WO2020136047A1 - Procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne - Google Patents

Procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne Download PDF

Info

Publication number
WO2020136047A1
WO2020136047A1 PCT/EP2019/085837 EP2019085837W WO2020136047A1 WO 2020136047 A1 WO2020136047 A1 WO 2020136047A1 EP 2019085837 W EP2019085837 W EP 2019085837W WO 2020136047 A1 WO2020136047 A1 WO 2020136047A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
fuel
dilution
rate
dilution rate
Prior art date
Application number
PCT/EP2019/085837
Other languages
English (en)
Inventor
Benoit PEYRARD
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to EP19818176.0A priority Critical patent/EP3902990B1/fr
Publication of WO2020136047A1 publication Critical patent/WO2020136047A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • F01M2001/165Controlling lubricant pressure or quantity according to fuel dilution in oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M2011/14Indicating devices; Other safety devices for indicating the necessity to change the oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/11Oil dilution, i.e. prevention thereof or special controls according thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • TITLE Method for estimating the overall dilution of the oil of an internal combustion engine
  • the invention relates to a method for estimating the overall dilution of the oil of an internal combustion engine, more particularly of an engine equipped with a device for treating pollutant emissions requiring post-injection treatment phases. fuel in the engine cylinders.
  • global dilution of the oil is meant the quantity (mass or rate) of the different chemical species other than those which make up the actual oil of an engine, and which accumulate in the oil during engine operation.
  • the invention aims in particular to provide a method for estimating the overall dilution rate of the engine oil, followed during the interval between two oil changes of the engine, making it possible to drain the engine oil at the best time, when an oil dilution threshold value is reached.
  • the oil change interval of a vehicle engine is a very important ecological and economic criterion. It is determined based on the rate of degradation of the engine oil.
  • regeneration is generally obtained by supplying fuel to the device, for example by post-injection into the engine cylinders. Amounts of fuel are injected into each cylinder long enough after the cylinder top dead center for combustion to not participate in combustion. These quantities of fuel are evacuated from the engine, during the exhaust time of the cylinder in question, to the gas treatment device to regenerate it, that is to say to purge it of the accumulated pollutants.
  • the dilution of the oil has been assimilated to the dilution of the fuel in l 'oil.
  • the only chemical species diluted in engine oil to date has been considered to be the engine fuel.
  • Various methods for estimating the dilution rate of fuel in engine oil by modeling have been developed.
  • the dilution rate is estimated as a function of the operating mode of the engine: - during a regeneration phase, the upward variation of the dilution during a time interval considered is calculated as the product of a regeneration function by the time interval considered, this regeneration function possibly, for example , be mapped according to engine parameters such as speed and fuel flow,
  • the downward variation of the dilution during a time interval is calculated as the product of the opposite of an evaporation function by the interval of time considered.
  • Evaporation means the vaporization of the fuel in the gases surrounding the engine oil layer.
  • the variation in evaporation between two neighboring instants is calculated according to a kinetic law of order 1, taking into account the time elapsed since the end of the last regeneration.
  • This patent application proposes to estimate the rate of dilution of fuel in oil by a method comprising a step of determining an overall dilution rate of fuel, which is characterized in that during a prior step of the method, a plurality of fuel composition fractions is defined, each fraction having a different density, and, repeatedly for a succession of times, an estimate of the dilution rate by adding the estimated dilution rate to 1 previous instant with a value of variation of the dilution rate, this variation of the dilution rate being calculated as a function of an estimate of the variation of the dilution rate, between two successive instants, of each fraction of the plurality of composition fractions fuel.
  • the Applicant has indeed carried out laboratory analyzes, in particular by gas chromatographic measurement, so as to compare the spectrum of new oil with the spectrum of oil during engine operation. Such measurements make it possible to determine the distribution of the length of the carbon chains of the different chemical species present in the oil, and to deduce therefrom by difference with the spectrum of new oil the ratio of short carbon chains present in the oil. and which do not come from new oil.
  • part of the dilution of the oil comes from the fractionation of its own carbon chain compounds.
  • the fuel present in the oil by the effect of mixing accelerates the decomposition of hydrocarbons in the oil, which can in particular be explained by the presence of compounds facilitating the generation of free radicals .
  • the fuel present in the oil can thus play the role of catalyst in the oil cracking reaction, and favor the conversion of hydrocarbons with more or less long chains, in particular of saturated hydrocarbons of the oil, into lighter hydrocarbons.
  • the invention thus aims to propose a method for estimating the overall dilution of an internal combustion engine oil equipped with a device for treating combustion gases requiring treatment phases by post-injection of fuel into the cylinders of the engine which is closer to reality, that is to say the closest to dilution measures in real operating conditions of an engine.
  • the invention proposes a method for estimating the overall dilution rate of an oil of an internal combustion engine equipped with a device for treating combustion gases requiring treatment phases by post-injection of fuel.
  • said method comprising at least one step of estimating the dilution rate of the fuel in the oil, that is to say specific to the quantitative dilution of the fuel present in the oil, said method being characterized in that furthermore, it comprises at least one step of estimating the dilution rate of the fractionation of carbonaceous compounds in the oil, that is to say of the dilution of the oil by cracking fractionating some of its compounds with carbon chains, as a function of the rate of fuel introduced into the oil, the overall dilution rate of the oil being the sum of at least said rate of dilution of the fuel in the oil and said rate of dilution of said fractionation of the oil.
  • the method comprises a step of estimating the variation in the dilution rate of said fractionation of the oil between two neighboring times, as a function of the rate of fuel introduced into the oil according to a kinetic law of order 1.
  • said method can comprise a preliminary step of predetermining a function linking the variation of said dilution rate by the fractionation of the oil to the rate of fuel introduced into oil, depending on the engine operating mode considered. This determination can be graphic.
  • the function linking the variation of said dilution rate by said fractionation of the oil to the rate of fuel introduced into the oil is a bounded function whose lower bound is equal to 0 and whose upper bound depends the operating mode of the engine in question.
  • the method according to the invention therefore makes it possible to specify methods for estimating the dilution of existing engine oil by introducing an estimation step based on a modeling taking into account the short carbonaceous chains diluting the oil which come from own fractionation. (cracking) of the carbonaceous molecules of the oil in the presence of fuel.
  • This parameter as a function of the rate of fuel introduced into the oil is of order 1 on this cracking phenomenon and alone allows a sufficiently precise and robust modeling of the phenomenon for the estimation of the dilution of the oil by its own fractionation, during a drain interval.
  • said method may include steps for determining the dilution rate of the fuel in the oil as according to patent application FR 1850608 cited above.
  • said method comprises a step of determining an overall dilution rate of the fuel in the oil.
  • a plurality of composition fractions of said fuel are defined, each fraction having a different density, that is to say a higher volatility. or less, and the method comprises, repeatedly for a succession of times, an estimate of the fuel dilution rate by adding the fuel dilution rate estimated at the previous instant with a value of variation of the dilution rate fuel; the value of variation of the fuel dilution rate being calculated as a function of an estimate of the dilution, between two successive instants, of each fraction of the plurality of composition fractions of said fuel in oil.
  • each composition fraction is associated with a fuel composition rate and with a vaporization speed of said fraction, the estimation of the dilution of each fraction being a function of the overall dilution speed of the fuel, the fuel composition rate and said vaporization rate of said fraction.
  • the vaporization speed of said fraction is a function of the engine torque at the instant considered
  • the estimate of the variation in the dilution rate of each fraction between two successive instants is equal to the product of the overall dilution speed of the fuel with the fuel composition rate from which the speed d is subtracted. evaporation of said fraction, the whole multiplied by the time interval between the two successive instants.
  • the engine is capable of operating according to a treatment mode with post-injection of fuel, and outside said treatment mode, said overall dilution speed of the fuel is equal to 0.
  • said overall dilution speed of the fuel is equal to 0.
  • the engine being able to operate according to a treatment mode with post-fuel injection, and during said treatment mode with post-fuel injection, said overall fuel dilution speed is predetermined as a function of the engine torque and of a value representative of the engine water temperature.
  • said overall dilution speed of the fuel can be obtained relatively simply and reliably.
  • the variation in the dilution rate of the fuel at each instant is calculated as the sum of the estimates of the dilution of each fraction of the plurality of fractions of composition of said fuel in oil.
  • the method is relatively simple, reliable, and inexpensive in computation time.
  • the invention also relates to a device for estimating the overall dilution rate of the oil of an internal combustion engine equipped with a device for treating combustion gases requiring treatment phases by post-injection of fuel, according to which estimates the dilution rate of fuel in the oil as a function of the operating mode of the engine, said device comprising means for determining an overall dilution speed of the fuel.
  • said device comprises means for defining a plurality of composition fractions of said fuel, each fraction having a different density.
  • said device comprises means suitable for estimating, repeatedly for a succession of moments, an estimate of the dilution rate of the fuel in the oil by adding the dilution rate of the fuel estimated at the previous instant with a value of variation of the dilution rate of the fuel; the value of variation of the fuel dilution rate being calculated as a function of an estimate of the variation of the fuel dilution rate, between two successive instants, of each fraction of the plurality of fractions of composition of said fuel in oil, and said device comprises means suitable for estimating, repeatedly for a succession of times, an estimate of the dilution rate of the oil fractionation by adding the dilution rate of the oil fractionation estimated at the previous instant with a value of variation of the dilution rate of the fuel, the value of variation of the dilution rate of the fractionation of the oil being calculated according to an estimate of the rate of fuel introduced into the oil, and further said device comprises means adapted to add at each said instant the estimate value of the dilution rate of the fuel in the
  • the invention also relates to an engine assembly comprising an internal combustion engine equipped with a device for treating combustion gases. requiring phases of treatment by post-injection of fuel and an estimation device as described above.
  • the invention also relates to a motor vehicle comprising an automobile engine assembly comprising an internal combustion engine equipped with a device for treating combustion gases requiring treatment phases by post-injection of fuel into the engine cylinders, and a device for estimating the dilution of the estimating engine oil as described above.
  • FIG 1 schematically represents an internal combustion engine equipped with an exhaust gas treatment device, suitable for implementing the method for estimating the overall dilution rate of the oil according to the invention
  • FIG 2 represents comparative diagrams of the distribution of the carbon chains of a new oil and of a stabilized oil
  • FIG 3 represents the flow diagram of the method for estimating the overall dilution rate of the oil according to the invention
  • FIG 4 represents curves of measurements of a method of evaluation of the function linking the dilution rate of the oil by its own fractionation according to the rate of fuel introduced into the oil;
  • FIG 5 represents the detailed flow diagram of a method for estimating the total dilution rate of fuel in oil
  • FIG 6 shows a process estimation flowchart for an overall dilution rate of the oil according to the invention
  • FIG 7 represents the flow diagram of a method for estimating the optimized overall dilution rate of the oil according to the invention.
