WO2020255728A1 - 振動計測装置、振動計測方法、及びコンピュータ読み取り可能な記録媒体 - Google Patents

振動計測装置、振動計測方法、及びコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2020255728A1
WO2020255728A1 PCT/JP2020/022066 JP2020022066W WO2020255728A1 WO 2020255728 A1 WO2020255728 A1 WO 2020255728A1 JP 2020022066 W JP2020022066 W JP 2020022066W WO 2020255728 A1 WO2020255728 A1 WO 2020255728A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
time
displacement
image
calculated
Prior art date
Application number
PCT/JP2020/022066
Other languages
English (en)
French (fr)
Inventor
太田 雅彦
裕朗 小林
松本 裕
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021527564A priority Critical patent/JP7238984B2/ja
Publication of WO2020255728A1 publication Critical patent/WO2020255728A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a vibration measuring device and a vibration measuring method for measuring the vibration of an object such as a machine or equipment, and further to a computer-readable recording medium in which a program for realizing these is recorded.
  • Patent Document 1 discloses a vibration measuring device using an imaging device.
  • the vibration measuring device disclosed in Patent Document 1 acquires a time-series image of an object from an imaging device, performs image processing on the acquired time-series image, and measures the vibration of the object.
  • Patent Document 2 discloses a vibration measuring device using a distance measuring device such as a laser range finder and an ultrasonic range finder in addition to the imaging device. According to the vibration measuring device disclosed in Patent Document 2, not only the vibration component in the two-dimensional direction in the image but also the vibration component in the optical axis direction of the imaging device can be measured by the distance measuring device, so that the vibration component can be measured in the three-dimensional direction. The vibration of the object can be measured in.
  • the vibration of the mechanical equipment can be measured by non-contact without using the acceleration sensor, so that the measurement cost can be reduced.
  • An example of an object of the present invention is a vibration measuring device, a vibration measuring method, and a computer-readable recording medium that can improve the measurement accuracy when the above problem is solved and the vibration of an object is measured from an image. Is to provide.
  • the vibration measuring device in one aspect of the present invention is a device that measures the vibration of an object having a component having a region which is a measurement target region and a vibration generation source.
  • a displacement calculation unit that calculates the displacement of the measurement target area in a specific direction based on the time-series image of the measurement target area. By setting a plurality of time windows for the calculated time-series change of the displacement, extracting the time-series change for each of the plurality of time windows, and adding and averaging the extracted time-series changes.
  • a vibration measuring unit that calculates the vibration of the object in the specific direction It is characterized by having.
  • the vibration measurement method in one aspect of the present invention is a method of measuring the vibration of an object having a component having a region which is a measurement target region and a vibration source.
  • A Based on the time-series image of the measurement target area, the displacement of the measurement target area in a specific direction is calculated.
  • B A plurality of time windows are set for the calculated time-series change of the displacement, the time-series change for each of the plurality of time windows is extracted, and the extracted time-series change is weighted averaged. This is characterized in that the vibration of the object in the specific direction is calculated.
  • the computer-readable recording medium in one aspect of the present invention measures the vibration of an object having a component having a region which is a measurement target region and a vibration source by a computer.
  • On the computer (A) A step of calculating the displacement of the measurement target area in a specific direction based on the time-series image of the measurement target area. (B) A plurality of time windows are set for the calculated time-series change of the displacement, the time-series change for each of the plurality of time windows is extracted, and the extracted time-series change is weighted averaged.
  • the step of calculating the vibration of the object in the specific direction and It is characterized by recording a program including an instruction to execute.
  • FIG. 1 is a block diagram showing a schematic configuration of a vibration measuring device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing more specifically the configuration of the vibration measuring device according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a component included in the displacement observed on the image pickup surface of the image pickup apparatus at a certain point when the measurement target area of the object is photographed.
  • FIG. 4 is a diagram simulating the state of the two-dimensional spatial distribution (hereinafter referred to as displacement distribution) of the displacement components ( ⁇ x ij , ⁇ y ij ) observed in a specific area on the image of the measurement target area.
  • FIG. 5 is a diagram showing an example of processing performed by the vibration measuring unit in the embodiment of the present invention.
  • FIG. 6 is a diagram showing another example of the processing performed by the vibration measuring unit in the embodiment of the present invention.
  • FIG. 7 is a flow chart showing the operation of the vibration measuring device according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of processing performed by the vibration measuring unit in the second modification of the embodiment of the present invention.
  • FIG. 9 is a diagram showing another example of the processing performed by the vibration measuring unit in the second modification of the embodiment of the present invention.
  • FIG. 10 is a block diagram showing an example of a computer that realizes the vibration measuring device according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a vibration measuring device according to an embodiment of the present invention.
  • the vibration measuring device according to the present embodiment shown in FIG. 1 is a device for measuring the vibration of an object having a vibration source. Examples of such an object include machinery and equipment. As shown in FIG. 1, the vibration measuring device 10 includes a displacement calculating unit 11 and a vibration measuring unit 12.
  • the displacement calculation unit 11 calculates the displacement of the measurement target area in a specific direction based on the time-series image of the measurement target area output from the imaging device 20 that captures the portion other than the vibration source of the object as the measurement target area. calculate.
  • the vibration measuring unit 12 first sets a plurality of time windows for the calculated time-series changes in displacement. Next, the vibration measuring unit 12 extracts the time-series change for each of the plurality of time windows, and calculates the vibration of the object in the specific direction by using the extracted time-series change.
  • the vibration of the object having the vibration source when the vibration of the object having the vibration source is measured by the image, the time-series change of the displacement in the specific direction in the image is extracted at regular intervals. It becomes easy to identify the shaking (noise) of. Therefore, according to the present embodiment, when measuring the vibration of an object from an image, it is possible to suppress the influence of the vibration of the image and improve the measurement accuracy.
  • FIG. 2 is a block diagram showing more specifically the configuration of the vibration measuring device according to the embodiment of the present invention.
  • the object 30 to be measured for vibration is a mechanical device that rotates in a specific cycle.
  • the object 30 is a radar antenna device, and has a configuration in which the upper directional antenna 31 rotates at a fixed cycle.
  • the configuration for performing this rotary motion includes a power source such as a motor and mechanical parts such as gears for converting the power source into the rotary motion, and these are vibration sources.
  • the image pickup apparatus 20 is arranged so as to photograph the base portion 32 that supports the directional antenna 31.
  • the object 30 has a component different from the vibration source and the vibration source.
  • the component has, for example, a region to be measured.
  • the image pickup apparatus 20 is, for example, a digital camera, and continuously outputs image data as a time-series image at a set frame rate.
  • the vibration measuring device 10 includes an abnormality determination unit 13 and a rotation detecting unit 14 in addition to the displacement calculation unit 11 and the vibration measurement unit 12 described above. Details of the abnormality determination unit 13 and the rotation detection unit 14 will be described later.
  • the displacement calculation unit 11 determines the displacement of the measurement target area in the direction corresponding to the horizontal direction of the time series image and the time series image based on the time series image of the measurement target area of the object 30.
  • the displacement in the direction corresponding to the vertical direction and the displacement in the direction corresponding to the optical axis direction of the image pickup apparatus 20 (the direction corresponding to the normal direction of the time-series image) are calculated.
  • the direction corresponding to the horizontal direction of the time-series image is referred to as "X direction”
  • the displacement in the direction corresponding to the vertical direction of the time-series image is referred to as "Y direction”
  • the optical axis of the image pickup apparatus is referred to as "Z direction".
  • the displacement calculation unit 11 first uses a frame at an arbitrary time among the time-series images output from the image pickup apparatus 20 as a reference image, and sets the other frames as processed images. Then, the displacement calculation unit 11 searches for a place (coordinate) in the processed image that is most similar to an arbitrary place (coordinate) in the reference image, and calculates the displacement of the specified place (coordinate).
  • SAD Sud of Absolute Difference
  • SSD Sud of Squared Difference
  • NCC Normalized
  • a method of searching for the position (coordinates) having the highest correlation by using a similarity correlation function such as Cross-Correlation) or ZNCC (Zero-means Normalized Cross-Correlation) can be mentioned.
  • the displacement calculation unit 11 repeatedly performs such a calculation process for each location in the processed image to specify the displacement of each location in the processed image. Further, the displacement calculation unit 11 acquires the displacement distribution in the measurement target region of the object 30 by specifying the displacement at each location for each processed image.
  • the displacement calculation unit 11 obtains the displacement ⁇ X in the X direction, the displacement ⁇ Y in the Y direction, and the displacement ⁇ Z in the Z direction from the calculated displacement distribution and the imaging information of the imaging device 20. Is calculated. Further, hereinafter, the displacement ⁇ X is also referred to as the movement amount ⁇ X in the X direction of the measurement target region. The displacement ⁇ Y is also expressed as the amount of movement ⁇ Y in the Y direction. The displacement ⁇ Z is also referred to as a movement amount ⁇ Z in the Z direction.
  • the shooting information includes at least the size of one pixel of the solid-state image sensor of the image sensor 20, the focal length of the lens, and the imaging distance from the image sensor 20 to the measurement target area (strictly speaking, from the principal point of the lens to the measurement target area). Includes distance), shooting frame rate, and.
  • FIG. 3 is a diagram illustrating a component included in the displacement observed on the image pickup surface of the image pickup apparatus at a certain point when the measurement target area of the object is photographed.
  • FIG. 3 shows a state in which the measurement target region moves by the amount of movement ( ⁇ X, ⁇ Y, ⁇ Z) in each direction before and after the object 30 moves due to vibration.
  • the coordinates (i, j) on the imaging surface of the imaging device 20 displacement is observed at the point A of ( ⁇ x ij, ⁇ y ij) for thought.
  • the coordinates (i, j) on the imaging surface of the imaging device 20 may be replaced with the coordinates on the captured image.
  • the measurement target area of the object 30 has a movement amount ( ⁇ X, ⁇ Y, ⁇ Z) in the horizontal and vertical directions (X, Y directions) and the normal direction (Z direction) on the screen. Is occurring.
  • the measurement target area moves parallel to the image pickup surface of the image pickup apparatus 20 by the amount ( ⁇ X, ⁇ Y) moved in the horizontal direction and the vertical direction (X, Y direction) in the screen. Further, the image pickup device 20 is approached by the amount ( ⁇ Z) of the movement in the normal direction (Z direction). Therefore, the imaging distance is shortened by the movement amount ⁇ Z.
  • a displacement ⁇ zx ij due to the movement amount ⁇ Z is generated in addition to the displacement ⁇ x caused by the movement amount ⁇ X of the measurement target region in the horizontal direction (X direction) with respect to the imaging surface of the imaging device 20. ..
  • the displacement ⁇ zy ij due to the moving amount ⁇ Z also occurs.
  • the surface displacement components ( ⁇ x ij , ⁇ y ij ) are displayed on the imaging surface of the imaging apparatus 20 accordingly. Occurs.
  • the imaging distance from the principal point of the lens to the measurement target region is L
  • the focal length of the lens of the imaging device 20 is f
  • the imaging center is the origin (0,0)
  • the coordinates of each pixel are (i, j). ..
  • the displacement component ( ⁇ x, ⁇ y) accompanying the movement of the object 30 in the XY plane direction ( ⁇ x, ⁇ y) and the displacement component ( ⁇ z x ij , ⁇ zy ij ) accompanying the movement in the Z direction ( ⁇ z) in the normal direction. ) are represented by the following equations 3 and 4, respectively.
  • the displacement components ( ⁇ x, ⁇ y) accompanying the movement ( ⁇ x, ⁇ y) in the XY directions shown by the above equations 3 and 4 are shown in FIG. It can be seen that it is constant regardless of the coordinates of the point A shown in. Further, the displacement components ( ⁇ z x ij , ⁇ zy ij ) accompanying the movement in the normal direction ( ⁇ z) become larger as the coordinates of the point A move away from the origin.
  • the surface displacement component ( ⁇ x ij , ⁇ y ij ) of the measurement target area is a displacement component due to deformation and displacement of the surface of the measurement target area.
  • FIG. 4 is a diagram simulating the state of the two-dimensional spatial distribution (hereinafter referred to as displacement distribution) of the displacement components ( ⁇ x ij , ⁇ y ij ) observed in a specific area on the image of the measurement target area.
  • the displacement components ( ⁇ x ij , ⁇ y ij ) of each coordinate of the specific region calculated by the displacement calculation unit 11 are expressed as a displacement vector.
  • the displacement vector is the displacement component ( ⁇ x, ⁇ y) accompanying the movement ( ⁇ x, ⁇ y) in the XY direction observed in a uniform direction and magnitude over the entire screen, and the vector group radial from the imaging center of the screen.
  • the displacement component ( ⁇ x, ⁇ y) accompanying the movement in the XY direction ( ⁇ x, ⁇ y) is basically observed in a uniform direction and size over the entire screen. From the displacement distribution calculated by the displacement calculation unit 11, the displacement components at each coordinate of the specific region centered on the imaging center are treated as a displacement vector with plus or minus added depending on the direction of displacement, and all the displacement vectors at each coordinate are added together. Take the average. As a result, the displacement vector component ( ⁇ x, ⁇ y) accompanying the movement in the XY direction ( ⁇ x, ⁇ y) can be calculated.
  • the surface displacement component ( ⁇ x ij , ⁇ y ij ) is a displacement vector component representing the deformation / displacement of the surface of the measurement target region.
  • the surface displacement components ( ⁇ x ij , ⁇ y ij ) are the displacement vector component ( ⁇ x, ⁇ y) accompanying the movement in the plane direction ( ⁇ x, ⁇ y) and the displacement vector component ( ⁇ zxij, ⁇ zyij) accompanying the movement in the normal direction ( ⁇ z). ) Is small enough to be ignored.
  • the displacement vector components ( ⁇ z x ij , ⁇ zy ij ) accompanying the movement in the normal direction ( ⁇ z) are radial displacement vectors proportional to the distance to each coordinate (i, j) of a specific region centered on the imaging center. Observed as. Therefore, when the displacement vector components of each pixel in a specific region centered on the imaging center are added together, they cancel each other out.
  • the magnitude R (i, j) of the vector is a value proportional to the distance from the imaging center as shown in Equation 5 below, if the movement amount ⁇ z of the measurement target area is constant within the measurement target area. Become. Further, if the proportionality constant is set as k as shown in the following equation 6, the equation 5 is also expressed as the equation 7.
  • the displacement distribution actually calculated by the displacement calculation unit 11 is observed as a composite vector component ( ⁇ x ij , ⁇ y ij ) (FIG. 4: ultra-thick solid line arrow) as shown in FIG.
