WO2020136986A1 - Humidifier - Google Patents

Humidifier Download PDF

Info

Publication number
WO2020136986A1
WO2020136986A1 PCT/JP2019/032522 JP2019032522W WO2020136986A1 WO 2020136986 A1 WO2020136986 A1 WO 2020136986A1 JP 2019032522 W JP2019032522 W JP 2019032522W WO 2020136986 A1 WO2020136986 A1 WO 2020136986A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water level
level detection
unit
detection unit
Prior art date
Application number
PCT/JP2019/032522
Other languages
French (fr)
Japanese (ja)
Inventor
岳人 山本
広大 横山
鈴木 康浩
訓央 清本
智之 樋口
飯田 健太郎
利行 安井
明徳 奥村
大輔 橋野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018244420A external-priority patent/JP7308383B2/en
Priority claimed from JP2018244414A external-priority patent/JP2020106186A/en
Priority claimed from JP2018244415A external-priority patent/JP2020106187A/en
Priority claimed from JP2019013367A external-priority patent/JP7442031B2/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020136986A1 publication Critical patent/WO2020136986A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/16Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using rotating elements

Definitions

  • the present disclosure relates to a humidifying device.
  • Patent Document 1 there is a humidifying device that humidifies the sucked air by containing the water stored in the water storage unit and blows out the humidified air.
  • the water level in the water storage section is detected by a water level sensor and at least the automatic water supply valve is controlled to maintain the water level in the water storage section at a predetermined amount.
  • some of the humidifiers of this type use a plurality of water level sensors to detect the water level in the water storage section.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a humidifying device that can accurately detect the water level in a water storage section.
  • the humidifying device of the present disclosure is provided in a suction port that sucks in air, a blowout port that blows out the air that is sucked in from the suction port, and an air passage between the suction port and the blowout port. And a humidifying section for humidifying the air.
  • the humidifier is provided with a water storage unit for storing water for humidifying air by the humidification unit, a water supply unit for supplying water to the water storage unit, and a plurality of water levels provided in the water storage unit for detecting the water level of the water storage unit.
  • a detection unit and a water level detection correction unit are provided.
  • the plurality of water level detection units include at least a reference water level detection unit serving as a reference for the output value and a non-reference water level detection unit serving as a correction target for the output value. Then, the water level detection correction unit corrects the output value of the non-reference water level detection unit based on the output value of the reference water level detection unit when the water storage unit is in a drought state.
  • the output value of the non-reference water level detection unit can be matched with the output value of the reference water level detection unit, so that it is possible to provide a humidification device that can accurately detect the water level of the water storage unit.
  • FIG. 1 is a perspective view of a liquid atomizing apparatus according to Embodiment 1-1 of the present disclosure.
  • FIG. 2 is a schematic vertical cross-sectional view of the liquid atomizing apparatus.
  • FIG. 3 is a flowchart showing a humidification operation process of the liquid atomization device.
  • FIG. 4 is a vertical schematic cross-sectional view of a liquid atomizing apparatus according to Embodiment 1-2 of the present disclosure.
  • FIG. 5 is a schematic vertical cross-sectional view of the liquid atomizing apparatus according to Embodiment 1-3 of the present disclosure.
  • FIG. 6 is a flowchart showing a humidification operation process of the liquid atomization device.
  • FIG. 1 is a perspective view of a liquid atomizing apparatus according to Embodiment 1-1 of the present disclosure.
  • FIG. 2 is a schematic vertical cross-sectional view of the liquid atomizing apparatus.
  • FIG. 3 is a flowchart showing a humidification operation process of the liquid atomization device
  • FIG. 7 is a schematic vertical cross-sectional view of a liquid atomizing apparatus according to Embodiment 1-4 of the present disclosure.
  • FIG. 8 is a schematic diagram of a heat exchange-type ventilation device including the liquid atomization device according to the second embodiment of the present disclosure.
  • FIG. 9 is a flowchart showing the water consumption amount calculation process executed by the water consumption amount calculation unit.
  • FIG. 10 is a front sectional view of a conventional humidifying unit portion.
  • FIG. 11 is a perspective view of a liquid fine device according to Embodiment 3-1 of the present disclosure.
  • FIG. 12 is a schematic vertical cross-sectional view of the liquid atomizing apparatus.
  • FIG. 13 is a flowchart which shows the humidification operating condition of the same liquid atomization apparatus.
  • FIG. 13 is a flowchart which shows the humidification operating condition of the same liquid atomization apparatus.
  • FIG. 14 is a schematic vertical cross-sectional view of a liquid atomizing apparatus according to Embodiment 3-2 of the present disclosure.
  • FIG. 15 is a schematic vertical cross-sectional view of a liquid atomizing apparatus according to Embodiment 3-3 of the present disclosure.
  • FIG. 16 is a flowchart showing a humidification operation process of the liquid atomization device.
  • FIG. 17 is a schematic vertical cross-sectional view of the liquid atomizing apparatus described in Embodiment 3-4 of the present disclosure.
  • FIG. 18 is a schematic diagram of a heat exchange apparatus according to Embodiment 4 of the present disclosure.
  • FIG. 19 is a perspective view of a liquid atomization device according to Embodiment 4 of the present disclosure.
  • FIG. 19 is a perspective view of a liquid atomization device according to Embodiment 4 of the present disclosure.
  • FIG. 20 is a schematic vertical cross-sectional view of the liquid atomization device.
  • FIG. 21 is a flowchart showing a humidification operation process of the liquid atomization device.
  • FIG. 22 is a flowchart showing a humidification operation process of the liquid atomization device.
  • FIG. 23 is a flowchart showing a full water detection process of the liquid atomization device.
  • Embodiment 1 includes at least Embodiment 1-1, Embodiment 1-2, Embodiment 1-3 and Embodiment 1-4 below.
  • FIG. 1 is a perspective view of the liquid atomization apparatus 1.
  • FIG. 2 is a schematic cross-sectional view of the liquid atomization apparatus 1 in the vertical direction.
  • the liquid atomizer 1 includes a suction port 2 that sucks in air, an inner cylinder 5, an outer cylinder 9, and an air outlet 3 that blows out air.
  • the inner cylinder 5 communicates with the suction port 2 and is open at the bottom as a ventilation port 7 (see FIG. 2).
  • the outer cylinder 9 includes the inner cylinder 5.
  • the blow-out port 3 is provided above the outer cylinder 9, blows out the air that has been sucked in through the suction port 2 and has passed through the inner cylinder 5 and the outer cylinder 9.
  • the liquid atomizer 1 has a suction communication air passage 4, an inner cylinder air passage 6, and an outer cylinder air passage 8 formed between the suction port 2 and the air outlet 3.
  • the suction communication air passage 4 is an air passage through which the air sucked in through the suction port 2 flows toward the inner cylinder 5 in communication therewith.
  • the inner cylinder air passage 6 is an air passage formed inside the inner cylinder 5, and the air flowing from the suction communication air passage 4 flows toward the ventilation port 7 of the inner cylinder 5.
  • the outer cylinder air passage 8 is an air passage formed between the inner diameter of the outer cylinder 9 and the outer diameter of the inner cylinder 5, and the air blown out from the ventilation port 7 of the inner cylinder 5 flows inside the outer cylinder 9. It is an air passage that leads to the air outlet 3.
  • the liquid atomizing device 1 includes a liquid atomizing unit 19 provided in the air passage formed by the suction communication air passage 4, the inner cylinder air passage 6, and the outer cylinder air passage 8.
  • the liquid atomizing apparatus 1 humidifies the air sucked from the suction port 2 by including the water atomized by the liquid atomizing unit 19 in the air flowing in the air passage.
  • the liquid atomizing unit 19 is the humidifying unit of the present disclosure.
  • the liquid refining unit 19 is a main part of the liquid refining apparatus 1 and is for refining water.
  • the air taken in through the suction port 2 is sent to the liquid refining unit 19 via the suction communication air passage 4.
  • the liquid atomization apparatus 1 causes the air passing through the inner tube air passage 6 to include the water atomized by the liquid atomization unit 19 so that the air containing the water passes through the outer tube air passage 8. And is blown out from the outlet 3.
  • the liquid atomization unit 19 includes a collision wall 5a that is open at the top and bottom.
  • the collision wall 5a is provided by being fixed inside the inner cylinder 5.
  • the liquid atomization unit 19 is provided with a tubular pumping pipe 21 inside the surrounded by the collision wall 5a, which pumps (pumps) water while rotating.
  • the pumping pipe 21 has an inverted conical hollow structure, and the rotary shaft 20 arranged in the vertical direction is fixed to the center of the inverted conical top surface.
  • the pumping pipe 21 includes a plurality of rotary plates 22 formed so as to project outward from the outer surface of the pumping pipe 21.
  • the plurality of rotary plates 22 are formed at predetermined intervals in the axial direction of the rotary shaft 20 so as to project outward from the outer surface of the pumping pipe 21. Since the rotary plate 22 rotates together with the pumping pipe 21, a horizontal disk shape coaxial with the rotary shaft 20 is preferable.
  • the number of the rotary plates 22 is appropriately set according to the target performance or the dimensions of the pumping pipe 21.
  • the wall surface of the pumping pipe 21 is provided with an opening (not shown) penetrating the wall surface of the pumping pipe 21.
  • the opening of the pumping pipe 21 is provided at a position communicating with the rotary plate 22 formed so as to project outward from the outer surface of the pumping pipe 21.
  • the size of the opening in the circumferential direction needs to be designed according to the outer diameter of the portion of the pumping pipe 21 where the opening is provided. For example, the diameter corresponding to 5% to 50% of the outer diameter of the pumping pipe 21. , And more preferably, a diameter corresponding to 5% to 20% of the pumping pipe 21. It should be noted that the sizes of the openings may be the same within the above range.
  • a water storage unit 10 for storing water pumped by the pumping pipe 21 is provided below the pumping pipe 21 in the vertical direction below the liquid atomization unit 19.
  • the air is humidified by the water pumped by the water pump 21.
  • the depth of the water storage section 10 is designed so that a part of the lower portion of the pumping pipe 21, for example, about one third to one hundredth of the cone height of the pumping pipe 21 is immersed. This depth can be designed according to the required pumping volume.
  • the water supply unit 15 supplies water to the water storage unit 10.
  • a water supply pipe 16 is connected to the water supply unit 15, and water is directly supplied from the water supply through the water supply valve 17 through the water supply pipe 16, for example.
  • the water supply unit 15 may be configured to pump up only the required amount of water according to the siphon principle from a water tank provided outside the liquid atomization unit 19 and supply the water to the water storage unit 10.
  • the water supply unit 15 is provided vertically above the bottom surface of the water storage unit 10.
  • the water supply unit 15 is preferably provided not only on the bottom surface of the water storage unit 10 but also vertically above the upper surface of the water storage unit 10 (the surface of the maximum water level that can be stored in the water storage unit 10).
  • a drainage section 11 is provided at the center of the bottom surface of the water storage section 10.
  • the drainage port of the drainage unit 11 is provided at the lowest position of the water storage unit 10.
  • the water storage section 10 is provided with an overflow drain port 18. If more water than necessary is stored in the water storage unit 10, the rotation of the pumping pipe 21 may be insufficient due to the resistance of the water, water may leak from the liquid atomizer 1, or the rotary motor 23 may be submerged in water. There is a risk of malfunction.
  • the overflow drain 18 is provided to prevent such a situation, and is opened at a predetermined water level so that the water stored in the water storage unit 10 does not exceed a predetermined water level.
  • the liquid atomization unit 19 is provided with a reference water level detection unit 24 and a full water level detection unit 25 in order to detect the full water level of the water storage unit 10.
  • the full water level detection unit 25 detects the water level of the water that should be stored in the water storage unit 10 necessary for the liquid micronization by the liquid micronization unit 19 as a full water level, and is determined by an NTC (Negative Temperature Coefficient) thermistor. Composed.
  • the full water level detection unit 25 is provided at a first position lower than the position where the overflow drain port 18 is provided and which has a predetermined water level. That is, the position detected as the full water level is set to a position lower than the position where the overflow drain port 18 is provided and the predetermined water level.
  • the reference water level detection unit 24 is composed of the same NTC thermistor as the full water level detection unit 25, and is provided at a second position higher than the predetermined water level where the overflow drain port 18 is provided. Due to the overflow drain 18, the water is not stored in the water storage unit 10 at a position higher than a predetermined water level, and the reference water level detection unit 24 is always present in the air. Therefore, the output value of the reference water level detection unit 24 is used as a reference for the output value.
  • the output voltage value of the NTC thermistor changes depending on whether it is in water or in air.
  • the voltage value output by the full water level detection unit 25 and the voltage value output by the reference water level detection unit 24 are compared. Then, when the difference between the compared voltage values is in a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 25 is in the water, and the water is stored in the water storage unit 10 up to the full water level. Assuming that the water has been stored, the water supply valve 17 is closed and the water supply is stopped.
  • the voltage value output by the full water level detection unit 25 is corrected using the voltage value output by the reference water level detection unit 24. That is, the full water level detection unit 25 is an output value correction target, and corresponds to the non-reference water level detection unit of the present disclosure.
  • correction is performed after the first predetermined time (for example, 5 minutes) when the liquid micronization apparatus 1 is first energized and the voltages output from the reference water level detection unit 24 and the full water level detection unit 25 stabilize. To be done.
  • the correction is performed even after the drying operation is performed every second predetermined time (for example, 24 hours). That is, in a situation where the water storage unit 10 is in a drought state, the reference water level detection unit 24 and the full water level detection unit 25 are in the same environment, and ideally the same voltage value is output, the correction is performed. Be implemented.
  • the correction is performed by setting the difference in voltage value obtained by subtracting the voltage value output from the full water level detection unit 25 from the voltage value output from the reference water level detection unit 24 as the offset voltage value. Then, thereafter, the full water level is detected as a value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 25 as the voltage value output from the full water level detection unit 25. Accordingly, the output value of the full water level detection unit 25 can be matched with the output value of the reference water level detection unit 24, so that the water level of the water storage unit 10 can be accurately detected.
  • the method of correcting the output value of the full water level detection unit 25 based on the output value of the reference water level detection unit 24 is not limited to the above method, and the output value of the full water level detection unit 25 is the reference water level detection unit 24. Other methods may be used as long as they are corrected based on the output value of
  • the operation principle of water atomization in the liquid atomizer 1 will be described.
  • the rotary shaft 20 is rotated by the rotary motor 23 and the pumping pipe 21 is rotated in accordance with the rotation, the water stored in the water storage unit 10 is pumped up by the pumping pipe 21 due to the centrifugal force generated by the rotation.
  • the rotation speed of the pumping pipe 21 is set between 1000 and 5000 rpm. Since the pumping pipe 21 has an inverted conical hollow structure, the water pumped by the rotation is pumped to the upper part along the inner wall of the pumping pipe 21. Then, the pumped water is discharged from the opening of the pumping pipe 21 through the rotating plate 22 in the centrifugal direction and scattered as water droplets.
  • the water droplets scattered from the rotating plate 22 fly in the space surrounded by the collision wall 5a, collide with the collision wall 5a, and are atomized.
  • the air passing through the inner cylindrical air passage 6 moves from the upper opening of the collision wall 5a into the collision wall 5a, and includes the water droplets crushed (miniaturized) by the collision wall 5a to the collision wall 5a.
  • 5a Move to the outside.
  • the air sucked from the suction port 2 of the liquid atomization device 1 is humidified, and the humidified air is blown out from the air outlet 3.
  • the kinetic energy of the water scattered from the rotary plate 22 is attenuated by the friction with the air inside the collision wall 5a, so the rotary plate 22 is preferably as close to the collision wall 5a as possible.
  • the rotary plate 22 is brought closer to each other, so the amount of airflow passing through the inside of the collision wall 5a decreases, so the lower limit value of the distance is arbitrarily determined by the pressure loss and the amount of airflow passing through the inside of the collision wall 5a.
  • the liquid to be atomized may be other than water, for example, a liquid such as hypochlorous acid water having bactericidal/deodorant properties.
  • the micronized hypochlorous acid water is contained in the air sucked from the suction port 2 of the liquid micronizer 1, and the air containing the hypochlorous acid water is blown out from the blowout port 3 to obtain the liquid micronizer.
  • the space where 1 is placed can be sterilized/deodorized.
  • FIG. 3 is a flowchart showing the humidification operation process.
  • the humidification operation process is executed by a control unit (not shown) provided in the liquid atomization device 1.
  • the water level detection unit correction process during the first energization is executed (S1).
  • the first energization water level detection unit correction process it is determined whether or not the energization to the liquid atomization apparatus 1 is the first time, and if the energization is the first time, first, a first predetermined time (for example, 5 minutes) is waited.
  • the first predetermined time is a time for stabilizing the voltage output from the reference water level detection unit 24 and the full water level detection unit 25.
  • the above-mentioned offset voltage value is calculated from the voltage values output from the reference water level detection unit 24 and the full water level detection unit 25 while the water storage unit 10 is in a drought state.
  • the value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 25 is used as the voltage value output from the full water level detection unit 25 for detecting the full water level.
  • the process of S1 is executed by the water level detection correction unit of the present disclosure.
  • the water level detection correction unit is provided, for example, in the control unit.
  • the water level detection correction unit corrects the output value of the full water level detection unit 25 based on the output value of the reference water level detection unit 24 when the water storage unit 10 is in a drought state.
  • the processes of S2 to S4 are executed to wash the water storage part 10 and the like. That is, in the process of S2, the drain valve 12 is closed, the water supply valve 17 is opened, and water supply to the water storage section 10 is started. Then, in the humidification operation process, it is determined whether or not the water level of the water storage section 10 has reached the full water level (S3).
  • the voltage value output by the full water level detection unit 25 is compared with the voltage value output by the reference water level detection unit 24.
  • the voltage value output by the full water level detection unit 25 a value obtained by adding the above-mentioned offset voltage value to the actually output voltage value is used.
  • the difference between the compared voltage values is in a predetermined range (for example, 0.2 V)
  • a predetermined range for example, 0.2 V
  • the full water level detection unit 25 may be in the air or in the water depending on the water level of the water storage unit 10.
  • the reference water level detection unit 24 since the reference water level detection unit 24 is provided at the second position higher than the predetermined position where the overflow drain port 18 is provided, it is always in the air. Therefore, by comparing the voltage output from the reference water level detection unit 24 that is always in the air with the voltage output from the full water level detection unit 25, the full water level detection unit 25 exists in the water. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 10 can be suppressed.
  • the processing in S3 is repeated.
  • the humidification operation process opens the drain valve 12 and closes the water supply valve 17 to close the water storage part.
  • the water supply to 10 is stopped, and the water stored in the water storage section 10 is drained (S4). As a result, the cleaning of the water storage section 10 is completed.
  • the drain valve 12 is closed, the water supply valve 17 is opened, and water supply to the water storage section 10 is started (S5). Then, in the humidifying operation process, it is determined whether or not the water level of the water storage section 10 has reached the full water level (S6). The determination of S6 is performed in the same manner as the processing of S3.
  • the humidification operation process closes the water supply valve 17 and stops the water supply (S7). Then, in the humidification operation process, the rotation of the rotary motor 23 is turned on (S8). As a result, the water stored in the water storage unit 10 is atomized by the above-described operation, and the air sucked from the suction port 2 is humidified.
  • the process waits until 30 minutes when it is expected that the amount of water in the water storage unit 10 will decrease (S9), and then the rotation motor 23 is turned off to temporarily stop the humidifying operation. (S10).
  • a second predetermined time 24 hours in the present embodiment
  • a second predetermined time has elapsed since the liquid atomization device 1 was energized, or a second predetermined time has elapsed since the previous drying operation was performed. It is determined (S11).
  • the humidifying operation process returns to the process of S5, the water is supplied to the water storage unit 10 again, and the humidifying operation is restarted.
  • the humidifying operation process performs a dry operation (S12). Specifically, an air blower (not shown) provided inside or outside the liquid micronization apparatus 1 blows air from the suction port 2 to the air outlet 3 without performing a humidifying operation. The inside of 1 is dried. By carrying out this drying operation every second predetermined time, generation of mold inside the liquid atomization apparatus 1 is suppressed.
  • the process of S12 is executed by the drying operation unit of the present disclosure.
  • the humidification operation process executes the water level detection unit correction process (S13).
  • the correction in the water level detection unit correction process is performed by calculating the above-mentioned offset voltage value from the voltage values output from the reference water level detection unit 24 and the full water level detection unit 25, as in the first energization water level detection unit correction process in S1. Done. Then, thereafter, using the offset voltage value calculated here, the value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 25 is the voltage value output from the full water level detection unit 25. Is used to detect the full water level.
  • the water storage unit 10 is in a drought state
  • the reference water level detection unit 24 and the full water level detection unit 25 are both in a dry state, and under the same environment. It is in. Therefore, the water level of the water storage section 10 can be accurately detected by performing the correction under such a condition. Further, by periodically performing the correction every second predetermined time, the correction can be reliably performed even if the reference water level detection unit 24 and the full water level detection unit 25 deteriorate with age and their characteristics change.
  • the process of S13 is also executed by the water level detection correction unit of the present disclosure.
  • the humidifying operation process is performed for the first time (from the start of water supply by the process of S5). In this embodiment, it is determined whether 5 minutes have passed (S14). As a result, if the first time has not elapsed (S14: No), the humidification operation process returns to the process of S6, and it is determined whether the water level of the water storage unit 10 has reached the full water level.
  • the process is on standby until the second time (30 minutes in the present embodiment) has elapsed (S16). Then, in the humidifying operation process, after the lapse of the second time, it is again determined whether or not the water level of the water storage section 10 is the full water level by the same method as the process of S6 (S17).
  • the temperature of the supplied water is high, the temperature of the water will adapt to the surrounding air and become close to the temperature of the air in the water storage unit 10 after the second time period. Then, a clear difference occurs between the voltage value output from the reference water level detection unit 24 and the voltage value output from the full water level detection unit 25, and the false detection of the full water level is eliminated.
  • a blower (not shown) provided inside or outside the liquid atomization apparatus 1 may be operated to blow air to the water storage section 10. .. Further, during this time, the rotation motor 23 may be rotated to such an extent that the water is not pumped by the water pump 21. As a result, the temperature of the water stored in the water storage unit 10 quickly adjusts, and it is possible to more reliably eliminate the false detection of the full water level.
  • the liquid atomization device 1 is provided with the overflow drain port 18 at a position where the water stored in the water storage section 10 reaches a predetermined water level.
  • the full water level detection unit 25 provided at the first position lower than the position of the predetermined water level may be in the air or in the water depending on the water level of the water storage unit 10.
  • the reference water level detection unit 24 provided at the second position higher than the predetermined water level is always in the air. Therefore, by comparing the voltage value output from the reference water level detection unit 24, which is always present in the air, with the voltage value output from the full water level detection unit 25, the full water level detection unit 25 is submerged in water. When the existing state is reached, the difference between the two voltages can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 10 can be suppressed.
  • the voltage value of the full water level detection unit 25 is corrected to the voltage value of the reference water level detection unit 24. Accordingly, the output value of the full water level detection unit 25 can be matched with the output value of the reference water level detection unit 24, so that the water level of the water storage unit 10 can be accurately detected.
  • FIG. 4 is a schematic vertical sectional view of the liquid atomizing apparatus 1 according to the embodiment 1-2.
  • the liquid atomization device 1 according to the embodiment 1-1 is provided at a position where the reference water level detection unit 24 and the full water level detection unit 25 overlap each other in the vertical direction.
  • the liquid atomization apparatus 1 according to Embodiment 1-2 has a full water level detection unit having the same configuration and function as the full water level detection unit 25 according to Embodiment 1-1. 36 is arranged at a position that does not overlap the reference water level detection unit 24 in the vertical direction. Since the configuration of the liquid atomization apparatus 1 other than this is the same as that of the embodiment 1-1, detailed description thereof will be omitted and differences from the embodiment 1-1 will be mainly described.
  • the reference water level detection unit 24 is always present in the air, but due to evaporation of water stored in the water storage unit 10 or passage of humidified air, water droplets adhere to the periphery of the reference water level detection unit 24, Water droplets that have adhered may fall vertically.
  • the full water level detection unit 36 is arranged at a position that does not overlap the reference water level detection unit 24 in the vertical direction. Therefore, it is possible to prevent the full water level detection unit 36 from getting wet with water droplets falling from the reference water level detection unit 24, and to output a voltage value when the water level is present in the water even though it is present in the air. Can be suppressed.
  • the liquid micronization apparatus 1 according to the embodiment 1-2 can more reliably suppress erroneous detection of the water level of the water storage unit 10 in addition to the effect of the liquid micronization apparatus 1 according to the embodiment 1-1. ..
  • FIG. 5 is a schematic vertical cross-sectional view of the liquid atomizing apparatus 1 according to Embodiment 1-3.
  • the liquid micronization apparatus 1 according to Embodiment 1-3 includes a reference water level detection unit 24 of the liquid micronization apparatus 1 according to Embodiment 1-1 as a water level detection unit for detecting the water level of the water storage unit 10. In addition to the full water level detection unit 25, an overflow water level detection unit 26 is provided. Since the configuration of the liquid atomization apparatus 1 other than this is the same as that of the embodiment 1-1, detailed description thereof will be omitted and differences from the embodiment 1-1 will be mainly described. Also, differences in the humidifying operation process from the embodiment 1-1 will be mainly described.
  • the overflow water level detection unit 26 is for detecting before the water level of the water storage unit 10 reaches a predetermined water level provided with the overflow drain port 18, and is composed of an NTC thermistor.
  • the overflow water level detection unit 26 is provided at a third position that is higher than the first position where the full water level detection unit 25 is provided and lower than the predetermined water level where the overflow drainage port 18 is provided. That is, the position detected as the overflow water level is set to a position lower than the position where the overflow water drain 18 is provided and the predetermined water level.
  • the voltage value output by the overflow water level detection unit 26 is compared with the voltage value output by the reference water level detection unit 24. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 26 is in a state of being present in water, and the water is stored in the water storage unit 10 up to the overflow water level. It is judged that the water has been stored.
  • a predetermined range for example, 0.2 V
  • the reference water level detection unit 24 and the overflow water level detection unit 26 use the same NTC thermistor as in the full water level detection unit 25, even in the same environment due to variations in the characteristics of the thermistor.
  • the output voltage value varies. Therefore, in the present embodiment, not only the correction of the full water level detection unit 25 but also the correction of the voltage value output by the overflow water level detection unit 26 using the voltage value output by the reference water level detection unit 24 is performed.
  • the correction of the voltage value output by the overflow water level detection unit 26 is performed by the same method as the correction of the voltage value of the full water level detection unit 25.
  • the overflow water level detection unit 26 can be adjusted to the output value of the reference water level detection unit 24, so that the water level of the water storage unit 10 can be detected accurately. ..
  • the overflow water level detection unit 26 also becomes a correction target of the output value, and corresponds to the non-reference water level detection unit of the present disclosure.
  • the method of correcting the output value of the overflow water level detection unit 26 based on the output value of the reference water level detection unit 24 is not limited to the above method, and the output value of the overflow water level detection unit 26 is not limited to the reference water level detection unit 24.
  • Other methods may be used as long as they are corrected based on the output value of
  • FIG. 6 is a flowchart showing the humidifying operation process according to the embodiment 1-3.
  • the humidifying operation process is executed by a control unit (not shown) provided in the liquid atomization device 1 as in the case of the embodiment 1-1.
  • the humidifying operation process according to the embodiment 1-3 is different from the humidifying operation process according to the embodiment 1-1 when the water storage unit 10 is determined not to be at the full water level in the process of S6 (S6). : No), that is, the process of S21 is executed instead of the process of S14.
  • the processes of S22 and S23 are executed.
  • the correction of the voltage value of the overflow water level detection unit 26 is executed in the same manner as the full water level detection unit 25 in the processes of S1 and S13.
  • the water storage section 10 it is determined whether or not the water storage section 10 has reached the overflow water level. Specifically, the voltage value output by the overflow water level detection unit 26 is compared with the voltage value output by the reference water level detection unit 24. At this time, as the voltage value output by the overflow water level detection unit 26, a value obtained by adding the offset voltage value calculated in S1 or S13 to the actually output voltage value is used. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 26 is in the state of being present in water.
  • a predetermined range for example, 0.2 V
  • the overflow water level detection unit 26 has a state existing in the air and a state existing in the water depending on the water level of the water storage unit 10.
  • the reference water level detection unit 24 since the reference water level detection unit 24 is provided at the second position higher than the predetermined position where the overflow drain port 18 is provided, it is always in the air. Therefore, the overflow water level detection unit 26 exists in water by comparing the voltage output from the reference water level detection unit 24, which is always in the air, with the voltage output from the overflow water level detection unit 26. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 10 can be suppressed.
  • the water storage unit 10 If it is determined that the water level of the water storage unit 10 is not the overflow water level as a result of the process of S21 (S21: No), the water storage unit 10 has not reached the full water level or the overflow water level at this point. Therefore, in the humidification operation process, it is determined whether or not the first time (5 minutes in the present embodiment) has elapsed since the water supply was started in the process of S5 (S22). As a result, if the first time has not elapsed (S22: No), the humidification operation process returns to the process of S6.
  • the humidification operation process executes the processes of S16 and S17 as in the case of the embodiment 1-1.
  • the liquid atomization apparatus 1 according to Embodiment 1-3 further includes the overflow water level detection unit 26 as well as the full water level detection unit 25, it is possible to detect the water level of the water storage unit 10 more effectively. It can be done accurately.
  • the overflow water level detection unit 26 detects that the water storage unit 10 has reached the overflow water level. Therefore, the possibility of erroneous detection of the full water level detection unit 25 can be determined. Therefore, it is possible to suppress the frequency with which the liquid micronization apparatus 1 stops operating, which is determined to be abnormal due to the erroneous detection of the full water level detection unit 25.
  • FIG. 7 is a schematic vertical cross-sectional view of the liquid atomizing apparatus 1 according to Embodiment 1-4.
  • the reference water level detection unit 24, the full water level detection unit 25, and the overflow water level detection unit 26 are provided at positions that overlap in the vertical direction.
  • the liquid atomization apparatus 1 according to Embodiment 1-4 has a full water level detection unit having the same configuration and function as the full water level detection unit 25 according to Embodiment 1-3.
  • the overflow water level detection unit 37 having the same configuration and function as the overflow water level detection unit 26 according to the first to third embodiments, and the reference water level detection unit 24 are arranged at positions that do not overlap in the vertical direction. It has a feature.
  • the reference water level detection unit 24 is always present in the air. However, the reference water level detection unit 24 detects the reference water level by evaporating the water stored in the water storage unit 10 or passing humidified air. Water droplets may adhere to the periphery of the portion 24. In addition, the overflow water level detection unit 37 is affected by the evaporation of water stored in the water storage unit 10 or the passage of humidified air, and the water stored up to the overflow water level causes the overflow water level detection unit 37 to move around the overflow water level detection unit 37. Water droplets may adhere. Then, these adhered water drops may fall in the vertical direction.
  • the full water level detection unit 36, the overflow water level detection unit 37, and the reference water level detection unit 24 are arranged at positions that do not overlap in the vertical direction. Therefore, it is possible to prevent the full water level detection unit 36 from getting wet with water droplets falling from the reference water level detection unit 24 or the overflow water level detection unit 37. It is possible to suppress the risk of outputting a voltage value.
  • the overflow water level detection unit 37 can be prevented from getting wet with water droplets falling from the reference water level detection unit 24, and there is a risk of outputting a voltage value when it is present in the water even though it is present in the air. Can be suppressed.
  • the liquid atomizing apparatus 1 according to the first to fourth embodiments can more reliably suppress erroneous detection of the water level of the water storage section 10 in addition to the effect of the liquid atomizing apparatus 1 according to the first to third embodiments. ..
  • an abnormality counter may be provided in the liquid atomizing apparatus 1 according to each of the above embodiments.
  • the liquid atomization apparatus 1 counts the number of negative determinations in the determination process of full water level in S17 by the abnormality counter, and when the number of abnormality counters is equal to or more than a predetermined number (for example, 3), informs of the abnormality in S18. May be performed.
  • a predetermined number for example, 3
  • the water in the water storage unit 10 is once drained, and the process of S5 is retried again. May be. Thereby, even if there is no abnormality as a result, the notification of the abnormality can be suppressed.
  • the liquid atomization device 1 may be mounted on, for example, a heat exchange device.
  • the heat exchange device includes an indoor intake port and an air supply port provided inside the building, an exhaust port and an external air intake port provided outside the building, and a heat exchange element provided inside the main body. It is a thing.
  • the indoor suction port sucks in the indoor air, and the sucked air is exhausted to the outside through the exhaust port. Further, the outside air suction port sucks in outside air, and the sucked outside air is supplied to the room through the air supply port. At this time, heat exchange is performed by the heat exchange element between the air sent from the indoor suction port to the exhaust port and the external air sent from the outdoor air suction port to the air supply port.
  • the heat exchange air device As one of the functions of the heat exchange air device, there is one that incorporates a device that vaporizes liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization.
  • the heat exchange gas device may incorporate the liquid atomization device 1 according to each of the above embodiments as a device for vaporizing a liquid.
  • the liquid atomization device 1 may be provided on the air supply port side of the heat exchange air device.
  • the heat exchange air device provided with the liquid atomization device 1 includes an air supply port including the water or hypochlorous acid moistened by the liquid atomization device 1 with respect to the outside air that has undergone heat exchange by the heat exchange element. Supply more indoors.
  • the liquid atomization device 1 as a mechanism for vaporizing these liquids, it is possible to obtain a heat exchange gas device having a smaller size and higher energy efficiency.
  • the liquid atomization device 1 may be provided in an air purifier or an air conditioner.
  • an air purifier or an air conditioner there is one that incorporates a device for vaporizing a liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization.
  • a device for vaporizing a liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization.
  • the liquid micronization device 1 is described as an example of the humidifying device, but the humidifying device is not necessarily limited to this, and a water storage unit is provided and water is supplied while determining the water level of the water storage unit.
  • the present disclosure can be applied to any device.
  • Embodiment 2 Conventionally, as a ventilation device, as described in Patent Document 2, a ventilation device with a humidifying function is known that humidifies outdoor air taken in from the outside and then supplies it to the room to control the humidity of the indoor air. ..
  • a water supply method using a water level sensor is known as a method for automatically supplying water to a water storage unit that stores water used for humidification. ..
  • the purpose is to store water in the water storage section in the tank and drive the humidification unit to humidify the room, but the method of supplying water to the water storage section is not clear.
  • water is supplied by detecting the water level by the water level sensor 401 provided in the humidification unit 400, but water cannot be supplied when the water level sensor 101 fails. Alternatively, there is a problem that the sensor cost is high.
  • the present disclosure is to solve the above-described conventional problems, and an object thereof is to provide a ventilation device that can perform water supply to a water storage section at an appropriate timing without using a water level sensor.
  • a heat exchange type ventilation device includes a housing, an air supply air passage, an exhaust air passage, a heat exchange element, an air supply fan, an exhaust fan, and a humidifier. And a control unit and a temperature and humidity sensor.
  • the housing has an outdoor inlet, an outdoor outlet, an indoor inlet, and an indoor outlet.
  • the exhaust air passage blows outdoor air from the outdoor suction port to the indoor air outlet.
  • the exhaust air passage blows indoor air from the indoor suction port to the outdoor air outlet.
  • the heat exchange element is provided in the air supply air passage and the exhaust air passage to exchange heat between the outdoor air and the indoor air.
  • the air supply fan is provided in the air supply air passage, and guides air from the outdoor suction port to the indoor air outlet.
  • the exhaust fan is provided in the exhaust air passage, and guides air from the indoor suction port to the outdoor air outlet.
  • the humidifying unit is provided in the air supply air passage and humidifies the air sucked from the outdoor suction port.
  • the control unit controls the operation of the air supply fan, the exhaust fan, and the humidification unit.
  • the temperature/humidity sensor calculates the temperature/humidity of the gas supplied to the humidifying unit from the outdoor suction port.
  • the humidifying section includes a water storage section for storing water to be humidified and a water supply section for supplying water to the water storage section.
  • the control unit includes a water consumption amount calculation unit that calculates the water consumption amount consumed in the humidification unit based on the information acquired by the temperature/humidity sensor and the amount of air blown by the air supply fan. When the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water. This achieves the intended purpose.
  • the water consumption amount calculation unit that calculates the water consumption amount based on the information acquired by the temperature and humidity sensor that calculates the temperature and humidity of the gas supplied to the humidification unit from the outdoor suction port is provided.
  • the water level in the water storage section can be properly detected without using the water level sensor.
  • the water supply unit supplies water so that water can be supplied at appropriate timing without using the water level sensor.
  • a heat exchange type ventilation device includes a housing, an air supply air passage, an exhaust air passage, a heat exchange element, an air supply fan, an exhaust fan, a humidifying unit, a control unit, And a temperature/humidity sensor.
  • the housing has an outdoor inlet, an outdoor outlet, an indoor inlet, and an indoor outlet.
  • the air supply air passage blows outdoor air from the outdoor suction port to the indoor air outlet.
  • the exhaust air passage blows indoor air from the indoor suction port to the outdoor air outlet.
  • the heat exchange element is provided in the air supply air passage and the exhaust air passage to exchange heat between the outdoor air and the indoor air.
  • the air supply fan is provided in the air supply air passage, and guides air from the outdoor suction port to the indoor air outlet. Exhaust fan.
  • the humidifying unit is provided in the air supply air passage and humidifies the air sucked from the outdoor suction port.
  • the control unit controls the operation of the air supply fan, the exhaust fan, and the humidification unit.
  • the temperature/humidity sensor calculates the temperature/humidity of the gas supplied to the humidifying unit from the outdoor suction port.
  • the humidifying section includes a water storage section for storing water to be humidified and a water supply section for supplying water to the water storage section.
  • the control unit includes a water consumption amount calculation unit that calculates the water consumption amount consumed in the humidification unit based on the information acquired by the temperature/humidity sensor and the amount of air blown by the air supply fan. When the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water.
  • the water consumption calculation unit calculates the amount of water consumption based on the information acquired by the temperature and humidity sensor that calculates the temperature and humidity of the gas supplied to the humidification unit from the outdoor suction port. Therefore, it is possible to appropriately detect the water level of the water storage unit without using the water level sensor. Further, when the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water so that water can be supplied at appropriate timing without using the water level sensor.
  • the moisture consumption calculation unit may calculate the absolute humidity for each predetermined time based on the information acquired by the temperature and humidity sensor, and may calculate the water consumption amount based on each difference of the absolute humidity for each predetermined time. ..
  • a heat exchange type ventilation device includes a housing, an air supply air passage, an exhaust air passage, a heat exchange element, an air supply fan, an exhaust fan, and a humidifying unit.
  • a control unit and a temperature/humidity sensor are provided.
  • the housing has an outdoor inlet, an outdoor outlet, an indoor inlet, and an indoor outlet.
  • the air supply air passage blows outdoor air from the outdoor air inlet to the indoor air outlet.
  • the exhaust air passage blows indoor air from the indoor suction port to the outdoor air outlet.
  • the heat exchange element is provided in the air supply air passage and the exhaust air passage to exchange heat between the outdoor air and the indoor air.
  • the air supply fan is provided in the air supply air passage, and guides air from the outdoor suction port to the indoor air outlet.
  • the exhaust fan is provided in the exhaust air passage, and guides air from the indoor suction port to the outdoor air outlet.
  • the humidifying unit is provided in the air supply air passage and humidifies the air sucked from the outdoor suction port.
  • the control unit controls the operation of the air supply fan, the exhaust fan, and the humidification unit.
  • the temperature/humidity sensor calculates the temperature/humidity of the gas supplied to the humidifying unit from the outdoor suction port.
  • the humidifying section includes a water storage section for storing water to be humidified and a water supply section for supplying water to the water storage section.
  • the control unit includes a water consumption amount calculation unit that calculates the water consumption amount consumed in the humidification unit based on the information acquired by the temperature and humidity sensor and the information on the size of the space to be ventilated. When the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water.
  • the water consumption calculation unit calculates the amount of water consumption based on the information acquired by the temperature and humidity sensor that calculates the temperature and humidity of the gas supplied to the humidification unit from the outdoor suction port. Therefore, it is possible to appropriately detect the water level of the water storage unit without using the water level sensor. Further, when the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water so that water can be supplied at appropriate timing without using the water level sensor.
  • FIG. 8 is a schematic diagram of a heat exchange type ventilation device including a humidifying device according to Embodiment 2 of the present disclosure.
  • the heat exchange type ventilation device 101 has an outdoor air outlet 104 and an outdoor air inlet 105 on a side surface of a casing 102 which is a box-shaped body, and an indoor air inlet 106 and an indoor air inlet 106 on a side surface facing the side surface. It has an indoor air outlet 107.
  • the heat exchange type ventilation device 101 includes an air supply air passage 108 for blowing air from the outdoor suction port 105 to the indoor air outlet 107, and an indoor air suction port 106 to the outdoor air outlet 104.
  • An exhaust air passage 109 for blowing air is provided.
  • Fresh outdoor air (outside air, supply air) introduced from the outdoor suction port 105 and contaminated indoor air (exhaust air) introduced from the indoor suction port 106 are supplied to the air supply fan 112 and the exhaust fan 113. By the operation of, the air flows in the supply air passage 108 and the exhaust air passage 109, respectively.
  • the air supply fan 112 configures an air supply unit of the present disclosure, and guides the air supply air sucked from the outdoor air intake port 105 to the indoor air outlet 107 through the air supply air passage 108. is there.
  • the supply air guided to the indoor air outlet 107 is supplied indoors.
  • the exhaust fan 113 constitutes an exhaust unit of the present disclosure and guides exhaust air sucked from the indoor suction port 106 to the outdoor air outlet 104 through the exhaust air passage 109.
  • the exhaust air guided to the indoor air outlet 107 is exhausted to the outside of the room.
  • An air supply fan 112 is provided between the humidification unit 115 and an air supply port (not shown) on the downstream side of the heat exchange element 114 in the air supply air passage 108 in FIG. 8.
  • an exhaust fan 113 is provided between the exhaust port (not shown) on the downstream side of the heat exchange element 114 and the outdoor air outlet 104 in the exhaust air passage 109 of FIG.
  • a heat exchange element 114 is arranged at a position where the supply air passage 108 and the exhaust air passage 109 intersect.
  • the heat exchange element 114 constitutes a heat exchange section of the present disclosure, and heat exchange by a total heat exchange system between the supply air passing through the supply air passage 108 and the exhaust air passing through the exhaust air passage 109. I do.
  • the heat exchange element 114 the total heat of the temperature and humidity of the exhausted air is supplied to the supplied air, or the total heat of the supplied air is supplied to the exhausted air.
  • a humidifying unit 115 is arranged between the heat exchange element 114 and the indoor air outlet 107 in the air supply air passage 108.
  • the humidifying unit according to the present disclosure includes a humidifying unit 115, a water supply unit 116, a water storage unit 117, and a liquid atomization device 118.
  • the humidifying unit 115 includes a water storage unit 117 for storing water for humidification, a water supply unit 116 for supplying water to the water storage unit, and a liquid for atomizing the water stored in the water storage unit 117 to be included in the supply air.
  • a miniaturization device 118 is provided.
  • the humidifying unit 115 humidifies the supply air sucked from the outdoor suction port 105.
  • the supply air humidified by the humidification unit 115 is supplied to the room from the indoor side outlet 107. Further, the heat exchange type ventilation device 101 controls the amount of humidification in the humidifying unit 115 so that the indoor humidity is controlled to be the target indoor humidity. The control of the amount of humidification in the humidifying unit 115 is performed by calculating the amount of water consumed in the humidifying unit 115.
  • the humidification unit 115 in the present embodiment is a water-crushing type humidifying unit that sprays water crushed by, for example, a centrifugal crushing method onto air.
  • the water crushing type humidifying unit can easily adjust the amount of humidification by adjusting the amount of crushed water.
  • a temperature/humidity sensor 119 is arranged in the space where the air supply fan 112 is arranged.
  • the temperature/humidity sensor 119 can detect the temperature and humidity of the supply air after total heat exchange with the room air by the heat exchange element 114.
  • the heat exchange type ventilation device 101 is provided with a control unit 120 that controls the operation of the heat exchange type ventilation device 101.
  • the control unit 120 is not limited to the configuration incorporated in the heat exchange type ventilation device 101, but is provided outside the heat exchange type ventilation device 101, and is controlled by communication between the heat exchange type ventilation device 101 and the control unit 120. It is possible to The control unit 120 controls, for example, the current and/or the rotation speed of the air supply motor of the air supply fan 112 or the exhaust motor of the exhaust fan 113. By using the DC motor as the air supply motor and the exhaust motor, it is possible to control the rotation speed with high accuracy.
  • the control unit 120 also includes a water consumption amount calculation unit 121 that calculates the water consumption amount consumed in the water storage unit 117 of the humidification unit 115.
  • the consumed water amount calculation unit 121 calculates the consumed water amount by executing the steps described below with reference to FIG. 9. Further, by executing the additional step, the water supply unit 116 of the humidifying unit 115 is controlled, and the water supply to the water storage unit 117 is controlled as necessary.
  • FIG. 9 is a flowchart showing the consumed water amount calculation processing.
  • the water consumption calculation unit 112 calculates the water consumption based on the temperature and humidity information detected by the temperature/humidity sensor 119.
  • the water consumption calculation process is started by the water consumption calculation unit 121 when the heat exchange type ventilation device 101 starts the driving operation.
  • the moisture consumption calculation process is executed during the operation of the heat exchange ventilation device 101.
  • the predetermined time T (sec) is an arbitrary time preset by the program. Further, if the predetermined time T (sec) is too long, the feedback time becomes long, so that the timing of water supply by calculating the water consumption amount cannot be accurately performed. Therefore, it is preferable to set the predetermined time T (sec) to a short time such as 60 to 300 (sec). When the predetermined time T (sec) has elapsed from the previous calculation of the water consumption (S1: Yes), the process proceeds to S2.
  • the weight absolute humidity HSA1 (unit: g/kg) before passing through the humidification unit 115 is calculated from the temperature and humidity of the supply air acquired by the temperature/humidity sensor 119.
  • the humidity acquired from the temperature/humidity sensor 119 indicates relative humidity (unit: %). Unless otherwise specified, the description of humidity indicates relative humidity.
  • the target weight absolute humidity HRA (unit: g/kg) is set from the target target temperature and target humidity. It should be noted that the target temperature and the target humidity are set in advance in the heat exchange type ventilation device 101 and stored in a storage unit (not shown) provided in the control unit 120.
  • the weight absolute humidity HC (unit: g/kg) flowing out from the room through the gap area of the living space is added to the target weight absolute humidity HRA determined in S3 to obtain the target weight.
  • the absolute humidity HSA2 Calculate the absolute humidity HSA2.
  • the HC data is stored in the program in advance by experiments. That is, since it is necessary to consider the amount of moisture HC in order to actually flow out from the gap area of the living space with respect to the target weight absolute humidity determined in S3, the target weight absolute humidity is set to a large amount. I do.
  • the absolute weight humidity ⁇ X (unit: g/kg) is calculated every predetermined time T (sec) from the difference between the absolute weight humidity HSA1 and the target absolute weight humidity HSA2.
  • the weight absolute humidity HSA1 calculated in S2 is updated every predetermined time T (sec).
  • the supply air to be calculated is subjected to total heat exchange with the exhaust air, which is the room air after the humidification process by the humidification unit 115, through the heat exchange element 114, the weight absolute humidity HSA1 by the operation of the humidification unit 115 is It will gradually increase. Therefore, since the target absolute weight humidity HSA2 is constant, the absolute weight humidity ⁇ X gradually decreases.
  • the weight absolute humidity ⁇ X (unit: g/kg) obtained in the process of S5
  • the air flow rate Q (unit: m 3 /h) which is the air flow amount by the air supply fan
  • the air density ⁇ (unit: The water consumption amount Z per unit time (unit: g/h) is calculated by multiplying by kg/m 3 ).
  • Z is divided by 3600 seconds and the value obtained by multiplying the predetermined time T (sec) is added.
  • Zg (unit: g) is used for control.
  • the consumed water amount Z (unit: g/h) is calculated, and therefore, instead of the air amount Q (unit: m 3 /h) of the heat exchange type ventilation device 101, the space to be ventilated is Information of the size V (unit: m 3 ) can be used.
  • the air volume Q (m 3 /h) is defined by the fan output for replacing the air in the space of size V (m 3 ) in 2 hours (h) according to the Building Standards Method, so the space size V (m 3 It is possible to calculate the air flow rate Q (m 3 /h) by dividing 3 ) by 2 hours (h). Therefore, similarly calculate the water consumption amount Z (unit: g/h).
  • You can Information on the size of the ventilation target space is stored in the memory of the control unit 120. When the user inputs information on the size of the ventilation target space to the control unit 120, the control unit 120 can acquire the information on the size of the ventilation target space.
  • the water supply unit 116 is controlled to supply water to the water storage unit 117 (S8).
  • the predetermined threshold value Zl is set to an arbitrary value in advance by a program.
  • the threshold Zl is set to the water storage capacity limit with respect to the water storage capacity of the water storage section 117, if a calculation error or a delay in feedback occurs, the water storage section 117 will be in a water-depleted state, and the humidification function will be Since it may be temporarily unusable, it is preferable to set a threshold value with a margin from the limit, for example, setting it to 80% of the water storage capacity.
  • the water consumption amount calculation unit 121 executes the water consumption amount calculation process, whereby the water consumption amount consumed in the water storage unit 117 of the humidification unit 115. Control is performed to calculate Zg and compare the consumed water amount Zg with a predetermined threshold value Zl. Therefore, the water can be supplied to the water storage unit 117 at an appropriate timing, and the water storage amount can be maintained at a certain amount or more without causing the water storage unit 117 to be in a dry state.
  • NTC Negative Temperature Coefficient
  • the thermal diffusion constant (constant representing the power required to raise the temperature of the NTC thermistor element by 1°C by self-heating in the thermal equilibrium state) is different in air and water. To do. That is, since it is difficult to generate heat in water having a high thermal diffusion constant, the resistance value of the NTC thermistor is high, and as a result, the voltage across the NTC thermistor is high. On the other hand, since heat is easily generated in the air having a low thermal diffusion constant, the resistance value of the NTC thermistor is lower than that in the water, and as a result, the voltage across the NTC thermistor appears low.
  • a water level sensor using an NTC thermistor detects that the water level sensor is installed at the position where the water level sensor is provided based on the change in the voltage across the water level sensor that appears when the water level sensor changes from being in the air to being in the water. It detects whether or not it exists.
  • the water level detection described in Patent Document 5 is performed by observing the change over time in the voltage across one NTC thermistor.
  • the voltage across the NTC thermistor becomes lower as the environmental temperature becomes higher.
  • the voltage across the NTC thermistor changes greatly over time. There may be cases where it does not appear. Therefore, in this case, there is a problem that the water level in the water storage section cannot be detected correctly.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a humidifying device that can suppress erroneous detection of the water level in a water storage section.
  • a humidifying device of the present disclosure includes a suction port that sucks in air, a blowout port that blows out the air sucked from the suction port, a humidifying section, a water storage section, a water supply section, and an overflow drainage port. And a first water level detection unit, a second water level detection unit, and a first determination unit.
  • the humidifying unit is provided in the air passage between the suction port and the air outlet and humidifies the air.
  • the water storage unit stores water for humidifying the air by the humidification unit.
  • the water supply section supplies water to the water storage section.
  • the overflow drainage port is provided at a position where the water stored in the water storage section has a predetermined water level.
  • the first water level detection unit is composed of an NTC thermistor and is provided at a first position lower than the position of a predetermined water level.
  • the second water level detection unit is composed of an NTC thermistor and is provided at a second position higher than the position of the predetermined water level.
  • the first determination unit determines whether or not water is stored in the water storage unit up to the first position based on the voltage output from the first water level detection unit and the voltage output from the second water level detection unit.
  • the overflow drainage port is provided at a position where the water stored in the water storage unit has a predetermined water level.
  • the first water level detection unit provided at the first position lower than the position of the predetermined water level may be in the air or in the water depending on the water level of the water storage unit.
  • the second water level detector provided at the second position higher than the predetermined water level is always in the air.
  • the first water level detection unit exists in water.
  • the difference in voltage between the two can be reliably determined.
  • first water level detection unit and the second water level detection unit may be arranged at positions that do not overlap in the vertical direction.
  • the humidifying device may further include a third water level detection unit and a second determination unit.
  • the third water level detection unit is composed of an NTC thermistor, and is provided at a third position higher than the first position and lower than the predetermined water level position.
  • the second determination unit determines whether or not water is stored in the water storage unit up to the third position, based on the voltage output from the third water level detection unit and the voltage output from the second water level detection unit.
  • first water level detection unit, the second water level detection unit, and the third water level detection unit may be arranged at positions that do not overlap in the vertical direction.
  • the first determination unit determines that the water has not been stored up to the first position in the water storage unit even after the first time has elapsed since the water supply unit started supplying the water to the water storage unit. Then, based on the voltage output from the first water level detection unit and the voltage output from the second water level detection unit at a second time interval, whether water was stored in the water storage unit up to the first position. May be determined again.
  • the first determination unit determines that the water has been stored in the water storage unit up to the third position when it is determined that the water has not been stored in the water storage unit up to the first position. At some time, the water is stored up to the first position in the water storage unit based on the voltage output from the first water level detection unit and the voltage output from the second water level detection unit at intervals of the second time. You may judge again whether it was high.
  • the humidifying part is a liquid atomizing part that atomizes water.
  • the air sucked from the suction port contains the water atomized by the liquid atomizing part, and the air containing water is blown out from the air outlet. May be.
  • the liquid atomization unit includes a rotation shaft, a pump pipe, and a collision wall.
  • the rotating shaft is rotated by a motor and is arranged in the vertical direction.
  • the pumping pipe has a tubular shape, is fixed to the rotary shaft, and is rotated in accordance with the rotation of the rotary shaft to pump the water stored in the water storage portion and discharge the pumped water in the centrifugal direction.
  • the collision wall collides with the water discharged from the pumping pipe, thereby atomizing the water.
  • Embodiment 3 includes at least Embodiment 3-1, Embodiment 3-2, Embodiment 3-3 and Embodiment 3-4 below.
  • FIG. 11 is a perspective view of the liquid atomization device 201.
  • FIG. 12 is a schematic cross-sectional view of the liquid atomization apparatus 201 in the vertical direction.
  • the liquid atomizer 201 includes a suction port 202 that sucks in air, an inner cylinder 205, an outer cylinder 209, and a blowout port 203 that blows out air.
  • the inner cylinder 205 communicates with the suction port 202, and the lower part is opened as a ventilation port 207 (see FIG. 12).
  • the outer cylinder 209 includes the inner cylinder 205.
  • the blowout port 3 is provided above the outer cylinder 209, and blows out the air that has been sucked in through the suction port 202 and has passed through the inner cylinder 205 and the outer cylinder 209.
  • the liquid atomization device 201 has a suction communication air passage 204, an inner cylinder air passage 206, and an outer cylinder air passage 208 formed between the suction port 202 and the air outlet 203.
  • the suction communication air passage 204 is an air passage through which the air sucked in by the suction port 202 flows toward the inner cylinder 205 which is in communication.
  • the inner cylinder air passage 206 is an air passage formed inside the inner cylinder 205, and is an air passage in which the air flowing from the suction communication air passage 204 flows toward the ventilation port 207 of the inner cylinder 205.
  • the outer cylinder air passage 208 is an air passage formed between the inner diameter of the outer cylinder 209 and the outer diameter of the inner cylinder 205, and the air blown out from the ventilation port 207 of the inner cylinder 205 moves inside the outer cylinder 209. It is an air passage that leads to the air outlet 203.
  • the liquid atomization device 201 includes a liquid atomization unit 219 provided in an air passage formed by the suction communication air passage 204, the inner cylinder air passage 206, and the outer cylinder air passage 208.
  • the liquid atomization device 201 humidifies the air sucked from the suction port 202 by including the water atomized by the liquid atomization unit 219 in the air flowing in the air passage.
  • the liquid atomizing unit 219 is the humidifying unit of the present disclosure.
  • the liquid atomization unit 219 is a main part of the liquid atomization device 201, and is where the water is atomized.
  • the air taken in by the suction port 202 is sent to the liquid micronization unit 219 via the suction communication air passage 204.
  • the liquid atomization apparatus 201 causes the air passing through the inner tube air passage 206 to include the water atomized by the liquid atomizing unit 219 and passes the air containing the water through the outer tube air passage 208. Then, the air is blown out from the air outlet 203.
  • the liquid atomization unit 219 includes a collision wall 205a that is open on the upper side and the lower side.
  • the collision wall 205a is provided by being fixed inside the inner cylinder 205.
  • the liquid atomization unit 219 is provided with a tubular pumping pipe 221 inside the surrounding of the collision wall 205a, which pumps (pumps) water while rotating.
  • the pumping pipe 221 has an inverted conical hollow structure, and the rotating shaft 220 arranged in the vertical direction is fixed to the center of the top surface of the inverted conical shape.
  • the pumping pipe 221 includes a plurality of rotary plates 222 formed so as to project outward from the outer surface of the pumping pipe 221.
  • the plurality of rotary plates 222 are formed at predetermined intervals in the axial direction of the rotary shaft 220 so as to project outward from the outer surface of the pumping pipe 221. Since the rotary plate 222 rotates together with the pumping pipe 221, a horizontal disk shape coaxial with the rotary shaft 220 is preferable.
  • the number of rotating plates 222 is appropriately set according to the target performance and the dimensions of the pumping pipe 221.
  • the wall surface of the pumping pipe 221 is provided with an opening (not shown) that penetrates the wall surface of the pumping pipe 221.
  • the opening of the pumping pipe 221 is provided at a position communicating with the rotary plate 222 formed so as to project outward from the outer surface of the pumping pipe 221.
  • the size of the opening in the circumferential direction needs to be designed in accordance with the outer diameter of the portion of the pumping pipe 221 where the opening is provided. For example, a diameter corresponding to 5% to 50% of the outer diameter of the pumping pipe 221. More preferably, the diameter corresponding to 5% to 20% of the pumping pipe 221 is used. It should be noted that the sizes of the openings may be the same within the above range.
  • a water storage unit 210 that stores water pumped by the pumping pipe 221 is provided below the pumping pipe 221 in the vertical direction below the liquid atomization unit 219.
  • the depth of the water storage section 210 is designed so that a part of the lower part of the pumping pipe 221 is immersed, for example, about one third to one hundredth of the cone height of the pumping pipe 221. This depth can be designed according to the required pumping volume.
  • the air is humidified by the water pumped by the pump pipe 221.
  • the water supply unit 215 supplies water to the water storage unit 210.
  • a water supply pipe 216 is connected to the water supply unit 215, and for example, water is directly supplied from a water supply through a water supply valve 217 to the water supply pipe 216.
