WO2020136831A1 - 測定装置 - Google Patents
測定装置 Download PDFInfo
- Publication number
- WO2020136831A1 WO2020136831A1 PCT/JP2018/048257 JP2018048257W WO2020136831A1 WO 2020136831 A1 WO2020136831 A1 WO 2020136831A1 JP 2018048257 W JP2018048257 W JP 2018048257W WO 2020136831 A1 WO2020136831 A1 WO 2020136831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lock
- small
- distortion
- amount
- small areas
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 claims abstract description 47
- 238000006073 displacement reaction Methods 0.000 claims description 66
- 238000000691 measurement method Methods 0.000 claims description 7
- 238000004891 communication Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000002123 temporal effect Effects 0.000 description 8
- 230000010365 information processing Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/48—Thermography; Techniques using wholly visual means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/72—Investigating presence of flaws
Definitions
- the present invention relates to a measuring device, a measuring method, and a recording medium.
- Patent Document 1 As an example of a technique for making an abnormality determination using the infrared image as described above, there is, for example, Patent Document 1.
- a thermoelastic temperature fluctuation waveform (temperature fluctuation waveform) of an arbitrary portion in an image acquired by an infrared camera is used as a reference signal, lock-in processing is performed, and only a signal synchronized with stress fluctuation is extracted.
- a so-called autocorrelation lock-in process for improving the S/N (signal/noise) ratio of a signal is described.
- the measuring device which is one mode of the present invention, A distortion calculation unit that calculates the amount of distortion of a plurality of small areas in the visible light image, A signal acquisition unit that acquires a predetermined signal at a location corresponding to the small area, A region-specific lock-in processing unit that executes a lock-in process that removes noise of the predetermined signal at a location corresponding to the small region by using the distortion amount for each small region, Have a structure.
- the measuring device calculateate the amount of distortion of multiple small areas in the visible light image, Obtaining a predetermined signal at a location corresponding to the small area, A lock-in process for removing noise of the predetermined signal in a portion corresponding to the small region is performed by using the distortion amount for each small region.
- a recording medium is In the measuring device, A distortion calculation unit that calculates the amount of distortion of a plurality of small areas in the visible light image, A signal acquisition unit that acquires a predetermined signal at a location corresponding to the small area, A region-specific lock-in processing unit that executes a lock-in process that removes noise of the predetermined signal at a location corresponding to the small region by using the distortion amount for each small region, It is a computer-readable recording medium in which a program for realizing the above is recorded.
- the present invention is configured as described above, and in the measurement using a predetermined signal such as an infrared image, it is difficult to improve the measurement accuracy, a measuring device, a measuring method, a recording medium It becomes possible to provide.
- FIG. 3 is a diagram showing an example of RGB image data shown in FIG. 2.
- FIG. 2 is a figure which shows an example of the infrared image data shown in FIG.
- FIG. 2 is a figure for explaining an example of lock-in processing.
- It is a flow chart which shows an example of operation of the measuring device in a 1st embodiment of the present invention.
- FIG. 1 is a diagram showing an example of the configuration of the entire measurement system 400.
- FIG. 2 is a block diagram showing an example of the configuration of the measuring apparatus 100.
- FIG. 3 is a diagram showing an example of the RGB image data 1151.
- FIG. 4 is a diagram showing an example of the infrared image data 1152.
- FIG. 5 is a diagram for explaining an example of lock-in processing.
- FIG. 6 is a flowchart showing an example of the operation of the measuring apparatus 100.
- a measurement device 100 in which an infrared camera 300 acquires infrared image data and measures a measurement target such as a bridge will be described.
- the measuring apparatus 100 described in the present embodiment based on RGB (Red Green Blue) image data that is a visible light image acquired from the visible light camera 200, the displacement and distortion amount for each predetermined small area. To calculate. Then, the measuring apparatus 100 locks in the temperature change of each coordinate corresponding to the small area, using the calculated distortion amount as a reference waveform.
- RGB Red Green Blue
- FIG. 1 shows an example of the overall configuration of the measurement system 400 described in this embodiment.
- the measurement system 400 includes, for example, a visible light camera 200, an infrared camera 300, and a measuring device 100.
- the visible light camera 200 and the measuring device 100 are connected via a cable or the like so that they can communicate with each other.
- the infrared camera 300 and the measuring device 100 are connected via a cable or the like so that they can communicate with each other.
- the visible light camera 200 and the infrared camera 300 are installed in a state of being adjusted in advance so that the measurement ranges match. That is, the visible light camera 200 and the infrared camera 300 are adjusted in advance so as to acquire image data of the same region of a measurement target such as a bridge. Since the adjustment is performed as described above, the RGB image data acquired by the visible light camera 200 and the infrared image data acquired by the infrared camera 300 indicate the same target in each coordinate within the measurement range.
- the adjustment method for matching the measurement ranges of the visible light camera 200 and the infrared camera 300 is not particularly limited. The visible light camera 200 and the infrared camera 300 can be adjusted using known methods so that the measurement ranges match.
- the visible light camera I/F unit 110 is connected to the visible light camera 200 via a cable or the like.
- the visible light camera I/F unit 110 transmits and receives data between the visible light camera 200 and the arithmetic processing unit 170.
- the communication I/F unit 130 is composed of a data communication circuit.
- the communication I/F unit 130 performs data communication with an external device (not shown) connected via a wire or wirelessly.
- the screen display unit 150 is a screen display device such as an LCD (Liquid Crystal Display).
- the screen display unit 150 displays various information such as the post-noise removal temperature change information 166, which will be described later, on the screen in response to an instruction from the arithmetic processing unit 170.
- the storage unit 160 is composed of a storage device such as a hard disk or a memory.
- the storage unit 160 stores processing information and a program 167 necessary for various processes in the arithmetic processing unit 170.
- the program 167 realizes various processing units by being read by the arithmetic processing unit 170 and executed.
- the program 167 is read in advance from an external device (not shown) or a recording medium via the data input/output function of the communication I/F unit 130 and is stored in the storage unit 160.
- the main processing information stored in the storage unit 160 includes, for example, RGB image data information 161, infrared image data information 162, displacement information 163, distortion information 164, temperature change information 165, and temperature after noise removal.
- the visible light camera 200 acquires visible light image data of a preset region of a measurement target such as a bridge over time. Therefore, the RGB image data information 161 stores, for example, RGB image data acquired by shooting the same area in the order of oldest shooting time (acquisition time).
- the infrared camera 300 acquires infrared image data of a preset area of a measurement target such as a bridge over time. Therefore, the infrared image data information 162 stores, for example, infrared image data acquired by shooting the same area in the order of oldest shooting time (acquisition time).
- the displacement calculation unit 172 reads the RGB image data information 161 from the storage unit 160, detects the temporal change in the position of each small region when the RGB image data is divided into a plurality of small regions, and calculates the amount of displacement. ..
- the displacement calculator 172 acquires two RGB image data that are temporally continuous from the storage 160. Then, the displacement calculation unit 172 detects a temporal position change in units of small areas using a digital image correlation method, a phase-only correlation method, an optical flow, or the like, and for example, a displacement including a displacement direction and a displacement amount. Calculate the amount. After that, the displacement calculation unit 172 stores the calculated displacement amount in the storage unit 160 as the displacement information 163.