  • the composite vector component ( ⁇ x ij , ⁇ y ij ) is the displacement vector component ( ⁇ z x ij , ⁇ zy ij ) accompanying the movement ( ⁇ z) in the Z direction (Fig. 3, Fig. 4: solid line arrow).
  • the displacement vector component ( ⁇ x, ⁇ y) due to the movement in the XY direction ( ⁇ x, ⁇ y) (Fig. 3, Fig.
  • the displacement vector component ( ⁇ x, ⁇ y) accompanying the previously calculated movement in the XY direction ( ⁇ x, ⁇ y) is subtracted, and the movement in the Z direction ( ⁇ z) is obtained. It corresponds to the composite vector of the displacement vector component ( ⁇ z x ij , ⁇ zy ij ) and the surface displacement component ( ⁇ ⁇ x ij , ⁇ ⁇ y ij ).
  • the composite vector of the displacement vector component ( ⁇ z x ij , ⁇ zy ijj ) and the surface displacement component ( ⁇ x ij , ⁇ y ij ) accompanying the movement ( ⁇ z) in the Z direction at a certain coordinate (i, j) is R mes (i, i, Then, if j), these can be expressed as the following equation 8, and this value can be calculated.
  • the surface displacement components ( ⁇ x ij , ⁇ y ij ) are the displacement vector components ( ⁇ x, ⁇ y) associated with the movement in the XY direction ( ⁇ x, ⁇ y) and the displacements associated with the movement ( ⁇ z) in the Z direction.
  • the above number 8 is expressed as the number 9.
  • R mes (i, j) at the coordinates (i, j) can be treated as being substantially equal to the displacement vector components ( ⁇ z x ij , ⁇ zy ij ) accompanying the movement ( ⁇ z) in the Z direction.
  • the displacement vector component when the movement amount ⁇ Z in the Z direction is given is represented by R (i, j) as in equations 6 to 8.
  • the displacement component ( ⁇ x ij , ⁇ y ij ) at each coordinate calculated by the displacement calculation unit 11 and the displacement vector component ( ⁇ x, ⁇ y) accompanying the in-plane movement ( ⁇ x, ⁇ y) Using the obtained displacement vector magnitude R mes (i, j), the displacement vector magnitude R (i, j) due to the displacement vector component ( ⁇ z x ij , ⁇ zy ij ) accompanying the movement in the Z direction ( ⁇ z). It is possible to estimate the rate of enlargement / reduction. Specifically, the magnification of R (i, j) can be estimated by finding the proportionality constant k that minimizes the evaluation function E (k) shown in Equation 10 below.
  • the displacement calculation unit 11 applies the least squares method to the above equation 10 to calculate the proportionality constant k.
  • the evaluation function E (k) in addition to the sum of squares of the difference between R mes (i, j) and R (i, j) shown in the above equation 10, the sum of absolute values, the sum of other powers, etc. May be used.
  • the displacement calculation unit 11 applies the calculated proportionality constant k as a constant indicating the ratio of enlargement / reduction to the above equation 7 to calculate the movement amount ⁇ Z.
  • the displacement calculation unit 11 can obtain the movement amounts ⁇ X, ⁇ Y, and ⁇ Z of the measurement target region in the three directions.
  • the displacement calculation unit 11 can calculate the movement amount of the measurement target area more accurately by using the calculated movement amounts ⁇ X, ⁇ Y, and ⁇ Z of the measurement target area. Specifically, the calculated movement amount ⁇ Z is substituted into the above equation 4 to calculate the displacement vector components ( ⁇ z x ij , ⁇ zy ij ) accompanying the movement in the normal direction ( ⁇ z). Further, the displacement vector components ( ⁇ z x ij , ⁇ zy ij ) accompanying the calculated movement in the normal direction ( ⁇ z) are subtracted from the displacement vector ( ⁇ x ij , ⁇ y ij ) calculated as the displacement distribution by the displacement calculation unit 11. Therefore, the displacement vector components ( ⁇ x', ⁇ y') accompanying the movement in the XY directions ( ⁇ x, ⁇ y) are calculated (see the above equations 1 and 2).
  • the surface displacement components ( ⁇ x ij , ⁇ y ij ) are the displacement vector components ( ⁇ x, ⁇ y) associated with in-plane movement ( ⁇ x, ⁇ y) and the displacement vector associated with normal movement ( ⁇ z). It is calculated using the condition that it can be regarded as sufficiently smaller than the components ( ⁇ z x ij , ⁇ zy ij ).
  • the displacement calculation unit 11 substitutes the calculated displacement vector component ( ⁇ x', ⁇ y') accompanying the movement amount in the XY direction and the movement amount ⁇ z into the above equation 3, so that the measurement target region has an XY direction.
  • the movement amounts ⁇ x'and ⁇ y'in the above are calculated.
  • the movement amounts, ⁇ x ′, and ⁇ y ′ of the measurement target region calculated in this manner in the plane direction are calculated more accurately than the previously calculated movement amounts ⁇ X and ⁇ Y.
  • the above number 10 is applied again to calculate ⁇ z', and the movement amount of the measurement target area in the three directions is calculated. It is also possible to obtain ⁇ x', ⁇ y', and ⁇ z'. This value is calculated more accurately than when it is calculated as the movement amounts ⁇ X, ⁇ Y, ⁇ Z, and ⁇ x', ⁇ y', and ⁇ z'.
  • the above processing may be repeated a predetermined number of times, or may be repeated until it converges to a certain range.
  • the movement amounts ⁇ X and ⁇ Y of the measurement target area in the XY direction calculated by the displacement calculation unit 11 and the movement amount ⁇ Z in the Z direction of the measurement target area are each taken for each time-series image taken. Obtained in.
  • the (movement amount) for each direction obtained in this way represents the time-series change of the displacement in each direction, and can be treated as vibration information with the time interval of imaging as the sampling interval.
  • the rotation detection unit 14 detects the rotational movement of the object 30.
  • the rotation detection unit 14 detects when the directional antenna 31 reaches a specific position during rotation, outputs a detection signal, and inputs this to the vibration measurement unit 12.
  • the rotation detection unit 14 detects the rotational motion based on the displacement information in each direction calculated by the displacement calculation unit 11 or based on the signal from the physical device.
  • Dislacement information in each direction is a displacement value for each direction calculated by the displacement calculation unit 11.
  • the rotation detection unit 14 first calculates the displacement for each direction by the displacement calculation unit 11 when the directional antenna 31 reaches a specific position. Record the value of.
  • the rotation detection unit 14 monitors each value of the displacement in each direction calculated by the displacement calculation unit 11 when the directional antenna 31 is in the rotation state, and the value is set to the recorded value. Determine if it is the closest. In this case, the rotation detection unit 14 determines whether or not each value is closest to the recorded value by applying the least squares method to each value of the displacement in each direction, for example. Can be done.
  • the rotation detection unit 14 determines that each value of the displacement in each direction is the closest to the recorded value, the rotation detection unit 14 outputs a signal to the vibration measurement unit 12 at the timing of the determination.
  • the signal output at this time becomes the above-mentioned detection signal.
  • examples of “physical devices” include sensors, switches, rotary encoders, and the like.
  • the sensor 40 When detecting rotational motion based on a signal from a physical device, for example, as shown in FIG. 2, the sensor 40 is attached to the base portion 32 of the radar antenna device, which is the object 30. When the directional antenna 31 reaches a specific position, the sensor 40 detects that position and outputs a detection signal. Then, when the rotation detection unit 14 receives the signal output from the sensor 40, the rotation detection unit 14 outputs the signal to the vibration measurement unit 12 at the received timing. The signal output at this time is also the above-mentioned detection signal.
  • the vibration measuring unit 12 sets a time window for the time-series change of the displacement in each direction (X, Y, Z).
  • the object 30 detected by the rotation detecting unit 14 Set multiple time windows based on rotational motion. Specifically, when the directional antenna is at a specific position and the rotation detection unit 14 outputs a detection signal, the vibration measurement unit 12 uses this detection signal as a trigger to set the end point of the time window and the next time. Set the starting point of the window. Further, the end point and the start point may be set every time the detection signal is output, or may be set every time the detection signal is output a specific number of times.
  • the vibration measuring unit 12 calculates the vibration of the object 30 for each of the horizontal direction, the vertical direction, and the normal direction. Specifically, the vibration measuring unit 12 performs a Fourier transform on the time-series change of the extracted displacement for each time window in each direction, and further adds and averages each of the time-series changes after the Fourier transform. Calculates the vibration of the object in each direction.
  • FIGS. 5 and 6 are diagrams showing an example of processing performed by the vibration measuring unit in the embodiment of the present invention.
  • time-series changes in displacement in the X direction are used as examples.
  • FIGS. 5 and 6 differ in the method of setting the time window.
  • the vibration measuring unit 12 first sets a time window with respect to the waveform of the time-series change of displacement, using the detection signal from the sensor 40 as a trigger.
  • the vibration measuring unit 12 sets a time window each time the detection signal is output twice.
  • the vibration measuring unit 12 sets a time window each time a detection signal is output.
  • the vibration measuring unit 12 applies a window function to each waveform divided by the time window and executes the Fourier transform.
  • the middle part of FIGS. 5 and 6 shows the result of the Fourier transform.
  • the result of the Fourier transform is expressed with the frequency component of the waveform as the amplitude.
  • the vibration measuring unit 12 adds and averages the time-series changes after the Fourier transform of each time window. Specifically, the vibration measuring unit 12 adds the amplitude components for each frequency obtained by each Fourier transform N times, divides the obtained values by N, and averages them.
  • the lower part of FIGS. 5 and 6 shows the vibration in the X direction obtained by the averaging.
  • the amplitude of the vibration component that is not noise is 1, the amplitude of the noise component will be "1 / N ⁇ (1/2)" times.
  • " ⁇ " represents a power.
  • the noise component can be easily extracted by the abnormality determination unit 13 described later.
  • N is a natural number and indicates the number of additions.
  • the result of Fourier transform may be corrected by the window function.
  • the abnormality determination unit 13 determines whether or not an abnormality has occurred in the object 30 based on the vibration in the specific direction (X, Y, Z direction) calculated by the vibration measurement unit 12. For example, the abnormality determination unit 13 determines whether or not the vibration waveform in each direction calculated by the vibration measurement unit 12 deviates from the normal range, and if it deviates, an abnormality occurs in the object 30. Judge that it is. The normal range is set by an experiment or the like conducted in advance. Further, the abnormality determination unit 13 outputs the determination result to an external device or the like.
  • FIG. 7 is a flow chart showing the operation of the vibration measuring device according to the embodiment of the present invention.
  • FIGS. 1 to 6 will be referred to as appropriate.
  • the vibration measuring method is carried out by operating the vibration measuring device 10. Therefore, the description of the vibration measuring method in the present embodiment will be replaced with the following description of the operation of the vibration measuring device 10.
  • the displacement calculation unit 11 acquires the image data of the time-series image of the measurement target area of the object 30 output from the imaging device 20 (step A1).
  • the displacement calculation unit 11 calculates the displacement distribution in the measurement target region in the image for each of the X, Y, and Z directions using the image data of the time-series image (step A2).
  • the displacement calculation unit 11 moves the amount of movement ( ⁇ X, ⁇ Y, ⁇ Z) in each of the X, Y, and Z directions based on the displacement distribution and the imaging information in each direction calculated in step A2. ) Is calculated (step A3). As a result, time-series changes in displacement in each direction can be obtained.
  • the vibration measuring unit 12 sets a time window with the detection signal output from the rotation detecting unit 14 as a trigger for the waveform of the time-series change of the displacement in each direction obtained in step A3. Step A4). Next, the vibration measuring unit 12 executes the Fourier transform on the waveforms separated by the set time window (step A5).
  • the vibration measuring unit 12 determines whether or not the Fourier transform in step A5 has been executed N times or more (step A6). As a result of the determination in step A6, if the Fourier transform in step A5 has not been executed N times or more (step A6: No), the vibration measuring unit 12 causes the displacement calculation unit 11 to execute step A1 again.
  • step A6 when the Fourier transform in step A5 is executed N times or more (step A6: Yes), the vibration measuring unit 12 adds the time series change after the Fourier transform of each time window. Average (step A7). Specifically, in step A7, the vibration measuring unit 12 adds the amplitude components for each frequency obtained by each Fourier transform N times, divides the obtained values by N, and averages them. As a result, the vibration of the object 30 in the X, Y, and Z directions is calculated.
  • the abnormality determination unit 13 determines whether or not an abnormality has occurred in the object 30 based on the vibrations in the X, Y, and Z directions calculated in step A7, and outputs the determination result (step). A8).
  • step A8 the process in the vibration measuring device 10 is temporarily terminated, but then step A1 is executed again. That is, in the present embodiment, steps A1 to A8 are repeatedly executed.
  • the time window is set based on the fixed period of the object 30, and the addition averaging is performed on the time series waveform for each time window, so that the noise due to the shaking of the image is generated. Easy to identify. Therefore, according to the present embodiment, when measuring the vibration of the object 30 from the image, it is possible to suppress the influence of the vibration of the image and improve the measurement accuracy.
  • the displacement calculation unit 11 acquires the displacement distribution and calculates the displacement in each direction from the acquired displacement distribution.
  • the displacement distribution is not acquired. The displacement in each direction is calculated.
  • the displacement calculation unit 11 first compares and collates the processed image with the reference image, and specifies the position of the region having the highest degree of collation with the reference image for each processed image. Further, the displacement calculation unit 11 calculates the specified position as the displacement d1x in the X direction and the displacement d1y in the Y direction. Also in this modification 1, as a search method for the target region having the highest degree of collation, the position (coordinates) having the highest correlation is searched for by using the similarity correlation function such as SAD, SSD, NCC, ZNCC described above. The method can be mentioned. In addition, fitting can also be used as a search method for a region having the highest degree of collation.
  • the displacement calculation unit 11 further creates an image group (hereinafter referred to as "reference image group”) by enlarging and reducing the reference image at a predetermined magnification in order to calculate the displacement d1z in the Z direction.
  • the displacement calculation unit 11 sets the center positions of the enlarged image and the reduced image of the reference image based on the displacements (d1x, d1y) in the XY directions calculated earlier, and creates a reference image group.
  • the displacement calculation unit 11 collates the enlarged image and the reduced image for each processed image, and identifies the enlarged image or the reduced image having the highest degree of collation.
  • An image having a high degree of collation can be specified by using, for example, the similarity correlation function described above such as SAD, SSD, NCC, and ZNCC.
  • the displacement calculation unit 11 identifies an image having the highest degree of similarity from the images constituting the reference image group, that is, an image having a high correlation, and the enlargement ratio or reduction ratio (hereinafter referred to as “magnification”) of the specified image. (Indicated) is calculated as an amount (d1z) indicating the displacement of the specific region in the normal direction.
  • the displacement calculation unit 11 selects the image having the highest degree of matching, then selects an image having a magnification before and after the specified image from the reference image group, and the similarity between the specified image and the selected image. Calculate the correlation function. Then, the displacement calculation unit 11 may use the calculated similarity correlation function to apply a method such as straight line fitting or curve fitting to calculate a magnification that is an amount (d1z) indicating the displacement in the normal direction. it can. As a result, the magnification (d1z) can be calculated more accurately as a quantity indicating the displacement in the normal direction. In this way, the magnification (d1z) is calculated as an amount indicating the displacement (d1x, d1y) in the XY direction and the displacement in the Z direction for each processed image.