  • FIG. 1 represents an internal combustion engine 1, for example a diesel engine, of which a single cylinder has been drawn in section.
  • the engine 1 is here supercharged by a turbocharger 2, and its exhaust gases are treated by a device 3 for treating the exhaust gases.
  • the engine 1 is supplied with air by an air circuit comprising an air intake 4, a compressor 5 of the turbocharger 2, and an intake duct 6, one end of which opens into a combustion chamber 7 of the engine.
  • Chamber 7 receives at least one injector 8, which injects fuel, for example diesel, into chamber 7 for combustion with air.
  • the exhaust gases produced by combustion in the chamber 7 are discharged to a turbine 9 of the turbocharger 2 via an exhaust manifold 10.
  • the gases pass through the turbine 9, an exhaust duct 11, and the treatment device 3. They are finally evacuated to the outside atmosphere by an exhaust pipe 12.
  • the treatment device 3 comprises for example, inside the same outer envelope, an oxidation catalyst which continuously oxidizes certain pollutants (unburnt hydrocarbons HC and carbon monoxide CO) present in the exhaust gases, and a particulate filter which makes it possible to store the soot emitted by the engine 1, and to burn it when a predetermined mass is reached.
  • Two pressure sensors 13 and 14 are installed respectively at the inlet and at the outlet of the treatment device 3. The pressure drop between the inlet and the outlet of the treatment device 3 makes it possible to indirectly assess the mass of stored soot in the treatment device 3, more precisely in its particle filter.
  • the operation of the motor 1 is controlled by a computer 15 connected to a number of sensors, comprising at least the pressure sensors 13 and 14, and to a number of actuators, comprising at least the injector 8.
  • the computer 15 injects into the combustion chamber 7 a quantity of fuel corresponding to a torque setpoint.
  • This setpoint can be a function of the engine rotation speed and the depressing of the accelerator pedal (not shown) of the vehicle (not shown) on which the engine is mounted 1.
  • Fuel generally begins to be introduced before the top dead center of combustion of each cylinder of engine 1, and it's fully burned. In this operating mode, the treatment device 3 stores the soot emitted by the engine 1 but does not eliminate it.
  • the computer 15 triggers a regeneration phase of the treatment device 3 in order to burn the stock of accumulated soot. To this end, in addition to the fuel injected into the chamber 7 according to the requested torque setpoint, the computer 15 triggers a post-injection of fuel.
  • FIG. 2 illustrates the superimposition of two comparative diagrams of the distribution of the carbon chains, according to their length, of a new oil and of a stabilized oil, determined by gas chromatography.
  • Stabilized oil is a motor oil in which certain carbon chains have been broken down. The phenomenon of fractionation is favored by the dilution of fuel in the oil. During the tests, the inventors have demonstrated that the phenomenon of the proper fractionation of the carbon chain compounds of the oil by the effect of mixing with the fuel, is important at the start of the introduction of the fuel and then becomes negligible, as explained below in the comments to FIG. 4, the oil then being considered to be stabilized with respect to this phenomenon.
  • the stabilized oil diagram is shifted from the new oil diagram to the shorter carbon chains as indicated by the area D surrounded in FIG. 2.
  • FIG. 3 represents the flow diagram of the method for estimating the overall dilution rate of the oil according to the invention. It will be explained in connection with FIG. 4, and FIG. 5 which illustrates a particular, nonlimiting example of the invention, of determining the total dilution rate of the fuel in the oil T1.
  • the flow diagram represented in FIG. 3 describes the assembly between the dilution rate of the fuel in the oil T1 and the dilution rate due to the own fractionation of the oil T2, between two successive instants t n -i and t n , either for a time step dt.
  • the time difference dt corresponds, for a given instant, to the time which has elapsed between the previous calculation t and the current calculation t + dt.
  • the calculations of variation of dilution rate dT or dT1 or dT2 consequently correspond to the variations between the instants t and t + dt, separated by this time difference dt.
  • the dilution rate T2 of the oil fractionation is estimated according to a fractionation (cracking) model of the carbon-chain compounds of the oil making it possible to increment the dilution rate of the fuel T1 according to a function profile of the cumulative amount of fuel introduced into the oil, to obtain the overall dilution rate of the oil T.
  • FIG. 4 illustrates the graphical results of a specific test, corresponding to a preliminary step allowing the predetermination of the function F linking the variation of the dilution rate by fractionation of the oil to the rate of fuel introduced into the oil for an engine given.
  • the graph represents various measured or calculated rates of the evolution of the dilution of the oil of an engine, for example of the diesel engine 1, and of the rate of fuel T11 introduced into the oil over time.
  • the test provides a possible method for determining the dilution rate of the fractionation of T2 oil.
  • the overall dilution rate of the oil T is estimated by estimating the dilution rate due to the fractionation of the oil T2 according to the invention, and the dilution rate of the fuel in the oil T1 according to a known process in itself, in particular which is incremented via a fuel dilution model and is decrement via a fuel vaporization model (example in Figure 5).
  • the overall dilution rate of oil T is the sum of these two rates T1 and T2.
  • the overall dilution rate of the oil (T) is measured by taking the engine oil from a vehicle put into continuous operation over a long time, of several hours .
  • the quantity of short chains formed in the oil is determined over time (in an area similar to the dilution area D in FIG. 2).
  • the oil dilution rate is zero (new oil).
  • the analyzes are carried out by gas chromatography on oil samples taken regularly during the test, to determine the quantity of short chains formed in the oil over time. These analyzes make it possible to know the overall dilution rate of the oil T.
  • the oil cracking phenomenon is significant at the start, when fuel is introduced, and then becomes negligible, so that we can say that the function F is a bounded function whose lower bound is 0 and the upper limit is determined for a given engine operation, and oil if applicable.
  • FIG. 6 represents the flow diagram of an embodiment of the method according to the invention.
  • the method comprises an initialization step 100, during which the estimation of the overall dilution rate T (by mass) is preferably initialized after an emptying, when fresh oil has been added, to a zero value.
  • the dilution rate T2 of the oil fractionation is estimated according to an oil fractionation model (cracking of carbonaceous compounds of the oil) making it possible to increment the overall rate of dilution of the fuel T1, according to a profile which is a function of the cumulative amount of fuel introduced into the oil.
  • the instant “t” and the time step “dt” are thus the same to increment the dilution rate T2 of the fractionation of the oil as those to increment the overall dilution rate T1 of the fuel in the oil, but they could be different, the computer 15 being able to manage different times of incrementation.
  • the time difference dt between the two successive instants can be equal to a conventional calculation step of the engine computer, for example around 100 ms. Such a frequency of updating the dilution calculation is largely sufficient, the evolution of the dilution of the oil being a fairly slow phenomenon.
  • the dilution rate T1 of the fuel in oil can be estimated according to the process described in patent application FR1850608 and which is described in relation to FIG. 5.
  • Each fraction is associated with a fuel composition rate% Fi,% F2, ...,% Fx, so that the sum of these fractions corresponds to 100% of the fuel.
  • Each fraction Fi, F 2, ... F x, of fuel also has its own vaporization speed VvapoFi, V va poF2, ... V va oFx, this speed being higher the lighter the fraction (or less dense).
  • the evaporation rate of each fraction F1, F 2, ... F x is predetermined, or mapped, in advance according to the engine torque C.
  • the method comprises a test step 110, during which the computer determines whether a regeneration of the treatment device 3 is in progress, for example by checking the presence of a post-injection of fuel. The test then directs to a step 120 if no regeneration is in progress, or to a step 130 otherwise.
  • step 110 the computer also increments and stores in a counter the elapsed time dt, in other words the time step dt, or the time difference dt, since the end of the last calculation of the overall dilution rate T of l 'oil.
  • the steps 120 and 130 both have the objective of calculating a value of variation of the dilution rate of the fuel dT1, in the first case if the regeneration is in progress, and in the other case if the regeneration is not in progress. Classes.
  • step 120 corresponding to the operating mode of the engine with activated regeneration, the value of variation of the dilution rate dT1 of the fuel in the oil, also called total elementary dilution of the fuel dT1, is calculated as being the sum, for each instant t, of the sum of the elementary dilutions of the fuel dT'i, dT'2, ..., dT ' x of the plurality of fractions F1, F2, ... F x composing the fuel at each instant .
  • the elementary dilution of the fuel dT’i corresponding to the rate of change of the dilution for each fraction Fi of the fuel in the oil, between two successive instants t, t + dt; is calculated using the following equation:
  • V dü is an overall fuel dilution speed, which can be mapped as a function of engine parameters such as the rotation speed and the fuel flow rate;
  • dt designates the time difference, or no time, between two successive instants t, t + dt of calculation of the overall dilution rate T 1;
  • % j denotes the fuel composition rate of the fraction Fi
  • Vv apoFi designates the evaporation rate of the given fraction Fi.
  • the overall dilution speed of the fuel ⁇ in the context of engine operation in regeneration mode is predetermined at least as a function of the engine torque and of a value representative of the water temperature which characterizes cold or conventional operation at engine hot.
  • the dilution rate T ' is then calculated for each fraction Fi, by adding to the dilution rate T'i (t) of the instant preceding the estimation of the variation of the rate dT1 during the time step dt carried out in step 120 or 130.
  • the total elementary dilution of the fuel dT1 is firstly calculated from the elementary dilutions of the fuel dT’i of each fraction Fi as follows:
  • step 140 the variation of the fuel dilution rate dT1 calculated at time t is added to the fuel dilution rate T 1 (t) as calculated at the previous instant t, so as to obtain the current dilution rate of fuel T 1 (t + dt) for the moment t + dt.
  • step 130 in the case of the engine operating mode excluding regeneration, the steps for calculating the fuel dilution rate T 1 (t + dt), also simply written T1, are identical to the steps performed during operating in regeneration mode, and can also be carried out according to the two embodiments described above, except that it is then considered that the value of the overall dilution speed of the fuel V dü is zero.
  • the method further comprises a step 145 during which the dilution rate of the fractionation of the oil T2 is estimated at time t + dt from the data predetermined for the function F (FIG. 4).
  • the method then comprises a step 150 during which the new dilution rate of the fractionation of the oil T2 (t + dt) is added to the new dilution rate T 1 (t + dt) of the fuel in the oil, and this sum of rates which gives the new overall dilution rate of oil T (t + dt), also writes simply T, is compared with a predetermined threshold value S. If this overall dilution rate of the oil T is greater than said threshold S, the method can trigger an alert on the dashboard of the vehicle during a step 160 of the method, in order to warn the driver of the vehicle that he is necessary to drain the engine oil. Otherwise, we wait for the passage of a time step dt in step 170, before proceeding to a new calculation step by repeating the previous steps.
  • FIG. 7 illustrates an optimized flow diagram for estimating the overall dilution rate of the oil T, for which the dilution rate of the fractionation of the oil T2 is estimated as a function of the proportion of fuel introduced into the oil T11, and also by introducing corrective coefficients as a function of other motor parameters identified as influential and which are:
  • the invention is described in the context of an example of a vehicle with a pollutant treatment system using a particulate filter to be regenerated, however the invention may be suitable with other devices for treating the pollutant emissions of a engine which involve post-fuel injections without, however, using particulate filters requiring regeneration phases, but which nevertheless cause fuel to seep into the engine oil.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé d'estimation du taux de dilution global de l'huile d'un moteur à combustion interne équipé d'un dispositif de traitement des gaz de combustion nécessitant des phases de traitement par post-injection de carburant dans les cylindres du moteur, ledit procédé comprenant des étapes d'estimation du taux de dilution du carburant dans l'huile (T1), caractérisé en ce qu'il comprend en outre au moins une étape d'estimation du taux de dilution du propre fractionnement de composés carbonés de l'huile (T2) en fonction du taux de carburant introduit dans l'huile (T11), le taux de dilution global (T) de l'huile étant la somme d'au moins dudit taux de dilution du carburant dans l'huile (T1) et dudit taux de dilution dudit fractionnement de l'huile.