  • the water supply unit 215 may be configured to pump up only the required amount of water according to the siphon principle from a water tank provided outside the liquid atomization unit 219 and supply water to the water storage unit 210.
  • the water supply unit 215 is provided vertically above the bottom surface of the water storage unit 210.
  • the water supply unit 215 is preferably provided not only on the bottom surface of the water storage unit 210 but also vertically above the upper surface of the water storage unit 210 (the surface of the maximum water level that can be stored in the water storage unit 210).
  • a drainage part 211 is provided at the center of the bottom surface of the water storage part 210.
  • the drainage port of the drainage unit 211 is provided at the lowest position of the water storage unit 210.
  • the water storage section 210 is provided with an overflow drain port 218. If more water than necessary is stored in the water storage unit 210, the rotation of the pumping pipe 221 may be insufficient due to the resistance of the water, water may leak from the liquid atomization device 201, or the rotary motor 223 may be submerged in water. There is a risk of malfunction.
  • the overflow drain port 218 is provided to prevent such a situation from occurring, and is opened at a predetermined water level position so that the water stored in the water storage section 210 does not exceed a predetermined water level. ..
  • the liquid atomization unit 219 is provided with a reference water level detection unit 224 and a full water level detection unit 225 in order to detect the full water level of the water storage unit 210.
  • the full water level detection unit 225 detects the water level of the water that should be stored in the water storage unit 210 necessary for the liquid micronization by the liquid micronization unit 219 as a full water level, and is composed of an NTC thermistor.
  • the full water level detection unit 225 is provided at a first position lower than the position where the overflow drain port 218 is provided and which has a predetermined water level. That is, the position detected as the full water level is set to a position lower than the position where the overflow drainage port 218 is provided and the predetermined water level.
  • the full water level detection unit 225 corresponds to the first water level detection unit of the present disclosure.
  • the reference water level detection unit 224 is composed of the same NTC thermistor as the full water level detection unit 225, and is provided at a second position higher than the position where the overflow drain port 218 is provided at a predetermined water level. Due to the overflow drain port 218, water is not stored in the water storage unit 210 at a position higher than a predetermined water level, and the reference water level detection unit 224 always exists in the air. Therefore, the output value of the reference water level detection unit 224 is used as a reference for the output value.
  • the reference water level detection unit 224 corresponds to the second water level detection unit of the present disclosure.
  • the output voltage value of the NTC thermistor changes depending on whether it is in water or in air.
  • the voltage value output by the full water level detection unit 225 is compared with the voltage value output by the reference water level detection unit 224. Then, when the difference between the compared voltage values is in a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 225 is in the water, and the water is stored in the water storage unit 210 up to the full water level. Assuming that the water has been stored, the water supply valve 217 is closed and the water supply is stopped.
  • the voltage value output by the full water level detection unit 225 is corrected using the voltage value output by the reference water level detection unit 224.
  • the correction is performed. To be done.
  • the correction is performed even after the drying operation is performed every second predetermined time (for example, 24 hours). That is, in a situation where the water storage unit 210 is in a drought state, the reference water level detection unit 224 and the full water level detection unit 225 are in the same environment, and ideally the same voltage value is output, the correction is performed. Be implemented.
  • the correction is performed by setting the difference in voltage value obtained by subtracting the voltage value output from the full water level detection unit 225 from the voltage value output from the reference water level detection unit 224 as the offset voltage value. Then, thereafter, the full water level is detected as the value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 225 as the voltage value output from the full water level detection unit 225. Accordingly, the output value of the full water level detection unit 225 can be matched with the output value of the reference water level detection unit 224, so that the water level of the water storage unit 210 can be accurately detected.
  • the method of correcting the output value of the full water level detection unit 225 based on the output value of the reference water level detection unit 224 is not limited to the above method, and the output value of the full water level detection unit 25 is the reference water level detection unit 24. Other methods may be used as long as they are corrected based on the output value of
  • the operation principle of water atomization in the liquid atomization apparatus 201 will be described.
  • the centrifugal force generated by the rotation causes the pumping pipe 221 to pump up the water stored in the water storage unit 210.
  • the rotation speed of the pumping pipe 221 is set between 1000 and 5000 rpm. Since the pumping pipe 221 has an inverted conical hollow structure, the water pumped by the rotation is pumped to the upper part along the inner wall of the pumping pipe 221. Then, the pumped water is discharged from the opening of the pump pipe 221 through the rotary plate 222 in the centrifugal direction and scattered as water droplets.
  • the water droplets scattered from the rotating plate 222 fly in the space surrounded by the collision wall 205a, collide with the collision wall 205a, and are atomized.
  • the air passing through the inner cylinder air passage 206 moves from the upper opening of the collision wall 205a into the collision wall 205a, and includes the water droplets crushed (miniaturized) by the collision wall 205a to the collision wall 205a from the lower opening.
  • 205a Move to the outside.
  • the air sucked from the suction port 202 of the liquid atomization device 201 is humidified, and the humidified air is blown out from the air outlet 203.
  • the kinetic energy of the water scattered from the rotary plate 222 is attenuated by the friction with the air inside the collision wall 205a, so it is preferable that the rotary plate 222 be as close to the collision wall 205a as possible.
  • the collision wall 205a and the rotary plate 222 are brought closer to each other, the amount of airflow passing through the inside of the collision wall 205a decreases, so that the lower limit value of the distance is arbitrarily determined by the pressure loss and the amount of airflow passing inside the collision wall 205a.
  • the liquid to be atomized may be other than water, for example, a liquid such as hypochlorous acid water having bactericidal/deodorant properties.
  • the micronized hypochlorous acid water is contained in the air sucked from the suction port 202 of the liquid micronization apparatus 201, and the air containing the hypochlorous acidous water is blown out from the blowout port 203 to obtain the liquid micronization apparatus.
  • the space where 201 is placed can be sterilized/deodorized.
  • FIG. 13 is a flowchart showing the humidification operation process.
  • the humidification operation process is executed by a control unit (not shown) provided in the liquid atomization device 201.
  • the water level detection unit correction process during the first energization is executed (S1).
  • the first predetermined time is a time for stabilizing the voltage output from the reference water level detection unit 224 and the full water level detection unit 225.
  • the above-mentioned offset voltage value is calculated from the voltage values output from the reference water level detection unit 224 and the full water level detection unit 225 while the water storage unit 210 is in a drought state. After that, the value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 225 is used as the voltage value output from the full water level detection unit 225 for detecting the full water level.
  • the processes of S2 to S4 are executed to wash the water storage part 210 and the like. That is, in the process of S2, the drain valve 212 is closed, the water supply valve 217 is opened, and water supply to the water storage section 210 is started. Then, in the humidifying operation process, it is determined whether or not the water level of the water storage unit 210 has reached the full water level (S3).
  • the voltage value output by the full water level detection unit 225 is compared with the voltage value output by the reference water level detection unit 224. At this time, as the voltage value output by the full water level detection unit 225, a value obtained by adding the above-mentioned offset voltage value to the actually output voltage value is used. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 225 is in the water.
  • a predetermined range for example, 0.2 V
  • the full water level detection unit 225 has a state existing in the air and a state existing in the water depending on the water level of the water storage unit 210.
  • the reference water level detection unit 224 is provided at the second position higher than the predetermined position where the overflow drain port 218 is provided, it is always in the air. Therefore, by comparing the voltage output from the reference water level detection unit 224 that is always present in the air with the voltage output from the full water level detection unit 225, the full water level detection unit 225 exists in water. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 210 can be suppressed.
  • the processing in S3 is repeatedly executed.
  • the humidification operation process opens the drain valve 212 and closes the water supply valve 217 to close the water storage unit.
  • the water supply to 210 is stopped and the water stored in the water storage unit 210 is drained (S4). As a result, the cleaning of the water storage section 210 is completed.
  • the drain valve 212 is closed, the water supply valve 217 is opened, and water supply to the water storage section 210 is started (S5). Then, in the humidifying operation process, it is determined whether or not the water level of the water storage section 210 has reached the full water level (S6). The determination of S6 is performed in the same manner as the processing of S3. The process of S6 is also executed by the first determination unit of the present disclosure.
  • the humidification operation process closes the water supply valve 217 and stops the water supply (S7). Then, in the humidifying operation process, the rotation of the rotary motor 223 is turned on (S8). As a result, the water stored in the water storage unit 210 is atomized by the above-described operation, and the air sucked from the suction port 202 is humidified.
  • the process waits until 30 minutes when it is expected that the amount of water in the water storage unit 210 will decrease (S9), and then the rotation motor 223 is turned off to temporarily stop the humidifying operation. (S10).
  • a second predetermined time 24 hours in the present embodiment
  • a second predetermined time has elapsed since the liquid micronization apparatus 201 was energized, or a second predetermined time has elapsed since the previous drying operation was performed. It is determined whether it has been done (S11). As a result, if the second predetermined time has not elapsed (S11: No), the humidifying operation process returns to the process of S5, the water is supplied to the water storage unit 210 again, and the humidifying operation is restarted.
  • the humidifying operation process performs a dry operation (S12). Specifically, a blower (not shown) provided inside or outside the liquid micronization apparatus 201 blows air from the suction port 202 to the air outlet 203 without performing a humidification operation. The inside of 201 is dried. By carrying out this drying operation every second predetermined time, generation of mold inside the liquid micronization apparatus 201 is suppressed.
  • the humidification operation process executes the water level detection unit correction process (S13).
  • the correction in the water level detection unit correction process is performed by calculating the above-described offset voltage value from the voltage values output from the reference water level detection unit 224 and the full water level detection unit 225, as in the case of the first energization water level detection unit correction process in S1. Done. Then, thereafter, using the offset voltage value calculated here, the value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 225 is the voltage value output from the full water level detection unit 225. Is used to detect the full water level.
  • the water storage unit 210 is in a drought state
  • the reference water level detection unit 224 and the full water level detection unit 225 are both in a dry state, and under the same environment. It is in. Therefore, by performing the correction under such a condition, the water level of the water storage unit 210 can be accurately detected. Further, by periodically performing the correction every second predetermined time, even if the reference water level detection unit 224 and the full water level detection unit 225 deteriorate with age and their characteristics change, the correction can be reliably performed.
  • the humidifying operation process is performed for the first time (from the start of water supply by the process of S5). In this embodiment, it is determined whether 5 minutes have passed (S14). As a result, if the first time has not elapsed (S14: No), the humidification operation process returns to the process of S6, and it is determined whether the water level of the water storage unit 210 has reached the full water level.
  • the process waits until the second time (30 minutes in the present embodiment) has elapsed (S16). Then, in the humidifying operation process, after the lapse of the second time, it is again determined whether or not the water level of the water storage section 210 is the full water level by the same method as the process of S6 (S17).
  • the temperature of the supplied water is high, the temperature of the water will adapt to the surrounding air and become close to the temperature of the air in the water storage unit 210 after the second time elapses. Then, a clear difference occurs between the voltage value output from the reference water level detection unit 224 and the voltage value output from the full water level detection unit 225, and the false detection of the full water level is eliminated.
  • a blower (not shown) provided inside or outside the liquid atomization device 201 may be operated to blow air to the water storage unit 210. .. Further, during this period, the rotation motor 223 may be rotated to such an extent that the pumping by the pumping pipe 221 is not performed. As a result, the temperature of the water stored in the water storage unit 210 is quickly adjusted, and the false detection of the full water level can be more reliably resolved.
  • the liquid atomization apparatus 201 is provided with the overflow drain port 218 at a position where the water stored in the water storage section 10 has a predetermined water level.
  • the water having a predetermined water level is stored in the water storage unit 210, the water is drained from the overflow drain 218 even if the water is supplied thereafter, and the water having a predetermined water level or higher is stored in the water storage unit 210. It is supposed not to be done. Therefore, the full water level detection unit 225 provided at the first position lower than the position of the predetermined water level may be in the air or in the water depending on the water level of the water storage unit 210.
  • the reference water level detection unit 224 provided at the second position higher than the predetermined water level is always in the air. Therefore, by comparing the voltage value output from the reference water level detection unit 224, which is always present in the air, with the voltage value output from the full water level detection unit 225, the full water level detection unit 225 enters the water. When the existing state is reached, the difference between the two voltages can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 210 can be suppressed.
  • the voltage value of the full water level detection unit 225 is corrected to the voltage value of the reference water level detection unit 224. Accordingly, the output value of the full water level detection unit 225 can be matched with the output value of the reference water level detection unit 224, so that the water level of the water storage unit 210 can be accurately detected.
  • FIG. 14 is a schematic vertical cross-sectional view of the liquid micronization apparatus 201 according to Embodiment 3-2.
  • the liquid atomization apparatus 201 according to Embodiment 3-1 is provided in a position where the reference water level detection unit 224 and the full water level detection unit 225 overlap in the vertical direction.
  • the liquid micronization apparatus 201 according to Embodiment 3-2 has a full water level detection unit having the same configuration and function as the full water level detection unit 225 according to Embodiment 3-1. 236 is arranged at a position that does not overlap the reference water level detection unit 224 in the vertical direction. Since the configuration of the liquid micronization apparatus 201 other than this is the same as that of the embodiment 3-1, a detailed description will be omitted and differences from the embodiment 3-1 will be mainly described.
  • the reference water level detection unit 224 is always present in the air, but due to evaporation of water stored in the water storage unit 210, passage of humidified air, or the like, water droplets adhere to the vicinity of the reference water level detection unit 224, Water droplets that have adhered may fall vertically.
  • the full water level detection unit 236 is arranged at a position that does not overlap the reference water level detection unit 224 in the vertical direction. Therefore, the full water level detection unit 236 can be prevented from getting wet with the water droplets falling from the reference water level detection unit 224, and there is a possibility that the voltage value is output when the water level is present in the air although it is present in the air. Can be suppressed.
  • the liquid micronization apparatus 201 according to Embodiment 3-2 can more reliably suppress erroneous detection of the water level of the water storage section 210, in addition to the effect of the liquid micronization apparatus 201 according to Embodiment 3-1. ..
  • FIG. 15 is a schematic vertical cross-sectional view of the liquid atomizing apparatus 201 according to Embodiment 3-3.
  • the liquid micronization apparatus 201 according to Embodiment 3-3 includes a reference water level detection unit 224 of the liquid micronization apparatus 201 according to Embodiment 3-1 as a water level detection unit for detecting the water level of the water storage unit 210. In addition to the full water level detection unit 225, an overflow water level detection unit 226 is provided. Since the configuration of the liquid micronization apparatus 201 other than this is the same as that of the embodiment 3-1, a detailed description will be omitted and differences from the embodiment 3-1 will be mainly described. Also, differences in the humidifying operation process from the embodiment 3-1 will be mainly described.
  • the overflow water level detection unit 226 is for detecting before the water level of the water storage unit 210 reaches a predetermined water level provided with the overflow drain port 218, and is composed of an NTC thermistor.
  • the overflow water level detection unit 226 is provided at a third position that is higher than the first position where the full water level detection unit 225 is provided and lower than the position where the overflow water discharge port 218 is provided at a predetermined water level. That is, the position detected as the overflow water level is set to a position lower than the position where the overflow drainage port 218 is provided and which has a predetermined water level.
  • the overflow water level detection unit 26 corresponds to the third water level detection unit of the present disclosure.
  • the voltage value output by the overflow water level detection unit 226 is compared with the voltage value output by the reference water level detection unit 224. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 226 is in the water, and the water is stored in the water storage unit 210 up to the overflow water level. It is judged that the water has been stored.
  • a predetermined range for example, 0.2 V
  • the same NTC thermistor is used for the reference water level detection unit 224 and the overflow water level detection unit 226, even if the same NTC thermistor is used, even in the same environment due to variations in the thermistor characteristics.
  • the output voltage value varies. Therefore, in the present embodiment, not only the correction of the full water level detection unit 225 but also the correction of the voltage value output by the overflow water level detection unit 226 using the voltage value output by the reference water level detection unit 224 is performed.
  • the correction of the voltage value output by the overflow water level detection unit 226 is performed by the same method as the correction of the voltage value of the full water level detection unit 225.
  • the overflow water level detection unit 226 can be adjusted to the output value of the reference water level detection unit 224, so that the water level of the water storage unit 210 can be accurately detected. .. In this way, the overflow water level detection unit 226 is also a target for correcting the output value.
  • the method of correcting the output value of the overflow water level detection unit 226 based on the output value of the reference water level detection unit 224 is not limited to the above method, and the output value of the overflow water level detection unit 226 is not limited to the reference water level detection unit 224.
  • Other methods may be used as long as they are corrected based on the output value of
  • FIG. 16 is a flowchart showing the humidification operation process in the embodiment 3-3.
  • the humidifying operation process is executed by a control unit (not shown) provided in the liquid atomization device 201, as in the case of Embodiment 3-1.
  • the humidifying operation process according to the embodiment 3-3 is different from the humidifying operation process according to the embodiment 3-1 when the water storage unit 210 is determined not to be at the full water level in the process of S6 (S6). : No), that is, the process of S21 is executed instead of the process of S14.
  • the processes of S22 and S23 are executed.
  • the correction of the voltage value of the overflow water level detection unit 226 is executed in the same manner as the full water level detection unit 225 in S1 and S13.
  • the water storage unit 210 it is determined whether or not the water storage unit 210 has reached the overflow water level. Specifically, the voltage value output by the overflow water level detection unit 226 is compared with the voltage value output by the reference water level detection unit 224. At this time, as the voltage value output by the overflow water level detection unit 226, the value obtained by adding the offset voltage value calculated in S1 or S13 to the actually output voltage value is used. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 226 is in the state of being underwater.
  • a predetermined range for example, 0.2 V
  • the overflow water level detection unit 226 has a state existing in the air and a state existing in the water depending on the water level of the water storage unit 210.
  • the reference water level detection unit 224 is provided at the second position higher than the predetermined position where the overflow drain port 218 is provided, it is always in the air. Therefore, by comparing the voltage output from the reference water level detection unit 224 that is always in the air with the voltage output from the overflow water level detection unit 226, the overflow water level detection unit 226 exists in the water. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 210 can be suppressed.
  • the water level of the water storage unit 210 is determined not to be the overflow water level as a result of the process of S21 (S21: No)
  • the water storage unit 10 has not reached the full water level or the overflow water level at this point. Therefore, in the humidification operation process, it is determined whether or not the first time (5 minutes in the present embodiment) has elapsed since the water supply was started in the process of S5 (S22). As a result, if the first time has not elapsed (S22: No), the humidification operation process returns to the process of S6.
  • the humidification operation process executes the processes of S16 and S17 as in the case of the embodiment 3-1.
  • the liquid atomization apparatus 1 according to Embodiment 3-3 further includes the overflow water level detection unit 26 as well as the full water level detection unit 25, it is possible to detect the water level of the water storage unit 10 more effectively. It can be done accurately.
  • the overflow water level detection unit 226 can detect that the water storage unit 210 has reached the overflow water level. Therefore, the possibility of erroneous detection of the full water level detection unit 225 can be determined. Therefore, it is possible to suppress the frequency at which the liquid micronization apparatus 201 stops operating because it is determined to be abnormal due to the erroneous detection of the full water level detector 225.
  • FIG. 17 is a schematic vertical cross-sectional view of the liquid micronization apparatus 201 according to Embodiment 3-4.
  • the liquid atomization apparatus 201 according to Embodiment 3-3 is provided at a position where the reference water level detection unit 224, the full water level detection unit 225, and the overflow water level detection unit 226 overlap in the vertical direction.
  • the liquid atomization apparatus 201 according to Embodiment 3-4 has a full water level detection unit having the same configuration and function as the full water level detection unit 225 according to Embodiment 3-3.
  • the overflow water level detection unit 237 having the same configuration and function as the overflow water level detection unit 226 according to Embodiment 3-3, and the reference water level detection unit 224 are arranged at positions that do not overlap in the vertical direction. It has a feature.
  • the reference water level detection unit 224 is always present in the air, but the reference water level detection unit 224 detects the reference water level by evaporating the water stored in the water storage unit 210 or passing humidified air. Water droplets may be attached around the portion 224.
  • the overflow water level detection unit 237 may not be affected by evaporation of water stored in the water storage unit 210, passage of humidified air, or the like, and the overflow water level detection unit 237 may be caused by the water stored up to the overflow water level. Water droplets may adhere. Then, these adhered water drops may fall in the vertical direction.
  • the full water level detection unit 236, the overflow water level detection unit 237, and the reference water level detection unit 224 are arranged at positions that do not overlap in the vertical direction. Therefore, it is possible to prevent the full water level detection unit 236 from getting wet with water drops falling from the reference water level detection unit 224 and the overflow water level detection unit 237, and in the case where the water level detection unit 236 exists in the water although it exists in the air. It is possible to suppress the risk of outputting a voltage value.
  • the overflow water level detection unit 237 can be prevented from getting wet with water droplets falling from the reference water level detection unit 224, and there is a risk of outputting a voltage value in the case where the overflow water level detection unit 237 exists in the water although it exists in the air. Can be suppressed.
  • the liquid micronization apparatus 201 according to Embodiment 3-4 can more reliably suppress erroneous detection of the water level of the water storage section 210, in addition to the effect of the liquid micronization apparatus 201 according to Embodiment 3-3. ..
  • an abnormality counter may be provided in the liquid micronization apparatus 201 according to each of the above embodiments.
  • the liquid atomization apparatus 201 counts the number of negative determinations in the full water level determination process of S17 using the abnormality counter, and when the number of abnormality counters is equal to or greater than a predetermined number (for example, 3), notifies the abnormality of S18. I do.
  • a predetermined number for example, 3
  • the water in the water storage unit 10 is once drained, and the process of S5 is retried again. May be. Thereby, even if there is no abnormality as a result, the notification of the abnormality can be suppressed.
  • the liquid atomization device 201 may be mounted on, for example, a heat exchange device.
  • the heat exchange device includes an indoor intake port and an air supply port provided inside the building, an exhaust port and an external air intake port provided outside the building, and a heat exchange element provided inside the main body. It is a thing.
  • the indoor suction port sucks in the indoor air, and the sucked air is exhausted to the outside through the exhaust port. Further, the outside air suction port sucks in outside air, and the sucked outside air is supplied to the room through the air supply port. At this time, heat exchange is performed by the heat exchange element between the air sent from the indoor suction port to the exhaust port and the external air sent from the outdoor air suction port to the air supply port.
  • the heat exchange air device As one of the functions of the heat exchange air device, there is one that incorporates a device that vaporizes liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization.
  • the heat exchange gas device may incorporate the liquid atomization device 201 according to each of the above embodiments as a device for vaporizing a liquid.
  • the liquid atomization device 1 may be provided on the air supply port side of the heat exchange air device.
  • the heat exchange air device provided with the liquid atomization device 201 includes an air supply port including the water or hypochlorous acid humidified by the liquid atomization device 201 with respect to the outside air that has undergone heat exchange by the heat exchange element. Supply more indoors.
  • the liquid atomization device 201 as a mechanism for vaporizing these liquids, it is possible to obtain a heat exchange gas device having a smaller size and higher energy efficiency.
  • the liquid atomization device 201 may be provided in an air purifier or an air conditioner.
  • an air purifier or an air conditioner there is one that incorporates a device for vaporizing a liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization.
  • a device for vaporizing a liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization.
  • the liquid micronization device 201 is described as an example of the humidifying device, but the humidifying device is not necessarily limited to this, and a water storage unit is provided and water is supplied while determining the water level of the water storage unit.
  • the present disclosure can be applied to any device.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a humidifying device and a ventilation device capable of notifying a user of an abnormality due to a failure of a water supply unit.
  • the humidifying device of the present disclosure includes a suction port that sucks in air, an air outlet that blows out the air sucked from the suction port, a humidifying section, a water storage section, a water supply section, and a first water level.
  • a detection unit and a notification unit are provided.
  • the humidifying unit is provided in the air passage between the suction port and the air outlet and humidifies the air.
  • the water storage unit stores water for humidifying the air by the humidification unit.
  • the first water level detection unit is provided in the water supply unit that supplies water to the water storage unit and the water storage unit, and detects the first water level of the water storage unit.
  • the notification unit reports a water supply abnormality when the first water level detection unit does not detect the first water level after a lapse of the first predetermined time after the water supply unit starts water supply.
  • the humidifying device may also include a second water level detection unit that detects the second water level in the water storage unit that is higher than the first water level. Then, the humidifier stops the water supply after the water supply unit starts the water supply and the second water detection unit detects the second water level before the first water level detection unit detects the first water level. ..
  • the humidifier may stop the water supply after the water supply unit starts the water supply and after a second predetermined time shorter than the first predetermined time has elapsed.
  • the humidifying device after the water supply unit starts water supply, after the third predetermined time shorter than the first predetermined time and longer than the second predetermined time, the first water level detection unit does not detect the water level. In the case of water supply, water may be supplied again by the water supply section.
  • the humidifying section may be provided with a drainage section for draining the water in the water storage section. Then, when the water level detection unit detects the water level after the fourth predetermined time has elapsed after the drainage unit started draining, the notification unit notifies the drainage abnormality.
  • the ventilation device of the present disclosure includes a housing, an air supply air passage, an exhaust air passage, an air supply fan, an exhaust fan, and an indoor humidity sensor.
  • the housing has an outdoor inlet, an outdoor outlet, an indoor inlet, and an indoor outlet.
  • the air supply air passage connects the outdoor suction port and the indoor air outlet.
  • the exhaust air passage connects the indoor suction port and the outdoor air outlet.
  • the air supply fan is provided in the air supply air passage, and guides air from the outdoor suction port to the indoor air outlet.
  • the exhaust fan is provided in the exhaust air passage, and guides air from the indoor suction port to the outdoor air outlet.
  • the indoor humidity sensor detects the humidity of the air sucked from the indoor suction port.
  • the humidifying device of the present disclosure is provided in the air supply passage, and the humidifying device humidifies the air sucked from the outdoor suction port.
  • the humidifier and the ventilation device of the present disclosure after the water supply unit starts supplying water to the water storage unit, after the first predetermined time has elapsed, the first water level detection unit that detects the first water level of the water storage unit changes the water level. If not detected, the notification unit notifies of the water supply abnormality.
  • the present disclosure has an effect of providing a humidifying device and a ventilation device that can notify the user of an abnormality due to a failure of the water supply unit.
  • FIG. 18 is a schematic diagram of the heat exchange apparatus 350 according to Embodiment 4 of the present disclosure.
  • FIG. 19 is a perspective view of the liquid micronization apparatus 301 according to Embodiment 4 of the present disclosure.
  • FIG. 20 is a schematic vertical cross-sectional view of the liquid micronization apparatus 301 according to Embodiment 4 of the present disclosure.
  • the heat-exchanger device 350 has a housing 352 having an outdoor-side suction port 355, an outdoor-side air outlet 354, an indoor-side suction port 356, and an indoor-side air outlet 357.
  • the heat exchange air device 350 includes an air supply air passage 358 that connects the outdoor suction port 355 and the indoor air outlet 357, and an exhaust air passage 359 that communicates the indoor air suction port 356 and the outdoor air outlet 354. Is equipped with.
  • the fresh outdoor air (outside air, supply air) introduced from the outdoor suction port 355 and the contaminated indoor air (exhaust air) introduced from the indoor suction port 356 are supplied to the air supply fan 362 and the exhaust fan 363. And the exhaust air passage 359, respectively.
  • the air supply fan 362 is provided in the air supply air passage 358 on the downstream side of a heat exchange element 364, which will be described later, and guides the air supply air sucked from the outdoor suction port 355 to the indoor air outlet 357 through the air supply air passage 358.
  • the air guided to the indoor air outlet 357 is supplied indoors.
  • the exhaust fan 363 is provided in the exhaust air passage 359 on the downstream side of the heat exchange element 364, and guides the exhaust air sucked from the indoor suction port 356 to the outdoor air outlet 354 through the exhaust air passage 359.
  • the air guided to the outdoor air outlet 354 is exhausted to the outside.
  • a heat exchange element 364 is arranged at a position where the supply air passage 358 and the exhaust air passage 359 intersect.
  • the heat exchange element 364 performs heat exchange by the total heat exchange method between the supply air passing through the supply air passage 358 and the exhaust air passing through the exhaust air passage 359.
  • the heat exchange element 364 the total heat (temperature and humidity) of the exhausted air is supplied to the supplied air, or the total heat of the supplied air is supplied to the exhausted air.
  • an outdoor humidity sensor 367 is disposed closer to the outdoor suction port 355 side than the heat exchange element 364, and in the exhaust air passage 359, an indoor humidity sensor closer to the indoor suction port 356 side than the heat exchange element 364. 366 is provided.
  • the outdoor humidity sensor 367 detects the humidity of the supply air (outdoor air) sucked from the outdoor suction port 355.
  • the indoor humidity sensor 366 detects the humidity of exhaust air (indoor air) sucked from the indoor suction port 356.
  • the liquid atomization device 301 is arranged downstream of the air supply fan 362 (on the side of the indoor-side outlet 357).
  • the liquid atomization device 301 humidifies the supply air sucked from the outdoor suction port 355. That is, the supply air humidified by the liquid atomization device 301 is supplied to the room from the indoor side outlet 357.
  • the heat exchange air device 350 controls the humidification amount in the liquid atomization device 301 so that the amount of water contained in the room air becomes a target amount of water, which is a target amount of water.
  • the liquid atomization device 301 includes a suction port 302 that sucks in air, an inner cylinder 305, an outer cylinder 309, and an air outlet 303 that blows out air.
  • the inner cylinder 305 communicates with the suction port 302, and the lower part is opened as a ventilation port 307 (see FIG. 20).
  • the outer cylinder 309 includes the inner cylinder 5.
  • the air outlet 3 is provided above the outer cylinder 209, and blows out the air that has been sucked in through the suction opening 2 and has passed through the inner cylinder 5 and the outer cylinder 9.
  • the liquid atomizer 301 has a suction communication air passage 304, an inner cylinder air passage 306, and an outer cylinder air passage 308 between the suction port 302 and the air outlet 303.
  • the suction communication air passage 304 is an air passage through which the air sucked in by the suction port 302 flows toward the inner cylinder 305 which is in communication.
  • the inner cylinder air passage 306 is an air passage formed inside the inner cylinder 305, and the air flowing from the suction communication air passage 304 flows toward the ventilation port 307 of the inner cylinder 305.
  • the outer cylinder air passage 308 is an air passage formed between the inner diameter of the outer cylinder 309 and the outer diameter of the inner cylinder 305, and the air blown out from the ventilation port 307 of the inner cylinder 305 moves inside the outer cylinder 309. It is an air passage that leads to the air outlet 303.
  • the liquid atomizing device 301 includes a liquid atomizing unit 319 provided in the air passage formed by the suction communication air passage 304, the inner cylinder air passage 306, and the outer cylinder air passage 308.
  • the liquid atomizer 301 humidifies the air sucked from the suction port 302 by including the water atomized by the liquid atomizer 319 in the air flowing through the air passage.
  • the liquid atomization unit 319 is the humidification unit of the present disclosure.
  • the liquid refining unit 319 is a main part of the liquid refining apparatus 301, and is for refining water.
  • the air taken in by the suction port 302 is sent to the liquid micronization unit 319 via the suction communication air passage 304.
  • the liquid micronization apparatus 301 causes the air passing through the inner tube air passage 306 to include the water atomized by the liquid atomizing unit 319, and the air containing the water passes through the outer tube air passage 308. Then, the air is blown out from the air outlet 303.
  • the liquid atomization unit 319 includes a collision wall 305a that is open at the top and the bottom.
  • the collision wall 305a is provided by being fixed inside the inner cylinder 305.
  • the liquid atomization unit 319 is provided with a tubular pumping pipe 321 that is pumped (pumped up) while rotating while being surrounded by the collision wall 305a.
  • the pumping pipe 321 has a hollow structure of an inverted conical shape, and a rotating shaft 320 arranged in the vertical direction is fixed to the center of the upper surface of the inverted conical shape.
  • the pumping pipe 321 includes a plurality of rotating plates 322 formed so as to project outward from the outer surface of the pumping pipe 321.
  • the plurality of rotary plates 322 are formed at predetermined intervals in the axial direction of the rotary shaft 320 so as to project outward from the outer surface of the pumping pipe 321. Since the rotating plate 322 rotates together with the pumping pipe 321, a horizontal disk shape coaxial with the rotating shaft 320 is preferable.
  • the number of rotating plates 322 is appropriately set according to the target performance and the dimensions of the pumping pipe 321.
  • the wall surface of the pumping pipe 321 is provided with an opening (not shown) penetrating the wall surface of the pumping pipe 321.
  • the opening of the pumping pipe 321 is provided at a position communicating with the rotary plate 322 formed so as to project outward from the outer surface of the pumping pipe 321.
  • the size of the opening in the circumferential direction needs to be designed in accordance with the outer diameter of the portion of the pumping pipe 321 where the opening is provided. For example, a diameter corresponding to 5% to 50% of the outer diameter of the pumping pipe 321. More preferably, the diameter corresponding to 5% to 20% of the pumping pipe 321 is mentioned. It should be noted that the sizes of the openings may be the same within the above range.
  • a water storage unit 310 that stores water pumped by the pumping pipe 321 is provided below the pumping pipe 321 in the vertical direction below the liquid atomization unit 319.
  • the air is humidified by the water pumped by the pump pipe 321.
  • the depth of the water storage section 310 is designed so that a part of the lower portion of the pumping pipe 321 is immersed, for example, about one third to one hundredth of the cone height of the pumping pipe 321. This depth can be designed according to the required pumping volume.
  • the water supply unit 315 supplies water to the water storage unit 310.
  • a water supply pipe 316 is connected to the water supply unit 315, and water is directly supplied from the water supply through the water supply valve 317 through the water supply pipe 316, for example.
  • the water supply unit 315 may be configured to pump up only the required amount of water according to the siphon principle from a water tank provided outside the liquid atomization unit 319 and supply water to the water storage unit 310.
  • the water supply unit 315 is provided vertically above the bottom surface of the water storage unit 310.
  • the water supply unit 315 is preferably provided not only on the bottom surface of the water storage unit 310 but also vertically above the upper surface of the water storage unit 310 (the surface of the maximum water level that can be stored in the water storage unit 310).
  • a drainage unit 311 is provided at the center of the bottom surface of the water storage unit 310.
  • the drainage port of the drainage unit 311 is provided at the lowest position of the water storage unit 310.
  • the drain valve 312 does not necessarily have to be provided.
  • stopping and draining water in the drainage unit 311 is realized by rotating the pumping pipe 321. That is, when the pump pipe 321 is rotated, a vortex is generated in the water in the water storage unit 310 inside the pump pipe 321 due to the centrifugal force of the rotation.
  • the pumping pipe 321 forms a gap between the vortex center bottom portion generated by the rotation and the drainage port of the drainage unit 311. This can prevent the water in the water storage unit 310 from being drained from the drainage unit 311.
  • the rotation of the pumping pipe 321 is stopped, the water in the water storage unit 310 flows into the drainage port of the drainage unit 311. Thereby, the water in the water storage unit 310 can be drained from the drainage unit 311.
  • the water storage section 310 is provided with an overflow drain 318. If more water than necessary is stored in the water storage unit 310, the rotation of the pumping pipe 321 may be insufficient due to the resistance of the water, water may leak from the liquid atomization device 301, or the rotation motor 323 may be submerged in the water. There is a risk of malfunction.
  • the overflow drain 318 is provided to prevent such a situation from occurring, and is opened at a predetermined water level so that the water stored in the water storage unit 310 does not exceed a predetermined water level. ..
  • the liquid atomizer 301 is provided with a reference water level detection unit 324 and a full water level detection unit 325 in order to detect the full water level as the first water level of the water storage unit 310.
  • the liquid atomization apparatus 301 is provided with an overflow water level detection unit 326 in addition to the reference water level detection unit 324 in order to detect the overflow water level as the second water level of the water storage unit 310.
  • the full water level detection unit 325 detects the water level of the water to be stored in the water storage unit 310 necessary for the liquid micronization by the liquid micronization unit 319 as the full water level (first water level), and the NTC thermistor. It is composed of The full water level detection unit 325 is provided at a position lower than the position where the overflow drainage port 318 is provided and which has a predetermined water level. That is, the position detected as the full water level is set to a position lower than the position where the overflow drainage port 318 is provided and which has a predetermined water level.
  • the overflow water level detection unit 326 is for detecting the overflow water level (second water level) before the water level of the water storage unit 310 reaches a predetermined water level provided with the overflow drainage port 318, and the full water level detection unit It is composed of the same NTC thermistor as 325.
  • the overflow water level detection unit 326 is provided at a position higher than the full water level provided with the full water level detection unit 325 and lower than a predetermined water level provided with the overflow drainage port 318. That is, the second water level detected as the overflow water level is set to a position higher than the full water level and lower than the predetermined water level at which the overflow drain port 318 is provided.
  • the reference water level detection unit 324 is composed of the same NTC thermistor as the full water level detection unit 325 and the overflow water level detection unit 326, and has a water level higher than the predetermined water level at which the overflow drainage port 318 is provided. It is provided. Due to the overflow drain port 318, water is not stored in the water storage unit 310 at a water level higher than a predetermined water level, and the reference water level detection unit 324 is always present in the air. Therefore, the output value of the reference water level detection unit 324 is used as a reference for the output value.
  • the output voltage value of the NTC thermistor changes depending on whether it is in water or in air.
  • the voltage value output by the full water level detection unit 325 is compared with the voltage value output by the reference water level detection unit 324. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 325 is in the water, and the water is stored in the water storage unit 310 up to the full water level. Assuming that the water has been stored, the water supply valve 317 is closed and the water supply is stopped.
  • a predetermined range for example, 0.2 V
  • the voltage value output by the overflow water level detection unit 326 is also compared with the voltage value output by the reference water level detection unit 324. Then, when the difference between the compared voltage values is in a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 326 is in the water, and the water is stored in the water storage unit 310 up to the overflow water level. It is judged that the water has been stored.
  • a predetermined range for example, 0.2 V
  • the water storage unit 310 will not reach the overflow water level.
  • the overflow water level detection unit 326 detects that the water storage unit 310 has reached the overflow water level while the full water level detection unit 325 has not detected that the water storage unit 310 has reached the full water level.
  • the water supply valve 317 is closed to stop the water supply, and after the elapse of a predetermined time, the full water level detection unit 325 is used again to determine whether or not the water storage unit 310 is at the full water level. To do.
  • the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 use the same NTC thermistor, due to variations in the characteristics of the thermistor, they are output even in the same environment. Voltage values vary. Therefore, in the present embodiment, the voltage value output by the reference water level detection unit 324 is used to correct the voltage value output by the full water level detection unit 325 and the voltage value output by the overflow water level detection unit 326.
  • the correction is performed. Carry out.
  • the correction is performed even after the drying operation that is performed at regular time intervals (for example, 24 hours) is performed. That is, the water storage unit 310 is in a drought state, the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 are in the same environment, and ideally the same voltage value is output. In, the correction is carried out.
  • the correction is to set the difference in voltage value obtained by subtracting the voltage value output from the full water level detection unit 325 from the voltage value output from the reference water level detection unit 324 as the offset voltage value related to the full water level detection unit 325. Done in. Further, the correction is the difference in voltage value obtained by subtracting the voltage value output from the overflow water level detection unit 326 from the voltage value output from the reference water level detection unit 324 and the offset voltage value related to the overflow water level detection unit 326. It is done by doing.
  • the value obtained by adding the offset voltage value related to the full water level detection unit 325 to the voltage value actually output from the full water level detection unit 325 is the voltage value output from the full water level detection unit 325 as the full water level. Detection is done. Further, the value obtained by adding the offset voltage value related to the overflow water level detection unit 326 to the voltage value actually output from the overflow water level detection unit 326 is used as the voltage value output from the overflow water level detection unit 326 to detect the overflow water level. Done.
  • the output value of the full water level detection unit 325 and the output value of the overflow water level detection unit 326 can be matched with the output value of the reference water level detection unit 324, so that the water level of the water storage unit 310 can be accurately detected.
  • the method of correcting the output value of the full water level detection unit 325 and the output value of the overflow water level detection unit 326 based on the output value of the reference water level detection unit 324 is not limited to the above method. Other methods may be used as long as the output value of the full water level detection unit 325 and the overflow water level detection unit 326 are corrected based on the output value of the reference water level detection unit 324.
  • the operation principle of water atomization in the liquid atomizer 301 will be described.
  • the rotary shaft 320 is rotated by the rotary motor 323 and the pumping pipe 321 is rotated accordingly, the water stored in the water storage unit 310 is pumped up by the pumping pipe 321 by the centrifugal force generated by the rotation.
  • the number of rotations of the pumping pipe 321 is set between 1000 and 5000 rpm. Since the pumping pipe 321 has an inverted conical hollow structure, the water pumped up by the rotation is pumped up along the inner wall of the pumping pipe 321. Then, the pumped water is discharged from the opening of the pump pipe 321 through the rotating plate 322 in the centrifugal direction and scattered as water drops.
  • the water droplets scattered from the rotating plate 322 fly in the space surrounded by the collision wall 305a, collide with the collision wall 305a, and are atomized.
  • the air passing through the inner cylinder air passage 306 moves from the upper opening of the collision wall 305a to the inside of the collision wall 305a, and includes the water droplets crushed (miniaturized) by the collision wall 305a to the collision wall 305a.
  • 305a Move to the outside.
  • the air sucked through the suction port 302 of the liquid atomization device 301 is humidified, and the humidified air is blown out through the air outlet 303.
  • the kinetic energy of the water scattered from the rotary plate 322 is attenuated by the friction with the air inside the collision wall 305a, so it is preferable that the rotary plate 322 be as close to the collision wall 305a as possible.
  • the collision wall 305a and the rotary plate 322 are brought closer to each other, the amount of airflow passing through the inside of the collision wall 305a decreases, so the lower limit value of the distance is arbitrarily determined by the pressure loss passing through the inside of the collision wall 305a and the amount of airflow.
  • the liquid to be atomized may be other than water, for example, a liquid such as hypochlorous acid water having bactericidal/deodorant properties.
  • the micronized hypochlorous acid water is contained in the air sucked from the suction port 302 of the liquid micronizer 301, and the air containing the hypochlorous acid water is blown out from the blowout port 303, thereby the liquid micronizer
  • the space where 301 is placed can be sterilized/deodorized.
  • FIGS. 21 to 23 a humidification operation process executed by the liquid micronization apparatus 301 to execute the humidification operation will be described.
  • 21 and 22 are flowcharts showing the humidifying operation processing.
  • FIG. 23 is a flowchart showing a full water detection process which is one of the humidification operation processes.
  • the humidification operation process is executed by a control unit (not shown) provided in the liquid atomization device 301.
  • the water level detection unit correction process during the first energization is executed (S1).
  • the standby time is a time for stabilizing the voltage output from the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326.
  • the above-mentioned full water level detection unit 325 is changed from the voltage values output from the reference water level detection unit 324, the full water level detection unit 325 and the overflow water level detection unit 326.
  • the offset voltage value and the offset voltage related to the overflow water level detector 326 are calculated.
  • the value obtained by adding the offset voltage value related to the full water level detection unit 325 to the voltage value actually output from the full water level detection unit 325 is used as the voltage value output from the full water level detection unit 325 to detect the full water level.
  • the value obtained by adding the offset voltage value related to the overflow water level detection unit 326 to the voltage value actually output from the overflow water level detection unit 326 is used as the voltage value output from the overflow water level detection unit 326 to detect the full water level. used.
  • the processes of S2 to S4 are executed to supply water to the water storage unit 310.
  • the drain valve 312 is closed to stop the water in the water storage section 310, and then the water supply valve 317 is opened.
  • the water supply unit 315 starts supplying water to the water storage unit 310.
  • the rotation motor 323 is turned on and the pumping pipe 321 is rotated to suppress drainage from the drainage unit 311.
  • the full water detection process is a process for detecting whether or not the water is stored up to the full water level in the water storage unit 310.
  • the full water detection process will be described with reference to FIG.
  • the full water detection process first, it is determined whether or not the water level of the water storage unit 310 has reached the full water level (S20). Specifically, in the process of S20, the voltage value output by the full water level detection unit 325 is compared with the voltage value output by the reference water level detection unit 324. At this time, as the voltage value output by the full water level detection unit 325, a value obtained by adding the above-mentioned offset voltage value to the actually output voltage value is used. Then, when the difference between the compared voltage values falls within a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 325 is in the water.
  • a predetermined range for example, 0.2 V
  • the full water level detection unit 325 may be in the air or in the water depending on the water level of the water storage unit 310.
  • the reference water level detection unit 324 since the reference water level detection unit 324 is provided at a position higher than the predetermined position where the overflow drainage port 318 is provided, it is always in the air. Therefore, by comparing the voltage output from the reference water level detection unit 324 that is always in the air with the voltage output from the full water level detection unit 325, the full water level detection unit 325 exists in water. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 310 can be suppressed.
  • the process of S20 is executed by the first water level detection unit of the present disclosure.
  • the water storage unit 310 it is also determined whether or not the water storage unit 310 has reached the overflow water level. Specifically, the voltage value output by the overflow water level detection unit 326 is compared with the voltage value output by the reference water level detection unit 324. At this time, as the voltage value output by the overflow water level detection unit 326, the value obtained by adding the offset voltage value related to the overflow water level detection unit 26 to the actually output voltage value is used. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 326 is in the state of being present in water.
  • a predetermined range for example, 0.2 V
  • the overflow water level detection unit 326 has a state existing in air and a state existing in water depending on the water level of the water storage unit 310.
  • the reference water level detection unit 324 is provided at a position higher than the predetermined position where the overflow drainage port 318 is provided, it is always in the air. Therefore, by comparing the voltage output from the reference water level detection unit 324 that is always in the air with the voltage output from the overflow water level detection unit 326, the overflow water level detection unit 326 exists in water. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 310 can be suppressed.
  • the abnormality counter is one of the variables stored in the RAM, and is used to count the abnormality of water supply to the water storage unit 310.
  • the abnormality counter is initialized to "0" every time the execution of the full water detection process is started, and in the full water detection process, each time the process of S21 determines that there is an abnormality in the water supply to the water storage unit 310, the abnormality counter of S23 is selected. One is added by the processing.
  • the full water detection processing waits until a fixed time (25 minutes in the present embodiment) has passed (S24). Then, after the elapse of a certain time, the full water detection process determines whether or not the water level of the water storage unit 310 has reached the full water level by the same method as S20 (S25). It should be noted that the time (30 minutes in the present embodiment) obtained by adding the second predetermined time elapsed by the processing of S21 and the constant time elapsed by the processing of S24 corresponds to the third predetermined time of the present disclosure. To do. Further, the process of S25 is also executed by the first water level detection unit of the present disclosure.
  • the temperature of the supplied water is high, the temperature of the water will adapt to the surrounding air after a certain period of time, and will be close to the temperature of the air in the water storage unit 310. Then, a clear difference occurs between the voltage value output from the reference water level detection unit 324 and the voltage value output from the full water level detection unit 325, and erroneous detection of the full water level may be eliminated.
  • the water level of the water storage unit 310 becomes the full water level again after the third predetermined time elapses. Determine whether or not As a result, if the water level in the water storage unit 310 is the full water level (S25: Yes), the false detection of the water level in the water storage unit is resolved, and it can be determined that the water level in the water storage unit 310 is the full water level. The process is ended, and the process returns to the humidifying operation process.
  • the water supply section 315 does not reach the full water level after the water supply section 315 starts supplying water to the water storage section 310 because the water pressure supplied to the water supply section 315 is momentarily decreased, This is because there is a possibility that the erroneous detection of the full water level by the full water level detecting unit 325 may not be eliminated even after the third predetermined time has elapsed after the start of water supply. Therefore, if the water supply section 315 performs water supply to the water storage section 310 again, and if the water storage section 310 reaches the full water level thereafter, it is determined that the water supply section 315 has not failed, and the humidification operation is performed as it is.
  • the drain valve 312 is opened, or if the drain valve 312 is not present, the rotation of the pump pipe 321 is stopped and the water stored in the water storage unit 310 is once drained. You may. In this case, in the process of S27, the drain valve 312 is closed again, or if there is no drain valve 312, the pump pipe 321 is rotated to control the drainage from the drainage unit 311.
  • the user can be notified of an abnormality due to a failure of the water supply unit 315 or the like.
  • the above 90 minutes corresponds to the first predetermined time of the present disclosure.
  • the process of S28 is executed by the notification unit of the present disclosure.
  • the processing of S5 to S7 is executed to perform the humidifying operation.
  • the rotation of the rotary motor 323 is turned on to rotate the pumping pipe 321.
  • the water stored in the water storage unit 310 is atomized by the above-described operation, and the air sucked from the suction port 302 is humidified.
  • the process waits until 30 minutes when it is expected that the amount of water in the water storage unit 310 will decrease (S6), and then the rotation motor 323 is turned off to temporarily stop the humidifying operation. (S7).
  • the humidification operation process it is determined whether a specific time (24 hours in the present embodiment) has elapsed since the liquid atomization device 301 was energized, or whether a specific time has elapsed since the previous drying operation was performed. A judgment is made (S8). As a result, if the measurement time has not elapsed (S8: No), the humidifying operation process returns to the process of S2, water is again supplied to the water storage unit 310, and the humidifying operation is restarted.
  • the humidification operation process closes the water supply valve 317 to stop water supply by the water supply unit 315, opens the drain valve 312, and stores water in the water storage unit 310.
  • the drainage of the removed water is started (S11).
  • the dust and the like attached to the water storage unit 310 is flushed with the drained water from the drainage unit 311 to wash the water storage unit 310. Therefore, the water storage unit 310 is cleaned every time a specific time elapses, so that the water can be humidified cleanly for a long time.
  • the humidifying operation process after the process of S11, it is determined whether or not the full water level is detected as the water level of the water storage unit 310 and the overflow water level is not detected (S12). This determination is performed by the method described above using the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326.
  • the fourth predetermined time (the present implementation It is determined whether or not 3 hours have passed in the above embodiment (S13).
  • the drainage valve 312 fails and does not open, or the drainage port or the drainage pipe that configures the drainage unit 311 is clogged with dust or the like, causing a drainage abnormality in which drainage is not performed. Therefore, in this case, the drainage abnormality is notified (S14), and thereafter, the process is looped. Thereby, the user can be notified of an abnormality due to a failure or clogging of the drainage unit 311.
  • the process of S14 is also executed by the notification unit of the present disclosure.
  • the air passing through the air supply air passage 358 of the heat exchange air device 350 is introduced into the liquid atomizing device 301 from the suction port 302 of the liquid atomizing device 301 and supplied to the water storage unit 310.
  • the water storage unit 310 is quickly dried.
  • the liquid atomization unit 319 is driven for the first predetermined time (for example, 30 minutes), that is, the rotation motor 323 is turned on to rotate the pumping pipe 321 to remove a large water droplet. To do.
  • the liquid atomization unit 319 is stopped, that is, the rotation motor 323 is turned off, and the water storage unit 310 is naturally dried only by the air supplied to the water storage unit 310.
  • the drying time of the water storage unit 310 can be shortened, and the liquid micronization unit 319 is prevented from being driven more than necessary, so that energy can be saved.
  • the air volume of the air supplied to the water storage unit 310 in the dry operation process may be set based on the humidity of the air sucked from the outdoor suction port 355.
  • the water storage unit 310 can be sufficiently dried even if the amount of air supplied to the water storage unit 310 is reduced. Therefore, in this case, energy saving can be achieved by reducing the amount of air supplied to the water storage unit 310.
  • the humidity of the air sucked from the outdoor suction port 355 is low, by increasing the air volume of the air supplied to the water storage unit 310, the water storage unit 310 is surely dried even if the air with high humidity is used. be able to.
  • the air supplied to the water storage unit 310 in the dry operation process is heat-exchanged with the air passing through the exhaust air passage 359 by the heat exchange element 364 based on the humidity of the air sucked from the outdoor suction port 355.
  • the air may be selected from the air passing through the supply air passage 358 after being heated and the air passing through the supply air passage 358 in which the heat exchange element 364 has not performed heat exchange.
  • the air passing through the air supply air passage 358 is directly supplied to the water storage unit 310 without heat exchange by the heat exchange element 364. Further, when the humidity of the air sucked from the outdoor suction port 355 is high, the heat exchange element 364 exchanges heat with the air passing through the exhaust air passage 359 to reduce the humidity, and thus the supply air passage 358 is provided. The air passing through is supplied to the water storage unit 310. Accordingly, even if the humidity of the air sucked from the outdoor suction port 355 is high, the water storage section 310 can be dried reliably.
  • the correction in the water level detection unit correction process is performed based on the voltage values output from the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 in the same manner as the water level detection unit correction process during the first energization in S1. This is performed by calculating the offset voltage value related to the water level detection unit 325 and the offset voltage value related to the overflow water level detection unit 326.
  • the offset voltage value related to the full water level detection unit 325 is added to the voltage value actually output from the full water level detection unit 325 by using the offset voltage value related to the full water level detection unit 325 calculated here.
  • the value is used as the voltage value output from the full water level detection unit 325 to detect the full water level.
  • a value obtained by adding the offset voltage value related to the overflow water level detection unit 326 to the voltage value actually output from the overflow water level detection unit 326 is obtained.
  • the voltage value output from the overflow water level detection unit 326 is used to detect the full water level.
  • the water storage unit 310 is in a drought state, and the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 are all in a dry state and in the same environment. .. Therefore, by performing the correction under such a condition, the water level of the water storage unit 310 can be accurately detected. Further, by performing the correction periodically, even if the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 deteriorate over time and the characteristics change, the correction can be reliably performed.
  • the liquid atomization apparatus 301 and the heat exchange apparatus 350 As described above, according to the liquid atomization apparatus 301 and the heat exchange apparatus 350 according to the present embodiment, after the water supply unit 315 starts supplying water to the water storage unit 310, the first predetermined time (the present embodiment). After 90 minutes), if the full water level detection unit 325 that detects the full water level of the water storage unit 310 does not detect the water level, a water supply abnormality is notified. This allows the user to be notified of an abnormality due to a failure of the water supply unit 315.
  • the overflow water level detection unit 326 detects the overflow water level after the water supply unit 315 starts the water supply and before the full water level detection unit 325 detects the full water level, the water supply is stopped. In this case, there is a possibility that the detection of the full water level by the full water level detection unit 325 has malfunctioned or the full water level detection unit 325 has malfunctioned. Therefore, once the water supply is stopped, the water storage unit 310 is unnecessarily excessive. It can suppress that water is supplied to the.
  • the water supply unit 315 starts the water supply, the water supply is stopped after a second predetermined time (5 minutes in the present embodiment) shorter than the first predetermined time has elapsed. Thereby, even if the first water level detection unit does not detect the first water level, it is possible to suppress excessive supply of water to the water storage unit 310.
  • the full water level detection unit 325 Does not detect the water level, water is again supplied by the water supply unit 315.
  • the full water level detection unit 325 does not detect the full water level even after the elapse of the third predetermined time, it is not immediately determined that the water supply unit 315 is out of order, and the water supply is performed again.
  • the full water level detection unit 325 can detect the full water level, the humidification operation is performed, so that it is possible to suppress unnecessary notification of a failure of the water supply unit 315.
  • the full water level detection unit 325 or the overflow water level detection unit 326 detects the full water level or the overflow water level after a fourth predetermined time (3 hours in the present embodiment) has elapsed. In this case, drainage abnormality is reported. Thereby, the user can be notified of an abnormality due to a failure or clogging of the drainage unit 311.
  • the liquid atomization device 301 may be included in an air purifier or an air conditioner.
  • an air purifier or an air conditioner there is one that incorporates a device for vaporizing a liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization.
  • a device for vaporizing a liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization.
  • the liquid micronization device 301 is described as an example of the humidifying device, but the humidifying device is not necessarily limited to this.
  • the humidifying device is provided with a water storage unit and supplies water while determining the water level of the water storage unit. If so, the present disclosure can be applied.
  • the humidifying device according to the present disclosure can be applied to, for example, a device that humidifies indoor air. Further, the humidifying device according to the present disclosure can be applied to a water vaporizing device, a hypochlorous acid vaporizing device, or the like incorporated as one of its functions in a heat exchange air device, an air purifier, or an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Air Humidification (AREA)