  • the displacement calculation unit 11 can execute the above-mentioned process a plurality of times in order to improve the accuracy of the displacement. Specifically, the displacement calculation unit 11 selects an image corresponding to the magnification d1z from the images constituting the reference image group in consideration of the influence of the magnification d1z calculated earlier, and newly selects the selected image. Use as a reference image. Next, the displacement calculation unit 11 compares the processed image with the new reference image, identifies a similar portion most similar to the new reference image in the processed image, obtains the position, and determines the position of the similar portion. Displacement (d2x, d2y) is detected.
  • the displacement calculation unit 11 sets the center position of enlargement or reduction of each image constituting the reference image group based on the newly detected displacement (d2x, d2y), and creates a new reference image group. Then, the displacement calculation unit 11 calculates the similarity between the processed image and each image constituting the new reference image group, and identifies the image having the highest similarity from the images constituting the new reference image group. .. After that, the displacement calculation unit 11 calculates the magnification of the specified image as an amount (d2z) indicating the displacement of the specific region in the normal direction.
  • the displacement (d1x, d1y) is calculated in a state where the magnification d1z indicating the displacement in the Z direction is not taken into consideration
  • the displacement (d1x, d1y) is calculated.
  • the displacement (d2x, d2y) is calculated in a state where the magnification d1z is taken into consideration. Therefore, the displacements (d2x, d2y) calculated in the second process can be calculated with higher accuracy than the displacements calculated in the first process. Further, when the same process is executed a plurality of times, the displacement accuracy is further improved.
  • the number of times the process is repeated is 2, but it is not particularly limited.
  • the number of repetitions may be a preset number of times, or may be appropriately set according to the result. Further, the mode may be repeated until the calculated displacement value reaches the threshold value.
  • the displacement finally obtained in a certain processed image is represented by the displacement (dnx, dny) and the magnification (dnz) which is a quantity indicating the displacement in the normal direction. Since the result of calculating the displacement for the time series image can be treated as a value that changes with time, it is expressed as displacement (dnx (t), dny (t)) and magnification (dnz (t)). ..
  • the vibration measuring unit 12 sets a time window, and then, for each time window, on the object 30 based on the displacement in the plane direction of the specific region and the imaging information of the imaging device 20.
  • the vibration of the measurement target area in the XY direction is calculated.
  • the vibration measuring unit 12 calculates the vibration in the normal direction of the measurement target region on the object 30 based on the displacement in the Z direction and the distance from the imaging device 20 to the object 30 for each time window. To do.
  • the vibration measuring unit 12 has a length (Dx, Dy) [mm (millimeter)) per pixel of the image pickup device 20 of the image pickup apparatus 20 in the X direction and the Y direction, respectively. / Pixel] is used to calculate the displacement ( ⁇ x, ⁇ y) [mm] in each of the X and Y directions.
  • the length per pixel (Dx, Dy) [mm / pixel] of the image sensor is the pixel pitch (px, py) [mm] of the image sensor, the focal length f [mm] of the lens, and the lens. It can be calculated from the following equations 13 and 14 using the distance L [mm] from the principal point to the measurement target region.
  • the vibration measuring unit 12 uses the distance L [mm] from the principal point of the image sensor to the specific region, and the displacement ⁇ z [mm] in the Z direction (normal direction). Is calculated.
  • each displacement obtained for each time-series image represents the vibration component of the measurement target region with the reciprocal of the shooting frame rate as the sampling interval.
  • the vibration measuring unit 12 executes the Fourier transform for each waveform divided by the time window, and further executes the addition averaging.
  • the vibration measuring unit 12 sets the end point of the time window and the start point of the next time window at the same time so that the time windows do not overlap each other. Is set.
  • the vibration measuring unit 12 sets each time window so that the adjacent time windows overlap each other.
  • FIGS. 8 and 9 are diagrams showing an example of processing performed by the vibration measuring unit in the second modification of the embodiment of the present invention.
  • time-series changes in displacement in the X direction are used as examples.
  • the vibration measuring unit 12 sets each time window so that adjacent time windows overlap.
  • FIGS. 8 and 9 differ in the degree of overlap of adjacent time windows.
  • the Fourier transform and the addition averaging are performed in the state where the time windows overlap.
  • the phenomenon of "the amplitude of the data at the edge of the time window becomes smaller and the weight becomes lower" that occurs when the window function is applied to the time series waveform during the Fourier transform is suppressed. Therefore, a signal component that is evenly weighted can be obtained.
  • the vibration measuring unit 12 sets the time window by using the detection signal from the rotation detecting unit 14 as a trigger.
  • the trigger for setting the time window is detected from the time-series image sent from the image pickup apparatus 20.
  • the image pickup apparatus 20 outputs a time-series image including not only the measurement target region but also a portion (for example, a part of the directional antenna) that performs the rotational movement of the object 30.
  • the vibration measuring unit 12 extracts an image of the portion performing the rotational movement from the time-series image, and specifies the state of the portion performing the rotational movement from the extracted image. Then, when the specified state becomes a preset state (for example, when the direction of the directional antenna becomes the set direction), the vibration measuring unit 12 uses that as a trigger to set the end point of the time window. , Set the start point of the next time window.
  • a trigger for setting the time window can be obtained without attaching the sensor 40 to the object 30.
  • the vibration measuring device 10 can be easily installed.
  • the program according to the present embodiment may be any program that causes a computer to execute steps A1 to A8 shown in FIG. By installing this program on a computer and executing it, the vibration measuring device and the vibration measuring method according to the present embodiment can be realized.
  • the computer processor functions as the displacement calculation unit 11, the vibration measurement unit 12, and the abnormality determination unit 13 to perform processing.
  • each computer may function as any of the displacement calculation unit 11, the vibration measurement unit 12, and the abnormality determination unit 13.
  • FIG. 10 is a block diagram showing an example of a computer that realizes the vibration measuring device according to the embodiment of the present invention.
  • the computer 110 includes a CPU (Central Processing Unit) 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. And. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication. Further, the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
  • a GPU Graphics Processing Unit
  • FPGA Field-Programmable Gate Array
  • the CPU 111 expands the programs (codes) of the present embodiment stored in the storage device 113 into the main memory 112 and executes them in a predetermined order to perform various operations.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program according to the present embodiment is provided in a state of being stored in a computer-readable recording medium 120.
  • the program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
  • the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and mouse.
  • the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
  • the data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include a general-purpose semiconductor storage device such as CF (CompactFlash (registered trademark)) and SD (SecureDigital), a magnetic recording medium such as a flexible disk, or a CD-.
  • CF CompactFlash (registered trademark)
  • SD Secure Digital
  • magnetic recording medium such as a flexible disk
  • CD- CompactDiskReadOnlyMemory
  • optical recording media such as ROM (CompactDiskReadOnlyMemory).
  • vibration measuring device 10 in the present embodiment can also be realized by using hardware corresponding to each part instead of the computer in which the program is installed. Further, the vibration measuring device 10 may be partially realized by a program and the rest may be realized by hardware.
  • a device for measuring the vibration of an object having a vibration source A device for measuring the vibration of an object having a vibration source.
  • the displacement of the measurement target area in a specific direction is calculated based on the time-series image of the measurement target area output from the imaging device that captures the portion of the object other than the vibration source as the measurement target area.
  • Displacement calculation unit By setting a plurality of time windows for the calculated time-series change of the displacement, extracting the time-series change for each of the plurality of time windows, and adding and averaging the extracted time-series changes.
  • a vibration measuring unit that calculates the vibration of the object in the specific direction A vibration measuring device characterized by being equipped with.
  • the vibration measuring device (Appendix 2) The vibration measuring device according to Appendix 1.
  • the vibration measuring unit performs a Fourier transform on the extracted time-series change for each of the plurality of time windows, and further adds and averages each of the time-series changes after the Fourier transform to obtain the target. Calculate the vibration of an object in the specific direction, A vibration measuring device characterized by this.
  • the vibration measuring device according to Appendix 1 or 2. Based on the time-series image of the measurement target area, the displacement calculation unit determines the displacement of the measurement target area in the direction corresponding to the horizontal direction of the time-series image and the direction corresponding to the vertical direction of the time-series image. And the displacement in the direction corresponding to the normal direction of the time series image are calculated. The vibration measuring unit calculates the vibration of the object in each of the directions. A vibration measuring device characterized by this.
  • the vibration measuring device (Appendix 4) The vibration measuring device according to Appendix 1 or 2.
  • the displacement calculation unit identifies displacements at a plurality of locations in the time-series image, acquires a displacement distribution from the specified displacement, and based on the acquired displacement distribution, the horizontal of the time-series image in the measurement target region.
  • the displacement in the direction corresponding to the direction, the displacement in the direction corresponding to the vertical direction of the time series image, and the displacement in the direction corresponding to the normal direction of the time series image are calculated.
  • the vibration measuring unit calculates the vibration of the object in each of the directions. A vibration measuring device characterized by this.
  • the vibration measuring device according to any one of Appendix 1 to 5.
  • the vibration measuring unit sets each of the plurality of time windows so that the time window and other time windows before and after the time window overlap.
  • the vibration measuring device (Appendix 7) The vibration measuring device according to Appendix 5.
  • the vibration measuring unit extracts an image of the portion of the mechanical equipment that performs the rotational movement from the time-series image, identifies the state of the portion that performs the rotational movement from the extracted image, and the specified state is When the preset state is reached, the start point or end point of the time window is set.
  • Appendix 8 The vibration measuring device according to any one of Appendix 1 to 7. It is further provided with an abnormality determination unit that determines whether or not an abnormality has occurred in the object based on the calculated vibration in the specific direction. A vibration measuring device characterized by this.
  • (Appendix 9) A method for measuring the vibration of an object having a vibration source.
  • (A) Displacement of the measurement target area in a specific direction based on a time-series image of the measurement target area output from an imaging device that captures a portion of the object other than the vibration source as the measurement target area.
  • steps and (B) A plurality of time windows are set for the calculated time-series change of the displacement, the time-series change for each of the plurality of time windows is extracted, and the extracted time-series change is weighted averaged.
  • step (a) The vibration measurement method according to Appendix 9 or 10.
  • step (a) the displacements at a plurality of locations in the time-series image are specified, the displacement distribution is acquired from the specified displacements, and the time-series image in the measurement target region is obtained based on the acquired displacement distribution.
  • the displacement in the direction corresponding to the horizontal direction, the displacement in the direction corresponding to the vertical direction of the time series image, and the displacement in the direction corresponding to the normal direction of the time series image are calculated.
  • step (b) the vibration of the object is calculated for each of the directions. A vibration measurement method characterized by this.
  • (Appendix 17) A computer-readable recording medium on which a program is recorded for measuring the vibration of an object having a vibration source by a computer.
  • (A) Displacement of the measurement target area in a specific direction based on a time-series image of the measurement target area output from an imaging device that captures a portion of the object other than the vibration source as the measurement target area.
  • steps and (B) A plurality of time windows are set for the calculated time-series change of the displacement, the time-series change for each of the plurality of time windows is extracted, and the extracted time-series change is weighted averaged.
  • (Appendix 19) A computer-readable recording medium according to Appendix 17 or 18.
  • the displacement in the measurement target area in the direction corresponding to the horizontal direction of the time-series image corresponds to the vertical direction of the time-series image.
  • the displacement in the direction to be processed and the displacement in the direction corresponding to the normal direction of the time-series image are calculated.
  • the vibration of the object is calculated for each of the directions.
  • (Appendix 20) A computer-readable recording medium according to Appendix 17 or 18.
  • the displacements at a plurality of locations in the time-series image are specified, the displacement distribution is acquired from the specified displacements, and the time-series image in the measurement target region is obtained based on the acquired displacement distribution.
  • the displacement in the direction corresponding to the horizontal direction, the displacement in the direction corresponding to the vertical direction of the time series image, and the displacement in the direction corresponding to the normal direction of the time series image are calculated.
  • the vibration of the object is calculated for each of the directions.
  • Appendix 21 A computer-readable recording medium according to Appendix 19 or 20.
  • the program is on the computer (C) Further including an instruction to execute a step to detect a rotational motion in the object.
  • the plurality of time windows are set based on the rotational motion detected by the step (c).
  • a computer-readable recording medium characterized in that.
  • Appendix 24 A computer-readable recording medium according to any one of Appendix 17 to 23.
  • the program is on the computer (D) Further including an instruction to execute a step of determining whether or not an abnormality has occurred in the object based on the calculated vibration in the specific direction.
  • a computer-readable recording medium characterized by that.
  • the present invention when measuring the vibration of an object from an image, it is possible to suppress the influence of the vibration of the image and improve the measurement accuracy.
  • the present invention is useful for the management and maintenance of various machinery and equipment.
  • Vibration measurement device 11 Displacement calculation unit 12 Vibration measurement unit 13 Abnormality determination unit 14 Rotation detection unit 20 Imaging device 30 Object (radar antenna device) 31 Directional antenna 32 Base part 40 Sensor 110 Computer 111 CPU 112 Main memory 113 Storage device 114 Input interface 115 Display controller 116 Data reader / writer 117 Communication interface 118 Input device 119 Display device 120 Recording medium 121 Bus