- the displacement calculator 172 can be configured to calculate the amount of displacement of all the small areas when the RGB image data is divided into a plurality of small areas.
- the displacement calculation unit 172 is a partial small area, for example, a plurality of small areas selected based on some criterion such as a predetermined criterion, out of all the small areas when the RGB image data is divided into a plurality of small areas.
- the displacement amount may be calculated.
- the temperature change information acquisition unit 174 can be configured to acquire information indicating a change in temperature of all the small areas when the infrared image data is divided into a plurality of small areas.
- the temperature change information acquisition unit 174 may be, for example, a small region in which the displacement calculation unit 172 or the strain calculation unit 173 calculates the displacement amount or the strain amount among all the small regions when the infrared image data is divided into a plurality of small regions.
- Information indicating a change in temperature of some small regions such as information indicating a change in temperature, may be acquired.
- the region lock-in processing unit 175 performs the lock-in process for each small region, using the distortion amount calculated for each small region as the reference waveform. It should be noted that the lock-in processing itself performed by the lock-in processing unit for each area 175 may employ, for example, a known method except that the lock-in processing is executed for each small area using the distortion amount calculated for each small area. Absent.
- the acquisition unit 171 acquires RGB image data from the visible light camera 200 and infrared image data from the infrared camera 300 (step S101). Then, the acquisition unit 171 stores the acquired RGB image data in the storage unit 160 as RGB image data information 161. The acquisition unit 171 also stores the acquired infrared image data in the storage unit 160 as infrared image data information 162.
- the visible light camera 200 and the infrared camera 300 are adjusted in advance so as to acquire image data of the same region of a measurement target such as a bridge.
- the temperature change information acquisition unit 174 acquires information indicating a change in temperature of each small area when the infrared image data is divided into a plurality of small areas based on the infrared image data information 162 (step S104). Then, the temperature change information acquisition unit 174 stores the acquired information indicating the change in temperature in the storage unit 160 as the temperature change information 165.
- the above is an example of the operation of the measuring apparatus 100.
- the area lock-in processing unit 175 performs the lock-in processing for each small area.
- the small area of the strain amount and the small area of the temperature change at the time of performing the lock-in process do not necessarily have to have a one-to-one correspondence.
- the region lock-in processing unit 175 may be configured to perform the lock-in process on the temperature change of a plurality of small regions such as adjacent to the small region using the distortion amount of the certain small region as a reference waveform.
- RGB image data is given as an example of a visible light image.
- the visible light image may be a monochrome image such as gray scale.
- FIG. 7 shows an example of the configuration of the measuring device 500.
- the measurement apparatus 500 includes, for example, a distortion calculation unit 501, a signal acquisition unit 502, and a region-specific lock-in processing unit 503.
- the measuring device 500 has a computing device such as a CPU and a storage device.
- the measuring device 500 realizes each of the above processing units by the arithmetic device executing a program stored in the storage device.
- the distortion calculation unit 501 calculates the distortion amounts of a plurality of small areas in the visible light image. For example, the distortion calculation unit 501 acquires a visible light image from the outside and calculates the amount of distortion of a plurality of small areas in the visible light image.
- the signal acquisition unit 502 acquires a predetermined signal.
- the predetermined signal is, for example, information indicating a temperature change acquired from the infrared image.
- the predetermined signal may be a signal other than those exemplified above.
- the area lock-in processing unit 503 acquires the distortion amount for each small area from the distortion calculation unit 501. Further, the area lock-in processing unit 503 acquires a predetermined signal from the signal acquisition unit 502. Then, the region lock-in processing unit 503 executes the lock-in process of removing the noise of the predetermined signal in the portion corresponding to the small region by using the distortion amount of each small region. The result of the lock-in processing by the area-based lock-in processing unit 503 can be output to the outside.
- the measuring apparatus 500 includes the distortion calculation unit 501, the signal acquisition unit 502, and the region lock-in processing unit 503.
- the distortion calculation section 501 can calculate the distortion amounts of a plurality of small areas.
- the region lock-in processing unit 503 can execute the lock-in process of removing the noise of the predetermined signal acquired by the signal acquisition unit 502, using the distortion amount for each small region. As a result, the lock-in process can be performed using a more appropriate distortion amount, and the measurement accuracy can be improved.
- the above-described measuring device 500 can be realized by incorporating a predetermined program in the measuring device 500.
- the program according to another embodiment of the present invention causes the measurement apparatus 500 to have a distortion calculation unit 501 that calculates distortion amounts of a plurality of small regions in a visible light image and a signal acquisition unit 502 that acquires a predetermined signal. And a region-by-region lock-in processing unit 503 that executes a lock-in process for removing noise of a predetermined signal in a portion corresponding to the small region by using the distortion amount for each small region.
- the measuring device 500 calculates the distortion amount of a plurality of small areas in the visible light image, acquires a predetermined signal, and uses the distortion amount of each small area. A lock-in process for removing noise of a predetermined signal in a portion corresponding to a small area is performed.
- a distortion calculation unit that calculates the amount of distortion of a plurality of small areas in the visible light image, A signal acquisition unit that acquires a predetermined signal at a location corresponding to the small area, A region-specific lock-in processing unit that executes a lock-in process that removes noise of the predetermined signal at a location corresponding to the small region by using the distortion amount for each small region, Measuring device having.
- the distortion calculation unit calculates the distortion amount of at least a part of the small areas when the visible light image is divided into a plurality of the small areas, The measurement device according to appendix 1, wherein the lock-in processing unit for each area executes the lock-in processing using the distortion amount calculated by the distortion amount calculation unit.
- the distortion calculation unit calculates the distortion amount of all the small areas when the visible light image is divided into a plurality of the small areas,
- the measurement device according to supplementary note 1 or supplementary note 2, wherein the lock-in processing unit for each area executes the lock-in processing for each of the small areas using the distortion amount for each of the small areas.
- the signal acquisition unit acquires information indicating a temperature change from an infrared image as a waveform of the predetermined signal.
- the measuring device according to any one of appendices 1 to 3.
- It has a displacement calculation unit that calculates the displacement of a plurality of small areas from the visible light image,
- the strain calculation unit calculates the strain amount based on the displacement calculated by the displacement calculation unit.
- the measurement device according to any one of Supplementary notes 1 to 4.
- (Appendix 6) The measurement device according to any one of appendices 1 to 5, further comprising an output unit that outputs a result of lock-in processing performed by the lock-in processing unit for each area.
- (Appendix 7) The measuring device Calculate the amount of distortion of multiple small areas in the visible light image, Obtaining a predetermined signal at a location corresponding to the small area, A measurement method of performing a lock-in process of removing noise of the predetermined signal in a portion corresponding to the small region using the distortion amount for each small region.
