WO2020135854A1 - 一种配置方法及控制器 - Google Patents

一种配置方法及控制器 Download PDF

Info

Publication number
WO2020135854A1
WO2020135854A1 PCT/CN2019/129772 CN2019129772W WO2020135854A1 WO 2020135854 A1 WO2020135854 A1 WO 2020135854A1 CN 2019129772 W CN2019129772 W CN 2019129772W WO 2020135854 A1 WO2020135854 A1 WO 2020135854A1
Authority
WO
WIPO (PCT)
Prior art keywords
service flow
network device
address
message
destination
Prior art date
Application number
PCT/CN2019/129772
Other languages
English (en)
French (fr)
Inventor
孙春霞
张耀坤
王海林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19903310.1A priority Critical patent/EP3893542A4/en
Publication of WO2020135854A1 publication Critical patent/WO2020135854A1/zh
Priority to US17/360,926 priority patent/US11838846B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2483Traffic characterised by specific attributes, e.g. priority or QoS involving identification of individual flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/10Mapping addresses of different types
    • H04L61/103Mapping addresses of different types across network layers, e.g. resolution of network layer into physical layer addresses or address resolution protocol [ARP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0864Round trip delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/12Interfaces between hierarchically different network devices between access points and access point controllers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This application relates to the field of communication technology, and in particular, to a configuration method and controller.
  • the fifth generation of mobile communication technology (the 5th Generation, mobile, communication, technology, 5G) scheme of the Internet Protocol Radio (Internet Protocol, Radio Access Network, IP for short) uses two-way active measurement protocol (Two-Way Active Measurement) Protocol, Performance monitoring technologies such as TWAMP) measure the fourth-generation mobile communication technology (the 4th Generation, mobile communication, 4G) / 5G service delay, jitter and packet loss rate and other performance indicators, need to cover S1 business and X2 business two wireless Business performance indicators.
  • Two-Way Active Measurement Performance monitoring technologies such as TWAMP
  • the data service flow related to the X2 service may be referred to simply as the X2 service flow, usually referring to the service flow from the base station to another base station.
  • the physical distance between the base stations is relatively short, and there may be X2 service flows.
  • the flow direction of the service flow between the base station (eNB) and another base station is indicated by a dotted arrow.
  • the inbound network device of the service flow in the IP RAN network may be a CSG, and the outbound network device may be another CSG. .
  • TWAMP detection for X2 services. If TWAMP detection is deployed between all CSGs, due to the limited number of neighboring base stations of a base station, it is impossible to have X2 services with all base stations, so a CSG will only have X2 services with a small number of CSGs, but not with most CSGs. X2 business. Therefore, deploying TWAMP detection between all CSGs will cause a lot of redundant invalid configurations. Moreover, the CSG's TWAMP capacity is limited, and the redundant configuration will also pose a challenge to the device capacity.
  • the technical problem to be solved by the embodiments of the present application is to provide a configuration method and a controller based on TWAMP detection to solve the problem that X2 business TWAMP detection cannot be accurately configured and improve the efficiency of TWAMP detection.
  • the embodiments of the present application provide a configuration method, which is applied to a network that uses the bidirectional active measurement protocol TWAMP for detection, and may include:
  • the controller receives a request message sent by an inbound network device, where the inbound network device is a network device in which the service flow flows into the network, and the request packet includes a destination IP address of the service flow;
  • the controller determines that the service flow is an X2 service flow according to the destination IP address, and sends configuration information of TWAMP detection to the inbound network device and the outbound network device, and the outbound network device is the service flow Network equipment flowing out of the network.
  • the VRF interface address and other information automatically send the configuration information of TWAMP detection, which improves the system detection efficiency and can realize the deployment of batch business TWAMP detection.
  • the controller determining that the service flow is an X2 service flow according to the destination IP address includes:
  • the controller searches for the outgoing device and the private network interface corresponding to the destination IP address according to the destination IP address;
  • the controller determines that the found outbound device and the private network interface are the outbound device and the private network interface matched by the mask, and then determines that the service flow is an X2 service flow.