Abstract

This humidifier comprises: an intake port (2); a discharge port (3); a humidifying unit (19); a water storage unit (10); a water supply unit (15); a plurality of water level sensing units; and a water level sensing correction unit. The plurality of water level sensing units include at least: a reference water level sensing unit (24) serving as an output value reference; and a non-reference water level sensing unit (25) an output value of which is to be corrected. When the water storage unit is in a water-shortage state, the water level sensing correction unit corrects the output value of the non-reference water level sensing unit on the basis of the output value of the reference water level sensing unit.

Description

加湿装置Humidifier
 本開示は、加湿装置に関する。 The present disclosure relates to a humidifying device.
 従来より、吸い込んだ空気に対して、貯水部に貯水された水を含ませて加湿し、加湿した空気を吹き出す加湿装置がある(例えば、特許文献1)。特許文献1に記載の加湿装置では、貯水部内の水位を水位センサにて検知して少なくとも自動給水弁を制御し、貯水部の水位を所定量に保持している。また、この種の加湿装置の中には、複数の水位センサを用いて、貯水部内の水位を検知するものがある。 Conventionally, there is a humidifying device that humidifies the sucked air by containing the water stored in the water storage unit and blows out the humidified air (for example, Patent Document 1). In the humidifier described in Patent Document 1, the water level in the water storage section is detected by a water level sensor and at least the automatic water supply valve is controlled to maintain the water level in the water storage section at a predetermined amount. Further, some of the humidifiers of this type use a plurality of water level sensors to detect the water level in the water storage section.
特開2009-279514号公報JP, 2009-279514, A 特開平6-221617号公報JP-A-6-221617 特開平11-83092号公報Japanese Patent Laid-Open No. 11-83092 特開2009-279514号公報JP, 2009-279514, A 特開平7-260547号公報Japanese Patent Laid-Open No. 7-260547
 しかしながら、複数の水位センサを用いて貯水部内の水位を検知する場合、各々の水位センサの特性のばらつきにより、水位検知の精度に問題がある。 However, when detecting the water level in the reservoir using multiple water level sensors, there is a problem in the accuracy of water level detection due to variations in the characteristics of each water level sensor.
 本開示は、上記課題を解決するためになされたものであり、貯水部の水位を精度よく検知できる加湿装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a humidifying device that can accurately detect the water level in a water storage section.
 この目的を達成するために、本開示の加湿装置は、空気を吸い込む吸込口と、吸込口より吸い込まれた空気を吹き出す吹出口と、吸込口と吹出口との間の風路内に設けられ、空気を加湿する加湿部と、を備える。加湿装置は、加湿部により空気を加湿するための水を貯水する貯水部と、貯水部に水を供給する給水部と、貯水部の中に設けられ、貯水部の水位を検知する複数の水位検知部と、水位検知補正部と、を備える。複数の水位検知部は、出力値の基準とされる基準水位検知部と、出力値の補正対象となる非基準水位検知部とを少なくとも含む。そして、水位検知補正部は、貯水部が渇水状態にある場合に、非基準水位検知部による出力値を基準水位検知部による出力値に基づいて補正する。 In order to achieve this object, the humidifying device of the present disclosure is provided in a suction port that sucks in air, a blowout port that blows out the air that is sucked in from the suction port, and an air passage between the suction port and the blowout port. And a humidifying section for humidifying the air. The humidifier is provided with a water storage unit for storing water for humidifying air by the humidification unit, a water supply unit for supplying water to the water storage unit, and a plurality of water levels provided in the water storage unit for detecting the water level of the water storage unit. A detection unit and a water level detection correction unit are provided. The plurality of water level detection units include at least a reference water level detection unit serving as a reference for the output value and a non-reference water level detection unit serving as a correction target for the output value. Then, the water level detection correction unit corrects the output value of the non-reference water level detection unit based on the output value of the reference water level detection unit when the water storage unit is in a drought state.
 本開示の加湿装置によれば、非基準水位検知部による出力値を基準水位検知部による出力値に合わせることができるので、貯水部の水位を精度よく検知できる加湿装置を提供できる。 According to the humidifier of the present disclosure, the output value of the non-reference water level detection unit can be matched with the output value of the reference water level detection unit, so that it is possible to provide a humidification device that can accurately detect the water level of the water storage unit.
図1は、本開示の実施の形態1-1に係る液体微細化装置の斜視図である。FIG. 1 is a perspective view of a liquid atomizing apparatus according to Embodiment 1-1 of the present disclosure. 図2は、同液体微細化装置の鉛直方向の概略断面図である。FIG. 2 is a schematic vertical cross-sectional view of the liquid atomizing apparatus. 図3は、同液体微細化装置の加湿運転処理を示すフローチャートである。FIG. 3 is a flowchart showing a humidification operation process of the liquid atomization device. 図4は、本開示の実施の形態1-2に係る液体微細化装置の鉛直方向の概略断面図である。FIG. 4 is a vertical schematic cross-sectional view of a liquid atomizing apparatus according to Embodiment 1-2 of the present disclosure. 図5は、本開示の実施の形態1-3に係る液体微細化装置の鉛直方向の概略断面図である。FIG. 5 is a schematic vertical cross-sectional view of the liquid atomizing apparatus according to Embodiment 1-3 of the present disclosure. 図6は、同液体微細化装置の加湿運転処理を示すフローチャートである。FIG. 6 is a flowchart showing a humidification operation process of the liquid atomization device. 図7は、本開示の実施の形態1-4に係る液体微細化装置の鉛直方向の概略断面図である。FIG. 7 is a schematic vertical cross-sectional view of a liquid atomizing apparatus according to Embodiment 1-4 of the present disclosure. 図8は、本開示の実施の形態2に係る液体微細化装置を備えた熱交換形換気装置の概略図である。FIG. 8 is a schematic diagram of a heat exchange-type ventilation device including the liquid atomization device according to the second embodiment of the present disclosure. 図9は、消費水分量算出部にて実行される消費水分量算出処理を示すフローチャートである。FIG. 9 is a flowchart showing the water consumption amount calculation process executed by the water consumption amount calculation unit. 図10は、従来の加湿ユニット部分の正面断面図である。FIG. 10 is a front sectional view of a conventional humidifying unit portion. 図11は、本開示の実施の形態3-1に係る液体微細が装置の斜視図である。FIG. 11 is a perspective view of a liquid fine device according to Embodiment 3-1 of the present disclosure. 図12は、同液体微細化装置の鉛直方向の概略断面図である。FIG. 12 is a schematic vertical cross-sectional view of the liquid atomizing apparatus. 図13は、同液体微細化装置の加湿運転状況を示すフローチャートである。FIG. 13: is a flowchart which shows the humidification operating condition of the same liquid atomization apparatus. 図14は、本開示の実施の形態3-2に係る液体微細化装置の鉛直方向の概略断面図である。FIG. 14 is a schematic vertical cross-sectional view of a liquid atomizing apparatus according to Embodiment 3-2 of the present disclosure. 図15は、本開示の実施の形態3―3に掛かる液体微細化装置の鉛直方向の概略断面図である。FIG. 15 is a schematic vertical cross-sectional view of a liquid atomizing apparatus according to Embodiment 3-3 of the present disclosure. 図16は、同液体微細化装置の加湿運転処理を示すフローチャートである。FIG. 16 is a flowchart showing a humidification operation process of the liquid atomization device. 図17は、本開示の実施の形態3-4に書かある液体微細化装置の鉛直方向の概略断面図である。FIG. 17 is a schematic vertical cross-sectional view of the liquid atomizing apparatus described in Embodiment 3-4 of the present disclosure. 図18は、本開示の実施の形態4に係る熱交換気装置の概略図である。FIG. 18 is a schematic diagram of a heat exchange apparatus according to Embodiment 4 of the present disclosure. 図19は、本開示の実施の形態4に係る液体微細化装置の斜視図である。FIG. 19 is a perspective view of a liquid atomization device according to Embodiment 4 of the present disclosure. 図20は、同液体微細化装置の鉛直方向の概略断面図である。FIG. 20 is a schematic vertical cross-sectional view of the liquid atomization device. 図21は、同液体微細化装置の加湿運転処理を示すフローチャートである。FIG. 21 is a flowchart showing a humidification operation process of the liquid atomization device. 図22は、同液体微細化装置の加湿運転処理を示すフローチャートである。FIG. 22 is a flowchart showing a humidification operation process of the liquid atomization device. 図23は、同液体微細化装置の満水検知処理を示すフローチャートである。FIG. 23 is a flowchart showing a full water detection process of the liquid atomization device.
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Hereinafter, modes for carrying out the present disclosure will be described with reference to the accompanying drawings. It should be noted that each of the embodiments described below shows a preferred specific example of the present disclosure. Therefore, the numerical values, shapes, materials, constituent elements, arrangement positions of constituent elements, connection forms, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, the constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements. Further, in each of the drawings, the substantially same components are designated by the same reference numerals, and overlapping description will be omitted or simplified.
 (実施の形態1)
 以下、本開示の実施の形態について図面を参照しながら説明する。実施の形態1は、少なくとも以下の実施の形態1-1、実施の形態1-2、実施の形態1-3および実施の形態1-4を包含する。
(Embodiment 1)
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Embodiment 1 includes at least Embodiment 1-1, Embodiment 1-2, Embodiment 1-3 and Embodiment 1-4 below.
 (実施の形態1-1)
 まず、図1、図2を参照して、本開示の加湿装置の実施の形態1-1に係る液体微細化装置1の概略構成について説明する。図1は、液体微細化装置1の斜視図である。図2は、液体微細化装置1の鉛直方向の概略断面図である。
(Embodiment 1-1)
First, with reference to FIG. 1 and FIG. 2, a schematic configuration of a liquid atomizing apparatus 1 according to Embodiment 1-1 of a humidifying device of the present disclosure will be described. FIG. 1 is a perspective view of the liquid atomization apparatus 1. FIG. 2 is a schematic cross-sectional view of the liquid atomization apparatus 1 in the vertical direction.
 液体微細化装置1は、図1に示す通り、空気を吸い込む吸込口2と、内筒5と、外筒9と、空気を吹き出す吹出口3と、を備える。内筒5は、吸込口2と連通し下方が通風口7(図2参照)として開放されている。外筒9は、内筒5を内包している。吹出口3は、外筒9の上方に設けられ、吸込口2より吸い込まれ、内筒5及び外筒9を通過した空気を吹き出す。 As shown in FIG. 1, the liquid atomizer 1 includes a suction port 2 that sucks in air, an inner cylinder 5, an outer cylinder 9, and an air outlet 3 that blows out air. The inner cylinder 5 communicates with the suction port 2 and is open at the bottom as a ventilation port 7 (see FIG. 2). The outer cylinder 9 includes the inner cylinder 5. The blow-out port 3 is provided above the outer cylinder 9, blows out the air that has been sucked in through the suction port 2 and has passed through the inner cylinder 5 and the outer cylinder 9.
 液体微細化装置1は、図2に示す通り、吸込口2と吹出口3との間に、吸込連通風路4と、内筒風路6と、外筒風路8と、が形成されている。吸込連通風路4は、吸込口2で吸い込まれた空気が連通する内筒5に向けて流れる風路である。内筒風路6は、内筒5内部に形成される風路であり、吸込連通風路4から流れた空気が内筒5の通風口7に向けて流れる風路である。外筒風路8は、外筒9の内径と内筒5の外径との間に形成される風路であり、内筒5の通風口7より吹き出された空気が外筒9の内側を通って吹出口3へと導かれる風路である。 As shown in FIG. 2, the liquid atomizer 1 has a suction communication air passage 4, an inner cylinder air passage 6, and an outer cylinder air passage 8 formed between the suction port 2 and the air outlet 3. There is. The suction communication air passage 4 is an air passage through which the air sucked in through the suction port 2 flows toward the inner cylinder 5 in communication therewith. The inner cylinder air passage 6 is an air passage formed inside the inner cylinder 5, and the air flowing from the suction communication air passage 4 flows toward the ventilation port 7 of the inner cylinder 5. The outer cylinder air passage 8 is an air passage formed between the inner diameter of the outer cylinder 9 and the outer diameter of the inner cylinder 5, and the air blown out from the ventilation port 7 of the inner cylinder 5 flows inside the outer cylinder 9. It is an air passage that leads to the air outlet 3.
 液体微細化装置1は、これら吸込連通風路4、内筒風路6、外筒風路8にて形成される風路内に設けられた液体微細化部19を備える。液体微細化装置1は、液体微細化部19により微細化された水を風路に流れる空気に含めることで、吸込口2から吸い込んだ空気を加湿する。液体微細化部19が、本開示の加湿部である。 The liquid atomizing device 1 includes a liquid atomizing unit 19 provided in the air passage formed by the suction communication air passage 4, the inner cylinder air passage 6, and the outer cylinder air passage 8. The liquid atomizing apparatus 1 humidifies the air sucked from the suction port 2 by including the water atomized by the liquid atomizing unit 19 in the air flowing in the air passage. The liquid atomizing unit 19 is the humidifying unit of the present disclosure.
 液体微細化部19は、液体微細化装置1の主要部であり、水の微細化を行うところである。液体微細化装置1では、吸込口2で取り込んだ空気が、吸込連通風路4を経由して液体微細化部19へ送られる。そして、液体微細化装置1は、内筒風路6を通る空気に、液体微細化部19にて微細化された水を含ませて、水を含んだ空気を、外筒風路8を経由して吹出口3より吹き出すように構成されている。 The liquid refining unit 19 is a main part of the liquid refining apparatus 1 and is for refining water. In the liquid refining apparatus 1, the air taken in through the suction port 2 is sent to the liquid refining unit 19 via the suction communication air passage 4. Then, the liquid atomization apparatus 1 causes the air passing through the inner tube air passage 6 to include the water atomized by the liquid atomization unit 19 so that the air containing the water passes through the outer tube air passage 8. And is blown out from the outlet 3.
 液体微細化部19は、上方及び下方が開口された衝突壁5aを備えている。衝突壁5aは、内筒5の内側に固定されることで設けられている。また、液体微細化部19には、衝突壁5aに囲まれた内側において、回転しながら水を汲み上げる(揚水する)筒状の揚水管21が備えられている。揚水管21は、逆円錐形の中空構造となっており、逆円錐形状の天面中心に、鉛直方向に向けて配置された回転軸20が固定されている。回転軸20が、液体微細化部19の外面に備えられた回転モータ23と接続されることで、回転モータ23の回転運動が回転軸20を通じて揚水管21に伝導され、揚水管21が回転する。 The liquid atomization unit 19 includes a collision wall 5a that is open at the top and bottom. The collision wall 5a is provided by being fixed inside the inner cylinder 5. Further, the liquid atomization unit 19 is provided with a tubular pumping pipe 21 inside the surrounded by the collision wall 5a, which pumps (pumps) water while rotating. The pumping pipe 21 has an inverted conical hollow structure, and the rotary shaft 20 arranged in the vertical direction is fixed to the center of the inverted conical top surface. When the rotary shaft 20 is connected to the rotary motor 23 provided on the outer surface of the liquid atomization unit 19, the rotary motion of the rotary motor 23 is transmitted to the pump pipe 21 through the rotary shaft 20, and the pump pipe 21 rotates. ..
 図2に示す通り、揚水管21は、揚水管21の外面から外側に突出するように形成された回転板22を複数備えている。複数の回転板22は、回転軸20の軸方向に所定間隔を設けて、揚水管21の外面から外側に突出するように形成されている。回転板22は揚水管21とともに回転するため、回転軸20と同軸の水平な円盤形状が好ましい。なお、回転板22の枚数は、目標とする性能あるいは揚水管21の寸法に合わせて適宜設定されるものである。 As shown in FIG. 2, the pumping pipe 21 includes a plurality of rotary plates 22 formed so as to project outward from the outer surface of the pumping pipe 21. The plurality of rotary plates 22 are formed at predetermined intervals in the axial direction of the rotary shaft 20 so as to project outward from the outer surface of the pumping pipe 21. Since the rotary plate 22 rotates together with the pumping pipe 21, a horizontal disk shape coaxial with the rotary shaft 20 is preferable. The number of the rotary plates 22 is appropriately set according to the target performance or the dimensions of the pumping pipe 21.
 また、揚水管21の壁面には、揚水管21の壁面を貫通する開口(図示せず)が設けられている。揚水管21の開口は、揚水管21の外面から外側に突出するように形成された回転板22と連通する位置に設けられている。開口の周方向の大きさは、揚水管21の開口が設けられた部位の外径に合わせてそれぞれ設計される必要があり、例えば揚水管21の外径の5%から50%に相当する径、より好ましくは、揚水管21の5%から20%に相当する径が挙げられる。なお、上記範囲内において、各開口の寸法を同一のものとしてもよい。 Also, the wall surface of the pumping pipe 21 is provided with an opening (not shown) penetrating the wall surface of the pumping pipe 21. The opening of the pumping pipe 21 is provided at a position communicating with the rotary plate 22 formed so as to project outward from the outer surface of the pumping pipe 21. The size of the opening in the circumferential direction needs to be designed according to the outer diameter of the portion of the pumping pipe 21 where the opening is provided. For example, the diameter corresponding to 5% to 50% of the outer diameter of the pumping pipe 21. , And more preferably, a diameter corresponding to 5% to 20% of the pumping pipe 21. It should be noted that the sizes of the openings may be the same within the above range.
 液体微細化部19の下部には、揚水管21の鉛直方向下方に、揚水管21により揚水される水を貯水する貯水部10が設けられている。揚水管21によって揚水される水で空気が加湿される。貯水部10の深さは、揚水管21の下部の一部、例えば揚水管21の円錐高さの三分の一から百分の一程度の長さが浸るように設計されている。この深さは必要な揚水量に合わせて設計できる。 A water storage unit 10 for storing water pumped by the pumping pipe 21 is provided below the pumping pipe 21 in the vertical direction below the liquid atomization unit 19. The air is humidified by the water pumped by the water pump 21. The depth of the water storage section 10 is designed so that a part of the lower portion of the pumping pipe 21, for example, about one third to one hundredth of the cone height of the pumping pipe 21 is immersed. This depth can be designed according to the required pumping volume.
 貯水部10への水の供給は、給水部15により行われる。給水部15には、給水管16が接続されており、例えば水道から給水弁17を通じて、給水管16により直接給水する。なお、給水部15は、あらかじめ液体微細化部19外に備えられた水タンクからサイフォンの原理で必要な水量のみ汲みあげて、貯水部10へ水を供給するように構成されてもよい。給水部15は、貯水部10の底面よりも鉛直方向上方に設けられている。なお、給水部15は、貯水部10の底面だけでなく、貯水部10の上面(貯水部10に貯水され得る最大水位の面)よりも鉛直方向上方に設けられるのが好ましい。 The water supply unit 15 supplies water to the water storage unit 10. A water supply pipe 16 is connected to the water supply unit 15, and water is directly supplied from the water supply through the water supply valve 17 through the water supply pipe 16, for example. The water supply unit 15 may be configured to pump up only the required amount of water according to the siphon principle from a water tank provided outside the liquid atomization unit 19 and supply the water to the water storage unit 10. The water supply unit 15 is provided vertically above the bottom surface of the water storage unit 10. The water supply unit 15 is preferably provided not only on the bottom surface of the water storage unit 10 but also vertically above the upper surface of the water storage unit 10 (the surface of the maximum water level that can be stored in the water storage unit 10).
 貯水部10の底面中央には、排水部11が設けられている。排水部11の排水口は、貯水部10の最も低い位置に設けられている。水の微細化の運転を停止させた場合、排水部11に設けられた排水弁12を開けることで、貯水部10に貯水された水が、排水部11から排水される。 A drainage section 11 is provided at the center of the bottom surface of the water storage section 10. The drainage port of the drainage unit 11 is provided at the lowest position of the water storage unit 10. When the operation of refining the water is stopped, the water stored in the water storage section 10 is drained from the water drain section 11 by opening the drain valve 12 provided in the water drain section 11.
 また、貯水部10には、オーバーフロー排水口18が設けられている。貯水部10に必要以上の水が貯水された場合、水の抵抗によって揚水管21の回転が不足したり、液体微細化装置1から水漏れを起こしたり、場合によっては回転モータ23が水に浸かって故障したりする恐れがある。オーバーフロー排水口18は、そのような事態が生じることを防ぐために設けたものであり、貯水部10において貯水された水が所定の水位以上とならないよう、所定の水位の位置に開口されている。 Further, the water storage section 10 is provided with an overflow drain port 18. If more water than necessary is stored in the water storage unit 10, the rotation of the pumping pipe 21 may be insufficient due to the resistance of the water, water may leak from the liquid atomizer 1, or the rotary motor 23 may be submerged in water. There is a risk of malfunction. The overflow drain 18 is provided to prevent such a situation, and is opened at a predetermined water level so that the water stored in the water storage unit 10 does not exceed a predetermined water level.
 これにより、貯水部10に所定の水位の水が貯水されると、それ以後に水が給水されてもオーバーフロー排水口18から水が排水され、貯水部10には所定の水位以上の水が貯水されないようになっている。 As a result, when water having a predetermined water level is stored in the water storage unit 10, even if water is supplied thereafter, the water is drained from the overflow drain port 18, and the water having a predetermined water level or higher is stored in the water storage unit 10. It is supposed not to be done.
 液体微細化部19には、貯水部10の満水の水位を検知するために、基準水位検知部24と、満水水位検知部25とが設けられている。満水水位検知部25は、液体微細化部19による液体の微細化のために必要な貯水部10に貯水すべき水の水位を満水水位として検知するものであり、NTC(Negative Temperature Coefficient)サーミスタにより構成される。満水水位検知部25は、オーバーフロー排水口18が設けられる所定の水位となる位置よりも低い第1の位置に設けられる。つまり、満水水位として検知される位置は、オーバーフロー排水口18が設けられる所定の水位となる位置よりも低い位置に設定される。 The liquid atomization unit 19 is provided with a reference water level detection unit 24 and a full water level detection unit 25 in order to detect the full water level of the water storage unit 10. The full water level detection unit 25 detects the water level of the water that should be stored in the water storage unit 10 necessary for the liquid micronization by the liquid micronization unit 19 as a full water level, and is determined by an NTC (Negative Temperature Coefficient) thermistor. Composed. The full water level detection unit 25 is provided at a first position lower than the position where the overflow drain port 18 is provided and which has a predetermined water level. That is, the position detected as the full water level is set to a position lower than the position where the overflow drain port 18 is provided and the predetermined water level.
 一方、基準水位検知部24は、満水水位検知部25と同一のNTCサーミスタにより構成されるもので、オーバーフロー排水口18が設けられる所定の水位となる位置よりも高い第2の位置に設けられる。オーバーフロー排水口18により、貯水部10には所定の水位よりも高い位置に水が貯水されることはなく、基準水位検知部24は常に空気中に存在することになる。そこで、基準水位検知部24の出力値は、出力値の基準として用いられる。 On the other hand, the reference water level detection unit 24 is composed of the same NTC thermistor as the full water level detection unit 25, and is provided at a second position higher than the predetermined water level where the overflow drain port 18 is provided. Due to the overflow drain 18, the water is not stored in the water storage unit 10 at a position higher than a predetermined water level, and the reference water level detection unit 24 is always present in the air. Therefore, the output value of the reference water level detection unit 24 is used as a reference for the output value.
 ここで、NTCサーミスタは、水中に存在する状態にある場合と、空気中に存在する状態にある場合とで、出力される電圧値が変化する。本実施の形態では、貯水部10に水を供給する場合に、満水水位検知部25が出力する電圧値と、基準水位検知部24が出力する電圧値とが比較される。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、満水水位検知部25が水中に存在する状態となったと判断し、貯水部10に満水水位まで水が貯水されたとして、給水弁17を閉じ、給水を停止する。 ▽Here, the output voltage value of the NTC thermistor changes depending on whether it is in water or in air. In the present embodiment, when supplying water to the water storage unit 10, the voltage value output by the full water level detection unit 25 and the voltage value output by the reference water level detection unit 24 are compared. Then, when the difference between the compared voltage values is in a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 25 is in the water, and the water is stored in the water storage unit 10 up to the full water level. Assuming that the water has been stored, the water supply valve 17 is closed and the water supply is stopped.
 一方、基準水位検知部24と満水水位検知部25とでは、同一のNTCサーミスタを用いたとしても、サーミスタの特性のばらつきにより、同一の環境下であっても出力される電圧値にばらつきが生じる。そこで、本実施の形態では、基準水位検知部24が出力する電圧値を用いて満水水位検知部25が出力する電圧値の補正を行う。即ち、満水水位検知部25は、出力値の補正対象となるものであり、本開示の非基準水位検知部に該当する。 On the other hand, even if the same NTC thermistor is used in the reference water level detection unit 24 and the full water level detection unit 25, variations in the characteristics of the thermistors cause variations in the output voltage value even under the same environment. .. Therefore, in the present embodiment, the voltage value output by the full water level detection unit 25 is corrected using the voltage value output by the reference water level detection unit 24. That is, the full water level detection unit 25 is an output value correction target, and corresponds to the non-reference water level detection unit of the present disclosure.
 例えば、液体微細化装置1に初めて通電が行われて、基準水位検知部24及び満水水位検知部25から出力される電圧が安定する第1の所定時間(例えば5分)経過後に、補正が実施される。また、第2の所定時間(例えば24時間)毎に実行される乾燥動作が行われる後にも、補正が実施される。つまり、貯水部10が渇水状態にあり、基準水位検知部24と満水水位検知部25とが同一環境下にあって、理想的には同一の電圧値が出力される状況の中で、補正が実施される。 For example, correction is performed after the first predetermined time (for example, 5 minutes) when the liquid micronization apparatus 1 is first energized and the voltages output from the reference water level detection unit 24 and the full water level detection unit 25 stabilize. To be done. In addition, the correction is performed even after the drying operation is performed every second predetermined time (for example, 24 hours). That is, in a situation where the water storage unit 10 is in a drought state, the reference water level detection unit 24 and the full water level detection unit 25 are in the same environment, and ideally the same voltage value is output, the correction is performed. Be implemented.
 補正は、基準水位検知部24より出力される電圧値から満水水位検知部25より出力される電圧値を引いて得られる電圧値の差を、オフセット電圧値とすることで行われる。そして、以後、満水水位検知部25から実際に出力される電圧値に、オフセット電圧値を加算した値が、満水水位検知部25から出力された電圧値として満水水位の検知が行われる。これにより、満水水位検知部25による出力値を基準水位検知部24による出力値に合わせることができるので、貯水部10の水位を精度よく検知できる。 The correction is performed by setting the difference in voltage value obtained by subtracting the voltage value output from the full water level detection unit 25 from the voltage value output from the reference water level detection unit 24 as the offset voltage value. Then, thereafter, the full water level is detected as a value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 25 as the voltage value output from the full water level detection unit 25. Accordingly, the output value of the full water level detection unit 25 can be matched with the output value of the reference water level detection unit 24, so that the water level of the water storage unit 10 can be accurately detected.
 なお、満水水位検知部25による出力値を基準水位検知部24による出力値に基づいて補正する方法は、上記方法に限られるものではなく、満水水位検知部25による出力値が基準水位検知部24による出力値に基づいて補正されるものであれば他の方法であってもよい。 The method of correcting the output value of the full water level detection unit 25 based on the output value of the reference water level detection unit 24 is not limited to the above method, and the output value of the full water level detection unit 25 is the reference water level detection unit 24. Other methods may be used as long as they are corrected based on the output value of
 ここで、液体微細化装置1における水の微細化の動作原理を説明する。回転モータ23により回転軸20が回転し、それに合わせて揚水管21が回転すると、その回転によって生じる遠心力により、貯水部10に貯水された水が揚水管21によって汲み上げられる。揚水管21の回転数は、1000-5000rpmの間に設定される。揚水管21は、逆円錐形の中空構造となっているため、回転によって汲み上げられた水は、揚水管21の内壁を伝って上部へ揚水される。そして、揚水された水は、揚水管21の開口から回転板22を伝って遠心方向に放出され、水滴として飛散する。 Here, the operation principle of water atomization in the liquid atomizer 1 will be described. When the rotary shaft 20 is rotated by the rotary motor 23 and the pumping pipe 21 is rotated in accordance with the rotation, the water stored in the water storage unit 10 is pumped up by the pumping pipe 21 due to the centrifugal force generated by the rotation. The rotation speed of the pumping pipe 21 is set between 1000 and 5000 rpm. Since the pumping pipe 21 has an inverted conical hollow structure, the water pumped by the rotation is pumped to the upper part along the inner wall of the pumping pipe 21. Then, the pumped water is discharged from the opening of the pumping pipe 21 through the rotating plate 22 in the centrifugal direction and scattered as water droplets.
 回転板22から飛散した水滴は、衝突壁5aに囲まれた空間を飛翔し、衝突壁5aに衝突し、微細化される。一方、内筒風路6を通過する空気は、衝突壁5aの上方開口部から衝突壁5a内部へ移動し、衝突壁5aによって破砕(微細化)された水滴を含みながら下方開口部から衝突壁5a外部へ移動する。これにより、液体微細化装置1の吸込口2より吸い込まれた空気に対して加湿が行われ、吹出口3より加湿された空気が吹き出される。 The water droplets scattered from the rotating plate 22 fly in the space surrounded by the collision wall 5a, collide with the collision wall 5a, and are atomized. On the other hand, the air passing through the inner cylindrical air passage 6 moves from the upper opening of the collision wall 5a into the collision wall 5a, and includes the water droplets crushed (miniaturized) by the collision wall 5a to the collision wall 5a. 5a Move to the outside. As a result, the air sucked from the suction port 2 of the liquid atomization device 1 is humidified, and the humidified air is blown out from the air outlet 3.
 回転板22から飛散した水の運動エネルギーは衝突壁5a内部の空気との摩擦により減衰するため、回転板22はなるべく衝突壁5aに近づけたほうが好ましい。一方で、衝突壁5aと回転板22を近づけるほど、衝突壁5a内部を通過する風量が減少するため、距離の下限値は衝突壁5a内部を通過する圧力損失と風量とで、任意に決まる。 The kinetic energy of the water scattered from the rotary plate 22 is attenuated by the friction with the air inside the collision wall 5a, so the rotary plate 22 is preferably as close to the collision wall 5a as possible. On the other hand, as the collision wall 5a and the rotary plate 22 are brought closer to each other, the amount of airflow passing through the inside of the collision wall 5a decreases, so the lower limit value of the distance is arbitrarily determined by the pressure loss and the amount of airflow passing through the inside of the collision wall 5a.
 なお、微細化される液体は水以外でもよく、例えば、殺菌性/消臭性を備えた次亜塩素酸水等の液体であってもよい。微細化された次亜塩素酸水を液体微細化装置1の吸込口2より吸い込まれた空気に含ませ、次亜塩素酸水を含んだ空気を吹出口3より吹き出すことで、液体微細化装置1が置かれた空間の殺菌/消臭を行うことができる。 Note that the liquid to be atomized may be other than water, for example, a liquid such as hypochlorous acid water having bactericidal/deodorant properties. The micronized hypochlorous acid water is contained in the air sucked from the suction port 2 of the liquid micronizer 1, and the air containing the hypochlorous acid water is blown out from the blowout port 3 to obtain the liquid micronizer. The space where 1 is placed can be sterilized/deodorized.
 次に、図3を参照して、液体微細化装置1において加湿運転を実行するための加湿運転処理について説明する。図3は、加湿運転処理を示すフローチャートである。加湿運転処理は、液体微細化装置1に設けられた制御部(図示せず)により実行される。 Next, with reference to FIG. 3, a humidification operation process for executing the humidification operation in the liquid atomization apparatus 1 will be described. FIG. 3 is a flowchart showing the humidification operation process. The humidification operation process is executed by a control unit (not shown) provided in the liquid atomization device 1.
 加湿運転処理では、まず、初回通電時水位検知部補正処理が実行される(S1)。初回通電時水位検知部補正処理では、液体微細化装置1への通電が初めてか否かを判定し、通電が初めてであれば、まず第1の所定時間(例えば5分)待機する。第1の所定時間は、上述した通り、基準水位検知部24及び満水水位検知部25から出力される電圧を安定させるための時間である。そして、第1の所定時間経過後、貯水部10が渇水状態にある中で、基準水位検知部24及び満水水位検知部25から出力される電圧値から上述のオフセット電圧値を算出する。以後、満水水位検知部25から実際に出力される電圧値にオフセット電圧値を加算した値が、満水水位検知部25から出力された電圧値として、満水水位の検知に使用される。S1の処理は、本開示の水位検知補正部によって実行される。なお、水位検知補正部は、例えば制御部に設けられる。水位検知補正部は、貯水部10が渇水状態にある場合に、満水水位検知部25による出力値を基準水位検知部24による出力値に基づいて補正する。 In the humidification operation process, first, the water level detection unit correction process during the first energization is executed (S1). In the first energization water level detection unit correction process, it is determined whether or not the energization to the liquid atomization apparatus 1 is the first time, and if the energization is the first time, first, a first predetermined time (for example, 5 minutes) is waited. As described above, the first predetermined time is a time for stabilizing the voltage output from the reference water level detection unit 24 and the full water level detection unit 25. Then, after the lapse of the first predetermined time, the above-mentioned offset voltage value is calculated from the voltage values output from the reference water level detection unit 24 and the full water level detection unit 25 while the water storage unit 10 is in a drought state. After that, the value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 25 is used as the voltage value output from the full water level detection unit 25 for detecting the full water level. The process of S1 is executed by the water level detection correction unit of the present disclosure. The water level detection correction unit is provided, for example, in the control unit. The water level detection correction unit corrects the output value of the full water level detection unit 25 based on the output value of the reference water level detection unit 24 when the water storage unit 10 is in a drought state.
 なお、初回通電時水位検知部補正処理において、液体微細化装置1への通電が初めてでないと判定された場合は、そのままS2の処理へ移行する。 If it is determined in the correction process of the water level detection unit during the first energization that the liquid atomization device 1 is not energized for the first time, the process directly proceeds to S2.
 次いで、加湿運転処理では、貯水部10等の洗浄を行うために、S2~S4の処理を実行する。即ち、S2の処理では、排水弁12を閉じて、給水弁17を開き、貯水部10への給水を開始する。そして、加湿運転処理では、貯水部10の水位が満水水位となったか否かを判断する(S3)。 Next, in the humidifying operation process, the processes of S2 to S4 are executed to wash the water storage part 10 and the like. That is, in the process of S2, the drain valve 12 is closed, the water supply valve 17 is opened, and water supply to the water storage section 10 is started. Then, in the humidification operation process, it is determined whether or not the water level of the water storage section 10 has reached the full water level (S3).
 S3の処理では、具体的には、満水水位検知部25が出力する電圧値と、基準水位検知部24が出力する電圧値とを比較する。このとき、満水水位検知部25が出力する電圧値としては、実際に出力された電圧値に上述のオフセット電圧値を加算したものを使用する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、満水水位検知部25が水中に存在する状態となったと判断する。 In the process of S3, specifically, the voltage value output by the full water level detection unit 25 is compared with the voltage value output by the reference water level detection unit 24. At this time, as the voltage value output by the full water level detection unit 25, a value obtained by adding the above-mentioned offset voltage value to the actually output voltage value is used. Then, when the difference between the compared voltage values is in a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 25 is in the water.
 ここで、満水水位検知部25は、貯水部10の水位に応じて空気中に存在する状態と水中に存在する状態とがある。一方で、基準水位検知部24は、オーバーフロー排水口18が設けられた所定の位置よりも高い第2の位置に設けられているので、常に空気中に存在する状態にある。従って、常に空気中に存在する状態にある基準水位検知部24から出力される電圧と、満水水位検知部25から出力される電圧とを比較することで、満水水位検知部25が水中に存在する状態となった場合に、両者の電圧の違いが確実に判定できる。その結果、貯水部10の水位の誤検知を抑制できる。 Here, the full water level detection unit 25 may be in the air or in the water depending on the water level of the water storage unit 10. On the other hand, since the reference water level detection unit 24 is provided at the second position higher than the predetermined position where the overflow drain port 18 is provided, it is always in the air. Therefore, by comparing the voltage output from the reference water level detection unit 24 that is always in the air with the voltage output from the full water level detection unit 25, the full water level detection unit 25 exists in the water. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 10 can be suppressed.
 S3の処理の結果、貯水部10の水位が満水水位にない場合は(S3:No)、S3の処理を繰り返し実行する。一方、S3の処理の結果、貯水部10の水位が満水水位となったと判断される場合に(S3:Yes)、加湿運転処理は、排水弁12を開き、給水弁17を閉じて、貯水部10への給水の停止と、貯水部10に貯水された水の排水を行う(S4)。これにより、貯水部10の洗浄が終了する。 If, as a result of the processing in S3, the water level in the water storage unit 10 is not at the full water level (S3: No), the processing in S3 is repeated. On the other hand, as a result of the process of S3, when it is determined that the water level of the water storage part 10 has reached the full water level (S3: Yes), the humidification operation process opens the drain valve 12 and closes the water supply valve 17 to close the water storage part. The water supply to 10 is stopped, and the water stored in the water storage section 10 is drained (S4). As a result, the cleaning of the water storage section 10 is completed.
 次に、加湿運転処理では、実際の加湿運転を開始するために、排水弁12を閉じて、給水弁17を開き、貯水部10への給水を開始する(S5)。そして、加湿運転処理では、貯水部10の水位が満水水位となったか否かを判断する(S6)。S6の判断は、S3の処理と同様に行われる。 Next, in the humidifying operation process, in order to start the actual humidifying operation, the drain valve 12 is closed, the water supply valve 17 is opened, and water supply to the water storage section 10 is started (S5). Then, in the humidifying operation process, it is determined whether or not the water level of the water storage section 10 has reached the full water level (S6). The determination of S6 is performed in the same manner as the processing of S3.
 S6の処理の結果、貯水部10の水位が満水水位となったと判断されると(S6:Yes)、加湿運転処理は、給水弁17を閉じて給水を停止する(S7)。そして、加湿運転処理は、回転モータ23の回転をオンする(S8)。これにより、貯水部10に貯水された水が上述した動作によって微細化され、吸込口2より吸い込んだ空気に対して加湿が行われる。 As a result of the process of S6, when it is determined that the water level of the water storage section 10 has reached the full water level (S6: Yes), the humidification operation process closes the water supply valve 17 and stops the water supply (S7). Then, in the humidification operation process, the rotation of the rotary motor 23 is turned on (S8). As a result, the water stored in the water storage unit 10 is atomized by the above-described operation, and the air sucked from the suction port 2 is humidified.
 次に、加湿運転処理は、貯水部10の水が少なくなると予想される30分経過するまで処理を待機し(S9)、その後、回転モータ23の回転をオフして、一旦加湿運転を停止する(S10)。 Next, in the humidifying operation process, the process waits until 30 minutes when it is expected that the amount of water in the water storage unit 10 will decrease (S9), and then the rotation motor 23 is turned off to temporarily stop the humidifying operation. (S10).
 そして、加湿運転処理は、液体微細化装置1が通電されてから第2の所定時間(本実施形態では24時間)経過したか、または、前回乾燥運転を行ってから第2の所定時間経過したかを判断する(S11)。その結果、第2の所定時間経過していなければ(S11:No)、加湿運転処理は、S5の処理に戻り、貯水部10への給水が再び行われて加湿運転が再開される。 Then, in the humidifying operation process, a second predetermined time (24 hours in the present embodiment) has elapsed since the liquid atomization device 1 was energized, or a second predetermined time has elapsed since the previous drying operation was performed. It is determined (S11). As a result, if the second predetermined time has not elapsed (S11: No), the humidifying operation process returns to the process of S5, the water is supplied to the water storage unit 10 again, and the humidifying operation is restarted.
 一方、S11の処理の結果、第2の所定時間経過したと判断される場合は(S11:Yes)、加湿運転処理は乾燥運転を実施する(S12)。具体的には、液体微細化装置1の内部又は外部に設けられた送風機(図示せず)により、加湿運転することなく吸込口2から吹出口3へ空気を送風することで、液体微細化装置1の内部を乾燥させる。この乾燥運転を第2の所定時間毎に実施することで、液体微細化装置1内部にカビが発生することを抑制している。S12の処理は、本開示の乾燥動作部によって実行される。 On the other hand, if it is determined that the second predetermined time has elapsed as a result of the process of S11 (S11: Yes), the humidifying operation process performs a dry operation (S12). Specifically, an air blower (not shown) provided inside or outside the liquid micronization apparatus 1 blows air from the suction port 2 to the air outlet 3 without performing a humidifying operation. The inside of 1 is dried. By carrying out this drying operation every second predetermined time, generation of mold inside the liquid atomization apparatus 1 is suppressed. The process of S12 is executed by the drying operation unit of the present disclosure.
 そして、S12の処理の後、加湿運転処理は、水位検知部補正処理を実行する(S13)。水位検知部補正処理における補正は、S1の初回通電時水位検知部補正処理と同様に、基準水位検知部24及び満水水位検知部25から出力される電圧値から上述のオフセット電圧値を算出して行われる。そして、以後、ここで算出されたオフセット電圧値を用いて、満水水位検知部25から実際に出力される電圧値にオフセット電圧値を加算した値が、満水水位検知部25から出力された電圧値として、満水水位の検知に使用される。 After the process of S12, the humidification operation process executes the water level detection unit correction process (S13). The correction in the water level detection unit correction process is performed by calculating the above-mentioned offset voltage value from the voltage values output from the reference water level detection unit 24 and the full water level detection unit 25, as in the first energization water level detection unit correction process in S1. Done. Then, thereafter, using the offset voltage value calculated here, the value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 25 is the voltage value output from the full water level detection unit 25. Is used to detect the full water level.
 このように、第2の所定時間毎に行われる乾燥運転後は、貯水部10が渇水状態にあり、基準水位検知部24及び満水水位検知部25は共に乾燥状態にあって、同一の環境下にある。よって、このような状況下で補正を行うことで、貯水部10の水位を精度よく検知できる。また、第2の所定時間毎に定期的に補正を行うことで、基準水位検知部24及び満水水位検知部25が経年劣化して特性が変化したとしても、補正を確実に行うことができる。S13の処理も、本開示の水位検知補正部によって実行される。 As described above, after the drying operation performed every second predetermined time, the water storage unit 10 is in a drought state, the reference water level detection unit 24 and the full water level detection unit 25 are both in a dry state, and under the same environment. It is in. Therefore, the water level of the water storage section 10 can be accurately detected by performing the correction under such a condition. Further, by periodically performing the correction every second predetermined time, the correction can be reliably performed even if the reference water level detection unit 24 and the full water level detection unit 25 deteriorate with age and their characteristics change. The process of S13 is also executed by the water level detection correction unit of the present disclosure.
 S13の処理の後、加湿運転処理は、S5の処理に戻る。 After the processing of S13, the humidification operation processing returns to the processing of S5.
 また、S6の処理の結果、貯水部10の水位が満水水位にないと判断されると(S6:No)、次いで、加湿運転処理は、S5の処理により給水を開始してから第1時間(本実施の形態では5分)経過したか否かを判断する(S14)。その結果、第1時間経過していなければ(S14:No)、加湿運転処理はS6の処理に戻り、貯水部10の水位が満水水位となったか否かを判断する。 Further, as a result of the process of S6, if it is determined that the water level of the water storage unit 10 is not at the full water level (S6: No), then the humidifying operation process is performed for the first time (from the start of water supply by the process of S5). In this embodiment, it is determined whether 5 minutes have passed (S14). As a result, if the first time has not elapsed (S14: No), the humidification operation process returns to the process of S6, and it is determined whether the water level of the water storage unit 10 has reached the full water level.
 一方、S14の処理の結果、第1時間経過したと判断した場合は(S14:Yes)、給水がうまくできていないか、基準水位検知部24及び/又は満水水位検知部25が故障しているか、または、満水水位検知を誤検知している可能性がある。特に、給水した水の温度が高い場合、基準水位検知部24から出力される電圧値と、満水水位検知部25から出力される電圧値とに差がなく、結果として満水水位検知ができない可能性もある。 On the other hand, as a result of the processing in S14, when it is determined that the first time has elapsed (S14: Yes), whether the water supply is not successful or whether the reference water level detection unit 24 and/or the full water level detection unit 25 is out of order. Or, there is a possibility that the detection of full water level is erroneously detected. In particular, when the temperature of the supplied water is high, there is no difference between the voltage value output from the reference water level detection unit 24 and the voltage value output from the full water level detection unit 25, and as a result, the full water level detection may not be possible. There is also.
 そこで、加湿運転処理は、まず給水弁17を閉じて給水を停止した後(S15)、第2時間(本実施の形態では30分)経過するまで処理を待機する(S16)。そして、加湿運転処理は、第2時間経過後、再度S6の処理と同様の方法で貯水部10の水位が満水水位にあるか否かを判断する(S17)。 Therefore, in the humidifying operation process, after first closing the water supply valve 17 to stop the water supply (S15), the process is on standby until the second time (30 minutes in the present embodiment) has elapsed (S16). Then, in the humidifying operation process, after the lapse of the second time, it is again determined whether or not the water level of the water storage section 10 is the full water level by the same method as the process of S6 (S17).
 仮に、給水した水の温度が高かった場合、第2時間が経過することで、水の温度が周囲の空気に馴染み、貯水部10内の空気の温度に近くなる。そうすると、基準水位検知部24から出力される電圧値と満水水位検知部25から出力される電圧値とに明確な差が生じるようになり、満水水位の誤検知が解消される。 If the temperature of the supplied water is high, the temperature of the water will adapt to the surrounding air and become close to the temperature of the air in the water storage unit 10 after the second time period. Then, a clear difference occurs between the voltage value output from the reference water level detection unit 24 and the voltage value output from the full water level detection unit 25, and the false detection of the full water level is eliminated.
 なお、S16の処理において、第2時間待機している間、液体微細化装置1の内部又は外部に設けられた送風機(図示せず)を動作させ、貯水部10に空気を送風してもよい。また、この間、揚水管21による揚水が行われない程度に回転モータ23を回転させてもよい。これにより、貯水部10に貯水された水の温度が早く馴染み、より確実に満水水位の誤検知の解消を図ることができる。 In the process of S16, while waiting for the second time, a blower (not shown) provided inside or outside the liquid atomization apparatus 1 may be operated to blow air to the water storage section 10. .. Further, during this time, the rotation motor 23 may be rotated to such an extent that the water is not pumped by the water pump 21. As a result, the temperature of the water stored in the water storage unit 10 quickly adjusts, and it is possible to more reliably eliminate the false detection of the full water level.
 S17の処理の結果、貯水部10の水位が満水水位にあると判断された場合は(S17:Yes)、その誤検知が解消されたと判断できるので、加湿運転処理は、S8の処理へ移行して、加湿を開始する。一方、S17の処理の結果、貯水部10の水位が満水水位にないと判断された場合は(S17:No)、給水そのものに問題があるか、基準水位検知部24及び/又は満水水位検知部25が故障している可能性が高いので、異常を報知して(S18)、以後、処理をループさせる。 When it is determined that the water level in the water storage unit 10 is the full water level as a result of the process in S17 (S17: Yes), it can be determined that the erroneous detection has been eliminated, so the humidification operation process shifts to the process in S8. To start humidification. On the other hand, as a result of the processing of S17, when it is determined that the water level of the water storage section 10 is not the full water level (S17: No), there is a problem in the water supply itself, or the reference water level detection section 24 and/or the full water level detection section. Since there is a high possibility that 25 is out of order, an abnormality is notified (S18), and thereafter the processing is looped.
 以上説明した通り、実施の形態1-1に係る液体微細化装置1には、貯水部10において貯水された水が所定の水位となる位置にオーバーフロー排水口18が設けられている。これにより、貯水部10に所定の水位の水が貯水されると、それ以後に水が給水されてもオーバーフロー排水口18から水が排水され、貯水部10には所定の水位以上の水が貯水されないようになっている。よって、所定の水位の位置よりも低い第1の位置に設けられた満水水位検知部25は、貯水部10の水位に応じて空気中に存在する状態と水中に存在する状態とがある。一方、所定の水位よりも高い第2の位置に設けられた基準水位検知部24は、常に空気中に存在する状態にある。従って、常に空気中に存在する状態にある基準水位検知部24から出力される電圧値と、満水水位検知部25から出力される電圧値とを比較することで、満水水位検知部25が水中に存在する状態となった場合に、両者の電圧の違いが確実に判定できる。その結果、貯水部10の水位の誤検知を抑制できる。 As described above, the liquid atomization device 1 according to the embodiment 1-1 is provided with the overflow drain port 18 at a position where the water stored in the water storage section 10 reaches a predetermined water level. As a result, when water having a predetermined water level is stored in the water storage unit 10, even if water is supplied thereafter, the water is drained from the overflow drain port 18, and the water having a predetermined water level or higher is stored in the water storage unit 10. It is supposed not to be done. Therefore, the full water level detection unit 25 provided at the first position lower than the position of the predetermined water level may be in the air or in the water depending on the water level of the water storage unit 10. On the other hand, the reference water level detection unit 24 provided at the second position higher than the predetermined water level is always in the air. Therefore, by comparing the voltage value output from the reference water level detection unit 24, which is always present in the air, with the voltage value output from the full water level detection unit 25, the full water level detection unit 25 is submerged in water. When the existing state is reached, the difference between the two voltages can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 10 can be suppressed.
 また、貯水部10が渇水状態にある場合に、満水水位検知部25による電圧値が基準水位検知部24による電圧値に補正される。これにより、満水水位検知部25による出力値を基準水位検知部24による出力値に合わせることができるので、貯水部10の水位を精度よく検知できる。 Also, when the water storage unit 10 is in a drought state, the voltage value of the full water level detection unit 25 is corrected to the voltage value of the reference water level detection unit 24. Accordingly, the output value of the full water level detection unit 25 can be matched with the output value of the reference water level detection unit 24, so that the water level of the water storage unit 10 can be accurately detected.
 (実施の形態1-2)
 次いで、図4を参照して、本開示の加湿装置の実施の形態1-2に係る液体微細化装置1について説明する。図4は、実施の形態1-2に係る液体微細化装置1の鉛直方向の概略断面図である。
(Embodiment 1-2)
Next, with reference to FIG. 4, a liquid atomization apparatus 1 according to Embodiment 1-2 of the humidifying device of the present disclosure will be described. FIG. 4 is a schematic vertical sectional view of the liquid atomizing apparatus 1 according to the embodiment 1-2.
 実施の形態1-1に係る液体微細化装置1は、基準水位検知部24と満水水位検知部25とが鉛直方向において重なる位置に設けられている。これに対し、実施の形態1-2に係る液体微細化装置1は、図4に示す通り、実施の形態1-1に係る満水水位検知部25と同様の構成及び機能を有する満水水位検知部36を、基準水位検知部24とは鉛直方向において重ならない位置に配置することを特徴としている。なお、これ以外の液体微細化装置1の構成は、実施の形態1-1と同様であるため、詳細な説明は省略し、実施の形態1-1と異なる点を主に説明する。 The liquid atomization device 1 according to the embodiment 1-1 is provided at a position where the reference water level detection unit 24 and the full water level detection unit 25 overlap each other in the vertical direction. On the other hand, as shown in FIG. 4, the liquid atomization apparatus 1 according to Embodiment 1-2 has a full water level detection unit having the same configuration and function as the full water level detection unit 25 according to Embodiment 1-1. 36 is arranged at a position that does not overlap the reference water level detection unit 24 in the vertical direction. Since the configuration of the liquid atomization apparatus 1 other than this is the same as that of the embodiment 1-1, detailed description thereof will be omitted and differences from the embodiment 1-1 will be mainly described.
 基準水位検知部24は、常に空気中に存在するが、貯水部10に貯水された水の蒸発あるいは加湿された空気の通過等によって、その基準水位検知部24の周辺に水滴が付着し、その付着した水滴が鉛直方向に落下する場合が生じ得る。 The reference water level detection unit 24 is always present in the air, but due to evaporation of water stored in the water storage unit 10 or passage of humidified air, water droplets adhere to the periphery of the reference water level detection unit 24, Water droplets that have adhered may fall vertically.
 実施の形態1-2に係る液体微細化装置1は、満水水位検知部36が基準水位検知部24とは鉛直方向において重ならない位置に配置されている。よって、満水水位検知部36が、基準水位検知部24から落下する水滴により濡れることを抑制でき、空気中に存在しているにもかかわらず水中に存在している場合の電圧値を出力するおそれを抑制できる。 In the liquid atomization device 1 according to the embodiment 1-2, the full water level detection unit 36 is arranged at a position that does not overlap the reference water level detection unit 24 in the vertical direction. Therefore, it is possible to prevent the full water level detection unit 36 from getting wet with water droplets falling from the reference water level detection unit 24, and to output a voltage value when the water level is present in the water even though it is present in the air. Can be suppressed.
 従って、実施の形態1-2に係る液体微細化装置1は、実施の形態1-1に係る液体微細化装置1の奏する効果に加え、貯水部10の水位の誤検知をより確実に抑制できる。 Therefore, the liquid micronization apparatus 1 according to the embodiment 1-2 can more reliably suppress erroneous detection of the water level of the water storage unit 10 in addition to the effect of the liquid micronization apparatus 1 according to the embodiment 1-1. ..
 (実施の形態1-3)
 次いで、図5を参照して、本開示の加湿装置の実施の形態1-3に係る液体微細化装置1について説明する。図5は、実施の形態1-3に係る液体微細化装置1の鉛直方向の概略断面図である。
(Embodiment 1-3)
Next, with reference to FIG. 5, a liquid atomizing apparatus 1 according to Embodiment 1-3 of the humidifying device of the present disclosure will be described. FIG. 5 is a schematic vertical cross-sectional view of the liquid atomizing apparatus 1 according to Embodiment 1-3.
 実施の形態1-3に係る液体微細化装置1は、貯水部10の水位を検知するための水位検知部として、実施の形態1-1に係る液体微細化装置1の基準水位検知部24と満水水位検知部25とに加えて、オーバーフロー水位検知部26を有している。なお、これ以外の液体微細化装置1の構成は、実施の形態1-1と同様であるため、詳細な説明は省略し、実施の形態1-1と異なる点を主に説明する。また、加湿運転処理に関しても実施の形態1-1と異なる点を主に説明する。 The liquid micronization apparatus 1 according to Embodiment 1-3 includes a reference water level detection unit 24 of the liquid micronization apparatus 1 according to Embodiment 1-1 as a water level detection unit for detecting the water level of the water storage unit 10. In addition to the full water level detection unit 25, an overflow water level detection unit 26 is provided. Since the configuration of the liquid atomization apparatus 1 other than this is the same as that of the embodiment 1-1, detailed description thereof will be omitted and differences from the embodiment 1-1 will be mainly described. Also, differences in the humidifying operation process from the embodiment 1-1 will be mainly described.
 オーバーフロー水位検知部26は、貯水部10の水位がオーバーフロー排水口18の設けられた所定の水位となる前に検知するためのものであり、NTCサーミスタにより構成される。オーバーフロー水位検知部26は、満水水位検知部25が設けられた第1の位置よりも高く、オーバーフロー排水口18が設けられる所定の水位となる位置よりも低い第3の位置に設けられる。つまり、オーバーフロー水位として検知される位置は、オーバーフロー排水口18が設けられる所定の水位となる位置よりも低い位置に設定される。 The overflow water level detection unit 26 is for detecting before the water level of the water storage unit 10 reaches a predetermined water level provided with the overflow drain port 18, and is composed of an NTC thermistor. The overflow water level detection unit 26 is provided at a third position that is higher than the first position where the full water level detection unit 25 is provided and lower than the predetermined water level where the overflow drainage port 18 is provided. That is, the position detected as the overflow water level is set to a position lower than the position where the overflow water drain 18 is provided and the predetermined water level.