Abstract

振動計測装置(10)は、計測対象領域である領域を有する構成部と振動発生源とを有する対象物の振動を計測する。振動計測装置(10)は、計測対象領域の時系列画像に基づいて、計測対象領域の特定方向における変位を算出する、変位算出部(11)と、算出された変位の時系列変化に対して、複数の時間窓を設定し、時間窓毎の時系列変化を抽出し、抽出した時系列変化を用いて、対象物の特定方向における振動を算出する、振動計測部(12)と、を備えている。

Description

振動計測装置、振動計測方法、及びコンピュータ読み取り可能な記録媒体
 本発明は、機械設備等の対象物の振動を計測するための、振動計測装置、及び振動計測方法に関し、更には、これらを実現するためのプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。
 機械設備の故障を予測するため、機械設備の振動を計測して解析する技術が開発されている。また、このような振動解析においては、通常、接触型の加速度センサが用いられているが、接触型の加速度センサの取り付け及び配線の引き回しが困難な場合も多く、設置工数及び設置コストがかかってしまう。このため、センサを計測対象に設置せずに遠隔から非接触で振動を計測する技術(例えば、特許文献1及び2参照)が注目されている。
 具体的には、特許文献1は、撮像装置を用いた振動計測装置を開示している。特許文献1に開示された振動計測装置は、撮像装置から対象物の時系列画像を取得し、取得した時系列画像に対して画像処理を行なって、対象物の振動を計測する。
 また、特許文献2は、撮像装置に加えて、レーザ距離計及び超音波距離計などの距離測定装置を用いた振動計測装置を開示している。特許文献2に開示された振動計測装置によれば、画像内の2次元の方向での振動成分だけでなく、距離測定装置によって撮像装置の光軸方向における振動成分も計測できるため、3次元方向において対象物の振動を計測することができる。
特開2003-156389号公報 特開2005-283440号公報
 このように、特許文献1及び2に開示された振動計測装置によれば、加速度センサを用いることなく、機械設備の振動を非接触によって計測することができるので、測定にかかるコストを削減できる。
 しかしながら、特許文献1及び2に開示された振動計測装置においては、時系列画像から振動を検出する場合において、撮像装置自体が振動すると、画像の微少な揺れがノイズとして検出されてしまうため、計測対象の振動成分の計測精度の低下、及び計測結果を用いた故障の予測精度の低下が発生してしまうという問題がある。
 特に、機械設備は、複数の可動部分を有している場合が多く、様々な振動が発生している。そして、発生した振動が地面等を介して撮像装置側に伝わると、撮像装置自体が振動し、撮影した画像の揺れとして観察される。そのため、ノイズの混入が発生しやすい。その結果、計測対象の振動成分の計測精度の低下、及び計測結果を用いた故障の予測精度の低下の問題が顕著となる。
 本発明の目的の一例は、上記問題を解消し、画像から対象物の振動を計測する場合等において、計測精度の向上を図り得る、振動計測装置、振動計測方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。
 上記目的を達成するため、本発明の一側面における振動計測装置は、計測対象領域である領域を有する構成部と振動発生源とを有する対象物の振動を、計測する装置であって、
 前記計測対象領域の時系列画像に基づいて、前記計測対象領域の特定方向における変位を算出する、変位算出部と、
 算出された前記変位の時系列変化に対して、複数の時間窓を設定し、前記複数の時間窓それぞれ毎の前記時系列変化を抽出し、抽出した前記時系列変化を加算平均することによって、前記対象物の前記特定方向における振動を算出する、振動計測部と、
を備えている、ことを特徴とする。
 また、上記目的を達成するため、本発明の一側面における振動計測方法は、計測対象領域である領域を有する構成部と振動発生源とを有する対象物の振動を、計測する方法であって、
(a)前記計測対象領域の時系列画像に基づいて、前記計測対象領域の特定方向における変位を算出し、
(b)算出された前記変位の時系列変化に対して、複数の時間窓を設定し、前記複数の時間窓それぞれ毎の前記時系列変化を抽出し、抽出した前記時系列変化を加重平均することによって、前記対象物の前記特定方向における振動を算出する、ことを特徴とする。
 更に、上記目的を達成するため、本発明の一側面におけるコンピュータ読み取り可能な記録媒体は、コンピュータによって、計測対象領域である領域を有する構成部と振動発生源とを有する対象物の振動を、計測するプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
(a)前記計測対象領域の時系列画像に基づいて、前記計測対象領域の特定方向における変位を算出する、ステップと、
(b)算出された前記変位の時系列変化に対して、複数の時間窓を設定し、前記複数の時間窓それぞれ毎の前記時系列変化を抽出し、抽出した前記時系列変化を加重平均することによって、前記対象物の前記特定方向における振動を算出する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とする。
 以上のように、本発明によれば、画像から対象物の振動を計測する場合等において、計測精度の向上を図ることができる。
図1は、本発明の実施の形態における振動計測装置の概略構成を示すブロック図である。 図2は、本発明の実施の形態における振動計測装置の構成をより具体的に示すブロック図である。 図3は、対象物の計測対象領域を撮影した際に、ある点における撮像装置の撮像面上で観測される変位に含まれる成分を説明した図である。 図4は、計測対象領域を撮影した画像上の特定領域で観察される変位成分(δxij,δyij)の2次元空間分布(以下、変位分布とする)の様子を模擬的に示した図である。 図5は、本発明の実施の形態において振動計測部によって行われる処理の一例を示す図である。 図6は、本発明の実施の形態において振動計測部によって行われる処理の他の例を示す図である。 図7は、本発明の実施の形態における振動計測装置の動作を示すフロー図である。 図8は、本発明の実施の形態の変形例2において振動計測部によって行われる処理の一例を示す図である。 図9は、本発明の実施の形態の変形例2において振動計測部によって行われる処理の他の例を示す図である。 図10は、本発明の実施の形態における振動計測装置を実現するコンピュータの一例を示すブロック図である。
(実施の形態)
 以下、本発明の実施の形態における、振動計測装置、振動計測方法、及びプログラムについて、図1~図10を参照しながら説明する。
[装置構成]
 最初に、図1を用いて、本実施の形態における振動計測装置の概略構成について説明する。図1は、本発明の実施の形態における振動計測装置の概略構成を示すブロック図である。
 図1に示す、本実施の形態における振動計測装置は、振動発生源を有する対象物の振動を計測するための装置である。このような対象物としては、機械設備等が挙げられる。図1に示すように、振動計測装置10は、変位算出部11と、振動計測部12とを備えている。
 変位算出部11は、対象物の振動発生源以外の部分を計測対象領域として撮影する撮像装置20から出力されてきた計測対象領域の時系列画像に基づいて、計測対象領域の特定方向における変位を算出する。振動計測部12は、まず、算出された変位の時系列変化に対して、複数の時間窓を設定する。次いで、振動計測部12は、複数の時間窓それぞれ毎の時系列変化を抽出し、抽出した時系列変化を用いて、対象物の特定方向における振動を算出する。
 このように、本実施の形態では、振動発生源を有する対象物の振動をその画像によって計測するに際して、一定の期間毎に画像中の特定方向の変位の時系列変化が抽出されるので、画像の揺れ(ノイズ)の特定が容易となる。このため、本実施の形態によれば、画像から対象物の振動を計測する場合において、画像の揺れによる影響を抑制して、計測精度の向上を図ることができる。
 続いて、図2~図6を用いて、本実施の形態における振動計測装置の構成について、より具体的に説明する。図2は、本発明の実施の形態における振動計測装置の構成をより具体的に示すブロック図である。
 図2に示すように、まず、本実施の形態では、振動計測の対象となる対象物30は、特定の周期で回転運動を行う機械設備である。具体的には、図2の例では、対象物30は、レーダーアンテナ装置であり、上部の指向性アンテナ31が一定周期で回転運動を行う構成を備えている。この回転運動を行う構成には、モーターなどの動力源やそれを回転運動に変換するためのギアーなどの機構部品が含まれており、これらが振動発生源となる。
 また、図2に示すように、撮像装置20は、指向性アンテナ31を支持する土台部分32を撮影するように配置されている。言い換えると、対象物30は、振動発生源とは異なる構成部と、該振動発生源とを有する。該構成部は、たとえば、計測対象である領域を有している。撮像装置20は、例えば、デジタルカメラであり、時系列画像として、設定されたフレームレートで、画像データを連続的に出力する。
 更に、図2に示すように、本実施の形態では、振動計測装置10は、上述の変位算出部11及び振動計測部12に加えて、異常判定部13及び回転検出部14を備えている。異常判定部13及び回転検出部14の詳細については後述する。
 変位算出部11は、本実施の形態では、対象物30の計測対象領域の時系列画像に基づいて、計測対象領域における、時系列画像の水平方向に相当する方向の変位と、時系列画像の垂直方向に相当する方向の変位と、撮像装置20の光軸方向に相当する方向(時系列画像の法線方向に相当する方向)の変位とを算出する。なお、以降において、時系列画像の水平方向に相当する方向を「X方向」と表記し、時系列画像の垂直方向に相当する方向の変位を「Y方向」と表記し、撮像装置の光軸方向に相当する方向(時系列画像の法線方向に相当する方向)を「Z方向」と表記する。
 具体的には、変位算出部11は、まず、撮像装置20から出力されてくる時系列画像のうちの任意の時刻のフレームを基準画像とし、それ以外を処理画像とする。そして、変位算出部11は、基準画像内の任意の箇所(座標)に最も類似している処理画像における箇所(座標)を探索して、特定した箇所(座標)の変位を算出する。
 類似している箇所の特定手法としては、例えば、ある箇所(座標)、およびその周辺の座標の輝度値を用いて、SAD(Sum of Absolute Difference)、SSD(Sum of Squared Difference)、NCC(Normalized Cross-Correlation)、ZNCC(Zero-means Normalized Cross-Correlation)等の類似度相関関数を用いて、最も相関が高い位置(座標)を探索する手法が挙げられる。
 また、最も類似している箇所の特定は、最も相関が高い箇所(座標)と、その前後左右の位置(座標)における部分との類似度相関関数を利用し、直線フィッティング、曲線フィッティング、パラボラフィッティングなどの手法を適用することによっても行なうことができる。この場合は、より精度良く、サブピクセル精度で類似している領域の位置(座標)を算出できることになる。
 また、変位算出部11は、このような算出処理を、処理画像内の箇所毎に繰り返し実施することで、その処理画像における各箇所の変位を特定する。更に、変位算出部11は、処理画像毎に、各箇所の変位を特定することで、対象物30の計測対象領域における変位分布を取得する。
 次いで、変位算出部11は、算出した変位分布と、撮像装置20の撮影情報とから、計測対象領域のX方向における変位△Xと、Y方向における変位△Yと、Z方向における変位△Zとを算出する。また、以降においては、変位△Xは、計測対象領域のX方向における移動量△Xとも表記する。変位△Yは、Y方向における移動量△Yとも表記する。変位△Zは、Z方向における移動量△Zとも表記する。撮影情報とは、少なくとも、撮像装置20の固体撮像素子の1画素のサイズ、レンズの焦点距離、撮像装置20から計測対象領域までの撮像距離(厳密にはレンズの主点から計測対象領域までの距離の事を指す)、撮影フレームレート、とを含む。
 ここで、図3及び図4を用いて、変位算出部11が算出した変位に、どのような変位の成分が含まれているかを説明する。図3は、対象物の計測対象領域を撮影した際に、ある点における撮像装置の撮像面上で観測される変位に含まれる成分を説明した図である。図3は、対象物30が振動によって移動する前と後で、計測対象領域が各方向において移動量(ΔX、ΔY、ΔZ)分だけ移動した状態を示している。
 まず、撮像装置20の撮像面の中心、つまりレンズの光軸と撮像面との交点となる撮像中心にあたる点を原点とした座標系を考える。この座標系において、撮像装置20の撮像面上の座標(i,j)の点Aにおける観測される変位(δxij,δyij)について考える。なお、撮像装置20の撮像面上の座標(i,j)は、撮影された画像上の座標に置き換えて考えてもよい。
 図3の状態では、対象物30の計測対象領域には、画面上の水平方向及び垂直方向(X,Y方向)と、法線方向(Z方向)において、移動量(ΔX、ΔY、ΔZ)が発生している。計測対象領域は、画面内の水平方向及び垂直方向(X,Y方向)に移動した分(ΔX、ΔY)だけ、撮像装置20の撮像面に対して平行に移動する。また、法線方向(Z方向)に移動した分(△Z)だけ撮像装置20に近づく。そのため、撮像距離は移動量ΔZだけ短くなる。
 すると、図3に示すように、撮像装置20の撮像面に対して水平方向(X方向)における計測対象領域の移動量△Xによって生じる変位δxとは別に、移動量ΔZによる変位δzxijが生じる。同様に、撮像装置20の撮像面には、画面に対して垂直方向(Y方向)における撮像装置20の移動量ΔYによって生じる変位δyとは別に、移動量ΔZによる変
位δzyijも生じる。
 一方、対象物30がなんらかの負荷を受けたことによって計測対象領域の表面に変形又は変位が発生した場合に、それに伴って撮像装置20の撮像面には、表面変位成分(δδxij,δδyij)が生じる。
