WO2012026120A1 - Liquid atomizing device and sauna device using same - Google Patents

Liquid atomizing device and sauna device using same Download PDF

Info

Publication number
WO2012026120A1
WO2012026120A1 PCT/JP2011/004716 JP2011004716W WO2012026120A1 WO 2012026120 A1 WO2012026120 A1 WO 2012026120A1 JP 2011004716 W JP2011004716 W JP 2011004716W WO 2012026120 A1 WO2012026120 A1 WO 2012026120A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
water
rotating plate
opening
rotating
Prior art date
Application number
PCT/JP2011/004716
Other languages
French (fr)
Japanese (ja)
Inventor
和大 齋藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010189010A external-priority patent/JP5696287B2/en
Priority claimed from JP2010189012A external-priority patent/JP5696288B2/en
Priority claimed from JP2010254687A external-priority patent/JP5810324B2/en
Priority claimed from JP2010257601A external-priority patent/JP2012066046A/en
Priority claimed from JP2010263362A external-priority patent/JP2012112612A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012026120A1 publication Critical patent/WO2012026120A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H33/063Heaters specifically designed therefor
    • A61H33/065Heaters specifically designed therefor with steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H2033/068Steam baths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/1215Rotary drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5082Temperature sensors

Definitions

  • the present invention relates to a liquid refinement apparatus and a sauna apparatus using the same.
  • the liquid refining device used in the sauna device includes a main body case, a blower unit, and a liquid refining unit.
  • the main body case has an air supply port and an exhaust port.
  • the ventilation part is provided in the air passage in the main body case.
  • the liquid miniaturization part is provided between the ventilation part and the exhaust port.
  • the liquid refinement unit stores the liquid in the tank, supplies the stored liquid to the upper surface of the rotating disk by a pump, and disperses the thinly spread liquid outward by centrifugal force. (For example, refer to Patent Document 1).
  • the liquid is stored in the tank, and the liquid is supplied to the upper surfaces of the plurality of rotating disks, so that the power of the pump and the like outside the liquid micronizer and the piping for supplying the liquid to each disk And was necessary.
  • the conventional liquid miniaturization apparatus requires a pump for circulating the liquid and a liquid supply pipe corresponding to the number of disks, and there is a problem that the number of parts increases and the structure becomes complicated.
  • the present invention includes a main body case having a suction port and an exhaust port, a heating unit and a blower unit provided between the suction port and the exhaust port, and a liquid refinement unit provided between the blower unit and the exhaust port.
  • a liquid refinement apparatus comprising a liquid refinement unit having a cylindrical path having an upper opening and a lower opening, a rotating part provided in the cylindrical path, and a liquid for supplying liquid to the rotating part It has a supply part and a water storage part provided in the lower part of the cylindrical path, and the rotating part is fixed to the rotating shaft in the vertical direction, a rotating shaft arranged in the vertical direction, a rotating motor for rotating the rotating shaft, And a pumping tube for sucking liquid from the water storage unit and a plurality of rotating plates fixed to the pumping tube with a predetermined interval in the axial direction of the rotating shaft, and the liquid supply unit transfers the liquid and rotates the uppermost side.
  • the air blower has an impeller, a fan motor that rotates the impeller, and a fan casing that contains the impeller, and the pumping pipe is larger in the upper part than in the lower part. It is an inverted cone shape, between the opening that ejects liquid in the circumferential direction of the pumping pipe between the rotating plate and the rotating plate, and the vertical line passing through the outer edge of the rotating plate between the rotating plate and the rotating plate Is provided with an annular backing plate.
  • the pumping pipe is rotated by the same rotary motor as the rotating plate, and sucks up the liquid accumulated in the water reservoir. Then, the sucked liquid is supplied to the rotating plate from the opening between the upper rotating plate and the lower rotating plate. Since the pumping pipe serves as a pump and supplies the liquid to the rotating plate, the power of the pump and the like and the piping for supplying the liquid to the rotating plate are not required outside the liquid micronizer. As a result, a liquid refinement device and a sauna device with a simple configuration are realized.
  • FIG. 1 is a perspective view of a sauna apparatus using a liquid miniaturization apparatus according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the liquid micronizer from the horizontal direction.
  • FIG. 3A is a view showing a side surface of a pumping pipe of the liquid micronizer.
  • FIG. 3B is a perspective view of a pumping pipe of the liquid micronizer.
  • FIG. 3C is a view of the second rotating plate seen from 3C-3C of FIG. 3A.
  • FIG. 3D is a view of the third rotating plate seen from 3D-3D of FIG. 3A.
  • FIG. 4 is a block diagram of a control device of the liquid micronizing device according to the embodiment of the present invention.
  • FIG. 4 is a block diagram of a control device of the liquid micronizing device according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing a drying operation of the liquid micronizer.
  • FIG. 6A is a block diagram of a control device using a temperature detection unit of the liquid micronizer.
  • FIG. 6B is a block diagram of a control device using a humidity detection unit of the liquid micronizer.
  • FIG. 6C is a block diagram of a control device using a water level detection unit of the liquid micronizer.
  • FIG. 7A is a flowchart showing the control of the humidification amount adjustment operation using the temperature detection unit of the liquid micronizer.
  • FIG. 7B is a flowchart showing the control of the humidification amount adjustment operation using the humidity detection unit of the liquid micronizer.
  • FIG. 6A is a flowchart showing the control of the humidification amount adjustment operation using the temperature detection unit of the liquid micronizer.
  • FIG. 7B is a flowchart showing the control of the humidification amount adjustment operation using the humidity detection unit of the liquid micronizer.
  • FIG. 7C is a flowchart showing the control of the humidification amount adjustment operation using the water level detection unit of the liquid micronizer.
  • FIG. 8A is a diagram showing a side surface of a different pumping pipe of the liquid micronizer.
  • FIG. 8B is a perspective view of different pumping pipes of the liquid micronizer.
  • FIG. 9 is an internal perspective view of a liquid refining unit of the liquid refining apparatus.
  • FIG. 10 is an internal perspective view showing an air path constituted by a cylindrical path and a water storage section of the liquid micronizer.
  • 11 is a cross-sectional view taken along the line 11-11 in FIG.
  • FIG. 12 is a top view of the water storage section of the liquid micronizer according to the embodiment of the present invention.
  • FIG. 1 is a perspective view of a sauna apparatus using a liquid miniaturization apparatus according to an embodiment of the present invention. As shown in FIG. 1, a liquid micronizer 3 is attached to the ceiling surface 2 of the sauna room 1.
  • the liquid to be refined will be described as water.
  • FIG. 2 is a perspective view of the liquid micronizer according to the embodiment of the present invention seen from the horizontal direction.
  • the liquid micronizer 3 includes a main body case 6, a heat exchanger 7 as a heating unit, a blower unit, and a liquid micronizer 9.
  • the main body case 6 has a suction port 4 and an exhaust port 5.
  • the air blower includes an impeller 32, a fan motor 8 that rotates the impeller 32, and a fan casing 10 that contains the impeller 32.
  • the heat exchanger 7 and the air blowing unit are provided between the suction port 4 and the exhaust port 5 in the main body case 6.
  • the liquid refinement unit 9 is provided between the fan motor 8 and the exhaust port 5.
  • the air passage leading from the fan motor 8 to the liquid refinement unit 9 is formed by the fan casing 10.
  • An auxiliary heat exchanger 11 is installed between the liquid refinement unit 9 and the exhaust port 5. The auxiliary heat exchanger 11 is provided in order to bring the steam blown into the sauna room 1 to an appropriate temperature.
  • the liquid refinement unit 9 includes a cylindrical path 12, a rotation unit 13, a liquid supply unit, and a water storage unit 26.
  • the cylindrical path 12 has an upper opening 30 and a lower opening 31.
  • the rotating unit 13 is installed in the cylindrical path 12.
  • the liquid supply unit includes a water supply pipe 14, a constant flow valve 15, and a water supply valve 17, and supplies water to the rotating unit 13.
  • the water reservoir 26 is provided at the lower part of the cylindrical path 12.
  • the rotating unit 13 includes a rotating shaft 19, a pumping pipe 22, a first rotating plate 20 a, a second rotating plate 20 b, a third rotating plate 20 c, and a rotating motor 21.
  • the rotating shaft 19 and the pumping pipe 22 are arranged in the vertical direction.
  • the pumping pipe 22 is fixed to the rotary shaft 19 and sucks water from the water storage section 26.
  • the first rotary plate 20 a, the second rotary plate 20 b, and the third rotary plate 20 c are fixed at a predetermined interval in the axial direction of the rotary shaft 19, and rotate around the rotary shaft 19.
  • a first rotary plate 20a, a second rotary plate 20b, a third rotary plate 20c, and three rotary plates are provided from the upper side to the lower side of the rotary shaft 19.
  • a rotating motor 21 for rotating the rotating shaft 19 is provided on the upper portion of the rotating unit 13.
  • the water supply pipe 14 transfers water and supplies water to the uppermost first rotating plate 20a.
  • a constant flow valve 15 is provided in the water supply pipe 14.
  • a water supply valve 17 is provided in the upstream pipe 16 on the upstream side of the constant flow valve 15.
  • tube 14 is arrange
  • the water pumped up by the pumping pipe 22 is disposed below the second rotary plate 20b.
  • a contact plate 23 that drops onto the rotary plate 20b and the third rotary plate 20c is provided in an annular shape.
  • the contact plate 23 is supported by a plurality of support bars 24 from the inner wall of the cylindrical path 12.
  • FIG. 3A is a view showing a side surface of a pumping pipe of the liquid micronizing device according to the embodiment of the present invention
  • FIG. 3B is a perspective view of the pumping tube of the liquid micronizing device
  • FIG. 3C is a second view from 3C-3C of FIG.
  • FIG. 3D is a view of the third rotating plate from 3D-3D of FIG. 3A.
  • openings 25a and 25b through which the pumped water is spouted by the centrifugal force of rotation are respectively a first rotating plate 20a and a second rotating plate. 20b, and two each between the second rotating plate 20b and the third rotating plate 20c.
  • the positions of the openings 25a and 25b are circumferential so that the directions in which water is ejected are different between the first rotating plate 20a and the second rotating plate 20b and between the second rotating plate 20b and the third rotating plate 20c. It is shifted to 20e.
  • the pumping pipe 22 has an inverted conical shape in which the upper portion 20g is larger than the lower portion 20f.
  • the first rotating plate 20 a has a disk shape that closes the upper opening of the pumped water pipe 22.
  • the second rotating plate 20b and the third rotating plate 20c are provided on the outer surface of the pumped-up pipe 22, and have an annular shape.
  • each opening 25a, 25b is 90 degrees. Since the openings 25a and 25b are shifted in the circumferential direction, the water pumped up by the four openings 25a and 25b is jetted to the entire 360 degrees.
  • the vertical cross-sectional shape of the water storage unit 26 is lower than the upper part so that the amount of water that cannot be pumped by the pumping pipe 22, that is, the water storage amount remaining in the water storage unit 26 at the end of the refining operation is reduced.
  • the lower part has a small inverted trapezoidal shape.
  • the contact plate 23 includes a first rotating plate 20a and a second rotating plate 20b, a vertical line 20d passing through the outer edge of the rotating plate between the second rotating plate 20b and the third rotating plate 20c, and an opening 25a. The liquid ejected from the openings 25a and 25b is applied in a ring shape with respect to 25b.
  • a temperature sensor 27 a is provided in the vicinity of the lower opening 31, and a temperature sensor 27 b is provided in the vicinity of the upper opening 30.
  • the lower inner wall 40 of the cylindrical path 12 and the water storage portion inner surface 41 of the water storage portion 26 may be subjected to a hydrophilic treatment.
  • the hydrophilization treatment means that the surfaces of the lower inner wall 40 and the water storage portion inner surface 41 are provided with irregularities to be roughened. As a result, the water droplets adhering to the surfaces of the lower inner wall 40 and the water reservoir inner surface 41 spread thinly.
  • the cylindrical path 12 and the water storage section 26 are resin-molded by a textured mold, and the lower inner wall 40 and the water storage section inner surface 41 are hydrophilized.
  • a hydrophilizing material may be kneaded into the lower inner wall 40 and the water storage unit inner surface 41. Further, the hydrophilizing material may cover the lower inner wall 40 and the water reservoir inner surface 41.
  • the drying time of the lower inner wall 40 and the water reservoir inner surface 41 is shortened during the drying operation. This is because the lower inner wall 40 and the water reservoir inner surface 41 are roughened and roughened, so that the attached water droplets spread thinly on the surfaces of the lower inner wall 40 and the water reservoir inner surface 41. For this reason, the contact area between the thinly spread water droplets and the hot air is increased, and the efficiency of the drying operation is increased.
  • the lower inner wall 40 and the water storage part inner surface 41 are easily subjected to a hydrophilic treatment.
  • a hydrophilic material such as titanium oxide is kneaded into the lower inner wall 40 and the water reservoir inner surface 41, for example, a uniform hydrophilic treatment is performed, and a labor for performing a new hydrophilic treatment is saved.
  • the hydrophilic material covers the lower inner wall 40 and the water reservoir inner surface 41, the hydrophilic treatment is performed while confirming a suitable range, so that a more appropriate hydrophilic treatment is performed.
  • FIG. 4 is a block diagram of a control device of the liquid micronizing device according to the embodiment of the present invention.
  • the control device 43 includes a control unit 44, a remote controller 45 including a display unit and a driving operation switch (not shown), and temperature sensors 27a and 27b.
  • the control unit 44 has a microcomputer (hereinafter referred to as a microcomputer, not shown).
  • the microcomputer performs control of the pump that supplies hot water to the heat exchanger 7, control of the fan motor 8, control of the rotary motor 21 that drives the rotary shaft 19, control of the water supply valve 17, and the like by an operation signal from the remote controller 45. .
  • hot water is supplied from a heat source such as a gas water heater or an electric water heater (not shown) to the heat exchanger 7 shown in FIG. 2 through the pipe 28 shown in FIG. .
  • city water is supplied to the water supply pipe 14 through a pipe 29.
  • the city water supplied to the water supply pipe 14 is set by the constant flow valve 15 and is very small.
  • the city water supplied to the water supply pipe 14 is stopped by the water supply valve 17 and is not discharged from the water supply pipe 14 until the rotary motor 21 is driven.
  • the water supply pipe 14 supplies water at a flow rate set by the constant flow valve 15 to a position close to the rotary shaft 19 on the upper surface of the first rotary plate 20a that rotates at high speed.
  • the water supplied to the upper surface of the first rotating plate 20a spreads in the form of a thin film toward the outer periphery due to the centrifugal force caused by the high speed rotation.
  • the water in the form of a thin film is blown off at high speed in the tangential direction from the outer peripheral edge of the first rotating plate 20a.
  • the water droplets scattered by the centrifugal force collide with the inner wall of the cylindrical path 12 and are crushed, thereby promoting the miniaturization of water.
  • water droplets that are not miniaturized and adhere to the inner wall of the cylindrical path 12 and a minute amount of water droplets that are condensed on the inner wall after being miniaturized are: It flows along the inner wall of the cylindrical path
  • the pumping pipe 22 since the pumping pipe 22 has an inverted conical shape as described above, a suction force acts inside the pumping pipe 22. For this reason, the water in the water storage section 26 is rolled up together with the air on the water surface and moves upward along the inner wall of the pumping pipe 22. And the water which moved upward along the inner wall of the pumping pipe 22 is spouted by the centrifugal force from the opening 25b between the 2nd rotary plate 20b and the 3rd rotary plate 20c, and the contact plate provided in cyclic
  • the water that has dropped onto the third rotating plate 20c spreads in a thin film toward the outer periphery by centrifugal force due to high-speed rotation, similar to the water supplied to the upper surface of the first rotating plate 20a.
  • the water in the form of a thin film is blown off at high speed in the tangential direction from the outer peripheral edge of the third rotating plate 20c.
  • the water that has moved upward along the inner wall of the pumping pipe 22 and has not been ejected from the opening 25b is ejected from the opening 25a by centrifugal force due to rotation, hits the contact plate 23 provided in an annular shape, and the second rotating plate. Fall to 20b.
  • the water that has dropped onto the second rotating plate 20b spreads in a thin film toward the outer periphery due to centrifugal force due to high-speed rotation.
  • the water in the form of a thin film is blown off at high speed in the tangential direction from the outer peripheral edge of the second rotating plate 20b.
  • the water droplets scattered by the centrifugal force collide with the inner wall of the cylindrical path 12 and are crushed, thereby promoting the refinement of water.
  • the water that moves upward along the inner wall of the pumping pipe 22 is not directly swirled in a spiral shape, but is rotated almost uniformly over the entire inner wall because the rotary motor 21 rotates at a high speed. Move to.
  • water is uniformly supplied from the openings 25a and 25b so that the direction in which water is ejected is different among the first rotary plate 20a, the second rotary plate 20b, and the third rotary plate 20c.
  • the position of the opening 25 is shifted in the circumferential direction 20e of the first rotating plate 20a, the second rotating plate 20b, and the third rotating plate 20c so as to be ejected.