 本実施の形態では、オーバーフロー水位検知部26が出力する電圧値と、基準水位検知部24が出力する電圧値とを比較する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、オーバーフロー水位検知部26が水中に存在する状態となったと判断し、貯水部10にオーバーフロー水位まで水が貯水されたと判断する。 In the present embodiment, the voltage value output by the overflow water level detection unit 26 is compared with the voltage value output by the reference water level detection unit 24. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 26 is in a state of being present in water, and the water is stored in the water storage unit 10 up to the overflow water level. It is judged that the water has been stored.
 一方、基準水位検知部24とオーバーフロー水位検知部26とでは、満水水位検知部25と同様に、同一のNTCサーミスタを用いたとしても、サーミスタの特性のばらつきにより、同一の環境下であっても出力される電圧値にばらつきが生じる。そこで、本実施の形態では、満水水位検知部25の補正だけでなく、基準水位検知部24が出力する電圧値を用いてオーバーフロー水位検知部26が出力する電圧値の補正も行う。オーバーフロー水位検知部26が出力する電圧値の補正は、満水水位検知部25の電圧値の補正と同様の方法で行われる。これにより、満水水位検知部25による出力値だけでなく、オーバーフロー水位検知部26による出力値も、基準水位検知部24による出力値に合わせることができるので、貯水部10の水位を精度よく検知できる。このように、オーバーフロー水位検知部26も、出力値の補正対象となり、本開示の非基準水位検知部に該当する。 On the other hand, even if the reference water level detection unit 24 and the overflow water level detection unit 26 use the same NTC thermistor as in the full water level detection unit 25, even in the same environment due to variations in the characteristics of the thermistor. The output voltage value varies. Therefore, in the present embodiment, not only the correction of the full water level detection unit 25 but also the correction of the voltage value output by the overflow water level detection unit 26 using the voltage value output by the reference water level detection unit 24 is performed. The correction of the voltage value output by the overflow water level detection unit 26 is performed by the same method as the correction of the voltage value of the full water level detection unit 25. Accordingly, not only the output value of the full water level detection unit 25 but also the output value of the overflow water level detection unit 26 can be adjusted to the output value of the reference water level detection unit 24, so that the water level of the water storage unit 10 can be detected accurately. .. In this way, the overflow water level detection unit 26 also becomes a correction target of the output value, and corresponds to the non-reference water level detection unit of the present disclosure.
 なお、オーバーフロー水位検知部26による出力値を基準水位検知部24による出力値に基づいて補正する方法も、上記方法に限られるものではなく、オーバーフロー水位検知部26による出力値が基準水位検知部24による出力値に基づいて補正されるものであれば他の方法であってもよい。 The method of correcting the output value of the overflow water level detection unit 26 based on the output value of the reference water level detection unit 24 is not limited to the above method, and the output value of the overflow water level detection unit 26 is not limited to the reference water level detection unit 24. Other methods may be used as long as they are corrected based on the output value of
 次に、図6を参照して、実施の形態1-3に係る液体微細化装置1において加湿運転を実行するための加湿運転処理について説明する。図6は、実施の形態1-3における加湿運転処理を示すフローチャートである。加湿運転処理は、実施の形態1-1と同様に液体微細化装置1に設けられた制御部(図示せず)により実行される。 Next, with reference to FIG. 6, a humidification operation process for executing the humidification operation in the liquid atomization apparatus 1 according to the embodiment 1-3 will be described. FIG. 6 is a flowchart showing the humidifying operation process according to the embodiment 1-3. The humidifying operation process is executed by a control unit (not shown) provided in the liquid atomization device 1 as in the case of the embodiment 1-1.
 実施の形態1-3に係る加湿運転処理が、実施の形態1-1に係る加湿運転処理と相違する点は、S6の処理で貯水部10が満水水位にないと判断される場合に(S6:No)、S14の処理に代えてS21の処理が実行される点である。また、S21の処理において否定判断された場合に、S22及びS23の処理が実行される点である。なお、オーバーフロー水位検知部26の電圧値の補正は、S1及びS13の処理で満水水位検知部25と同様に実行される。 The humidifying operation process according to the embodiment 1-3 is different from the humidifying operation process according to the embodiment 1-1 when the water storage unit 10 is determined not to be at the full water level in the process of S6 (S6). : No), that is, the process of S21 is executed instead of the process of S14. In addition, when the negative determination is made in the process of S21, the processes of S22 and S23 are executed. The correction of the voltage value of the overflow water level detection unit 26 is executed in the same manner as the full water level detection unit 25 in the processes of S1 and S13.
 まず、S21の処理では、貯水部10がオーバーフロー水位となったか否かを判断する。具体的には、オーバーフロー水位検知部26が出力する電圧値と、基準水位検知部24が出力する電圧値とを比較する。このとき、オーバーフロー水位検知部26が出力する電圧値としては、実際に出力された電圧値に、S1又はS13にて算出されたオフセット電圧値を加算したものを使用する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、オーバーフロー水位検知部26が水中に存在する状態となったと判断する。 First, in the process of S21, it is determined whether or not the water storage section 10 has reached the overflow water level. Specifically, the voltage value output by the overflow water level detection unit 26 is compared with the voltage value output by the reference water level detection unit 24. At this time, as the voltage value output by the overflow water level detection unit 26, a value obtained by adding the offset voltage value calculated in S1 or S13 to the actually output voltage value is used. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 26 is in the state of being present in water.
 ここで、オーバーフロー水位検知部26は、貯水部10の水位に応じて空気中に存在する状態と水中に存在する状態とがある。一方で、基準水位検知部24は、オーバーフロー排水口18が設けられた所定の位置よりも高い第2の位置に設けられているので、常に空気中に存在する状態にある。従って、常に空気中に存在する状態にある基準水位検知部24から出力される電圧と、オーバーフロー水位検知部26から出力される電圧とを比較することで、オーバーフロー水位検知部26が水中に存在する状態となった場合に、両者の電圧の違いが確実に判定できる。その結果、貯水部10の水位の誤検知を抑制できる。 Here, the overflow water level detection unit 26 has a state existing in the air and a state existing in the water depending on the water level of the water storage unit 10. On the other hand, since the reference water level detection unit 24 is provided at the second position higher than the predetermined position where the overflow drain port 18 is provided, it is always in the air. Therefore, the overflow water level detection unit 26 exists in water by comparing the voltage output from the reference water level detection unit 24, which is always in the air, with the voltage output from the overflow water level detection unit 26. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 10 can be suppressed.
 S21の処理の結果、貯水部10の水位がオーバーフロー水位にないと判断される場合(S21:No)、この時点で、貯水部10は、満水水位にもオーバーフロー水位にも到達していない。そこで、加湿運転処理は、S5の処理により給水を開始してから第1時間(本実施の形態では5分)経過したか否かを判断する(S22)。その結果、第1時間経過していなければ(S22:No)、加湿運転処理はS6の処理に戻る。 If it is determined that the water level of the water storage unit 10 is not the overflow water level as a result of the process of S21 (S21: No), the water storage unit 10 has not reached the full water level or the overflow water level at this point. Therefore, in the humidification operation process, it is determined whether or not the first time (5 minutes in the present embodiment) has elapsed since the water supply was started in the process of S5 (S22). As a result, if the first time has not elapsed (S22: No), the humidification operation process returns to the process of S6.
 一方、S22の処理の結果、第1時間経過したと判断した場合は(S22:Yes)、給水に問題がある可能性が高い。そこで、加湿運転処理は、まず給水弁17を閉じて給水を停止した後(S23)、S18の処理へ移行し、異常を報知して、以後、処理をループさせる。 On the other hand, if it is determined that the first time has passed as a result of the processing in S22 (S22: Yes), there is a high possibility that there is a problem with the water supply. Therefore, in the humidifying operation process, first, the water supply valve 17 is closed to stop the water supply (S23), the process proceeds to S18, the abnormality is notified, and then the process is looped.
 また、S21の処理の結果、貯水部10の水位がオーバーフロー水位となったと判断される場合(S21:Yes)、S6の処理では、貯水部10の水位が満水水位にないと判断されている状況にあるので、満水水位の検知に何らかの問題があるおそれがある。なぜならば、オーバーフロー水位検知部26は、満水水位検知部25が設けられた第1の位置よりも高い第3の位置に設けられているため、貯水部10がオーバーフロー水位となると判断されるよりも前に、満水水位となったことが判断されるはずだからである。 When it is determined that the water level of the water storage section 10 has become the overflow water level as a result of the processing of S21 (S21: Yes), it is determined that the water level of the water storage section 10 is not at the full water level in the processing of S6. Therefore, there may be some problems in detecting the full water level. Because the overflow water level detection unit 26 is provided at the third position higher than the first position where the full water level detection unit 25 is provided, it is determined that the water storage unit 10 is at the overflow water level. This is because it should be judged before that the water level was full.
 満水水位の検知の問題としては、満水水位検知部25の故障の他、貯水部10に給水された水の温度が高い場合の誤検知が考えられる。その問題の切り分けを行うために、加湿運転処理は、実施の形態1-1と同様にS16及びS17の処理を実行する。 As a problem of detecting the full water level, not only the failure of the full water level detection unit 25 but also erroneous detection when the temperature of the water supplied to the water storage unit 10 is high can be considered. In order to isolate the problem, the humidification operation process executes the processes of S16 and S17 as in the case of the embodiment 1-1.
 以上説明した通り、実施の形態1-3に係る液体微細化装置1は、満水水位検知部25だけでなくオーバーフロー水位検知部26を更に有しているので、貯水部10の水位の検知をより精度よく行うことができる。 As described above, since the liquid atomization apparatus 1 according to Embodiment 1-3 further includes the overflow water level detection unit 26 as well as the full water level detection unit 25, it is possible to detect the water level of the water storage unit 10 more effectively. It can be done accurately.
 また、給水された水の温度が高く、貯水部10の満水水位を満水水位検知部25が誤検知しても、オーバーフロー水位検知部26により貯水部10がオーバーフロー水位となったことを検知することで、満水水位検知部25の誤検知の可能性を判断できる。よって、満水水位検知部25の誤検知によって異常と判断され、液体微細化装置1の動作が停止する頻度を抑制できる。 Further, even if the temperature of the supplied water is high and the full water level detection unit 25 erroneously detects the full water level of the water storage unit 10, the overflow water level detection unit 26 detects that the water storage unit 10 has reached the overflow water level. Thus, the possibility of erroneous detection of the full water level detection unit 25 can be determined. Therefore, it is possible to suppress the frequency with which the liquid micronization apparatus 1 stops operating, which is determined to be abnormal due to the erroneous detection of the full water level detection unit 25.
 (実施の形態1-4)
 次いで、図7を参照して、本開示の加湿装置の実施の形態1-4に係る液体微細化装置1について説明する。図7は、実施の形態1-4に係る液体微細化装置1の鉛直方向の概略断面図である。
(Embodiment 1-4)
Next, with reference to FIG. 7, a liquid micronization apparatus 1 according to Embodiment 1-4 of the humidifying device of the present disclosure will be described. FIG. 7 is a schematic vertical cross-sectional view of the liquid atomizing apparatus 1 according to Embodiment 1-4.
 実施の形態1-3に係る液体微細化装置1は、基準水位検知部24と満水水位検知部25とオーバーフロー水位検知部26とが鉛直方向において重なる位置に設けられている。これに対し、実施の形態1-4に係る液体微細化装置1は、図7に示す通り、実施の形態1-3に係る満水水位検知部25と同様の構成及び機能を有する満水水位検知部36と、実施の形態1-3に係るオーバーフロー水位検知部26と同様の構成及び機能を有するオーバーフロー水位検知部37と、基準水位検知部24とは、鉛直方向において重ならない位置に配置することを特徴としている。 In the liquid atomization apparatus 1 according to the first to third embodiments, the reference water level detection unit 24, the full water level detection unit 25, and the overflow water level detection unit 26 are provided at positions that overlap in the vertical direction. On the other hand, as shown in FIG. 7, the liquid atomization apparatus 1 according to Embodiment 1-4 has a full water level detection unit having the same configuration and function as the full water level detection unit 25 according to Embodiment 1-3. 36, the overflow water level detection unit 37 having the same configuration and function as the overflow water level detection unit 26 according to the first to third embodiments, and the reference water level detection unit 24 are arranged at positions that do not overlap in the vertical direction. It has a feature.
 実施の形態1-2においても説明した通り、基準水位検知部24は、常に空気中に存在するが、貯水部10に貯水された水の蒸発あるいは加湿された空気の通過等によって、基準水位検知部24の周辺に水滴が付着する可能性がある。また、オーバーフロー水位検知部37は、貯水部10に貯水された水の蒸発あるいは加湿された空気の通過等の影響の他、オーバーフロー水位まで貯水されていた水によって、オーバーフロー水位検知部37の周辺に水滴が付着する可能性がある。そして、これらの付着した水滴が鉛直方向に落下する場合が生じ得る。 As described in Embodiment 1-2, the reference water level detection unit 24 is always present in the air. However, the reference water level detection unit 24 detects the reference water level by evaporating the water stored in the water storage unit 10 or passing humidified air. Water droplets may adhere to the periphery of the portion 24. In addition, the overflow water level detection unit 37 is affected by the evaporation of water stored in the water storage unit 10 or the passage of humidified air, and the water stored up to the overflow water level causes the overflow water level detection unit 37 to move around the overflow water level detection unit 37. Water droplets may adhere. Then, these adhered water drops may fall in the vertical direction.
 実施の形態1-4に係る液体微細化装置1は、満水水位検知部36とオーバーフロー水位検知部37と基準水位検知部24とが、鉛直方向において重ならない位置に配置されている。よって、満水水位検知部36が、基準水位検知部24あるいはオーバーフロー水位検知部37から落下する水滴により濡れることを抑制でき、空気中に存在しているにもかかわらず水中に存在している場合の電圧値を出力するおそれを抑制できる。また、オーバーフロー水位検知部37が、基準水位検知部24から落下する水滴により濡れることを抑制でき、空気中に存在しているにもかかわらず水中に存在している場合の電圧値を出力するおそれを抑制できる。 In the liquid atomization device 1 according to the first to fourth embodiments, the full water level detection unit 36, the overflow water level detection unit 37, and the reference water level detection unit 24 are arranged at positions that do not overlap in the vertical direction. Therefore, it is possible to prevent the full water level detection unit 36 from getting wet with water droplets falling from the reference water level detection unit 24 or the overflow water level detection unit 37. It is possible to suppress the risk of outputting a voltage value. In addition, the overflow water level detection unit 37 can be prevented from getting wet with water droplets falling from the reference water level detection unit 24, and there is a risk of outputting a voltage value when it is present in the water even though it is present in the air. Can be suppressed.
 従って、実施の形態1-4に係る液体微細化装置1は、実施の形態1-3に係る液体微細化装置1の奏する効果に加え、貯水部10の水位の誤検知をより確実に抑制できる。 Therefore, the liquid atomizing apparatus 1 according to the first to fourth embodiments can more reliably suppress erroneous detection of the water level of the water storage section 10 in addition to the effect of the liquid atomizing apparatus 1 according to the first to third embodiments. ..
 以上、実施の形態に基づき本開示を説明したが、本開示は上記実施の形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 Although the present disclosure has been described above based on the embodiment, the present disclosure is not limited to the above embodiment, and various improvements and modifications can be made without departing from the gist of the present disclosure. It can be easily guessed. For example, the numerical values mentioned in the above embodiment are examples, and it is naturally possible to adopt other numerical values.
 例えば、上記各実施の形態に係る液体微細化装置1において、異常カウンタを設けてもよい。液体微細化装置1は、S17の満水水位の判断処理において否定判断された数を異常カウンタによりカウントし、異常カウンタの数が所定数(例えば3)以上となった場合に、S18による異常の報知を行うようにしてもよい。この場合、S17の満水水位の判断処理において否定判断されても、異常カウンタの数が所定数未満であれば、一旦、貯水部10の水を排水して、再びS5の処理からリトライするようにしてもよい。これにより、結果として異常はなかった場合にも異常の報知がなされることを抑制できる。 For example, an abnormality counter may be provided in the liquid atomizing apparatus 1 according to each of the above embodiments. The liquid atomization apparatus 1 counts the number of negative determinations in the determination process of full water level in S17 by the abnormality counter, and when the number of abnormality counters is equal to or more than a predetermined number (for example, 3), informs of the abnormality in S18. May be performed. In this case, even if a negative determination is made in the process of determining the full water level in S17, if the number of abnormality counters is less than the predetermined number, the water in the water storage unit 10 is once drained, and the process of S5 is retried again. May be. Thereby, even if there is no abnormality as a result, the notification of the abnormality can be suppressed.
 上記各実施の形態に係る液体微細化装置1は、例えば、熱交換気装置に搭載されてもよい。熱交換気装置は、建物の室内に設けられた室内吸込口及び給気口と、建物の屋外に設けられた排気口及び外気吸込口と、本体内に設けられた熱交換素子とを備えたものである。 The liquid atomization device 1 according to each of the above-described embodiments may be mounted on, for example, a heat exchange device. The heat exchange device includes an indoor intake port and an air supply port provided inside the building, an exhaust port and an external air intake port provided outside the building, and a heat exchange element provided inside the main body. It is a thing.
 室内吸込口は、室内の空気を吸い込み、吸い込まれた空気が排気口より屋外へ排気される。また、外気吸込口は、屋外の外気を吸い込み、吸い込まれた外気が給気口より室内へ給気される。このとき、室内吸込口から排気口へ送られる空気と、外気吸込口から給気口へ送られる外気との間で、熱交換素子により熱交換が行われる。  The indoor suction port sucks in the indoor air, and the sucked air is exhausted to the outside through the exhaust port. Further, the outside air suction port sucks in outside air, and the sucked outside air is supplied to the room through the air supply port. At this time, heat exchange is performed by the heat exchange element between the air sent from the indoor suction port to the exhaust port and the external air sent from the outdoor air suction port to the air supply port.
 熱交換気装置の機能の一つとして、加湿目的の水気化装置あるいは殺菌/消臭目的での次亜塩素酸気化装置といった液体を気化させる装置が組み込まれたものがある。熱交換気装置は、液体を気化させる装置として、上記各実施の形態に係る液体微細化装置1を組み込んでもよい。具体的には、熱交換気装置の給気口側に、液体微細化装置1が設けられてもよい。 As one of the functions of the heat exchange air device, there is one that incorporates a device that vaporizes liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization. The heat exchange gas device may incorporate the liquid atomization device 1 according to each of the above embodiments as a device for vaporizing a liquid. Specifically, the liquid atomization device 1 may be provided on the air supply port side of the heat exchange air device.
 液体微細化装置1を備えた熱交換気装置は、熱交換素子による熱交換が行われた外気に対して、液体微細化装置1により加湿された水又は次亜塩素酸を含め、給気口より室内へ供給する。これらの液体を気化させるための機構として液体微細化装置1を用いることで、より小型でエネルギー効率のよい熱交換気装置を得ることができる。 The heat exchange air device provided with the liquid atomization device 1 includes an air supply port including the water or hypochlorous acid moistened by the liquid atomization device 1 with respect to the outside air that has undergone heat exchange by the heat exchange element. Supply more indoors. By using the liquid atomization device 1 as a mechanism for vaporizing these liquids, it is possible to obtain a heat exchange gas device having a smaller size and higher energy efficiency.
 また、上記各実施の形態に係る液体微細化装置1は、空気清浄機や空気調和機に備えられてもよい。空気清浄機あるいは空気調和機における機能の一つとして、加湿目的の水気化装置あるいは殺菌/消臭目的での次亜塩素酸気化装置といった液体を気化させる装置が組み込まれたものがある。この装置として、液体微細化装置1を用いることで、より小型でエネルギー効率のよい空気清浄機又は空気調和機を得ることができる。 Further, the liquid atomization device 1 according to each of the above embodiments may be provided in an air purifier or an air conditioner. As one of the functions of an air purifier or an air conditioner, there is one that incorporates a device for vaporizing a liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization. By using the liquid atomization device 1 as this device, it is possible to obtain a smaller and more energy-efficient air purifier or air conditioner.
 上記各実施の形態では、加湿装置として液体微細化装置1を例として説明したが、必ずしもこれに限られるものではなく、貯水部が設けられ、貯水部の水位を判定しながら水を給水する加湿装置であれば、本開示を適用可能である。 In each of the above-described embodiments, the liquid micronization device 1 is described as an example of the humidifying device, but the humidifying device is not necessarily limited to this, and a water storage unit is provided and water is supplied while determining the water level of the water storage unit. The present disclosure can be applied to any device.
 (実施の形態2)
 従来、換気装置として、特許文献2に記載されているように室外から取り込んだ室外空気を加湿した上で室内へ供給し、室内空気の湿度を制御する加湿機能付きの換気装置が知られている。
(Embodiment 2)
Conventionally, as a ventilation device, as described in Patent Document 2, a ventilation device with a humidifying function is known that humidifies outdoor air taken in from the outside and then supplies it to the room to control the humidity of the indoor air. ..
 また、加湿機能を有する換気装置として、特許文献3に記載されているように加湿に用いる水を貯める貯水部への給水を自動で行う方法として、水位センサを使用した給水方法が知られている。 As a ventilation device having a humidifying function, as described in Patent Document 3, a water supply method using a water level sensor is known as a method for automatically supplying water to a water storage unit that stores water used for humidification. ..
 特許文献2に記載の換気装置では、タンク内貯水部に水を貯め、加湿ユニットを駆動することで室内を加湿することを目的としているが、貯水部への給水方法は明確にされていない。一方、図10に記載の特許文献3に係る換気装置では、加湿ユニット400に設けられた水位センサ401で水位を検出して給水を行っているが、水位センサ101の故障時には給水ができないこと、あるいは、センサコストがかかるという課題を有している。 In the ventilation device described in Patent Document 2, the purpose is to store water in the water storage section in the tank and drive the humidification unit to humidify the room, but the method of supplying water to the water storage section is not clear. On the other hand, in the ventilation device according to Patent Document 3 described in FIG. 10, water is supplied by detecting the water level by the water level sensor 401 provided in the humidification unit 400, but water cannot be supplied when the water level sensor 101 fails. Alternatively, there is a problem that the sensor cost is high.
 そこで、本開示は、上記従来の課題を解決するものであり、適切なタイミングでの貯水部への給水を、水位センサを用いずに行うことができる換気装置を提供することを目的とする。 Therefore, the present disclosure is to solve the above-described conventional problems, and an object thereof is to provide a ventilation device that can perform water supply to a water storage section at an appropriate timing without using a water level sensor.
 そして、この目的を達成するために、本開示に係る熱交換形換気装置は、筐体と、給気風路と、排気風路と、熱交換素子と、給気ファンと、排気ファンと、加湿部と、制御部と、温湿度センサと、を備える。筐体は、室外側吸込口と室外側吹出口と室内側吸込口と室内側吹出口とを有する。排気風路は、室外空気を室外側吸込口から室内側吹出口へと送風する。排気風路は、室内空気を室内側吸込口から室外側吹出口へと送風する。熱交換素子は、給気風路及び排気風路に設けられ、室外空気と室内空気の熱を交換させる。給気ファンは、給気風路に設けられ、室外側吸込口から室内側吹出口へ空気を導く。排気ファンは、排気風路に設けられ、室内側吸込口から室外側吹出口へ空気を導く。加湿部は、給気風路に設けられ、室外側吸込口から吸い込んだ空気を加湿する。制御部は、給気ファン及び排気ファン及び加湿部の運転を制御する。温湿度センサは、室外側吸込口から加湿部に給気される気体の温湿度を算出する。加湿部は加湿する水を貯水する貯水部と貯水部に水を供給する給水部とを備える。制御部は温湿度センサによって取得された情報と給気ファンによる送風量を基に加湿部において消費された消費水分量を算出する消費水分量算出部を備える。消費水分量算出部によって算出された消費水分量が所定の閾値を超えた場合、給水部が水を供給する。これにより所期の目的を達成するものである。 Then, in order to achieve this object, a heat exchange type ventilation device according to the present disclosure includes a housing, an air supply air passage, an exhaust air passage, a heat exchange element, an air supply fan, an exhaust fan, and a humidifier. And a control unit and a temperature and humidity sensor. The housing has an outdoor inlet, an outdoor outlet, an indoor inlet, and an indoor outlet. The exhaust air passage blows outdoor air from the outdoor suction port to the indoor air outlet. The exhaust air passage blows indoor air from the indoor suction port to the outdoor air outlet. The heat exchange element is provided in the air supply air passage and the exhaust air passage to exchange heat between the outdoor air and the indoor air. The air supply fan is provided in the air supply air passage, and guides air from the outdoor suction port to the indoor air outlet. The exhaust fan is provided in the exhaust air passage, and guides air from the indoor suction port to the outdoor air outlet. The humidifying unit is provided in the air supply air passage and humidifies the air sucked from the outdoor suction port. The control unit controls the operation of the air supply fan, the exhaust fan, and the humidification unit. The temperature/humidity sensor calculates the temperature/humidity of the gas supplied to the humidifying unit from the outdoor suction port. The humidifying section includes a water storage section for storing water to be humidified and a water supply section for supplying water to the water storage section. The control unit includes a water consumption amount calculation unit that calculates the water consumption amount consumed in the humidification unit based on the information acquired by the temperature/humidity sensor and the amount of air blown by the air supply fan. When the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water. This achieves the intended purpose.
 本開示によれば、室外側吸込口から加湿部に給気される気体の温湿度を算出する温湿度センサにより取得された情報を基に消費水分量を算出する消費水分量算出部を備えることで、水位センサを用いることなく貯水部の水位を適切に検出することができる。また、消費水分量算出部によって算出された消費水分量が所定の閾値を超えた場合、給水部が水を供給するという構成によって、水位センサを用いずに適切なタイミングで給水が可能となる。 According to the present disclosure, the water consumption amount calculation unit that calculates the water consumption amount based on the information acquired by the temperature and humidity sensor that calculates the temperature and humidity of the gas supplied to the humidification unit from the outdoor suction port is provided. Thus, the water level in the water storage section can be properly detected without using the water level sensor. Further, when the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water so that water can be supplied at appropriate timing without using the water level sensor.
 本開示の一態様に係る熱交換形換気装置は、筐体と、給気風路と、排気風路と、熱交換素子と、給気ファンと、排気ファンと、加湿部と、制御部と、温湿度センサと、を備える。筐体は、室外側吸込口と室外側吹出口と室内側吸込口と室内側吹出口とを有する。給気風路は、室外空気を室外側吸込口から室内側吹出口へと送風する。排気風路は、室内空気を室内側吸込口から室外側吹出口へと送風する。熱交換素子は、給気風路及び排気風路に設けられ、室外空気と室内空気の熱を交換させる。給気ファンは、給気風路に設けられ、室外側吸込口から室内側吹出口へ空気を導く。排気ファンは。排気風路に設けられ、室内側吸込口から室外側吹出口へ空気を導く。加湿部は、給気風路に設けられ、室外側吸込口から吸い込んだ空気を加湿する。制御部は、給気ファン及び排気ファン及び加湿部の運転を制御する。温湿度センサは、室外側吸込口から加湿部に給気される気体の温湿度を算出する。加湿部は加湿する水を貯水する貯水部と貯水部に水を供給する給水部とを備える。制御部は温湿度センサによって取得された情報と給気ファンによる送風量を基に加湿部において消費された消費水分量を算出する消費水分量算出部を備える。消費水分量算出部によって算出された消費水分量が所定の閾値を超えた場合、給水部が水を供給する。 A heat exchange type ventilation device according to an aspect of the present disclosure includes a housing, an air supply air passage, an exhaust air passage, a heat exchange element, an air supply fan, an exhaust fan, a humidifying unit, a control unit, And a temperature/humidity sensor. The housing has an outdoor inlet, an outdoor outlet, an indoor inlet, and an indoor outlet. The air supply air passage blows outdoor air from the outdoor suction port to the indoor air outlet. The exhaust air passage blows indoor air from the indoor suction port to the outdoor air outlet. The heat exchange element is provided in the air supply air passage and the exhaust air passage to exchange heat between the outdoor air and the indoor air. The air supply fan is provided in the air supply air passage, and guides air from the outdoor suction port to the indoor air outlet. Exhaust fan. It is provided in the exhaust air passage and guides air from the indoor suction port to the outdoor air outlet. The humidifying unit is provided in the air supply air passage and humidifies the air sucked from the outdoor suction port. The control unit controls the operation of the air supply fan, the exhaust fan, and the humidification unit. The temperature/humidity sensor calculates the temperature/humidity of the gas supplied to the humidifying unit from the outdoor suction port. The humidifying section includes a water storage section for storing water to be humidified and a water supply section for supplying water to the water storage section. The control unit includes a water consumption amount calculation unit that calculates the water consumption amount consumed in the humidification unit based on the information acquired by the temperature/humidity sensor and the amount of air blown by the air supply fan. When the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water.
 この構成によって、消費水分算出部は、室外側吸込口から加湿部に給気される気体の温湿度を算出する温湿度センサにより取得された情報を基に、消費水分量を算出する。そのため、水位センサを用いることなく貯水部の水位を適切に検出することができるという効果を備える。また、消費水分量算出部によって算出された消費水分量が所定の閾値を超えた場合、給水部が水を供給するという構成によって、水位センサを用いずに適切なタイミングで給水が可能となる。 With this configuration, the water consumption calculation unit calculates the amount of water consumption based on the information acquired by the temperature and humidity sensor that calculates the temperature and humidity of the gas supplied to the humidification unit from the outdoor suction port. Therefore, it is possible to appropriately detect the water level of the water storage unit without using the water level sensor. Further, when the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water so that water can be supplied at appropriate timing without using the water level sensor.
 また、消費水分算出部は、温湿度センサによって取得された情報を基に絶対湿度を所定時間毎に算出し、所定時間毎の絶対湿度の各差分に基づいて消費水分量を算出してもよい。 In addition, the moisture consumption calculation unit may calculate the absolute humidity for each predetermined time based on the information acquired by the temperature and humidity sensor, and may calculate the water consumption amount based on each difference of the absolute humidity for each predetermined time. ..
 この構成によって、所定時間毎の演算結果を制御にフィードバックすることで、消費水分量の算出の精度を向上させることができ、水位センサを用いずに適切なタイミングで給水が可能となる。 With this configuration, by feeding back the calculation result for each predetermined time to the control, the accuracy of the calculation of the water consumption amount can be improved, and the water can be supplied at an appropriate timing without using the water level sensor.
 また、本開示の別の一態様に係る熱交換形換気装置は、筐体と、給気風路と、排気風路と、熱交換素子と、給気ファンと、排気ファンと、加湿部と、制御部と、温湿度センサと、を備える。筐体は、室外側吸込口と室外側吹出口と室内側吸込口と室内側吹出口とを有する。給気風路は、室外空気を室外側吸込口から前記室内側吹出口へと送風する。排気風路は、室内空気を室内側吸込口から室外側吹出口へと送風する。熱交換素子は、給気風路及び排気風路に設けられ、室外空気と室内空気の熱を交換させる。給気ファンは、給気風路に設けられ、室外側吸込口から室内側吹出口へ空気を導く。排気ファンは、排気風路に設けられ、室内側吸込口から室外側吹出口へ空気を導く。加湿部は、給気風路に設けられ、室外側吸込口から吸い込んだ空気を加湿する。制御部は、給気ファン及び排気ファン及び加湿部の運転を制御する。温湿度センサは、室外側吸込口から加湿部に給気される気体の温湿度を算出する。加湿部は加湿する水を貯水する貯水部と前記貯水部に水を供給する給水部とを備える。制御部は温湿度センサによって取得された情報と換気対象の空間の大きさの情報を基に加湿部において消費された消費水分量を算出する消費水分量算出部を備える。消費水分量算出部によって算出された消費水分量が所定の閾値を超えた場合、前記給水部が水を供給する。 A heat exchange type ventilation device according to another aspect of the present disclosure includes a housing, an air supply air passage, an exhaust air passage, a heat exchange element, an air supply fan, an exhaust fan, and a humidifying unit. A control unit and a temperature/humidity sensor are provided. The housing has an outdoor inlet, an outdoor outlet, an indoor inlet, and an indoor outlet. The air supply air passage blows outdoor air from the outdoor air inlet to the indoor air outlet. The exhaust air passage blows indoor air from the indoor suction port to the outdoor air outlet. The heat exchange element is provided in the air supply air passage and the exhaust air passage to exchange heat between the outdoor air and the indoor air. The air supply fan is provided in the air supply air passage, and guides air from the outdoor suction port to the indoor air outlet. The exhaust fan is provided in the exhaust air passage, and guides air from the indoor suction port to the outdoor air outlet. The humidifying unit is provided in the air supply air passage and humidifies the air sucked from the outdoor suction port. The control unit controls the operation of the air supply fan, the exhaust fan, and the humidification unit. The temperature/humidity sensor calculates the temperature/humidity of the gas supplied to the humidifying unit from the outdoor suction port. The humidifying section includes a water storage section for storing water to be humidified and a water supply section for supplying water to the water storage section. The control unit includes a water consumption amount calculation unit that calculates the water consumption amount consumed in the humidification unit based on the information acquired by the temperature and humidity sensor and the information on the size of the space to be ventilated. When the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water.
 この構成によって、消費水分算出部は、室外側吸込口から加湿部に給気される気体の温湿度を算出する温湿度センサにより取得された情報を基に、消費水分量を算出する。そのため、水位センサを用いることなく貯水部の水位を適切に検出することができるという効果を備える。また、消費水分量算出部によって算出された消費水分量が所定の閾値を超えた場合、給水部が水を供給するという構成によって、水位センサを用いずに適切なタイミングで給水が可能となる。 With this configuration, the water consumption calculation unit calculates the amount of water consumption based on the information acquired by the temperature and humidity sensor that calculates the temperature and humidity of the gas supplied to the humidification unit from the outdoor suction port. Therefore, it is possible to appropriately detect the water level of the water storage unit without using the water level sensor. Further, when the water consumption amount calculated by the water consumption amount calculation unit exceeds a predetermined threshold value, the water supply unit supplies water so that water can be supplied at appropriate timing without using the water level sensor.
 以下、本開示の実施の形態について図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置及び接続形態、並びに、ステップ及びステップの順序などは、一例であって本開示を限定する主旨ではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. It should be noted that each of the embodiments described below shows a preferred specific example of the present disclosure. Therefore, the numerical values, shapes, materials, constituent elements, arrangement and connection form of constituent elements, steps, order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. ..
 図8を参照して、本開示の実施の形態2に係る加湿装置を備える熱交換形換気装置101について説明する。図8は、本開示の実施の形態2に係る加湿装置を備える熱交換形換気装置の概略図である。熱交換形換気装置101は、箱型の本体である筐体102の側面に室外側吹出口104及び室外側吸込口105を有し、また、この側面に対向した側面に室内側吸込口106及び室内側吹出口107を有している。 A heat exchange type ventilation device 101 including the humidifying device according to the second embodiment of the present disclosure will be described with reference to FIG. 8. FIG. 8 is a schematic diagram of a heat exchange type ventilation device including a humidifying device according to Embodiment 2 of the present disclosure. The heat exchange type ventilation device 101 has an outdoor air outlet 104 and an outdoor air inlet 105 on a side surface of a casing 102 which is a box-shaped body, and an indoor air inlet 106 and an indoor air inlet 106 on a side surface facing the side surface. It has an indoor air outlet 107.
 また、図8に示すように熱交換形換気装置101は、室外側吸込口105から室内側吹出口107へと送風する給気風路108と、室内側吸込口106から室外側吹出口104へと送風する排気風路109とを備えている。室外側吸込口105から導入される新鮮な屋外空気(外気、給気空気)と、室内側吸込口106から導入される汚染された室内空気(排気空気)は、給気ファン112及び排気ファン113の運転により、それぞれ給気風路108と排気風路109とを流れている。 Further, as shown in FIG. 8, the heat exchange type ventilation device 101 includes an air supply air passage 108 for blowing air from the outdoor suction port 105 to the indoor air outlet 107, and an indoor air suction port 106 to the outdoor air outlet 104. An exhaust air passage 109 for blowing air is provided. Fresh outdoor air (outside air, supply air) introduced from the outdoor suction port 105 and contaminated indoor air (exhaust air) introduced from the indoor suction port 106 are supplied to the air supply fan 112 and the exhaust fan 113. By the operation of, the air flows in the supply air passage 108 and the exhaust air passage 109, respectively.
 図8に示すように、給気ファン112は、本開示の給気部を構成し、室外側吸込口105から吸い込んだ給気空気を、給気風路108を通して室内側吹出口107へ導くものである。室内側吹出口107へ導かれた給気空気は室内へ供給される。一方、排気ファン113は、本開示の排気部を構成し、室内側吸込口106から吸い込んだ排気空気を、排気風路109を通して室外側吹出口104へ導くものである。室内側吹出口107へ導かれた排気空気は室外へ排気される。図8の給気風路108における熱交換素子114の下流側の給気口(図示せず)と加湿ユニット115との間に給気ファン112が設けられている。 As shown in FIG. 8, the air supply fan 112 configures an air supply unit of the present disclosure, and guides the air supply air sucked from the outdoor air intake port 105 to the indoor air outlet 107 through the air supply air passage 108. is there. The supply air guided to the indoor air outlet 107 is supplied indoors. On the other hand, the exhaust fan 113 constitutes an exhaust unit of the present disclosure and guides exhaust air sucked from the indoor suction port 106 to the outdoor air outlet 104 through the exhaust air passage 109. The exhaust air guided to the indoor air outlet 107 is exhausted to the outside of the room. An air supply fan 112 is provided between the humidification unit 115 and an air supply port (not shown) on the downstream side of the heat exchange element 114 in the air supply air passage 108 in FIG. 8.
 また、図8の排気風路109における熱交換素子114の下流側の排気口(図示せず)と室外側吹出口104との間に排気ファン113が設けられている。 Further, an exhaust fan 113 is provided between the exhaust port (not shown) on the downstream side of the heat exchange element 114 and the outdoor air outlet 104 in the exhaust air passage 109 of FIG.
 また、図8に示すように給気風路108と排気風路109とが交差する位置には、熱交換素子114が配置される。熱交換素子114は本開示の熱交換部を構成するものであり、給気風路108を通過する給気空気と、排気風路109を通過する排気空気との間で全熱交換方式による熱交換を行う。熱交換素子114により、排気される空気の温度及び湿度の全熱が給気される空気に供給される、または給気される空気の全熱が排気される空気に供給される。 Further, as shown in FIG. 8, a heat exchange element 114 is arranged at a position where the supply air passage 108 and the exhaust air passage 109 intersect. The heat exchange element 114 constitutes a heat exchange section of the present disclosure, and heat exchange by a total heat exchange system between the supply air passing through the supply air passage 108 and the exhaust air passing through the exhaust air passage 109. I do. By the heat exchange element 114, the total heat of the temperature and humidity of the exhausted air is supplied to the supplied air, or the total heat of the supplied air is supplied to the exhausted air.
 また、図8に示すように給気風路108において熱交換素子114と室内側吹出口107との間に加湿ユニット115が配置されている。本開示における加湿部は加湿ユニット115及び給水部116、貯水部117、液体微細化装置118から構成されている。加湿ユニット115は、加湿するための水を貯水する貯水部117と、貯水部への給水を行う給水部116と、貯水部117に貯水された水を微細化し給気空気に含ませるための液体微細化装置118を備える。加湿ユニット115は、室外側吸込口105から吸い込んだ給気空気を加湿する。即ち、室内側吹出口107からは、加湿ユニット115により加湿された給気空気が室内へと供給される。また、熱交換形換気装置101は、加湿ユニット115における加湿量を制御することにより、室内湿度が室内における目標とする目標湿度になるように制御する。加湿ユニット115における加湿量の制御については、加湿ユニット115において消費された消費水分量を算出することで制御を行う。 Further, as shown in FIG. 8, a humidifying unit 115 is arranged between the heat exchange element 114 and the indoor air outlet 107 in the air supply air passage 108. The humidifying unit according to the present disclosure includes a humidifying unit 115, a water supply unit 116, a water storage unit 117, and a liquid atomization device 118. The humidifying unit 115 includes a water storage unit 117 for storing water for humidification, a water supply unit 116 for supplying water to the water storage unit, and a liquid for atomizing the water stored in the water storage unit 117 to be included in the supply air. A miniaturization device 118 is provided. The humidifying unit 115 humidifies the supply air sucked from the outdoor suction port 105. That is, the supply air humidified by the humidification unit 115 is supplied to the room from the indoor side outlet 107. Further, the heat exchange type ventilation device 101 controls the amount of humidification in the humidifying unit 115 so that the indoor humidity is controlled to be the target indoor humidity. The control of the amount of humidification in the humidifying unit 115 is performed by calculating the amount of water consumed in the humidifying unit 115.
 ここで、本実施の形態における加湿ユニット115は、例えば遠心破砕方式によって破砕した水を空気に散布する水破砕式加湿ユニットである。水破砕式加湿ユニットは、破砕した水の量を調整することで、加湿量の調整を容易に行うことができる。 Here, the humidification unit 115 in the present embodiment is a water-crushing type humidifying unit that sprays water crushed by, for example, a centrifugal crushing method onto air. The water crushing type humidifying unit can easily adjust the amount of humidification by adjusting the amount of crushed water.
 また、給気ファン112が配置される空間に温湿度センサ119が配置される。温湿度センサ119は、熱交換素子114によって、室内空気と全熱交換がされた後の給気空気の温度及び湿度を検出することが可能である。 Further, a temperature/humidity sensor 119 is arranged in the space where the air supply fan 112 is arranged. The temperature/humidity sensor 119 can detect the temperature and humidity of the supply air after total heat exchange with the room air by the heat exchange element 114.
 熱交換形換気装置101には、熱交換形換気装置101の動作を制御する制御部120が設けられている。制御部120は、熱交換形換気装置101に内蔵されている構成に限らず、熱交換形換気装置101の外部に設けられ、熱交換形換気装置101と制御部120とが通信することで制御することが可能である。制御部120は、例えば、給気ファン112の給気モータあるいは排気ファン113の排気モータの電流及び/又は回転数を制御する。給気モータ及び排気モータにDCモータを利用することで、精度よく回転数を制御することが可能である。 The heat exchange type ventilation device 101 is provided with a control unit 120 that controls the operation of the heat exchange type ventilation device 101. The control unit 120 is not limited to the configuration incorporated in the heat exchange type ventilation device 101, but is provided outside the heat exchange type ventilation device 101, and is controlled by communication between the heat exchange type ventilation device 101 and the control unit 120. It is possible to The control unit 120 controls, for example, the current and/or the rotation speed of the air supply motor of the air supply fan 112 or the exhaust motor of the exhaust fan 113. By using the DC motor as the air supply motor and the exhaust motor, it is possible to control the rotation speed with high accuracy.
 また、制御部120は、加湿ユニット115における貯水部117で消費された消費水分量を算出する消費水分量算出部121を備えている。消費水分量算出部121は、図9を参照して後述するステップを実行することで、消費水分量の算出を行う。また、追加のステップを実行することにより、加湿ユニット115の給水部116を制御し、必要に応じて貯水部117への給水を制御する。 The control unit 120 also includes a water consumption amount calculation unit 121 that calculates the water consumption amount consumed in the water storage unit 117 of the humidification unit 115. The consumed water amount calculation unit 121 calculates the consumed water amount by executing the steps described below with reference to FIG. 9. Further, by executing the additional step, the water supply unit 116 of the humidifying unit 115 is controlled, and the water supply to the water storage unit 117 is controlled as necessary.
 次いで、図9を参照して消費水分量算出部121にて実行される消費水分量算出処理について説明する。図9は、消費水分量算出処理を示すフローチャートである。この消費水分量算出処理では、消費水分算出部112が、温湿度センサ119により検出された温度及び湿度の情報に基づいて、消費水分量を算出する。消費水分量算出処理は、熱交換形換気装置101が運転動作を開始すると、消費水分量算出部121にて処理が開始される。消費水分算出処理は、熱交換形換気装置101の動作中に実行される。 Next, the water consumption amount calculation processing executed by the water consumption amount calculation unit 121 will be described with reference to FIG. FIG. 9 is a flowchart showing the consumed water amount calculation processing. In the water consumption calculation process, the water consumption calculation unit 112 calculates the water consumption based on the temperature and humidity information detected by the temperature/humidity sensor 119. The water consumption calculation process is started by the water consumption calculation unit 121 when the heat exchange type ventilation device 101 starts the driving operation. The moisture consumption calculation process is executed during the operation of the heat exchange ventilation device 101.
 消費水分量算出処理では、所定時間T(sec)毎に消費水分量を算出するため、まず、前回の消費水分量算出から所定時間T(sec)が経過したか否かを判断する(S1)。なお、所定時間T(sec)は、プログラムにより予め定められる任意の時間である。また、所定時間T(sec)は長すぎると、フィードバック時間が長くなるため、消費水分量算出による給水のタイミングが精度良く行えなくなる。よって所定時間T(sec)は60~300(sec)など短い時間を設定するのが好ましい。前回の消費水分算出から所定時間T(sec)が経過した場合(S1:Yes)、S2へ進む。また、前回の消費水分算出から所定時間T(sec)が経過していない場合(S1:No)、所定時間T(sec)が経過するまでS1の処理を繰り返す。なお、消費水分量算出処理の実行が開始されてから初めてS1の処理が実行される場合は、S1の処理をスキップし、そのままS2の処理へ移行する。 In the water consumption amount calculation process, since the water consumption amount is calculated every predetermined time T (sec), it is first determined whether or not the predetermined time T (sec) has elapsed since the previous calculation of the water consumption amount (S1). .. The predetermined time T (sec) is an arbitrary time preset by the program. Further, if the predetermined time T (sec) is too long, the feedback time becomes long, so that the timing of water supply by calculating the water consumption amount cannot be accurately performed. Therefore, it is preferable to set the predetermined time T (sec) to a short time such as 60 to 300 (sec). When the predetermined time T (sec) has elapsed from the previous calculation of the water consumption (S1: Yes), the process proceeds to S2. If the predetermined time T (sec) has not elapsed since the previous calculation of the consumed water (S1: No), the process of S1 is repeated until the predetermined time T (sec) has elapsed. When the process of S1 is executed for the first time after the execution of the water consumption calculation process is started, the process of S1 is skipped and the process directly proceeds to S2.
 S2の処理では、温湿度センサ119によって取得された給気空気の温度及び湿度から、加湿ユニット115を通過する前の重量絶対湿度HSA1(単位:g/kg)を算出する。なお、温湿度センサ119から取得する湿度とは相対湿度(単位:%)を示し、特に記述がない場合、湿度の記述は相対湿度を示すものとする。 In the process of S2, the weight absolute humidity HSA1 (unit: g/kg) before passing through the humidification unit 115 is calculated from the temperature and humidity of the supply air acquired by the temperature/humidity sensor 119. The humidity acquired from the temperature/humidity sensor 119 indicates relative humidity (unit: %). Unless otherwise specified, the description of humidity indicates relative humidity.
 S3の処理では、目標とする目標温度及び目標湿度から、室内における目標とする重量絶対湿度HRA(単位:g/kg)を設定する。なお、目標とする目標温度及び目標湿度は、予め熱交換形換気装置101に設定され、制御部120に設けられた記憶部(図示せず)に記憶されている。 In the process of S3, the target weight absolute humidity HRA (unit: g/kg) is set from the target target temperature and target humidity. It should be noted that the target temperature and the target humidity are set in advance in the heat exchange type ventilation device 101 and stored in a storage unit (not shown) provided in the control unit 120.
 S4の処理では、S3によって決定された室内における目標とする重量絶対湿度HRAに対し、居住空間の隙間面積から室外へ流出する重量絶対湿度HC(単位:g/kg)を加算し、目標の重量絶対湿度HSA2を算出する。なお、HCのデータは実験により、予めプログラムに記憶されているものである。即ち、S3で決定した目標の重量絶対湿度に対して、実際には居住空間の隙間面積から流出するに水分量HCを考慮する必要があるため、目標とする重量絶対湿度は多めに設定する処理を行う。 In the process of S4, the weight absolute humidity HC (unit: g/kg) flowing out from the room through the gap area of the living space is added to the target weight absolute humidity HRA determined in S3 to obtain the target weight. Calculate the absolute humidity HSA2. Note that the HC data is stored in the program in advance by experiments. That is, since it is necessary to consider the amount of moisture HC in order to actually flow out from the gap area of the living space with respect to the target weight absolute humidity determined in S3, the target weight absolute humidity is set to a large amount. I do.
 S5の処理では、重量絶対湿度HSA1と目標の重量絶対湿度HSA2の差分から、所定時間T(sec)毎の重量絶対湿度ΔX(単位:g/kg)を算出する。なお、S2において算出される重量絶対湿度HSA1は、所定時間T(sec)毎に更新される。ここで、算出対象の給気空気は熱交換素子114を通して、加湿ユニット115による加湿処理後の室内空気である排気空気と全熱交換されるため、加湿ユニット115の運転によって重量絶対湿度HSA1は、次第に増加しいていく。したがって、目標とする重量絶対湿度HSA2は一定であるため、重量絶対湿度ΔXは次第に減少する。 In the process of S5, the absolute weight humidity ΔX (unit: g/kg) is calculated every predetermined time T (sec) from the difference between the absolute weight humidity HSA1 and the target absolute weight humidity HSA2. The weight absolute humidity HSA1 calculated in S2 is updated every predetermined time T (sec). Here, since the supply air to be calculated is subjected to total heat exchange with the exhaust air, which is the room air after the humidification process by the humidification unit 115, through the heat exchange element 114, the weight absolute humidity HSA1 by the operation of the humidification unit 115 is It will gradually increase. Therefore, since the target absolute weight humidity HSA2 is constant, the absolute weight humidity ΔX gradually decreases.
 S6の処理では、S5の処理で求めた重量絶対湿度ΔX(単位:g/kg)と、給気ファンによる送風量である風量Q(単位:m/h)と、空気密度ρ(単位:kg/m)の乗算により、単位時間当たりの消費水分量Z(単位:g/h)を算出する。また、実際の消費水分量算出は、単位時間(1時間)より短い所定時間T(sec)毎に行われるため、Zを3600秒で除算し、所定時間T(sec)を乗算した値を積算したZgを(単位:g)を制御に用いる。 In the process of S6, the weight absolute humidity ΔX (unit: g/kg) obtained in the process of S5, the air flow rate Q (unit: m 3 /h) which is the air flow amount by the air supply fan, and the air density ρ (unit: The water consumption amount Z per unit time (unit: g/h) is calculated by multiplying by kg/m 3 ). In addition, since the actual calculation of the amount of water consumption is performed every predetermined time T (sec) shorter than the unit time (1 hour), Z is divided by 3600 seconds and the value obtained by multiplying the predetermined time T (sec) is added. Zg (unit: g) is used for control.
 なお、S6の処理では、消費水分量Z(単位:g/h)を算出するため、熱交換形換気装置101の風量Q(単位:m/h)の代わりに、換気対象となる空間の大きさV(単位:m)の情報を用いることが可能である。風量Q(m/h)は建築基準法により、大きさV(m)の空間の空気を2時間(h)で入れ替えるためのファン出力で定義されるので、空間の大きさV(m)を2時間(h)で除算することで、風量Q(m/h)を算出することが可能であるため、同様にして消費水分量Z(単位:g/h)を算出することができる。換気対象の空間の大きさの情報は、制御部120のメモリによって保存されている。ユーザが制御部120に換気対象の空間の大きさの情報を入力することで、制御部120は、換気対象の空間の大きさの情報を取得することが可能である。 In the process of S6, the consumed water amount Z (unit: g/h) is calculated, and therefore, instead of the air amount Q (unit: m 3 /h) of the heat exchange type ventilation device 101, the space to be ventilated is Information of the size V (unit: m 3 ) can be used. The air volume Q (m 3 /h) is defined by the fan output for replacing the air in the space of size V (m 3 ) in 2 hours (h) according to the Building Standards Method, so the space size V (m 3 It is possible to calculate the air flow rate Q (m 3 /h) by dividing 3 ) by 2 hours (h). Therefore, similarly calculate the water consumption amount Z (unit: g/h). You can Information on the size of the ventilation target space is stored in the memory of the control unit 120. When the user inputs information on the size of the ventilation target space to the control unit 120, the control unit 120 can acquire the information on the size of the ventilation target space.
 S7の処理では、S6で算出した、消費水分量Zgが所定の閾値Zl以上である判断される場合は(S7:Yes)、給水部116を制御し、貯水部117への給水を行う(S8)。消費水分量Zgが所定の閾値Zlより小さいと判断される場合は(S7:No)、そのままS9の処理へと移行する。なお、所定の閾値Zlは、任意の値がプログラムにより予め定められている。また、閾値Zlは貯水部117の貯水可能容量に対し、貯水可能容量限界に閾値を設定すると、演算の誤差あるいはフィードバックの遅れなどが発生した場合、貯水部117が渇水状態になり、加湿機能が一時的に使用できなくなるおそれがあるため、例えば貯水可能容量の8割に設定するなど、限界から余裕を持った閾値を設定することが好ましい。 In the process of S7, when it is determined that the water consumption amount Zg calculated in S6 is equal to or more than the predetermined threshold value Zl (S7: Yes), the water supply unit 116 is controlled to supply water to the water storage unit 117 (S8). ). When it is determined that the water consumption amount Zg is smaller than the predetermined threshold value Zl (S7: No), the process directly proceeds to S9. It should be noted that the predetermined threshold value Zl is set to an arbitrary value in advance by a program. Further, when the threshold Zl is set to the water storage capacity limit with respect to the water storage capacity of the water storage section 117, if a calculation error or a delay in feedback occurs, the water storage section 117 will be in a water-depleted state, and the humidification function will be Since it may be temporarily unusable, it is preferable to set a threshold value with a margin from the limit, for example, setting it to 80% of the water storage capacity.
 このように、実施の形態2に係る熱交換形換気装置101は、消費水分量算出部121が消費水分量算出処理を実行することにより、加湿ユニット115の貯水部117で消費された消費水分量Zgを算出し、消費水分量Zgが所定の閾値Zlと比較する制御を行う。そのため、適切なタイミングでの貯水部117への給水が可能になり、貯水部117が渇水状態になることなく、貯水量を一定量以上に保つことができる。 As described above, in the heat exchange type ventilation device 101 according to the second embodiment, the water consumption amount calculation unit 121 executes the water consumption amount calculation process, whereby the water consumption amount consumed in the water storage unit 117 of the humidification unit 115. Control is performed to calculate Zg and compare the consumed water amount Zg with a predetermined threshold value Zl. Therefore, the water can be supplied to the water storage unit 117 at an appropriate timing, and the water storage amount can be maintained at a certain amount or more without causing the water storage unit 117 to be in a dry state.
 (実施の形態3)
 従来より、吸い込んだ空気に対して、貯水部に貯水された水を含ませて加湿し、加湿した空気を吹き出す加湿装置がある(例えば、特許文献4)。特許文献4に記載の加湿装置では、貯水部内の水位を水位センサにて検知して少なくとも自動給水弁を制御し、貯水部の水位を所定量に保持している。
(Embodiment 3)