 これらの変位成分は、重ね合わせとして観察される。この場合に、点Aで観測される変位(δxij,δyij)は、後述の図4に示すように、以下の数1及び数2によって表すことができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、レンズの主点から計測対象領域までの撮像距離をL、撮像装置20のレンズ焦点距離をf、撮像中心を原点(0,0)、各画素の座標を(i,j)とする。この場合に、対象物30のXY平面方向の移動(Δx, Δy)に伴う変位成分(δx, δy)、法線方向であるZ方向の移動(Δz)に伴う変位成分(δzxij,δzyij)は、それぞれ、下記の数3、数4で表される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 計測対象領域がすべて同じ3次元の動きをしていると仮定すると、上記の数3及び数4で示されるXY方向の移動(Δx, Δy)に伴う変位成分(δx, δy)は、図3に示す点Aの座標によらず一定であることがわかる。また、法線方向の移動(Δz)に伴う変位成分(δzxij ,δzyij)は、点Aの座標が原点から離れるほど大きくなる。一方、計測対象領域の表面変位成分(δδxij ,δδyij)は、計測対象領域の表面の変形及び変位に伴う変位成分である。
 図4は、計測対象領域を撮影した画像上の特定領域で観察される変位成分(δxij,δyij)の2次元空間分布(以下、変位分布とする)の様子を模擬的に示した図である。図4に示すように変位算出部11が算出した特定領域の各座標の変位成分(δxij,δyij)を変位ベクトルとして表記する。この場合、変位ベクトルは、画面全体で一様な方向及び大きさで観察されるXY方向の移動(Δx, Δy)に伴う変位成分(δx, δy)と、画面の撮像中心から放射状のベクトル群として観察されるZ方向の移動(Δz)に伴う変位成分(δzxij ,δzyij)と、計測対象領域の表面の変形及び変位に伴う表面変位成分(δδxij ,δδyij)との合成成分として表すことができる。
 XY方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)を算出する方法について考える。図4に示すように、XY方向への平行移動(Δx, Δy)に伴う変位成分(δx, δy)は、基本的には画面全体で一様な方向及び大きさで観察される。変位算出部11が算出した変位分布から、撮像中心を中心とした特定領域の各座標における変位成分を変位の方向によってプラスマイナスを付加した変位ベクトルとして扱い、各座標における変位ベクトルを全て足し合わせ、平均を取る。これにより、XY方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)を算出できる。
 本手法について、詳しく述べる。まず、図4に示すように、変位分布を変位ベクトルとして扱うと、面方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)と、法線方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)と、表面変位成分(δδxij ,δδyij)とが合成された変位ベクトル群が観察される。
 ここで、表面変位成分(δδxij ,δδyij)は、計測対象領域の表面の変形・変位を表す変位ベクトル成分である。一般的に、計測対象領域に対して直接応力がかからないような場合には、表面の変形は小さい。表面変位成分(δδxij ,δδyij)は、面方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)と、法線方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)と比べると十分に小さいため、無視することができる。
 また、法線方向の移動(Δz)に伴う変位ベクトル成分(δzxij,δzyij)は、撮像中心を中心とした特定領域の各座標(i,j)までの距離に比例した放射状の変位ベクトルとして観察される。そのため、撮像中心を中心とした特定領域の各画素の変位ベクトル成分を足し合わせると相互に打ち消しあう。
 以上より、撮像中心を中心とした特定領域の各画素の変位ベクトル成分を足し合わせ、平均を算出することによって、XY方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)のみを算出することができる。
 次に、法線方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)を算出する方法について述べる。法線方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)のみが発生している状態を考える。そのベクトルの大きさR(i,j)は、計測対象領域の移動量Δzが計測対象領域内で一定であれば、下記の数5に示すように、撮像中心からの距離に比例した値となる。また、下記の数6に示すように比例定数をkと置けば、数5は、数7のようにも表される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 一方、実際に、変位算出部11によって算出された変位分布は、図4に示すように、合成ベクトル成分(δxij,δyij)(図4:超太実線の矢印)として観測される。合成ベクトル成分(δxij,δyij)は、図4からもわかるとおり、Z方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)(図3、図4:中実線の矢印)と、XY方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)(図3、図4:太実線の矢印)と、計測対象領域の表面の変形及び変位に伴う表面変位成分(δδxij ,δδyij)(図3、図4:細実線の矢印)とを含んでいる。
 この合成ベクトル成分(δxij,δyij)のうち、先に算出したXY方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)を減算したものが、Z方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)と、表面変位成分(δδxij ,δδyij)との合成ベクトルに相当する。従って、ある座標(i,j)におけるZ方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyijj)と表面変位成分(δδxij ,δδyij)との合成ベクトルをRmes(i,j)とすると、これらは下記の数8のように表すことができ、この値は算出することができる。
Figure JPOXMLDOC01-appb-M000008
 先にも示した通り、表面変位成分(δδxij ,δδyij)は、XY方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)、及びZ方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)に比べると、十分に小さいとみなせる場合が多い。そのため、ここでは支配的な成分である面内方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)および法線方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)に着目して話を進める。この場合、上記数8は、数9として表せられる。
Figure JPOXMLDOC01-appb-M000009
 この場合、座標(i,j)におけるRmes(i,j)は、Z方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)とほぼ等しいとして扱うことができる。このとき、Z方向の移動量ΔZを与えた時の変位ベクトル成分は、数6~数8のようにR(i,j)で表される。
 このため、数9によって、変位算出部11で算出した各座標における変位成分(δxij,δyij)と、面内方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)とから求められる変位ベクトルの大きさRmes(i ,j)を用いて、Z方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)による変位ベクトルの大きさR(i,j)の拡大・縮小の割合を推定することが可能となる。具体的には、R(i,j)の倍率は、下記の数10に示す評価関数E(k)を最小にする比例定数kを求めることによって推定することができる。
Figure JPOXMLDOC01-appb-M000010
 従って、本実施の形態では、変位算出部11は、上記の数10に最小二乗法を適用して、比例定数kを算出する。なお、評価関数E(k)として、上記の数10に示したRmes(i,j)とR(i,j)との差の2乗和以外に、絶対値和、他の累乗和等が用いられていても良い。
 そして、変位算出部11は、算出した比例定数kを拡大・縮小の割合を示す定数として、上記数7に適用して、移動量ΔZを算出する。
 以上のように、変位算出部11は、計測対象領域の3方向への移動量ΔX、ΔY、ΔZを求めることができる。
 また、変位算出部11は、算出した計測対象領域の移動量ΔX、ΔY、ΔZを用いて、さらに精度よく計測対象領域の移動量を算出することもできる。具体的には、算出した移動量ΔZを、上記数4に代入して、法線方向の移動(Δz)に伴う変位ベクトル成分(δzxij,δzyij)を算出する。更に、変位算出部11によって変位分布として算出されている変位ベクトル(δxij,δyij)から、算出した法線方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)を減算することで、XY方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx’, δy’)を算出する(上記数1及び数2参照)。
 なお、ここでも、表面変位成分(δδxij ,δδyij)は、面内方向の移動(Δx, Δy)に伴う変位ベクトル成分(δx, δy)および法線方向の移動(Δz)に伴う変位ベクトル成分(δzxij ,δzyij)に比べると、十分に小さいとみなせるという条件を使って算出する。
 その後、変位算出部11は、算出したXY方向の移動量に伴う変位ベクトル成分(δx’, δy’)と、移動量Δzとを、上記数3に代入することにより、計測対象領域のXY向における移動量△x’及び△y’を算出する。このようにして算出された計測対象領域の面方向における移動量、△x’、及び△y’は、先に算出された移動量ΔX、及びΔYよりも精度よく算出されている。
 更に、算出された計測対象領域の3方向への移動量、△x’、△y’を用いて、再び上記数10を適用してΔz’を算出し、3方向における計測対象領域の移動量△x’、△y’、Δz’を求めることも可能である。この値は、移動量ΔX、ΔY、ΔZ、および△x’、△y’、Δz’として算出した時よりも精度よく算出されている。上記の処理は、あらかじめ定められた回数分繰り返し行われても良い、一定の値域に収束するまで繰り返し行われても良い。
 また、変位算出部11によって算出された計測対象領域のXY方向における移動量△X及び△Yと、計測対象領域のZ方向における移動量△Zとは、それぞれ、時系列画像を撮影した撮影毎に得られる。このようにして得られた方向毎の(移動量)は、各方向における変位の時系列変化を表しており、撮影の時間間隔をサンプリング間隔とした振動情報として扱うことができる。
 回転検出部14は、対象物30における回転運動を検出する。本実施の形態では、回転検出部14は、指向性アンテナ31が回転中に特定の位置となると、そのことを検出して、検出信号を出力し、これを振動計測部12に入力する。具体的には、回転検出部14は、変位算出部11によって算出された各方向の変位の情報に基づいて、又は物理的なデバイスからの信号に基づいて、回転運動を検出する。
 「各方向の変位の情報」は、変位算出部11によって算出された、方向毎の変位の値である。各方向の変位の情報に基づいて回転運動を検出する場合、回転検出部14は、まず、指向性アンテナ31が特定の位置となった時点で変位算出部11によって算出された、方向毎の変位の値を記録する。
 続いて、回転検出部14は、指向性アンテナ31が回転状態にあるときに、変位算出部11によって算出される方向毎の変位の各値を監視し、その値が、記録されている値に最も近くなったかどうかを判定する。この場合、回転検出部14は、例えば、方向毎の変位の各値に対して、最小二乗法を適用することによって、各値が、記録されている値に最も近くなったかどうかを判定することができる。
 そして、回転検出部14は、方向毎の変位の各値が、記録されている値に最も近いと判定した場合は、その判定のタイミングで、振動計測部12に信号を出力する。このとき出力される信号が、上述の検出信号となる。
 また、「物理的なデバイス」としては、センサ、スイッチ、ロータリーエンコーダ等が挙げられる。物理的なデバイスからの信号に基づいて回転運動を検出する場合は、例えば、図2に示すように、対象物30であるレーダーアンテナ装置の土台部分32に、センサ40が取り付けられる。センサ40は、指向性アンテナ31が特定の位置となると、そのことを検知して検出信号を出力する。そして、回転検出部14は、センサ40から出力されてきた信号を受信すると、受信したタイミングで、振動計測部12に信号を出力する。このとき出力される信号も、上述の検出信号となる。
 振動計測部12は、各方向(X、Y、Z)の変位の時系列変化に対して、時間窓を設定するが、本実施の形態では、回転検出部14によって検出された対象物30の回転運動に基づいて、複数の時間窓を設定する。具体的には、振動計測部12は、指向性アンテナが特定の位置となり、回転検出部14から検出信号が出力されてくると、この検出信号をトリガとして、時間窓の終点と、次の時間窓の開始点とを設定する。また、終点及び開始点の設定は、検出信号が出力される度に行われても良いし、検出信号が特定回数出力される度に行われても良い。