- a distortion calculation unit that calculates the amount of distortion of a plurality of small areas in the visible light image
- a signal acquisition unit that acquires a predetermined signal at a location corresponding to the small area
- a region-specific lock-in processing unit that executes a lock-in process that removes noise of the predetermined signal at a location corresponding to the small region by using the distortion amount for each small region
- a computer-readable recording medium in which a program for realizing the above is recorded.
- Measuring device 110 Visible light camera I/F unit 120 Infrared camera I/F unit 130 Communication I/F unit 140 Operation input unit 150 Screen display unit 160 Storage unit 161 RGB image data information 162 Infrared image data information 163 Displacement information 164 Distortion Information 165 Temperature change information 166 Noise-removed temperature change information 167 Program 170 Calculation processing unit 171 Acquisition unit 172 Displacement calculation unit 173 Strain calculation unit 174 Temperature change information acquisition unit 175 Lock-in processing unit for each area 176 Output unit 200 Visible light camera 300 Infrared camera 400 Measurement system 500 Measurement device 501 Strain calculation unit 502 Signal acquisition unit 503 Lock-in processing unit for each area
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
測定装置は、可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、前記小領域に対応する箇所の所定信号を取得する信号取得部と、前記小領域ごとの前記歪み量を用いて、前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、を有する。
Description
本発明は、測定装置、測定方法、記録媒体に関する。
橋などの測定対象に生じているひび割れの先端付近などでは、力のエネルギーの一部が熱に変換して発散することで、温度が上がる。赤外線画像を用いて温度の変化を測定することにより上記現象の観測を行うことで、測定対象に生じているひびなどの異常を判定する技術が知られている。
上記のような赤外線画像を用いた異常判定を行う技術の一例として、例えば、特許文献1がある。特許文献1には、赤外線カメラによって取得した画像内の任意の部分の熱弾性温度変動波形(温度変化波形)を参照信号として用い、ロックイン処理を行って応力変動に同期する信号のみを抽出し、信号のS/N(signal/noise)比を向上させる、いわゆる自己相関ロックイン処理について記載されている。
自己相関ロックインでは、亀裂先端部など任意の部分1点(参照点)の温度変化波形で面全体をロックインする。そのため、参照点とする亀裂先端部を事前に把握しておくことが必要であった。また、参照点1点の温度変化波形で面全体をロックインするため、参照点以外の計測信頼性が低下したり、参照点の温度変化雑音(ノイズ)に影響を受けたりしやすかった。例えば、以上のような理由により、特許文献1に記載されているような自己相関ロックインを行う場合、測定精度を向上させることが難しい、という課題があった。
そこで、本発明の目的は、赤外線画像などの所定の信号を用いた測定において、測定精度を向上させることが難しい、という課題を解決する、測定装置、測定方法、記録媒体を提供することにある。
かかる目的を達成するため本発明の一形態である測定装置は、
可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、
前記小領域に対応する箇所の所定信号を取得する信号取得部と、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、
を有する
という構成をとる。
可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、
前記小領域に対応する箇所の所定信号を取得する信号取得部と、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、
を有する
という構成をとる。
また、本発明の他の形態である測定方法は、
測定装置が、
可視光画像中の複数の小領域の歪み量を算出し、
前記小領域に対応する箇所の所定信号を取得し、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する
という構成をとる。
測定装置が、
可視光画像中の複数の小領域の歪み量を算出し、
前記小領域に対応する箇所の所定信号を取得し、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する
という構成をとる。
また、本発明の他の形態である記録媒体は、
測定装置に、
可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、
前記小領域に対応する箇所の所定信号を取得する信号取得部と、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、
を実現するためのプログラムを記録した、コンピュータが読み取り可能な記録媒体である。
測定装置に、
可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、
前記小領域に対応する箇所の所定信号を取得する信号取得部と、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、
を実現するためのプログラムを記録した、コンピュータが読み取り可能な記録媒体である。
本発明は、以上のように構成されることにより、赤外線画像などの所定の信号を用いた測定において、測定精度を向上させることが難しい、という課題を解決する測定装置、測定方法、記録媒体を提供することが可能となる。
[第1の実施形態]
本発明の第1の実施形態を図1から図6までを参照して説明する。図1は、測定システム400全体の構成の一例を示す図である。図2は、測定装置100の構成の一例を示すブロック図である。図3は、RGB画像データ1151の一例を示す図である。図4は、赤外線画像データ1152の一例を示す図である。図5は、ロックイン処理の一例を説明するための図である。図6は、測定装置100の動作の一例を示すフローチャートである。
本発明の第1の実施形態を図1から図6までを参照して説明する。図1は、測定システム400全体の構成の一例を示す図である。図2は、測定装置100の構成の一例を示すブロック図である。図3は、RGB画像データ1151の一例を示す図である。図4は、赤外線画像データ1152の一例を示す図である。図5は、ロックイン処理の一例を説明するための図である。図6は、測定装置100の動作の一例を示すフローチャートである。
本発明の第1の実施形態においては、赤外線カメラ300が赤外線画像データを取得して橋などの測定対象の測定を行う測定装置100について説明する。後述するように、本実施形態において説明する測定装置100は、可視光カメラ200から取得した可視光画像であるRGB(Red Green Blue)画像データに基づいて、所定の小領域ごとの変位、歪み量を算出する。そして、測定装置100は、算出した歪み量を参照波形として、上記小領域に対応する各座標の温度変化をロックインする。