2. Description of the Related Art Conventionally, there is a humidifying device that humidifies the sucked air by containing water stored in a water storage unit and blows out the humidified air (for example, Patent Document 4). In the humidifying device described in Patent Document 4, the water level in the water storage section is detected by a water level sensor and at least the automatic water supply valve is controlled to maintain the water level in the water storage section at a predetermined amount.
 また、水位を検知する水位センサとして、NTC(Negative Temperature Coefficient)サーミスタ(自己発熱型サーミスタ)を用いたものが知られている(例えば、特許文献5)。この種の水位センサは、NTCサーミスタに電流を流し、NTCサーミスタの自己発熱を利用して水位検知を行う。 Also, as a water level sensor for detecting the water level, one using an NTC (Negative Temperature Coefficient) thermistor (self-heating type thermistor) is known (for example, Patent Document 5). This type of water level sensor applies a current to the NTC thermistor and detects the water level by utilizing the self-heating of the NTC thermistor.
 具体的には、NTCサーミスタの自己発熱において、熱拡散定数(熱平衡状態でNTCサーミスタ素子の温度を自己発熱によって1℃上げるために必要な電力を表す定数)が空気中と水中で異なることを利用する。即ち、熱拡散定数が高い水中では発熱しにくいため、NTCサーミスタの抵抗値が高く、結果としてNTCサーミスタの両端電圧が高く現れる。一方、熱拡散定数が低い空気中では発熱しやすいため、NTCサーミスタの抵抗値が水中にある場合よりも低くなり、結果としてNTCサーミスタの両端電圧が低く現れる。 Specifically, in the self-heating of the NTC thermistor, it is used that the thermal diffusion constant (constant representing the power required to raise the temperature of the NTC thermistor element by 1°C by self-heating in the thermal equilibrium state) is different in air and water. To do. That is, since it is difficult to generate heat in water having a high thermal diffusion constant, the resistance value of the NTC thermistor is high, and as a result, the voltage across the NTC thermistor is high. On the other hand, since heat is easily generated in the air having a low thermal diffusion constant, the resistance value of the NTC thermistor is lower than that in the water, and as a result, the voltage across the NTC thermistor appears low.
 NTCサーミスタを用いた水位センサは、その水位センサが空気中に存在する状態から水中に存在する状態に変化したときに現れる両端電圧の変化に基づいて、その水位センサが設けられた位置に水が存在するか否かを検知する。 A water level sensor using an NTC thermistor detects that the water level sensor is installed at the position where the water level sensor is provided based on the change in the voltage across the water level sensor that appears when the water level sensor changes from being in the air to being in the water. It detects whether or not it exists.
 特許文献5に記載された水位検知では、1つのNTCサーミスタにおける両端電圧の時間的な変化をみることで行われる。しかしながら、NTCサーミスタの両端電圧は、環境温度が高いほど低く現れる。これにより、貯水部に給水された水の温度が高い場合、NTCサーミスタが空気中に存在する状態から水中に存在する状態に変化しても、NTCサーミスタの両端電圧において、時間的な変化が大きく現れない場合が生じ得る。よって、この場合、貯水部の水位を正しく検知できないという問題点がある。 The water level detection described in Patent Document 5 is performed by observing the change over time in the voltage across one NTC thermistor. However, the voltage across the NTC thermistor becomes lower as the environmental temperature becomes higher. As a result, when the temperature of the water supplied to the water storage part is high, even if the NTC thermistor changes from being in the air to being in water, the voltage across the NTC thermistor changes greatly over time. There may be cases where it does not appear. Therefore, in this case, there is a problem that the water level in the water storage section cannot be detected correctly.
 本開示は、上記課題を解決するためになされたものであり、貯水部の水位の誤検知を抑制可能な加湿装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a humidifying device that can suppress erroneous detection of the water level in a water storage section.
 この目的を達成するために、本開示の加湿装置は、空気を吸い込む吸込口と、吸込口より吸い込まれた空気を吹き出す吹出口と、加湿部と、貯水部と、給水部と、オーバーフロー排水口と、第1水位検知部と、第2水位検知部と、第1判定部と、を備える。加湿部は、吸込口と吹出口との間の風路内に設けられ、空気を加湿する。貯水部は、加湿部により空気を加湿するための水を貯水する。給水部は、貯水部に水を供給する。オーバーフロー排水口は、貯水部において貯水された水が所定の水位となる位置に設けられている。第1水位検知部は、NTCサーミスタにより構成され、所定の水位の位置よりも低い第1の位置に設けられている。第2水位検知部は、NTCサーミスタにより構成され、所定の水位の位置よりも高い第2の位置に設けられている。第1判定部は、第1水位検知部から出力される電圧と第2水位検知部から出力される電圧とに基づいて、貯水部に第1の位置まで水が貯水されたかを判定する。 In order to achieve this object, a humidifying device of the present disclosure includes a suction port that sucks in air, a blowout port that blows out the air sucked from the suction port, a humidifying section, a water storage section, a water supply section, and an overflow drainage port. And a first water level detection unit, a second water level detection unit, and a first determination unit. The humidifying unit is provided in the air passage between the suction port and the air outlet and humidifies the air. The water storage unit stores water for humidifying the air by the humidification unit. The water supply section supplies water to the water storage section. The overflow drainage port is provided at a position where the water stored in the water storage section has a predetermined water level. The first water level detection unit is composed of an NTC thermistor and is provided at a first position lower than the position of a predetermined water level. The second water level detection unit is composed of an NTC thermistor and is provided at a second position higher than the position of the predetermined water level. The first determination unit determines whether or not water is stored in the water storage unit up to the first position based on the voltage output from the first water level detection unit and the voltage output from the second water level detection unit.
 本開示の加湿装置によれば、貯水部において貯水された水が所定の水位となる位置にオーバーフロー排水口が設けられている。これにより、貯水部に所定の水位の水が貯水されると、それ以後に水が給水されてもオーバーフロー排水口から水が排水され、貯水部には所定の水位以上の水が貯水されないようになっている。よって、所定の水位の位置よりも低い第1の位置に設けられた第1水位検知部は、貯水部の水位に応じて空気中に存在する状態と水中に存在する状態とがある。一方、所定の水位よりも高い第2の位置に設けられた第2水位検知部は、常に空気中に存在する状態にある。従って、常に空気中に存在する状態にある第2水位検知部から出力される電圧と、第1水位検知部から出力される電圧とを比較することで、第1水位検知部が水中に存在する状態となった場合に、両者の電圧の違いが確実に判定できる。その結果、貯水部の水位の誤検知を抑制可能な加湿装置を提供できるという効果がある。 According to the humidifying device of the present disclosure, the overflow drainage port is provided at a position where the water stored in the water storage unit has a predetermined water level. As a result, when the water with a predetermined water level is stored in the water storage unit, even if water is supplied after that, the water will be drained from the overflow drain port, and the water above the predetermined water level will not be stored in the water storage unit. Has become. Therefore, the first water level detection unit provided at the first position lower than the position of the predetermined water level may be in the air or in the water depending on the water level of the water storage unit. On the other hand, the second water level detector provided at the second position higher than the predetermined water level is always in the air. Therefore, by comparing the voltage output from the second water level detection unit, which is always in the air, with the voltage output from the first water level detection unit, the first water level detection unit exists in water. In this case, the difference in voltage between the two can be reliably determined. As a result, there is an effect that it is possible to provide a humidifying device capable of suppressing erroneous detection of the water level in the water storage section.
 また、第1水位検知部と、第2水位検知部とは、鉛直方向において重ならない位置に配置されていてもよい。 Also, the first water level detection unit and the second water level detection unit may be arranged at positions that do not overlap in the vertical direction.
 また、加湿装置は、第3水位検知部と、第2判定部をさらに備えてもよい。第3水位検知部は、NTCサーミスタにより構成され、第1の位置よりも高く、且つ、所定の水位の位置よりも低い第3の位置に設けられている。第2判定部は、第3水位検知部から出力される電圧と第2水位検知部から出力される電圧とに基づいて、貯水部に第3の位置まで水が貯水されたかを判定する。 The humidifying device may further include a third water level detection unit and a second determination unit. The third water level detection unit is composed of an NTC thermistor, and is provided at a third position higher than the first position and lower than the predetermined water level position. The second determination unit determines whether or not water is stored in the water storage unit up to the third position, based on the voltage output from the third water level detection unit and the voltage output from the second water level detection unit.
 また、第1水位検知部と、第2水位検知部と、第3水位検知部とは、鉛直方向において重ならない位置に配置されていてもよい。 Also, the first water level detection unit, the second water level detection unit, and the third water level detection unit may be arranged at positions that do not overlap in the vertical direction.
 また、第1判定部は、給水部による貯水部への水の供給を開始してから第1時間を経過しても貯水部に第1の位置まで水を貯水されていないと判定された場合に、第2時間の間隔を置いて、第1水位検知部から出力される電圧と第2水位検知部から出力される電圧とに基づいて、貯水部に第1の位置まで水が貯水されたかを再度判定してもよい。 In addition, when the first determination unit determines that the water has not been stored up to the first position in the water storage unit even after the first time has elapsed since the water supply unit started supplying the water to the water storage unit. Then, based on the voltage output from the first water level detection unit and the voltage output from the second water level detection unit at a second time interval, whether water was stored in the water storage unit up to the first position. May be determined again.
 また、第1判定部は、貯水部に第1の位置まで水が貯水されていないと判定されている場合に第2判定部により貯水部に第3の位置まで水が貯水されたと判定されたときに、第2時間の間隔を置いて、第1水位検知部から出力される電圧と第2水位検知部から出力される電圧とに基づいて、貯水部に第1の位置まで水が貯水されたかを再度判定してもよい。 Further, the first determination unit determines that the water has been stored in the water storage unit up to the third position when it is determined that the water has not been stored in the water storage unit up to the first position. At some time, the water is stored up to the first position in the water storage unit based on the voltage output from the first water level detection unit and the voltage output from the second water level detection unit at intervals of the second time. You may judge again whether it was high.
 また、加湿部は、水を微細化する液体微細化部であり、吸込口より吸い込まれた空気に液体微細化部で微細化された水を含ませ、水を含んだ空気を吹出口より吹き出してもよい。そして、液体微細化部は、回転軸と、揚水管と、衝突壁を備える。回転軸は、モータにより回転され、鉛直方向に向けて配置されている。揚水管は、筒状であって、回転軸に固定され、回転軸の回転に合わせて回転されることにより、貯水部に貯水された水を揚水し、揚水した水を遠心方向に放出する。衝突壁は、揚水管により放出された水が衝突することで、水を微細化する。 The humidifying part is a liquid atomizing part that atomizes water.The air sucked from the suction port contains the water atomized by the liquid atomizing part, and the air containing water is blown out from the air outlet. May be. The liquid atomization unit includes a rotation shaft, a pump pipe, and a collision wall. The rotating shaft is rotated by a motor and is arranged in the vertical direction. The pumping pipe has a tubular shape, is fixed to the rotary shaft, and is rotated in accordance with the rotation of the rotary shaft to pump the water stored in the water storage portion and discharge the pumped water in the centrifugal direction. The collision wall collides with the water discharged from the pumping pipe, thereby atomizing the water.
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。実施の形態3は、少なくとも以下の実施の形態3-1、実施の形態3-2、実施の形態3-3および実施の形態3-4を包含する。 Hereinafter, modes for carrying out the present disclosure will be described with reference to the accompanying drawings. It should be noted that each of the embodiments described below shows a preferred specific example of the present disclosure. Therefore, the numerical values, shapes, materials, constituent elements, arrangement positions of constituent elements, connection forms, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, the constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements. Further, in each of the drawings, the substantially same components are designated by the same reference numerals, and overlapping description will be omitted or simplified. Embodiment 3 includes at least Embodiment 3-1, Embodiment 3-2, Embodiment 3-3 and Embodiment 3-4 below.
 (実施の形態3-1)
 まず、図11、図12を参照して、本開示の加湿装置の実施の形態3-1に係る液体微細化装置201の概略構成について説明する。図11は、液体微細化装置201の斜視図である。図12は、液体微細化装置201の鉛直方向の概略断面図である。
(Embodiment 3-1)
First, with reference to FIG. 11 and FIG. 12, a schematic configuration of the liquid micronization apparatus 201 according to Embodiment 3-1 of the humidifying device of the present disclosure will be described. FIG. 11 is a perspective view of the liquid atomization device 201. FIG. 12 is a schematic cross-sectional view of the liquid atomization apparatus 201 in the vertical direction.
 液体微細化装置201は、図11に示す通り、空気を吸い込む吸込口202と、内筒205と、外筒209と、空気を吹き出す吹出口203と、を備える。内筒205は、吸込口202と連通し下方が通風口207(図12参照)として開放されている。外筒209は、内筒205を内包している。吹出口3は、外筒209の上方に設けられ、吸込口202より吸い込まれ、内筒205及び外筒209を通過した空気を吹き出す。 As shown in FIG. 11, the liquid atomizer 201 includes a suction port 202 that sucks in air, an inner cylinder 205, an outer cylinder 209, and a blowout port 203 that blows out air. The inner cylinder 205 communicates with the suction port 202, and the lower part is opened as a ventilation port 207 (see FIG. 12). The outer cylinder 209 includes the inner cylinder 205. The blowout port 3 is provided above the outer cylinder 209, and blows out the air that has been sucked in through the suction port 202 and has passed through the inner cylinder 205 and the outer cylinder 209.
 液体微細化装置201には、図12に示す通り、吸込口202と吹出口203との間に、吸込連通風路204と、内筒風路206と、外筒風路208と、が形成されている。吸込連通風路204は、吸込口202で吸い込まれた空気が連通する内筒205に向けて流れる風路である。内筒風路206は、内筒205内部に形成される風路であり、吸込連通風路204から流れた空気が内筒205の通風口207に向けて流れる風路である。外筒風路208は、外筒209の内径と内筒205の外径との間に形成される風路であり、内筒205の通風口207より吹き出された空気が外筒209の内側を通って吹出口203へと導かれる風路である。 As shown in FIG. 12, the liquid atomization device 201 has a suction communication air passage 204, an inner cylinder air passage 206, and an outer cylinder air passage 208 formed between the suction port 202 and the air outlet 203. ing. The suction communication air passage 204 is an air passage through which the air sucked in by the suction port 202 flows toward the inner cylinder 205 which is in communication. The inner cylinder air passage 206 is an air passage formed inside the inner cylinder 205, and is an air passage in which the air flowing from the suction communication air passage 204 flows toward the ventilation port 207 of the inner cylinder 205. The outer cylinder air passage 208 is an air passage formed between the inner diameter of the outer cylinder 209 and the outer diameter of the inner cylinder 205, and the air blown out from the ventilation port 207 of the inner cylinder 205 moves inside the outer cylinder 209. It is an air passage that leads to the air outlet 203.
 液体微細化装置201は、これら吸込連通風路204、内筒風路206、外筒風路208にて形成される風路内に設けられた液体微細化部219を備える。液体微細化装置201は、液体微細化部219により微細化された水をその風路に流れる空気に含めることで、吸込口202から吸い込んだ空気を加湿する。液体微細化部219が、本開示の加湿部である。 The liquid atomization device 201 includes a liquid atomization unit 219 provided in an air passage formed by the suction communication air passage 204, the inner cylinder air passage 206, and the outer cylinder air passage 208. The liquid atomization device 201 humidifies the air sucked from the suction port 202 by including the water atomized by the liquid atomization unit 219 in the air flowing in the air passage. The liquid atomizing unit 219 is the humidifying unit of the present disclosure.
 液体微細化部219は、液体微細化装置201の主要部であり、水の微細化を行うところである。液体微細化装置201では、吸込口202で取り込んだ空気が、吸込連通風路204を経由して液体微細化部219へ送られる。そして、液体微細化装置201は、内筒風路206を通る空気に、液体微細化部219にて微細化された水を含ませて、水を含んだ空気を、外筒風路208を経由して吹出口203より吹き出すように構成されている。 The liquid atomization unit 219 is a main part of the liquid atomization device 201, and is where the water is atomized. In the liquid micronization apparatus 201, the air taken in by the suction port 202 is sent to the liquid micronization unit 219 via the suction communication air passage 204. Then, the liquid atomization apparatus 201 causes the air passing through the inner tube air passage 206 to include the water atomized by the liquid atomizing unit 219 and passes the air containing the water through the outer tube air passage 208. Then, the air is blown out from the air outlet 203.
 液体微細化部219は、上方及び下方が開口された衝突壁205aを備えている。衝突壁205aは、内筒205の内側に固定されることで設けられている。また、液体微細化部219には、衝突壁205aに囲まれた内側において、回転しながら水を汲み上げる(揚水する)筒状の揚水管221が備えられている。揚水管221は、逆円錐形の中空構造となっており、逆円錐形状の天面中心に、鉛直方向に向けて配置された回転軸220が固定されている。回転軸220が、液体微細化部219の外面に備えられた回転モータ223と接続されることで、回転モータ223の回転運動が回転軸220を通じて揚水管221に伝導され、揚水管221が回転する。 The liquid atomization unit 219 includes a collision wall 205a that is open on the upper side and the lower side. The collision wall 205a is provided by being fixed inside the inner cylinder 205. Further, the liquid atomization unit 219 is provided with a tubular pumping pipe 221 inside the surrounding of the collision wall 205a, which pumps (pumps) water while rotating. The pumping pipe 221 has an inverted conical hollow structure, and the rotating shaft 220 arranged in the vertical direction is fixed to the center of the top surface of the inverted conical shape. When the rotary shaft 220 is connected to the rotary motor 223 provided on the outer surface of the liquid atomization unit 219, the rotary motion of the rotary motor 223 is transmitted to the pump pipe 221 through the rotary shaft 220, and the pump pipe 221 rotates. ..
 図12に示す通り、揚水管221は、揚水管221の外面から外側に突出するように形成された回転板222を複数備えている。複数の回転板222は、回転軸220の軸方向に所定間隔を設けて、揚水管221の外面から外側に突出するように形成されている。回転板222は揚水管221とともに回転するため、回転軸220と同軸の水平な円盤形状が好ましい。なお、回転板222の枚数は、目標とする性能や揚水管221の寸法に合わせて適宜設定されるものである。 As shown in FIG. 12, the pumping pipe 221 includes a plurality of rotary plates 222 formed so as to project outward from the outer surface of the pumping pipe 221. The plurality of rotary plates 222 are formed at predetermined intervals in the axial direction of the rotary shaft 220 so as to project outward from the outer surface of the pumping pipe 221. Since the rotary plate 222 rotates together with the pumping pipe 221, a horizontal disk shape coaxial with the rotary shaft 220 is preferable. The number of rotating plates 222 is appropriately set according to the target performance and the dimensions of the pumping pipe 221.
 また、揚水管221の壁面には、揚水管221の壁面を貫通する開口(図示せず)が設けられている。揚水管221の開口は、揚水管221の外面から外側に突出するように形成された回転板222と連通する位置に設けられている。開口の周方向の大きさは、揚水管221の開口が設けられた部位の外径に合わせてそれぞれ設計する必要があり、例えば揚水管221の外径の5%から50%に相当する径、より好ましくは、揚水管221の5%から20%に相当する径が挙げられる。なお、上記範囲内において、各開口の寸法を同一のものとしてもよい。 Also, the wall surface of the pumping pipe 221 is provided with an opening (not shown) that penetrates the wall surface of the pumping pipe 221. The opening of the pumping pipe 221 is provided at a position communicating with the rotary plate 222 formed so as to project outward from the outer surface of the pumping pipe 221. The size of the opening in the circumferential direction needs to be designed in accordance with the outer diameter of the portion of the pumping pipe 221 where the opening is provided. For example, a diameter corresponding to 5% to 50% of the outer diameter of the pumping pipe 221. More preferably, the diameter corresponding to 5% to 20% of the pumping pipe 221 is used. It should be noted that the sizes of the openings may be the same within the above range.
 液体微細化部219の下部には、揚水管221の鉛直方向下方に、揚水管221により揚水される水を貯水する貯水部210が設けられている。貯水部210の深さは、揚水管221の下部の一部、例えば揚水管221の円錐高さの三分の一から百分の一程度の長さが浸るように設計されている。この深さは必要な揚水量に合わせて設計できる。揚水管221によって揚水される水で空気が加湿される。 A water storage unit 210 that stores water pumped by the pumping pipe 221 is provided below the pumping pipe 221 in the vertical direction below the liquid atomization unit 219. The depth of the water storage section 210 is designed so that a part of the lower part of the pumping pipe 221 is immersed, for example, about one third to one hundredth of the cone height of the pumping pipe 221. This depth can be designed according to the required pumping volume. The air is humidified by the water pumped by the pump pipe 221.
 貯水部210への水の供給は、給水部215により行われる。給水部215には、給水管216が接続されており、例えば水道から給水弁217を通じて、給水管216により直接給水する。なお、給水部215は、あらかじめ液体微細化部219外に備えられた水タンクからサイフォンの原理で必要な水量のみ汲みあげて、貯水部210へ水を供給するように構成されてもよい。給水部215は、貯水部210の底面よりも鉛直方向上方に設けられている。なお、給水部215は、貯水部210の底面だけでなく、貯水部210の上面(貯水部210に貯水され得る最大水位の面)よりも鉛直方向上方に設けられるのが好ましい。 The water supply unit 215 supplies water to the water storage unit 210. A water supply pipe 216 is connected to the water supply unit 215, and for example, water is directly supplied from a water supply through a water supply valve 217 to the water supply pipe 216. The water supply unit 215 may be configured to pump up only the required amount of water according to the siphon principle from a water tank provided outside the liquid atomization unit 219 and supply water to the water storage unit 210. The water supply unit 215 is provided vertically above the bottom surface of the water storage unit 210. The water supply unit 215 is preferably provided not only on the bottom surface of the water storage unit 210 but also vertically above the upper surface of the water storage unit 210 (the surface of the maximum water level that can be stored in the water storage unit 210).
 貯水部210の底面中央には、排水部211が設けられている。排水部211の排水口は、貯水部210の最も低い位置に設けられている。水の微細化の運転を停止させた場合、排水部211に設けられた排水弁212を開けることで、貯水部210に貯水された水が、排水部211から排水される。 A drainage part 211 is provided at the center of the bottom surface of the water storage part 210. The drainage port of the drainage unit 211 is provided at the lowest position of the water storage unit 210. When the operation of water refining is stopped, the water stored in the water storage section 210 is drained from the drain section 211 by opening the drain valve 212 provided in the drain section 211.
 また、貯水部210には、オーバーフロー排水口218が設けられている。貯水部210に必要以上の水が貯水された場合、水の抵抗によって揚水管221の回転が不足したり、液体微細化装置201から水漏れを起こしたり、場合によっては回転モータ223が水に浸かって故障したりする恐れがある。オーバーフロー排水口218は、そのような事態が生じすることを防ぐために設けたものであり、貯水部210において貯水された水が所定の水位以上とならないよう、所定の水位の位置に開口されている。 Further, the water storage section 210 is provided with an overflow drain port 218. If more water than necessary is stored in the water storage unit 210, the rotation of the pumping pipe 221 may be insufficient due to the resistance of the water, water may leak from the liquid atomization device 201, or the rotary motor 223 may be submerged in water. There is a risk of malfunction. The overflow drain port 218 is provided to prevent such a situation from occurring, and is opened at a predetermined water level position so that the water stored in the water storage section 210 does not exceed a predetermined water level. ..
 これにより、貯水部210に所定の水位の水が貯水されると、それ以後に水が給水されてもオーバーフロー排水口218から水が排水され、貯水部210には所定の水位以上の水が貯水されないようになっている。 As a result, when the water having a predetermined water level is stored in the water storage unit 210, the water is drained from the overflow drain 218 even if the water is supplied thereafter, and the water having a predetermined water level or higher is stored in the water storage unit 210. It is supposed not to be done.
 液体微細化部219には、貯水部210の満水の水位を検知するために、基準水位検知部224と、満水水位検知部225とが設けられている。満水水位検知部225は、液体微細化部219による液体の微細化のために必要な貯水部210に貯水すべき水の水位を満水水位として検知するものであり、NTCサーミスタにより構成される。満水水位検知部225は、オーバーフロー排水口218が設けられる所定の水位となる位置よりも低い第1の位置に設けられる。つまり、満水水位として検知される位置は、オーバーフロー排水口218が設けられる所定の水位となる位置よりも低い位置に設定される。満水水位検知部225が、本開示の第1水位検知部に該当する。 The liquid atomization unit 219 is provided with a reference water level detection unit 224 and a full water level detection unit 225 in order to detect the full water level of the water storage unit 210. The full water level detection unit 225 detects the water level of the water that should be stored in the water storage unit 210 necessary for the liquid micronization by the liquid micronization unit 219 as a full water level, and is composed of an NTC thermistor. The full water level detection unit 225 is provided at a first position lower than the position where the overflow drain port 218 is provided and which has a predetermined water level. That is, the position detected as the full water level is set to a position lower than the position where the overflow drainage port 218 is provided and the predetermined water level. The full water level detection unit 225 corresponds to the first water level detection unit of the present disclosure.
 一方、基準水位検知部224は、満水水位検知部225と同一のNTCサーミスタにより構成されるもので、オーバーフロー排水口218が設けられる所定の水位となる位置よりも高い第2の位置に設けられる。オーバーフロー排水口218により、貯水部210には所定の水位よりも高い位置に水が貯水されることはなく、基準水位検知部224は常に空気中に存在することになる。そこで、基準水位検知部224の出力値は、出力値の基準として用いられる。基準水位検知部224が、本開示の第2水位検知部に該当する。 On the other hand, the reference water level detection unit 224 is composed of the same NTC thermistor as the full water level detection unit 225, and is provided at a second position higher than the position where the overflow drain port 218 is provided at a predetermined water level. Due to the overflow drain port 218, water is not stored in the water storage unit 210 at a position higher than a predetermined water level, and the reference water level detection unit 224 always exists in the air. Therefore, the output value of the reference water level detection unit 224 is used as a reference for the output value. The reference water level detection unit 224 corresponds to the second water level detection unit of the present disclosure.
 ここで、NTCサーミスタは、水中に存在する状態にある場合と、空気中に存在する状態にある場合とで、出力される電圧値が変化する。本実施の形態では、貯水部210に水を供給する場合に、満水水位検知部225が出力する電圧値と、基準水位検知部224が出力する電圧値とを比較する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、満水水位検知部225が水中に存在する状態となったと判断し、貯水部210に満水水位まで水が貯水されたとして、給水弁217を閉じ、給水を停止する。 ▽Here, the output voltage value of the NTC thermistor changes depending on whether it is in water or in air. In this embodiment, when supplying water to the water storage unit 210, the voltage value output by the full water level detection unit 225 is compared with the voltage value output by the reference water level detection unit 224. Then, when the difference between the compared voltage values is in a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 225 is in the water, and the water is stored in the water storage unit 210 up to the full water level. Assuming that the water has been stored, the water supply valve 217 is closed and the water supply is stopped.
 一方、基準水位検知部224と満水水位検知部225とでは、同一のNTCサーミスタを用いたとしても、サーミスタの特性のばらつきにより、同一の環境下であっても出力される電圧値にばらつきが生じる。そこで、本実施の形態では、基準水位検知部224が出力する電圧値を用いて満水水位検知部225が出力する電圧値の補正を行う。 On the other hand, in the reference water level detection unit 224 and the full water level detection unit 225, even if the same NTC thermistor is used, variations in the characteristics of the thermistor cause variations in the output voltage value even in the same environment. .. Therefore, in the present embodiment, the voltage value output by the full water level detection unit 225 is corrected using the voltage value output by the reference water level detection unit 224.
 例えば、液体微細化装置201に初めて通電が行われて、基準水位検知部224及び満水水位検知部225から出力される電圧が安定する第1の所定時間(例えば5分)経過後に、補正が実施される。また、第2の所定時間(例えば24時間)毎に実行される乾燥動作が行われる後にも、補正が実施される。つまり、貯水部210が渇水状態にあり、基準水位検知部224と満水水位検知部225とが同一環境下にあって、理想的には同一の電圧値が出力される状況の中で、補正が実施される。 For example, when the liquid atomization apparatus 201 is first energized and the voltage output from the reference water level detection unit 224 and the full water level detection unit 225 becomes stable for a first predetermined time (for example, 5 minutes), the correction is performed. To be done. In addition, the correction is performed even after the drying operation is performed every second predetermined time (for example, 24 hours). That is, in a situation where the water storage unit 210 is in a drought state, the reference water level detection unit 224 and the full water level detection unit 225 are in the same environment, and ideally the same voltage value is output, the correction is performed. Be implemented.
 補正は、基準水位検知部224より出力される電圧値から満水水位検知部225より出力される電圧値を引いて得られる電圧値の差を、オフセット電圧値とすることで行われる。そして、以後、満水水位検知部225から実際に出力される電圧値に、オフセット電圧値を加算した値が、満水水位検知部225から出力された電圧値として満水水位の検知が行われる。これにより、満水水位検知部225による出力値を基準水位検知部224による出力値に合わせることができるので、貯水部210の水位を精度よく検知できる。 The correction is performed by setting the difference in voltage value obtained by subtracting the voltage value output from the full water level detection unit 225 from the voltage value output from the reference water level detection unit 224 as the offset voltage value. Then, thereafter, the full water level is detected as the value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 225 as the voltage value output from the full water level detection unit 225. Accordingly, the output value of the full water level detection unit 225 can be matched with the output value of the reference water level detection unit 224, so that the water level of the water storage unit 210 can be accurately detected.
 なお、満水水位検知部225による出力値を基準水位検知部224による出力値に基づいて補正する方法は、上記方法に限られるものではなく、満水水位検知部25による出力値が基準水位検知部24による出力値に基づいて補正されるものであれば他の方法であってもよい。 The method of correcting the output value of the full water level detection unit 225 based on the output value of the reference water level detection unit 224 is not limited to the above method, and the output value of the full water level detection unit 25 is the reference water level detection unit 24. Other methods may be used as long as they are corrected based on the output value of
 ここで、液体微細化装置201における水の微細化の動作原理を説明する。回転モータ223により回転軸220が回転し、それに合わせて揚水管221が回転すると、その回転によって生じる遠心力により、貯水部210に貯水された水が揚水管221によって汲み上げられる。揚水管221の回転数は、1000-5000rpmの間に設定される。揚水管221は、逆円錐形の中空構造となっているため、回転によって汲み上げられた水は、揚水管221の内壁を伝って上部へ揚水される。そして、揚水された水は、揚水管221の開口から回転板222を伝って遠心方向に放出され、水滴として飛散する。 Here, the operation principle of water atomization in the liquid atomization apparatus 201 will be described. When the rotation shaft 220 is rotated by the rotation motor 223 and the pumping pipe 221 is rotated accordingly, the centrifugal force generated by the rotation causes the pumping pipe 221 to pump up the water stored in the water storage unit 210. The rotation speed of the pumping pipe 221 is set between 1000 and 5000 rpm. Since the pumping pipe 221 has an inverted conical hollow structure, the water pumped by the rotation is pumped to the upper part along the inner wall of the pumping pipe 221. Then, the pumped water is discharged from the opening of the pump pipe 221 through the rotary plate 222 in the centrifugal direction and scattered as water droplets.
 回転板222から飛散した水滴は、衝突壁205aに囲まれた空間を飛翔し、衝突壁205aに衝突し、微細化される。一方、内筒風路206を通過する空気は、衝突壁205aの上方開口部から衝突壁205a内部へ移動し、衝突壁205aによって破砕(微細化)された水滴を含みながら下方開口部から衝突壁205a外部へ移動する。これにより、液体微細化装置201の吸込口202より吸い込まれた空気に対して加湿が行われ、吹出口203より加湿された空気が吹き出される。 The water droplets scattered from the rotating plate 222 fly in the space surrounded by the collision wall 205a, collide with the collision wall 205a, and are atomized. On the other hand, the air passing through the inner cylinder air passage 206 moves from the upper opening of the collision wall 205a into the collision wall 205a, and includes the water droplets crushed (miniaturized) by the collision wall 205a to the collision wall 205a from the lower opening. 205a Move to the outside. As a result, the air sucked from the suction port 202 of the liquid atomization device 201 is humidified, and the humidified air is blown out from the air outlet 203.
 回転板222から飛散した水の運動エネルギーは衝突壁205a内部の空気との摩擦により減衰するため、回転板222はなるべく衝突壁205aに近づけたほうが好ましい。一方で、衝突壁205aと回転板222を近づけるほど、衝突壁205a内部を通過する風量が減少するため、距離の下限値は衝突壁205a内部を通過する圧力損失と風量とで、任意に決まる。 The kinetic energy of the water scattered from the rotary plate 222 is attenuated by the friction with the air inside the collision wall 205a, so it is preferable that the rotary plate 222 be as close to the collision wall 205a as possible. On the other hand, as the collision wall 205a and the rotary plate 222 are brought closer to each other, the amount of airflow passing through the inside of the collision wall 205a decreases, so that the lower limit value of the distance is arbitrarily determined by the pressure loss and the amount of airflow passing inside the collision wall 205a.
 なお、微細化される液体は水以外でもよく、例えば、殺菌性/消臭性を備えた次亜塩素酸水等の液体であってもよい。微細化された次亜塩素酸水を液体微細化装置201の吸込口202より吸い込まれた空気に含ませ、次亜塩素酸水を含んだ空気を吹出口203より吹き出すことで、液体微細化装置201が置かれた空間の殺菌/消臭を行うことができる。 Note that the liquid to be atomized may be other than water, for example, a liquid such as hypochlorous acid water having bactericidal/deodorant properties. The micronized hypochlorous acid water is contained in the air sucked from the suction port 202 of the liquid micronization apparatus 201, and the air containing the hypochlorous acidous water is blown out from the blowout port 203 to obtain the liquid micronization apparatus. The space where 201 is placed can be sterilized/deodorized.
 次に、図13を参照して、液体微細化装置201において加湿運転を実行するための加湿運転処理について説明する。図13は、加湿運転処理を示すフローチャートである。加湿運転処理は、液体微細化装置201に設けられた制御部(図示せず)により実行される。 Next, with reference to FIG. 13, a humidification operation process for executing the humidification operation in the liquid atomization device 201 will be described. FIG. 13 is a flowchart showing the humidification operation process. The humidification operation process is executed by a control unit (not shown) provided in the liquid atomization device 201.
 加湿運転処理では、まず、初回通電時水位検知部補正処理が実行される(S1)。初回通電時水位検知部補正処理では、液体微細化装置201への通電が初めてか否かを判定し、通電が初めてであれば、まず第1の所定時間(例えば5分)待機する。第1の所定時間は、上述した通り、基準水位検知部224及び満水水位検知部225から出力される電圧を安定させるための時間である。そして、第1の所定時間経過後、貯水部210が渇水状態にある中で、基準水位検知部224及び満水水位検知部225から出力される電圧値から上述のオフセット電圧値を算出する。以後、満水水位検知部225から実際に出力される電圧値にオフセット電圧値を加算した値が、満水水位検知部225から出力された電圧値として、満水水位の検知に使用される。 In the humidification operation process, first, the water level detection unit correction process during the first energization is executed (S1). In the water level detection unit correction process during the first energization, it is determined whether or not the energization to the liquid atomization device 201 is the first time, and if the energization is the first time, the first predetermined time (for example, 5 minutes) is waited. As described above, the first predetermined time is a time for stabilizing the voltage output from the reference water level detection unit 224 and the full water level detection unit 225. Then, after the lapse of the first predetermined time, the above-mentioned offset voltage value is calculated from the voltage values output from the reference water level detection unit 224 and the full water level detection unit 225 while the water storage unit 210 is in a drought state. After that, the value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 225 is used as the voltage value output from the full water level detection unit 225 for detecting the full water level.
 なお、初回通電時水位検知部補正処理において、液体微細化装置201への通電が初めてでないと判定された場合は、そのままS2の処理へ移行する。 In the correction process of the water level detection unit during the first energization, when it is determined that the liquid micronization apparatus 201 is not energized for the first time, the process directly proceeds to S2.
 次いで、加湿運転処理では、貯水部210等の洗浄を行うために、S2~S4の処理を実行する。即ち、S2の処理では、排水弁212を閉じて、給水弁217を開き、貯水部210への給水を開始する。そして、加湿運転処理では、貯水部210の水位が満水水位となったか否かを判断する(S3)。 Next, in the humidifying operation process, the processes of S2 to S4 are executed to wash the water storage part 210 and the like. That is, in the process of S2, the drain valve 212 is closed, the water supply valve 217 is opened, and water supply to the water storage section 210 is started. Then, in the humidifying operation process, it is determined whether or not the water level of the water storage unit 210 has reached the full water level (S3).
 S3の処理では、具体的には、満水水位検知部225が出力する電圧値と、基準水位検知部224が出力する電圧値とを比較する。このとき、満水水位検知部225が出力する電圧値としては、実際に出力された電圧値に上述のオフセット電圧値を加算したものを使用する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、満水水位検知部225が水中に存在する状態となったと判断する。 In the process of S3, specifically, the voltage value output by the full water level detection unit 225 is compared with the voltage value output by the reference water level detection unit 224. At this time, as the voltage value output by the full water level detection unit 225, a value obtained by adding the above-mentioned offset voltage value to the actually output voltage value is used. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 225 is in the water.
 ここで、満水水位検知部225は、貯水部210の水位に応じて空気中に存在する状態と水中に存在する状態とがある。一方で、基準水位検知部224は、オーバーフロー排水口218が設けられた所定の位置よりも高い第2の位置に設けられているので、常に空気中に存在する状態にある。従って、常に空気中に存在する状態にある基準水位検知部224から出力される電圧と、満水水位検知部225から出力される電圧とを比較することで、満水水位検知部225が水中に存在する状態となった場合に、両者の電圧の違いが確実に判定できる。その結果、貯水部210の水位の誤検知を抑制できる。 Here, the full water level detection unit 225 has a state existing in the air and a state existing in the water depending on the water level of the water storage unit 210. On the other hand, since the reference water level detection unit 224 is provided at the second position higher than the predetermined position where the overflow drain port 218 is provided, it is always in the air. Therefore, by comparing the voltage output from the reference water level detection unit 224 that is always present in the air with the voltage output from the full water level detection unit 225, the full water level detection unit 225 exists in water. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 210 can be suppressed.
 なお、S3の処理は、本開示の第1判定部によって実行される。 Note that the process of S3 is executed by the first determination unit of the present disclosure.
 S3の処理の結果、貯水部210の水位が満水水位にない場合は(S3:No)、S3の処理を繰り返し実行する。一方、S3の処理の結果、貯水部210の水位が満水水位となったと判断される場合に(S3:Yes)、加湿運転処理は、排水弁212を開き、給水弁217を閉じて、貯水部210への給水の停止と、貯水部210に貯水された水の排水を行う(S4)。これにより、貯水部210の洗浄が終了する。 If, as a result of the processing in S3, the water level of the water storage unit 210 is not at the full water level (S3: No), the processing in S3 is repeatedly executed. On the other hand, as a result of the process of S3, when it is determined that the water level of the water storage unit 210 has reached the full water level (S3: Yes), the humidification operation process opens the drain valve 212 and closes the water supply valve 217 to close the water storage unit. The water supply to 210 is stopped and the water stored in the water storage unit 210 is drained (S4). As a result, the cleaning of the water storage section 210 is completed.
 次に、加湿運転処理では、実際の加湿運転を開始するために、排水弁212を閉じて、給水弁217を開き、貯水部210への給水を開始する(S5)。そして、加湿運転処理では、貯水部210の水位が満水水位となったか否かを判断する(S6)。S6の判断は、S3の処理と同様に行われる。S6の処理も、本開示の第1判定部によって実行される。 Next, in the humidifying operation process, in order to start the actual humidifying operation, the drain valve 212 is closed, the water supply valve 217 is opened, and water supply to the water storage section 210 is started (S5). Then, in the humidifying operation process, it is determined whether or not the water level of the water storage section 210 has reached the full water level (S6). The determination of S6 is performed in the same manner as the processing of S3. The process of S6 is also executed by the first determination unit of the present disclosure.
 S6の処理の結果、貯水部210の水位が満水水位となったと判断されると(S6:Yes)、加湿運転処理は、給水弁217を閉じて給水を停止する(S7)。そして、加湿運転処理は、回転モータ223の回転をオンする(S8)。これにより、貯水部210に貯水された水が上述した動作によって微細化され、吸込口202より吸い込んだ空気に対して加湿が行われる。 As a result of the process of S6, if it is determined that the water level of the water storage unit 210 has reached the full water level (S6: Yes), the humidification operation process closes the water supply valve 217 and stops the water supply (S7). Then, in the humidifying operation process, the rotation of the rotary motor 223 is turned on (S8). As a result, the water stored in the water storage unit 210 is atomized by the above-described operation, and the air sucked from the suction port 202 is humidified.
 次に、加湿運転処理は、貯水部210の水が少なくなると予想される30分経過するまで処理を待機し(S9)、その後、回転モータ223の回転をオフして、一旦加湿運転を停止する(S10)。 Next, in the humidifying operation process, the process waits until 30 minutes when it is expected that the amount of water in the water storage unit 210 will decrease (S9), and then the rotation motor 223 is turned off to temporarily stop the humidifying operation. (S10).
 そして、加湿運転処理は、液体微細化装置201が通電されてから第2の所定時間(本実施の形態では24時間)経過したか、または、前回乾燥運転を行ってから第2の所定時間経過したかを判断する(S11)。その結果、第2の所定時間経過していなければ(S11:No)、加湿運転処理は、S5の処理に戻り、貯水部210への給水が再び行われて加湿運転が再開される。 Then, in the humidifying operation process, a second predetermined time (24 hours in the present embodiment) has elapsed since the liquid micronization apparatus 201 was energized, or a second predetermined time has elapsed since the previous drying operation was performed. It is determined whether it has been done (S11). As a result, if the second predetermined time has not elapsed (S11: No), the humidifying operation process returns to the process of S5, the water is supplied to the water storage unit 210 again, and the humidifying operation is restarted.
 一方、S11の処理の結果、第2の所定時間経過したと判断される場合は(S11:Yes)、加湿運転処理は乾燥運転を実施する(S12)。具体的には、液体微細化装置201の内部又は外部に設けられた送風機(図示せず)により、加湿運転することなく吸込口202から吹出口203へ空気を送風することで、液体微細化装置201の内部を乾燥させる。この乾燥運転を第2の所定時間毎に実施することで、液体微細化装置201内部にカビが発生することを抑制している。 On the other hand, if it is determined that the second predetermined time has elapsed as a result of the process of S11 (S11: Yes), the humidifying operation process performs a dry operation (S12). Specifically, a blower (not shown) provided inside or outside the liquid micronization apparatus 201 blows air from the suction port 202 to the air outlet 203 without performing a humidification operation. The inside of 201 is dried. By carrying out this drying operation every second predetermined time, generation of mold inside the liquid micronization apparatus 201 is suppressed.
 そして、S12の処理の後、加湿運転処理は、水位検知部補正処理を実行する(S13)。水位検知部補正処理における補正は、S1の初回通電時水位検知部補正処理と同様に、基準水位検知部224及び満水水位検知部225から出力される電圧値から上述のオフセット電圧値を算出して行われる。そして、以後、ここで算出されたオフセット電圧値を用いて、満水水位検知部225から実際に出力される電圧値にオフセット電圧値を加算した値が、満水水位検知部225から出力された電圧値として、満水水位の検知に使用される。 After the process of S12, the humidification operation process executes the water level detection unit correction process (S13). The correction in the water level detection unit correction process is performed by calculating the above-described offset voltage value from the voltage values output from the reference water level detection unit 224 and the full water level detection unit 225, as in the case of the first energization water level detection unit correction process in S1. Done. Then, thereafter, using the offset voltage value calculated here, the value obtained by adding the offset voltage value to the voltage value actually output from the full water level detection unit 225 is the voltage value output from the full water level detection unit 225. Is used to detect the full water level.
 このように、第2の所定時間毎に行われる乾燥運転後は、貯水部210が渇水状態にあり、基準水位検知部224及び満水水位検知部225は共に乾燥状態にあって、同一の環境下にある。よって、このような状況下で補正を行うことで、貯水部210の水位を精度よく検知できる。また、第2の所定時間毎に定期的に補正を行うことで、基準水位検知部224及び満水水位検知部225が経年劣化して特性が変化したとしても、補正を確実に行うことができる。 As described above, after the drying operation performed every second predetermined time, the water storage unit 210 is in a drought state, the reference water level detection unit 224 and the full water level detection unit 225 are both in a dry state, and under the same environment. It is in. Therefore, by performing the correction under such a condition, the water level of the water storage unit 210 can be accurately detected. Further, by periodically performing the correction every second predetermined time, even if the reference water level detection unit 224 and the full water level detection unit 225 deteriorate with age and their characteristics change, the correction can be reliably performed.
 S13の処理の後、加湿運転処理は、S5の処理に戻る。 After the processing of S13, the humidification operation processing returns to the processing of S5.
 また、S6の処理の結果、貯水部210の水位が満水水位にないと判断されると(S6:No)、次いで、加湿運転処理は、S5の処理により給水を開始してから第1時間(本実施の形態では5分)経過したか否かを判断する(S14)。その結果、第1時間経過していなければ(S14:No)、加湿運転処理はS6の処理に戻り、貯水部210の水位が満水水位となったか否かを判断する。 Further, as a result of the process of S6, when it is determined that the water level of the water storage unit 210 is not the full water level (S6: No), the humidifying operation process is performed for the first time (from the start of water supply by the process of S5). In this embodiment, it is determined whether 5 minutes have passed (S14). As a result, if the first time has not elapsed (S14: No), the humidification operation process returns to the process of S6, and it is determined whether the water level of the water storage unit 210 has reached the full water level.
 一方、S14の処理の結果、第1時間経過したと判断した場合は(S14:Yes)、給水がうまくできていないか、基準水位検知部224及び/又は満水水位検知部225が故障しているか、または、満水水位検知を誤検知している可能性がある。特に、給水した水の温度が高い場合、基準水位検知部224から出力される電圧値と、満水水位検知部225から出力される電圧値とに差がなく、結果として満水水位検知ができない可能性もある。 On the other hand, as a result of the processing in S14, when it is determined that the first time has elapsed (S14: Yes), whether the water supply is not successful, or whether the reference water level detection unit 224 and/or the full water level detection unit 225 has failed. Or, there is a possibility that the detection of full water level is erroneously detected. In particular, when the temperature of the supplied water is high, there is no difference between the voltage value output from the reference water level detection unit 224 and the voltage value output from the full water level detection unit 225, and as a result, the full water level detection may not be possible. There is also.
 そこで、加湿運転処理は、まず給水弁217を閉じて給水を停止した後(S15)、第2時間(本実施の形態では30分)経過するまで処理を待機する(S16)。そして、加湿運転処理は、第2時間経過後、再度S6の処理と同様の方法で貯水部210の水位が満水水位にあるか否かを判断する(S17)。 Therefore, in the humidifying operation process, first, after closing the water supply valve 217 to stop the water supply (S15), the process waits until the second time (30 minutes in the present embodiment) has elapsed (S16). Then, in the humidifying operation process, after the lapse of the second time, it is again determined whether or not the water level of the water storage section 210 is the full water level by the same method as the process of S6 (S17).
 仮に、給水した水の温度が高かった場合、第2時間が経過することで、水の温度が周囲の空気に馴染み、貯水部210内の空気の温度に近くなる。そうすると、基準水位検知部224から出力される電圧値と満水水位検知部225から出力される電圧値とに明確な差が生じるようになり、満水水位の誤検知が解消される。 If the temperature of the supplied water is high, the temperature of the water will adapt to the surrounding air and become close to the temperature of the air in the water storage unit 210 after the second time elapses. Then, a clear difference occurs between the voltage value output from the reference water level detection unit 224 and the voltage value output from the full water level detection unit 225, and the false detection of the full water level is eliminated.
 なお、S16の処理において、第2時間待機している間、液体微細化装置201の内部又は外部に設けられた送風機(図示せず)を動作させ、貯水部210に空気を送風してもよい。また、この間、揚水管221による揚水が行われない程度に回転モータ223を回転させてもよい。これにより、貯水部210に貯水された水の温度が早く馴染み、より確実に満水水位の誤検知の解消を図ることができる。 In the process of S16, while waiting for the second time, a blower (not shown) provided inside or outside the liquid atomization device 201 may be operated to blow air to the water storage unit 210. .. Further, during this period, the rotation motor 223 may be rotated to such an extent that the pumping by the pumping pipe 221 is not performed. As a result, the temperature of the water stored in the water storage unit 210 is quickly adjusted, and the false detection of the full water level can be more reliably resolved.
 S17の処理の結果、貯水部210の水位が満水水位にあると判断された場合は(S17:Yes)、その誤検知が解消されたと判断できるので、加湿運転処理は、S8の処理へ移行して、加湿を開始する。一方、S17の処理の結果、貯水部210の水位が満水水位にないと判断された場合は(S17:No)、給水そのものに問題があるか、基準水位検知部224及び/又は満水水位検知部225が故障している可能性が高いので、異常を報知して(S18)、以後、処理をループさせる。 As a result of the process of S17, when it is determined that the water level of the water storage unit 210 is the full water level (S17: Yes), it can be determined that the erroneous detection is eliminated, so the humidification operation process shifts to the process of S8. To start humidification. On the other hand, as a result of the process of S17, when it is determined that the water level of the water storage unit 210 is not the full water level (S17: No), there is a problem in the water supply itself, or the reference water level detection unit 224 and/or the full water level detection unit. Since there is a high possibility that 225 is out of order, an abnormality is reported (S18), and the processing is looped thereafter.
 以上説明した通り、実施の形態3-1に係る液体微細化装置201は、貯水部10において貯水された水が所定の水位となる位置にオーバーフロー排水口218が設けられている。これにより、貯水部210に所定の水位の水が貯水されると、それ以後に水が給水されてもオーバーフロー排水口218から水が排水され、貯水部210には所定の水位以上の水が貯水されないようになっている。よって、所定の水位の位置よりも低い第1の位置に設けられた満水水位検知部225は、貯水部210の水位に応じて空気中に存在する状態と水中に存在する状態とがある。一方、所定の水位よりも高い第2の位置に設けられた基準水位検知部224は、常に空気中に存在する状態にある。従って、常に空気中に存在する状態にある基準水位検知部224から出力される電圧値と、満水水位検知部225から出力される電圧値とを比較することで、満水水位検知部225が水中に存在する状態となった場合に、両者の電圧の違いが確実に判定できる。その結果、貯水部210の水位の誤検知を抑制できる。 As described above, the liquid atomization apparatus 201 according to Embodiment 3-1 is provided with the overflow drain port 218 at a position where the water stored in the water storage section 10 has a predetermined water level. As a result, when the water having a predetermined water level is stored in the water storage unit 210, the water is drained from the overflow drain 218 even if the water is supplied thereafter, and the water having a predetermined water level or higher is stored in the water storage unit 210. It is supposed not to be done. Therefore, the full water level detection unit 225 provided at the first position lower than the position of the predetermined water level may be in the air or in the water depending on the water level of the water storage unit 210. On the other hand, the reference water level detection unit 224 provided at the second position higher than the predetermined water level is always in the air. Therefore, by comparing the voltage value output from the reference water level detection unit 224, which is always present in the air, with the voltage value output from the full water level detection unit 225, the full water level detection unit 225 enters the water. When the existing state is reached, the difference between the two voltages can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 210 can be suppressed.
 また、貯水部210が渇水状態にある場合に、満水水位検知部225による電圧値が基準水位検知部224による電圧値に補正される。これにより、満水水位検知部225による出力値を基準水位検知部224による出力値に合わせることができるので、貯水部210の水位を精度よく検知できる。 Further, when the water storage unit 210 is in a drought state, the voltage value of the full water level detection unit 225 is corrected to the voltage value of the reference water level detection unit 224. Accordingly, the output value of the full water level detection unit 225 can be matched with the output value of the reference water level detection unit 224, so that the water level of the water storage unit 210 can be accurately detected.
 (実施の形態3-2)
 次いで、図14を参照して、本開示の加湿装置の実施の形態3-2に係る液体微細化装置201について説明する。図14は、実施の形態3-2に係る液体微細化装置201の鉛直方向の概略断面図である。
(Embodiment 3-2)
Next, with reference to FIG. 14, a liquid micronization apparatus 201 according to Embodiment 3-2 of the humidifying apparatus of the present disclosure will be described. FIG. 14 is a schematic vertical cross-sectional view of the liquid micronization apparatus 201 according to Embodiment 3-2.
 実施の形態3-1に係る液体微細化装置201は、基準水位検知部224と満水水位検知部225とが鉛直方向において重なる位置に設けられている。これに対し、実施の形態3-2に係る液体微細化装置201は、図14に示す通り、実施の形態3-1に係る満水水位検知部225と同様の構成及び機能を有する満水水位検知部236を、基準水位検知部224とは鉛直方向において重ならない位置に配置することを特徴としている。なお、これ以外の液体微細化装置201の構成は、実施の形態3-1と同様であるため、詳細な説明は省略し、実施の形態3-1と異なる点を主に説明する。 The liquid atomization apparatus 201 according to Embodiment 3-1 is provided in a position where the reference water level detection unit 224 and the full water level detection unit 225 overlap in the vertical direction. On the other hand, as shown in FIG. 14, the liquid micronization apparatus 201 according to Embodiment 3-2 has a full water level detection unit having the same configuration and function as the full water level detection unit 225 according to Embodiment 3-1. 236 is arranged at a position that does not overlap the reference water level detection unit 224 in the vertical direction. Since the configuration of the liquid micronization apparatus 201 other than this is the same as that of the embodiment 3-1, a detailed description will be omitted and differences from the embodiment 3-1 will be mainly described.
