FIG. FIG. 4 is a flowchart of the film forming method.
In step S1, after the capillary main body 29a is installed in the film forming chamber 72, a raw material gas that is a raw material of the metal thin film 33 is supplied to the capillary main body 29a.
 ステップS2では、不活性ガスをパージすることにより、反応チャンバ内の原料Aを排気する。
 ステップS3では、反応性ガスを成膜室72に供給する。反応性ガスとしては、酸素や水蒸気等を用いることができる。これにより、原料からなる原子層の上に酸素の原子層が形成される。
 ステップS4では、気相中に生成した副生成物や反応性ガスを除去するため、不活性ガスのパージにより排気する。
In step S2, the raw material A in the reaction chamber is exhausted by purging the inert gas.
In step S3, the reactive gas is supplied to the film forming chamber 72. As the reactive gas, oxygen, water vapor or the like can be used. As a result, an atomic layer of oxygen is formed on the atomic layer made of the raw material.
In step S4, in order to remove by-products and reactive gas generated in the gas phase, the gas is exhausted by purging with an inert gas.
 以上のS1~S4を繰り返し行い、金属薄膜33を形成していく。
 その後、ステップS5では、成膜装置71に備え付けられた膜厚測定装置(図示せず)により、金属薄膜33が所定の膜厚に到達したかどうかを確認する。
 上記の成膜方法においては、成膜原料が気体であるため細いキャピラリであってもキャピラリ内空間に確実に原料を送ることができるという利点をさらに有する。それに対して、蒸着法やめっき法では、細いキャピラリの場合、キャピラリの入口が細いため成膜原料が入りにくく、そのため成膜を行うことが難しい。
The above-mentioned S1 to S4 are repeated to form the metal thin film 33.
Then, in step S5, a film thickness measuring device (not shown) provided in the film forming device 71 confirms whether the metal thin film 33 has reached a predetermined film thickness.
The above film forming method further has an advantage that the film forming raw material is a gas, so that the raw material can be reliably sent to the inner space of the capillary even if the capillary is thin. On the other hand, in the vapor deposition method and the plating method, in the case of a thin capillary, it is difficult to enter the film-forming raw material because the capillary has a narrow inlet, and therefore it is difficult to form a film.
2.他の実施形態
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 前記実施形態ではX線導管としてモノキャピラリを説明したが、ポリキャピラリでもよい。ただし、より高いX線出射強度が必要とされる観点からは、モノキャピラリの場合の方が本発明の利点が大きい。
 分析装置に設けられたX線導管の数は、1でもよく、3以上でもよい。
2. Other Embodiments One embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various modifications can be made without departing from the gist of the invention. In particular, the plurality of embodiments and modifications described in the present specification can be arbitrarily combined as needed.
Although the monocapillary has been described as the X-ray conduit in the above embodiment, a polycapillary may be used. However, from the viewpoint that a higher X-ray emission intensity is required, the advantage of the present invention is greater in the case of the monocapillary.
The number of X-ray conduits provided in the analyzer may be one or three or more.
 本発明は、X線を利用して分析を行うX線分析装置等においてX線を集束するため又は平行化するために利用されるX線導管に広く適用できる。 The present invention can be widely applied to an X-ray conduit used for focusing or collimating X-rays in an X-ray analyzer or the like that uses X-rays for analysis.
1   :分析装置
21  :光学素子ユニット
29  :X線導管
29a :キャピラリ本体
31  :X線導管
31a :キャピラリ本体
33  :金属薄膜
35  :X線検出器
71  :成膜装置
S   :試料
1: Analysis device 21: Optical element unit 29: X-ray conduit 29a: Capillary main body 31: X-ray conduit 31a: Capillary main body 33: Metal thin film 35: X-ray detector 71: Film-forming device S: Sample

Claims (6)

  1.  X線源から入射されたX線を出射するためのX線導管を製造する方法であって、
     X線が入射されるキャピラリ内空間を有するキャピラリ本体を準備するステップと、
     キャピラリ内壁面に原子層堆積法によって金属薄膜を成膜するステップと、
    を備えたX線導管の製造方法。
    A method of manufacturing an X-ray conduit for emitting X-rays incident from an X-ray source, comprising:
    A step of preparing a capillary main body having a space inside the capillary into which X-rays are incident,
    A step of forming a metal thin film on the inner wall surface of the capillary by an atomic layer deposition method,
    An X-ray conduit manufacturing method comprising:
  2.  前記キャピラリ本体のアスペクト比は、500~10000の範囲である、請求項1に記載のX線導管の製造方法。 The method for manufacturing an X-ray conduit according to claim 1, wherein the aspect ratio of the capillary body is in the range of 500 to 10,000.
  3.  X線源から入射されたX線を出射するためのX線導管であって、
     X線が入射されるキャピラリ内空間を有するキャピラリ本体と、
     キャピラリ内壁面に原子層堆積法によって成膜された金属薄膜と、
    を備えたX線導管。
    An X-ray conduit for emitting X-rays incident from an X-ray source,
    A capillary body having a space inside the capillary into which X-rays are incident;
    A metal thin film formed by an atomic layer deposition method on the inner wall surface of the capillary,
    X-ray conduit with.
  4.  前記キャピラリ本体のアスペクト比は、500~10000の範囲である、請求項3に記載のX線導管。 The X-ray conduit according to claim 3, wherein the aspect ratio of the capillary body is in the range of 500 to 10,000.
  5.  請求項3又は4に記載されたX線導管と、
     前記X線導管に対してX線を照射するX線源と、
    を備えた分析装置。
    An X-ray conduit according to claim 3 or 4,
    An X-ray source for irradiating the X-ray conduit with X-rays;
    Analyzer equipped with.
  6.  種類の異なる前記X線導管を複数有しており、
     使用目的に従って前記複数のX線導管を切り替える切替装置をさらに備えた、請求項5に記載の分析装置。
    Having a plurality of X-ray conduits of different types,
    The analyzer according to claim 5, further comprising a switching device that switches the plurality of X-ray conduits according to a purpose of use.
PCT/JP2019/037472 2018-12-28 2019-09-25 X-ray guide tube production method, x-ray guide tube, and analysis device WO2020137047A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562362A JP7264917B2 (en) 2018-12-28 2019-09-25 Manufacturing method of X-ray conduit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-246656 2018-12-28
JP2018246656 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020137047A1 true WO2020137047A1 (en) 2020-07-02