  • the sending TWAMP detected configuration information to the inbound network device and the outbound network device includes:
  • the controller forwards the request message to the outgoing network device
  • the controller receives the response message sent by the outgoing network device;
  • the controller forwards the response message to the inbound network device
  • the controller sends configuration information detected by TWAMP to the inbound network device and the outbound network device, respectively.
  • the request message, the response message, and the configuration message carrying the configuration information use the same message format, and the message format includes a role field and a message type field , Response value field, service flow source IP address field and service flow destination IP address field;
  • the role field is used to indicate the role of the device that sends the message, and the device role includes the inbound network device, the controller, and the outbound network device;
  • the message type field is used to indicate a message type, and the message type includes a request message, a reply message, and a configuration message;
  • the response value field is used to indicate whether the service flow is an X2 service flow, and is valid when the value of the message type field is a reply message;
  • the service flow source IP address field is used to indicate the source IP address of the service flow
  • the destination IP address field of the service flow is used to indicate the destination IP address of the service flow.
  • the embodiments of the present application provide a configuration method, which is applied to a network that uses the bidirectional active measurement protocol TWAMP for detection, and may include:
  • the controller receives a request message sent by the traffic analyzer, where the request message includes the first identification, the first interface, and the outgoing end of the ingress network device The second identifier of the network device, the second interface, and the source and destination IP addresses of the service flow;
  • the controller determines that the service flow is an X2 service flow according to the information in the request message, and sends TWAMP detected configuration information to the inbound network device and the outbound network device.
  • the controller determines that the service flow is an X2 service flow according to the information in the request message, including:
  • the controller determines that the inbound network device and the outbound network device are bound to the same routing and forwarding table VRF;
  • the controller instructs the inbound network device to determine whether the source IP address corresponds to the VLINK route or ARP or static route under the first interface, and instructs the outbound network device to determine whether the destination IP address Corresponding to the virtual link VLINK route or address resolution protocol ARP or static route under the second interface;
  • the controller receives the The first response message
  • the controller receives the message sent by the outgoing network device Second response message;
  • the controller determines that the service flow is an X2 service flow.
  • the request message, the response message, and the configuration message carrying the configuration information use the same message format, and the message format includes a role field and a message type field , Response value field, service flow source IP address field and service flow destination IP address field;
  • the role field is used to indicate the role of the device that sends the message, and the device role includes the inbound device, the controller, and the outbound device;
  • the message type field is used to indicate a message type, and the message type includes a request message, a reply message, and a configuration message;
  • the response value field is used to indicate whether the service flow is an X2 service flow, and is valid when the value of the message type field is a reply message;
  • the service flow source IP address field is used to indicate the source IP address of the service flow
  • the destination IP address field of the service flow is used to indicate the destination IP address of the service flow.
  • an embodiment of the present application provides a controller, which may include:
  • a transceiver unit configured to receive a request message sent by an ingress network device, where the ingress network device is a network device in which the service flow flows into the network, and the request packet includes a destination IP address of the service flow;
  • a processing unit configured to determine that the service flow is an X2 service flow according to the destination IP address, and instruct the transceiver unit to send TWAMP detected configuration information to the inbound network device and the outbound network device, and the outbound network
  • the device is a network device where the service flow flows out of the network.
  • the processing unit is specifically configured to:
  • the destination IP address look up the outgoing device and the private network interface corresponding to the destination IP address;
  • the service flow is determined to be an X2 service flow.