 基準水位検知部224は、常に空気中に存在するが、貯水部210に貯水された水の蒸発あるいは加湿された空気の通過等によって、その基準水位検知部224の周辺に水滴が付着し、その付着した水滴が鉛直方向に落下する場合が生じ得る。 The reference water level detection unit 224 is always present in the air, but due to evaporation of water stored in the water storage unit 210, passage of humidified air, or the like, water droplets adhere to the vicinity of the reference water level detection unit 224, Water droplets that have adhered may fall vertically.
 実施の形態3-2に係る液体微細化装置201は、満水水位検知部236が基準水位検知部224とは鉛直方向において重ならない位置に配置されている。よって、満水水位検知部236が、基準水位検知部224から落下する水滴により濡れることを抑制でき、空気中に存在しているにもかかわらず水中に存在している場合の電圧値を出力するおそれを抑制できる。 In the liquid atomizer 201 according to Embodiment 3-2, the full water level detection unit 236 is arranged at a position that does not overlap the reference water level detection unit 224 in the vertical direction. Therefore, the full water level detection unit 236 can be prevented from getting wet with the water droplets falling from the reference water level detection unit 224, and there is a possibility that the voltage value is output when the water level is present in the air although it is present in the air. Can be suppressed.
 従って、実施の形態3-2に係る液体微細化装置201は、実施の形態3-1に係る液体微細化装置201の奏する効果に加え、貯水部210の水位の誤検知をより確実に抑制できる。 Therefore, the liquid micronization apparatus 201 according to Embodiment 3-2 can more reliably suppress erroneous detection of the water level of the water storage section 210, in addition to the effect of the liquid micronization apparatus 201 according to Embodiment 3-1. ..
 (実施の形態3-3)
 次いで、図15を参照して、本開示の加湿装置の実施の形態3-3に係る液体微細化装置201について説明する。図15は、実施の形態3-3に係る液体微細化装置201の鉛直方向の概略断面図である。
(Embodiment 3-3)
Next, with reference to FIG. 15, a liquid atomization device 201 according to Embodiment 3-3 of the humidification device of the present disclosure will be described. FIG. 15 is a schematic vertical cross-sectional view of the liquid atomizing apparatus 201 according to Embodiment 3-3.
 実施の形態3-3に係る液体微細化装置201は、貯水部210の水位を検知するための水位検知部として、実施の形態3-1に係る液体微細化装置201の基準水位検知部224と満水水位検知部225とに加えて、オーバーフロー水位検知部226を有している。なお、これ以外の液体微細化装置201の構成は、実施の形態3-1と同様であるため、詳細な説明は省略し、実施の形態3-1と異なる点を主に説明する。また、加湿運転処理に関しても実施の形態3-1と異なる点を主に説明する。 The liquid micronization apparatus 201 according to Embodiment 3-3 includes a reference water level detection unit 224 of the liquid micronization apparatus 201 according to Embodiment 3-1 as a water level detection unit for detecting the water level of the water storage unit 210. In addition to the full water level detection unit 225, an overflow water level detection unit 226 is provided. Since the configuration of the liquid micronization apparatus 201 other than this is the same as that of the embodiment 3-1, a detailed description will be omitted and differences from the embodiment 3-1 will be mainly described. Also, differences in the humidifying operation process from the embodiment 3-1 will be mainly described.
 オーバーフロー水位検知部226は、貯水部210の水位がオーバーフロー排水口218の設けられた所定の水位となる前に検知するためのものであり、NTCサーミスタにより構成される。オーバーフロー水位検知部226は、満水水位検知部225が設けられた第1の位置よりも高く、オーバーフロー排水口218が設けられる所定の水位となる位置よりも低い第3の位置に設けられる。つまり、オーバーフロー水位として検知される位置は、オーバーフロー排水口218が設けられる所定の水位となる位置よりも低い位置に設定される。オーバーフロー水位検知部26が、本開示の第3水位検知部に該当する。 The overflow water level detection unit 226 is for detecting before the water level of the water storage unit 210 reaches a predetermined water level provided with the overflow drain port 218, and is composed of an NTC thermistor. The overflow water level detection unit 226 is provided at a third position that is higher than the first position where the full water level detection unit 225 is provided and lower than the position where the overflow water discharge port 218 is provided at a predetermined water level. That is, the position detected as the overflow water level is set to a position lower than the position where the overflow drainage port 218 is provided and which has a predetermined water level. The overflow water level detection unit 26 corresponds to the third water level detection unit of the present disclosure.
 本実施の形態では、オーバーフロー水位検知部226が出力する電圧値と、基準水位検知部224が出力する電圧値とを比較する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、オーバーフロー水位検知部226が水中に存在する状態となったと判断し、貯水部210にオーバーフロー水位まで水が貯水されたと判断する。 In the present embodiment, the voltage value output by the overflow water level detection unit 226 is compared with the voltage value output by the reference water level detection unit 224. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 226 is in the water, and the water is stored in the water storage unit 210 up to the overflow water level. It is judged that the water has been stored.
 一方、基準水位検知部224とオーバーフロー水位検知部226とでは、満水水位検知部225と同様に、同一のNTCサーミスタを用いたとしても、サーミスタの特性のばらつきにより、同一の環境下であっても出力される電圧値にばらつきが生じる。そこで、本実施の形態では、満水水位検知部225の補正だけでなく、基準水位検知部224が出力する電圧値を用いてオーバーフロー水位検知部226が出力する電圧値の補正も行う。オーバーフロー水位検知部226が出力する電圧値の補正は、満水水位検知部225の電圧値の補正と同様の方法で行われる。これにより、満水水位検知部225による出力値だけでなく、オーバーフロー水位検知部226による出力値も、基準水位検知部224による出力値に合わせることができるので、貯水部210の水位を精度よく検知できる。このように、オーバーフロー水位検知部226も、出力値の補正対象となる。 On the other hand, even if the same NTC thermistor is used for the reference water level detection unit 224 and the overflow water level detection unit 226, even if the same NTC thermistor is used, even in the same environment due to variations in the thermistor characteristics. The output voltage value varies. Therefore, in the present embodiment, not only the correction of the full water level detection unit 225 but also the correction of the voltage value output by the overflow water level detection unit 226 using the voltage value output by the reference water level detection unit 224 is performed. The correction of the voltage value output by the overflow water level detection unit 226 is performed by the same method as the correction of the voltage value of the full water level detection unit 225. Accordingly, not only the output value of the full water level detection unit 225 but also the output value of the overflow water level detection unit 226 can be adjusted to the output value of the reference water level detection unit 224, so that the water level of the water storage unit 210 can be accurately detected. .. In this way, the overflow water level detection unit 226 is also a target for correcting the output value.
 なお、オーバーフロー水位検知部226による出力値を基準水位検知部224による出力値に基づいて補正する方法も、上記方法に限られるものではなく、オーバーフロー水位検知部226による出力値が基準水位検知部224による出力値に基づいて補正されるものであれば他の方法であってもよい。 The method of correcting the output value of the overflow water level detection unit 226 based on the output value of the reference water level detection unit 224 is not limited to the above method, and the output value of the overflow water level detection unit 226 is not limited to the reference water level detection unit 224. Other methods may be used as long as they are corrected based on the output value of
 次に、図16を参照して、実施の形態3-3に係る液体微細化装置201において加湿運転を実行するための加湿運転処理について説明する。図16は、実施の形態3-3における加湿運転処理を示すフローチャートである。加湿運転処理は、実施の形態3-1と同様に液体微細化装置201に設けられた制御部(図示せず)により実行される。 Next, with reference to FIG. 16, a humidification operation process for executing the humidification operation in the liquid micronization apparatus 201 according to Embodiment 3-3 will be described. FIG. 16 is a flowchart showing the humidification operation process in the embodiment 3-3. The humidifying operation process is executed by a control unit (not shown) provided in the liquid atomization device 201, as in the case of Embodiment 3-1.
 実施の形態3-3に係る加湿運転処理が、実施の形態3-1に係る加湿運転処理と相違する点は、S6の処理で貯水部210が満水水位にないと判断される場合に(S6:No)、S14の処理に代えてS21の処理が実行される点である。また、S21の処理において否定判断された場合に、S22及びS23の処理が実行される点である。なお、オーバーフロー水位検知部226の電圧値の補正は、S1及びS13の中で満水水位検知部225と同様に実行される。 The humidifying operation process according to the embodiment 3-3 is different from the humidifying operation process according to the embodiment 3-1 when the water storage unit 210 is determined not to be at the full water level in the process of S6 (S6). : No), that is, the process of S21 is executed instead of the process of S14. In addition, when the negative determination is made in the process of S21, the processes of S22 and S23 are executed. The correction of the voltage value of the overflow water level detection unit 226 is executed in the same manner as the full water level detection unit 225 in S1 and S13.
 まず、S21の処理では、貯水部210がオーバーフロー水位となったか否かを判断する。具体的には、オーバーフロー水位検知部226が出力する電圧値と、基準水位検知部224が出力する電圧値とを比較する。このとき、オーバーフロー水位検知部226が出力する電圧値としては、実際に出力された電圧値に、S1又はS13にて算出されたオフセット電圧値を加算したものを使用する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、オーバーフロー水位検知部226が水中に存在する状態となったと判断する。 First, in the process of S21, it is determined whether or not the water storage unit 210 has reached the overflow water level. Specifically, the voltage value output by the overflow water level detection unit 226 is compared with the voltage value output by the reference water level detection unit 224. At this time, as the voltage value output by the overflow water level detection unit 226, the value obtained by adding the offset voltage value calculated in S1 or S13 to the actually output voltage value is used. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 226 is in the state of being underwater.
 ここで、オーバーフロー水位検知部226は、貯水部210の水位に応じて空気中に存在する状態と水中に存在する状態とがある。一方で、基準水位検知部224は、オーバーフロー排水口218が設けられた所定の位置よりも高い第2の位置に設けられているので、常に空気中に存在する状態にある。従って、常に空気中に存在する状態にある基準水位検知部224から出力される電圧と、オーバーフロー水位検知部226から出力される電圧とを比較することで、オーバーフロー水位検知部226が水中に存在する状態となった場合に、両者の電圧の違いが確実に判定できる。その結果、貯水部210の水位の誤検知を抑制できる。 Here, the overflow water level detection unit 226 has a state existing in the air and a state existing in the water depending on the water level of the water storage unit 210. On the other hand, since the reference water level detection unit 224 is provided at the second position higher than the predetermined position where the overflow drain port 218 is provided, it is always in the air. Therefore, by comparing the voltage output from the reference water level detection unit 224 that is always in the air with the voltage output from the overflow water level detection unit 226, the overflow water level detection unit 226 exists in the water. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 210 can be suppressed.
 なお、S21の処理は、本開示の第2判定部によって実行される。 Note that the process of S21 is executed by the second determination unit of the present disclosure.
 S21の処理の結果、貯水部210の水位がオーバーフロー水位にないと判断される場合(S21:No)、この時点で、貯水部10は、満水水位にもオーバーフロー水位にも到達していない。そこで、加湿運転処理は、S5の処理により給水を開始してから第1時間(本実施の形態では5分)経過したか否かを判断する(S22)。その結果、第1時間経過していなければ(S22:No)、加湿運転処理はS6の処理に戻る。 When the water level of the water storage unit 210 is determined not to be the overflow water level as a result of the process of S21 (S21: No), the water storage unit 10 has not reached the full water level or the overflow water level at this point. Therefore, in the humidification operation process, it is determined whether or not the first time (5 minutes in the present embodiment) has elapsed since the water supply was started in the process of S5 (S22). As a result, if the first time has not elapsed (S22: No), the humidification operation process returns to the process of S6.
 一方、S22の処理の結果、第1時間経過したと判断した場合は(S22:Yes)、給水に問題がある可能性が高い。そこで、加湿運転処理は、まず給水弁217を閉じて給水を停止した後(S23)、S18の処理へ移行し、異常を報知して、以後、処理をループさせる。 On the other hand, if it is determined that the first time has passed as a result of the processing in S22 (S22: Yes), there is a high possibility that there is a problem with the water supply. Therefore, in the humidifying operation process, after first closing the water supply valve 217 to stop the water supply (S23), the process proceeds to the process of S18 to notify the abnormality, and thereafter, the process is looped.
 また、S21の処理の結果、貯水部210の水位がオーバーフロー水位となったと判断される場合(S21:Yes)、S6の処理では、貯水部210の水位が満水水位にないと判断されている状況にあるので、満水水位の検知に何らかの問題があるおそれがある。なぜならば、オーバーフロー水位検知部226は、満水水位検知部225が設けられた第1の位置よりも高い第2の位置に設けられているため、貯水部210がオーバーフロー水位となると判断されるよりも前に、満水水となったことが判断されるはずだからである。 When it is determined that the water level of the water storage unit 210 has become the overflow water level as a result of the process of S21 (S21: Yes), it is determined that the water level of the water storage unit 210 is not the full water level in the process of S6. Therefore, there may be some problems in detecting the full water level. This is because the overflow water level detection unit 226 is provided at the second position higher than the first position where the full water level detection unit 225 is provided, so that it is determined that the water storage unit 210 has the overflow water level. This is because it should be judged before that the water was full.
 満水水位の検知の問題としては、満水水位検知部225の故障の他、貯水部210に給水された水の温度が高い場合の誤検知が考えられる。その問題の切り分けを行うために、加湿運転処理は、実施の形態3-1と同様にS16及びS17の処理を実行する。 As the problem of detecting the full water level, not only the failure of the full water level detection unit 225 but also erroneous detection when the temperature of the water supplied to the water storage unit 210 is high is considered. In order to isolate the problem, the humidification operation process executes the processes of S16 and S17 as in the case of the embodiment 3-1.
 以上説明した通り、実施の形態3-3に係る液体微細化装置1は、満水水位検知部25だけでなくオーバーフロー水位検知部26を更に有しているので、貯水部10の水位の検知をより精度よく行うことができる。 As described above, since the liquid atomization apparatus 1 according to Embodiment 3-3 further includes the overflow water level detection unit 26 as well as the full water level detection unit 25, it is possible to detect the water level of the water storage unit 10 more effectively. It can be done accurately.
 また、給水された水の温度が高く、貯水部210の満水水位を満水水位検知部225が誤検知しても、オーバーフロー水位検知部226により貯水部210がオーバーフロー水位となったことを検知することで、満水水位検知部225の誤検知の可能性を判断できる。よって、満水水位検知部225の誤検知によって異常と判断され、液体微細化装置201の動作が停止する頻度を抑制できる。 Further, even if the temperature of the supplied water is high and the full water level detection unit 225 erroneously detects the full water level of the water storage unit 210, the overflow water level detection unit 226 can detect that the water storage unit 210 has reached the overflow water level. Thus, the possibility of erroneous detection of the full water level detection unit 225 can be determined. Therefore, it is possible to suppress the frequency at which the liquid micronization apparatus 201 stops operating because it is determined to be abnormal due to the erroneous detection of the full water level detector 225.
 (実施の形態3-4)
 次いで、図17を参照して、本開示の加湿装置の実施の形態3-4に係る液体微細化装置201について説明する。図17は、実施の形態3-4に係る液体微細化装置201の鉛直方向の概略断面図である。
(Embodiment 3-4)
Next, with reference to FIG. 17, a liquid atomization device 201 according to Embodiment 3-4 of the humidifying device of the present disclosure will be described. FIG. 17 is a schematic vertical cross-sectional view of the liquid micronization apparatus 201 according to Embodiment 3-4.
 実施の形態3-3に係る液体微細化装置201は、基準水位検知部224と満水水位検知部225とオーバーフロー水位検知部226とが鉛直方向において重なる位置に設けられている。これに対し、実施の形態3-4に係る液体微細化装置201は、図17に示す通り、実施の形態3-3に係る満水水位検知部225と同様の構成及び機能を有する満水水位検知部236と、実施の形態3-3に係るオーバーフロー水位検知部226と同様の構成及び機能を有するオーバーフロー水位検知部237と、基準水位検知部224とは、鉛直方向において重ならない位置に配置することを特徴としている。 The liquid atomization apparatus 201 according to Embodiment 3-3 is provided at a position where the reference water level detection unit 224, the full water level detection unit 225, and the overflow water level detection unit 226 overlap in the vertical direction. On the other hand, as shown in FIG. 17, the liquid atomization apparatus 201 according to Embodiment 3-4 has a full water level detection unit having the same configuration and function as the full water level detection unit 225 according to Embodiment 3-3. 236, the overflow water level detection unit 237 having the same configuration and function as the overflow water level detection unit 226 according to Embodiment 3-3, and the reference water level detection unit 224 are arranged at positions that do not overlap in the vertical direction. It has a feature.
 実施の形態3-2においても説明した通り、基準水位検知部224は、常に空気中に存在するが、貯水部210に貯水された水の蒸発あるいは加湿された空気の通過等によって、基準水位検知部224の周辺に水滴が付着する可能性がある。また、オーバーフロー水位検知部237は、貯水部210に貯水された水の蒸発あるいは加湿された空気の通過等の影響の他、オーバーフロー水位まで貯水されていた水によって、オーバーフロー水位検知部237の周辺に水滴が付着する可能性がある。そして、これらの付着した水滴が鉛直方向に落下する場合が生じ得る。 As described in Embodiment 3-2, the reference water level detection unit 224 is always present in the air, but the reference water level detection unit 224 detects the reference water level by evaporating the water stored in the water storage unit 210 or passing humidified air. Water droplets may be attached around the portion 224. In addition, the overflow water level detection unit 237 may not be affected by evaporation of water stored in the water storage unit 210, passage of humidified air, or the like, and the overflow water level detection unit 237 may be caused by the water stored up to the overflow water level. Water droplets may adhere. Then, these adhered water drops may fall in the vertical direction.
 実施の形態3-4に係る液体微細化装置201は、満水水位検知部236とオーバーフロー水位検知部237と基準水位検知部224とが、鉛直方向において重ならない位置に配置されている。よって、満水水位検知部236が、基準水位検知部224やオーバーフロー水位検知部237から落下する水滴により濡れることを抑制でき、空気中に存在しているにもかかわらず水中に存在している場合の電圧値を出力するおそれを抑制できる。また、オーバーフロー水位検知部237が、基準水位検知部224から落下する水滴により濡れることを抑制でき、空気中に存在しているにもかかわらず水中に存在している場合の電圧値を出力するおそれを抑制できる。 In the liquid atomizer 201 according to Embodiment 3-4, the full water level detection unit 236, the overflow water level detection unit 237, and the reference water level detection unit 224 are arranged at positions that do not overlap in the vertical direction. Therefore, it is possible to prevent the full water level detection unit 236 from getting wet with water drops falling from the reference water level detection unit 224 and the overflow water level detection unit 237, and in the case where the water level detection unit 236 exists in the water although it exists in the air. It is possible to suppress the risk of outputting a voltage value. Further, the overflow water level detection unit 237 can be prevented from getting wet with water droplets falling from the reference water level detection unit 224, and there is a risk of outputting a voltage value in the case where the overflow water level detection unit 237 exists in the water although it exists in the air. Can be suppressed.
 従って、実施の形態3-4に係る液体微細化装置201は、実施の形態3-3に係る液体微細化装置201の奏する効果に加え、貯水部210の水位の誤検知をより確実に抑制できる。 Therefore, the liquid micronization apparatus 201 according to Embodiment 3-4 can more reliably suppress erroneous detection of the water level of the water storage section 210, in addition to the effect of the liquid micronization apparatus 201 according to Embodiment 3-3. ..
 以上、実施の形態に基づき本開示を説明したが、本開示は上記実施の形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 Although the present disclosure has been described above based on the embodiment, the present disclosure is not limited to the above embodiment, and various improvements and modifications can be made without departing from the gist of the present disclosure. It can be easily guessed. For example, the numerical values mentioned in the above embodiment are examples, and it is naturally possible to adopt other numerical values.
 例えば、上記各実施の形態に係る液体微細化装置201において、異常カウンタを設けてもよい。液体微細化装置201は、S17の満水水位の判断処理において否定判断された数を異常カウンタによりカウントし、異常カウンタの数が所定数(例えば3)以上となった場合に、S18による異常の報知を行う。この場合、S17の満水水位の判断処理において否定判断されても、異常カウンタの数が所定数未満であれば、一旦、貯水部10の水を排水して、再びS5の処理からリトライするようにしてもよい。これにより、結果として異常はなかった場合にも異常の報知がなされることを抑制できる。 For example, an abnormality counter may be provided in the liquid micronization apparatus 201 according to each of the above embodiments. The liquid atomization apparatus 201 counts the number of negative determinations in the full water level determination process of S17 using the abnormality counter, and when the number of abnormality counters is equal to or greater than a predetermined number (for example, 3), notifies the abnormality of S18. I do. In this case, even if a negative determination is made in the process of determining the full water level in S17, if the number of abnormality counters is less than the predetermined number, the water in the water storage unit 10 is once drained, and the process of S5 is retried again. May be. Thereby, even if there is no abnormality as a result, the notification of the abnormality can be suppressed.
 上記各実施の形態に係る液体微細化装置201は、例えば、熱交換気装置に搭載されてもよい。熱交換気装置は、建物の室内に設けられた室内吸込口及び給気口と、建物の屋外に設けられた排気口及び外気吸込口と、本体内に設けられた熱交換素子とを備えたものである。 The liquid atomization device 201 according to each of the above-described embodiments may be mounted on, for example, a heat exchange device. The heat exchange device includes an indoor intake port and an air supply port provided inside the building, an exhaust port and an external air intake port provided outside the building, and a heat exchange element provided inside the main body. It is a thing.
 室内吸込口は、室内の空気を吸い込み、吸い込まれた空気が排気口より屋外へ排気される。また、外気吸込口は、屋外の外気を吸い込み、吸い込まれた外気が給気口より室内へ給気される。このとき、室内吸込口から排気口へ送られる空気と、外気吸込口から給気口へ送られる外気との間で、熱交換素子により熱交換が行われる。  The indoor suction port sucks in the indoor air, and the sucked air is exhausted to the outside through the exhaust port. Further, the outside air suction port sucks in outside air, and the sucked outside air is supplied to the room through the air supply port. At this time, heat exchange is performed by the heat exchange element between the air sent from the indoor suction port to the exhaust port and the external air sent from the outdoor air suction port to the air supply port.
 熱交換気装置の機能の一つとして、加湿目的の水気化装置あるいは殺菌/消臭目的での次亜塩素酸気化装置といった液体を気化させる装置が組み込まれたものがある。熱交換気装置は、液体を気化させる装置として、上記各実施の形態に係る液体微細化装置201を組み込んでもよい。具体的には、熱交換気装置の給気口側に、液体微細化装置1が設けられてもよい。 As one of the functions of the heat exchange air device, there is one that incorporates a device that vaporizes liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization. The heat exchange gas device may incorporate the liquid atomization device 201 according to each of the above embodiments as a device for vaporizing a liquid. Specifically, the liquid atomization device 1 may be provided on the air supply port side of the heat exchange air device.
 液体微細化装置201を備えた熱交換気装置は、熱交換素子による熱交換が行われた外気に対して、液体微細化装置201により加湿された水又は次亜塩素酸を含め、給気口より室内へ供給する。これらの液体を気化させるための機構として液体微細化装置201を用いることで、より小型でエネルギー効率のよい熱交換気装置を得ることができる。 The heat exchange air device provided with the liquid atomization device 201 includes an air supply port including the water or hypochlorous acid humidified by the liquid atomization device 201 with respect to the outside air that has undergone heat exchange by the heat exchange element. Supply more indoors. By using the liquid atomization device 201 as a mechanism for vaporizing these liquids, it is possible to obtain a heat exchange gas device having a smaller size and higher energy efficiency.
 また、上記各実施の形態に係る液体微細化装置201は、空気清浄機あるいは空気調和機に備えられてもよい。空気清浄機あるいは空気調和機における機能の一つとして、加湿目的の水気化装置あるいは殺菌/消臭目的での次亜塩素酸気化装置といった液体を気化させる装置が組み込まれたものがある。この装置として、液体微細化装置201を用いることで、より小型でエネルギー効率のよい空気清浄機又は空気調和機を得ることができる。 Further, the liquid atomization device 201 according to each of the above embodiments may be provided in an air purifier or an air conditioner. As one of the functions of an air purifier or an air conditioner, there is one that incorporates a device for vaporizing a liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization. By using the liquid atomization device 201 as this device, it is possible to obtain a smaller and more energy efficient air cleaner or air conditioner.
 上記各実施の形態では、加湿装置として液体微細化装置201を例として説明したが、必ずしもこれに限られるものではなく、貯水部が設けられ、貯水部の水位を判定しながら水を給水する加湿装置であれば、本開示を適用可能である。 In each of the above-described embodiments, the liquid micronization device 201 is described as an example of the humidifying device, but the humidifying device is not necessarily limited to this, and a water storage unit is provided and water is supplied while determining the water level of the water storage unit. The present disclosure can be applied to any device.
 (実施の形態4)
 従来より、吸い込んだ空気に対して、貯水部に貯水された水を含ませて加湿し、加湿した空気を吹き出す加湿装置がある(例えば、特許文献3)。特許文献3に記載の加湿装置では、貯水部内の水位を水位センサにて検知して少なくとも自動給水弁を制御し、貯水部の水位を所定量まで満たしている。
(Embodiment 4)
2. Description of the Related Art Conventionally, there is a humidifying device that humidifies the sucked air by containing the water stored in a water storage unit and blows out the humidified air (for example, Patent Document 3). In the humidifying device described in Patent Document 3, the water level in the water storage section is detected by a water level sensor and at least the automatic water supply valve is controlled to fill the water level in the water storage section up to a predetermined amount.
 しかしながら、特許文献3に記載の加湿装置では、自動給水弁が自己の故障を加湿装置に出力するものを用いない限り、自動給水弁が故障していたとしてもそのことを検知できない。よって、自動給水弁の故障により貯水部の貯水ができない異常が発生していたとしても、加湿装置を使用するユーザは、その異常を把握しづらいという問題点がある。 However, in the humidifier described in Patent Document 3, unless the automatic water supply valve outputs its own failure to the humidifier, even if the automatic water supply valve fails, it cannot be detected. Therefore, even if there is an abnormality in which water cannot be stored in the water storage unit due to a failure of the automatic water supply valve, it is difficult for the user who uses the humidifying device to grasp the abnormality.
 本開示は、上記課題を解決するためになされたものであり、給水部の故障による異常を使用者に報知可能な加湿装置及び換気装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a humidifying device and a ventilation device capable of notifying a user of an abnormality due to a failure of a water supply unit.
 この目的を達成するために、本開示の加湿装置は、空気を吸い込む吸込口と、吸込口より吸い込まれた空気を吹き出す吹出口と、加湿部と、貯水部と、給水部と、第一水位検知部と、報知部と、を備える。加湿部は、吸込口と吹出口との間の風路内に設けられ、空気を加湿する。貯水部は、加湿部により空気を加湿するための水を貯水する。第一水位検知部は、貯水部に水を供給する給水部と、貯水部の中に設けられ、貯水部の第一の水位を検知する。報知部は、給水部が給水を開始した後、第一の所定時間経過後に第一水位検知部が第一の水位を検知しなかった場合、給水異常を報知する。 In order to achieve this object, the humidifying device of the present disclosure includes a suction port that sucks in air, an air outlet that blows out the air sucked from the suction port, a humidifying section, a water storage section, a water supply section, and a first water level. A detection unit and a notification unit are provided. The humidifying unit is provided in the air passage between the suction port and the air outlet and humidifies the air. The water storage unit stores water for humidifying the air by the humidification unit. The first water level detection unit is provided in the water supply unit that supplies water to the water storage unit and the water storage unit, and detects the first water level of the water storage unit. The notification unit reports a water supply abnormality when the first water level detection unit does not detect the first water level after a lapse of the first predetermined time after the water supply unit starts water supply.
 また、加湿装置は、第一の水位より高い貯水部の第二水位を検知する第二水位検知部を備えてもよい。そして、加湿装置は、給水部が給水を開始した後、第一水位検知部が第一の水位を検知する前に第二水検知部が第二の水位を検知した場合に、給水を停止させる。 The humidifying device may also include a second water level detection unit that detects the second water level in the water storage unit that is higher than the first water level. Then, the humidifier stops the water supply after the water supply unit starts the water supply and the second water detection unit detects the second water level before the first water level detection unit detects the first water level. ..
 また、加湿装置は、給水部が給水を開始した後、第一の所定時間よりも短い第二の所定時間経過後に給水を停止させてもよい。 Further, the humidifier may stop the water supply after the water supply unit starts the water supply and after a second predetermined time shorter than the first predetermined time has elapsed.
 また、加湿装置は、給水部が給水を開始した後、第一の所定時間よりも短く第二の所定時間よりも長い第三の所定時間経過後に、第一水位検知部が水位を検知しなかった場合、給水部による給水を再度行ってもよい。 Further, the humidifying device, after the water supply unit starts water supply, after the third predetermined time shorter than the first predetermined time and longer than the second predetermined time, the first water level detection unit does not detect the water level. In the case of water supply, water may be supplied again by the water supply section.
 また、加湿部は、貯水部の水を排水する排水部を備えてもよい。そして、報知部は、排水部が排水を開始した後、第四の所定時間経過後に水位検知部が水位を検知している場合、排水異常を報知する。 Also, the humidifying section may be provided with a drainage section for draining the water in the water storage section. Then, when the water level detection unit detects the water level after the fourth predetermined time has elapsed after the drainage unit started draining, the notification unit notifies the drainage abnormality.
 また、本開示の換気装置は、筐体と、給気風路と、排気風路と、給気ファンと、排気ファンと、室内側湿度センサと、を備える。筐体は、室外側吸込口と室外側吹出口と室内側吸込口と室内側吹出口とを有する。給気風路は、室外側吸込口と室内側吹出口とを連通する。排気風路は、室内側吸込口と室外側吹出口とを連通する。給気ファンは、給気風路に設けられ、室外側吸込口から室内側吹出口へ空気を導く。排気ファンは、排気風路に設けられ、室内側吸込口から室外側吹出口へ空気を導く。室内側湿度センサは、室内側吸込口から吸い込まれる空気の湿度を検出する。給気風路に本開示の加湿装置が設けられ、加湿装置は、室外側吸込口から吸い込んだ空気を加湿する。 Further, the ventilation device of the present disclosure includes a housing, an air supply air passage, an exhaust air passage, an air supply fan, an exhaust fan, and an indoor humidity sensor. The housing has an outdoor inlet, an outdoor outlet, an indoor inlet, and an indoor outlet. The air supply air passage connects the outdoor suction port and the indoor air outlet. The exhaust air passage connects the indoor suction port and the outdoor air outlet. The air supply fan is provided in the air supply air passage, and guides air from the outdoor suction port to the indoor air outlet. The exhaust fan is provided in the exhaust air passage, and guides air from the indoor suction port to the outdoor air outlet. The indoor humidity sensor detects the humidity of the air sucked from the indoor suction port. The humidifying device of the present disclosure is provided in the air supply passage, and the humidifying device humidifies the air sucked from the outdoor suction port.
 本開示の加湿装置及び換気装置によれば、給水部が貯水部に給水を開始した後、第一の所定時間経過後に、貯水部の第一の水位を検知する第一水位検知部が水位を検知しなかった場合、報知部によって給水異常が報知される。これにより、本開示は、給水部の故障による異常を使用者に報知可能な加湿装置及び換気装置を提供できるという効果がある。 According to the humidifier and the ventilation device of the present disclosure, after the water supply unit starts supplying water to the water storage unit, after the first predetermined time has elapsed, the first water level detection unit that detects the first water level of the water storage unit changes the water level. If not detected, the notification unit notifies of the water supply abnormality. As a result, the present disclosure has an effect of providing a humidifying device and a ventilation device that can notify the user of an abnormality due to a failure of the water supply unit.
 以下、本開示を実施するための形態について添付図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。従って、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。 Hereinafter, modes for carrying out the present disclosure will be described with reference to the accompanying drawings. It should be noted that each of the embodiments described below shows a preferred specific example of the present disclosure. Therefore, numerical values, shapes, materials, constituent elements, arrangement positions of constituent elements, connection forms, and the like shown in the following embodiments are merely examples and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, the constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements. In addition, in each drawing, the same reference numerals are given to substantially the same configurations, and overlapping description will be omitted or simplified.
 まず、図18~図20を参照して、本開示の換気装置の一実施の形態に係る熱交換気装置350と、本開示の加湿装置の一実施の形態に係る液体微細化装置301の概略構成について説明する。図18は、本開示の実施の形態4に係る熱交換気装置350の概略図である。図19は、本開示の実施の形態4に係る液体微細化装置301の斜視図である。図20は、本開示の実施の形態4に係る液体微細化装置301の鉛直方向の概略断面図である。 First, with reference to FIG. 18 to FIG. 20, an outline of a heat exchange air device 350 according to an embodiment of a ventilation device of the present disclosure and a liquid atomization device 301 according to an embodiment of a humidification device of the present disclosure. The configuration will be described. FIG. 18 is a schematic diagram of the heat exchange apparatus 350 according to Embodiment 4 of the present disclosure. FIG. 19 is a perspective view of the liquid micronization apparatus 301 according to Embodiment 4 of the present disclosure. FIG. 20 is a schematic vertical cross-sectional view of the liquid micronization apparatus 301 according to Embodiment 4 of the present disclosure.
 熱交換気装置350は、図18に示すように、筐体352に、室外側吸込口355と室外側吹出口354と室内側吸込口356と室内側吹出口357とを有している。また、熱交換気装置350は、室外側吸込口355と室内側吹出口357とを連通する給気風路358と、室内側吸込口356と室外側吹出口354とを連通する排気風路359とを備えている。 As shown in FIG. 18, the heat-exchanger device 350 has a housing 352 having an outdoor-side suction port 355, an outdoor-side air outlet 354, an indoor-side suction port 356, and an indoor-side air outlet 357. In addition, the heat exchange air device 350 includes an air supply air passage 358 that connects the outdoor suction port 355 and the indoor air outlet 357, and an exhaust air passage 359 that communicates the indoor air suction port 356 and the outdoor air outlet 354. Is equipped with.
 室外側吸込口355から導入される新鮮な屋外空気(外気、給気空気)と、室内側吸込口356から導入される汚染された室内空気(排気空気)は、給気ファン362と排気ファン363との運転によりそれぞれ給気風路358と排気風路359とを流れる。 The fresh outdoor air (outside air, supply air) introduced from the outdoor suction port 355 and the contaminated indoor air (exhaust air) introduced from the indoor suction port 356 are supplied to the air supply fan 362 and the exhaust fan 363. And the exhaust air passage 359, respectively.
 給気ファン362は、給気風路358において後述の熱交換素子364より下流側に設けられ、室外側吸込口355から吸い込んだ給気空気を、給気風路358を通して室内側吹出口357へ導く。室内側吹出口357へ導かれた空気は室内へ供給される。一方、排気ファン363は、排気風路359において熱交換素子364より下流側に設けられ、室内側吸込口356から吸い込んだ排気空気を、排気風路359を通して室外側吹出口354へ導く。室外側吹出口354へ導かれた空気は、室外に排気される。 The air supply fan 362 is provided in the air supply air passage 358 on the downstream side of a heat exchange element 364, which will be described later, and guides the air supply air sucked from the outdoor suction port 355 to the indoor air outlet 357 through the air supply air passage 358. The air guided to the indoor air outlet 357 is supplied indoors. On the other hand, the exhaust fan 363 is provided in the exhaust air passage 359 on the downstream side of the heat exchange element 364, and guides the exhaust air sucked from the indoor suction port 356 to the outdoor air outlet 354 through the exhaust air passage 359. The air guided to the outdoor air outlet 354 is exhausted to the outside.
 給気風路358と排気風路359とが交差する位置には、熱交換素子364が配置される。熱交換素子364は、給気風路358を通過する給気空気と、排気風路359を通過する排気空気との間で全熱交換方式による熱交換を行う。熱交換素子364により、排気される空気の全熱(温度および湿度)が給気される空気に供給される、または、給気される空気の全熱が排気される空気に供給される。 A heat exchange element 364 is arranged at a position where the supply air passage 358 and the exhaust air passage 359 intersect. The heat exchange element 364 performs heat exchange by the total heat exchange method between the supply air passing through the supply air passage 358 and the exhaust air passing through the exhaust air passage 359. By the heat exchange element 364, the total heat (temperature and humidity) of the exhausted air is supplied to the supplied air, or the total heat of the supplied air is supplied to the exhausted air.
 給気風路358において熱交換素子364よりも室外側吸込口355側に室外側湿度センサ367が配設され、排気風路359において熱交換素子364よりも室内側吸込口356側に室内側湿度センサ366が配設されている。 In the supply air passage 358, an outdoor humidity sensor 367 is disposed closer to the outdoor suction port 355 side than the heat exchange element 364, and in the exhaust air passage 359, an indoor humidity sensor closer to the indoor suction port 356 side than the heat exchange element 364. 366 is provided.
 室外側湿度センサ367は、室外側吸込口355から吸い込まれる給気空気(屋外空気)の湿度を検出する。室内側湿度センサ366は、室内側吸込口356から吸い込まれる排気空気(室内空気)の湿度を検出する。 The outdoor humidity sensor 367 detects the humidity of the supply air (outdoor air) sucked from the outdoor suction port 355. The indoor humidity sensor 366 detects the humidity of exhaust air (indoor air) sucked from the indoor suction port 356.
 また、給気風路358において給気ファン362よりも下流側(室内側吹出口357側)に液体微細化装置301が配設される。液体微細化装置301は、室外側吸込口355から吸い込んだ給気空気を加湿する。即ち、室内側吹出口357からは液体微細化装置301により加湿された給気空気が室内へ供給される。熱交換気装置350は、液体微細化装置301における加湿量を制御することにより、室内空気に含まれる水分量が、目標とする水分量である目標水分量となるように制御する。 Further, in the air supply air passage 358, the liquid atomization device 301 is arranged downstream of the air supply fan 362 (on the side of the indoor-side outlet 357). The liquid atomization device 301 humidifies the supply air sucked from the outdoor suction port 355. That is, the supply air humidified by the liquid atomization device 301 is supplied to the room from the indoor side outlet 357. The heat exchange air device 350 controls the humidification amount in the liquid atomization device 301 so that the amount of water contained in the room air becomes a target amount of water, which is a target amount of water.
 液体微細化装置301は、図19に示す通り、空気を吸い込む吸込口302と、内筒305と、外筒309と、空気を吹き出す吹出口303と、を備える。内筒305は、吸込口302と連通し下方が通風口307(図20参照)として開放されている。外筒309は、内筒5を内包している。吹出口3は、外筒209の上方に設けられ、吸込口2より吸い込まれ、内筒5及び外筒9を通過した空気を吹き出す。 As shown in FIG. 19, the liquid atomization device 301 includes a suction port 302 that sucks in air, an inner cylinder 305, an outer cylinder 309, and an air outlet 303 that blows out air. The inner cylinder 305 communicates with the suction port 302, and the lower part is opened as a ventilation port 307 (see FIG. 20). The outer cylinder 309 includes the inner cylinder 5. The air outlet 3 is provided above the outer cylinder 209, and blows out the air that has been sucked in through the suction opening 2 and has passed through the inner cylinder 5 and the outer cylinder 9.
 液体微細化装置301には、図20に示す通り、吸込口302と吹出口303との間に、吸込連通風路304と、内筒風路306と、外筒風路308と、が形成されている。吸込連通風路304は、吸込口302で吸い込まれた空気が連通する内筒305に向けて流れる風路である。内筒風路306は、内筒305内部に形成される風路であり、吸込連通風路304から流れた空気が内筒305の通風口307に向けて流れる風路である。外筒風路308は、外筒309の内径と内筒305の外径との間に形成される風路であり、内筒305の通風口307より吹き出された空気が外筒309の内側を通って吹出口303へと導かれる風路である。 As shown in FIG. 20, the liquid atomizer 301 has a suction communication air passage 304, an inner cylinder air passage 306, and an outer cylinder air passage 308 between the suction port 302 and the air outlet 303. ing. The suction communication air passage 304 is an air passage through which the air sucked in by the suction port 302 flows toward the inner cylinder 305 which is in communication. The inner cylinder air passage 306 is an air passage formed inside the inner cylinder 305, and the air flowing from the suction communication air passage 304 flows toward the ventilation port 307 of the inner cylinder 305. The outer cylinder air passage 308 is an air passage formed between the inner diameter of the outer cylinder 309 and the outer diameter of the inner cylinder 305, and the air blown out from the ventilation port 307 of the inner cylinder 305 moves inside the outer cylinder 309. It is an air passage that leads to the air outlet 303.
 液体微細化装置301は、これら吸込連通風路304、内筒風路306、外筒風路308にて形成される風路内に設けられた液体微細化部319を備える。液体微細化装置301は、液体微細化部319により微細化された水をその風路に流れる空気に含めることで、吸込口302から吸い込んだ空気を加湿する。液体微細化部319が、本開示の加湿部である。 The liquid atomizing device 301 includes a liquid atomizing unit 319 provided in the air passage formed by the suction communication air passage 304, the inner cylinder air passage 306, and the outer cylinder air passage 308. The liquid atomizer 301 humidifies the air sucked from the suction port 302 by including the water atomized by the liquid atomizer 319 in the air flowing through the air passage. The liquid atomization unit 319 is the humidification unit of the present disclosure.
 液体微細化部319は、液体微細化装置301の主要部であり、水の微細化を行うところである。液体微細化装置301では、吸込口302で取り込んだ空気が、吸込連通風路304を経由して液体微細化部319へ送られる。そして、液体微細化装置301は、内筒風路306を通る空気に、液体微細化部319にて微細化された水を含ませて、水を含んだ空気を、外筒風路308を経由して吹出口303より吹き出すように構成されている。 The liquid refining unit 319 is a main part of the liquid refining apparatus 301, and is for refining water. In the liquid micronization apparatus 301, the air taken in by the suction port 302 is sent to the liquid micronization unit 319 via the suction communication air passage 304. Then, the liquid micronization apparatus 301 causes the air passing through the inner tube air passage 306 to include the water atomized by the liquid atomizing unit 319, and the air containing the water passes through the outer tube air passage 308. Then, the air is blown out from the air outlet 303.
 液体微細化部319は、上方および下方が開口された衝突壁305aを備えている。衝突壁305aは、内筒305の内側に固定されることで設けられている。また、液体微細化部319には、衝突壁305aに囲まれた内側において、回転しながら水を汲み上げる(揚水する)筒状の揚水管321が備えられている。揚水管321は、逆円錐形の中空構造となっており、逆円錐形状の天面中心に、鉛直方向に向けて配置された回転軸320が固定されている。回転軸320が、液体微細化部319の外面に備えられた回転モータ323と接続されることで、回転モータ323の回転運動が回転軸320を通じて揚水管321に伝導され、揚水管321が回転する。 The liquid atomization unit 319 includes a collision wall 305a that is open at the top and the bottom. The collision wall 305a is provided by being fixed inside the inner cylinder 305. Further, the liquid atomization unit 319 is provided with a tubular pumping pipe 321 that is pumped (pumped up) while rotating while being surrounded by the collision wall 305a. The pumping pipe 321 has a hollow structure of an inverted conical shape, and a rotating shaft 320 arranged in the vertical direction is fixed to the center of the upper surface of the inverted conical shape. When the rotary shaft 320 is connected to the rotary motor 323 provided on the outer surface of the liquid atomization unit 319, the rotary motion of the rotary motor 323 is transmitted to the pump pipe 321 through the rotary shaft 320, and the pump pipe 321 rotates. ..
 図20に示す通り、揚水管321は、揚水管321の外面から外側に突出するように形成された回転板322を複数備えている。複数の回転板322は、回転軸320の軸方向に所定間隔を設けて、揚水管321の外面から外側に突出するように形成されている。回転板322は揚水管321とともに回転するため、回転軸320と同軸の水平な円盤形状が好ましい。なお、回転板322の枚数は、目標とする性能や揚水管321の寸法に合わせて適宜設定されるものである。 As shown in FIG. 20, the pumping pipe 321 includes a plurality of rotating plates 322 formed so as to project outward from the outer surface of the pumping pipe 321. The plurality of rotary plates 322 are formed at predetermined intervals in the axial direction of the rotary shaft 320 so as to project outward from the outer surface of the pumping pipe 321. Since the rotating plate 322 rotates together with the pumping pipe 321, a horizontal disk shape coaxial with the rotating shaft 320 is preferable. The number of rotating plates 322 is appropriately set according to the target performance and the dimensions of the pumping pipe 321.
 また、揚水管321の壁面には、揚水管321の壁面を貫通する開口(図示せず)が設けられている。揚水管321の開口は、揚水管321の外面から外側に突出するように形成された回転板322と連通する位置に設けられている。開口の周方向の大きさは、揚水管321の開口が設けられた部位の外径に合わせてそれぞれ設計する必要があり、例えば揚水管321の外径の5%から50%に相当する径、より好ましくは、揚水管321の5%から20%に相当する径が挙げられる。なお、上記範囲内において、各開口の寸法を同一のものとしてもよい。 Also, the wall surface of the pumping pipe 321 is provided with an opening (not shown) penetrating the wall surface of the pumping pipe 321. The opening of the pumping pipe 321 is provided at a position communicating with the rotary plate 322 formed so as to project outward from the outer surface of the pumping pipe 321. The size of the opening in the circumferential direction needs to be designed in accordance with the outer diameter of the portion of the pumping pipe 321 where the opening is provided. For example, a diameter corresponding to 5% to 50% of the outer diameter of the pumping pipe 321. More preferably, the diameter corresponding to 5% to 20% of the pumping pipe 321 is mentioned. It should be noted that the sizes of the openings may be the same within the above range.
 液体微細化部319の下部には、揚水管321の鉛直方向下方に、揚水管321により揚水される水を貯水する貯水部310が設けられている。揚水管321によって揚水される水で空気が加湿される。貯水部310の深さは、揚水管321の下部の一部、例えば揚水管321の円錐高さの三分の一から百分の一程度の長さが浸るように設計されている。この深さは必要な揚水量に合わせて設計できる。 A water storage unit 310 that stores water pumped by the pumping pipe 321 is provided below the pumping pipe 321 in the vertical direction below the liquid atomization unit 319. The air is humidified by the water pumped by the pump pipe 321. The depth of the water storage section 310 is designed so that a part of the lower portion of the pumping pipe 321 is immersed, for example, about one third to one hundredth of the cone height of the pumping pipe 321. This depth can be designed according to the required pumping volume.
 貯水部310への水の供給は、給水部315により行われる。給水部315には、給水管316が接続されており、例えば水道から給水弁317を通じて、給水管316により直接給水する。なお、給水部315は、あらかじめ液体微細化部319外に備えられた水タンクからサイフォンの原理で必要な水量のみ汲みあげて、貯水部310へ水を供給するように構成されてもよい。給水部315は、貯水部310の底面よりも鉛直方向上方に設けられている。なお、給水部315は、貯水部310の底面だけでなく、貯水部310の上面(貯水部310に貯水され得る最大水位の面)よりも鉛直方向上方に設けられるのが好ましい。 The water supply unit 315 supplies water to the water storage unit 310. A water supply pipe 316 is connected to the water supply unit 315, and water is directly supplied from the water supply through the water supply valve 317 through the water supply pipe 316, for example. The water supply unit 315 may be configured to pump up only the required amount of water according to the siphon principle from a water tank provided outside the liquid atomization unit 319 and supply water to the water storage unit 310. The water supply unit 315 is provided vertically above the bottom surface of the water storage unit 310. The water supply unit 315 is preferably provided not only on the bottom surface of the water storage unit 310 but also vertically above the upper surface of the water storage unit 310 (the surface of the maximum water level that can be stored in the water storage unit 310).
 貯水部310の底面中央には、排水部311が設けられている。排水部311の排水口は、貯水部310の最も低い位置に設けられている。水の微細化の運転を停止させた場合、排水部311に設けられた排水弁312を開けることで、貯水部310に貯水された水が、排水部311から排水される。 A drainage unit 311 is provided at the center of the bottom surface of the water storage unit 310. The drainage port of the drainage unit 311 is provided at the lowest position of the water storage unit 310. When the operation of water refining is stopped, the water stored in the water storage unit 310 is drained from the drainage unit 311 by opening the drainage valve 312 provided in the drainage unit 311.
 なお、排水弁312は必ずしも設けらなくてもよい。この場合、排水部311における止水および排水は、揚水管321の回転によって実現される。即ち、揚水管321が回転されると、その回転の遠心力によって、揚水管321内部で貯水部310の水に渦が発生する。そして、揚水管321は、その回転によって発生する渦中心底部と、排水部311の排水口との間で、空隙を形成する。これにより、貯水部310の水が排水部311から排水されることを抑制できる。一方、揚水管321の回転が停止されると、排水部311の排水口に貯水部310の水が流れ込む。これにより、貯水部310の水を排水部311から排水できる。 Note that the drain valve 312 does not necessarily have to be provided. In this case, stopping and draining water in the drainage unit 311 is realized by rotating the pumping pipe 321. That is, when the pump pipe 321 is rotated, a vortex is generated in the water in the water storage unit 310 inside the pump pipe 321 due to the centrifugal force of the rotation. The pumping pipe 321 forms a gap between the vortex center bottom portion generated by the rotation and the drainage port of the drainage unit 311. This can prevent the water in the water storage unit 310 from being drained from the drainage unit 311. On the other hand, when the rotation of the pumping pipe 321 is stopped, the water in the water storage unit 310 flows into the drainage port of the drainage unit 311. Thereby, the water in the water storage unit 310 can be drained from the drainage unit 311.
 貯水部310には、オーバーフロー排水口318が設けられている。貯水部310に必要以上の水が貯水された場合、水の抵抗によって揚水管321の回転が不足したり、液体微細化装置301から水漏れを起こしたり、場合によっては回転モータ323が水に浸かって故障したりする恐れがある。オーバーフロー排水口318は、そのような事態が生じすることを防ぐために設けたものであり、貯水部310において貯水された水が所定の水位以上とならないよう、所定の水位の位置に開口されている。 The water storage section 310 is provided with an overflow drain 318. If more water than necessary is stored in the water storage unit 310, the rotation of the pumping pipe 321 may be insufficient due to the resistance of the water, water may leak from the liquid atomization device 301, or the rotation motor 323 may be submerged in the water. There is a risk of malfunction. The overflow drain 318 is provided to prevent such a situation from occurring, and is opened at a predetermined water level so that the water stored in the water storage unit 310 does not exceed a predetermined water level. ..
 これにより、貯水部310に所定の水位の水が貯水されると、それ以後に水が給水されてもオーバーフロー排水口318から水が排水され、貯水部310には所定の水位以上の水が貯水されないようになっている。 As a result, when the water having a predetermined water level is stored in the water storage unit 310, the water is drained from the overflow drain port 318 even if the water is supplied thereafter, and the water having a predetermined water level or higher is stored in the water storage unit 310. It is supposed not to be done.
 液体微細化装置301には、貯水部310の第一の水位として満水の水位を検知するために、基準水位検知部324と満水水位検知部325とが設けられている。また、液体微細化装置301には、貯水部310の第二の水位としてオーバーフロー水位を検知するために、基準水位検知部324に加えてオーバーフロー水位検知部326が設けられている。 The liquid atomizer 301 is provided with a reference water level detection unit 324 and a full water level detection unit 325 in order to detect the full water level as the first water level of the water storage unit 310. In addition, the liquid atomization apparatus 301 is provided with an overflow water level detection unit 326 in addition to the reference water level detection unit 324 in order to detect the overflow water level as the second water level of the water storage unit 310.
 満水水位検知部325は、液体微細化部319による液体の微細化のために必要な貯水部310に貯水すべき水の水位を満水水位(第一の水位)として検知するものであり、NTCサーミスタにより構成される。満水水位検知部325は、オーバーフロー排水口318が設けられる所定の水位となる位置よりも低い位置に設けられる。つまり、満水水位として検知される位置は、オーバーフロー排水口318が設けられる所定の水位となる位置よりも低い位置に設定される。 The full water level detection unit 325 detects the water level of the water to be stored in the water storage unit 310 necessary for the liquid micronization by the liquid micronization unit 319 as the full water level (first water level), and the NTC thermistor. It is composed of The full water level detection unit 325 is provided at a position lower than the position where the overflow drainage port 318 is provided and which has a predetermined water level. That is, the position detected as the full water level is set to a position lower than the position where the overflow drainage port 318 is provided and which has a predetermined water level.
 オーバーフロー水位検知部326は、貯水部310の水位として、オーバーフロー排水口318の設けられた所定の水位となる前のオーバーフロー水位(第二の水位)を検知するためのものであり、満水水位検知部325と同一のNTCサーミスタにより構成される。オーバーフロー水位検知部326は、満水水位検知部325が設けられた満水水位よりも高く、オーバーフロー排水口318が設けられる所定の水位よりも低い位置に設けられる。つまり、オーバーフロー水位として検知される第二の水位は、満水水位よりも高く、オーバーフロー排水口318が設けられる所定の水位よりも低い位置に設定される。 The overflow water level detection unit 326 is for detecting the overflow water level (second water level) before the water level of the water storage unit 310 reaches a predetermined water level provided with the overflow drainage port 318, and the full water level detection unit It is composed of the same NTC thermistor as 325. The overflow water level detection unit 326 is provided at a position higher than the full water level provided with the full water level detection unit 325 and lower than a predetermined water level provided with the overflow drainage port 318. That is, the second water level detected as the overflow water level is set to a position higher than the full water level and lower than the predetermined water level at which the overflow drain port 318 is provided.
 一方、基準水位検知部324は、満水水位検知部325およびオーバーフロー水位検知部326と同一のNTCサーミスタにより構成されるもので、オーバーフロー排水口318が設けられる所定の水位となる位置よりも高い水位に設けられる。オーバーフロー排水口318により、貯水部310には所定の水位よりも高い水位に水が貯水されることはなく、基準水位検知部324は常に空気中に存在することになる。そこで、基準水位検知部324の出力値は、出力値の基準として用いられる。 On the other hand, the reference water level detection unit 324 is composed of the same NTC thermistor as the full water level detection unit 325 and the overflow water level detection unit 326, and has a water level higher than the predetermined water level at which the overflow drainage port 318 is provided. It is provided. Due to the overflow drain port 318, water is not stored in the water storage unit 310 at a water level higher than a predetermined water level, and the reference water level detection unit 324 is always present in the air. Therefore, the output value of the reference water level detection unit 324 is used as a reference for the output value.