  • water droplets that have not been refined and adhered to the inner wall of the cylindrical path 12 and a minute amount of water droplets that have condensed on the inner wall after being refined flow down to the water storage section 26 along the inner wall of the cylindrical path 12, Water is stored.
  • the steam formed by the high-speed rotation of the first rotating plate 20a, the second rotating plate 20b, and the third rotating plate 20c is supplied from the exhaust port 5 to the inside of the sauna chamber 1 by the fan motor 8.
  • the pumping pipe 22 is rotated by the same rotary motor 21 as the first rotary plate 20a, the second rotary plate 20b, and the third rotary plate 20c.
  • the water accumulated in the water storage unit 26 is sucked up by the pumping pipe 22.
  • the sucked water is ejected from openings 25a and 25b provided between the first rotating plate 20a and the second rotating plate 20b and between the second rotating plate 20b and the third rotating plate 20c. Is done.
  • the ejected water hits the contact plate 23 provided in an annular shape and is supplied to the second rotary plate 20b and the third rotary plate 20c.
  • the pumping pipe 22 serves as a circulation of the pump and water supply to the second rotating plate 20b and the third rotating plate 20c. With such a simple configuration, water circulation and water supply to the second rotating plate 20b and the third rotating plate 20c are realized.
  • the amount of water supplied from the water supply pipe 14 to the upper surface of the first rotating plate 20a is a problem.
  • the amount of water supplied to the upper surface of the first rotating plate 20a is determined by the micronization capability of the liquid micronizer 9, and is, for example, 30 cc / min.
  • the micronization capability of the liquid micronizer 9 is determined by the number of the first rotary plate 20a, the second rotary plate 20b, the third rotary plate 20c, the rotational speed of the rotary motor 21, and the like.
  • the constant flow valve 15 causes variations in the flow rate depending on the water temperature and water pressure. Therefore, a buffer function is provided for the amount of water stored in the water storage unit 26 and the amount of water stored in the pumping pipe 22.
  • FIG. 5 is a flowchart showing a drying operation of the liquid micronizer according to the embodiment of the present invention.
  • the water supply valve 17 is closed, and the supply of water from the water supply pipe 14 to the upper surface of the first rotating plate 20a is stopped.
  • the water supply source 26 is the only water supply source at this time.
  • water is supplied to the second rotating plate 20b and the third rotating plate 20c by the pumping pipe 22. Most of the supplied water is refined and supplied from the exhaust port 5 to the inside of the sauna room 1 by the fan motor 8.
  • the amount of residual water in the water storage unit 26 when pumping by the pumping pipe 22 becomes impossible is about 5 cc from the experiment, and if the drying operation is performed for 10 minutes, there is no residual water in the water storage unit 26. .
  • This drying operation may be performed only for 10 minutes by a timer. Further, the drying operation may be controlled using the temperatures (T1, T2) detected by the temperature sensor 27a provided at the inlet of the liquid micronization unit 9 and the temperature sensor 27b provided at the outlet shown in FIG. That is, when it is desired to shorten the drying operation time as much as possible for energy saving, if there is residual water in the liquid micronization unit 9, the heat of vaporization is taken away from the blown air due to the evaporation of water. As a result, since the air temperature at the outlet becomes lower than the air temperature at the inlet, the drying state may be determined from the temperature difference (X) at the inlet and outlet, and the drying operation may be terminated.
  • T1, T2 the temperatures detected by the temperature sensor 27a provided at the inlet of the liquid micronization unit 9 and the temperature sensor 27b provided at the outlet shown in FIG. That is, when it is desired to shorten the drying operation time as much as possible for energy saving, if there is residual water in the liquid micronization
  • the water that remains slightly in the water storage section 26 and cannot be refined in this way is evaporated by the drying operation after the sauna operation is finished, even if it is not discharged. Therefore, drainage piping is not necessary.
  • the water is stored in the water storage unit 26.
  • control unit 44 operates the fan motor 8 in a state in which the air blowing capacity is lowered during the drying operation as compared with the normal liquid refinement operation (sauna operation). Specifically, as shown in FIG. 5, in the drying operation, the control unit 44 closes the water supply valve 17. The operation of the heat exchanger 7, the fan motor 8, and the rotary motor 21 is continued in a state where the supply of water from the water supply pipe 14 to the upper surface of the first rotary plate 20a is stopped. At this time, the fan motor 8 performs the drying operation by reducing the blowing capacity by about half compared to during the sauna operation.
  • the rotary motor 21 is driven by the control unit 44 even during the drying operation. Therefore, the water accumulated in the water storage unit 26 is pumped by the pumping pipe 22 and supplied to the second rotary plate 20b and the third rotary plate 20c, and the water is refined. The refined water is supplied from the exhaust port 5 to the inside of the sauna room 1 by blowing air from the fan motor 8.
  • the water accumulated in the water storage unit 26 gradually decreases, and eventually the pumping pipe 22 cannot pump the water (in the case of the present embodiment, the water storage unit 26 remaining when the pumping pipe 22 cannot pump the water).
  • the amount of water is about 5 cc, which is very small).
  • the fan motor 8 is driven, and hot water circulation is continued in the heat exchanger 7. Therefore, the warm air from the fan motor 8 is blown to a small amount of water remaining in the water reservoir 26, and the water reservoir 26 is dried.
  • the warm air from the fan motor 8 enters the inside of the pumping pipe 22 from the lower end of the pumping pipe 22, ascends inside the pumping pipe 22, and is released toward the contact plate 23 from the openings 25a and 25b. Therefore, the water adhering to the inner surface of the pumping pipe 22, the contact plate 23, the first rotary plate 20a, the second rotary plate 20b, and the third rotary plate 20c is also efficiently dried.
  • the reason why the fan motor 8 is operated in a state in which the air blowing capacity is lowered in the drying operation as compared with the normal liquid refinement operation is to reduce the operation sound. .
  • the drying operation since the drying operation is performed, for example, at midnight after the sauna operation is completed, it is desirable that the operation sound be smaller than shortening the drying time.
  • the silent operation during the drying operation, if the operation in which the rotation speed of the rotary motor 21 is lower than that during the liquid refinement operation (sauna operation) is performed during the drying operation, the silent operation is further performed. Is possible.
  • FIG. 6A is a block diagram of a control device using the temperature detection unit of the liquid micronization device according to the embodiment of the present invention
  • FIG. 6B is a block diagram of a control device using the humidity detection unit of the liquid micronization device
  • FIG. 6C is a block diagram of a control device using a water level detection unit of the liquid micronizer
  • 7A is a flowchart showing the control of the humidification amount adjustment operation using the temperature detection unit of the liquid micronization device according to the embodiment of the present invention
  • FIG. 7B is the humidification amount adjustment using the humidity detection unit of the liquid micronization device
  • FIG. 7C is a flowchart showing the control of the humidification amount adjustment operation using the water level detection unit of the liquid micronizer.
  • the control device 43 uses temperature sensors 27a and 27b, and its flowchart is shown in FIG. 7A. As shown in FIG. 7A, during normal sauna operation, the heat exchanger 7 is water-flowed, the fan motor 8 and the rotary motor 21 are operated, and the water supply valve 17 is opened (S1).
  • the sauna chamber 1 becomes highly humid, the difference between the detected temperatures (T1, T2) between the temperature sensor 27a provided in the lower opening 31 and the temperature sensor 27b provided in the upper opening 30 shown in FIG. (X) becomes smaller. That is, when the air flowing in from the inlet of the liquid refinement unit 9 becomes highly humid, the humidification amount that is the amount of liquid refinement in the liquid refinement unit 9 decreases. Therefore, the amount of heat taken away by the heat of vaporization decreases, and the temperature difference between the temperature sensor 27a and the temperature sensor 27b becomes smaller.
  • the opening and closing of the water supply valve 17 is controlled so that the amount of water supply does not become excessive.
  • the timing at which the closed water supply valve 17 is opened is determined by the amount of water stored in the water storage unit 26 and the buffer capacity given to the amount of pumped water in the pumping pipe 22.
  • the timing at which the water supply valve 17 is opened from an experiment or the like is preferably 5 to 10 minutes after the water supply valve 17 is closed.
  • a humidity sensor 46 may be provided at the suction port 4 instead of the temperature sensors 27a and 27b.
  • the configuration of the control device 43 at that time is FIG. 6B, and the flowchart is FIG. 7B. That is, since the humidity of the sauna room 1 is directly detected, the humidity control of the sauna room 1 can be accurately performed.
  • the water supply valve 17 may be closed when the humidity becomes 80% or more, and the water supply valve 17 may be opened when the humidity becomes 70% or less.
  • a water level sensor 47 that detects the water level of the water storage unit 26 may be used instead of the temperature sensors 27a and 27b and the humidity sensor 46.
  • the configuration of the control device 43 at that time is FIG. 6C, and the flowchart is FIG. 7C. That is, when the amount of water supplied to the rotating unit 13 exceeds the amount of humidification, the water level of the water storage unit 26 rises. The raised water level H may be detected and the water supply valve 17 may be closed. Further, the water level sensor 47 may detect the low water level L and the water supply valve 17 may be opened.
  • FIG. 8A is a view showing a side surface of a different pumping pipe of the liquid refinement apparatus according to the embodiment of the present invention
  • FIG. 8B is a perspective view of a different pumping pipe of the liquid refinement apparatus.
  • a rib as a liquid rise prevention unit that prevents water from rising from the water storage unit 26 is provided on the outer surface of the pumping pipe 22 a below the third rotary plate 20 c on the lowermost side. 53 is provided.
  • the rib 53 is provided above the liquid level 54 of the water storage unit 26.
  • the rib 53 can be easily provided and can be manufactured at low cost.
  • the water in the water storage section 26 is rolled up with the air on the water surface. Most of the water in the reservoir 26 moves upward along the inner surface of the pumping pipe 22, but there is also water that moves upward along the outer surface of the pumping pipe 22. However, the water moving upward along the outer surface of the pumping pipe 22 collides with the rib 53, flows downward, and returns to the water storage unit 26 again.
  • the water particles blown outward from the ribs 53 are large, it is possible to prevent the water from being blown out from the exhaust port 5 on the air flow blown out from the fan motor 8. That is, the water droplets blown out from the exhaust port 5 are only water droplets refined by the first rotating plate 20a, the second rotating plate 20b, and the third rotating plate 20c.
  • FIG. 9 is an internal perspective view of a liquid micronizing unit of the liquid micronizing device according to the embodiment of the present invention
  • FIG. 10 is an internal perspective view showing an air path constituted by a cylindrical path and a water storage unit of the liquid micronizing device.
  • the water reservoir 26 is provided with a protrusion 62 that communicates with the opening 64.
  • a float 63 is disposed in the protrusion 62 as a water level detection unit that detects the water level of the water storage unit 26.
  • the water storage unit 26 has a bottom surface 67 and an edge portion 68 rising from the outer periphery of the bottom surface 67. As shown by the solid line B in FIG. 10, an air passage is formed between the upper opening 30 provided in the cylindrical path 12 and the lower opening 31.
  • the fan casing 10 is connected upstream of the lower opening 31. Air from the fan motor 8 flows into the lower opening 31, passes through the water reservoir 26, and flows upward in the cylindrical path 12 from the lower side. As shown by a solid line A in FIG. 9, the air from the fan motor 8 passes through these gaps and is discharged from the upper opening 30 of the cylindrical path 12.
  • the lower opening 31 has a part of the lower end of the cylindrical path 12 cut out.
  • a notch 61 is provided at the edge 68 of the water reservoir 26 in contact with the lower opening 31.
  • an opening 64 is provided at the edge 68 of the water storage section 26.
  • the projecting portion 62 is a rectangular parallelepiped that is hollow with the side surface on the water storage portion 26 side opened relative to the opening 64.
  • a float 63 is disposed on the protrusion 62.
  • FIG. 11 is a cross-sectional view taken along the line 11-11 in FIG.
  • the float 63 detects the water level 65 during sauna operation.
  • the first switch (not shown) of the float 63 is opened, the power supply to the water supply valve 17 is cut off, and the water supply from the water supply pipe 14 is stopped.
  • water is stored in the water storage section 26 up to the water level 65 during the sauna operation.
  • an abnormal water level 66 is set above the water level 65 during sauna operation.
  • the second switch (not shown) of the float 63 is opened, the power supply to the water supply valve 17 is cut off, and the water supply from the water supply pipe 14 is stopped. Then, the operation of the fan motor 8 and the rotary motor 21 is stopped, and the operation of the sauna device is stopped.
  • a plurality of partition ribs 37 are provided above the bottom surface of the water reservoir 26.
  • the height of the partition ribs 37 is preferably the same height as the abnormal water level 66, and is lower than the notch lower end 69 of the notch 61.
  • FIG. 12 is a top view of the water storage section of the liquid micronizer according to the embodiment of the present invention.
  • a plurality of partition ribs 37a, 37b, 37c,..., 37k formed in a flat plate are arranged around the pumping pipe 22.
  • the partition ribs 37a, 37b, 37c in the vicinity of the notch lower end 69 may be parallel to the opening 64 or may be inclined. That is, the partition ribs 37 a, 37 b, and 37 c are provided substantially in parallel with the air inflow direction from the lower opening 31 to the water reservoir 26.
  • each of the partition ribs 37c, 37d, 37e, and 37f in the vicinity of the opening 64 is disposed with an interval L1.
  • the screen ribs 37c are arranged so as to be slightly inclined toward the protrusion 62. That is, the partition ribs 37d, 37e, and 37f are arranged substantially parallel to the opening 64, and the partition rib 37c is inclined ⁇ with respect to the partition rib 37e.
  • partition ribs 37h, 37i, 37j,... are provided radially around the pumping pipe 22.
  • the partition ribs 37 l are formed perpendicular to the opening 64.
  • the water stored in the water storage section 26 is caught in the high speed rotation of the pumping pipe 22 and starts rotating in the same direction as the rotation direction of the pumping pipe 22. Furthermore, the surface of the water undulates due to the action of the airflow along the surface of the water.
  • the screen ribs 37 act to reduce the fluctuation of the water surface and suppress the fluctuation of the float 63.
  • the plurality of partition ribs 37i, 37j, etc. provided radially from the pumping pipe 22 can rotate even if the water around the outer periphery of the pumping pipe 22 is swung into the high-speed rotation of the pumping pipe 22. To prevent. This is because the partition ribs 37i, 37j and the like are provided with resistance because they are provided in a direction that shields the rotating flow, that is, substantially perpendicular to the rotating direction.
  • each of the partition ribs 37c, 37d, 37e, and 37f in the vicinity of the opening 64 is disposed with the interval L1, so that the undulating water surface is prevented from entering the protruding portion 62. Further, the partition ribs 37k and 37l prevent the waves that are generated when the air flowing in from the lower opening 31 flows along the water surface from spreading. Therefore, since the water level 65 during the sauna operation is stable, the float 63 can accurately detect the water level.
  • the residual water that accumulates in the water storage section 26 during the sauna operation is extremely small, and the water level 65 during the sauna operation is also stable. For this reason, the amount of water flowing into the protrusion 62 through the opening 64 is small, and the float 63 is maintained at a water level that is slightly lifted from the bottom surface of the protrusion 62.
  • the drying operation proceeds, the remaining water in the water storage section 26 decreases and the water level decreases, so that the ratio of air blown from the fan motor 8 to the screen ribs 37 increases.
  • the screen ribs 37c, 37i, 37j and the like have an action of deflecting the flow along the bottom surface 67 of the water storage section 26. Therefore, the ventilation in the water storage part 26 is stirred and the drying in the water storage part 26 is accelerated
  • the residual water is dried by the drying operation, so that the waste water in the liquid micronizer 3 need not be drained.
  • the sauna operation for example, due to a failure of the constant flow valve 15, water of a predetermined flow rate or higher is supplied to the first rotating plate 20 a, and excess water having a water level of 65 or higher during the sauna operation is stored in the water storage unit 26. Will accumulate.
  • the float 63 arranged in the protrusion 62 detects the abnormal water level 66 and interrupts the energization of the water supply valve 17. Then, water supply from the water supply pipe 14 is stopped, the operation of the fan motor 8 and the rotary motor 21 is stopped, and the operation of the sauna device is stopped.
  • the operation of the sauna device is stopped before water leaks from, for example, the joint between the upper end of the water storage section 26 and the lower end of the cylindrical path 12.
  • the liquid refinement apparatus of the present invention and a sauna apparatus using the same are expected to be used for sauna apparatuses, humidification apparatuses, cooling apparatuses, spraying apparatuses, cleaning apparatuses, plant growing facilities, and the like. Further, it can be used not only for water but also for liquid miniaturization equipment such as oil and detergent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Humidification (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Abstract