Description

DESCRIPTION
TITRE: Procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne
L'invention concerne un procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne, plus particulièrement d'un moteur équipé d'un dispositif de traitement des émissions polluantes nécessitant des phases de traitement par post-injection de carburant dans les cylindres du moteur.
Par l’expression « dilution globale de l’huile », on entend la quantité (masse ou taux) des différentes espèces chimiques autres que celles qui composent l’huile proprement dite d’un moteur, et qui s’accumulent dans l’huile pendant le fonctionnement du moteur.
L’invention vise en particulier à fournir un procédé d’estimation du taux de dilution globale de l’huile moteur, suivi pendant T'intervalle entre deux vidanges de l’huile du moteur, permettant de vidanger l’huile moteur au meilleur moment, lorsqu'une valeur seuil de dilution de l'huile est atteinte.
L’intervalle de vidange de l’huile d’un moteur des véhicules est un critère écologique et économique très important. Il est déterminé en fonction de la vitesse de dégradation de l’huile moteur.
La plupart des moteurs modernes sont équipés de dispositifs de traitement des gaz d'échappement, qui fonctionnent de manière séquentielle, et qui bien souvent comprennent des phases de post-injection de carburant.
Par exemple dans le cas courant des moteurs diesel équipés d'un filtre à particules, en fonctionnement normal en mélange pauvre, ces dispositifs piègent les polluants mais ne les traitent pas. Périodiquement, lorsqu'un paramètre représentatif de la quantité de polluants accumulés, par exemple la chute de pression dans le dispositif sous un débit de gaz traversant donné, atteint une valeur prédéfinie, une phase dite de régénération est déclenchée par un calculateur du moteur, au cours de laquelle les réglages du moteur sont modifiés pour traiter et éliminer les polluants. De manière connue, la régénération est généralement obtenue grâce à un apport de carburant dans le dispositif, par exemple par post-injection dans les cylindres du moteur. Des quantités de carburant sont injectées dans chaque cylindre assez longtemps après le point mort haut de combustion du cylindre pour qu'elles ne participent pas à la combustion. Ces quantités de carburant sont évacuées du moteur, lors du temps d'échappement du cylindre considéré, vers le dispositif de traitement des gaz pour le régénérer, c'est-à-dire pour le purger des polluants accumulés.
Toutefois, une fraction du carburant injecté lors des phases de régénération pénètre dans l'huile, notamment à travers les interstices entre le carter-cylindres et les pistons, et elle se dilue donc dans l'huile. La dilution du carburant dans l’huile, c'est-à-dire le taux de carburant contenu dans l'huile à chaque instant, augmente ainsi à chaque fois qu'une phase de régénération est déclenchée.
Ces modes de combustion sont donc très propices à la dilution du carburant dans l’huile moteur, et donc à la dégradation des propriétés de celle- ci. La mise sous contrôle de ce taux de dilution est essentielle pour déterminer l'intervalle de vidange de l’huile du moteur lorsqu'un seuil de dilution du carburant dans l'huile est atteint.
Dans les procédés d’estimation de la dilution de l’huile connus de l’état de la technique, on a assimilé la dilution de l’huile, ou plus précisément la dilution globale de l’huile, à la dilution du carburant dans l’huile. En d’autres termes, on a considéré jusqu’à maintenant que la seule espèce chimique diluée dans l’huile du moteur de manière significative était le carburant du moteur. Divers procédés d’estimation du taux de dilution de carburant dans l’huile d’un moteur par modélisation ont été mis au point.
On connaît, notamment par le document de brevet FR -A1 - 2 974 853, un procédé d’estimation du taux de dilution de carburant dans l’huile d’un moteur à combustion interne équipé d’un tel dispositif de traitement des gaz de combustion nécessitant des phases de régénération par post-injection de carburant, par exemple un filtre à particules. Selon ce procédé de l’art antérieur, on estime le taux de dilution en fonction du mode de fonctionnement du moteur : - lors d’une phase de régénération, la variation à la hausse de la dilution pendant un intervalle de temps considéré est calculée comme le produit d’une fonction de régénération par l’intervalle de temps considéré, cette fonction de régénération pouvant, par exemple, être cartographiée en fonction de paramètres du moteur tels que le régime et le débit de carburant,
- lors d’une phase de fonctionnement normal (autrement dit hors régénération), la variation à la baisse de la dilution pendant un intervalle de temps est calculée comme le produit de l’opposé d’une fonction d’évaporation par l’intervalle de temps considéré. Par évaporation, on entend la vaporisation du carburant dans les gaz environnant la nappe d’huile du moteur. La variation de l’évaporation entre deux instants voisins est calculée selon une loi cinétique d’ordre 1 , en tenant compte du temps écoulé depuis la fin de la dernière régénération.
Dans la demande de brevet français ayant pour numéro de dépôt FR1850608, déposée le 25 janvier 2018 par la demanderesse, on propose un procédé d’estimation du taux de dilution de carburant dans l’huile d’un moteur plus précis que le précédent, qui améliore le modèle d’évaporation en prenant en compte différentes fractions plus ou moins volatiles du carburant. Cette demande de brevet propose d’estimer le taux de dilution de carburant dans l’huile par un procédé comprenant une étape de détermination d’une vitesse de dilution globale de carburant, qui se caractérise en ce qu’au cours d’une étape préalable du procédé, on définit une pluralité de fractions de composition du carburant, chaque fraction présentant une densité différente, et, d’une manière répétée pour une succession d’instants, une estimation du taux de dilution par addition du taux de dilution estimé à l’instant précédent avec une valeur de variation du taux de dilution, cette variation du taux de dilution étant calculée en fonction d’une estimation de la variation du taux de dilution, entre deux instants successifs, de chaque fraction de la pluralité de fractions de composition du carburant.
Bien que les différents modèles de dilution de carburant dans l’huile comme par exemple ceux cités précédemment soient maintenant assez satisfaisants, la demanderesse a constaté que les mesures de dilution globale de l’huile sont supérieures aux valeurs de la seule dilution du carburant dans l’huile qui sont prédites par les modèles. La corrélation du taux de dilution global ainsi modélisé avec les mesures de dilution n'est pas encore satisfaisante.
La demanderesse a en effet réalisé des analyses en laboratoire, notamment par mesure chromatographique en phase gazeuse, de manière à comparer le spectre de l’huile neuve au spectre de l’huile en cours de fonctionnement du moteur. De telles mesures permettent de déterminer la répartition de la longueur des chaînes carbonées des différentes espèces chimiques présentes dans l’huile, et d’en déduire par différence avec le spectre de l’huile neuve le ratio de chaînes carbonées courtes présentes dans l’huile et qui ne proviennent pas de l’huile neuve.
La demanderesse a alors constaté que le ratio total de chaînes carbonées courtes est significativement supérieur au ratio des seules chaînes carbonées courtes provenant de la dilution du carburant dans l’huile tel qu’il est déterminé par les modèles existants.
Cependant, avec de tels essais, il n’est pas possible de différencier les chaînes carbonées courtes provenant du carburant dilué dans l’huile d’autres chaînes carbonées courtes.
Selon la demanderesse, une part de la dilution de l’huile provient du fractionnement de ses propres composés à chaînes carbonées. Sans vouloir être lié par une théorie, il semble que le carburant présent dans l’huile par effet de mélange accélère la décomposition d’hydrocarbures de l’huile, qui peut notamment s’expliquer par la présence de composés facilitant la génération de radicaux libres. Le carburant présent dans l’huile peut donc ainsi jouer le rôle de catalyseur dans la réaction de craquage de l’huile, et favoriser la conversion d’hydrocarbures à chaînes plus ou moins longues, notamment d’hydrocarbures saturés de l’huile, en hydrocarbures plus légers.
Comme les vidanges d’huile sont déclenchées lorsque la dilution estimée par modèle atteint un seuil, il y a un risque que la vidange soit déclenchée trop tard, quand les qualités lubrifiantes de l’huile sont plus dégradées qu’escompté, ce qui est néfaste à la fiabilité du moteur. Une solution est de prendre des marges de sécurité, mais ceci peut conduire à vidanger l’huile de moteur plus tôt que nécessaire et donc à augmenter inutilement son coût d'entretien. Par ailleurs, l’évolution des normes, notamment européennes, relatives aux émissions de polluants, contraint à l’utilisation de plus en plus intensive de modes de combustions spécifiques aux traitements des polluants.
Il est par conséquent important que la stratégie de contrôle du seuil déclenchant une vidange de l’huile de moteur, fonction du mode de fonctionnement d’un moteur, qui est embarquée dans le calculateur du véhicule, soit améliorée.
L’invention vise ainsi à proposer un procédé d’estimation de la dilution globale d’une huile moteur à combustion interne équipé d’un dispositif de traitement des gaz de combustion nécessitant des phases de traitement par post-injection de carburant dans les cylindres du moteur qui soit plus proche de la réalité, c’est-à-dire le plus approchant des mesures de dilution en conditions réelles de fonctionnement d’un moteur.