 ここで、NTCサーミスタは、水中に存在する状態にある場合と、空気中に存在する状態にある場合とで、出力される電圧値が変化する。本実施の形態では、貯水部310に水を供給する場合に、満水水位検知部325が出力する電圧値と、基準水位検知部324が出力する電圧値とを比較する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、満水水位検知部325が水中に存在する状態となったと判断し、貯水部310に満水水位まで水が貯水されたとして、給水弁317を閉じ、給水を停止する。 ▽Here, the output voltage value of the NTC thermistor changes depending on whether it is in water or in air. In this embodiment, when water is supplied to the water storage unit 310, the voltage value output by the full water level detection unit 325 is compared with the voltage value output by the reference water level detection unit 324. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 325 is in the water, and the water is stored in the water storage unit 310 up to the full water level. Assuming that the water has been stored, the water supply valve 317 is closed and the water supply is stopped.
 また、貯水部310に水を供給する場合に、オーバーフロー水位検知部326が出力する電圧値と、基準水位検知部324が出力する電圧値とも比較する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、オーバーフロー水位検知部326が水中に存在する状態となったと判断し、貯水部310にオーバーフロー水位まで水が貯水されたと判断する。 When supplying water to the water storage unit 310, the voltage value output by the overflow water level detection unit 326 is also compared with the voltage value output by the reference water level detection unit 324. Then, when the difference between the compared voltage values is in a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 326 is in the water, and the water is stored in the water storage unit 310 up to the overflow water level. It is judged that the water has been stored.
 貯水部310への給水時に満水水位となったことが検出されて給水が停止されれば、貯水部310がオーバーフロー水位となることはない。これに対し、満水水位検知部325により貯水部310が満水水位となったことを検知していない状態で、オーバーフロー水位検知部326により貯水部310がオーバーフロー水位となったことを検知した場合、満水水位検知部325による満水水位の検知に誤動作が生じているか、満水水位検知部325が故障している可能性がある。詳細については後述するが、この場合、給水弁317を閉じて給水を停止し、所定の時間経過後に再度、満水水位検知部325を用いて貯水部310が満水水位となっているか否かを判定する。 If the water level is detected and the water level is stopped when water is supplied to the water storage unit 310, the water storage unit 310 will not reach the overflow water level. On the other hand, when the overflow water level detection unit 326 detects that the water storage unit 310 has reached the overflow water level while the full water level detection unit 325 has not detected that the water storage unit 310 has reached the full water level, There is a possibility that a malfunction has occurred in the detection of the full water level by the water level detection unit 325, or the full water level detection unit 325 may be out of order. Although the details will be described later, in this case, the water supply valve 317 is closed to stop the water supply, and after the elapse of a predetermined time, the full water level detection unit 325 is used again to determine whether or not the water storage unit 310 is at the full water level. To do.
 ここで、基準水位検知部324と満水水位検知部325およびオーバーフロー水位検知部326とでは、同一のNTCサーミスタを用いたとしても、サーミスタの特性のばらつきにより、同一の環境下であっても出力される電圧値にばらつきが生じる。そこで、本実施の形態では、基準水位検知部324が出力する電圧値を用いて満水水位検知部325が出力する電圧値およびオーバーフロー水位検知部326が出力する電圧値の補正を行う。 Here, even if the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 use the same NTC thermistor, due to variations in the characteristics of the thermistor, they are output even in the same environment. Voltage values vary. Therefore, in the present embodiment, the voltage value output by the reference water level detection unit 324 is used to correct the voltage value output by the full water level detection unit 325 and the voltage value output by the overflow water level detection unit 326.
 例えば、液体微細化装置301に初めて通電が行われて、基準水位検知部324、満水水位検知部325およびオーバーフロー水位検知部326から出力される電圧が安定する時間(例えば5分)経過後に、補正を実施する。また、一定時間経過(例えば24時間)毎に実行される乾燥動作が行われる後にも、補正を実施する。つまり、貯水部310が渇水状態にあり、基準水位検知部324と満水水位検知部325とオーバーフロー水位検知部326とが同一環境下にあって、理想的には同一の電圧値が出力される状況の中で、補正が実施される。 For example, when the liquid atomization device 301 is first energized and the voltage output from the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 stabilizes (for example, 5 minutes), the correction is performed. Carry out. In addition, the correction is performed even after the drying operation that is performed at regular time intervals (for example, 24 hours) is performed. That is, the water storage unit 310 is in a drought state, the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 are in the same environment, and ideally the same voltage value is output. In, the correction is carried out.
 補正は、基準水位検知部324より出力される電圧値から満水水位検知部325より出力される電圧値を引いて得られる電圧値の差を、満水水位検知部325に係るオフセット電圧値とすることで行われる。また、補正は、基準水位検知部324より出力される電圧値からオーバーフロー水位検知部326より出力される電圧値を引いて得られる電圧値の差を、オーバーフロー水位検知部326に係るオフセット電圧値とすることで行われる。 The correction is to set the difference in voltage value obtained by subtracting the voltage value output from the full water level detection unit 325 from the voltage value output from the reference water level detection unit 324 as the offset voltage value related to the full water level detection unit 325. Done in. Further, the correction is the difference in voltage value obtained by subtracting the voltage value output from the overflow water level detection unit 326 from the voltage value output from the reference water level detection unit 324 and the offset voltage value related to the overflow water level detection unit 326. It is done by doing.
 そして、以後、満水水位検知部325から実際に出力される電圧値に、満水水位検知部325に係るオフセット電圧値を加算した値が、満水水位検知部325から出力された電圧値として満水水位の検知が行われる。また、オーバーフロー水位検知部326から実際に出力される電圧値に、オーバーフロー水位検知部326に係るオフセット電圧値を加算した値が、オーバーフロー水位検知部326から出力された電圧値としてオーバーフロー水位の検知が行われる。これにより、満水水位検知部325による出力値およびオーバーフロー水位検知部326による出力値を基準水位検知部324による出力値に合わせることができるので、貯水部310の水位を精度よく検知できる。 Then, after that, the value obtained by adding the offset voltage value related to the full water level detection unit 325 to the voltage value actually output from the full water level detection unit 325 is the voltage value output from the full water level detection unit 325 as the full water level. Detection is done. Further, the value obtained by adding the offset voltage value related to the overflow water level detection unit 326 to the voltage value actually output from the overflow water level detection unit 326 is used as the voltage value output from the overflow water level detection unit 326 to detect the overflow water level. Done. Accordingly, the output value of the full water level detection unit 325 and the output value of the overflow water level detection unit 326 can be matched with the output value of the reference water level detection unit 324, so that the water level of the water storage unit 310 can be accurately detected.
 なお、満水水位検知部325による出力値およびオーバーフロー水位検知部326による出力値を、基準水位検知部324による出力値に基づいて補正する方法は、上記方法に限られるものではない。満水水位検知部325による出力値およびオーバーフロー水位検知部326が基準水位検知部324による出力値に基づいて補正されるものであれば他の方法であってもよい。 The method of correcting the output value of the full water level detection unit 325 and the output value of the overflow water level detection unit 326 based on the output value of the reference water level detection unit 324 is not limited to the above method. Other methods may be used as long as the output value of the full water level detection unit 325 and the overflow water level detection unit 326 are corrected based on the output value of the reference water level detection unit 324.
 ここで、液体微細化装置301における水の微細化の動作原理を説明する。回転モータ323により回転軸320が回転し、それに合わせて揚水管321が回転すると、その回転によって生じる遠心力により、貯水部310に貯水された水が揚水管321によって汲み上げられる。揚水管321の回転数は、1000-5000rpmの間に設定される。揚水管321は、逆円錐形の中空構造となっているため、回転によって汲み上げられた水は、揚水管321の内壁を伝って上部へ揚水される。そして、揚水された水は、揚水管321の開口から回転板322を伝って遠心方向に放出され、水滴として飛散する。 Here, the operation principle of water atomization in the liquid atomizer 301 will be described. When the rotary shaft 320 is rotated by the rotary motor 323 and the pumping pipe 321 is rotated accordingly, the water stored in the water storage unit 310 is pumped up by the pumping pipe 321 by the centrifugal force generated by the rotation. The number of rotations of the pumping pipe 321 is set between 1000 and 5000 rpm. Since the pumping pipe 321 has an inverted conical hollow structure, the water pumped up by the rotation is pumped up along the inner wall of the pumping pipe 321. Then, the pumped water is discharged from the opening of the pump pipe 321 through the rotating plate 322 in the centrifugal direction and scattered as water drops.
 回転板322から飛散した水滴は、衝突壁305aに囲まれた空間を飛翔し、衝突壁305aに衝突し、微細化される。一方、内筒風路306を通過する空気は、衝突壁305aの上方開口部から衝突壁305a内部へ移動し、衝突壁305aによって破砕(微細化)された水滴を含みながら下方開口部から衝突壁305a外部へ移動する。これにより、液体微細化装置301の吸込口302より吸い込まれた空気に対して加湿が行われ、吹出口303より加湿された空気が吹き出される。 The water droplets scattered from the rotating plate 322 fly in the space surrounded by the collision wall 305a, collide with the collision wall 305a, and are atomized. On the other hand, the air passing through the inner cylinder air passage 306 moves from the upper opening of the collision wall 305a to the inside of the collision wall 305a, and includes the water droplets crushed (miniaturized) by the collision wall 305a to the collision wall 305a. 305a Move to the outside. As a result, the air sucked through the suction port 302 of the liquid atomization device 301 is humidified, and the humidified air is blown out through the air outlet 303.
 回転板322から飛散した水の運動エネルギーは衝突壁305a内部の空気との摩擦により減衰するため、回転板322はなるべく衝突壁305aに近づけたほうが好ましい。一方で、衝突壁305aと回転板322を近づけるほど、衝突壁305a内部を通過する風量が減少するため、距離の下限値は衝突壁305a内部を通過する圧力損失と風量とで、任意に決まる。 The kinetic energy of the water scattered from the rotary plate 322 is attenuated by the friction with the air inside the collision wall 305a, so it is preferable that the rotary plate 322 be as close to the collision wall 305a as possible. On the other hand, as the collision wall 305a and the rotary plate 322 are brought closer to each other, the amount of airflow passing through the inside of the collision wall 305a decreases, so the lower limit value of the distance is arbitrarily determined by the pressure loss passing through the inside of the collision wall 305a and the amount of airflow.
 なお、微細化される液体は水以外でもよく、例えば、殺菌性/消臭性を備えた次亜塩素酸水等の液体であってもよい。微細化された次亜塩素酸水を液体微細化装置301の吸込口302より吸い込まれた空気に含ませ、次亜塩素酸水を含んだ空気を吹出口303より吹き出すことで、液体微細化装置301が置かれた空間の殺菌/消臭を行うことができる。 Note that the liquid to be atomized may be other than water, for example, a liquid such as hypochlorous acid water having bactericidal/deodorant properties. The micronized hypochlorous acid water is contained in the air sucked from the suction port 302 of the liquid micronizer 301, and the air containing the hypochlorous acid water is blown out from the blowout port 303, thereby the liquid micronizer The space where 301 is placed can be sterilized/deodorized.
 次に、図21~図23を参照して、加湿運転を実行するために液体微細化装置301にて実行される加湿運転処理について説明する。図21および図22は、加湿運転処理を示すフローチャートである。図23は、加湿運転処理の中の一処理である満水検知処理を示すフローチャートである。加湿運転処理は、液体微細化装置301に設けられた制御部(図示せず)により実行される。 Next, with reference to FIGS. 21 to 23, a humidification operation process executed by the liquid micronization apparatus 301 to execute the humidification operation will be described. 21 and 22 are flowcharts showing the humidifying operation processing. FIG. 23 is a flowchart showing a full water detection process which is one of the humidification operation processes. The humidification operation process is executed by a control unit (not shown) provided in the liquid atomization device 301.
 加湿運転処理では、まず、初回通電時水位検知部補正処理が実行される(S1)。初回通電時水位検知部補正処理では、液体微細化装置301への通電が初めてか否かを判定し、通電が初めてであれば、まず一定時間(例えば5分)待機する。待機時間は、上記した通り、基準水位検知部324、満水水位検知部325およびオーバーフロー水位検知部326から出力される電圧を安定させるための時間である。 In the humidification operation process, first, the water level detection unit correction process during the first energization is executed (S1). In the water level detection unit correction process during the first energization, it is determined whether or not the liquid micronization apparatus 301 is energized for the first time. As described above, the standby time is a time for stabilizing the voltage output from the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326.
 そして、一定時間経過後、貯水部310が渇水状態にある中で、基準水位検知部324、満水水位検知部325およびオーバーフロー水位検知部326から出力される電圧値から上記の満水水位検知部325に係るオフセット電圧値およびオーバーフロー水位検知部326に係るオフセット電圧を算出する。 Then, after the elapse of a certain period of time, while the water storage unit 310 is in a drought state, the above-mentioned full water level detection unit 325 is changed from the voltage values output from the reference water level detection unit 324, the full water level detection unit 325 and the overflow water level detection unit 326. The offset voltage value and the offset voltage related to the overflow water level detector 326 are calculated.
 以後、満水水位検知部325から実際に出力される電圧値に満水水位検知部325に係るオフセット電圧値を加算した値が、満水水位検知部325から出力された電圧値として、満水水位の検知に使用される。また、オーバーフロー水位検知部326から実際に出力される電圧値にオーバーフロー水位検知部326に係るオフセット電圧値を加算した値が、オーバーフロー水位検知部326から出力された電圧値として、満水水位の検知に使用される。 After that, the value obtained by adding the offset voltage value related to the full water level detection unit 325 to the voltage value actually output from the full water level detection unit 325 is used as the voltage value output from the full water level detection unit 325 to detect the full water level. used. Further, the value obtained by adding the offset voltage value related to the overflow water level detection unit 326 to the voltage value actually output from the overflow water level detection unit 326 is used as the voltage value output from the overflow water level detection unit 326 to detect the full water level. used.
 なお、初回通電時水位検知部補正処理において、液体微細化装置301への通電が初めてでないと判定された場合は、そのままS2の処理へ移行する。 In the correction process of the water level detection unit during the first energization, if it is determined that the liquid micronization apparatus 301 is not energized for the first time, the process directly proceeds to S2.
 次いで、加湿運転処理では、貯水部310への給水を行うために、S2~S4の処理を実行する。まず、S2の処理では、排水弁312を閉じて貯水部310を止水したうえで、給水弁317を開く。これにより、給水部315が貯水部310への給水を開始する。なお、排水弁312が設けられていない場合は、上記した通り、回転モータ323をオンし揚水管321を回転させることによって、排水部311からの排水を抑制する。 Next, in the humidification operation process, the processes of S2 to S4 are executed to supply water to the water storage unit 310. First, in the process of S2, the drain valve 312 is closed to stop the water in the water storage section 310, and then the water supply valve 317 is opened. As a result, the water supply unit 315 starts supplying water to the water storage unit 310. When the drain valve 312 is not provided, as described above, the rotation motor 323 is turned on and the pumping pipe 321 is rotated to suppress drainage from the drainage unit 311.
 次に、加湿運転処理では、満水検知処理を実行する(S3)。この満水検知処理は、貯水部310に満水水位まで貯水されたか否かを検知するための処理である。ここで、図23を参照して満水検知処理の詳細について説明する。 Next, in the humidification operation process, a full water detection process is executed (S3). The full water detection process is a process for detecting whether or not the water is stored up to the full water level in the water storage unit 310. Here, details of the full water detection process will be described with reference to FIG.
 満水検知処理では、まず、貯水部310の水位が満水水位となったか否かを判断する(S20)。具体的には、S20の処理では、満水水位検知部325が出力する電圧値と、基準水位検知部324が出力する電圧値とを比較する。このとき、満水水位検知部325が出力する電圧値としては、実際に出力された電圧値に上記のオフセット電圧値を加算したものを使用する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、満水水位検知部325が水中に存在する状態となったと判断する。 In the full water detection process, first, it is determined whether or not the water level of the water storage unit 310 has reached the full water level (S20). Specifically, in the process of S20, the voltage value output by the full water level detection unit 325 is compared with the voltage value output by the reference water level detection unit 324. At this time, as the voltage value output by the full water level detection unit 325, a value obtained by adding the above-mentioned offset voltage value to the actually output voltage value is used. Then, when the difference between the compared voltage values falls within a predetermined range (for example, 0.2 V), it is determined that the full water level detection unit 325 is in the water.
 ここで、満水水位検知部325は、貯水部310の水位に応じて空気中に存在する状態と水中に存在する状態とがある。一方で、基準水位検知部324は、オーバーフロー排水口318が設けられた所定の位置よりも高い位置に設けられているので、常に空気中に存在する状態にある。従って、常に空気中に存在する状態にある基準水位検知部324から出力される電圧と、満水水位検知部325から出力される電圧とを比較することで、満水水位検知部325が水中に存在する状態となった場合に、両者の電圧の違いが確実に判定できる。その結果、貯水部310の水位の誤検知を抑制できる。なお、S20の処理は、本開示の第一水位検知部によって実行される。 Here, the full water level detection unit 325 may be in the air or in the water depending on the water level of the water storage unit 310. On the other hand, since the reference water level detection unit 324 is provided at a position higher than the predetermined position where the overflow drainage port 318 is provided, it is always in the air. Therefore, by comparing the voltage output from the reference water level detection unit 324 that is always in the air with the voltage output from the full water level detection unit 325, the full water level detection unit 325 exists in water. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 310 can be suppressed. The process of S20 is executed by the first water level detection unit of the present disclosure.
 S20の処理の結果、貯水部310の水位が満水水位となった場合は(S20:Yes)、満水検知処理を終了し、加湿運転処理に戻る。一方、S20の処理の結果、貯水部310の水位が満水水位となっていない場合は(S20:No)、次いで、給水部315が給水を開始した後、第二の所定時間(本実施の形態では5分)経過したか否かを判断する(S21)。 If, as a result of the processing in S20, the water level in the water storage unit 310 has reached the full water level (S20: Yes), the full water detection processing is terminated and the humidification operation processing is returned to. On the other hand, as a result of the process of S20, when the water level of the water storage unit 310 is not the full water level (S20: No), then after the water supply unit 315 starts the water supply, the second predetermined time (the present embodiment). Then, it is determined whether 5 minutes have passed (S21).
 また、S21の処理では、貯水部310がオーバーフロー水位となったか否かも判断する。具体的には、オーバーフロー水位検知部326が出力する電圧値と、基準水位検知部324が出力する電圧値とを比較する。このとき、オーバーフロー水位検知部326が出力する電圧値としては、実際に出力された電圧値に、オーバーフロー水位検知部26に係るオフセット電圧値を加算したものを使用する。そして、比較した電圧値の差が所定範囲(例えば、0.2V)となった場合に、オーバーフロー水位検知部326が水中に存在する状態となったと判断する。 Also, in the process of S21, it is also determined whether or not the water storage unit 310 has reached the overflow water level. Specifically, the voltage value output by the overflow water level detection unit 326 is compared with the voltage value output by the reference water level detection unit 324. At this time, as the voltage value output by the overflow water level detection unit 326, the value obtained by adding the offset voltage value related to the overflow water level detection unit 26 to the actually output voltage value is used. Then, when the difference between the compared voltage values is within a predetermined range (for example, 0.2 V), it is determined that the overflow water level detection unit 326 is in the state of being present in water.
 ここで、オーバーフロー水位検知部326は、貯水部310の水位に応じて空気中に存在する状態と水中に存在する状態とがある。一方で、基準水位検知部324は、オーバーフロー排水口318が設けられた所定の位置よりも高い位置に設けられているので、常に空気中に存在する状態にある。従って、常に空気中に存在する状態にある基準水位検知部324から出力される電圧と、オーバーフロー水位検知部326から出力される電圧とを比較することで、オーバーフロー水位検知部326が水中に存在する状態となった場合に、両者の電圧の違いが確実に判定できる。その結果、貯水部310の水位の誤検知を抑制できる。 Here, the overflow water level detection unit 326 has a state existing in air and a state existing in water depending on the water level of the water storage unit 310. On the other hand, since the reference water level detection unit 324 is provided at a position higher than the predetermined position where the overflow drainage port 318 is provided, it is always in the air. Therefore, by comparing the voltage output from the reference water level detection unit 324 that is always in the air with the voltage output from the overflow water level detection unit 326, the overflow water level detection unit 326 exists in water. In this case, the difference in voltage between the two can be reliably determined. As a result, erroneous detection of the water level in the water storage unit 310 can be suppressed.
 なお、S21の処理は、本開示の第二水位検知部によって実行される。 Note that the process of S21 is executed by the second water level detection unit of the present disclosure.
 S21の処理の結果、給水部315が給水を開始した後、第二の所定時間経過しておらず、貯水部310がオーバーフロー水位となっていなければ(S21:No)、満水検知処理はS20の処理に戻り、再び、貯水部310の水位が満水水位となったか否かを判断する。 As a result of the process of S21, if the second predetermined time has not elapsed after the water supply unit 315 starts water supply and the water storage unit 310 is not at the overflow water level (S21: No), the full water detection process is S20. Returning to the processing, it is determined again whether the water level of the water storage unit 310 has reached the full water level.
 一方、S21の処理の結果、給水部315が給水を開始した後、第二の所定時間経過した、または、S20の処理にて貯水部310が満水水位と検知される前にオーバーフロー水位となったと判断されると(S21:Yes)、貯水部310への給水異常として、給水弁317を閉じて給水を停止させる(S22)。 On the other hand, as a result of the process of S21, it is determined that the second predetermined time has elapsed after the water supply unit 315 started to supply water, or that the water storage unit 310 reached the overflow water level before it was detected as the full water level in the process of S20. When it is determined (S21: Yes), it is determined that the water supply to the water storage section 310 is abnormal, and the water supply valve 317 is closed to stop the water supply (S22).
 次いで、満水検知処理は、RAM(Random Access Memory)(図示せず)に記憶される異常カウンタに1を加算する(S23)。RAMは、液体微細化装置301の制御部(図示せず)に設けられており、制御部で実行する処理に用いられる各種変数を記憶する。異常カウンタは、そのRAMに記憶される変数の1つであり、貯水部310への給水異常をカウントするために用いられる。異常カウンタは、満水検知処理の実行が開始される度に「0」に初期化され、満水検知処理の中で、S21の処理により貯水部310への給水異常が判断される毎に、S23の処理によって1加算される。 Next, in the full water detection process, 1 is added to the abnormality counter stored in the RAM (Random Access Memory) (not shown) (S23). The RAM is provided in the control unit (not shown) of the liquid micronization apparatus 301 and stores various variables used in the processing executed by the control unit. The abnormality counter is one of the variables stored in the RAM, and is used to count the abnormality of water supply to the water storage unit 310. The abnormality counter is initialized to "0" every time the execution of the full water detection process is started, and in the full water detection process, each time the process of S21 determines that there is an abnormality in the water supply to the water storage unit 310, the abnormality counter of S23 is selected. One is added by the processing.
 S23の処理の後、満水検知処理は、一定の時間(本実施の形態では25分)経過するまで待機する(S24)。そして、一定の時間経過後、満水検知処理は、S20と同一の方法によって、貯水部310の水位が満水水位となったか否かを判断する(S25)。なお、S21の処理により経過する第二の所定時間と、S24の処理により経過する一定の時間とを加算した時間(本実施の形態では30分)が、本開示の第三の所定時間に該当する。また、S25の処理も、本開示の第一水位検知部によって実行される。 After the processing of S23, the full water detection processing waits until a fixed time (25 minutes in the present embodiment) has passed (S24). Then, after the elapse of a certain time, the full water detection process determines whether or not the water level of the water storage unit 310 has reached the full water level by the same method as S20 (S25). It should be noted that the time (30 minutes in the present embodiment) obtained by adding the second predetermined time elapsed by the processing of S21 and the constant time elapsed by the processing of S24 corresponds to the third predetermined time of the present disclosure. To do. Further, the process of S25 is also executed by the first water level detection unit of the present disclosure.
 ここで、S24の処理により一定の時間が経過するまで待機して、S25の処理により、再度貯水部310の水位が満水水位となったか否かを判断する意義について説明する。 Here, the significance of waiting for a certain period of time in the process of S24 and determining whether the water level of the water storage unit 310 has reached the full water level again in the process of S25 will be described.
 S21の処理により、給水部315が給水を開始した後、第二の所定時間経過した、または、S20の処理にて貯水部310が満水水位と検知される前にオーバーフロー水位となったと判断される場合、満水水位検知を誤検知している可能性がある。特に、給水した水の温度が高い場合、基準水位検知部324から出力される電圧値と、満水水位検知部325から出力される電圧値とに差がなく、結果として満水水位検知ができない可能性もある。 By the process of S21, it is determined that the second predetermined time has elapsed after the water supply unit 315 started the water supply, or that the water storage unit 310 reached the overflow water level before it was detected as the full water level in the process of S20. In this case, there is a possibility that the detection of full water level has been erroneously detected. Particularly, when the temperature of the supplied water is high, there is no difference between the voltage value output from the reference water level detection unit 324 and the voltage value output from the full water level detection unit 325, and as a result, the full water level detection may not be possible. There is also.
 仮に、給水した水の温度が高かった場合、一定の時間が経過することで、水の温度が周囲の空気に馴染み、貯水部310内の空気の温度に近くなる。そうすると、基準水位検知部324から出力される電圧値と満水水位検知部325から出力される電圧値とに明確な差が生じるようになり、満水水位の誤検知が解消される可能性がある。 If the temperature of the supplied water is high, the temperature of the water will adapt to the surrounding air after a certain period of time, and will be close to the temperature of the air in the water storage unit 310. Then, a clear difference occurs between the voltage value output from the reference water level detection unit 324 and the voltage value output from the full water level detection unit 325, and erroneous detection of the full water level may be eliminated.
 そこで、S24の処理により一定の時間が経過するまで待機して、S25の処理により、給水部315が給水を開始した後、第三の所定時間経過後に、再度貯水部310の水位が満水水位となったか否かを判断する。その結果、貯水部310の水位が満水水位となっていれば(S25:Yes)、満水水位の誤検知が解消され、貯水部310の水位が満水水位となっていると判断できるので、満水検知処理を終了し、加湿運転処理に戻る。 Therefore, after waiting for a predetermined time by the process of S24, and after the water supply unit 315 starts the water supply by the process of S25, the water level of the water storage unit 310 becomes the full water level again after the third predetermined time elapses. Determine whether or not As a result, if the water level in the water storage unit 310 is the full water level (S25: Yes), the false detection of the water level in the water storage unit is resolved, and it can be determined that the water level in the water storage unit 310 is the full water level. The process is ended, and the process returns to the humidifying operation process.
 一方、S25の処理の結果、貯水部310の水位が満水水位にないと判断された場合は(S25:No)、給水弁317の故障とはすぐに判断せず、満水検知処理は、異常カウンタが3以上となっているか否かを判断する(S26)。そして、異常カウンタが3未満である場合には(S26:No)、再度給水弁317を開き、給水部315による貯水部310への給水を開始して(S27)、S20の処理に戻る。 On the other hand, as a result of the process of S25, when it is determined that the water level of the water storage unit 310 is not the full water level (S25: No), it is not immediately determined that the water supply valve 317 is in failure, and the full water detection process is performed by the abnormality counter. Is determined to be 3 or more (S26). Then, when the abnormality counter is less than 3 (S26: No), the water supply valve 317 is opened again, water supply to the water storage section 310 by the water supply section 315 is started (S27), and the process returns to S20.
 これは、給水部315が貯水部310へ給水を開始後、貯水部310が満水水位とならなかった原因が、瞬間的に給水部315へ供給される水圧が低下していたり、給水部315が給水を開始後、第三の所定時間経過しても満水水位検知部325による満水水位の誤検知が解消できなかったりする場合もあり得るためである。そこで、給水部315による貯水部310への給水を再度行うことで、その後貯水部310が満水水位となれば、給水部315の故障等ではないと判断し、そのまま加湿運転を行う。 This is because the water supply section 315 does not reach the full water level after the water supply section 315 starts supplying water to the water storage section 310 because the water pressure supplied to the water supply section 315 is momentarily decreased, This is because there is a possibility that the erroneous detection of the full water level by the full water level detecting unit 325 may not be eliminated even after the third predetermined time has elapsed after the start of water supply. Therefore, if the water supply section 315 performs water supply to the water storage section 310 again, and if the water storage section 310 reaches the full water level thereafter, it is determined that the water supply section 315 has not failed, and the humidification operation is performed as it is.
 なお、S26の否定判断の後、S27の処理の前に、排水弁312を開き、または、排水弁312がない場合は揚水管321の回転を止めて、貯水部310に貯まった水を一度排水してもよい。この場合、S27の処理では、排水弁312を再び閉じるか、排水弁312がない場合は揚水管321を回転させて、排水部311からの排水を抑制する制御も実行する。 After the negative determination in S26 and before the processing of S27, the drain valve 312 is opened, or if the drain valve 312 is not present, the rotation of the pump pipe 321 is stopped and the water stored in the water storage unit 310 is once drained. You may. In this case, in the process of S27, the drain valve 312 is closed again, or if there is no drain valve 312, the pump pipe 321 is rotated to control the drainage from the drainage unit 311.
 一方、S26の処理の結果、異常カウンタが3以上であると判断された場合(S26:Yes)、給水部315が貯水部310に貯水を開始してから90分経過してもなお、貯水部310が満水水位として検知されないことを意味するので、給水部315が故障しているか、満水水位検知部325が故障している可能性が高い。そこでこの場合、満水検知処理は、給水部315等の故障による異常を報知して(S28)、以後、処理をループさせる。これにより、使用者に給水部315等の故障による異常を報知できる。なお、上記90分が、本開示の第一の所定時間に該当する。また、S28の処理は、本開示の報知部によって実行される。 On the other hand, as a result of the process of S26, when it is determined that the abnormality counter is 3 or more (S26: Yes), even if 90 minutes have elapsed since the water supply unit 315 started to store water in the water storage unit 310, the water storage unit still remains. Since it means that 310 is not detected as the full water level, there is a high possibility that the water supply unit 315 is out of order or the full water level detection unit 325 is out of order. Therefore, in this case, in the full water detection process, an abnormality due to a failure of the water supply unit 315 or the like is notified (S28), and then the process is looped. Thereby, the user can be notified of an abnormality due to a failure of the water supply unit 315 or the like. Note that the above 90 minutes corresponds to the first predetermined time of the present disclosure. Further, the process of S28 is executed by the notification unit of the present disclosure.
 図21に戻り、加湿運転処理の説明に戻る。S3の満水検知処理により貯水部310が満水となった後、加湿運転処理では、給水弁317を閉じて給水を停止させる(S4)。 Return to FIG. 21 and return to the explanation of the humidification operation process. After the water storage section 310 is filled with water by the full water detection process of S3, the water supply valve 317 is closed and the water supply is stopped in the humidification operation process (S4).
 次に、加湿運転処理は、加湿運転を行うためにS5~S7の処理を実行する。S5の処理では、回転モータ323の回転をオンして揚水管321を回転させる。これにより、貯水部310の貯水された水が上記した動作によって微細化され、吸込口302より吸い込んだ空気に対して加湿が行われる。 Next, in the humidifying operation processing, the processing of S5 to S7 is executed to perform the humidifying operation. In the process of S5, the rotation of the rotary motor 323 is turned on to rotate the pumping pipe 321. As a result, the water stored in the water storage unit 310 is atomized by the above-described operation, and the air sucked from the suction port 302 is humidified.
 次に、加湿運転処理は、貯水部310の水が少なくなると予想される30分経過するまで処理を待機し(S6)、その後、回転モータ323の回転をオフして、一旦加湿運転を停止する(S7)。 Next, in the humidifying operation process, the process waits until 30 minutes when it is expected that the amount of water in the water storage unit 310 will decrease (S6), and then the rotation motor 323 is turned off to temporarily stop the humidifying operation. (S7).
 次に、加湿運転処理は、液体微細化装置301が通電されてから特定の時間(本実施の形態では24時間)経過したか、または、前回乾燥運転を行ってから特定の時間経過したかを判断する(S8)。その結果、測定の時間経過していなければ(S8:No)、加湿運転処理は、S2の処理に戻り、貯水部310への給水が再び行われて加湿運転が再開される。 Next, in the humidification operation process, it is determined whether a specific time (24 hours in the present embodiment) has elapsed since the liquid atomization device 301 was energized, or whether a specific time has elapsed since the previous drying operation was performed. A judgment is made (S8). As a result, if the measurement time has not elapsed (S8: No), the humidifying operation process returns to the process of S2, water is again supplied to the water storage unit 310, and the humidifying operation is restarted.
 一方、S8の処理の結果、特定の時間経過したと判断される場合は(S8:Yes)、次いで、貯水部310の洗浄運転を行うための図22に示すS9~S11の処理を実行する。S9の処理では、給水弁317を開いて、給水部315による貯水部310の給水を開始する。次いで、加湿運転処理は、S3の処理と同一の満水検知処理を実行し(S10)、貯水部310の満水水位を検知する。この満水検知処理の詳細は、図23を参照して上記した通りである。 On the other hand, if it is determined that the specific time has passed as a result of the process of S8 (S8: Yes), then the processes of S9 to S11 shown in FIG. 22 for performing the cleaning operation of the water storage unit 310 are executed. In the process of S9, the water supply valve 317 is opened, and the water supply unit 315 starts water supply to the water storage unit 310. Next, in the humidifying operation process, the same full water detection process as the process of S3 is executed (S10), and the full water level of the water storage unit 310 is detected. The details of the full water detection process are as described above with reference to FIG.
 S10の満水検知処理により、貯水部310の満水水位が検知されると、加湿運転処理は、給水弁317を閉じて給水部315による給水を停止し、排水弁312を開けて貯水部310に貯水された水の排水を開始する(S11)。これにより、貯水部310に付着したゴミ等が排水される水と一緒に排水部311より流され、貯水部310の洗浄が行われる。よって、特定の時間が経過する毎に、貯水部310が洗浄されるので、長期間清潔に加湿できる。 When the full water level of the water storage unit 310 is detected by the full water detection process of S10, the humidification operation process closes the water supply valve 317 to stop water supply by the water supply unit 315, opens the drain valve 312, and stores water in the water storage unit 310. The drainage of the removed water is started (S11). As a result, the dust and the like attached to the water storage unit 310 is flushed with the drained water from the drainage unit 311 to wash the water storage unit 310. Therefore, the water storage unit 310 is cleaned every time a specific time elapses, so that the water can be humidified cleanly for a long time.
 ここで、加湿運転処理は、S11の処理の後、貯水部310の水位として満水水位を検知せず、かつ、オーバーフロー水位を検知しないか否かを判断する(S12)。この判断は、基準水位検知部324、満水水位検知部325およびオーバーフロー水位検知部326を用いて上記した方法で行われる。 Here, in the humidifying operation process, after the process of S11, it is determined whether or not the full water level is detected as the water level of the water storage unit 310 and the overflow water level is not detected (S12). This determination is performed by the method described above using the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326.
 S12の処理の結果、貯水部310の水位として満水水位を検知しているか、または、オーバーフロー水位を検知している場合は(S12:No)、S11の処理後、第四の所定時間(本実施の形態では3時間)経過したか否かを判断する(S13)。 As a result of the process of S12, when the full water level is detected as the water level of the water storage unit 310 or when the overflow water level is detected (S12: No), after the process of S11, the fourth predetermined time (the present implementation It is determined whether or not 3 hours have passed in the above embodiment (S13).
 S13の処理の結果、所定の時間経過していないと判断される場合は(S13:No)、S12の処理に戻る。一方、S13の処理の結果、所定の時間経過していると判断される場合は(S13:Yes)、貯水部310の水位として満水水位を検知し、または、オーバーフロー水位を検知する状況で所定の時間が経過したことを意味し、排水部311による貯水部310の排水が行われていないことを示す。即ち、排水弁312が故障して開かなかったり、排水部311を構成する排水口あるいは排水管にゴミなどが詰まったりして、排水が行われない排水異常が生じている可能性が高い。そこで、この場合、排水異常を報知して(S14)、以後、処理をループさせる。これにより、排水部311の故障あるいは詰まりによる異常を使用者に報知できる。なお、S14の処理も本開示の報知部によって実行される。 As a result of the processing in S13, if it is determined that the predetermined time has not elapsed (S13: No), the processing returns to S12. On the other hand, as a result of the process of S13, when it is determined that the predetermined time has elapsed (S13: Yes), the full water level is detected as the water level of the water storage unit 310, or the predetermined level is detected in a situation where the overflow water level is detected. This means that time has passed, and the drainage unit 311 has not drained the water storage unit 310. That is, there is a high possibility that the drainage valve 312 fails and does not open, or the drainage port or the drainage pipe that configures the drainage unit 311 is clogged with dust or the like, causing a drainage abnormality in which drainage is not performed. Therefore, in this case, the drainage abnormality is notified (S14), and thereafter, the process is looped. Thereby, the user can be notified of an abnormality due to a failure or clogging of the drainage unit 311. The process of S14 is also executed by the notification unit of the present disclosure.
 一方、S12の処理の結果、貯水部310の水位として満水水位を検知せず、かつ、オーバーフロー水位を検知しない場合は(S12:Yes)、貯水部310の排水が確実に終了している所定の時間(本実施の形態では45分)経過するのを待つ(S15)。そして、S15の処理の後、乾燥運転処理を開始する(S16)。 On the other hand, as a result of the process of S12, when the full water level is not detected as the water level of the water storage unit 310 and the overflow water level is not detected (S12: Yes), the drainage of the water storage unit 310 is surely completed. Wait for the time (45 minutes in the present embodiment) to elapse (S15). Then, after the processing of S15, the drying operation processing is started (S16).
 この乾燥運転処理では、熱交換気装置350の給気風路358を通過する空気を、液体微細化装置301の吸込口302から液体微細化装置301内に導入し、貯水部310へ供給する。これにより、貯水部310が素早く乾燥される。また、乾燥運転処理では、最初の所定時間(例えば、30分)だけ、液体微細化部319を駆動する、即ち、回転モータ323をオンして揚水管321を回転させることで、大きな水滴を除去する。その後、液体微細化部319を停止、即ち、回転モータ323をオフし、貯水部310へ供給される空気のみで貯水部310を自然乾燥させる。これにより、貯水部310の乾燥時間が短縮できるとともに、必要以上に液体微細化部319が駆動されることを抑制することで、省エネルギー化を図ることができる。 In this drying operation process, the air passing through the air supply air passage 358 of the heat exchange air device 350 is introduced into the liquid atomizing device 301 from the suction port 302 of the liquid atomizing device 301 and supplied to the water storage unit 310. As a result, the water storage unit 310 is quickly dried. In the drying operation process, the liquid atomization unit 319 is driven for the first predetermined time (for example, 30 minutes), that is, the rotation motor 323 is turned on to rotate the pumping pipe 321 to remove a large water droplet. To do. Then, the liquid atomization unit 319 is stopped, that is, the rotation motor 323 is turned off, and the water storage unit 310 is naturally dried only by the air supplied to the water storage unit 310. As a result, the drying time of the water storage unit 310 can be shortened, and the liquid micronization unit 319 is prevented from being driven more than necessary, so that energy can be saved.
 なお、乾燥運転処理において貯水部310へ供給する空気の風量は、室外側吸込口355から吸い込まれる空気の湿度に基づいて設定されてもよい。 The air volume of the air supplied to the water storage unit 310 in the dry operation process may be set based on the humidity of the air sucked from the outdoor suction port 355.
 例えば、室外側吸込口355から吸い込まれる空気の湿度が低い場合は、貯水部310へ供給する空気の風量を少なくしても貯水部310の乾燥を十分に行える。よって、この場合、貯水部310へ供給する空気の風量を少なくすることで、省エネルギー化を図ることができる。一方、室外側吸込口355から吸い込まれる空気の湿度が低い場合は、貯水部310へ供給する空気の風量を多くすることで、湿度の高い空気を用いても貯水部310の乾燥を確実に行うことができる。 For example, when the humidity of the air sucked from the outdoor suction port 355 is low, the water storage unit 310 can be sufficiently dried even if the amount of air supplied to the water storage unit 310 is reduced. Therefore, in this case, energy saving can be achieved by reducing the amount of air supplied to the water storage unit 310. On the other hand, when the humidity of the air sucked from the outdoor suction port 355 is low, by increasing the air volume of the air supplied to the water storage unit 310, the water storage unit 310 is surely dried even if the air with high humidity is used. be able to.
 また、乾燥運転処理において貯水部310へ供給する空気は、室外側吸込口355から吸い込まれる空気の湿度に基づいて、熱交換素子364により排気風路359を通過する空気との間で熱交換された後の給気風路358を通過する空気と、熱交換素子364による熱交換がされていない給気風路358を通過する空気とから選択されるようにしてもよい。 Further, the air supplied to the water storage unit 310 in the dry operation process is heat-exchanged with the air passing through the exhaust air passage 359 by the heat exchange element 364 based on the humidity of the air sucked from the outdoor suction port 355. The air may be selected from the air passing through the supply air passage 358 after being heated and the air passing through the supply air passage 358 in which the heat exchange element 364 has not performed heat exchange.
 例えば、また、室外側吸込口355から吸い込まれる空気の湿度が低い場合は、熱交換素子364による熱交換を行わずに給気風路358を通過する空気をそのまま貯水部310へ供給する。また、室外側吸込口355から吸い込まれる空気の湿度が高い場合は、熱交換素子364により排気風路359を通過する空気との間で熱交換されて低湿度化が図られた給気風路358を通過する空気を、貯水部310へ供給する。これにより、室外側吸込口355から吸い込まれる空気の湿度が高くても、貯水部310の乾燥を確実に行うことができる。 For example, when the humidity of the air sucked from the outdoor suction port 355 is low, the air passing through the air supply air passage 358 is directly supplied to the water storage unit 310 without heat exchange by the heat exchange element 364. Further, when the humidity of the air sucked from the outdoor suction port 355 is high, the heat exchange element 364 exchanges heat with the air passing through the exhaust air passage 359 to reduce the humidity, and thus the supply air passage 358 is provided. The air passing through is supplied to the water storage unit 310. Accordingly, even if the humidity of the air sucked from the outdoor suction port 355 is high, the water storage section 310 can be dried reliably.
 S16の処理の後、乾燥運転を開始してから貯水部310が乾燥するのに十分な時間(本実施の形態では1時間)が経過したか否かを判断する(S17)。そして、その時間が経過していない間は(S17:No)、S17の処理を繰り返し、貯水部310が乾燥するのに十分な時間が経過すれば(S17:Yes)、次いで、加湿運転処理は、水位検知部補正処理を実行する(S18)。 After the processing of S16, it is determined whether or not a sufficient time (1 hour in the present embodiment) for drying the water storage unit 310 has elapsed since the start of the drying operation (S17). Then, while the time has not elapsed (S17: No), the process of S17 is repeated, and if the time sufficient for the water storage section 310 to dry has elapsed (S17: Yes), then the humidification operation process is performed. , Water level detection unit correction processing is executed (S18).
 水位検知部補正処理における補正は、S1の初回通電時水位検知部補正処理と同様に、基準水位検知部324、満水水位検知部325およびオーバーフロー水位検知部326から出力される電圧値から上記の満水水位検知部325に係るオフセット電圧値およびオーバーフロー水位検知部326に係るオフセット電圧値を算出して行われる。 The correction in the water level detection unit correction process is performed based on the voltage values output from the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 in the same manner as the water level detection unit correction process during the first energization in S1. This is performed by calculating the offset voltage value related to the water level detection unit 325 and the offset voltage value related to the overflow water level detection unit 326.
 そして、以後、ここで算出された満水水位検知部325に係るオフセット電圧値を用いて、満水水位検知部325から実際に出力される電圧値に満水水位検知部325に係るオフセット電圧値を加算した値が、満水水位検知部325から出力された電圧値として、満水水位の検知に使用される。また、ここで算出されたオーバーフロー水位検知部326に係るオフセット電圧値を用いて、オーバーフロー水位検知部326から実際に出力される電圧値にオーバーフロー水位検知部326に係るオフセット電圧値を加算した値が、オーバーフロー水位検知部326から出力された電圧値として、満水水位の検知に使用される。 Then, after that, the offset voltage value related to the full water level detection unit 325 is added to the voltage value actually output from the full water level detection unit 325 by using the offset voltage value related to the full water level detection unit 325 calculated here. The value is used as the voltage value output from the full water level detection unit 325 to detect the full water level. Further, by using the offset voltage value related to the overflow water level detection unit 326 calculated here, a value obtained by adding the offset voltage value related to the overflow water level detection unit 326 to the voltage value actually output from the overflow water level detection unit 326 is obtained. The voltage value output from the overflow water level detection unit 326 is used to detect the full water level.
 このように、乾燥運転後は、貯水部310が渇水状態にあり、基準水位検知部324、満水水位検知部325およびオーバーフロー水位検知部326はいずれも乾燥状態にあって、同一の環境下にある。よって、このような状況下で補正を行うことで、貯水部310の水位を精度よく検知できる。また、定期的に補正を行うことで、基準水位検知部324、満水水位検知部325およびオーバーフロー水位検知部326が経年劣化して特性が変化したとしても、補正を確実に行うことができる。 As described above, after the drying operation, the water storage unit 310 is in a drought state, and the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 are all in a dry state and in the same environment. .. Therefore, by performing the correction under such a condition, the water level of the water storage unit 310 can be accurately detected. Further, by performing the correction periodically, even if the reference water level detection unit 324, the full water level detection unit 325, and the overflow water level detection unit 326 deteriorate over time and the characteristics change, the correction can be reliably performed.
 S18の処理の後、加湿運転処理は、S2の処理に戻る。 After the processing of S18, the humidification operation processing returns to the processing of S2.
 以上説明した通り、本実施の形態に係る液体微細化装置301および熱交換気装置350によれば、給水部315が貯水部310に給水を開始した後、第一の所定時間(本実施の形態では90分)経過後に、貯水部310の満水水位を検知する満水水位検知部325が水位を検知しなかった場合、給水異常が報知される。これにより、給水部315の故障による異常を使用者に報知できる。 As described above, according to the liquid atomization apparatus 301 and the heat exchange apparatus 350 according to the present embodiment, after the water supply unit 315 starts supplying water to the water storage unit 310, the first predetermined time (the present embodiment). After 90 minutes), if the full water level detection unit 325 that detects the full water level of the water storage unit 310 does not detect the water level, a water supply abnormality is notified. This allows the user to be notified of an abnormality due to a failure of the water supply unit 315.
 また、給水部315が給水を開始した後、満水水位検知部325が満水水位を検知する前にオーバーフロー水位検知部326がオーバーフロー水位を検知した場合に、給水を停止させる。この場合、満水水位検知部325による満水水位の検知に誤動作が生じているか、満水水位検知部325が故障している可能性があるため、一旦給水を停止させることで、必要以上に貯水部310に給水が行われることを抑制できる。 Further, when the overflow water level detection unit 326 detects the overflow water level after the water supply unit 315 starts the water supply and before the full water level detection unit 325 detects the full water level, the water supply is stopped. In this case, there is a possibility that the detection of the full water level by the full water level detection unit 325 has malfunctioned or the full water level detection unit 325 has malfunctioned. Therefore, once the water supply is stopped, the water storage unit 310 is unnecessarily excessive. It can suppress that water is supplied to the.
 また、給水部315が給水を開始した後、第一の所定時間よりも短い第二の所定時間(本実施の形態では5分)経過後に給水を停止させる。これにより、第一水位検知部が第一の水位を検知しなかった場合であっても貯水部310に必要以上に給水が行われることを抑制できる。 Further, after the water supply unit 315 starts the water supply, the water supply is stopped after a second predetermined time (5 minutes in the present embodiment) shorter than the first predetermined time has elapsed. Thereby, even if the first water level detection unit does not detect the first water level, it is possible to suppress excessive supply of water to the water storage unit 310.
 また、給水部315が給水を開始した後、第一の所定時間よりも短く第二の所定時間よりも長い第三の所定時間(本実施の形態では30分)経過後に、満水水位検知部325が水位を検知しなかった場合、給水部315による給水が再度行される。これにより、第三の所定時間経過しても満水水位検知部325が満水水位を検知しなかった場合にはすぐに給水部315の故障と判断せず、再度の給水が行われる。その結果、満水水位検知部325による満水水位が検知できた場合には、加湿運転が行われるので、必要以上に、給水部315の故障が報知されることを抑制できる。 In addition, after the water supply unit 315 starts the water supply, after a third predetermined time (30 minutes in the present embodiment) shorter than the first predetermined time and longer than the second predetermined time elapses, the full water level detection unit 325 Does not detect the water level, water is again supplied by the water supply unit 315. As a result, if the full water level detection unit 325 does not detect the full water level even after the elapse of the third predetermined time, it is not immediately determined that the water supply unit 315 is out of order, and the water supply is performed again. As a result, when the full water level detection unit 325 can detect the full water level, the humidification operation is performed, so that it is possible to suppress unnecessary notification of a failure of the water supply unit 315.
 また、排水部311が排水を開始した後、第四の所定時間(本実施の形態では3時間)経過後に満水水位検知部325またはオーバーフロー水位検知部326が満水水位またはオーバーフロー水位を検知している場合、排水異常が報知される。これにより、排水部311の故障あるいは詰まりによる異常を使用者に報知できる。 Further, after the drainage unit 311 starts draining, the full water level detection unit 325 or the overflow water level detection unit 326 detects the full water level or the overflow water level after a fourth predetermined time (3 hours in the present embodiment) has elapsed. In this case, drainage abnormality is reported. Thereby, the user can be notified of an abnormality due to a failure or clogging of the drainage unit 311.
 以上、実施の形態に基づき本開示を説明したが、本開示は上記実施の形態に何ら限定されるものではなく、本開示の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。 Although the present disclosure has been described above based on the embodiment, the present disclosure is not limited to the above embodiment, and various improvements and modifications can be made without departing from the gist of the present disclosure. It can be easily guessed. For example, the numerical values mentioned in the above embodiment are examples, and it is naturally possible to adopt other numerical values.
 例えば、上記実施の形態に係る液体微細化装置301は、空気清浄機あるいは空気調和機に備えられてもよい。空気清浄機あるいは空気調和機における機能の一つとして、加湿目的の水気化装置あるいは殺菌/消臭目的での次亜塩素酸気化装置といった液体を気化させる装置が組み込まれたものがある。この装置として、液体微細化装置301を用いることで、より小型でエネルギー効率のよい空気清浄機または空気調和機を得ることができる。 For example, the liquid atomization device 301 according to the above-described embodiment may be included in an air purifier or an air conditioner. As one of the functions of an air purifier or an air conditioner, there is one that incorporates a device for vaporizing a liquid such as a water vaporizer for humidification or a hypochlorous acid vaporizer for sterilization/deodorization. By using the liquid atomization device 301 as this device, it is possible to obtain a smaller and more energy efficient air cleaner or air conditioner.
 上記実施の形態では、加湿装置として液体微細化装置301を例として説明したが、必ずしもこれに限られるものではなく、貯水部が設けられ、貯水部の水位を判定しながら水を給水する加湿装置であれば、本開示を適用可能である。 In the above-described embodiment, the liquid micronization device 301 is described as an example of the humidifying device, but the humidifying device is not necessarily limited to this. The humidifying device is provided with a water storage unit and supplies water while determining the water level of the water storage unit. If so, the present disclosure can be applied.
 本開示に係る加湿装置は、例えば屋内の空気を加湿する装置に適用可能である。また、熱交換気装置、空気清浄機又は空気調和機において、その機能の一つとして組み込まれた水気化装置あるいは次亜塩素酸気化装置等に、本開示に係る加湿装置は適用可能である。 The humidifying device according to the present disclosure can be applied to, for example, a device that humidifies indoor air. Further, the humidifying device according to the present disclosure can be applied to a water vaporizing device, a hypochlorous acid vaporizing device, or the like incorporated as one of its functions in a heat exchange air device, an air purifier, or an air conditioner.
1、118、201、301   液体微細化装置
2、202、302   吸込口
3、203、303   吹出口
4、204、304   吸込連通風路
5、205、305   内筒
5a、205a、305a   衝突壁
6、206、306   内筒風路
7、207、307   通風口
8、208、308   外筒風路
9、209、309   外筒
10、117、210、310   貯水部
11、211、311   排水部
12、212、312   排水弁
15、116、215、315   給水部
16、216、316   給水管
17、217、317   給水弁
18、218、318   オーバーフロー排水口
19、219、319   液体微細化部
20、220、320   回転軸
21、221、321   揚水管
22、222、322   回転板
23、223、323   回転モータ
24、224、324   基準水位検知部
25、225、325   満水水位検知部
26、226、326   オーバーフロー水位検知部
36、236   満水水位検知部
37、237   オーバーフロー水位検知部
1, 118, 201, 301 Liquid atomizing device 2, 202, 302 Suction port 3, 203, 303 Blow-out port 4, 204, 304 Suction communication air passage 5, 205, 305 Inner cylinder 5a, 205a, 305a Collision wall 6, 206, 306 Inner cylinder air passage 7, 207, 307 Ventilation port 8, 208, 308 Outer cylinder air passage 9, 209, 309 Outer cylinder 10, 117, 210, 310 Water storage unit 11, 211, 311 Drainage unit 12, 212, 312 Drain valve 15, 116, 215, 315 Water supply part 16, 216, 316 Water supply pipe 17, 217, 317 Water supply valve 18, 218, 318 Overflow drainage port 19, 219, 319 Liquid atomization part 20, 220, 320 Rotating shaft 21, 221, 321 Pumping pipe 22, 222, 322 Rotating plates 23, 223, 323 Rotating motors 24, 224, 324 Reference water level detecting units 25, 225, 325 Full water level detecting units 26, 226, 326 Overflow water level detecting unit 36, 236 Full water level detector 37, 237 Overflow water level detector