図1は、本実施形態において説明する測定システム400の全体の構成の一例を示している。図1を参照すると、測定システム400は、例えば、可視光カメラ200と、赤外線カメラ300と、測定装置100と、を有している。可視光カメラ200と測定装置100とは、互いに通信可能なようケーブルなどを介して接続されている。また、赤外線カメラ300と測定装置100とは、互いに通信可能なようケーブルなどを介して接続されている。
図1で示すように、可視光カメラ200と赤外線カメラ300とは、計測範囲が一致するよう予め調整された状態で設置されている。つまり、可視光カメラ200と赤外線カメラ300とは、橋などの測定対象のうちの同じ領域の画像データを取得するよう予め調整されている。このように調整されているため、可視光カメラ200が取得するRGB画像データと、赤外線カメラ300が取得する赤外線画像データとでは、計測範囲内の各座標が同一の対象を示している。なお、本実施形態においては、可視光カメラ200と赤外線カメラ300とで計測範囲を一致させるための調整方法については特に限定しない。可視光カメラ200と赤外線カメラ300とは、既知の方法を用いて、計測範囲が一致するよう調整することが出来る。
測定装置100は、上記のように計測範囲が一致するよう予め設置された可視光カメラ200からRGB画像データを取得するとともに、赤外線カメラ300から赤外線画像データを取得する情報処理装置である。後述するように、測定装置100は、可視光カメラ200から取得したRGB画像データに基づいて、所定の小領域ごとの変位、歪み量を算出する。そして、測定装置100は、算出した歪み量を参照波形として、小領域に対応する座標の温度変化をロックインする。その後、測定装置100は、ロックインした結果を外部に出力することが出来る。
図2は、測定装置100の構成の一例を示している。図2を参照すると、測定装置100は、主な構成要素として、例えば、可視光カメラI/F(インターフェース)部110と、赤外線カメラI/F部120と、通信I/F部130と、操作入力部140と、画面表示部150と、記憶部160と、演算処理部170とを含んでいる。
可視光カメラI/F部110は、ケーブルなどを通じて可視光カメラ200と接続される。可視光カメラI/F部110は、可視光カメラ200と演算処理部170との間でデータの送受信を行う。
赤外線カメラI/F部120は、ケーブルなどを通じて赤外線カメラ300と接続される。赤外線カメラI/F部120は、赤外線カメラ300と演算処理部170との間でデータの送受信を行う。
通信I/F部130は、データ通信回路から構成される。通信I/F部130は、有線または無線を介して接続された図示しない外部装置などとの間でデータ通信を行う。
操作入力部140は、キーボードやマウスなどの操作入力装置である。操作入力部140は、例えば、測定装置100を操作するオペレータの操作を検出して演算処理部170に出力する。
画面表示部150は、LCD(Liquid Crystal Display)などの画面表示装置である。例えば、画面表示部150は、演算処理部170からの指示に応じて、後述するノイズ除去後温度変化情報166などの各種情報を画面表示する。
記憶部160は、ハードディスクやメモリなどの記憶装置から構成される。記憶部160は、演算処理部170における各種処理に必要な処理情報およびプログラム167を記憶する。プログラム167は、演算処理部170に読み込まれて実行されることにより各種処理部を実現する。プログラム167は、通信I/F部130などのデータ入出力機能を介して図示しない外部装置や記録媒体から予め読み込まれて記憶部160に保存される。記憶部160に記憶される主な処理情報には、例えば、RGB画像データ情報161と、赤外線画像データ情報162と、変位情報163と、歪み情報164と、温度変化情報165と、ノイズ除去後温度変化情報166と、プログラム167と、がある。
RGB画像データ情報161は、可視光カメラ200が撮影することにより取得したRGB画像データ(可視光画像)である。図3は、RGB画像データ情報161の一例を示している。図3を参照すると、RGB画像データ情報161では、例えば、画像IDとRGB画像データとを対応づけている。ここで、画像IDとは、画像データの識別情報であり、例えば、RGB画像データの撮影時刻あるいはフレーム番号などである。
本実施形態の場合、可視光カメラ200は、橋などの測定対象のうち予め設定された領域の可視光画像データを経時的に取得する。そのため、RGB画像データ情報161には、例えば、撮影時刻(取得時刻)が古い順に同じ領域を撮影することで取得したRGB画像データが記憶される。
赤外線画像データ情報162は、赤外線カメラ300が撮影することにより取得した赤外線画像データである。図4は、赤外線画像データ情報162の一例を示している。図4を参照すると、赤外線画像データ情報162では、例えば、画像IDと画像データとを対応づけている。ここで、画像IDとは、画像データの識別情報であり、例えば、赤外線画像データの撮影時刻あるいはフレーム番号などである。
本実施形態の場合、赤外線カメラ300は、橋などの測定対象のうち予め設定された領域の赤外線画像データを経時的に取得する。そのため、赤外線画像データ情報162には、例えば、撮影時刻(取得時刻)が古い順に同じ領域を撮影することで取得した赤外線画像データが記憶される。
変位情報163は、別時刻に取得された同一範囲のRGB画像データから生成される、所定の小領域ごとの時間的な位置の変化を示す情報である。変位情報163では、例えば、所定の小領域ごとに、時刻を示す情報と位置の変化を示す情報とが対応づけられている。変位情報163が示す位置の変化を示す情報は、RGB画像データ情報161に基づいて、後述する変位算出部172により算出される。
変位情報163には、複数の小領域の時間的な位置の変化を示す情報が含まれている。例えば、変位情報163には、RGB画像データ(計測領域)を複数の小領域に分けた際の各小領域の位置の変化を示す情報が含まれている。例えば、変位情報163には、RGB画像データを複数の小領域に分けた際の全小領域の位置の変化を示す情報が含まれている。なお、変位情報163には、複数の小領域の時間的な位置の変化を示す情報が含まれていれば、必ずしも全小領域の位置の変化を示す情報が含まれていなくても構わない。
歪み情報164は、変位情報163から生成される歪み量を示している。歪み情報164では、変位情報163と同様に、例えば、小領域ごとに、時刻を示す情報と歪み量を示す情報とが対応づけられている。歪み情報164が示す歪み量は、変位情報163に基づいて、後述する歪み算出部173により算出される。
歪み情報164には、変位情報163に含まれる小領域ごとの歪み量を示す情報が含まれている。歪み情報164には、変位情報163と同様に、RGB画像データ(計測領域)を複数の小領域に分けた際の全小領域の歪み量を示す情報を含むことが出来る。歪み情報164には、変位情報163と同様、複数の小領域の歪み量を示す情報が含まれていれば、必ずしも全小領域の歪み量を示す情報が含まれていなくても構わない。
温度変化情報165は、別時刻に取得された同一範囲の赤外線画像データから生成される、所定の小領域ごとの時間的な温度の変化を示す情報である。温度変化情報165では、例えば、所定の小領域ごとに、時刻を示す情報と温度を示す情報とが対応づけられている。変位情報163が示す温度の変化を示す情報は、赤外線画像データ情報162に基づいて、後述する温度変化情報取得部174により算出される。
温度変化情報165には、複数の小領域の時間的な温度の変化を示す情報が含まれている。例えば、温度変化情報165には、赤外線画像データ(計測領域)を複数の小領域に分けた際の各小領域の温度の変化を示す情報が含まれている。例えば、温度変化情報165には、赤外線画像データを複数の小領域に分けた際の全小領域の温度の変化を示す情報が含まれている。なお、温度変化情報165には、複数の小領域の時間的な温度の変化を示す情報が含まれていれば、必ずしも全小領域の温度の変化を示す情報が含まれていなくても構わない。
ノイズ除去後温度変化情報166は、上述した小領域ごとの歪み量を参照波形として、対応する小領域の温度変化をロックイン処理することで生成される情報である。つまり、ノイズ除去後温度変化情報166は、各小領域について、歪み情報164が示す歪み量を用いて、温度変化情報165が示す温度の変化を示す情報に含まれるノイズを除去することで生成される情報である。ノイズ除去後温度変化情報166は、歪み情報164と温度変化情報165とに基づいて、後述する領域毎ロックイン処理部175により生成される。
演算処理部170は、MPUなどのプロセッサとその周辺回路を有する。演算処理部170は、記憶部160からプログラム167を読み込んで実行することにより、上記ハードウェアとプログラム167とを協働させて各種処理部を実現する。演算処理部170で実現される主な処理部は、例えば、取得部171と、変位算出部172と、歪み算出部173と、温度変化情報取得部174と、領域毎ロックイン処理部175と、出力部176と、である。