  • the transceiver unit is specifically used to:
  • the outgoing network device When the outgoing network device determines that the destination IP address corresponds to its own virtual link VLINK route or address resolution protocol ARP or static route, it receives a response message sent by the outgoing network device;
  • the request message, the response message, and the configuration message carrying the configuration information use the same message format, and the message format includes a role field and a message type field , Response value field, service flow source IP address field and service flow destination IP address field;
  • the role field is used to indicate the role of the device that sends the message, and the device role includes the inbound network device, the controller, and the outbound network device;
  • the message type field is used to indicate a message type, and the message type includes a request message, a reply message, and a configuration message;
  • the response value field is used to indicate whether the service flow is an X2 service flow, and is valid when the value of the message type field is a reply message;
  • the service flow source IP address field is used to indicate the source IP address of the service flow
  • the destination IP address field of the service flow is used to indicate the destination IP address of the service flow.
  • an embodiment of the present application provides a controller, which may include:
  • the transceiver unit is used when the traffic analyzer collects the analysis of the ingress service flow of the first device and the egress service flow of the second device, and determines that the first device is an ingress network device where the service flow flows into the network.
  • the second device is the outgoing network device where the service flow flows out of the network, and receives a request message sent by the traffic analyzer, where the request message includes the first identifier, the first interface, and the Describe the second identification, the second interface of the network device at the end, and the source IP address and the destination IP address of the service flow;
  • the processing unit is configured to determine that the service flow is an X2 service flow according to the information in the request message, and send TWAMP detected configuration information to the inbound network device and the outbound network device.
  • the processing unit is specifically configured to:
  • the transceiver unit is further used to receive the outbound network The first response message sent by the device;
  • the transceiver unit is further used to receive the outgoing network The second response message sent by the device;
  • the processing unit is also used to determine that the service flow is an X2 service flow.
  • the request message, the response message, and the configuration message carrying the configuration information use the same message format, and the message format includes a role field and a message type field , Response value field, service flow source IP address field and service flow destination IP address field;
  • the role field is used to indicate the role of the device that sends the message, and the device role includes the inbound device, the controller, and the outbound device;
  • the message type field is used to indicate a message type, and the message type includes a request message, a reply message, and a configuration message;
  • the response value field is used to indicate whether the service flow is an X2 service flow, and is valid when the value of the message type field is a reply message;
  • the service flow source IP address field is used to indicate the source IP address of the service flow
  • the service flow destination IP address field is used to indicate the fifth aspect of the service flow destination IP address.
  • An embodiment of the present application provides a controller, which may include:
  • a processor and a memory the processor and the memory being connected, wherein the memory is used to store computer instructions, and the processor is used to call the computer instructions stored in the memory to perform the first aspect or the second embodiment of the present application.
  • an embodiment of the present application provides a computer-readable storage medium having instructions stored therein, which, when run on a computer, implement the above-mentioned first aspect or second aspect or first The method described in any one aspect of one aspect or any one aspect of the second aspect.
  • FIG. 1 is a reference schematic diagram of an X2 service flow path in an IP RAN network system architecture provided by an embodiment of this application;
  • FIG. 2 is a schematic flowchart of a configuration method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another configuration method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the composition of a controller provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another controller according to an embodiment of the present application.
  • the network devices are devices that perform routing and forwarding functions, and can be routers, switches, repeaters, and other devices.
  • the router, switch, and repeater may be physical devices, or virtual devices based on virtualization technology (eg, virtual servers, virtual routers, virtual switches, and virtual repeaters).
  • the network equipment may also be called a base station side gateway (cell site gateway, CSG for short), an access service gateway (access service gateway, ASG for short), and a route reflector ( Route reflector (referred to as RR), base station controller side gateway (radio network controller site gateway, RSG), etc.
  • FIG. 1 is a reference schematic diagram of the X2 service flow path in an IP RAN network system architecture. Under the architecture shown in FIG. 1, it is composed of a base station (eNB), CSG, ASG, RR, and RSG.
  • CSG is attached to eNB
  • RSG is attached to EPC (not shown in FIG. 1)
  • ASG can be used to connect the core layer and the aggregation layer
  • RR can be used to connect ASG and RSG or other RRs.
  • S1 service flow can be referred to as the S1 service flow, usually referring to the service flow from the base station to the evolved packet core network equipment (Evolved Packet Core, EPC for short).