The liquid atomizing device is provided with a main casing, heating unit, fan unit, and liquid atomizing unit. The liquid atomizing unit comprises a cylindrical passage, rotating part, liquid supply part and water storage part. The rotating part comprises a rotation shaft, rotation motor, water-lifting tube and a plurality of rotating plates. The water-lifting tube is a reverse cone shape with the upper part being larger than the lower part; and is provided with openings, which are between the rotating plates, for spraying the liquid towards the circumference of the water-lifting tube and with circular targets, which are between the rotating plates and between the openings and a vertical line that passes through the outer edges of the rotating plates.

Description

液体微細化装置とそれを用いたサウナ装置Liquid refinement device and sauna device using the same
 本発明は、液体微細化装置とそれを用いたサウナ装置に関する。 The present invention relates to a liquid refinement apparatus and a sauna apparatus using the same.
 サウナ装置に用いられる液体微細化装置は本体ケースと、送風部と、液体微細化部とを備えている。ここで本体ケースは、給気口と排気口とを有する。送風部は、本体ケース内の風路に設けられている。液体微細化部は、送風部と排気口との間に設けられている。そして液体微細化部は、タンク内に液体を貯め、その貯めた液体をポンプにより回転する円板の上面に供給し、円板上に薄く広がった液体を遠心力により外方に飛散させて微細化させていた(例えば、特許文献1参照)。 The liquid refining device used in the sauna device includes a main body case, a blower unit, and a liquid refining unit. Here, the main body case has an air supply port and an exhaust port. The ventilation part is provided in the air passage in the main body case. The liquid miniaturization part is provided between the ventilation part and the exhaust port. The liquid refinement unit stores the liquid in the tank, supplies the stored liquid to the upper surface of the rotating disk by a pump, and disperses the thinly spread liquid outward by centrifugal force. (For example, refer to Patent Document 1).
 上記従来例では、タンク内に液体を貯め、複数の回転する円板の上面に液体を供給するため、液体微細化装置外にポンプ等の動力と、各円板に液体を供給するための配管とが必要であった。 In the above conventional example, the liquid is stored in the tank, and the liquid is supplied to the upper surfaces of the plurality of rotating disks, so that the power of the pump and the like outside the liquid micronizer and the piping for supplying the liquid to each disk And was necessary.
 すなわち従来の液体微細化装置は、液体を循環させるポンプ、及び円板の枚数に応じた液体の供給管が必要となり、部品の点数が多くなり、複雑な構成になるという課題があった。 That is, the conventional liquid miniaturization apparatus requires a pump for circulating the liquid and a liquid supply pipe corresponding to the number of disks, and there is a problem that the number of parts increases and the structure becomes complicated.
特開平4-118068号公報Japanese Patent Laid-Open No. 4-111868
 本発明は、吸込口および排気口を有する本体ケースと、吸込口と排気口との間に設けた加熱部および送風部と、送風部と排気口との間に設けた液体微細化部とを備えた液体微細化装置であって、液体微細化部は上方開口部および下方開口部を有する筒状の経路と、筒状の経路内に設けた回転部と、回転部に液体を供給する液体供給部と、筒状の経路の下部に設けた貯水部とを有し、回転部は鉛直方向に配置した回転軸と、回転軸を回転させる回転モータと、回転軸に鉛直方向に固定されるとともに貯水部から液体を吸上げる揚水管と、回転軸の軸方向に所定間隔を設けて揚水管に固定された複数の回転板とを有し、液体供給部は液体を移送し最も上側の回転板に液体を供給する給水管と、給水管に設けられた定流量弁と、定流量弁より給水管の上流側に設けられた給水弁とを有し、送風部は羽根車と、羽根車を回転させるファンモータと、羽根車を内包するファンケーシングとを有し、揚水管は下部より上部が大きい逆円錐形状であり、回転板と回転板との間の揚水管の周方向に液体を噴出させる開口と、回転板と回転板との間の回転板の外縁を通る鉛直線と開口との間に環状の当て板とを設けている。 The present invention includes a main body case having a suction port and an exhaust port, a heating unit and a blower unit provided between the suction port and the exhaust port, and a liquid refinement unit provided between the blower unit and the exhaust port. A liquid refinement apparatus comprising a liquid refinement unit having a cylindrical path having an upper opening and a lower opening, a rotating part provided in the cylindrical path, and a liquid for supplying liquid to the rotating part It has a supply part and a water storage part provided in the lower part of the cylindrical path, and the rotating part is fixed to the rotating shaft in the vertical direction, a rotating shaft arranged in the vertical direction, a rotating motor for rotating the rotating shaft, And a pumping tube for sucking liquid from the water storage unit and a plurality of rotating plates fixed to the pumping tube with a predetermined interval in the axial direction of the rotating shaft, and the liquid supply unit transfers the liquid and rotates the uppermost side. A water supply pipe for supplying liquid to the plate, a constant flow valve provided in the water supply pipe, and water supply from the constant flow valve The air blower has an impeller, a fan motor that rotates the impeller, and a fan casing that contains the impeller, and the pumping pipe is larger in the upper part than in the lower part. It is an inverted cone shape, between the opening that ejects liquid in the circumferential direction of the pumping pipe between the rotating plate and the rotating plate, and the vertical line passing through the outer edge of the rotating plate between the rotating plate and the rotating plate Is provided with an annular backing plate.
 揚水管は、回転板と同じ回転モータにより回転され、貯水部に溜まった液体を吸上げる。そして、上方の回転板と下方の回転板との間の開口から、吸上げた液体が回転板に供給される。揚水管がポンプの役目と、回転板への液体供給とを兼ねることにより、液体微細化装置外にポンプ等の動力と、回転板に液体を供給するための配管とが不要となる。その結果、簡単な構成の液体微細化装置とサウナ装置とが実現される。 The pumping pipe is rotated by the same rotary motor as the rotating plate, and sucks up the liquid accumulated in the water reservoir. Then, the sucked liquid is supplied to the rotating plate from the opening between the upper rotating plate and the lower rotating plate. Since the pumping pipe serves as a pump and supplies the liquid to the rotating plate, the power of the pump and the like and the piping for supplying the liquid to the rotating plate are not required outside the liquid micronizer. As a result, a liquid refinement device and a sauna device with a simple configuration are realized.
図1は、本発明の実施の形態の液体微細化装置を用いたサウナ装置の斜視図である。FIG. 1 is a perspective view of a sauna apparatus using a liquid miniaturization apparatus according to an embodiment of the present invention. 図2は、同液体微細化装置を水平方向から透視した図である。FIG. 2 is a perspective view of the liquid micronizer from the horizontal direction. 図3Aは、同液体微細化装置の揚水管の側面を示す図である。FIG. 3A is a view showing a side surface of a pumping pipe of the liquid micronizer. 図3Bは、同液体微細化装置の揚水管の斜視図である。FIG. 3B is a perspective view of a pumping pipe of the liquid micronizer. 図3Cは、図3Aの3C-3Cから第2の回転板を見た図である。FIG. 3C is a view of the second rotating plate seen from 3C-3C of FIG. 3A. 図3Dは、図3Aの3D-3Dから第3の回転板を見た図である。FIG. 3D is a view of the third rotating plate seen from 3D-3D of FIG. 3A. 図4は、本発明の実施の形態の液体微細化装置の制御装置のブロック図である。FIG. 4 is a block diagram of a control device of the liquid micronizing device according to the embodiment of the present invention. 図5は、同液体微細化装置の乾燥運転を示すフローチャートである。FIG. 5 is a flowchart showing a drying operation of the liquid micronizer. 図6Aは、同液体微細化装置の温度検知部を用いた制御装置のブロック図である。FIG. 6A is a block diagram of a control device using a temperature detection unit of the liquid micronizer. 図6Bは、同液体微細化装置の湿度検知部を用いた制御装置のブロック図である。FIG. 6B is a block diagram of a control device using a humidity detection unit of the liquid micronizer. 図6Cは、同液体微細化装置の水位検知部を用いた制御装置のブロック図である。FIG. 6C is a block diagram of a control device using a water level detection unit of the liquid micronizer. 図7Aは、同液体微細化装置の温度検知部を用いた加湿量調整運転の制御を示すフローチャートである。FIG. 7A is a flowchart showing the control of the humidification amount adjustment operation using the temperature detection unit of the liquid micronizer. 図7Bは、同液体微細化装置の湿度検知部を用いた加湿量調整運転の制御を示すフローチャートである。FIG. 7B is a flowchart showing the control of the humidification amount adjustment operation using the humidity detection unit of the liquid micronizer. 図7Cは、同液体微細化装置の水位検知部を用いた加湿量調整運転の制御を示すフローチャートである。FIG. 7C is a flowchart showing the control of the humidification amount adjustment operation using the water level detection unit of the liquid micronizer. 図8Aは、同液体微細化装置の異なる揚水管の側面を示す図である。FIG. 8A is a diagram showing a side surface of a different pumping pipe of the liquid micronizer. 図8Bは、同液体微細化装置の異なる揚水管の斜視図である。FIG. 8B is a perspective view of different pumping pipes of the liquid micronizer. 図9は、同液体微細化装置の液体微細化部の内部斜視図である。FIG. 9 is an internal perspective view of a liquid refining unit of the liquid refining apparatus. 図10は、同液体微細化装置の筒状の経路および貯水部により構成される風路を示す内部斜視図である。FIG. 10 is an internal perspective view showing an air path constituted by a cylindrical path and a water storage section of the liquid micronizer. 図11は、図10の11-11断面図である。11 is a cross-sectional view taken along the line 11-11 in FIG. 図12は、本発明の実施の形態の液体微細化装置の貯水部の上面図である。FIG. 12 is a top view of the water storage section of the liquid micronizer according to the embodiment of the present invention.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.
 (実施の形態)
 図1は、本発明の実施の形態の液体微細化装置を用いたサウナ装置の斜視図である。図1に示すように、サウナ室1の天井面2には、液体微細化装置3が取り付けられている。以下、本実施の形態では、微細化する液体を水として説明する。
(Embodiment)
FIG. 1 is a perspective view of a sauna apparatus using a liquid miniaturization apparatus according to an embodiment of the present invention. As shown in FIG. 1, a liquid micronizer 3 is attached to the ceiling surface 2 of the sauna room 1. Hereinafter, in the present embodiment, the liquid to be refined will be described as water.
 図2は、本発明の実施の形態の液体微細化装置を水平方向から透視した図である。図2に示すように液体微細化装置3は、本体ケース6と、加熱部としての熱交換器7と、送風部と、液体微細化部9とを備えている。ここで本体ケース6は、吸込口4と排気口5とを有する。送風部は、羽根車32と、羽根車32を回転させるファンモータ8と、羽根車32を内包するファンケーシング10とを有している。熱交換器7および送風部は、本体ケース6内の吸込口4と排気口5との間に設けられている。液体微細化部9は、ファンモータ8と排気口5との間に設けられている。 FIG. 2 is a perspective view of the liquid micronizer according to the embodiment of the present invention seen from the horizontal direction. As shown in FIG. 2, the liquid micronizer 3 includes a main body case 6, a heat exchanger 7 as a heating unit, a blower unit, and a liquid micronizer 9. Here, the main body case 6 has a suction port 4 and an exhaust port 5. The air blower includes an impeller 32, a fan motor 8 that rotates the impeller 32, and a fan casing 10 that contains the impeller 32. The heat exchanger 7 and the air blowing unit are provided between the suction port 4 and the exhaust port 5 in the main body case 6. The liquid refinement unit 9 is provided between the fan motor 8 and the exhaust port 5.
 また、ファンモータ8から液体微細化部9へ通じる風路は、ファンケーシング10により形成されている。液体微細化部9と排気口5との間には、補助熱交換器11が設置されている。補助熱交換器11は、サウナ室1に送風する蒸気を、適切な温度にするために設けられている。 Further, the air passage leading from the fan motor 8 to the liquid refinement unit 9 is formed by the fan casing 10. An auxiliary heat exchanger 11 is installed between the liquid refinement unit 9 and the exhaust port 5. The auxiliary heat exchanger 11 is provided in order to bring the steam blown into the sauna room 1 to an appropriate temperature.
 液体微細化部9は、筒状の経路12と、回転部13と、液体供給部と、貯水部26とを備える。ここで筒状の経路12は、上方開口部30および下方開口部31を有する。回転部13は、筒状の経路12内に設置されている。液体供給部は、給水管14と定流量弁15と給水弁17とを有し、回転部13に水を供給する。貯水部26は、筒状の経路12の下部に設けられている。 The liquid refinement unit 9 includes a cylindrical path 12, a rotation unit 13, a liquid supply unit, and a water storage unit 26. Here, the cylindrical path 12 has an upper opening 30 and a lower opening 31. The rotating unit 13 is installed in the cylindrical path 12. The liquid supply unit includes a water supply pipe 14, a constant flow valve 15, and a water supply valve 17, and supplies water to the rotating unit 13. The water reservoir 26 is provided at the lower part of the cylindrical path 12.
 回転部13は回転軸19と、揚水管22と、第1の回転板20a、第2の回転板20b、第3の回転板20cと、回転モータ21とから構成されている。ここで回転軸19および揚水管22は、鉛直方向に配置されている。また揚水管22は回転軸19に固定され、貯水部26から水を吸上げる。第1の回転板20a、第2の回転板20b、第3の回転板20cは、回転軸19の軸方向に所定間隔を設けて固定され、回転軸19を中心として回動する。本実施の形態では、回転軸19の上方から下方へ第1の回転板20a、第2の回転板20b、第3の回転板20cと3枚の回転板が設けられている。回転部13の上部には、回転軸19を回転させるための回転モータ21が備えられている。 The rotating unit 13 includes a rotating shaft 19, a pumping pipe 22, a first rotating plate 20 a, a second rotating plate 20 b, a third rotating plate 20 c, and a rotating motor 21. Here, the rotating shaft 19 and the pumping pipe 22 are arranged in the vertical direction. The pumping pipe 22 is fixed to the rotary shaft 19 and sucks water from the water storage section 26. The first rotary plate 20 a, the second rotary plate 20 b, and the third rotary plate 20 c are fixed at a predetermined interval in the axial direction of the rotary shaft 19, and rotate around the rotary shaft 19. In the present embodiment, a first rotary plate 20a, a second rotary plate 20b, a third rotary plate 20c, and three rotary plates are provided from the upper side to the lower side of the rotary shaft 19. A rotating motor 21 for rotating the rotating shaft 19 is provided on the upper portion of the rotating unit 13.
 給水管14は、水を移送し最も上側の第1の回転板20aに水を供給する。給水管14には、定流量弁15が設けられている。定流量弁15の上流側の上流側配管16には、給水弁17が設けられている。そして、給水管14の先端は、第1の回転板20aの回転部分に対して回転軸19よりに配置されている。 The water supply pipe 14 transfers water and supplies water to the uppermost first rotating plate 20a. A constant flow valve 15 is provided in the water supply pipe 14. A water supply valve 17 is provided in the upstream pipe 16 on the upstream side of the constant flow valve 15. And the front-end | tip of the water supply pipe | tube 14 is arrange | positioned from the rotating shaft 19 with respect to the rotation part of the 1st rotation board 20a.
 第1の回転板20aと第2の回転板20bとの間、及び第2の回転板20bと第3の回転板20cとの間には、揚水管22により揚水した水を下方の第2の回転板20b、第3の回転板20cへ落下させる当て板23が環状に設けられている。当て板23は、筒状の経路12の内壁からの複数の支持棒24により支持されている。 Between the first rotary plate 20a and the second rotary plate 20b, and between the second rotary plate 20b and the third rotary plate 20c, the water pumped up by the pumping pipe 22 is disposed below the second rotary plate 20b. A contact plate 23 that drops onto the rotary plate 20b and the third rotary plate 20c is provided in an annular shape. The contact plate 23 is supported by a plurality of support bars 24 from the inner wall of the cylindrical path 12.
 図3Aは本発明の実施の形態の液体微細化装置の揚水管の側面を示す図、図3Bは同液体微細化装置の揚水管の斜視図、図3Cは図3Aの3C-3Cから第2の回転板を見た図、図3Dは図3Aの3D-3Dから第3の回転板を見た図である。 FIG. 3A is a view showing a side surface of a pumping pipe of the liquid micronizing device according to the embodiment of the present invention, FIG. 3B is a perspective view of the pumping tube of the liquid micronizing device, and FIG. 3C is a second view from 3C-3C of FIG. FIG. 3D is a view of the third rotating plate from 3D-3D of FIG. 3A.
 図3Aに示すように揚水管22の周方向20eには、揚水した水を回転の遠心力により噴出させる水平方向に長い開口25a、25bが、それぞれ第1の回転板20aと第2の回転板20b、第2の回転板20bと第3の回転板20cの間に2個ずつ設けられている。そして第1の回転板20aと第2の回転板20b、第2の回転板20bと第3の回転板20cの間において水を噴出させる方向が異なるように、開口25a、25bの位置は周方向20eにずらされている。 As shown in FIG. 3A, in the circumferential direction 20e of the pumping pipe 22, horizontally- long openings 25a and 25b through which the pumped water is spouted by the centrifugal force of rotation are respectively a first rotating plate 20a and a second rotating plate. 20b, and two each between the second rotating plate 20b and the third rotating plate 20c. The positions of the openings 25a and 25b are circumferential so that the directions in which water is ejected are different between the first rotating plate 20a and the second rotating plate 20b and between the second rotating plate 20b and the third rotating plate 20c. It is shifted to 20e.
 また図3Bに示すように揚水管22は、下部20fより上部20gが大きい逆円錐形状である。そして第1の回転板20aは、揚水管22の上部開口を塞ぐ円板形状である。第2の回転板20b、および第3の回転板20cは、揚水管22の外面に設けられ、円環形状である。 Further, as shown in FIG. 3B, the pumping pipe 22 has an inverted conical shape in which the upper portion 20g is larger than the lower portion 20f. The first rotating plate 20 a has a disk shape that closes the upper opening of the pumped water pipe 22. The second rotating plate 20b and the third rotating plate 20c are provided on the outer surface of the pumped-up pipe 22, and have an annular shape.