 更に、振動計測部12は、本実施の形態では、水平方向、垂直方向、及び法線方向それぞれ毎に、対象物30の振動を算出する。具体的には、振動計測部12は、各方向について、時間窓毎に、抽出した変位の時系列変化に対してフーリエ変換を行い、更に、フーリエ変換後の時系列変化それぞれを加算平均することによって、対象物の各方向における振動を算出する。
 ここで、図5及び図6を用いて、振動計測部12による処理を具体的に説明する。図5及び図6は、本発明の実施の形態において振動計測部によって行われる処理の一例を示す図である。図5及び図6では、共に、X方向における変位の時系列変化が例として用いられている。但し、図5及び図6は、時間窓の設定の仕方の点で異なっている。
 図5及び図6の上段に示すように、振動計測部12は、まず、変位の時系列変化の波形に対して、センサ40からの検出信号をトリガとして、時間窓を設定する。図5の例では、振動計測部12は、検出信号が2回出力される度に時間窓を設定している。一方、図6の例では、振動計測部12は、検出信号が出力される度に時間窓を設定している。
 続いて、図5及び図6の中段に示すように、振動計測部12は、時間窓で区切った波形毎に、窓関数をかけて、フーリエ変換を実行する。図5及び図6の中段は、フーリエ変換の結果を示している。なお、フーリエ変換の結果は、波形の周波数成分を振幅として表されている。
 その後、図5及び6の下段に示すように、振動計測部12は、各時間窓のフーリエ変換後の時系列変化を加算平均する。具体的には、振動計測部12は、各フーリエ変換によって得られた周波数毎の振幅成分をN回足し合わせ、得られた値をNで除算して平均化する。図5及び図6の下段は、加算平均によって得られたX方向の振動を示している。
 このような足し合わせと除算とが行われた場合、ノイズではない振動成分の振幅を1とすると、ノイズの成分の振幅は、「1/N^(1/2)」倍となる。ただし、「^」は、べき乗を表す。この結果、後述する異常判定部13によるノイズ成分の抽出が容易となる。なお、Nは自然数であり、加算回数を示している。また、加算平均の結果が、実際の振幅値として扱われる場合は、フーリエ変換の結果に対して窓関数分の補正が行われても良い。
 異常判定部13は、振動計測部12によって算出された特定方向(X、Y、Z方向)における振動に基づいて、対象物30に異常が発生しているかどうかを判定する。例えば、異常判定部13は、振動計測部12によって算出された各方向における振動の波形が、正常範囲から逸脱していないかどうかを判定し、逸脱している場合は対象物30に異常が発生していると判定する。なお、正常範囲は、予め行われた実験等によって設定される。また、異常判定部13は、判定結果を外部の装置等に出力する。
[装置動作]
 次に、本実施の形態における振動計測装置10の動作について図7を用いて説明する。図7は、本発明の実施の形態における振動計測装置の動作を示すフロー図である。以下の説明においては、適宜図1~図6を参照する。また、本実施の形態では、振動計測装置10を動作させることによって、振動計測方法が実施される。よって、本実施の形態における振動計測方法の説明は、以下の振動計測装置10の動作説明に代える。
 図6に示すように、最初に、変位算出部11は、撮像装置20から出力されてきている、対象物30の計測対象領域を撮影した時系列画像の画像データを取得する(ステップA1)。次に、変位算出部11は、時系列画像の画像データを用いて、X、Y、Zそれぞれの方向毎に、画像内の計測対象領域における変位分布を算出する(ステップA2)。
 次に、変位算出部11は、ステップA2で算出された各方向における変位分布と撮影情報とに基づいて、X、Y、Zそれぞれの方向毎に、移動量(△X、△Y、△Z)を算出する(ステップA3)。これにより、各方向における変位の時系列変化が得られる。
 次に、振動計測部12は、ステップA3で得られた各方向における変位の時系列変化の波形に対して、回転検出部14から出力されてきた検出信号をトリガとして、時間窓を設定する(ステップA4)。次いで、振動計測部12は、設定した時間窓で区切った波形に対してフーリエ変換を実行する(ステップA5)。
 次に、振動計測部12は、ステップA5によるフーリエ変換がN回以上実行されているかどうかを判定する(ステップA6)。ステップA6の判定の結果、ステップA5によるフーリエ変換がN回以上実行されていない場合(ステップA6:No)は、振動計測部12は、変位算出部11に再度ステップA1を実行させる。
 一方、ステップA6の判定の結果、ステップA5によるフーリエ変換がN回以上実行されている場合(ステップA6:Yes)は、振動計測部12は、各時間窓のフーリエ変換後の時系列変化を加算平均する(ステップA7)。具体的には、ステップA7では、振動計測部12は、各フーリエ変換によって得られた周波数毎の振幅成分をN回足し合わせ、得られた値をNで除算して平均化する。これにより、対象物30のX、Y、Z方向における振動が算出されたことになる。
 次に、異常判定部13は、ステップA7で算出された、X、Y、Z方向における振動に基づいて、対象物30に異常が発生しているかどうかを判定し、判定結果を出力する(ステップA8)。
 ステップA8の実行により、振動計測装置10における処理は一旦終了するが、その後、ステップA1が再度実行される。即ち、本実施の形態では、ステップA1~A8は、繰り返し実行される。
[実施の形態における効果]
 以上のように本実施の形態によれば、対象物30の一定周期に基づいて時間窓が設定され、時間窓毎の時系列波形に対して加算平均が行われるので、画像の揺れによるノイズの特定が容易となる。このため、本実施の形態によれば、画像から対象物30の振動を計測する場合において、画像の揺れによる影響を抑制して、計測精度の向上を図ることが可能となる。
[変形例]
 続いて、本実施の形態における変形例1~3について以下に説明する。
変形例1
 上述した実施の形態では、変位算出部11は、変位分布を取得し、取得した変位分布から、各方向の変位を算出しているが、本変形例1では、変位分布を取得することなく、各方向の変位が算出される。
 具体的には、変位算出部11は、まず、処理画像と基準画像とを対比して照合し、処理画像毎に、最も基準画像との照合度合の高い領域の位置を特定する。また、変位算出部11は、特定した位置を、X方向における変位d1x、Y方向における変位d1yとして算出する。本変形例1でも、最も照合度合いの高い対象領域の探索手法としては、上述した、SAD、SSD、NCC、ZNCC等の類似度相関関数を用いて、最も相関が高い位置(座標)を探索する手法が挙げられる。また、最も照合度合いの高い領域の探索手法としては、フィッティングを用いることもできる。
 変位算出部11は、更に、Z方向の変位d1zを算出するため、基準画像を予め定められた倍率で拡大及び縮小することによって画像群(以下「基準画像群」と表記する)を作成する。このとき、変位算出部11は、先に算出したXY方向における変位(d1x、d1y)に基づいて、基準画像の拡大画像及び縮小画像の中心位置を設定して、基準画像群を作成する。
 続いて、変位算出部11は、処理画像毎に、拡大画像及び縮小画像に照合し、最も照合度合の高い拡大画像又は縮小画像を特定する。照合度合の高い画像の特定は、例えば、SAD、SSD、NCC、ZNCC等の先に述べた類似度相関関数を用いて行なうことができる。そして、変位算出部11は、基準画像群を構成する画像の中から最も類似度が高い画像、即ち、相関が高い画像を特定し、特定した画像の拡大率又は縮小率(以下「倍率」と表記する)を、特定領域の法線方向の変位を示す量(d1z)として算出する。
 また、変位算出部11は、最も照合度合が高い画像を特定した後、基準画像群の中から、特定した画像の前後の倍率の画像を選択し、特定した画像と選択した画像との類似度相関関数を算出する。そして、変位算出部11は、算出した類似度相関関数を用いて、直線フィッティング、曲線フィッティングなどの手法を適用して、法線方向の変位を示す量(d1z)となる倍率を算出することもできる。これにより、より精度良く、法線方向の変位を示す量として、倍率(d1z)を算出できることになる。このようにして処理画像毎のXY方向の変位(d1x、d1y)、およびZ方向の変位を示す量として倍率(d1z)を算出する。
 また、変位算出部11は、変位の精度を高めるため、上述の処理を複数回実行することができる。具体的には、変位算出部11は、先に算出した倍率d1zの影響を考慮して、基準画像群を構成する画像の中から、倍率d1zに対応する画像を選択し、選択した画像を新たな基準画像とする。次いで、変位算出部11は、処理画像と新たな基準画像とを対比して、処理画像において、新たな基準画像に最も類似している類似箇所を特定し、その位置を求めて、類似箇所の変位(d2x、d2y)を検出する。
 次いで、変位算出部11は、新たに検出した変位(d2x、d2y)に基づいて、基準画像群を構成する各画像の拡大又は縮小の中心位置を設定し、新たな基準画像群を作成する。そして、変位算出部11は、処理画像と新たな基準画像群を構成する各画像との類似度を算出し、新たな基準画像群を構成する画像の中から最も類似度が高い画像を特定する。その後、変位算出部11は、特定した画像の倍率を、特定領域の法線方向の変位を示す量(d2z)として算出する。
 このように、1回目の処理では、Z方向の変位を示す倍率であるd1zが考慮されていない状態で、変位(d1x、d1y)が算出されているのに対して、2回目の処理では、倍率d1zが考慮された状態で、変位(d2x、d2y)が算出される。このため、2回目の処理で算出された変位(d2x、d2y)の方が、1回目に算出された変位に比べて、高い精度で算出することができる。また、同様な処理を複数回実行する場合は、変位の精度がより向上することになる。
 なお、上述の例では、処理の繰り返し回数は2回であるが、特に限定されるものではない。繰り返しの回数は、予め設定された回数であっても良いし、結果に応じて適宜設定されても良い。また、算出された変位の値が閾値に到達するまで繰り返される態様であっても良い。
 また、以降の説明では、ある処理画像において最終的に得られる変位は、変位(dnx、dny)と、法線方向の変位を示す量である倍率(dnz)とで表される。時系列画像に対して同様に変位を算出した結果は、時間変化する値として扱うことができるため、変位(dnx(t)、dny(t))、および倍率(dnz(t))と表記する。
 また、振動計測部12は、本変形例1では、時間窓を設定し、その後、時間窓毎に、特定領域の面方向における変位と撮像装置20の撮影情報とに基づいて、対象物30上の計測対象領域のXY方向における振動を算出する。続いて、振動計測部12は、時間窓毎に、Z方向における変位と撮像装置20から対象物30までの距離とに基づいて、対象物30上の計測対象領域の法線方向における振動を算出する。
 具体的には、XY方向における変位(dnx(t)、dny(t))は、ピクセル単位で算出されている。従って、振動計測部12は、下記の数11及び数12に示すように、X方向及びY方向それぞれにおける撮像装置20の撮像素子の1ピクセル当たりの長さ(Dx、Dy)[mm(ミリメートル)/pixel]を用いて、X方向及びY方向それぞれにおける変位(△x、△y)[mm]を算出する。また、撮像素子の1ピクセル当たりの長さ(Dx、Dy)[mm/pixel]は、撮像素子の画素ピッチ(px、py)[mm]と、レンズの焦点距離f[mm]と、レンズの主点から計測対象領域までの距離L[mm]とを用いて、下記の数13及び数14から算出できる。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 また、Z方向における変位は、倍率として算出されている。従って、振動計測部12は、下記の数15に示すように、撮像素子の主点から特定領域までの距離L[mm]を用いて、Z方向(法線方向)における変位△z[mm]を算出する。
Figure JPOXMLDOC01-appb-M000015
 また、このようにして得られた計測対象領域の変位(△x、△y、△z)は、時系列画像を撮影したフレーム毎に得られている。よって、時系列画像毎に得られた各変位は、撮影フレームレートの逆数をサンプリング間隔とした計測対象領域の振動成分を表している。その後、本変形例1においても、振動計測部12は、時間窓で区切った波形毎に、フーリエ変換を実行し、更に、加算平均も実行する。
変形例2
 次に、変形例2について説明する。図5及び図6に示した例では、振動計測部12は、時間窓の終点と、次の時間窓の開始点とを同一時刻に設定し、時間窓同士が重ならないように、各時間窓を設定している。これに対して、本変形例2では、図8及び図9に示すように、振動計測部12は、隣接する時間窓同士が重なるように、各時間窓を設定する。
 図8及び図9は、本発明の実施の形態の変形例2において振動計測部によって行われる処理の一例を示す図である。図8及び図9では、共に、X方向における変位の時系列変化が例として用いられている。
 図8及び図9の上段に示すように、振動計測部12は、隣接する時間窓が重なるように、各時間窓を設定している。但し、図8及び図9は、隣接する時間窓の重なりの程度の点で異なっている。
 このように、本変形例2によれば、時間窓が重なった状態で、フーリエ変換及び加算平均が行われる。この結果、フーリエ変換時に時系列波形に窓関数をかけたときに発生する「時間窓の端のデータの振幅が小さくなり、重みが低くなる」という現象の発生が抑制される。このため、均等に重み付けがなされた信号成分が得られることになる。
変形例3
 次に、変形例3について説明する。図2に示した例では、振動計測部12は、回転検出部14からの検出信号をトリガとして、時間窓を設定している。これに対して、本変形例3では、撮像装置20から送られてくる時系列画像から、時間窓の設定のトリガを検出する。