取得部171は、可視光カメラ200からRGB画像データを取得するとともに、赤外線カメラ300から赤外線画像データを取得する。例えば、取得部171は、可視光カメラI/F部110を通じてコマンドを送信することなどにより、可視光カメラ200から撮影時刻の異なる複数のRGB画像データを取得する。そして、取得部171は、取得したRGB画像データをRGB画像データ情報161として記憶部160に記憶する。また、例えば、取得部171は、赤外線カメラI/F部120を通じてコマンドを送信することなどにより、赤外線カメラ300から撮影時刻の異なる複数の赤外線画像データを取得する。そして、取得部171は、取得した赤外線画像データを赤外線画像データ情報162として記憶部160に記憶する。
変位算出部172は、記憶部160からRGB画像データ情報161を読み出し、RGB画像データを複数の小領域に分割した際の各小領域の時間的な位置の変化を検出して変位量を算出する。例えば、変位算出部172は、記憶部160から時間的に連続する2つのRGB画像データを取得する。そして、変位算出部172は、デジタル画像相関法、位相限定相関法、オプティカルフローなどを用いて、小領域単位で時間的な位置の変化を検出して、例えば変位方向と変位の量からなる変位量を算出する。その後、変位算出部172は、算出した変位量を変位情報163として記憶部160に格納する。
なお、変位算出部172は、RGB画像データを複数の小領域に分割した際の全小領域の変位量を算出するよう構成することが出来る。変位算出部172は、RGB画像データを複数の小領域に分割した際の全小領域のうち、例えば、予め定められた基準など何らかの基準で選択される複数の小領域など、一部の小領域の変位量を算出するよう構成しても構わない。
歪み算出部173は、変位情報163に基づいて歪み量を算出する。例えば、歪み算出部173は、記憶部160を参照して変位情報163を取得する。そして、歪み算出部173は、取得した変位情報163が示す変位量に基づいて、歪み量を算出する。その後、歪み算出部173は、算出した歪み量を歪み情報164として記憶部160に格納する。なお、本実施形態においては、歪み算出部173が歪み量を算出する際に用いる具体的な処理については特に限定しない。歪み算出部173は、例えば、既知の歪み・変位関係式などを用いて、変位量から歪み量を算出するよう構成して構わない。
なお、上述したように、歪み算出部173は、変位算出部172が算出する変位量に応じて歪み量を算出する。そのため、歪み算出部173は、例えば、変位算出部172が変位量を算出した小領域の歪み量を算出する。しかしながら、例えば、歪み算出部173は、変位算出部172が変位量を算出した小領域のうちの一部の小領域のみ歪み量を算出するよう構成しても構わない。
温度変化情報取得部174は、記憶部160から赤外線画像データ情報162を読み出し、赤外線画像データを複数の小領域に分割した際の各小領域の温度の変化を示す情報を取得する。例えば、温度変化情報取得部174は、記憶部160から時間的に連続する2つの赤外線画像データを取得する。そして、温度変化情報取得部174は、赤外線画像の変化に基づいて、小領域ごとに温度の変化を示す情報を取得する。その後、温度変化情報取得部174は、取得した温度の変化を示す情報を温度変化情報165として記憶部160に格納する。
なお、温度変化情報取得部174は、赤外線画像データを複数の小領域に分割した際の全小領域の温度の変化を示す情報を取得するよう構成することが出来る。温度変化情報取得部174は、赤外線画像データを複数の小領域に分割した際の全小領域のうち、例えば、変位算出部172や歪み算出部173が変位量や歪み量を算出する小領域の温度の変化を示す情報など、一部の小領域の温度の変化を示す情報を取得するよう構成しても構わない。
領域毎ロックイン処理部175は、小領域ごとにロックイン処理を行う。例えば、領域毎ロックイン処理部175は、歪み情報164と温度変化情報165とを参照する。そして、領域毎ロックイン処理部175は、小領域ごとに、対応する小領域の歪み量を参照波形として、対応する小領域の温度変化をロックインする。例えば、このように、領域毎ロックイン処理部175は、小領域ごとに、歪み量を参照波形として、同じ個所に位置する小領域の温度変化のノイズ除去を行う。その後、領域毎ロックイン処理部175は、ノイズ除去後の情報をノイズ除去後温度変化情報166として記憶部160に格納する。
図5は、領域毎ロックイン処理部175により行われるロックイン処理の一例を示している。図5で示すように、応力である歪み量を参照波形としてロックイン処理を行うことで、温度の変化を示す波形をなめらかにして温度の変化を示す信号のS/N比(signal/noise)を向上させることが出来る。領域毎ロックイン処理部175は、図6で示すようなロックイン処理を、例えば小領域ごとに行うことになる。
以上のように、領域毎ロックイン処理部175は、小領域ごとに算出される歪み量を参照波形として用いて、例えば小領域ごとにロックイン処理を行う。なお、領域毎ロックイン処理部175が行うロックイン処理自体は、小領域ごとに算出される歪み量を用いて小領域ごとに実行することを除いて、例えば、既知の方法を採用して構わない。
出力部176は、ノイズ除去後温度変化情報166が示す情報を外部に出力する。例えば、出力部176は、ノイズ除去後温度変化情報166が示す情報を、通信I/F部130を介して外部装置に出力したり、画面表示部150に出力したりする。出力部176による出力は、例えば、橋などの測定対象の状態を把握するなどの目的に活用可能である。出力部176による出力は、上記例示した以外に活用されても構わない。
以上が、測定装置100の構成の一例である。続いて、図6を参照して、測定装置100の動作の一例について説明する。
図6を参照すると、取得部171は、可視光カメラ200からRGB画像データを取得するとともに、赤外線カメラ300から赤外線画像データを取得する(ステップS101)。そして、取得部171は、取得したRGB画像データをRGB画像データ情報161として記憶部160に格納する。また、取得部171は、取得した赤外線画像データを赤外線画像データ情報162として記憶部160に格納する。なお、可視光カメラ200と赤外線カメラ300とは、橋などの測定対象のうちの同じ領域の画像データを取得するよう予め調整されている。
変位算出部172は、RGB画像データ情報161に基づいて、RGB画像データを複数の小領域に分割した際の各小領域の時間的な位置の変化を検出して変位量を算出する(ステップS102)。そして、変位算出部172は、算出した変位量を変位情報163として記憶部160に格納する。
歪み算出部173は、変位情報163が示す変位量に基づいて、歪み量を算出する(ステップS103)。歪み算出部173は、既知の方法を用いて歪み量を算出するよう構成して構わない。そして、歪み算出部173は、算出した歪み量を歪み情報164として記憶部160に格納する。
温度変化情報取得部174は、赤外線画像データ情報162に基づいて、赤外線画像データを複数の小領域に分割した際の各小領域の温度の変化を示す情報を取得する(ステップS104)。そして、温度変化情報取得部174は、取得した温度の変化を示す情報を温度変化情報165として記憶部160に格納する。
なお、ステップS102とステップS103の処理による歪み量の算出処理と、ステップS104の処理による温度の変化情報取得処理は、例えば、並列で行われても構わないし、いずれか一方が先行して行われても構わない。
領域毎ロックイン処理部175は、歪み情報164と温度変化情報165とを参照して、小領域ごとに、小領域の歪み量を参照波形として、対応する小領域の温度変化をロックインする(ステップS105)。そして、領域毎ロックイン処理部175は、ノイズ除去後の情報をノイズ除去後温度変化情報166として記憶部160に格納する。
出力部176は、ノイズ除去後温度変化情報166が示す情報を、通信I/F部130を介して外部装置に出力したり、画面表示部150に出力したりする(ステップS106)。
以上が、測定装置100の動作の一例である。
このように、測定装置100は、変位算出部172と、歪み算出部173と、温度変化情報取得部174と、領域毎ロックイン処理部175と、を有している。このような構成により、測定装置100の歪み算出部173は、変位算出部172の算出結果に基づいて小領域ごとに歪み量を算出することが出来る。また、温度変化情報取得部174は、小領域ごとに温度変化情報を取得することが出来る。その結果、領域毎ロックイン処理部175は、小領域ごとに、小領域の歪み量を参照波形として、対応する小領域の温度変化をロックインすることが出来る。このように小領域ごとに参照波形となる歪み量を算出するため、測定装置100の場合、亀裂先端部などを事前に把握する必要はない。また、小領域ごとにロックインするため、参照点以外の計測信頼性が低下したり、参照点の温度変化雑音に影響を受けたりするおそれもない。このため、本実施形態において説明する測定装置100によると、測定精度を向上させることが可能となる。