 図3C、図3Dに示すように、回転板が3枚の場合、それぞれの開口25a、25bの中心角θは、90度である。開口25a、25bは、周方向にずらされているため、4つの開口25a、25bにより、揚水した水は360度全周に噴出される。 As shown in FIGS. 3C and 3D, when there are three rotating plates, the central angle θ of each opening 25a, 25b is 90 degrees. Since the openings 25a and 25b are shifted in the circumferential direction, the water pumped up by the four openings 25a and 25b is jetted to the entire 360 degrees.
 また図2に示すように、揚水管22により揚水できない水量、すなわち微細化運転終了時の貯水部26に残存している貯水量が少なくなるよう、貯水部26の鉛直断面の形状は、上部より下部が小さい逆台形の形状である。そして当て板23は、それぞれ第1の回転板20aと第2の回転板20b、第2の回転板20bと第3の回転板20cの間の回転板の外縁を通る鉛直線20dと開口25a、25bとの間に環状に設けられ、開口25a、25bから噴出された液体が当てられる。 In addition, as shown in FIG. 2, the vertical cross-sectional shape of the water storage unit 26 is lower than the upper part so that the amount of water that cannot be pumped by the pumping pipe 22, that is, the water storage amount remaining in the water storage unit 26 at the end of the refining operation is reduced. The lower part has a small inverted trapezoidal shape. The contact plate 23 includes a first rotating plate 20a and a second rotating plate 20b, a vertical line 20d passing through the outer edge of the rotating plate between the second rotating plate 20b and the third rotating plate 20c, and an opening 25a. The liquid ejected from the openings 25a and 25b is applied in a ring shape with respect to 25b.
 また、下方開口部31近傍に温度センサ27a、上方開口部30近傍に温度センサ27bが設けられている。 Further, a temperature sensor 27 a is provided in the vicinity of the lower opening 31, and a temperature sensor 27 b is provided in the vicinity of the upper opening 30.
 また筒状の経路12の下部内壁40、および貯水部26の貯水部内面41は、親水化処理されていてもよい。ここで親水化処理とは、下部内壁40および貯水部内面41の表面に凹凸が設けられ、粗面化されることである。その結果、下部内壁40および貯水部内面41の表面に付着した水滴は、薄く広がる。本実施の形態では筒状の経路12および貯水部26が、シボ加工された金型により樹脂成型され、下部内壁40および貯水部内面41が親水化処理されている。 Further, the lower inner wall 40 of the cylindrical path 12 and the water storage portion inner surface 41 of the water storage portion 26 may be subjected to a hydrophilic treatment. Here, the hydrophilization treatment means that the surfaces of the lower inner wall 40 and the water storage portion inner surface 41 are provided with irregularities to be roughened. As a result, the water droplets adhering to the surfaces of the lower inner wall 40 and the water reservoir inner surface 41 spread thinly. In the present embodiment, the cylindrical path 12 and the water storage section 26 are resin-molded by a textured mold, and the lower inner wall 40 and the water storage section inner surface 41 are hydrophilized.
 また親水化処理は、親水化材料が下部内壁40および貯水部内面41に練り込まれてもよい。さらに親水化材料が、下部内壁40および貯水部内面41を覆うようにしてもよい。 In the hydrophilization treatment, a hydrophilizing material may be kneaded into the lower inner wall 40 and the water storage unit inner surface 41. Further, the hydrophilizing material may cover the lower inner wall 40 and the water reservoir inner surface 41.
 下部内壁40および貯水部内面41が親水化処理されることによって乾燥運転時、下部内壁40および貯水部内面41の乾燥時間は短縮される。これは下部内壁40および貯水部内面41が凹凸を設けて粗面化されているので、付着した水滴は下部内壁40および貯水部内面41の表面に薄く広がる。そのため、薄く広がった水滴と温風との接触面積が大きくなるので、乾燥運転の効率が高くなる。 When the lower inner wall 40 and the water reservoir inner surface 41 are hydrophilized, the drying time of the lower inner wall 40 and the water reservoir inner surface 41 is shortened during the drying operation. This is because the lower inner wall 40 and the water reservoir inner surface 41 are roughened and roughened, so that the attached water droplets spread thinly on the surfaces of the lower inner wall 40 and the water reservoir inner surface 41. For this reason, the contact area between the thinly spread water droplets and the hot air is increased, and the efficiency of the drying operation is increased.
 また筒状の経路12、および貯水部26がシボ加工により形成されると、簡単に下部内壁40および貯水部内面41が親水化処理される。また下部内壁40および貯水部内面41に、例えば酸化チタン等の親水化材料が練り込まれると均一な親水化処理が施され、新たな親水化処理が行われる手間が省かれる。また親水化材料が下部内壁40および貯水部内面41を覆う場合は、適した範囲を確認しながら親水化処理が行われるので、より適切な親水化処理が行われる。 Further, when the cylindrical path 12 and the water storage part 26 are formed by embossing, the lower inner wall 40 and the water storage part inner surface 41 are easily subjected to a hydrophilic treatment. Further, when a hydrophilic material such as titanium oxide is kneaded into the lower inner wall 40 and the water reservoir inner surface 41, for example, a uniform hydrophilic treatment is performed, and a labor for performing a new hydrophilic treatment is saved. Further, when the hydrophilic material covers the lower inner wall 40 and the water reservoir inner surface 41, the hydrophilic treatment is performed while confirming a suitable range, so that a more appropriate hydrophilic treatment is performed.
 次に液体微細化装置3を制御する制御装置43の構成を、図4を用いて説明する。図4は、本発明の実施の形態の液体微細化装置の制御装置のブロック図である。図4に示すように制御装置43は制御部44と、表示部および運転操作スイッチ(図示なし)を備えたリモコン45と、温度センサ27a、27bとから構成されている。 Next, the configuration of the control device 43 that controls the liquid refinement device 3 will be described with reference to FIG. FIG. 4 is a block diagram of a control device of the liquid micronizing device according to the embodiment of the present invention. As shown in FIG. 4, the control device 43 includes a control unit 44, a remote controller 45 including a display unit and a driving operation switch (not shown), and temperature sensors 27a and 27b.
 制御部44はマイクロコンピューター(以下マイコンと記載し、図示なし)を有している。マイコンはリモコン45からの操作信号により、熱交換器7へ温水を供給するポンプの制御、ファンモータ8の制御、回転軸19を駆動する回転モータ21の制御、および給水弁17の制御などを行う。 The control unit 44 has a microcomputer (hereinafter referred to as a microcomputer, not shown). The microcomputer performs control of the pump that supplies hot water to the heat exchanger 7, control of the fan motor 8, control of the rotary motor 21 that drives the rotary shaft 19, control of the water supply valve 17, and the like by an operation signal from the remote controller 45. .
 サウナ室1内において、サウナを使用する場合、図示していないガス湯沸かし器または電気温水器等の熱源から、図1に示すパイプ28を介し、図2に示す熱交換器7に温水が供給される。また、給水管14へは配管29により市水が供給される。給水管14に供給される市水は、定流量弁15によって設定され、きわめて少量である。また給水管14に供給される市水は、回転モータ21が駆動されるまで、給水弁17により止められ、給水管14から排出されない。 When the sauna is used in the sauna room 1, hot water is supplied from a heat source such as a gas water heater or an electric water heater (not shown) to the heat exchanger 7 shown in FIG. 2 through the pipe 28 shown in FIG. . Further, city water is supplied to the water supply pipe 14 through a pipe 29. The city water supplied to the water supply pipe 14 is set by the constant flow valve 15 and is very small. The city water supplied to the water supply pipe 14 is stopped by the water supply valve 17 and is not discharged from the water supply pipe 14 until the rotary motor 21 is driven.
 この状態において、熱交換器7が運転されファンモータ8が駆動されると、ファンモータ8が吸込口4からサウナ室1内の空気を吸い込み、吸い込まれた空気は熱交換器7によって加熱される。加熱された空気は、ファンモータ8によって、ファンケーシング10を通って、筒状の経路12へ送られる。 In this state, when the heat exchanger 7 is operated and the fan motor 8 is driven, the fan motor 8 sucks air in the sauna chamber 1 from the suction port 4, and the sucked air is heated by the heat exchanger 7. . The heated air is sent by the fan motor 8 to the cylindrical path 12 through the fan casing 10.
 一方、回転モータ21が駆動されると、回転軸19が高速回転し、それにともない第1の回転板20aおよび第2の回転板20bが高速回転される。 On the other hand, when the rotary motor 21 is driven, the rotary shaft 19 rotates at a high speed, and accordingly, the first rotary plate 20a and the second rotary plate 20b are rotated at a high speed.
 このとき、給水管14は、高速回転する第1の回転板20aの上面の回転軸19に近い位置に、定流量弁15により設定された流量の水を供給する。第1の回転板20aの上面に供給された水は、高速回転による遠心力によって外周方向に向かって薄膜状に広がる。この薄膜状になった水は、第1の回転板20aの外周縁から接線方向へ高速で吹き飛ばされる。このように、遠心力により飛散した水滴は、筒状の経路12の内壁に衝突して破砕され、水の微細化が促進される。 At this time, the water supply pipe 14 supplies water at a flow rate set by the constant flow valve 15 to a position close to the rotary shaft 19 on the upper surface of the first rotary plate 20a that rotates at high speed. The water supplied to the upper surface of the first rotating plate 20a spreads in the form of a thin film toward the outer periphery due to the centrifugal force caused by the high speed rotation. The water in the form of a thin film is blown off at high speed in the tangential direction from the outer peripheral edge of the first rotating plate 20a. As described above, the water droplets scattered by the centrifugal force collide with the inner wall of the cylindrical path 12 and are crushed, thereby promoting the miniaturization of water.
 一方、第1の回転板20aから遠心力により飛散した水滴のうち、微細化されずに筒状の経路12の内壁に付着した水滴、および微細化された後に内壁において結露した微量の水滴は、筒状の経路12の内壁を伝って貯水部26に流れ落ち、貯水される。このとき、貯水部26の上方では揚水管22が回転している。そのため貯水部26の貯水量が増え、貯水部26の水面が揚水管22の下端に近づくと、貯水部26の水は水面上の空気と一緒に巻き上げられ、揚水管22の内壁を伝って上方へ移動する。 On the other hand, among the water droplets scattered by the centrifugal force from the first rotating plate 20a, water droplets that are not miniaturized and adhere to the inner wall of the cylindrical path 12, and a minute amount of water droplets that are condensed on the inner wall after being miniaturized are: It flows along the inner wall of the cylindrical path | route 12, it flows down to the water storage part 26, and is stored. At this time, the pumping pipe 22 is rotating above the water reservoir 26. Therefore, when the amount of water stored in the water storage section 26 increases and the water surface of the water storage section 26 approaches the lower end of the pumping pipe 22, the water in the water storage section 26 is rolled up together with the air on the water surface and travels upward along the inner wall of the water pumping pipe 22. Move to.
 すなわち揚水管22は、上述のように逆円錐状となっているので、揚水管22の内部は吸引力が働く。このため、貯水部26の水は水面上の空気と一緒に巻き上げられ、揚水管22の内壁を伝って上方へ移動する。そして揚水管22の内壁を伝って上方へ移動した水は、第2の回転板20bと第3の回転板20cとの間の開口25bから、遠心力により噴出され、環状に設けられた当て板23に当たり、第3の回転板20cへ落下する。 That is, since the pumping pipe 22 has an inverted conical shape as described above, a suction force acts inside the pumping pipe 22. For this reason, the water in the water storage section 26 is rolled up together with the air on the water surface and moves upward along the inner wall of the pumping pipe 22. And the water which moved upward along the inner wall of the pumping pipe 22 is spouted by the centrifugal force from the opening 25b between the 2nd rotary plate 20b and the 3rd rotary plate 20c, and the contact plate provided in cyclic | annular form 23 and falls to the third rotating plate 20c.
 第3の回転板20cへ落下した水は、第1の回転板20aの上面に供給された水と同様に、高速回転による遠心力によって外周方向に向かって薄膜状に広がる。そして薄膜状になった水は、第3の回転板20cの外周縁から接線方向へ高速で吹き飛ばされる。 The water that has dropped onto the third rotating plate 20c spreads in a thin film toward the outer periphery by centrifugal force due to high-speed rotation, similar to the water supplied to the upper surface of the first rotating plate 20a. The water in the form of a thin film is blown off at high speed in the tangential direction from the outer peripheral edge of the third rotating plate 20c.
 また揚水管22の内壁を伝って上方へ移動し、開口25bから噴出しなかった水は、開口25aから回転による遠心力により噴出し、環状に設けられた当て板23に当たり、第2の回転板20bへ落下する。第2の回転板20bへ落下した水も、第1の回転板20aの上面に供給された水と同様に、高速回転による遠心力によって外周方向に向かって薄膜状に広がる。そして薄膜状になった水は、第2の回転板20bの外周縁から接線方向へ高速で吹き飛ばされる。 Further, the water that has moved upward along the inner wall of the pumping pipe 22 and has not been ejected from the opening 25b is ejected from the opening 25a by centrifugal force due to rotation, hits the contact plate 23 provided in an annular shape, and the second rotating plate. Fall to 20b. Similarly to the water supplied to the upper surface of the first rotating plate 20a, the water that has dropped onto the second rotating plate 20b spreads in a thin film toward the outer periphery due to centrifugal force due to high-speed rotation. The water in the form of a thin film is blown off at high speed in the tangential direction from the outer peripheral edge of the second rotating plate 20b.
 このように、遠心力により飛散した水滴は、筒状の経路12の内壁に衝突して破砕され、水の微細化が促進される。また揚水管22の内壁を伝って上方へ移動する水は、回転モータ21が高速回転しているため、螺旋状に旋回して上方へ移動するのではなく、内壁全周において略均一に真上に移動する。 Thus, the water droplets scattered by the centrifugal force collide with the inner wall of the cylindrical path 12 and are crushed, thereby promoting the refinement of water. Also, the water that moves upward along the inner wall of the pumping pipe 22 is not directly swirled in a spiral shape, but is rotated almost uniformly over the entire inner wall because the rotary motor 21 rotates at a high speed. Move to.
 すなわち、第1の回転板20a、第2の回転板20b、第3の回転板20cの間にそれぞれ2個ずつ設けられた水平方向に長い開口25a、25bが、第1の回転板20a、第2の回転板20b、第3の回転板20cの周方向の同じ位置に設けられた場合、次のようになる。揚水管22の内壁を伝って上方へ移動してきた水は、下側の開口25bから噴出し、上側の開口25aへは水が上がって来なくなる。この場合、開口25bからの水の噴出が多くなり、均一な微細化に対しては問題になる。そのため図3Aに示すように、第1の回転板20a、第2の回転板20b、第3の回転板20cの間において水を噴出させる方向が異なるようにして開口25a、25bから均一に水が噴出するように、開口25の位置が第1の回転板20a、第2の回転板20b、第3の回転板20cの周方向20eにずらされている。 That is, two horizontally long openings 25a and 25b provided between the first rotary plate 20a, the second rotary plate 20b, and the third rotary plate 20c, respectively. When the second rotary plate 20b and the third rotary plate 20c are provided at the same circumferential position, the following occurs. The water that has moved upward along the inner wall of the pumping pipe 22 is ejected from the lower opening 25b, and the water does not rise to the upper opening 25a. In this case, the amount of water ejected from the opening 25b increases, which poses a problem for uniform miniaturization. Therefore, as shown in FIG. 3A, water is uniformly supplied from the openings 25a and 25b so that the direction in which water is ejected is different among the first rotary plate 20a, the second rotary plate 20b, and the third rotary plate 20c. The position of the opening 25 is shifted in the circumferential direction 20e of the first rotating plate 20a, the second rotating plate 20b, and the third rotating plate 20c so as to be ejected.
 また、微細化されずに筒状の経路12の内壁に付着した水滴、および微細化された後に内壁において結露した微量の水滴は、筒状の経路12の内壁を伝って貯水部26に流れ落ち、貯水される。そして第1の回転板20a、第2の回転板20b、および第3の回転板20cの高速回転によって形成された蒸気は、ファンモータ8の送風によって排気口5からサウナ室1の内部へ供給される。 Further, water droplets that have not been refined and adhered to the inner wall of the cylindrical path 12 and a minute amount of water droplets that have condensed on the inner wall after being refined flow down to the water storage section 26 along the inner wall of the cylindrical path 12, Water is stored. The steam formed by the high-speed rotation of the first rotating plate 20a, the second rotating plate 20b, and the third rotating plate 20c is supplied from the exhaust port 5 to the inside of the sauna chamber 1 by the fan motor 8. The
 以上のように、揚水管22は第1の回転板20a、第2の回転板20b、第3の回転板20cと同じ回転モータ21によって回転される。そして貯水部26に溜まった水は、揚水管22により吸上げられる。吸上げられた水は、第1の回転板20aと第2の回転板20bとの間、および第2の回転板20bと第3の回転板20cとの間に設けた開口25a、25bから噴出される。そして噴出された水は、環状に設けた当て板23に当たり、第2の回転板20b、第3の回転板20cに供給される。ここで、揚水管22はポンプの循環の役目と、第2の回転板20bおよび第3の回転板20cへの水供給とを兼ねている。このように簡単な構成により、水の循環と、第2の回転板20bおよび第3の回転板20cへの水供給とが実現される。 As described above, the pumping pipe 22 is rotated by the same rotary motor 21 as the first rotary plate 20a, the second rotary plate 20b, and the third rotary plate 20c. The water accumulated in the water storage unit 26 is sucked up by the pumping pipe 22. The sucked water is ejected from openings 25a and 25b provided between the first rotating plate 20a and the second rotating plate 20b and between the second rotating plate 20b and the third rotating plate 20c. Is done. The ejected water hits the contact plate 23 provided in an annular shape and is supplied to the second rotary plate 20b and the third rotary plate 20c. Here, the pumping pipe 22 serves as a circulation of the pump and water supply to the second rotating plate 20b and the third rotating plate 20c. With such a simple configuration, water circulation and water supply to the second rotating plate 20b and the third rotating plate 20c are realized.