  • EPC evolved packet core network equipment
  • the inbound network equipment of the service flow in the RAN network can be CSG, and the outbound network equipment can be RSG (base station under CSG, base station controller under RSG), because all CSG and all RSG exist between each other S1 service flow, so TWAMP deployment of S1 service can be configured between all CSGs and all RSGs. It is not clear whether there is an X2 service flow between CSG and CSG. There may be X2 streams between different CSGs, including but not limited to the following:
  • the virtual private network (Virtual Private Network, VPN for short) and public network tunnel design of the IP RAN solution can ensure the correct forwarding of the X2 service flow in the above three scenarios from the business, but it is not clear which two CSGs are known when the service is initially deployed There are X2 services between the base stations attached to it, and it is impossible to determine which two CSGs have X2 service flows between them. Therefore, it is impossible to know which two CSGs to configure TWAMP detection for X2 services between them, and it is impossible to plan in advance.
  • the proportion of X2 business traffic is relatively small, about 13%, but in the 5G era and subsequent higher-level communication technology
  • the proportion of X2 services that two base stations directly communicate with each other will be relatively high, so performance testing of X2 services is very necessary.
  • flow identification and device identification a normal X2 service flow can be identified, and the input device and the output device of the service flow in the IP RAN network can be identified and confirmed.
  • the configuration information of TWAMP detection can be automatically sent according to the interface IP of the input device and the output device bound to the routing forwarding table (Virtual Routing) (VRF).
  • VRF Virtual Routing
  • the configuration method of the present application will be described in detail below with reference to FIGS. 2-5.
  • the configuration method in this embodiment can be applied to a network that uses TWAMP for detection.
  • description is made on the configuration of X2 service flow identification and TWAMP detection.
  • the configuration of the S1 service flow identification and the TWAMP detection configuration can also be performed by using the method described in the embodiment of the present application, which will not be repeated in the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a configuration method provided by an embodiment of the present application; the specific steps include the following steps:
  • the controller receives the request message sent by the inbound network device.
  • the controller may be a network manager or a network cloud engine-IP (Network Engine-IP, NCE-IP for short) controller device.
  • the inbound network device and the outbound network device described later may be physical or virtualized router devices, switch devices, or repeater devices.
  • the request message includes the destination IP address of the service flow.
  • the source IP address of the IP packet corresponding to the service flow is the address of the source base station, and the destination IP address can hit the VRF private network route to achieve normal forwarding of the IP packet.
  • the controller determines whether the service flow is an X2 service flow according to the destination IP address. If yes, go to step S203, otherwise go to step S204.
  • the controller sends TWAMP detected configuration information to the inbound network device and the outbound network device.
  • the inbound network by identifying the information of the inbound network equipment and the outbound network equipment of the service flow, and determining whether the service flow is the correct X2 service flow according to the destination IP address of the service flow, the inbound network can be determined according to The device and the outbound network device are bound to the VRF interface address and other information to automatically send TWAMP detection configuration information, which improves the system detection efficiency and can realize the deployment of batch service TWAMP detection.
  • FIG. 3 is a schematic flowchart of another configuration method provided by an embodiment of the present application; in this embodiment, it includes:
  • the inbound network device listens to the service flow and records the destination IP address of the service flow.
  • the destination IP address already has a corresponding TWAMP detection configuration, it can be ignored and no further processing will be performed. Otherwise, you can continue with the next steps.
  • the inbound network device sends a request message to the controller.
  • the destination IP address is the IP address of another base station connected to the VRF interface of the inbound network device, it means that one CSG is connected to the two base stations, and X2 service flow occurs between the two base stations, and TWAMP detection is not required at this time.
  • the destination IP address is the IP address of the other EPC connected to the VRF interface of the inbound network device, it means that the RSG connected to the EPC has a single base station nearby, and the S1 service flow appears, and TWAMP detection is not required at this time. Therefore, when the above two situations occur, they can be ignored and no further processing will be performed. Otherwise, you can continue with the next steps.