なお、本実施形態において説明した小領域ごとに算出した歪み量を参照波形とする、という方法は、赤外線画像データに基づく温度変化情報のノイズ除去以外の目的にも活用可能である。つまり、小領域ごとに算出した歪み量を参照波形とする、という方法は、赤外線以外の信号波形のノイズを除去する際に用いるよう構成しても構わない。
また、本実施形態においては、領域毎ロックイン処理部175は、小領域ごとにロックイン処理を行うとした。しかしながら、ロックイン処理を行う際の歪み量の小領域と温度変化の小領域とは、必ずしも1対1対応でなくても構わない。例えば、領域毎ロックイン処理部175は、ある小領域の歪み量を参照波形として、当該小領域と隣接するなど複数の小領域の温度変化に対するロックイン処理を行うよう構成しても構わない。このように、領域毎ロックイン処理部175は、小領域ごとに1対1対応する情報を用いてロックイン処理を行うのではなく、歪み量を算出した小領域に対応する複数の箇所の温度変化のロックイン処理を行うよう構成しても構わない。このような構成であっても、より細かな歪み量でロックイン処理を行うことが出来るため、測定精度を向上させることが出来る。
また、本実施形態においては、測定装置100が1台の情報処理装置から構成される場合について例示した。しかしながら、測定装置100の構成は、本実施形態で例示した場合に限定されない。例えば、測定装置100は、ネットワークを介して接続された複数台の情報処理装置から構成されても構わない。
また、本実施形態においては、可視光画像の一例としてRGB画像データをあげた。しかしながら、可視光画像は、グレースケールなどのモノクロ画像であっても構わない。
[第2の実施形態]
次に、図7を参照して、本発明の第2の実施形態について説明する。第2の実施形態では、測定装置500の構成の概要について説明する。
次に、図7を参照して、本発明の第2の実施形態について説明する。第2の実施形態では、測定装置500の構成の概要について説明する。
図7は、測定装置500の構成の一例を示している。図7を参照すると、測定装置500は、例えば、歪み算出部501と、信号取得部502と、領域毎ロックイン処理部503と、を有している。
例えば、測定装置500は、CPUなどの演算装置と記憶装置とを有している。測定装置500は、記憶装置が記憶するプログラムを演算装置が実行することで、上記各処理部を実現する。
歪み算出部501は、可視光画像中の複数の小領域の歪み量を算出する。例えば、歪み算出部501は、外部から可視光画像を取得して、可視光画像中の複数の小領域の歪み量を算出する。
信号取得部502は、所定信号を取得する。所定信号は、例えば、赤外線画像から取得する温度変化を示す情報などである。所定信号は、上記例示した以外であっても構わない。
領域毎ロックイン処理部503は、歪み算出部501から小領域ごとの歪み量を取得する。また、領域毎ロックイン処理部503は、信号取得部502から所定信号を取得する。そして、領域毎ロックイン処理部503は、小領域ごとの歪み量を用いて小領域に対応する箇所の所定信号のノイズを除去するロックイン処理を実行する。領域毎ロックイン処理部503によるロックイン処理の結果は、外部に出力することが出来る。
このように、測定装置500は、歪み算出部501と、信号取得部502と、領域毎ロックイン処理部503と、を有している。このような構成により、歪み算出部501は、複数の小領域の歪み量を算出することが出来る。そして、領域毎ロックイン処理部503は、小領域ごとの歪み量を用いて、信号取得部502が取得した所定信号のノイズを除去するロックイン処理を実行することが出来る。その結果、より適切な歪み量を用いてロックイン処理を行うことが可能となり、測定精度を向上させることが可能となる。
また、上述した測定装置500は、当該測定装置500に所定のプログラムが組み込まれることで実現できる。具体的に、本発明の他の形態であるプログラムは、測定装置500に、可視光画像中の複数の小領域の歪み量を算出する歪み算出部501と、所定信号を取得する信号取得部502と、小領域ごとの歪み量を用いて小領域に対応する箇所の所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部503と、を実現するためのプログラムである。
また、上述した測定装置500により実行される測定方法は、測定装置500が、可視光画像中の複数の小領域の歪み量を算出し、所定信号を取得し、小領域ごとの歪み量を用いて小領域に対応する箇所の所定信号のノイズを除去するロックイン処理を実行する、という方法である。
上述した構成を有する、プログラム(または、プログラムを記録した記録媒体)、または、測定方法の発明であっても、上述した測定装置500と同様の作用、効果を有するために、上述した本発明の目的を達成することが出来る。
<付記>
上記実施形態の一部又は全部は、以下の付記のようにも記載されうる。以下、本発明における測定装置などの概略を説明する。但し、本発明は、以下の構成に限定されない。
上記実施形態の一部又は全部は、以下の付記のようにも記載されうる。以下、本発明における測定装置などの概略を説明する。但し、本発明は、以下の構成に限定されない。
(付記1)
可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、
前記小領域に対応する箇所の所定信号を取得する信号取得部と、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、
を有する
測定装置。
(付記2)
前記歪み算出部は、可視光画像を複数の前記小領域に分割した際の少なくとも一部の前記小領域の前記歪み量を算出し、
前記領域毎ロックイン処理部は、前記歪み量算出部が算出した前記歪み量を用いて前記ロックイン処理を実行する
付記1に記載の測定装置。
(付記3)
前記歪み算出部は、可視光画像を複数の前記小領域に分割した際のすべての前記小領域の前記歪み量を算出し、
前記領域毎ロックイン処理部は、前記小領域ごとの前記歪み量を用いて、前記小領域ごとに、前記ロックイン処理を実行する
付記1または付記2に記載の測定装置。
(付記4)
前記信号取得部は、前記所定信号の波形として、赤外線画像から温度変化を示す情報を取得する
付記1から付記3までのいずれか1項に記載の測定装置。
(付記5)
可視光画像から複数の小領域の変位を算出する変位算出部を有し、
前記歪み算出部は、前記変位算出部が算出した前記変位に基づいて前記歪み量を算出する
付記1から付記4までのいずれか1項に記載の測定装置。
(付記6)
前記領域毎ロックイン処理部がロックインした結果を出力する出力部を有する
付記1から付記5までのいずれか1項に記載の測定装置。
(付記7)
測定装置が、
可視光画像中の複数の小領域の歪み量を算出し、
前記小領域に対応する箇所の所定信号を取得し、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する
測定方法。
(付記8)
可視光画像を複数の前記小領域に分割した際の少なくとも一部の前記小領域の前記歪み量を算出し、
算出した前記歪み量を用いて前記ロックイン処理を実行する
付記7に記載の測定方法。
(付記9)
可視光画像を複数の前記小領域に分割した際のすべての前記小領域の前記歪み量を算出し、
前記小領域ごとの前記歪み量を用いて、前記小領域ごとに、前記ロックイン処理を実行する
付記7または付記9に記載の測定方法。
(付記10)
前記所定信号の波形として、赤外線画像から温度変化を示す情報を取得する
付記7から付記9までのいずれか1項に記載の測定方法。
(付記11)
測定装置に、
可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、
前記小領域に対応する箇所の所定信号を取得する信号取得部と、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、
を実現するためのプログラムを記録した、コンピュータが読み取り可能な記録媒体。
可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、
前記小領域に対応する箇所の所定信号を取得する信号取得部と、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、
を有する
測定装置。
(付記2)
前記歪み算出部は、可視光画像を複数の前記小領域に分割した際の少なくとも一部の前記小領域の前記歪み量を算出し、
前記領域毎ロックイン処理部は、前記歪み量算出部が算出した前記歪み量を用いて前記ロックイン処理を実行する
付記1に記載の測定装置。
(付記3)
前記歪み算出部は、可視光画像を複数の前記小領域に分割した際のすべての前記小領域の前記歪み量を算出し、
前記領域毎ロックイン処理部は、前記小領域ごとの前記歪み量を用いて、前記小領域ごとに、前記ロックイン処理を実行する