 ここで第1の回転板20aに供給された水がほぼ完全に微細化されるためには、給水管14から高速回転する第1の回転板20aの上面に供給される水の量が問題となる。すなわち第1の回転板20aの上面に供給される水の量は、液体微細化部9の微細化能力により決定され、たとえば30cc/minである。液体微細化部9の微細化能力は、第1の回転板20a、第2の回転板20b、第3の回転板20cの枚数、および回転モータ21の回転数等により決定される。 Here, in order for the water supplied to the first rotating plate 20a to be almost completely refined, the amount of water supplied from the water supply pipe 14 to the upper surface of the first rotating plate 20a is a problem. Become. That is, the amount of water supplied to the upper surface of the first rotating plate 20a is determined by the micronization capability of the liquid micronizer 9, and is, for example, 30 cc / min. The micronization capability of the liquid micronizer 9 is determined by the number of the first rotary plate 20a, the second rotary plate 20b, the third rotary plate 20c, the rotational speed of the rotary motor 21, and the like.
 しかし、定流量弁15は水温、および水圧により流量にバラツキを生じさせる。そのため、貯水部26における貯水量、及び揚水管22における揚水量にバッファ機能が持たされている。 However, the constant flow valve 15 causes variations in the flow rate depending on the water temperature and water pressure. Therefore, a buffer function is provided for the amount of water stored in the water storage unit 26 and the amount of water stored in the pumping pipe 22.
 次に、筒状の経路12に水滴を形成する微細化(サウナ)運転終了後に、貯水部26を乾燥させる乾燥運転について図5のフローチャートを用いて説明する。図5は、本発明の実施の形態の液体微細化装置の乾燥運転を示すフローチャートである。 Next, a drying operation for drying the water storage section 26 after completion of the miniaturization (sauna) operation for forming water droplets in the cylindrical path 12 will be described with reference to the flowchart of FIG. FIG. 5 is a flowchart showing a drying operation of the liquid micronizer according to the embodiment of the present invention.
 図5に示すように、タイマーあるいはリモコン45の操作によりサウナ運転が終了すると、給水弁17が閉じられ、給水管14から第1の回転板20aの上面への水の供給が停止される。この時点における水の供給源は、貯水部26だけである。揚水管22による揚水が可能な場合、揚水管22により第2の回転板20b、第3の回転板20cへ水が供給される。供給された水の大部分は微細化され、ファンモータ8の送風によって排気口5からサウナ室1の内部へ供給される。 As shown in FIG. 5, when the sauna operation is ended by the operation of the timer or the remote controller 45, the water supply valve 17 is closed, and the supply of water from the water supply pipe 14 to the upper surface of the first rotating plate 20a is stopped. The water supply source 26 is the only water supply source at this time. When pumping by the pumping pipe 22 is possible, water is supplied to the second rotating plate 20b and the third rotating plate 20c by the pumping pipe 22. Most of the supplied water is refined and supplied from the exhaust port 5 to the inside of the sauna room 1 by the fan motor 8.
 揚水管22による揚水ができなくなった場合、貯水部26に残った水は、ファンモータ8の温風が当てられ、次第に減っていく。本実施の形態の場合、揚水管22による揚水ができなくなった時の貯水部26の残水量は実験から約5ccであり、乾燥運転が10分も行われれば、貯水部26の残水はなくなる。 When water cannot be pumped by the water pump 22, the water remaining in the water storage section 26 is gradually reduced by the hot air from the fan motor 8. In the case of the present embodiment, the amount of residual water in the water storage unit 26 when pumping by the pumping pipe 22 becomes impossible is about 5 cc from the experiment, and if the drying operation is performed for 10 minutes, there is no residual water in the water storage unit 26. .
 この乾燥運転は、タイマーにより10分間だけ行なわれてもよい。また図2に示す液体微細化部9の入口に設けた温度センサ27aと、出口に設けた温度センサ27bとの検知した温度(T1、T2)を用いて乾燥運転が制御されてもよい。すなわち、省エネルギーのため少しでも乾燥運転時間を短くしたい場合、液体微細化部9に残水が有ると、水の蒸発により送風空気から気化熱が奪われる。その結果、入口の空気温度よりも出口の空気温度の方が低くなるため、出入口の温度差(X)から乾燥状態が判断され、乾燥運転が終了されてもよい。 This drying operation may be performed only for 10 minutes by a timer. Further, the drying operation may be controlled using the temperatures (T1, T2) detected by the temperature sensor 27a provided at the inlet of the liquid micronization unit 9 and the temperature sensor 27b provided at the outlet shown in FIG. That is, when it is desired to shorten the drying operation time as much as possible for energy saving, if there is residual water in the liquid micronization unit 9, the heat of vaporization is taken away from the blown air due to the evaporation of water. As a result, since the air temperature at the outlet becomes lower than the air temperature at the inlet, the drying state may be determined from the temperature difference (X) at the inlet and outlet, and the drying operation may be terminated.
 ここで温度センサ27a、27bの代わりに湿度センサが用いられると、より明確に乾燥状態が判断される。 Here, when a humidity sensor is used instead of the temperature sensors 27a and 27b, the dry state is determined more clearly.
 なお、貯水部26の最下部に排水口等を設けて残水が排出されれば、上記の乾燥運転は不要となり、残水による衛生上の問題は解消できる。 In addition, if a drain outlet etc. are provided in the lowest part of the water storage part 26 and residual water is discharged | emitted, said drying operation will become unnecessary and the sanitary problem by residual water can be eliminated.
 このように貯水部26にわずかに残った微細化できなかった水は、排出されなくとも、サウナ運転終了後の乾燥運転によって蒸発される。そのため、排水用の配管が不要となる。なお、定流量弁15のバラツキにより設定した流量より多くの水が第1の回転板20aの上面に供給された場合、その水は貯水部26に貯水される。 The water that remains slightly in the water storage section 26 and cannot be refined in this way is evaporated by the drying operation after the sauna operation is finished, even if it is not discharged. Therefore, drainage piping is not necessary. In addition, when more water than the flow set by the variation of the constant flow valve 15 is supplied to the upper surface of the first rotating plate 20 a, the water is stored in the water storage unit 26.
 なお制御部44は乾燥運転時、ファンモータ8を通常の液体微細化運転(サウナ運転)時に比べ、送風能力を低下させた状態にて運転させる。具体的には図5に示すように乾燥運転において、制御部44は給水弁17を閉鎖する。そして給水管14から第1の回転板20aの上面への水の供給が停止された状態において、熱交換器7、ファンモータ8、および回転モータ21の運転が継続される。このときファンモータ8は、サウナ運転時に比べて送風能力を略半分程度に低下させて乾燥運転を行う。 Note that the control unit 44 operates the fan motor 8 in a state in which the air blowing capacity is lowered during the drying operation as compared with the normal liquid refinement operation (sauna operation). Specifically, as shown in FIG. 5, in the drying operation, the control unit 44 closes the water supply valve 17. The operation of the heat exchanger 7, the fan motor 8, and the rotary motor 21 is continued in a state where the supply of water from the water supply pipe 14 to the upper surface of the first rotary plate 20a is stopped. At this time, the fan motor 8 performs the drying operation by reducing the blowing capacity by about half compared to during the sauna operation.
 すなわち本実施の形態では、制御部44により乾燥運転時にも、回転モータ21が駆動されている。そのため、貯水部26に溜まっている水が、揚水管22により揚水され、第2の回転板20bおよび第3の回転板20cに供給され、水の微細化が行なわれる。そして、この微細化された水は、ファンモータ8の送風によって、排気口5からサウナ室1の内部へ供給される。 That is, in the present embodiment, the rotary motor 21 is driven by the control unit 44 even during the drying operation. Therefore, the water accumulated in the water storage unit 26 is pumped by the pumping pipe 22 and supplied to the second rotary plate 20b and the third rotary plate 20c, and the water is refined. The refined water is supplied from the exhaust port 5 to the inside of the sauna room 1 by blowing air from the fan motor 8.
 以上により、貯水部26に溜まっている水は徐々に減少し、やがて揚水管22による揚水ができなくなる(本実施の形態の場合、揚水管22による揚水ができなくなった時の貯水部26の残水量は約5ccと、非常に少ない量である)。しかし、この状態においてもファンモータ8が駆動され、熱交換器7には温水循環が継続されている。そのためファンモータ8からの温風が、貯水部26に残った僅かな水に吹き付けられ、貯水部26は乾燥される。 As a result, the water accumulated in the water storage unit 26 gradually decreases, and eventually the pumping pipe 22 cannot pump the water (in the case of the present embodiment, the water storage unit 26 remaining when the pumping pipe 22 cannot pump the water). The amount of water is about 5 cc, which is very small). However, even in this state, the fan motor 8 is driven, and hot water circulation is continued in the heat exchanger 7. Therefore, the warm air from the fan motor 8 is blown to a small amount of water remaining in the water reservoir 26, and the water reservoir 26 is dried.
 またファンモータ8からの温風は、揚水管22の下端から揚水管22の内部にも進入し、揚水管22内を上昇し、開口25a、25bから当て板23に向かって放出される。そのため、揚水管22内面、当て板23、および第1の回転板20a、第2の回転板20b、第3の回転板20cの表面に付着した水も効率良く乾燥される。 Also, the warm air from the fan motor 8 enters the inside of the pumping pipe 22 from the lower end of the pumping pipe 22, ascends inside the pumping pipe 22, and is released toward the contact plate 23 from the openings 25a and 25b. Therefore, the water adhering to the inner surface of the pumping pipe 22, the contact plate 23, the first rotary plate 20a, the second rotary plate 20b, and the third rotary plate 20c is also efficiently dried.
 本実施の形態において乾燥運転時、ファンモータ8が通常の液体微細化運転(サウナ運転)時に比べて、送風能力が低下された状態にて運転されるのは、運転音を小さくするためである。つまり乾燥運転は、サウナ運転終了後、例えば深夜に乾燥運転が行われるので、乾燥時間を短くすることよりも、運転音が小さいことが望まれる。 In the present embodiment, the reason why the fan motor 8 is operated in a state in which the air blowing capacity is lowered in the drying operation as compared with the normal liquid refinement operation (sauna operation) is to reduce the operation sound. . In other words, since the drying operation is performed, for example, at midnight after the sauna operation is completed, it is desirable that the operation sound be smaller than shortening the drying time.
 また、乾燥運転時の静音運転のためには、乾燥運転時に、回転モータ21の回転数が、液体微細化運転(サウナ運転)時に比べて低下された状態の運転が行われれば、さらに静音運転が可能となる。 In addition, for the silent operation during the drying operation, if the operation in which the rotation speed of the rotary motor 21 is lower than that during the liquid refinement operation (sauna operation) is performed during the drying operation, the silent operation is further performed. Is possible.
 次に、サウナ室1の湿度に応じた給水弁17の開閉の制御について説明する。図6Aは本発明の実施の形態の液体微細化装置の温度検知部を用いた制御装置のブロック図、図6Bは同液体微細化装置の湿度検知部を用いた制御装置のブロック図、図6Cは同液体微細化装置の水位検知部を用いた制御装置のブロック図である。また図7Aは本発明の実施の形態の液体微細化装置の温度検知部を用いた加湿量調整運転の制御を示すフローチャート、図7Bは同液体微細化装置の湿度検知部を用いた加湿量調整運転の制御を示すフローチャート、図7Cは同液体微細化装置の水位検知部を用いた加湿量調整運転の制御を示すフローチャートである。 Next, the opening / closing control of the water supply valve 17 according to the humidity of the sauna room 1 will be described. 6A is a block diagram of a control device using the temperature detection unit of the liquid micronization device according to the embodiment of the present invention, FIG. 6B is a block diagram of a control device using the humidity detection unit of the liquid micronization device, and FIG. 6C. FIG. 3 is a block diagram of a control device using a water level detection unit of the liquid micronizer. 7A is a flowchart showing the control of the humidification amount adjustment operation using the temperature detection unit of the liquid micronization device according to the embodiment of the present invention, and FIG. 7B is the humidification amount adjustment using the humidity detection unit of the liquid micronization device. FIG. 7C is a flowchart showing the control of the humidification amount adjustment operation using the water level detection unit of the liquid micronizer.
 図6Aに示すように制御装置43は、温度センサ27a、27bを用い、そのフローチャートは図7Aである。図7Aに示すように通常のサウナ運転時、熱交換器7は通水、ファンモータ8及び回転モータ21は運転、給水弁17は開放されている(S1)。 As shown in FIG. 6A, the control device 43 uses temperature sensors 27a and 27b, and its flowchart is shown in FIG. 7A. As shown in FIG. 7A, during normal sauna operation, the heat exchanger 7 is water-flowed, the fan motor 8 and the rotary motor 21 are operated, and the water supply valve 17 is opened (S1).
 サウナ室1が高湿になってくると、図2に示す下方開口部31に設けた温度センサ27aと、上方開口部30に設けた温度センサ27bとの検知した温度(T1、T2)の差(X)が小さくなってくる。すなわち、液体微細化部9の入口から流入する空気が高湿になってくると、液体微細化部9内における液体微細化量である加湿量が減少してくる。そのため気化熱によって奪われる熱量が減少し、温度センサ27aと温度センサ27bとの温度差が小さくなってくる。この温度差の変化を検出して、給水弁17が閉じられることにより、供給水量が過剰にならないように給水弁17の開閉が制御される。 When the sauna chamber 1 becomes highly humid, the difference between the detected temperatures (T1, T2) between the temperature sensor 27a provided in the lower opening 31 and the temperature sensor 27b provided in the upper opening 30 shown in FIG. (X) becomes smaller. That is, when the air flowing in from the inlet of the liquid refinement unit 9 becomes highly humid, the humidification amount that is the amount of liquid refinement in the liquid refinement unit 9 decreases. Therefore, the amount of heat taken away by the heat of vaporization decreases, and the temperature difference between the temperature sensor 27a and the temperature sensor 27b becomes smaller. By detecting this change in temperature difference and closing the water supply valve 17, the opening and closing of the water supply valve 17 is controlled so that the amount of water supply does not become excessive.
 閉じた給水弁17が開かれるタイミングは、貯水部26における貯水量及び揚水管22における揚水量に持たせたバッファ容量によって決定される。実験等から給水弁17が開かれるタイミングは、給水弁17が閉じられてから5~10分が好ましい。 The timing at which the closed water supply valve 17 is opened is determined by the amount of water stored in the water storage unit 26 and the buffer capacity given to the amount of pumped water in the pumping pipe 22. The timing at which the water supply valve 17 is opened from an experiment or the like is preferably 5 to 10 minutes after the water supply valve 17 is closed.
 温度センサ27a、27bの代わりに、吸込口4に湿度センサ46が設けられてもよい。そのときの制御装置43の構成は図6B、フローチャートは図7Bである。すなわち、サウナ室1の湿度が直接検知されるので、精度よくサウナ室1の湿度制御ができる。例えば湿度が80%以上になった場合に給水弁17が閉じられ、湿度が70%以下になった場合に給水弁17が開けられればよい。 A humidity sensor 46 may be provided at the suction port 4 instead of the temperature sensors 27a and 27b. The configuration of the control device 43 at that time is FIG. 6B, and the flowchart is FIG. 7B. That is, since the humidity of the sauna room 1 is directly detected, the humidity control of the sauna room 1 can be accurately performed. For example, the water supply valve 17 may be closed when the humidity becomes 80% or more, and the water supply valve 17 may be opened when the humidity becomes 70% or less.
 さらに温度センサ27a、27b、および湿度センサ46の代わりに貯水部26の水位を検知する水位センサ47が用いられてもよい。そのときの制御装置43の構成は図6C、フローチャートは図7Cである。すなわち、回転部13への供給水量が加湿量を上回ってくると、貯水部26の水位が上昇してくる。この上昇した水位Hが検出されて、給水弁17が閉じられればよい。また、水位センサ47が低水位Lを検知して、給水弁17が開かれるようにしてもよい。 Furthermore, a water level sensor 47 that detects the water level of the water storage unit 26 may be used instead of the temperature sensors 27a and 27b and the humidity sensor 46. The configuration of the control device 43 at that time is FIG. 6C, and the flowchart is FIG. 7C. That is, when the amount of water supplied to the rotating unit 13 exceeds the amount of humidification, the water level of the water storage unit 26 rises. The raised water level H may be detected and the water supply valve 17 may be closed. Further, the water level sensor 47 may detect the low water level L and the water supply valve 17 may be opened.
 次に、水滴の破砕効率の低下防止について説明する。揚水管22が回転されると、揚水管22の外面に沿って貯水部26から水が上昇する。上昇した水は、大きな水滴のまま筒状の経路12に衝突するため、十分微細化されず水滴の破砕効率は低下する。 Next, the prevention of the drop efficiency of water droplets will be described. When the pumping pipe 22 is rotated, water rises from the water storage section 26 along the outer surface of the pumping pipe 22. Since the raised water collides with the cylindrical path 12 in the form of large water droplets, the water droplets are not sufficiently refined and the efficiency of crushing the water droplets decreases.