 具体的には、本変形例3では、撮像装置20は、計測対象領域だけでなく、対象物30の回転運動を行う部分(例えば、指向性アンテナの一部)も含む、時系列画像を出力する。このため、本変形例3では、振動計測部12は、時系列画像から、回転運動を行う部分の画像を抽出し、抽出した画像から、回転運動を行う部分の状態を特定する。そして、振動計測部12は、特定した状態が予め設定された状態になったとき(例えば、指向性アンテナの向きが設定方向になったとき)に、そのことをトリガとして、時間窓の終点と、次の時間窓の開始点とを設定する。
 本変形例3では、対象物30にセンサ40を取り付けることなく、時間窓の設定のためのトリガが得られることになる。本変形例3によれば、振動計測装置10の設置が容易となる。
[プログラム]
 本実施の形態におけるプログラムは、コンピュータに、図7に示すステップA1~A8を実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態における振動計測装置と振動計測方法とを実現することができる。この場合、コンピュータのプロセッサは、変位算出部11、振動計測部12、及び異常判定部13として機能し、処理を行なう。
 また、本実施の形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、変位算出部11、振動計測部12、及び異常判定部13のいずれかとして機能しても良い。
 ここで、本実施の形態におけるプログラムを実行することによって、振動計測装置10を実現するコンピュータについて図10を用いて説明する。図10は、本発明の実施の形態における振動計測装置を実現するコンピュータの一例を示すブロック図である。
 図10に示すように、コンピュータ110は、CPU(Central Processing Unit)111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。また、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていても良い。
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体が挙げられる。
 なお、本実施の形態における振動計測装置10は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、振動計測装置10は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。
 上述した実施の形態の一部又は全部は、以下に記載する(付記1)~(付記24)によって表現することができるが、以下の記載に限定されるものではない。
(付記1)
 振動発生源を有する対象物の振動を計測するための装置であって、
 前記対象物の前記振動発生源以外の部分を計測対象領域として撮影する撮像装置から出力されてきた、前記計測対象領域の時系列画像に基づいて、前記計測対象領域の特定方向における変位を算出する、変位算出部と、
 算出された前記変位の時系列変化に対して、複数の時間窓を設定し、前記複数の時間窓それぞれ毎の前記時系列変化を抽出し、抽出した前記時系列変化を加算平均することによって、前記対象物の前記特定方向における振動を算出する、振動計測部と、
を備えている、ことを特徴とする振動計測装置。
(付記2)
付記1に記載の振動計測装置であって、
 前記振動計測部が、前記複数の時間窓それぞれ毎に、抽出した前記時系列変化に対してフーリエ変換を行い、更に、前記フーリエ変換後の前記時系列変化それぞれを加算平均することによって、前記対象物の前記特定方向における振動を算出する、
ことを特徴とする振動計測装置。
(付記3)
付記1または2に記載の振動計測装置であって、
 前記変位算出部が、前記計測対象領域の時系列画像に基づいて、前記計測対象領域における、前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
 前記振動計測部が、前記方向それぞれ毎に、前記対象物の振動を算出する、
ことを特徴とする振動計測装置。
(付記4)
付記1または2に記載の振動計測装置であって、
 前記変位算出部は、前記時系列画像中の複数箇所における変位を特定し、特定した変位から変位分布を取得し、取得した前記変位分布に基づいて、前記計測対象領域における前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
 前記振動計測部が、前記方向それぞれ毎に、前記対象物の振動を算出する、
ことを特徴とする振動計測装置。
(付記5)
付記3または4に記載の振動計測装置であって、
 前記対象物が、特定の周期で回転運動を行う機械設備である場合に、
 前記対象物における回転運動を検出する、回転検出部を更に備え、
 前記振動計測部は、前記回転検出部によって検出された回転運動に基づいて、前記複数の時間窓を設定する、
ことを特徴とする、振動計測装置。
(付記6)
付記1から5のいずれかに記載の振動計測装置であって、
 前記振動計測部が、前記複数の時間窓それぞれを、当該時間窓とそれに前後する他の時間窓とが重なるように、設定する、
ことを特徴とする振動計測装置。
(付記7)
付記5に記載の振動計測装置であって、
 前記振動計測部が、前記時系列画像から、前記機械設備の回転運動を行う部分の画像を抽出し、抽出した画像から前記回転運動を行う部分の状態を特定し、そして、特定した前記状態が予め設定した状態となったときに、前記時間窓の開始点又は終点を設定する、
ことを特徴とする振動計測装置。
(付記8)
付記1から7のいずれかに記載の振動計測装置であって、
 算出された前記特定方向における振動に基づいて、前記対象物に異常が発生しているかどうかを判定する、異常判定部を更に備えている、
ことを特徴とする振動計測装置。
(付記9)
 振動発生源を有する対象物の振動を計測するための方法であって、
(a)前記対象物の前記振動発生源以外の部分を計測対象領域として撮影する撮像装置から出力されてきた前記計測対象領域の時系列画像に基づいて、前記計測対象領域の特定方向における変位を算出する、ステップと、
(b)算出された前記変位の時系列変化に対して、複数の時間窓を設定し、前記複数の時間窓それぞれ毎の前記時系列変化を抽出し、抽出した前記時系列変化を加重平均することによって、前記対象物の前記特定方向における振動を算出する、ステップと、
を有する、ことを特徴とする振動計測方法。
(付記10)
付記9に記載の振動計測方法であって、
 前記(b)のステップにおいて、前記複数の時間窓それぞれ毎に、抽出した前記時系列変化に対してフーリエ変換を行い、更に、前記フーリエ変換後の前記時系列変化それぞれを加算平均することによって、前記対象物の前記特定方向における振動を算出する、
ことを特徴とする振動計測方法。
(付記11)
付記9または10に記載の振動計測方法であって、
 前記(a)のステップにおいて、前記計測対象領域の時系列画像に基づいて、前記計測対象領域における、前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
 前記(b)のステップにおいて、前記方向それぞれ毎に、前記対象物の振動を算出する、
ことを特徴とする振動計測方法。
(付記12)
付記9または10に記載の振動計測方法であって、
 前記(a)のステップにおいて、前記時系列画像中の複数箇所における変位を特定し、特定した変位から変位分布を取得し、取得した前記変位分布に基づいて、前記計測対象領域における前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
 前記(b)のステップにおいて、前記方向それぞれ毎に、前記対象物の振動を算出する、
ことを特徴とする振動計測方法。
(付記13)
付記11または12に記載の振動計測方法であって、
 前記対象物が、特定の周期で回転運動を行う機械設備である場合に、
(c)前記対象物における回転運動を検出する、ステップを更に有し、
 前記(b)のステップにおいて、前記(c)のステップによって検出された回転運動に基づいて、前記複数の時間窓を設定する、
ことを特徴とする、振動計測方法。
(付記14)
付記9から13のいずれかに記載の振動計測方法であって、
 前記(b)のステップにおいて、前記複数の時間窓それぞれを、当該時間窓とそれに前後する他の時間窓とが重なるように、設定する、
ことを特徴とする振動計測方法。
(付記15)
付記13に記載の振動計測方法であって、
 前記(b)のステップにおいて、前記時系列画像から、前記機械設備の回転運動を行う部分の画像を抽出し、抽出した画像から前記回転運動を行う部分の状態を特定し、そして、特定した前記状態が予め設定した状態となったときに、前記時間窓の開始点又は終点を設定する、
ことを特徴とする振動計測方法。
(付記16)
付記9から15のいずれかに記載の振動計測方法であって、
(d)算出された前記特定方向における振動に基づいて、前記対象物に異常が発生しているかどうかを判定する、ステップを更に有する、
ことを特徴とする振動計測方法。
(付記17)
 コンピュータによって、振動発生源を有する対象物の振動を計測するための、プログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
(a)前記対象物の前記振動発生源以外の部分を計測対象領域として撮影する撮像装置から出力されてきた前記計測対象領域の時系列画像に基づいて、前記計測対象領域の特定方向における変位を算出する、ステップと、
(b)算出された前記変位の時系列変化に対して、複数の時間窓を設定し、前記複数の時間窓それぞれ毎の前記時系列変化を抽出し、抽出した前記時系列変化を加重平均することによって、前記対象物の前記特定方向における振動を算出する、ステップと、
を実行させる命令を含む、プログラムを記録しているコンピュータ読み取り可能な記録媒体。
(付記18)
付記17に記載のコンピュータ読み取り可能な記録媒体であって、
 前記(b)のステップにおいて、前記複数の時間窓それぞれ毎に、抽出した前記時系列変化に対してフーリエ変換を行い、更に、前記フーリエ変換後の前記時系列変化それぞれを加算平均することによって、前記対象物の前記特定方向における振動を算出する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記19)
付記17または18に記載のコンピュータ読み取り可能な記録媒体であって、
 前記(a)のステップにおいて、前記計測対象領域の時系列画像に基づいて、前記計測対象領域における、前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
 前記(b)のステップにおいて、前記方向それぞれ毎に、前記対象物の振動を算出する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記20)
付記17または18に記載のコンピュータ読み取り可能な記録媒体であって、
 前記(a)のステップにおいて、前記時系列画像中の複数箇所における変位を特定し、特定した変位から変位分布を取得し、取得した前記変位分布に基づいて、前記計測対象領域における前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
 前記(b)のステップにおいて、前記方向それぞれ毎に、前記対象物の振動を算出する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記21)
付記19または20に記載のコンピュータ読み取り可能な記録媒体であって、
 前記対象物が、特定の周期で回転運動を行う機械設備である場合に、
前記プログラムが、前記コンピュータに、
(c)前記対象物における回転運動を検出する、ステップを実行させる命令を更に含み、
 前記(b)のステップにおいて、前記(c)のステップによって検出された回転運動に基づいて、前記複数の時間窓を設定する、
ことを特徴とする、コンピュータ読み取り可能な記録媒体。
(付記22)
付記17から21のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
 前記(b)のステップにおいて、前記複数の時間窓それぞれを、当該時間窓とそれに前後する他の時間窓とが重なるように、設定する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記23)
付記21に記載のコンピュータ読み取り可能な記録媒体であって、
 前記(b)のステップにおいて、前記時系列画像から、前記機械設備の回転運動を行う部分の画像を抽出し、抽出した画像から前記回転運動を行う部分の状態を特定し、そして、特定した前記状態が予め設定した状態となったときに、前記時間窓の開始点又は終点を設定する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記24)
付記17から23のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
前記プログラムが、前記コンピュータに、
(d)算出された前記特定方向における振動に基づいて、前記対象物に異常が発生しているかどうかを判定する、ステップを実行させる命令を更に含む、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2019年6月17日に出願された日本出願特願2019-112369を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上のように、本発明によれば、画像から対象物の振動を計測する場合において、画像の揺れによる影響を抑制して、計測精度の向上を図ることができる。本発明は、各種機械設備の管理及び保守に有用である。
 10 振動計測装置
 11 変位算出部
 12 振動計測部
 13 異常判定部
 14 回転検出部
 20 撮像装置
 30 対象物(レーダーアンテナ装置)
 31 指向性アンテナ
 32 土台部分
 40 センサ
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス

Claims (24)

  1.  計測対象領域である領域を有する構成部と振動発生源とを有する対象物の振動を、計測する装置であって、
     前記計測対象領域の時系列画像に基づいて、前記計測対象領域の特定方向における変位を算出する、変位算出手段と、
     算出された前記変位の時系列変化に対して、複数の時間窓を設定し、前記複数の時間窓それぞれ毎の前記時系列変化を抽出し、抽出した前記時系列変化を加算平均することによって、前記対象物の前記特定方向における振動を算出する、振動計測手段と、
    を備えている、ことを特徴とする振動計測装置。
  2. 請求項1に記載の振動計測装置であって、
     前記振動計測手段が、前記複数の時間窓それぞれ毎に、抽出した前記時系列変化に対してフーリエ変換を行い、更に、前記フーリエ変換後の前記時系列変化それぞれを加算平均することによって、前記対象物の前記特定方向における振動を算出する、
    ことを特徴とする振動計測装置。
  3. 請求項1または2に記載の振動計測装置であって、
     前記変位算出手段が、前記計測対象領域の時系列画像に基づいて、前記計測対象領域における、前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
     前記振動計測手段が、前記方向それぞれ毎に、前記対象物の振動を算出する、
    ことを特徴とする振動計測装置。
  4. 請求項1または2に記載の振動計測装置であって、
     前記変位算出手段は、前記時系列画像中の複数箇所における変位を特定し、特定した変位から変位分布を取得し、取得した前記変位分布に基づいて、前記計測対象領域における前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
     前記振動計測手段が、前記方向それぞれ毎に、前記対象物の振動を算出する、
    ことを特徴とする振動計測装置。
  5. 請求項3または4に記載の振動計測装置であって、
     前記対象物が、特定の周期で回転運動を行う機械設備である場合に、
     前記対象物における回転運動を検出する、回転検出手段を更に備え、
     前記振動計測手段は、前記回転検出手段によって検出された回転運動に基づいて、前記複数の時間窓を設定する、
    ことを特徴とする、振動計測装置。
  6. 請求項1から5のいずれかに記載の振動計測装置であって、
     前記振動計測手段が、前記複数の時間窓それぞれを、当該時間窓とそれに前後する他の時間窓とが重なるように、設定する、
    ことを特徴とする振動計測装置。
  7. 請求項5に記載の振動計測装置であって、
     前記振動計測手段が、前記時系列画像から、前記機械設備の回転運動を行う部分の画像を抽出し、抽出した画像から前記回転運動を行う部分の状態を特定し、そして、特定した前記状態が予め設定した状態となったときに、前記時間窓の開始点又は終点を設定する、
    ことを特徴とする振動計測装置。
  8. 請求項1から7のいずれかに記載の振動計測装置であって、
     算出された前記特定方向における振動に基づいて、前記対象物に異常が発生しているかどうかを判定する、異常判定手段を更に備えている、
    ことを特徴とする振動計測装置。
  9.  計測対象領域である領域を有する構成部と振動発生源とを有する対象物の振動を、計測する方法であって、
     前記計測対象領域の時系列画像に基づいて、前記計測対象領域の特定方向における変位を算出し、
     算出された前記変位の時系列変化に対して、複数の時間窓を設定し、前記複数の時間窓それぞれ毎の前記時系列変化を抽出し、抽出した前記時系列変化を加重平均することによって、前記対象物の前記特定方向における振動を算出する、
    ことを特徴とする振動計測方法。
  10. 請求項9に記載の振動計測方法であって、
     前記振動の算出において、前記複数の時間窓それぞれ毎に、抽出した前記時系列変化に対してフーリエ変換を行い、更に、前記フーリエ変換後の前記時系列変化それぞれを加算平均することによって、前記対象物の前記特定方向における振動を算出する、
    ことを特徴とする振動計測方法。
  11. 請求項9または10に記載の振動計測方法であって、
     前記変位の算出において、前記計測対象領域の時系列画像に基づいて、前記計測対象領域における、前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
     前記振動の算出において、前記方向それぞれ毎に、前記対象物の振動を算出する、
    ことを特徴とする振動計測方法。
  12. 請求項9または10に記載の振動計測方法であって、
     前記変位の算出において、前記時系列画像中の複数箇所における変位を特定し、特定した変位から変位分布を取得し、取得した前記変位分布に基づいて、前記計測対象領域における前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
     前記振動の算出において、前記方向それぞれ毎に、前記対象物の振動を算出する、
    ことを特徴とする振動計測方法。
  13. 請求項11または12に記載の振動計測方法であって、
     前記対象物が、特定の周期で回転運動を行う機械設備である場合に、更に、前記対象物における回転運動を検出し、
     前記振動の算出において、前記回転運動の検出によって検出された回転運動に基づいて、前記複数の時間窓を設定する、
    ことを特徴とする、振動計測方法。
  14. 請求項9から13のいずれかに記載の振動計測方法であって、
     前記振動の算出において、前記複数の時間窓それぞれを、当該時間窓とそれに前後する他の時間窓とが重なるように、設定する、
    ことを特徴とする振動計測方法。
  15. 請求項13に記載の振動計測方法であって、
     前記振動の算出において、前記時系列画像から、前記機械設備の回転運動を行う部分の画像を抽出し、抽出した画像から前記回転運動を行う部分の状態を特定し、そして、特定した前記状態が予め設定した状態となったときに、前記時間窓の開始点又は終点を設定する、
    ことを特徴とする振動計測方法。
  16. 請求項9から15のいずれかに記載の振動計測方法であって、
     更に、算出された前記特定方向における振動に基づいて、前記対象物に異常が発生しているかどうかを判定する、
    ことを特徴とする振動計測方法。
  17.  コンピュータによって、計測対象領域である領域を有する構成部と振動発生源とを有する対象物の振動を、計測するプログラムをコンピュータ読み取り可能な記録媒体であって、
    前記コンピュータに、
     前記計測対象領域の時系列画像に基づいて、前記計測対象領域の特定方向における変位を算出させ、
     算出された前記変位の時系列変化に対して、複数の時間窓を設定し、前記複数の時間窓それぞれ毎の前記時系列変化を抽出し、抽出した前記時系列変化を加重平均することによって、前記対象物の前記特定方向における振動を算出させる、
    命令を含むプログラムを記録しているコンピュータ読み取り可能な記録媒体。
  18. 請求項17に記載のコンピュータ読み取り可能な記録媒体であって、
     前記振動の算出において、前記複数の時間窓それぞれ毎に、抽出した前記時系列変化に対してフーリエ変換を行い、更に、前記フーリエ変換後の前記時系列変化それぞれを加算平均することによって、前記対象物の前記特定方向における振動を算出する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
  19. 請求項17または18に記載のコンピュータ読み取り可能な記録媒体であって、
     前記変位の算出において、前記計測対象領域の時系列画像に基づいて、前記計測対象領域における、前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
     前記振動の算出において、前記方向それぞれ毎に、前記対象物の振動を算出する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
  20. 請求項17または18に記載のコンピュータ読み取り可能な記録媒体であって、
     前記変位の算出において、前記時系列画像中の複数箇所における変位を特定し、特定した変位から変位分布を取得し、取得した前記変位分布に基づいて、前記計測対象領域における前記時系列画像の水平方向に相当する方向の変位と、前記時系列画像の垂直方向に相当する方向の変位と、前記時系列画像の法線方向に相当する方向の変位とを算出し、
     前記振動の算出において、前記方向それぞれ毎に、前記対象物の振動を算出する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
  21. 請求項19または20に記載のコンピュータ読み取り可能な記録媒体であって、
     前記プログラムが、前記コンピュータに、
     前記対象物が、特定の周期で回転運動を行う機械設備である場合に、前記対象物における回転運動を検出させる、命令を更に組み、
     前記振動の算出において、前記回転運動の検出によって検出された回転運動に基づいて、前記複数の時間窓を設定する、
    ことを特徴とする、コンピュータ読み取り可能な記録媒体。
  22. 請求項17から21のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
     前記振動の算出において、前記複数の時間窓それぞれを、当該時間窓とそれに前後する他の時間窓とが重なるように、設定する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
  23. 請求項21に記載のコンピュータ読み取り可能な記録媒体であって、
     前記振動の算出において、前記時系列画像から、前記機械設備の回転運動を行う部分の画像を抽出し、抽出した画像から前記回転運動を行う部分の状態を特定し、そして、特定した前記状態が予め設定した状態となったときに、前記時間窓の開始点又は終点を設定する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
  24. 請求項17から23のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
     前記プログラムが、前記コンピュータに、
     算出された前記特定方向における振動に基づいて、前記対象物に異常が発生しているかどうかを判定させる、命令を更に含む、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
PCT/JP2020/022066 2019-06-17 2020-06-04 振動計測装置、振動計測方法、及びコンピュータ読み取り可能な記録媒体 WO2020255728A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021527564A JP7238984B2 (ja) 2019-06-17 2020-06-04 振動計測装置、振動計測方法、及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-112369 2019-06-17
JP2019112369 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020255728A1 true WO2020255728A1 (ja) 2020-12-24

Family

ID=74040024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022066 WO2020255728A1 (ja) 2019-06-17 2020-06-04 振動計測装置、振動計測方法、及びコンピュータ読み取り可能な記録媒体

Country Status (2)

Country Link
JP (1) JP7238984B2 (ja)
WO (1) WO2020255728A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144934A1 (ja) * 2022-01-26 2023-08-03 日本電気株式会社 情報処理装置、情報処理システム、顧客装置、情報処理方法及び非一時的なコンピュータ可読媒体
CN117877008A (zh) * 2024-03-13 2024-04-12 湖北神龙工程测试技术有限公司 一种基于人工智能的门窗性能检测方法
CN117877008B (zh) * 2024-03-13 2024-05-17 湖北神龙工程测试技术有限公司 一种基于人工智能的门窗性能检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231361A (ja) * 1992-02-26 1993-09-07 Hitachi Ltd オイルフリースクリュー圧縮機の診断方法およびその装置
JP2004020429A (ja) * 2002-06-18 2004-01-22 Nsk Ltd 軸受の表面性状検査方法及び装置
JP2018189578A (ja) * 2017-05-10 2018-11-29 清水建設株式会社 建物の健全性評価システム
JP2019041517A (ja) * 2017-08-28 2019-03-14 三菱日立パワーシステムズ株式会社 回転電機の診断システム及び診断方法
WO2019097578A1 (ja) * 2017-11-14 2019-05-23 日本電気株式会社 変位成分検出装置、変位成分検出方法、及びコンピュータ読み取り可能な記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05231361A (ja) * 1992-02-26 1993-09-07 Hitachi Ltd オイルフリースクリュー圧縮機の診断方法およびその装置
JP2004020429A (ja) * 2002-06-18 2004-01-22 Nsk Ltd 軸受の表面性状検査方法及び装置
JP2018189578A (ja) * 2017-05-10 2018-11-29 清水建設株式会社 建物の健全性評価システム
JP2019041517A (ja) * 2017-08-28 2019-03-14 三菱日立パワーシステムズ株式会社 回転電機の診断システム及び診断方法
WO2019097578A1 (ja) * 2017-11-14 2019-05-23 日本電気株式会社 変位成分検出装置、変位成分検出方法、及びコンピュータ読み取り可能な記録媒体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023144934A1 (ja) * 2022-01-26 2023-08-03 日本電気株式会社 情報処理装置、情報処理システム、顧客装置、情報処理方法及び非一時的なコンピュータ可読媒体
CN117877008A (zh) * 2024-03-13 2024-04-12 湖北神龙工程测试技术有限公司 一种基于人工智能的门窗性能检测方法
CN117877008B (zh) * 2024-03-13 2024-05-17 湖北神龙工程测试技术有限公司 一种基于人工智能的门窗性能检测方法

Also Published As

Publication number Publication date
JPWO2020255728A1 (ja) 2020-12-24
JP7238984B2 (ja) 2023-03-14

Similar Documents

Publication Publication Date Title
Jana et al. Computer vision‐based real‐time cable tension estimation in Dubrovnik cable‐stayed bridge using moving handheld video camera
JP6954368B2 (ja) 変位成分検出装置、変位成分検出方法、及びプログラム
WO2018043251A1 (ja) 欠陥検出装置、欠陥検出方法、及びコンピュータ読み取り可能記録媒体
JP6813025B2 (ja) 状態判定装置、状態判定方法、及びプログラム
WO2018025336A1 (ja) 劣化検出装置、劣化検出方法、及びコンピュータ読み取り可能な記録媒体
Havaran et al. Markers tracking and extracting structural vibration utilizing Randomized Hough transform
WO2020255728A1 (ja) 振動計測装置、振動計測方法、及びコンピュータ読み取り可能な記録媒体
JP4877243B2 (ja) 対応点探索装置および該方法
JP6954451B2 (ja) 振動計測システム、振動計測装置、振動計測方法、及びプログラム
US11519780B2 (en) Measurement system, correction processing apparatus, correction processing method, and computer-readable recording medium
CN110532725B (zh) 基于数字图像的工程结构力学参数识别方法及系统
JP6996569B2 (ja) 計測システム、補正処理装置、補正処理方法、及びプログラム
JP6954369B2 (ja) 振動計測装置、振動計測方法、及びプログラム
JP6838660B2 (ja) 状態判定装置、状態判定方法、及びプログラム
WO2020255231A1 (ja) 変位測定装置、変位測定方法、コンピュータ読み取り可能な記録媒体
JP6954452B2 (ja) 振動計測システム、振動計測装置、振動計測方法、及びプログラム
JP6954382B2 (ja) 振動信頼度算出装置、振動信頼度算出方法、及びプログラム
WO2020255230A1 (ja) 負荷検知装置、負荷検知方法、及びコンピュータ読み取り可能な記録媒体
JP7485155B2 (ja) データ符号化プログラム、及びデータ符号化装置
JP7287463B2 (ja) データ符号化装置、データ通信システム、データ通信方法、及びプログラム
Liu et al. A deep learning-based method for structural modal analysis using computer vision
Casciati et al. Structural monitoring through acquisition of images
Zhang et al. Vibration displacement measurement method based on vision Gaussian fitting and edge optimisation for rotating shafts
Li et al. A fast matching method for skip displacement recognition of hoisting system
Selvam Vision-based Sensor System for Vibration Measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826937

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826937

Country of ref document: EP

Kind code of ref document: A1