付記1または付記2に記載の測定装置。
(付記4)
前記信号取得部は、前記所定信号の波形として、赤外線画像から温度変化を示す情報を取得する
付記1から付記3までのいずれか1項に記載の測定装置。
(付記5)
可視光画像から複数の小領域の変位を算出する変位算出部を有し、
前記歪み算出部は、前記変位算出部が算出した前記変位に基づいて前記歪み量を算出する
付記1から付記4までのいずれか1項に記載の測定装置。
(付記6)
前記領域毎ロックイン処理部がロックインした結果を出力する出力部を有する
付記1から付記5までのいずれか1項に記載の測定装置。
(付記7)
測定装置が、
可視光画像中の複数の小領域の歪み量を算出し、
前記小領域に対応する箇所の所定信号を取得し、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する
測定方法。
(付記8)
可視光画像を複数の前記小領域に分割した際の少なくとも一部の前記小領域の前記歪み量を算出し、
算出した前記歪み量を用いて前記ロックイン処理を実行する
付記7に記載の測定方法。
(付記9)
可視光画像を複数の前記小領域に分割した際のすべての前記小領域の前記歪み量を算出し、
前記小領域ごとの前記歪み量を用いて、前記小領域ごとに、前記ロックイン処理を実行する
付記7または付記9に記載の測定方法。
(付記10)
前記所定信号の波形として、赤外線画像から温度変化を示す情報を取得する
付記7から付記9までのいずれか1項に記載の測定方法。
(付記11)
測定装置に、
可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、
前記小領域に対応する箇所の所定信号を取得する信号取得部と、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、
を実現するためのプログラムを記録した、コンピュータが読み取り可能な記録媒体。
なお、上記各実施形態及び付記において記載したプログラムは、記憶装置に記憶されていたり、コンピュータが読み取り可能な記録媒体に記録されていたりする。例えば、記録媒体は、フレキシブルディスク、光ディスク、光磁気ディスク、及び、半導体メモリ等の可搬性を有する媒体である。
以上、上記各実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることが出来る。
100 測定装置
110 可視光カメラI/F部
120 赤外線カメラI/F部
130 通信I/F部
140 操作入力部
150 画面表示部
160 記憶部
161 RGB画像データ情報
162 赤外線画像データ情報
163 変位情報
164 歪み情報
165 温度変化情報
166 ノイズ除去後温度変化情報
167 プログラム
170 演算処理部
171 取得部
172 変位算出部
173 歪み算出部
174 温度変化情報取得部
175 領域毎ロックイン処理部
176 出力部
200 可視光カメラ
300 赤外線カメラ
400 測定システム
500 測定装置
501 歪み算出部
502 信号取得部
503 領域毎ロックイン処理部
110 可視光カメラI/F部
120 赤外線カメラI/F部
130 通信I/F部
140 操作入力部
150 画面表示部
160 記憶部
161 RGB画像データ情報
162 赤外線画像データ情報
163 変位情報
164 歪み情報
165 温度変化情報
166 ノイズ除去後温度変化情報
167 プログラム
170 演算処理部
171 取得部
172 変位算出部
173 歪み算出部
174 温度変化情報取得部
175 領域毎ロックイン処理部
176 出力部
200 可視光カメラ
300 赤外線カメラ
400 測定システム
500 測定装置
501 歪み算出部
502 信号取得部
503 領域毎ロックイン処理部
Claims (11)
- 可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、
前記小領域に対応する箇所の所定信号を取得する信号取得部と、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、
を有する
測定装置。 - 前記歪み算出部は、可視光画像を複数の前記小領域に分割した際の少なくとも一部の前記小領域の前記歪み量を算出し、
前記領域毎ロックイン処理部は、前記歪み量算出部が算出した前記歪み量を用いて前記ロックイン処理を実行する
請求項1に記載の測定装置。 - 前記歪み算出部は、可視光画像を複数の前記小領域に分割した際のすべての前記小領域の前記歪み量を算出し、
前記領域毎ロックイン処理部は、前記小領域ごとの前記歪み量を用いて、前記小領域ごとに、前記ロックイン処理を実行する
請求項1または請求項2に記載の測定装置。 - 前記信号取得部は、前記所定信号の波形として、赤外線画像から温度変化を示す情報を取得する
請求項1から請求項3までのいずれか1項に記載の測定装置。 - 可視光画像から複数の前記小領域の変位を算出する変位算出部を有し、
前記歪み算出部は、前記変位算出部が算出した前記変位に基づいて前記歪み量を算出する
請求項1から請求項4までのいずれか1項に記載の測定装置。 - 前記領域毎ロックイン処理部がロックインした結果を出力する出力部を有する
請求項1から請求項5までのいずれか1項に記載の測定装置。 - 測定装置が、
可視光画像中の複数の小領域の歪み量を算出し、
前記小領域に対応する箇所の所定信号を取得し、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する
測定方法。 - 可視光画像を複数の前記小領域に分割した際の少なくとも一部の前記小領域の前記歪み量を算出し、
算出した前記歪み量を用いて前記ロックイン処理を実行する
請求項7に記載の測定方法。 - 可視光画像を複数の前記小領域に分割した際のすべての前記小領域の前記歪み量を算出し、
前記小領域ごとの前記歪み量を用いて、前記小領域ごとに、前記ロックイン処理を実行する
請求項7または請求項8に記載の測定方法。 - 前記所定信号の波形として、赤外線画像から温度変化を示す情報を取得する
請求項7から請求項9までのいずれか1項に記載の測定方法。 - 測定装置に、
可視光画像中の複数の小領域の歪み量を算出する歪み算出部と、
前記小領域に対応する箇所の所定信号を取得する信号取得部と、
前記小領域ごとの前記歪み量を用いて前記小領域に対応する箇所の前記所定信号のノイズを除去するロックイン処理を実行する領域毎ロックイン処理部と、
を実現するためのプログラムを記録した、コンピュータが読み取り可能な記録媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/048257 WO2020136831A1 (ja) | 2018-12-27 | 2018-12-27 | 測定装置 |
JP2020562240A JP7075068B2 (ja) | 2018-12-27 | 2018-12-27 | 測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/048257 WO2020136831A1 (ja) | 2018-12-27 | 2018-12-27 | 測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020136831A1 true WO2020136831A1 (ja) | 2020-07-02 |
Family
ID=71126394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/048257 WO2020136831A1 (ja) | 2018-12-27 | 2018-12-27 | 測定装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7075068B2 (ja) |
WO (1) | WO2020136831A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023174268A (ja) * | 2022-05-27 | 2023-12-07 | 株式会社エクサウィザーズ | 情報処理方法、コンピュータプログラム、情報処理装置及び情報処理システム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004347585A (ja) * | 2003-02-21 | 2004-12-09 | Fast:Kk | 建築および土木構造物計測・解析システム |
JP2007163390A (ja) * | 2005-12-16 | 2007-06-28 | Jfe Steel Kk | 構造物の欠陥検出方法および装置 |
JP2008232998A (ja) * | 2007-03-23 | 2008-10-02 | Osaka Univ | 構造物の応力変動分布の測定方法およびその測定装置、ならびに構造物の欠陥検出方法および構造物の危険性把握方法 |