Family

ID=71126382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037472 WO2020137047A1 (en) 2018-12-28 2019-09-25 X-ray guide tube production method, x-ray guide tube, and analysis device

Country Status (2)

Country Link
JP (1) JP7264917B2 (en)
WO (1) WO2020137047A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345618A (en) * 2021-06-09 2021-09-03 中国科学院电工研究所 Preparation method and system of X-ray optical element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295498A (en) * 1998-04-14 1999-10-29 Yuji Matsuura Optical element for x-ray and manufacture thereof
JP2006242732A (en) * 2005-03-03 2006-09-14 Yuji Matsuura Transmission path for x-ray
JP2013508735A (en) * 2009-10-26 2013-03-07 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Method and apparatus for manufacturing a Fresnel zone plate
US20130280421A1 (en) * 2010-12-29 2013-10-24 Postech Academy-Industry Foundation Method for manufacturing x-ray/gamma-ray focusing optical system using atomic layer deposition
JP2014038034A (en) * 2012-08-16 2014-02-27 Horiba Ltd X-ray analyzing apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242398A (en) * 1988-08-02 1990-02-13 Ricoh Co Ltd X-ray condenser
JP5341416B2 (en) 2008-07-17 2013-11-13 日本電信電話株式会社 X-ray condenser lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295498A (en) * 1998-04-14 1999-10-29 Yuji Matsuura Optical element for x-ray and manufacture thereof
JP2006242732A (en) * 2005-03-03 2006-09-14 Yuji Matsuura Transmission path for x-ray
JP2013508735A (en) * 2009-10-26 2013-03-07 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ Method and apparatus for manufacturing a Fresnel zone plate
US20130280421A1 (en) * 2010-12-29 2013-10-24 Postech Academy-Industry Foundation Method for manufacturing x-ray/gamma-ray focusing optical system using atomic layer deposition
JP2014038034A (en) * 2012-08-16 2014-02-27 Horiba Ltd X-ray analyzing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345618A (en) * 2021-06-09 2021-09-03 中国科学院电工研究所 Preparation method and system of X-ray optical element
CN113345618B (en) * 2021-06-09 2023-02-28 中国科学院电工研究所 Preparation method and system of X-ray optical element

Also Published As

Publication number Publication date
JPWO2020137047A1 (en) 2021-11-11
JP7264917B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
WO2020202730A1 (en) X-ray analysis apparatus
US6965663B2 (en) X-ray analysis apparatus and method
WO2020137047A1 (en) X-ray guide tube production method, x-ray guide tube, and analysis device
JP2007093593A (en) Total reflection fluorescent x-ray analysis method and device
JP2006138837A (en) Multifunction x-ray analysis system
JP2009121841A (en) Combined electron spectrometer and electron spectroscopy method
JP2006337121A (en) X-ray converging device
WO2007026750A1 (en) Microchip and analyzing method and device employing it
JPWO2008143101A1 (en) Mossbauer spectrometer
JP2008039772A (en) X-ray analyzer and x-ray analysis method
US7400705B2 (en) Method of evaluating ion-exchange film, method of evaluating organic sample and X-ray measuring apparatus
JP4370057B2 (en) X-ray irradiation apparatus having an X source including a capillary optical system
KR101412375B1 (en) X-ray measuring device of micro-portion
CN108709898B (en) Microbeam X-ray fluorescence analysis system based on combined X-ray capillary
CN113218975A (en) Surface X-ray absorption spectrum measuring device
JP2010197229A (en) Fluorescent x-ray analyzer
JP2001201599A (en) Apparatus for guiding x-ray
Yamanaka et al. Internal-energy measurements of angle-resolved product CO2 in catalytic CO oxidation by means of infrared chemiluminescence
JP4656009B2 (en) X-ray analyzer
JP5347559B2 (en) X-ray analyzer
JP2014196925A (en) Fluorescent x-ray analyzer, and depth direction analysis method used for the same
JP5646147B2 (en) Method and apparatus for measuring a two-dimensional distribution
JP2003187738A (en) Electron-spectroscope device, electron spectroscope and sample analysis method
EP1016863A1 (en) High vacuum xafs measuring instrument
JP2003004621A (en) Scanning probe microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562362

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903510

Country of ref document: EP

Kind code of ref document: A1