 図8Aは本発明の実施の形態の液体微細化装置の異なる揚水管の側面を示す図、図8Bは同液体微細化装置の異なる揚水管の斜視図である。図8A、図8Bに示すように、最も下側の第3の回転板20cより下方の揚水管22aの外面には、貯水部26から水が上昇することを防止する液体上昇防止部としてのリブ53が設けられている。なおリブ53は、貯水部26の液面54より上方に設ける。リブ53は、簡単に設けることができ、安価に製作できる。 FIG. 8A is a view showing a side surface of a different pumping pipe of the liquid refinement apparatus according to the embodiment of the present invention, and FIG. 8B is a perspective view of a different pumping pipe of the liquid refinement apparatus. As shown in FIG. 8A and FIG. 8B, a rib as a liquid rise prevention unit that prevents water from rising from the water storage unit 26 is provided on the outer surface of the pumping pipe 22 a below the third rotary plate 20 c on the lowermost side. 53 is provided. The rib 53 is provided above the liquid level 54 of the water storage unit 26. The rib 53 can be easily provided and can be manufactured at low cost.
 貯水部26の貯水量が増え、液面54が揚水管22の下端に近づくと、貯水部26の水は水面上の空気と一緒に巻き上げられる。貯水部26の水の多くは、揚水管22の内面を伝って上方へ移動していくが、揚水管22の外面を伝って上方へ移動する水もある。しかし、揚水管22の外面を伝って上方へ移動していく水は、リブ53に衝突して下方へ流れ、再び貯水部26へ戻る。 When the amount of water stored in the water storage section 26 increases and the liquid level 54 approaches the lower end of the pumping pipe 22, the water in the water storage section 26 is rolled up with the air on the water surface. Most of the water in the reservoir 26 moves upward along the inner surface of the pumping pipe 22, but there is also water that moves upward along the outer surface of the pumping pipe 22. However, the water moving upward along the outer surface of the pumping pipe 22 collides with the rib 53, flows downward, and returns to the water storage unit 26 again.
 また、リブ53から外方に吹き飛ばされる水の粒は大きいので、ファンモータ8から吹き出される気流に乗って排気口5より吹き出されることが防がれる。つまり、排気口5から吹き出される水滴は、第1の回転板20a、第2の回転板20b、および第3の回転板20cによって微細化された水滴だけになる。 Further, since the water particles blown outward from the ribs 53 are large, it is possible to prevent the water from being blown out from the exhaust port 5 on the air flow blown out from the fan motor 8. That is, the water droplets blown out from the exhaust port 5 are only water droplets refined by the first rotating plate 20a, the second rotating plate 20b, and the third rotating plate 20c.
 図9は本発明の実施の形態の液体微細化装置の液体微細化部の内部斜視図、図10は同液体微細化装置の筒状の経路および貯水部により構成される風路を示す内部斜視図である。図9、図10に示すように貯水部26には、開口64により連通する突出部62が設けられている。そして突出部62内には、貯水部26の水位を検知する水位検知部としてフロート63が配置されている。 FIG. 9 is an internal perspective view of a liquid micronizing unit of the liquid micronizing device according to the embodiment of the present invention, and FIG. 10 is an internal perspective view showing an air path constituted by a cylindrical path and a water storage unit of the liquid micronizing device. FIG. As shown in FIGS. 9 and 10, the water reservoir 26 is provided with a protrusion 62 that communicates with the opening 64. A float 63 is disposed in the protrusion 62 as a water level detection unit that detects the water level of the water storage unit 26.
 貯水部26は、底面67と底面67の外周から立ち上がる縁部68とを有している。図10の実線Bに示すように筒状の経路12に設けた上方開口部30と、下方開口部31との間を通風する風路が形成されている。 The water storage unit 26 has a bottom surface 67 and an edge portion 68 rising from the outer periphery of the bottom surface 67. As shown by the solid line B in FIG. 10, an air passage is formed between the upper opening 30 provided in the cylindrical path 12 and the lower opening 31.
 本実施の形態では、下方開口部31の上流にファンケーシング10が連結されている。ファンモータ8からの空気は、下方開口部31に流入され、貯水部26内を通って筒状の経路12内を下側から上向きに流れる。そして図9の実線Aに示すように、ファンモータ8からの空気は、これらの隙間を通り、筒状の経路12の上方開口部30から排出される。 In the present embodiment, the fan casing 10 is connected upstream of the lower opening 31. Air from the fan motor 8 flows into the lower opening 31, passes through the water reservoir 26, and flows upward in the cylindrical path 12 from the lower side. As shown by a solid line A in FIG. 9, the air from the fan motor 8 passes through these gaps and is discharged from the upper opening 30 of the cylindrical path 12.
 また図10に示すように下方開口部31は、筒状の経路12の下端の一部が切り欠かれている。そして下方開口部31に接する貯水部26の縁部68には、切り欠き61が設けられている。その結果、ファンモータ8からの空気が下方開口部31および切り欠き61を通って貯水部26内に流入され、下方開口部31への空気流入面積が貯水部26の底面67に向けて下方に拡大する。 Further, as shown in FIG. 10, the lower opening 31 has a part of the lower end of the cylindrical path 12 cut out. A notch 61 is provided at the edge 68 of the water reservoir 26 in contact with the lower opening 31. As a result, the air from the fan motor 8 flows into the water reservoir 26 through the lower opening 31 and the notch 61, and the air inflow area to the lower opening 31 is downward toward the bottom surface 67 of the water reservoir 26. Expanding.
 次に、フロート63について説明する。図10に示すように貯水部26の縁部68において、開口64が設けられている。突出部62は開口64に対し、貯水部26側の側面が開放されて中空に形成された直方体である。そして、突出部62にフロート63が配置されている。 Next, the float 63 will be described. As shown in FIG. 10, an opening 64 is provided at the edge 68 of the water storage section 26. The projecting portion 62 is a rectangular parallelepiped that is hollow with the side surface on the water storage portion 26 side opened relative to the opening 64. A float 63 is disposed on the protrusion 62.
 図11は、図10の11-11断面図である。図11に示すようにフロート63は、サウナ運転時の水位65を検出する。貯水部26の水位がサウナ運転時の水位65以上になると、フロート63の第1スイッチ(図省略)が開となり、給水弁17への通電が遮断されて給水管14からの給水が停止する。即ち、サウナ運転時においては、サウナ運転時の水位65まで貯水部26に水が貯まっている。 FIG. 11 is a cross-sectional view taken along the line 11-11 in FIG. As shown in FIG. 11, the float 63 detects the water level 65 during sauna operation. When the water level of the water storage section 26 becomes equal to or higher than the water level 65 during the sauna operation, the first switch (not shown) of the float 63 is opened, the power supply to the water supply valve 17 is cut off, and the water supply from the water supply pipe 14 is stopped. In other words, during the sauna operation, water is stored in the water storage section 26 up to the water level 65 during the sauna operation.
 また、サウナ運転時の水位65より上方には、異常水位66が設定されている。フロート63が異常水位66まで上昇すると、フロート63の第2スイッチ(図省略)が開となり、給水弁17への通電が遮断されて給水管14からの給水が停止する。そして、ファンモータ8と回転モータ21との運転が停止されて、サウナ装置の運転が停止される。 Also, an abnormal water level 66 is set above the water level 65 during sauna operation. When the float 63 rises to the abnormal water level 66, the second switch (not shown) of the float 63 is opened, the power supply to the water supply valve 17 is cut off, and the water supply from the water supply pipe 14 is stopped. Then, the operation of the fan motor 8 and the rotary motor 21 is stopped, and the operation of the sauna device is stopped.
 そして、複数の衝立状リブ37が貯水部26の底面から上方に設けられている。衝立状リブ37の高さは、異常水位66と同じ高さとするのが望ましく、切り欠き61の切り欠き下端69よりも下方にする。 A plurality of partition ribs 37 are provided above the bottom surface of the water reservoir 26. The height of the partition ribs 37 is preferably the same height as the abnormal water level 66, and is lower than the notch lower end 69 of the notch 61.
 次に、衝立状リブ37ついて説明する。図12は、本発明の実施の形態の液体微細化装置の貯水部の上面図である。図12に示すように揚水管22の周囲に、平板にて形成された複数の衝立状リブ37a、37b、37c、・・、37kが、配置されている。そして、切り欠き下端69の近傍にある衝立状リブ37a、37b、37cは、開口64に対して平行であってもよいし、傾斜していてもよい。すなわち衝立状リブ37a、37b、37cは、下方開口部31から貯水部26への空気流入方向とほぼ平行に設けられている。 Next, the screen ribs 37 will be described. FIG. 12 is a top view of the water storage section of the liquid micronizer according to the embodiment of the present invention. As shown in FIG. 12, a plurality of partition ribs 37a, 37b, 37c,..., 37k formed in a flat plate are arranged around the pumping pipe 22. The partition ribs 37a, 37b, 37c in the vicinity of the notch lower end 69 may be parallel to the opening 64 or may be inclined. That is, the partition ribs 37 a, 37 b, and 37 c are provided substantially in parallel with the air inflow direction from the lower opening 31 to the water reservoir 26.
 また、開口64の近傍の衝立状リブ37c、37d、37e、37fそれぞれは、間隔L1を設けて配置されている。衝立状リブ37cは、突出部62にむけて少し傾くように配置されている。即ち、衝立状リブ37d、37e、37fは開口64に対してほぼ平行に配置され、衝立状リブ37cは衝立状リブ37eに対してδ傾いている。 Further, each of the partition ribs 37c, 37d, 37e, and 37f in the vicinity of the opening 64 is disposed with an interval L1. The screen ribs 37c are arranged so as to be slightly inclined toward the protrusion 62. That is, the partition ribs 37d, 37e, and 37f are arranged substantially parallel to the opening 64, and the partition rib 37c is inclined δ with respect to the partition rib 37e.
 さらに、揚水管22の周囲に放射状に複数の衝立状リブ37h、37i、37j・・、が設けられている。また衝立状リブ37lは、開口64に対して垂直に形成されている。 Further, a plurality of partition ribs 37h, 37i, 37j,... Are provided radially around the pumping pipe 22. The partition ribs 37 l are formed perpendicular to the opening 64.
 貯水部26に貯水された水は、揚水管22の高速回転に巻き込まれ、揚水管22の回転方向と同じ向きに回転を始める。さらに、水面上を沿う気流の作用によって、水面は波打つ。衝立状リブ37は、水面の変動を少なくし、フロート63の変動を抑えるように作用する。 The water stored in the water storage section 26 is caught in the high speed rotation of the pumping pipe 22 and starts rotating in the same direction as the rotation direction of the pumping pipe 22. Furthermore, the surface of the water undulates due to the action of the airflow along the surface of the water. The screen ribs 37 act to reduce the fluctuation of the water surface and suppress the fluctuation of the float 63.
 即ち、揚水管22から放射状に設けた複数の衝立状リブ37i、37j等は、揚水管22の外周回りの水が揚水管22の高速回転に巻き込まれて回動しても、その回動を防止する。これは衝立状リブ37i、37j等が、回動する流れを遮蔽する向き、つまり回動する向きにほぼ垂直に設けられているため抵抗となるからである。 That is, the plurality of partition ribs 37i, 37j, etc. provided radially from the pumping pipe 22 can rotate even if the water around the outer periphery of the pumping pipe 22 is swung into the high-speed rotation of the pumping pipe 22. To prevent. This is because the partition ribs 37i, 37j and the like are provided with resistance because they are provided in a direction that shields the rotating flow, that is, substantially perpendicular to the rotating direction.
 次に、開口64の近傍にある衝立状リブ37c、37d、37e、37fそれぞれは、間隔L1を設けて配置されているので、波打つ水面が突出部62に入り込むのを防止する。また衝立状リブ37k、37lは、下方開口部31から流入する空気が水面に沿って流れる際に立てる波が広がるのを防止する。したがって、サウナ運転時の水位65は安定しているので、フロート63により正確な水位検知ができる。 Next, each of the partition ribs 37c, 37d, 37e, and 37f in the vicinity of the opening 64 is disposed with the interval L1, so that the undulating water surface is prevented from entering the protruding portion 62. Further, the partition ribs 37k and 37l prevent the waves that are generated when the air flowing in from the lower opening 31 flows along the water surface from spreading. Therefore, since the water level 65 during the sauna operation is stable, the float 63 can accurately detect the water level.
 上述のように、サウナ運転中に貯水部26に溜まる残水は極めて少なく、またサウナ運転時の水位65も安定している。そのため、開口64を通って突出部62内へ流れ込む水の量はすくなく、フロート63は突出部62の底面から僅かに浮きあがる程度の水位に維持されている。 As described above, the residual water that accumulates in the water storage section 26 during the sauna operation is extremely small, and the water level 65 during the sauna operation is also stable. For this reason, the amount of water flowing into the protrusion 62 through the opening 64 is small, and the float 63 is maintained at a water level that is slightly lifted from the bottom surface of the protrusion 62.
 また、乾燥運転が進むに従い、貯水部26の残水が減少して水位が下がるので、衝立状リブ37にファンモータ8からの送風があたる割合が多くなる。衝立状リブ37c、37i、37j等は、貯水部26の底面67に沿う流れを偏向する作用がある。そのため、貯水部26内での送風が攪拌され、貯水部26内の乾燥が促進される。またファンモータ8からの送風は、開口64から突出部62内にも向かい、突出部62内を乾燥させる。 Further, as the drying operation proceeds, the remaining water in the water storage section 26 decreases and the water level decreases, so that the ratio of air blown from the fan motor 8 to the screen ribs 37 increases. The screen ribs 37c, 37i, 37j and the like have an action of deflecting the flow along the bottom surface 67 of the water storage section 26. Therefore, the ventilation in the water storage part 26 is stirred and the drying in the water storage part 26 is accelerated | stimulated. Further, the air blown from the fan motor 8 also travels from the opening 64 into the projecting portion 62 to dry the projecting portion 62.
 このように液体微細化装置3内に極めて僅かに水が残ったとしても、乾燥運転により残水は乾燥されるため、液体微細化装置3内の残水の排水処理が不要となる。 Thus, even if a very small amount of water remains in the liquid micronizer 3, the residual water is dried by the drying operation, so that the waste water in the liquid micronizer 3 need not be drained.
 一方、サウナ運転中に、例えば定流量弁15の故障などにより、あらかじめ定めた流量以上の水が第1の回転板20aに供給され、貯水部26において、サウナ運転時の水位65以上の余剰水が溜まってしまう。このような場合、突出部62内に配置したフロート63は、異常水位66を検知し、給水弁17への通電を遮断する。そして給水管14からの給水が停止され、ファンモータ8と回転モータ21との運転が停止されて、サウナ装置の運転が停止される。 On the other hand, during the sauna operation, for example, due to a failure of the constant flow valve 15, water of a predetermined flow rate or higher is supplied to the first rotating plate 20 a, and excess water having a water level of 65 or higher during the sauna operation is stored in the water storage unit 26. Will accumulate. In such a case, the float 63 arranged in the protrusion 62 detects the abnormal water level 66 and interrupts the energization of the water supply valve 17. Then, water supply from the water supply pipe 14 is stopped, the operation of the fan motor 8 and the rotary motor 21 is stopped, and the operation of the sauna device is stopped.
 このようにフロート63が水位異常を検知することにより、例えば貯水部26の上端と筒状の経路12の下端との継ぎ目等から水が漏出する前に、サウナ装置の運転が停止される。 Thus, when the float 63 detects the water level abnormality, the operation of the sauna device is stopped before water leaks from, for example, the joint between the upper end of the water storage section 26 and the lower end of the cylindrical path 12.
 本発明の液体微細化装置とそれを用いたサウナ装置は、サウナ装置、加湿装置、冷却装置、噴霧装置、洗浄装置、および植物育成設備等への活用が期待される。また、水だけでなく、油、洗剤等の液体の微細化設備にも利用することが可能である。 The liquid refinement apparatus of the present invention and a sauna apparatus using the same are expected to be used for sauna apparatuses, humidification apparatuses, cooling apparatuses, spraying apparatuses, cleaning apparatuses, plant growing facilities, and the like. Further, it can be used not only for water but also for liquid miniaturization equipment such as oil and detergent.
1  サウナ室
2  天井面
3  液体微細化装置
4  吸込口
5  排気口
6  本体ケース
7  熱交換器
8  ファンモータ
9  液体微細化部
10  ファンケーシング
11  補助熱交換器
12  筒状の経路
13  回転部
14  給水管
15  定流量弁
16  上流側配管
17  給水弁
19  回転軸
20a  第1の回転板
20b  第2の回転板
20c  第3の回転板
20d  回転板の外縁を通る鉛直線
20e  周方向
20f  下部
20g  上部
21  回転モータ
22,22a  揚水管
23  当て板
24  支持棒
25,25a,25b  開口
26  貯水部
27a,27b  温度センサ
28  パイプ
29  配管
30  上方開口部
31  下方開口部
32  羽根車
34  開口
37,37a,37b,37c,37d,37e,37f,37g,37h,37i,37j,37k,37l  衝立状リブ
40  下部内壁
41  貯水部内面
43  制御装置
44  制御部
45  リモコン
46  湿度センサ
47  水位センサ
53  リブ
54  液面
61  切り欠き
62  突出部
63  フロート
64  開口
65  サウナ運転時の水位
66  異常水位
67  底面
68  縁部
69  切り欠き下端
DESCRIPTION OF SYMBOLS 1 Sauna room 2 Ceiling surface 3 Liquid refinement apparatus 4 Suction port 5 Exhaust port 6 Main body case 7 Heat exchanger 8 Fan motor 9 Liquid refinement part 10 Fan casing 11 Auxiliary heat exchanger 12 Cylindrical path 13 Rotation part 14 Water supply Pipe 15 Constant flow valve 16 Upstream pipe 17 Water supply valve 19 Rotating shaft 20a First rotating plate 20b Second rotating plate 20c Third rotating plate 20d Vertical line 20e passing through the outer edge of the rotating plate 20e in the circumferential direction 20f lower part 20g upper part 21 Rotating motors 22, 22a Pumping pipe 23 Baffle plate 24 Support rods 25, 25a, 25b Opening 26 Water storage part 27a, 27b Temperature sensor 28 Pipe 29 Pipe 30 Upper opening part 31 Lower opening part 32 Impeller 34 Opening 37, 37a, 37b, 37c, 37d, 37e, 37f, 37g, 37h, 37i, 37j, 37k, 37l 40 Lower inner wall 41 Reservoir inner surface 43 Controller 44 Control unit 45 Remote control 46 Humidity sensor 47 Water level sensor 53 Rib 54 Liquid level 61 Notch 62 Projection 63 Float 64 Opening 65 Water level during sauna operation 66 Abnormal water level 67 Bottom surface 68 Edge 69 Bottom notch