L’invention propose à cet effet un procédé d’estimation du taux de dilution global d’une huile d’un moteur à combustion interne équipé d’un dispositif de traitement des gaz de combustion nécessitant des phases de traitement par post-injection de carburant, ledit procédé comprenant au moins une étape d’estimation du taux de dilution du carburant dans l’huile, c’est-à-dire propre à la dilution quantitative du carburant présent dans l’huile, ledit procédé se caractérisant en ce qu’en outre il comprend au moins une étape d’estimation du taux de dilution du fractionnement de composés carbonés de l’huile, c’est-à-dire de la dilution de l’huile par craquage fractionnant certains de ses composés à chaînes carbonées, en fonction du taux de carburant introduit dans l’huile, le taux de dilution global de l’huile étant la somme d’au moins dudit taux de dilution du carburant dans l’huile et dudit taux de dilution dudit fractionnement de l’huile.
En particulier selon l’invention, le procédé comprend une étape d’estimation de la variation du taux de dilution dudit fractionnement de l’huile entre deux instants voisins, en fonction du taux de carburant introduit dans l’huile selon une loi cinétique d’ordre 1.
En particulier selon l’invention, ledit procédé peut comprendre une étape préalable de prédétermination d’une fonction liant la variation dudit taux de dilution par let fractionnement de l’huile au taux de carburant introduit dans l’huile, selon le mode de fonctionnement du moteur considéré. Cette détermination peut être graphique.
En particulier selon l’invention, la fonction liant la variation dudit taux de dilution par ledit fractionnement de l’huile au taux de carburant introduit dans l’huile est une fonction bornée dont la borne inférieure est égale à 0 et dont la borne supérieure dépend du mode de fonctionnement du moteur considéré.
Le procédé selon l’invention permet donc de préciser des procédés d'estimation de la dilution d’huile moteur existants en introduisant une étape d’estimation basée sur une modélisation prenant en compte les chaînes courtes carbonées diluant l’huile qui proviennent du propre fractionnement (craquage) des molécules carbonées de l’huile en présence de carburant. Ce paramètre en fonction du taux de carburant introduit dans l’huile est d’ordre 1 sur ce phénomène de craquage et permet à lui seul une modélisation suffisamment précise et robuste du phénomène pour l’estimation de la dilution de l’huile par son propre fractionnement, au cours d’un intervalle de vidange.
Selon un cas particulier de l’invention, mais non exclusivement, ledit procédé peut comprendre des étapes de détermination du taux de dilution du carburant dans l’huile comme selon la demande de brevet FR 1850608 citée plus haut.
Parmi lesdites étapes de détermination du taux de dilution du carburant dans l’huile comme selon la demande de brevet FR1850608, ledit procédé comprend une étape de détermination d’une vitesse de dilution globale du carburant dans l’huile.
Au cours d’une étape préalable des étapes de détermination du taux de dilution du carburant dans l’huile, on définit une pluralité de fractions de composition dudit carburant, chaque fraction présentant une densité différente, c’est-à-dire une volatilité plus ou moins élevée, et le procédé comprend, de manière répétée pour une succession d’instants, une estimation du taux de dilution du carburant par addition du taux de dilution du carburant estimé à l’instant précédent avec une valeur de variation du taux de dilution du carburant; la valeur de variation du taux de dilution du carburant étant calculée en fonction d’une estimation de la dilution, entre deux instants successifs, de chaque fraction de la pluralité de fractions de composition dudit carburant dans l’huile.
Avantageusement et de manière non limitative, chaque fraction de composition est associée à un taux de composition du carburant et à une vitesse de vaporisation de ladite fraction, l’estimation de la dilution de chaque fraction étant fonction de la vitesse de dilution globale du carburant, du taux de composition du carburant et de ladite vitesse de vaporisation de ladite fraction.
Avantageusement et de manière non limitative, la vitesse de vaporisation de ladite fraction est fonction du couple moteur à l’instant considéré
Préférentiellement et de manière non limitative, l’estimation de la variation du taux de dilution de chaque fraction entre deux instants successifs, est égale au produit de la vitesse de dilution globale du carburant avec le taux de composition du carburant auquel est soustrait la vitesse d’évaporation de ladite fraction, le tout multiplié par l’intervalle de temps entre les deux instants successifs.
Selon un cas particulier et de manière non limitative, le moteur est apte à fonctionner selon un mode de traitement avec post-injection de carburant, et en dehors dudit mode de traitement, ladite vitesse de dilution globale du carburant est égale à 0. Ainsi l’estimation du taux de dilution est encore plus simple à déterminer et procède d’un unique calcul commun aux deux modes de fonctionnement du moteur, avec et sans phase de traitement avec post injection de carburant.
Selon un cas particulier et de manière non limitative, le moteur étant apte à fonctionner selon un mode de traitement avec post-injection de carburant, et lors dudit mode de traitement avec post-injection de carburant, ladite vitesse de dilution globale du carburant est prédéterminée en fonction du couple moteur et d’une valeur représentative de la température d’eau du moteur. Ainsi la vitesse de dilution globale du carburant peut être obtenue de manière relativement simple et fiable.
Avantageusement et de manière non limitative, la variation du taux de dilution du carburant à chaque instant est calculée comme la somme des estimations de la dilution de chaque fraction de la pluralité de fractions de composition dudit carburant dans l’huile. Ainsi, le procédé est relativement simple, fiable, et peu coûteux en temps de calcul.
L’invention concerne aussi un dispositif d'estimation du taux de dilution globale de l’huile d'un moteur à combustion interne équipé d'un dispositif de traitement des gaz de combustion nécessitant des phases de traitement par post-injection de carburant, selon lequel on estime le taux de dilution de carburant dans l'huile en fonction du mode de fonctionnement du moteur, ledit dispositif comprenant des moyens de détermination d’une vitesse de dilution globale du carburant.
De manière particulièrement avantageuse, ledit dispositif comprend des moyens de définition d’une pluralité de fractions de composition dudit carburant, chaque fraction présentant une densité différente.
En particulier, ledit dispositif comprend des moyens adaptés pour estimer, de manière répétée pour une succession d’instants, une estimation du taux de dilution du carburant dans l’huile par addition du taux de dilution du carburant estimé à l’instant précédent avec une valeur de variation du taux de dilution du carburant ; la valeur de variation du taux de dilution du carburant étant calculée en fonction d’une estimation de la variation du taux de dilution du carburant, entre deux instants successifs, de chaque fraction de la pluralité de fractions de composition dudit carburant dans l’huile, et ledit dispositif comprend des moyens adaptés pour estimer, de manière répétée pour une succession d’instants, une estimation du taux de dilution du fractionnement de l’huile par addition du taux de dilution du fractionnement de l’huile estimé à l’instant précédent avec une valeur de variation du taux de dilution du carburant, la valeur de variation du taux de dilution du fractionnement de l’huile étant calculée en fonction d’une estimation du taux de carburant introduit dans l’huile, et en outre ledit dispositif comprend des moyens adaptés pour additionner à chaque dit instant la valeur d’estimation du taux de dilution du carburant dans l’huile et la valeur d’estimation du taux de dilution du fractionnement de l’huile, et de comparer la somme obtenue à une valeur seuil d’alerte de vidange à effectuer.
L’invention concerne aussi un ensemble moteur comprenant un moteur à combustion interne équipé d'un dispositif de traitement des gaz de combustion nécessitant des phases de traitement par post-injection de carburant et d’un dispositif d’estimation tel que décrit précédemment.
L’invention concerne aussi un véhicule automobile comprenant un ensemble moteur automobile comprenant un moteur à combustion interne équipé d'un dispositif de traitement des gaz de combustion nécessitant des phases de traitement par post-injection de carburant dans les cylindres du moteur, et d’un dispositif d’estimation de dilution de l’huile moteur d’estimation tel que décrit précédemment.
D’autres particularités et avantages de l’invention ressortiront à la lecture de la description faite ci-après d’un mode de réalisation particulier de
l’invention, donné à titre indicatif mais non limitatif, en référence aux dessins annexés pour lesquels :
[Fig 1 ] représente schématiquement un moteur à combustion interne équipé d'un dispositif de traitement des gaz d'échappement, apte à la mise en œuvre du procédé d'estimation du taux de dilution globale de l'huile selon l'invention ; [Fig 2] représente des diagrammes comparatifs de la répartition des chaînes carbonées d’une huile neuve et d’une huile stabilisée ;
[Fig 3] représente le logigramme du procédé d'estimation du taux de dilution globale de l'huile selon l'invention;
[Fig 4] représente des courbes de mesures d’une méthode d’évaluation de la fonction liant le taux de dilution de l’huile par son propre fractionnement en fonction du taux de carburant introduit dans l’huile;
[Fig 5] représente le logigramme détaillé d’un procédé d'estimation du taux de dilution total du carburant dans l'huile ;
[Fig 6] représente un logigramme d’estimation du procédé pour un taux de dilution globale de l'huile selon l’invention ;
[Fig 7] représente le logigramme d’un procédé d'estimation du taux optimisé de dilution globale de l'huile selon l'invention.