US20080310476A1 (en) * | 2005-01-12 | 2008-12-18 | Technische Universita Carolo-Wilhelmina Zu Braunschweig | Thermographic Method and Device for Determining the Damaged State of a Part |
US20120062751A1 (en) * | 2009-05-14 | 2012-03-15 | Christian Homma | Capture of thermal images of an object |
-
2018
- 2018-12-27 JP JP2020562240A patent/JP7075068B2/ja active Active
- 2018-12-27 WO PCT/JP2018/048257 patent/WO2020136831A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004347585A (ja) * | 2003-02-21 | 2004-12-09 | Fast:Kk | 建築および土木構造物計測・解析システム |
US20080310476A1 (en) * | 2005-01-12 | 2008-12-18 | Technische Universita Carolo-Wilhelmina Zu Braunschweig | Thermographic Method and Device for Determining the Damaged State of a Part |
JP2007163390A (ja) * | 2005-12-16 | 2007-06-28 | Jfe Steel Kk | 構造物の欠陥検出方法および装置 |
JP2008232998A (ja) * | 2007-03-23 | 2008-10-02 | Osaka Univ | 構造物の応力変動分布の測定方法およびその測定装置、ならびに構造物の欠陥検出方法および構造物の危険性把握方法 |
US20120062751A1 (en) * | 2009-05-14 | 2012-03-15 | Christian Homma | Capture of thermal images of an object |
Non-Patent Citations (2)
Title |
---|
DEMIZU, AKIRA ET AL.: "Fundamental study on improvement in strain measurement accuracy of digital image correlation method", JOURNAL OF JAPAN SOCIETY OF CIVIL ENGINEERS, SER. A2 (APPLIED MECHANICS (AM), vol. 68, no. 2, 2012, pages I_683 - I_690, XP055721883 * |
NISHIMURA, TAKASHI ET AL.: "Fatigue crack detection in steel structures by self-reference lock-in thermography", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS [NO. 05-9] M & M 2005 PROCEEDINGS OF THE ANNUAL MEETING OF THE JSME/MMD, 3 November 2005 (2005-11-03), pages 637 - 638 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023174268A (ja) * | 2022-05-27 | 2023-12-07 | 株式会社エクサウィザーズ | 情報処理方法、コンピュータプログラム、情報処理装置及び情報処理システム |
Also Published As
Publication number | Publication date |
---|---|
JP7075068B2 (ja) | 2022-05-25 |
JPWO2020136831A1 (ja) | 2021-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6574989B2 (ja) | 応力測定装置、応力測定システム及び応力測定方法 | |
US8976242B2 (en) | Visual inspection apparatus and visual inspection method | |
EP3410106B1 (en) | Thickness measurement method, thickness measurement device, defect detection method, and defect detection device | |
JP6954368B2 (ja) | 変位成分検出装置、変位成分検出方法、及びプログラム | |
JP2001324305A (ja) | 画像対応位置検出装置および該装置を備える測距装置 | |
JP6944405B2 (ja) | 建築物判定システム | |
JP2018146477A (ja) | 3次元形状計測装置及び3次元形状計測方法 | |
US20190178814A1 (en) | State assessing device, state assessing method, and storage medium for storing program | |
WO2020255728A1 (ja) | 振動計測装置、振動計測方法、及びコンピュータ読み取り可能な記録媒体 | |
WO2020136831A1 (ja) | 測定装置 | |
JP6954452B2 (ja) | 振動計測システム、振動計測装置、振動計測方法、及びプログラム | |
US11846498B2 (en) | Displacement amount measuring device, displacement amount measuring method, and recording medium | |
JP2013145153A (ja) | 赤外線温度測定装置 | |
US20200284576A1 (en) | State determination apparatus, state determination method, and computer-readable recording medium | |
JP4272221B2 (ja) | カラー画像動き検出回路、多重カラー画像統合装置およびカラー画像動き検出方法 | |
WO2020255231A1 (ja) | 変位測定装置、変位測定方法、コンピュータ読み取り可能な記録媒体 | |
WO2021136934A1 (en) | Improvements in and relating to detection and mapping of cracks | |
JP6290743B2 (ja) | 情報処理装置及びプログラム | |
US11023771B2 (en) | Information processing apparatus, information processing method, and recording medium | |
JP7485155B2 (ja) | データ符号化プログラム、及びデータ符号化装置 | |
WO2023146329A1 (en) | Method and electronic device of facial un-distortion in digital images using multiple imaging sensors | |
WO2024005425A1 (en) | Wireless receive signal strength indicator (rssi)-based positioning system | |
JP2019075697A (ja) | 解像度特性測定装置およびそのプログラム | |
CN113723242B (zh) | 基于视频终端的视觉测谎方法、电子设备及介质 | |
WO2022190248A1 (ja) | 補正システム、補正装置、及び補正方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18945300 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020562240 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18945300 Country of ref document: EP Kind code of ref document: A1 |