Claims (5)

  1.  空気を吸い込む吸込口と、
     前記吸込口より吸い込まれた空気を吹き出す吹出口と、
     前記吸込口と前記吹出口との間の風路内に設けられ、前記空気を加湿する加湿部と、
     前記加湿部により前記空気を加湿するための水を貯水する貯水部と、
     前記貯水部に水を供給する給水部と、
     前記貯水部の中に設けられ、出力値の基準とされる基準水位検知部と、出力値の補正対象となる非基準水位検知部とを少なくとも含み、前記貯水部の水位を検知する複数の水位検知部と、
     前記貯水部が渇水状態にある場合に、前記非基準水位検知部による出力値を前記基準水位検知部による出力値に基づいて補正する水位検知補正部と、を備えることを特徴とする加湿装置。
    A suction port that sucks in air,
    An outlet that blows out the air sucked in from the inlet,
    A humidifying unit provided in the air passage between the suction port and the air outlet, for humidifying the air,
    A water storage portion for storing water for humidifying the air by the humidification portion,
    A water supply unit for supplying water to the water storage unit,
    A plurality of water levels that are provided in the water storage unit and include at least a reference water level detection unit that serves as a reference for the output value and a non-reference water level detection unit that is an output value correction target, and that detects the water level of the water storage unit. A detector,
    A water level detection correction unit that corrects the output value of the non-reference water level detection unit based on the output value of the reference water level detection unit when the water storage unit is in a drought state.
  2.  前記水位検知補正部は、初めて通電が行われて第1の所定時間経過後に、前記補正を行うことを特徴とする請求項1に記載の加湿装置。 The humidifying device according to claim 1, wherein the water level detection/correction unit performs the correction after a first predetermined time has elapsed after power is first supplied.
  3.  第2の所定時間毎に、前記貯水部を乾燥させる動作を実行する乾燥動作部を備え、
     前記水位検知補正部は、前記乾燥動作部による前記貯水部の乾燥が行われた後に、前記補正を行うことを特徴とする請求項1又は2に記載の加湿装置。
    A drying operation unit that performs an operation of drying the water storage unit every second predetermined time;
    The humidifier according to claim 1 or 2, wherein the water level detection correction unit performs the correction after the water storage unit is dried by the drying operation unit.
  4.  前記複数の前記水位検知部は、NTCサーミスタにより構成されることを特徴とする請求項1から3のいずれか一項に記載の加湿装置。 The humidification device according to any one of claims 1 to 3, wherein the plurality of water level detection units are configured by NTC thermistors.
  5.  前記加湿部は、水を微細化する液体微細化部であり、前記吸込口より吸い込まれた空気に前記液体微細化部にて微細化された水を含ませて、前記水を含んだ空気を前記吹出口より吹き出すものであって、
     前記液体微細化部は、
     回転モータにより回転され、鉛直方向に向けて配置された回転軸と、
     前記回転軸に固定され、前記回転軸の回転に合わせて回転されることにより前記貯水部に貯水された水を揚水し、揚水した前記水を遠心方向に放出する筒状の揚水管と、
     前記揚水管により放出された前記水が衝突することにより、前記水を微細化する衝突壁と、を備えることを特徴とする請求項1から4のいずれか一項に記載の加湿装置。
    The humidifying unit is a liquid atomizing unit that atomizes water, and causes the air sucked from the suction port to include the water atomized by the liquid atomizing unit to remove the air containing the water. Which is blown out from the outlet,
    The liquid atomization unit,
    A rotary shaft that is rotated by a rotary motor and is arranged vertically.
    A tubular pumping pipe that is fixed to the rotary shaft, pumps water stored in the water storage unit by being rotated according to the rotation of the rotary shaft, and discharges the pumped water in a centrifugal direction,
    The humidification device according to any one of claims 1 to 4, further comprising: a collision wall that atomizes the water by colliding the water discharged from the pumping pipe.
PCT/JP2019/032522 2018-12-27 2019-08-21 Humidifier WO2020136986A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2018-244414 2018-12-27
JP2018244420A JP7308383B2 (en) 2018-12-27 2018-12-27 humidifier
JP2018244414A JP2020106186A (en) 2018-12-27 2018-12-27 Heat exchange type ventilation device
JP2018244415A JP2020106187A (en) 2018-12-27 2018-12-27 Humidifier
JP2018-244420 2018-12-27
JP2018-244415 2018-12-27
JP2019013367A JP7442031B2 (en) 2019-01-29 2019-01-29 Humidification equipment and ventilation equipment
JP2019-013367 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020136986A1 true WO2020136986A1 (en) 2020-07-02

Family

ID=71127854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032522 WO2020136986A1 (en) 2018-12-27 2019-08-21 Humidifier

Country Status (1)

Country Link
WO (1) WO2020136986A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780311A (en) * 2020-07-16 2020-10-16 欧兰普电子科技(厦门)有限公司 Water discharging control method of humidifier and humidifier
JP2021139538A (en) * 2020-03-04 2021-09-16 株式会社コロナ Humidifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134230A (en) * 2003-10-30 2005-05-26 Fuji Electric Retail Systems Co Ltd Liquid level detection device
JP2015043851A (en) * 2013-08-28 2015-03-12 パナソニック株式会社 Liquid atomizer
JP2015058080A (en) * 2013-09-18 2015-03-30 パナソニック株式会社 Liquid refining device and sauna device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134230A (en) * 2003-10-30 2005-05-26 Fuji Electric Retail Systems Co Ltd Liquid level detection device
JP2015043851A (en) * 2013-08-28 2015-03-12 パナソニック株式会社 Liquid atomizer
JP2015058080A (en) * 2013-09-18 2015-03-30 パナソニック株式会社 Liquid refining device and sauna device using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139538A (en) * 2020-03-04 2021-09-16 株式会社コロナ Humidifier
JP7284116B2 (en) 2020-03-04 2023-05-30 株式会社コロナ humidifier
CN111780311A (en) * 2020-07-16 2020-10-16 欧兰普电子科技(厦门)有限公司 Water discharging control method of humidifier and humidifier
CN111780311B (en) * 2020-07-16 2021-08-06 欧兰普电子科技(厦门)有限公司 Water discharging control method of humidifier and humidifier

Similar Documents

Publication Publication Date Title
JP6255571B2 (en) Liquid refinement device and sauna device using the same
JP5130805B2 (en) Humidifier
JP2005201507A (en) Humidifier
JP7308383B2 (en) humidifier
WO2020136986A1 (en) Humidifier
JP3920050B2 (en) Humidifier
WO2012026120A1 (en) Liquid atomizing device and sauna device using same
JP2022115918A (en) Liquid atomization device
JP6255568B2 (en) Sauna equipment
JP7241257B2 (en) Liquid atomization device
JP2021046976A (en) Liquid atomization device
JP2014040996A (en) Control method for humidification mechanism
JP7209146B2 (en) ventilator
JP7133755B2 (en) Liquid atomization device
JP7442031B2 (en) Humidification equipment and ventilation equipment
JP7194880B2 (en) Liquid atomization device
JP5381576B2 (en) Liquid refinement device and sauna device using the same
JP2020106187A (en) Humidifier
CN113613793B (en) Liquid micronizing device
WO2020059393A1 (en) Liquid atomization device and heat exchange ventilation device using same
JP7203299B2 (en) heat exchange ventilator
JP7291877B2 (en) Liquid atomization device
JP5847043B2 (en) Humidification mechanism
JP6934596B2 (en) Humidifying device
JP2021171713A (en) Liquid micronization device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904167

Country of ref document: EP

Kind code of ref document: A1