La figure 1 représente un moteur à combustion interne 1 , par exemple un moteur diesel, dont un seul cylindre a été dessiné en coupe. Le moteur 1 est ici suralimenté par un turbocompresseur 2, et ses gaz d'échappement sont traités par un dispositif de traitement 3 des gaz d'échappement. Le moteur 1 est alimenté en air par un circuit d'air comprenant une prise d'air 4, un compresseur 5 du turbocompresseur 2, et un conduit d'admission 6 dont une extrémité débouche dans une chambre de combustion 7 du moteur. La chambre 7 reçoit au moins un injecteur 8, qui injecte du carburant, par exemple du gazole, dans la chambre 7 pour sa combustion avec l'air.
Les gaz d'échappement produits par la combustion dans la chambre 7 sont évacués vers une turbine 9 du turbocompresseur 2 par l'intermédiaire d'un collecteur d'échappement 10. Les gaz traversent la turbine 9, un conduit d'échappement 11 , et le dispositif de traitement 3. Ils sont finalement évacués vers l'atmosphère extérieure par un pot d'échappement 12.
Le dispositif de traitement 3 comprend par exemple, à l'intérieur d'une même enveloppe extérieure, un catalyseur d’oxydation qui oxyde de manière continue certains polluants (hydrocarbures imbrûlés HC et monoxyde de carbone CO) présents dans les gaz d'échappement, et un filtre à particules qui permet de stocker les suies émises par le moteur 1 , et de les brûler quand une masse prédéterminée est atteinte. Deux capteurs de pression 13 et 14 sont implantés respectivement à l'entrée et à la sortie du dispositif de traitement 3. La chute de pression entre l'entrée et la sortie du dispositif de traitement 3 permet d'évaluer indirectement la masse de suies stockées dans le dispositif de traitement 3, plus précisément dans son filtre à particules.
De manière connue en soi, le fonctionnement du moteur 1 est piloté par un calculateur 15 relié à un certain nombre de capteurs, comprenant au moins les capteurs de pression 13 et 14, et à un certain nombre d'actionneurs, comprenant au moins l'injecteur 8.
En fonctionnement normal du moteur en mélange pauvre, c'est-à-dire en dehors des phases de régénération du filtre à particules, le calculateur 15 injecte dans la chambre de combustion 7 une quantité de carburant correspondant à une consigne de couple. Cette consigne peut être une fonction du régime de rotation du moteur et de l'enfoncement de la pédale d'accélérateur (non-représentée) du véhicule (non-représenté) sur lequel est monté le moteur 1. Le carburant commence généralement à être introduit avant le point mort haut de combustion de chaque cylindre du moteur 1 , et il est entièrement brûlé. Dans ce mode de fonctionnement, le dispositif de traitement 3 stocke les suies émises par le moteur 1 mais ne les élimine pas.
Lorsque la différence de pression mesurée par les capteurs 13 et 14 atteint un seuil prédéterminé, le calculateur 15 déclenche une phase de régénération du dispositif de traitement 3 afin de brûler le stock de suies accumulées. A cet effet, en complément du carburant injecté dans la chambre 7 suivant la consigne de couple demandée, le calculateur 15 déclenche une post-injection de carburant.
Plus précisément, il injecte dans la chambre 7, assez longtemps après le point mort haut de chaque cylindre, une quantité de carburant qui ne participe pas à la combustion, c'est-à-dire qu'elle n'est pas brûlée pour produire un couple moteur. Cette quantité de carburant est évacuée presque en totalité dans le collecteur d'échappement 10, vers le dispositif de traitement 3 où elle brûle les suies qui y sont stockées.
Toutefois une petite partie du carburant injecté tardivement dans le cylindre pénètre et se dilue dans l'huile du moteur, notamment dans le film d'huile qui lubrifie les parois des cylindres du moteur 1 , et à travers les interstices entre les pistons et les cylindres du moteur 1.
La figure 2 illustre la superposition de deux diagrammes comparatifs de la répartition des chaînes carbonées, selon leur longueur, d’une huile neuve et d’une huile stabilisée, déterminés par chromatographie en phase gazeuse. L’huile stabilisée est une huile moteur dont certaines chaînes carbonées ont été fractionnées. Le phénomène de fractionnement est favorisé par la dilution de carburant dans l’huile.. Lors des essais, les inventeurs ont mis en évidence que le phénomène du propre fractionnement des composés à chaînes carbonées de l’huile par effet de mélange avec le carburant, est important au début de l’introduction du carburant puis devient négligeable, comme expliqué plus loin en commentaires de la figure 4, l’huile étant alors considérée comme stabilisée par rapport à ce phénomène.
Le diagramme de l’huile stabilisée est décalé du diagramme de l’huile neuve vers les chaînes carbonées plus courtes comme indiqué par la zone D entourée sur la figure 2. Une comparaison avec le diagramme des chaînes carbonées du carburant neuf (non représenté), qui comprend aussi des chaînes carbonées plus courtes que celles de l’huile neuve, indique que cette dilution globale de l’huile ne provient pas seulement du carburant.
La figure 3 représente le logigramme du procédé d'estimation du taux de dilution globale de l'huile selon l'invention. Elle va être expliquée en liaison avec la figure 4, et la figure 5 qui illustre un exemple particulier, non limitatif de l’invention, de détermination du taux de dilution total du carburant dans l’huile T1.
Le logigramme représenté en figure 3, décrit l’assemblage entre le taux de dilution du carburant dans l’huile T1 et le taux de dilution dû au propre fractionnement de l’huile T2, entre deux instants successifs tn-i et tn, soit pendant un pas de temps dt.
Autrement dit, l’écart de temps dt correspond, pour un instant donné, au temps qui s’est écoulé entre le calcul précédent t et le calcul actuel t+dt. Les calculs de variation de taux de dilution dT ou dT1 ou dT2, correspondent par conséquent aux variations entre les instants t et t+dt, séparés par cet écart de temps dt.
Selon l’invention, on estime le taux de dilution T2 du fractionnement de l’huile suivant un modèle de fractionnement (craquage) des composés à chaînes carbonées de l'huile permettant d'incrémenter le taux de dilution du carburant T1 selon un profil fonction du cumul de la quantité de carburant introduite dans l'huile, pour obtenir le taux de dilution global de l’huile T.
La figure 4 illustre les résultats graphiques d’un essai spécifique, correspondant à une étape préalable permettant la prédétermination de la fonction F liant la variation du taux de dilution par fractionnement de l’huile au taux de carburant introduit dans l’huile pour un moteur donné. Le graphe représente divers taux mesurés ou calculés de l'évolution de la dilution de l'huile d’un moteur, par exemple du moteur diesel 1 , et du taux de carburant T11 introduit dans l’huile au cours du temps. L’essai donne une méthode possible pour déterminer le taux de dilution du fractionnement de l’huile T2.
L’estimation du taux de dilution global de l’huile T est réalisée en estimant le taux de dilution dû au fractionnement de l’huile T2 selon l’invention, et le taux de dilution du carburant dans l’huile T1 selon un procédé connu en soi, en particulier qui s'incrémente via un modèle de dilution du carburant et se décrémente via un modèle de vaporisation du carburant (exemple en figure 5). Le taux de dilution global de l’huile T est la somme de ces deux taux T1 et T2.
Selon l’essai spécifique en relation avec la figure 4, le taux de dilution globale de l’huile (T) est mesuré par prélèvement de l’huile de moteur d’un véhicule mis en fonctionnement continu sur un temps long, de plusieurs heures. Par chromatographie en phase gazeuse, on détermine la quantité de chaînes courtes formées dans l’huile au cours du temps (dans une zone similaire à la zone de dilution D de la figure 2). Au temps initial des mesures, le taux de dilution de l’huile est zéro (huile neuve).
Ledit essai spécifique sur véhicule est réalisé dans les conditions spécifiques suivantes :
- Vitesse d’introduction de carburant (ici du gasoil) dans l’huile (dT11/dt), notée par simplification dT 11 , constante ;
- Vitesse de vaporisation du carburant présent dans l’huile (dT12/dt) , notée par simplification dT12, nulle, en d’autres termes il n’y pas d’évaporation du carburant dans l’huile ;
Ces deux spécificités permettent d’obtenir que le taux de carburant introduit dans l’huile soit égal au taux de dilution du carburant dans l’huile, et soit égal à une constante (T11 =T1 = constante) .
Les analyses sont réalisées par chromatographie en phase gazeuse sur des échantillons d’huile prélevés régulièrement pendant l’essai, pour déterminer la quantité de chaînes courtes formées dans l’huile au cours du temps. Ces analyses permettent de connaître le taux de dilution global de l’huile T.
De ces essais, et selon la représentation en figure 4, on observe que la dilution globale de l’huile (taux T) en fonction du temps, et donc de la quantité de carburant introduit dans l’huile (T11 ), est un phénomène rapide non linéaire en première partie (partie 1 ), pour ensuite en deuxième partie (partie 2) évoluer plus lentement et linéairement.
On en déduit que le taux de dilution dû au fractionnement de l’huile T2 n’est actif que durant la première partie (partie 1 ) de l’essai (temps de « rodage » de l’huile : fractionnement des chaînes carbonées « fragiles » (double liaisons C-C ... )), et devient négligeable en seconde partie (partie 2) pour aboutir à une huile stabilisée par rapport à ce phénomène de craquage. La relation d’égalité entre la variation du taux de dilution du carburant dans l’huile et la vitesse d’introduction de carburant dans l’huile (dT1 = dT11 ) peut donc être déterminée sur la seconde partie de l’essai par mesure de la pente de la droite (partie 2) du taux de dilution global T.