Claims (21)

  1. 吸込口および排気口を有する本体ケースと、
    前記吸込口と前記排気口との間に設けた加熱部および送風部と、
    前記送風部と前記排気口との間に設けた液体微細化部とを備えた液体微細化装置であって、
    前記液体微細化部は上方開口部および下方開口部を有する筒状の経路と、
    前記筒状の経路内に設けた回転部と、
    前記回転部に液体を供給する液体供給部と、
    前記筒状の経路の下部に設けた貯水部とを有し、
    前記回転部は鉛直方向に配置した回転軸と、
    前記回転軸を回転させる回転モータと、
    前記回転軸に鉛直方向に固定されるとともに前記貯水部から前記液体を吸上げる揚水管と、
    前記回転軸の軸方向に所定間隔を設けて前記揚水管に固定された複数の回転板とを有し、
    前記液体供給部は前記液体を移送し最も上側の前記回転板に前記液体を供給する給水管と、
    前記給水管に設けられた定流量弁と、
    前記定流量弁より前記給水管の上流側に設けられた給水弁とを有し、
    前記送風部は羽根車と、
    前記羽根車を回転させるファンモータと、
    前記羽根車を内包するファンケーシングとを有し、
    前記揚水管は下部より上部が大きい逆円錐形状であり、前記回転板と前記回転板との間の前記揚水管の周方向に前記液体を噴出させる開口と、前記回転板と前記回転板との間の前記回転板の外縁を通る鉛直線と前記開口との間に環状の当て板とを設けたことを特徴とする液体微細化装置。
    A body case having a suction port and an exhaust port;
    A heating unit and a blowing unit provided between the suction port and the exhaust port;
    A liquid micronization device comprising a liquid micronization unit provided between the air blowing unit and the exhaust port,
    The liquid refinement portion has a cylindrical path having an upper opening and a lower opening,
    A rotating part provided in the cylindrical path;
    A liquid supply unit for supplying liquid to the rotating unit;
    A water storage section provided at a lower portion of the cylindrical path,
    The rotating part is a rotating shaft arranged in a vertical direction;
    A rotary motor for rotating the rotary shaft;
    A pumping pipe fixed vertically to the rotating shaft and sucking up the liquid from the water reservoir;
    A plurality of rotating plates fixed to the pumping pipe with a predetermined interval in the axial direction of the rotating shaft;
    The liquid supply unit feeds the liquid and supplies the liquid to the uppermost rotating plate;
    A constant flow valve provided in the water supply pipe;
    A water supply valve provided upstream of the water supply pipe from the constant flow valve;
    The blowing section is an impeller,
    A fan motor for rotating the impeller;
    A fan casing containing the impeller,
    The pumping pipe has an inverted conical shape whose upper part is larger than the lower part, an opening for ejecting the liquid in the circumferential direction of the pumping pipe between the rotating plate and the rotating plate, and the rotating plate and the rotating plate A liquid refining apparatus, characterized in that an annular backing plate is provided between a vertical line passing through an outer edge of the rotating plate and the opening.
  2. 前記回転板は上方から下方に第1の回転板、第2の回転板、および第3の回転板とし、前記第1の回転板と前記第2の回転板との間の前記開口と、前記第2の回転板と前記第3の回転板との間の前記開口との周方向の位置が、ずらされていることを特徴とする請求項1記載の液体微細化装置。 The rotating plate is a first rotating plate, a second rotating plate, and a third rotating plate from above to below, the opening between the first rotating plate and the second rotating plate, 2. The liquid micronizer according to claim 1, wherein a circumferential position of the opening between the second rotating plate and the third rotating plate is shifted.
  3. 前記上方開口部および前記下方開口部に温度センサが設けられ、前記温度センサが検知した温度により前記貯水部を乾燥させる乾燥運転が制御されることを特徴とする請求項1記載の液体微細化装置。 The liquid refinement apparatus according to claim 1, wherein a temperature sensor is provided in the upper opening and the lower opening, and a drying operation for drying the water reservoir is controlled by a temperature detected by the temperature sensor. .
  4. 前記温度センサに代えて湿度センサが設けられたことを特徴とする請求項3記載の液体微細化装置。 The liquid refinement apparatus according to claim 3, wherein a humidity sensor is provided instead of the temperature sensor.
  5. 前記乾燥運転時に、前記送風部の送風能力が前記筒状の経路に液滴を形成する液体微細化運転時より低下されることを特徴とする請求項3記載の液体微細化装置。 4. The liquid refinement apparatus according to claim 3, wherein during the drying operation, the air blowing capacity of the air blowing unit is lowered than during the liquid refinement operation in which droplets are formed in the cylindrical path.
  6. 前記乾燥運転時の前記送風能力は前記液体微細化運転時の半分にすることを特徴とする請求項5記載の液体微細化装置。 6. The liquid refinement apparatus according to claim 5, wherein the air blowing capacity during the drying operation is halved compared with that during the liquid refinement operation.
  7. 前記乾燥運転時に、前記回転モータの回転数が前記液体微細化運転時に比べ低下されたことを特徴とする請求項5記載の液体微細化装置。 6. The liquid refinement apparatus according to claim 5, wherein the rotational speed of the rotary motor is reduced during the drying operation as compared with the liquid refinement operation.
  8. 前記筒状の経路の下部内壁および前記貯水部の貯水部内面が、親水化処理されたことを特徴とする請求項1記載の液体微細化裝置。 The liquid refinement apparatus according to claim 1, wherein a lower inner wall of the cylindrical path and a water storage portion inner surface of the water storage portion are subjected to a hydrophilic treatment.
  9. 前記親水化処理は、前記下部内壁および前記貯水部内面の表面がシボ加工されたことを特徴とする請求項8記載の液体微細化装置。 The liquid refining apparatus according to claim 8, wherein in the hydrophilization treatment, a surface of the lower inner wall and an inner surface of the water storage unit is subjected to a texture process.
  10. 前記親水化処理は、親水化材料が前記下部内壁および前記貯水部内面に練り込まれことを特徴とする請求項8記載の液体微細化装置。 The liquid refining apparatus according to claim 8, wherein the hydrophilization treatment is performed by kneading a hydrophilizing material into the lower inner wall and the inner surface of the water storage unit.
  11. 前記親水化処理は、親水化材料が前記下部内壁および前記貯水部内面を覆うことを特徴とする請求項8記載の液体微細化装置。 The liquid refining apparatus according to claim 8, wherein in the hydrophilization treatment, a hydrophilizing material covers the lower inner wall and the inner surface of the water storage unit.
  12. 補助熱交換器が前記液体微細化部と前記排気口との間に設けられたことを特徴とする請求項1記載の液体微細化装置。 The liquid refinement apparatus according to claim 1, wherein an auxiliary heat exchanger is provided between the liquid refinement unit and the exhaust port.
  13. 前記上方開口部および前記下方開口部に温度センサが設けられ、前記温度センサが検知した温度により、前記給水弁の開閉が制御されることを特徴とする請求項1記載の液体微細化装置。 The liquid refinement apparatus according to claim 1, wherein temperature sensors are provided in the upper opening and the lower opening, and the opening and closing of the water supply valve is controlled by the temperature detected by the temperature sensor.
  14. 前記吸込み口に湿度センサが設けられ、前記湿度センサが検知した湿度により、前記給水弁の開閉が制御されることを特徴とする請求項1記載の液体微細化装置。 The liquid refinement apparatus according to claim 1, wherein a humidity sensor is provided in the suction port, and the opening and closing of the water supply valve is controlled by the humidity detected by the humidity sensor.
  15. 前記貯水部の水位を検知する水位センサを設け、前記水位センサが検知した水位により、前記給水弁の開閉が制御されることを特徴とする請求項1記載の液体微細化装置。 The liquid micronizer according to claim 1, wherein a water level sensor that detects a water level of the water storage section is provided, and the opening and closing of the water supply valve is controlled by the water level detected by the water level sensor.
  16. 最も下側の前記回転板より下方の前記揚水管に前記貯水部から前記液体が上昇することを防止する液体上昇防止部が設けられたことを特徴とする請求項1記載の液体微細化装置。 2. The liquid refinement apparatus according to claim 1, wherein a liquid rise prevention unit for preventing the liquid from rising from the water storage unit is provided in the pumping pipe below the lowermost rotating plate.
  17. 前記液体上昇防止部は、前記揚水管の外面に設けたリブであることを特徴とする請求項16記載の液体微細化装置。 The liquid refinement apparatus according to claim 16, wherein the liquid rise prevention unit is a rib provided on an outer surface of the pumping pipe.
  18. 前記貯水部と開口により連通する突出部を設け、前記貯水部の水位を検知する水位検知部を前記突出部に設け、前記貯水部の底面から上方に複数の衝立状リブを設けたことを特徴とする請求項1記載の液体微細化装置。 Protruding portions that communicate with the water storage portion by opening are provided, a water level detecting portion that detects the water level of the water storing portion is provided in the protruding portion, and a plurality of partition ribs are provided above the bottom surface of the water storing portion. The liquid refinement apparatus according to claim 1.
  19. 前記衝立状リブは、前記開口の近傍に前記開口に平行に配置されたことを特徴とする請求項18記載の液体微細化装置。 19. The liquid refinement apparatus according to claim 18, wherein the partition rib is disposed in the vicinity of the opening and parallel to the opening.
  20. 前記衝立状リブは、前記揚水管の周囲に放射状に配置されたことを特徴とする請求項18記載の液体微細化装置。 19. The liquid refinement apparatus according to claim 18, wherein the partition ribs are arranged radially around the pumping pipe.
  21. 請求項1記載の液体微細化装置がサウナ室に設けられたことを特徴とするサウナ装置。 A sauna apparatus, wherein the liquid refinement apparatus according to claim 1 is provided in a sauna room.
PCT/JP2011/004716 2010-08-26 2011-08-25 Liquid atomizing device and sauna device using same WO2012026120A1 (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2010189004 2010-08-26
JP2010-189010 2010-08-26
JP2010189010A JP5696287B2 (en) 2010-08-26 2010-08-26 Liquid refinement device and sauna device using the same
JP2010-189004 2010-08-26
JP2010-189012 2010-08-26
JP2010189012A JP5696288B2 (en) 2010-08-26 2010-08-26 Liquid refinement device and sauna device using the same
JP2010196393 2010-09-02
JP2010-196393 2010-09-02
JP2010254687A JP5810324B2 (en) 2010-11-15 2010-11-15 Liquid refinement device and sauna device using the same
JP2010-254687 2010-11-15
JP2010257601A JP2012066046A (en) 2010-08-26 2010-11-18 Liquid atomizing device and sauna apparatus using the same
JP2010-257601 2010-11-18
JP2010-263362 2010-11-26
JP2010263362A JP2012112612A (en) 2010-11-26 2010-11-26 Liquid atomizing device and sauna device using the same