Une fois que la variation du taux de dilution de carburant dans l’huile dT1 pendant le temps dt est connu (dT1 assimilable par simplification d’écriture à la vitesse de dilution de l’huile par le carburant), les analyses nous fournissant le taux de dilution global de l’huile T, la seule inconnue restante est la fonction « F » de la relation entre la vitesse de dilution de l’huile, par son propre fractionnement dT2/dt, notée dT2 par simplification, soit la variation du taux de dilution du fractionnement pendant un pas de temps dt, et le taux de carburant introduit dans l’huile T11 , soit dT2 = F (T 11 ), que l’on peut alors résoudre.
Comme indiqué plus haut, le phénomène de craquage de l’huile est important au départ, lors de l’introduction de carburant, puis devient négligeable, de sorte que l’on peut dire que la fonction F est une fonction bornée dont la borne inférieure est 0 et la borne supérieure est déterminée pour un fonctionnement de moteur donné, et d’huile le cas échéant.
La figure 6 représente le logigramme d'un mode de réalisation du procédé selon l'invention.
Le procédé comprend une étape d'initialisation 100, lors de laquelle l'estimation du taux de dilution global T (en masse) est initialisée de préférence après une vidange, quand on vient de mettre de l’huile neuve, à une valeur nulle.
Comme indiqué plus haut, on estime le taux de dilution T2 du fractionnement de l’huile suivant un modèle de fractionnement de l'huile (craquage de composés carbonés de l’huile) permettant d'incrémenter le taux global de dilution du carburant T1 , selon un profil fonction du cumul de la quantité de carburant introduite dans l'huile.
Selon l’exemple non limitatif, par simplification, l’instant « t » et le pas de temps « dt » sont ainsi les mêmes pour incrémenter le taux de dilution T2 du fractionnement de l’huile que ceux pour incrémenter le taux global de dilution T1 du carburant dans l’huile, mais ils pourraient être différents, le calculateur 15 étant aptes à gérer des temps différents d’incrémentation. L’écart de temps dt, entre les deux instants successifs peut être égal à un pas de calcul classique du calculateur du moteur, par exemple environ 100 ms. Une telle fréquence de la mise à jour du calcul de la dilution est largement suffisante, l’évolution de la dilution de l’huile étant un phénomène assez lent.
Selon l’exemple, non limitatif du procédé, on peut estimer le taux de dilution T1 du carburant dans l’huile selon le procédé décrit dans la demande de brevet FR1850608 et qui est décrit en relation avec la figure 5.
Dans une étape préalable, a été définie une pluralité de fractions de composition dudit carburant, chaque fraction présentant une densité différente des autres, c’est-à-dire une légèreté différente.
Chaque fraction est associée à un taux de composition du carburant %Fi, %F2, ... , %Fx, de sorte que la somme de ces fractions corresponde à 100% du carburant.
Chaque fraction Fi, F 2, ... Fx, de carburant a aussi une vitesse de vaporisation propre VvapoFi , VvapoF2, ... Vva oFx, cette vitesse étant d’autant plus élevée que la fraction est légère (ou moins dense).
En particulier, la prise en compte des quatre fractions principales, en termes de taux de composition du carburant, suffit à obtenir une modélisation satisfaisante du taux de dilution du carburant dans l’huile. Ceci permet en particulier de réduire de manière importante les calculs nécessaires tout en assurant une estimation satisfaisante. Cependant, il est parfaitement possible de prendre plus ou moins de fractions en compte selon les besoins de rapidité et/ou de précision.
La vitesse d’évaporation de chaque fraction F1, F 2, ... Fx est prédéterminée, ou cartographiée, à l’avance en fonction du couple moteur C.
Le procédé comprend une étape de test 110, au cours de laquelle le calculateur détermine si une régénération du dispositif de traitement 3 est en cours, par exemple en vérifiant la présence d'une post-injection de carburant. Le test oriente alors vers une étape 120 si aucune régénération n'est en cours, ou vers une étape 130 dans le cas contraire.
A l’étape 110, le calculateur incrémente et mémorise également dans un compteur le temps écoulé dt, autrement dit le pas de temps dt, ou l’écart de temps dt, depuis la fin du dernier calcul du taux global de dilution T de l’huile. Les étapes 120 et 130 ont toutes les deux pour objectif de calculer une valeur de variation du taux de dilution du carburant dT1 , dans le premier cas si la régénération est en cours, et dans l’autre cas si la régénération n’est pas en cours.
Dans le cas de l’étape 120, correspondant au mode de fonctionnement du moteur avec régénération activée, on calcule la valeur de variation du taux de dilution dT1 du carburant dans l’huile, aussi appelée dilution élémentaire totale du carburant dT1 , comme étant la somme, pour chaque instant t, de la somme de dilutions élémentaire du carburant dT’i, dT’2, ... ,dT’x de la pluralité de fractions F1, F2, ... Fx composant le carburant à chaque instant.
La dilution élémentaire du carburant dT’i, correspondant au taux de variation de la dilution pour chaque fraction Fi du carburant dans l’huile, entre deux instants successifs t, t+dt ; est calculée selon l’équation suivante :
[Math 1 ]
Figure imgf000018_0001
équation que l’on peut factoriser sous la forme :
[Math 2]
T'i = ( Vdil * % j— VVapoFi)dt )
dans lesquelles :
V est une vitesse de dilution globale du carburant, pouvant être cartographiée en fonction de paramètres de moteur tels que le régime de rotation et le débit de carburant ;
dt désigne l’écart de temps, ou pas de temps, entre deux instants successifs t, t+dt de calcul du taux global de dilution T 1 ;
% j désigne le taux de composition du carburant de la fraction Fi; et
VvapoFi désigne la vitesse d’évaporation de la fraction Fi donnée.
La vitesse de dilution globale du carburant \ dans le cadre du fonctionnement moteur en mode de régénération, est prédéterminée au moins en fonction du couple moteur et d’une valeur représentative de la température de l’eau qui caractérise le fonctionnement à froid ou classique à chaud du moteur.
Selon un premier mode de réalisation de l’invention, on calcule alors pour chaque fraction Fi, le taux de dilution T’, en ajoutant au taux de dilution T’i(t) de l’instant précédent l'estimation de la variation du taux dT1 pendant le pas de temps dt réalisée à l'étape 120 ou 130.
Le taux de dilution du carburant T1 (t+dt), aussi écrit T1 , pour l’instant suivant t+dt étant alors calculé comme la somme des taux de dilution de chaque fraction :
[Math 3]
Figure imgf000019_0001
Selon un deuxième mode de réalisation, on calcule tout d’abord la dilution élémentaire totale du carburant dT1 à partir des dilutions élémentaires du carburant dT’i de chaque fraction Fi comme suit :
[Math 4]
dTl = å?=1 dT'i
Puis on ajoute à l’étape 140 la variation du taux de dilution du carburant dT1 calculée à l’instant t, au taux de dilution du carburant T 1 (t) tel que calculé à l’instant précédent t, de sorte à obtenir le taux de dilution actuel du carburant T 1 (t+dt) pour l’instant t+dt.
Au cours de l'étape 130, dans le cas du mode de fonctionnement du moteur hors régénération, les étapes de calcul du taux de dilution du carburant T 1 (t+dt), aussi écrit simplement T1 , sont identiques aux étapes effectuées lors du fonctionnement en mode de régénération, et peut aussi être effectué selon les deux modes de réalisation décrits précédemment, sauf qu’on considère alors que la valeur de vitesse de dilution globale du carburant V est nulle.
De sorte que l’équation Mathl pour le cas de l’étape 130 peut être écrite comme suit :
[Math 1 ]
dT'i =— VvapoFi * dt
Le procédé comprend en outre une étape 145 au cours de laquelle le taux de dilution du fractionnement de l’huile T2 est estimé au temps t+dt à partir des données prédéterminées pour la fonction F (figure 4).
Le procédé comprend ensuite une étape 150 au cours de laquelle le nouveau taux de dilution du fractionnement de l’huile T2(t+dt), est ajouté au nouveau taux de dilution T 1 (t+dt) du carburant dans l’huile, et cette somme de taux qui donne le nouveau taux de dilution global de l’huile T(t+dt), écrit aussi simplement T, est comparée à une valeur seuil S prédéterminée. Si ce taux de dilution global de l’huile T est supérieur audit seuil S, le procédé peut déclencher une alerte au tableau de bord du véhicule au cours d'une étape 160 du procédé, afin de prévenir le conducteur du véhicule qu'il est nécessaire de vidanger l'huile du moteur. Dans le cas contraire, on attend l'écoulement d'un pas de temps dt à l'étape 170, avant de procéder à un nouveau pas de calcul en reprenant les étapes précédentes.
Dans le cadre de l’exemple non limitatif de l’invention, on peut ainsi déterminer de manière fiable et rapide le taux de dilution global de l’huile d’un moteur, que ce moteur fonctionne en phase de régénération ou non.
La figure 7 illustre un logigramme optimisé d’estimation du taux de dilution global de l’huile T , pour lequel le taux de dilution du fractionnement de l’huile T2 est estimé en fonction de la proportion de carburant introduit dans l’huile T11 , et aussi en introduisant des coefficients correctifs fonction d’autres paramètres moteurs identifiés comme influents et qui sont :
- un coefficient correctif C21 fonction « f » de la pression dans le carter d’huile et de la pression dans le circuit d’huile,
- un coefficient correctif C22 fonction « g » de la température de l’huile ,
- un coefficient correctif C23 fonction « h » du brassage de l’huile lié au régime du moteur, et du brassage de l’huile lié au cumul de tours moteur.
L’invention est décrite dans le cadre d’un exemple d’un véhicule avec un système de traitement des polluants utilisant un filtre à particules à régénérer, toutefois l’invention peut convenir avec d’autres dispositifs de traitement des émissions polluantes d’un moteur qui impliquent des post-injections de carburant sans toutefois utiliser de filtres à particules nécessitant de phases de régénération, mais qui entraînent néanmoins des infiltrations de carburant dans l’huile du moteur.

Claims

REVENDICATIONS
[Revendication 1 ] Procédé d'estimation du taux de dilution global (T) de l'huile d'un moteur (1 ) à combustion interne équipé d'un dispositif de traitement (3) des gaz de combustion nécessitant des phases de traitement par post-injection de carburant dans les cylindres du moteur, ledit procédé comprenant au moins une étape d'estimation du taux de dilution du carburant dans l’huile (T1 ), caractérisé en ce qu’il comprend en outre au moins une étape d’estimation du taux de dilution du fractionnement de composés carbonés de l’huile (T2) en fonction du taux de carburant introduit dans l’huile (T11 ), le taux de dilution global (T) de l’huile étant la somme d’au moins dudit taux de dilution du carburant dans l’huile (T1 ) et dudit taux de dilution dudit fractionnement de l’huile (T2).
[Revendication 2] Procédé d'estimation selon la revendication 1 , caractérisé en ce qu’il comprend une étape d’estimation de la variation dudit taux de dilution par fractionnement de l’huile (dT2) entre deux instants voisins, en fonction du taux de carburant introduit dans l’huile (T11 ) selon une loi cinétique d’ordre 1.
[Revendication 3] Procédé d'estimation selon l’une des revendications
1 à 2, caractérisé en ce qu’il comprend une étape préalable de prédétermination d’une fonction (F) liant la variation dudit taux de dilution par ledit fractionnement de l’huile (dT2) au taux de carburant introduit dans l’huile (T11 ), selon le mode de fonctionnement du moteur considéré.
[Revendication 4] Procédé d'estimation selon l’une des revendications
2 à 3, caractérisé en ce que la fonction (F) liant la variation dudit taux de dilution par ledit fractionnement de l’huile (dT2) au taux de carburant introduit dans l’huile (T11 ) est une fonction bornée dont la borne inférieure est égale à 0 et dont la borne supérieure dépend du mode de fonctionnement du moteur considéré.
[Revendication 5] Procédé d'estimation selon l’une des revendications 1 à 4, caractérisé en ce qu’il comprend en une étape de détermination d’une vitesse de dilution globale du carburant (Vdil) dans l’huile.
[Revendication 6] Procédé d'estimation selon la revendication 5,
caractérisé en ce qu’au cours d’une étape préalable des étapes de détermination du taux de dilution du carburant dans l’huile, on définit une pluralité de fractions (F1 , F2, ... Fx) de composition dudit carburant, chaque fraction (Fi) présentant une densité différente, et en ce que le procédé comprend, de manière répétée pour une succession d’instants (t, t+dt), une estimation du taux de dilution du carburant (T1 ) par addition du taux de dilution du carburant (T 1 (t)) estimé à l’instant précédent avec une valeur de variation du taux de dilution (dT 1 ), la valeur de variation du taux de dilution du carburant (dT1 ) étant calculée en fonction d’une estimation de la variation du taux de dilution (dT’i), entre deux instants successifs (t, t+dt), de chaque fraction (Fi) de la pluralité de fractions (F 1 , F2, ... Fx) de composition dudit carburant dans l’huile.
[Revendication 7] Procédé d'estimation selon la revendication 6, caractérisé en ce que chaque fraction (Fi) de composition est associée à un taux de composition (%Fi) du carburant et à une vitesse de vaporisation (VvapFi) de ladite fraction (Fi), l’estimation de la dilution (T’i) de chaque fraction de carburant (Fi) étant fonction de la vitesse de dilution globale du carburant (Vdil), du taux de composition (%Fi) du carburant et de ladite vitesse de vaporisation (VvapFi) de ladite fraction.
[Revendication 8] Procédé d'estimation selon la revendication 7,
caractérisé en ce que la vitesse de vaporisation (VVapFi) de ladite fraction (Fi) est fonction du couple moteur (C) à l’instant (t) considéré.
[Revendication 9] Procédé d'estimation selon la revendication 7 ou 8, caractérisé en ce que l’estimation de la variation du taux de dilution (dT’i) de chaque fraction de carburant (Fi) entre deux instants successifs (t, t+dt) est égale au produit de la vitesse de dilution globale (Vdil) avec le taux (%Fi) de composition du carburant auquel est soustrait la vitesse de vaporisation (VvapFi) de ladite fraction (Fi), le tout multiplié par l’intervalle de temps (dt) entre les deux instants successifs.
[Revendication 10] Procédé d'estimation selon l’une quelconque des revendications 5 à 9, caractérisé en ce que la variation du taux de dilution total du carburant (dT1 ) à chaque instant (t, t+dt) est calculée comme la somme des estimations de variation du taux de dilution (dT’i) de chaque fraction (Fi) de la pluralité de fractions (F1 , F2, ... Fx) de composition dudit carburant dans l’huile.
[Revendication 11 ] Dispositif d'estimation du taux de dilution global (T) de l'huile d'un moteur (1 ) à combustion interne équipé d'un dispositif de traitement (3) des gaz de combustion nécessitant des phases de traitement par post-injection de carburant dans les cylindres du moteur, selon lequel on estime le taux de dilution de carburant dans l'huile (T1 ) en fonction du mode de fonctionnement du moteur, caractérisé en ce que ledit dispositif comprend des moyens de détermination d’une vitesse de dilution globale du carburant dans l’huile (Vdil), et des moyens de définition d’une pluralité de fractions (F1 , F2, ... Fx) de composition dudit carburant, chaque fraction (Fi) présentant une densité différente , et en ce que le dispositif comprend des moyens adaptés pour estimer, de manière répétée pour une succession d’instants (t, t+dt), une estimation du taux de dilution du carburant dans l’huile (T1 ) par addition du taux de dilution (T 1 (t)) estimé à l’instant précédent avec une valeur de variation du taux de dilution (dT1 ) , la valeur de variation du taux de dilution du carburant (dT1 ) étant calculée en fonction d’une estimation de la variation du taux de dilution (dT’i), entre deux instants successifs (t, t+dt), de chaque fraction (Fi) de la pluralité de fractions (F1 , F2, ... Fx) de composition dudit carburant dans l’huile, et en ce que ledit dispositif comprend en outre des moyens adaptés pour estimer, de manière répétée pour une succession d’instants (t, t+dt), une estimation du taux de dilution du fractionnement de l’huile (T2) par addition du taux de dilution(T2(t)) estimé à l’instant précédent avec une valeur de variation du taux de dilution (dT2), la valeur de variation du taux de dilution du fractionnement de l’huile étant calculée en fonction d’une estimation du taux de carburant introduit dans l’huile (T11 ), et en outre ledit dispositif comprend des moyens adaptés pour additionner à chaque dit instant la valeur d’estimation du taux de dilution du carburant dans l’huile (T1 ) et la valeur d’estimation du taux de dilution du fractionnement de l’huile (t2), et de comparer la somme obtenue (T) à une valeur seuil (S) d’alerte de vidange à effectuer.
[Revendication 12] Véhicule automobile comprenant un moteur à
combustion interne équipé d'un dispositif de traitement (3) des gaz de combustion nécessitant des phases de traitement par post-injection de carburant dans les cylindres du moteur, et d’un dispositif d’estimation du taux de dilution global de l’huile moteur (T) selon la revendication 11.
PCT/EP2019/085837 2018-12-27 2019-12-18 Procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne WO2020136047A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19818176.0A EP3902990B1 (fr) 2018-12-27 2019-12-18 Procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1874220A FR3091312B1 (fr) 2018-12-27 2018-12-27 Procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne
FR1874220 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020136047A1 true WO2020136047A1 (fr) 2020-07-02