Publications (1)

Publication Number Publication Date
WO2012026120A1 true WO2012026120A1 (en) 2012-03-01

Family

ID=45723142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004716 WO2012026120A1 (en) 2010-08-26 2011-08-25 Liquid atomizing device and sauna device using same

Country Status (1)

Country Link
WO (1) WO2012026120A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019432A1 (en) * 2012-07-30 2014-02-06 广东松下环境系统有限公司 Micromist sauna device
CN103752436A (en) * 2014-01-27 2014-04-30 中国人民解放军海军医学研究所 Pneumatic atomization system with rotatable spraying head
JP2014158649A (en) * 2013-01-24 2014-09-04 Panasonic Corp Liquid atomizer and sauna apparatus using the same
JP2014158650A (en) * 2013-01-25 2014-09-04 Panasonic Corp Liquid atomizer and sauna apparatus using the same
JP2015058079A (en) * 2013-09-18 2015-03-30 パナソニック株式会社 Liquid refining device and sauna device using the same
CN106604783A (en) * 2014-09-11 2017-04-26 歌路那公司 Rotator structure for nanomist-generating device
WO2020209130A1 (en) * 2019-04-09 2020-10-15 パナソニックIpマネジメント株式会社 Liquid atomization device
JP2020173046A (en) * 2019-04-09 2020-10-22 パナソニックIpマネジメント株式会社 Liquid atomization device
JP2020176770A (en) * 2019-04-18 2020-10-29 パナソニックIpマネジメント株式会社 Liquid atomization device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922011Y1 (en) * 1972-08-04 1974-06-13
JP2008261609A (en) * 2007-04-13 2008-10-30 Noritz Corp Mist generating device and bathroom heating device comprising the same
JP2009279514A (en) * 2008-05-22 2009-12-03 Corona Corp Negative ion and nanomist generator
WO2010029722A1 (en) * 2008-09-09 2010-03-18 パナソニック株式会社 Liquid refining device and humidifier using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922011Y1 (en) * 1972-08-04 1974-06-13
JP2008261609A (en) * 2007-04-13 2008-10-30 Noritz Corp Mist generating device and bathroom heating device comprising the same
JP2009279514A (en) * 2008-05-22 2009-12-03 Corona Corp Negative ion and nanomist generator
WO2010029722A1 (en) * 2008-09-09 2010-03-18 パナソニック株式会社 Liquid refining device and humidifier using same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019432A1 (en) * 2012-07-30 2014-02-06 广东松下环境系统有限公司 Micromist sauna device
CN103565626A (en) * 2012-07-30 2014-02-12 广东松下环境系统有限公司 Fog sauna device
JP2015524692A (en) * 2012-07-30 2015-08-27 広東松下環境系統有限公司 Mist sauna equipment
JP2014158649A (en) * 2013-01-24 2014-09-04 Panasonic Corp Liquid atomizer and sauna apparatus using the same
JP2014158650A (en) * 2013-01-25 2014-09-04 Panasonic Corp Liquid atomizer and sauna apparatus using the same
JP2015058079A (en) * 2013-09-18 2015-03-30 パナソニック株式会社 Liquid refining device and sauna device using the same
CN103752436A (en) * 2014-01-27 2014-04-30 中国人民解放军海军医学研究所 Pneumatic atomization system with rotatable spraying head
CN106604783B (en) * 2014-09-11 2018-10-02 歌路那公司 The rotary body of nanometer thin mist generating device constructs
CN106604783A (en) * 2014-09-11 2017-04-26 歌路那公司 Rotator structure for nanomist-generating device
US10132513B2 (en) 2014-09-11 2018-11-20 Corona Corporation Rotator structure of nanomist-generating device
WO2020209130A1 (en) * 2019-04-09 2020-10-15 パナソニックIpマネジメント株式会社 Liquid atomization device
JP2020173046A (en) * 2019-04-09 2020-10-22 パナソニックIpマネジメント株式会社 Liquid atomization device
CN113613793A (en) * 2019-04-09 2021-11-05 松下知识产权经营株式会社 Liquid micronizing device
JP7270120B2 (en) 2019-04-09 2023-05-10 パナソニックIpマネジメント株式会社 Liquid atomization device
JP2020176770A (en) * 2019-04-18 2020-10-29 パナソニックIpマネジメント株式会社 Liquid atomization device
JP7133755B2 (en) 2019-04-18 2022-09-09 パナソニックIpマネジメント株式会社 Liquid atomization device

Similar Documents

Publication Publication Date Title
WO2012026120A1 (en) Liquid atomizing device and sauna device using same
JP6255571B2 (en) Liquid refinement device and sauna device using the same
JP6255568B2 (en) Sauna equipment
JP2022115918A (en) Liquid atomization device
JP2012152308A (en) Liquid atomizing device and sauna apparatus using the same
JP2011160946A (en) Liquid atomizing device and sauna apparatus using the same
JP2012250015A (en) Liquid atomizer and sauna apparatus using the same
JP2012112612A (en) Liquid atomizing device and sauna device using the same
JP5600950B2 (en) Liquid refinement device and sauna device using the same
JP5696287B2 (en) Liquid refinement device and sauna device using the same
JP5381576B2 (en) Liquid refinement device and sauna device using the same
JP2014158649A (en) Liquid atomizer and sauna apparatus using the same
JPWO2020070772A1 (en) Air conditioner, control method and control device
JP5696288B2 (en) Liquid refinement device and sauna device using the same
JP2012066046A (en) Liquid atomizing device and sauna apparatus using the same
JP6240888B2 (en) Liquid refinement device and sauna device
JP5625786B2 (en) Liquid refinement device and sauna device using the same
JP5824611B2 (en) Liquid refinement device and sauna device using the same
JP5810324B2 (en) Liquid refinement device and sauna device using the same
JP6167285B2 (en) Liquid refinement device and sauna device
WO2020059393A1 (en) Liquid atomization device and heat exchange ventilation device using same
JP6849539B2 (en) Mist generator
JP6205580B2 (en) Liquid refinement device and sauna device using the same
JP2012161390A (en) Liquid atomizer and sauna apparatus using the same
JP6167286B2 (en) Liquid refinement device and sauna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11819596

Country of ref document: EP

Kind code of ref document: A1