Family

ID=67587802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/085837 WO2020136047A1 (fr) 2018-12-27 2019-12-18 Procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne

Country Status (3)

Country Link
EP (1) EP3902990B1 (fr)
FR (1) FR3091312B1 (fr)
WO (1) WO2020136047A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040099252A1 (en) * 2002-10-17 2004-05-27 Nissan Motor Co., Ltd. Estimation of oil-diluting fuel quantity of engine
EP2520785A2 (fr) * 2011-05-06 2012-11-07 Renault S.A.S. Procedé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne
US20150292418A1 (en) * 2012-10-15 2015-10-15 Continental Automotive Gmbh Modeling Oil Dilution Using A Multicomponent Model
US20160274073A1 (en) * 2015-03-19 2016-09-22 Ford Global Technologies, Llc Method and system for an oxygen sensor
US20170102308A1 (en) * 2015-10-07 2017-04-13 Logilube, LLC Fluid Monitoring and Management Devices, Fluid Monitoring and Management Systems, and Fluid Monitoring and Management Methods
US20180299375A1 (en) * 2015-04-27 2018-10-18 Virtual Fluid Monitoring Services LLC Fluid analysis and monitoring using optical spectroscopy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040099252A1 (en) * 2002-10-17 2004-05-27 Nissan Motor Co., Ltd. Estimation of oil-diluting fuel quantity of engine
EP2520785A2 (fr) * 2011-05-06 2012-11-07 Renault S.A.S. Procedé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne
FR2974853A1 (fr) 2011-05-06 2012-11-09 Renault Sa Procede d'estimation de la dilution du carburant dans l'huile d'un moteur a combustion interne
US20150292418A1 (en) * 2012-10-15 2015-10-15 Continental Automotive Gmbh Modeling Oil Dilution Using A Multicomponent Model
US20160274073A1 (en) * 2015-03-19 2016-09-22 Ford Global Technologies, Llc Method and system for an oxygen sensor
US20180299375A1 (en) * 2015-04-27 2018-10-18 Virtual Fluid Monitoring Services LLC Fluid analysis and monitoring using optical spectroscopy
US20170102308A1 (en) * 2015-10-07 2017-04-13 Logilube, LLC Fluid Monitoring and Management Devices, Fluid Monitoring and Management Systems, and Fluid Monitoring and Management Methods

Also Published As

Publication number Publication date
FR3091312B1 (fr) 2020-12-04
EP3902990A1 (fr) 2021-11-03
FR3091312A1 (fr) 2020-07-03
EP3902990B1 (fr) 2022-12-07

Similar Documents

Publication Publication Date Title
EP2520785B1 (fr) Procedé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne
EP1103702B1 (fr) Procédé de gestion du fonctionnement d'un filtre à particules et d'un moteur à combustion interne
EP3902990B1 (fr) Procédé d'estimation de la dilution globale de l'huile d'un moteur à combustion interne
FR2993315A1 (fr) Procede de diagnostic d'un systeme de post-traitement traitant les hydrocarbures, dispositif, support d'enregistrement, programme informatique et vehicule associes audit procede de diagnostic
FR2970045A1 (fr) Procede de commande d'un moteur garantissant une dilution de gazole maximum a la revision
EP3743603B1 (fr) Procédé d'estimation de la dilution du carburant dans l'huile d'un moteur à combustion interne
FR3029974A1 (fr) Procede de purge d'un piege a oxydes d'azote et dispositif de motorisation associe
FR2877392A1 (fr) Dispositif de controle de l'etat de fonctionnement d'un convertisseur catalytique d'une ligne d'echappement d'un moteur a combustion interne et moteur comprenant un tel dispositif
FR2905421A1 (fr) Procede et appareil de commande pour gerer un moteur diesel.
EP1413720B1 (fr) Procédé de détermination de la température interne d'un filtre à particules, procédé de commande de la génération du filtre à particules, système de commande et filtre à particules correspondant
FR3028044A1 (fr) Procede de validation d’une huile moteur ou d’un element d’un moteur thermique suralimente
FR2878566A1 (fr) Procede et dispositif d'arret d'une phase de regeneration de filtre a particules de moteur diesel de vehicule automobile
WO2018007702A1 (fr) Procede d'adaptation d'une estimation d'une vitesse de combustion des suies d'un filtre a particules de moteur thermique
FR2930968A1 (fr) Procede de regeneration d'un systeme de post traitement par fractionnement de la richesse.
FR2943095A1 (fr) Procede de regeneration d'un filtre a particules
EP2299094A1 (fr) Procédé de commande d'un moteur diesel suralimenté à recirculation de gaz d'échappement à basse pression
FR2916229A1 (fr) Procede de controle des emissions polluantes d'un moteur diesel
FR2937373A1 (fr) Procede d'estimation du vieillissement d'un lubrifiant.
FR3122902A1 (fr) Procédé de pilotage d’un moteur à combustion interne
WO2019229021A1 (fr) Système et procédé d'estimation de la quantité de particules polluantes dans l'huile moteur d'un moteur à combustion interne de type diesel
FR3028037B1 (fr) Procede de qualification d’une huile de lubrification.
EP1987238B1 (fr) Procede et dispositif de regeneration du filtre a particules d'un moteur a combustion interne du type diesel, pendant les phases de ralenti
FR3055361A1 (fr) Procede de regeneration d'un filtre a particules avec intervalles de suppression de post-injections de carburant
FR2943382A1 (fr) Procede de gestion d'un piege a oxydes d'azote et dispositif de piege associe
FR3066543A3 (fr) Procede de purge d'un piege a oxydes d'azote d'un moteur a combustion interne et dispositif de motorisation associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019818176

Country of ref document: EP

Effective date: 20210727