  • the controller parses the request message, obtains the destination IP address, and finds the outgoing network device and the private network interface corresponding to the destination IP address.
  • the controller determines that the service flow is an X2 service flow, re-encapsulates the request message and sends it to the outgoing network The device forwards the request message.
  • the controller determines that the service flow is an illegal service flow and does not perform subsequent processing.
  • the known mask of the controller usually corresponds to an IP address. If the destination IP address is not in the IP address, it means that the destination IP address does not match the mask. If the destination IP address is in the IP address, it means the IP address. Match the mask.
  • the outgoing network device parses the request message to obtain the destination IP address.
  • step S306 you can check whether the destination IP address is the base station corresponding to the VRF interface bound to it. (If it is an S1 service flow, then this corresponds to EPC). The specific method may be determined by the method in step S306.
  • the outgoing network device sends a response message to the controller.
  • the controller determines that the service flow is an illegal service flow and does not perform subsequent processing.
  • the controller forwards the response message to the inbound network device.
  • the controller sends TWAMP detected configuration information to the inbound network device.
  • the controller sends TWAMP detected configuration information to the outgoing network device.
  • the configuration information of TWAMP detection may include, but is not limited to: a device providing a TWAMP service (server), a port number used during detection, packet sending parameters, and an IP address used during detection. More specifically, for the parameter configuration rules of TWAMP detection, the X2 service input network device CSG can be used as the TWAMP server, and the S1 service input network device RSG can be used as the TWAMP server; the port number can select unused ports on each device; packet sending parameters It can be sent according to the preset default value; the IP address is the private network IP address of the devices at both ends.
  • the request message, the response message, and the configuration message carrying the configuration information may use the same message format or different message formats.
  • the message format may include, but is not limited to, a version number (Version) field, a role (Role) field, a message type (Message type) field, a response value (Response value) field, and a service Stream source IP address (Stream source IP) field, service stream destination IP address (Stream destination IP field) and virtual private network VPN identification (Vpn target) field;
  • the version number field is used to indicate the version of the message format; for example, a value of 1 indicates version 1.
  • the role field is used to indicate the role of the device that sends the message.
  • the device role includes the inbound network device, the controller, and the outbound network device; for example, the inbound network device can take the value 0, the controller takes the value 1, and the outbound The value of the network device is 2.
  • the message type field is used to indicate a message type, and the message type includes a request message, a response message, and a configuration message; for example, the request message has a value of 0, the response message has a value of 1, and the configuration message has a value of 2.
  • the response value field is used to indicate whether the service flow is an X2 service flow, which is valid when the value of the message type field is a reply message; the default value can be 0; when the Message type is 1, it is meaningful and is X2 The value of the business flow is 1, and the illegal value of the business flow is not 1.
  • the service flow source IP address field is used to indicate the source IP address of the service flow
  • the destination IP address field of the service flow is used to indicate the destination IP address of the service flow
  • the VPN identification field is used to identify the private network VPN.
  • the transmission control protocol (Transmission Control Protocol, TCP) can be used at the transmission layer.
  • TCP Transmission Control Protocol
  • the source address or the destination address can be the local loopback of the device ( loopback) 0 interface IP address or NCE-IP IP address.
  • FIG. 4 is a schematic flowchart of still another configuration method according to an embodiment of the present application; in this embodiment, it may include:
  • the controller receives the request message sent by the traffic analyzer.
  • the request message includes the first identifier of the inbound network device, the first interface, the second identifier of the outbound network device, the second interface, and the source IP address and destination IP address of the service flow .
  • step S402. The controller determines whether the service flow is an X2 service flow according to the information in the request message; if so, step S403 is executed, otherwise step S404 is executed.
  • the controller sends TWAMP detected configuration information to the inbound network device and the outbound network device.
  • service flow sampling may be deployed on all router-bound interfaces of VRF, and the traffic analyzer collects and analyzes the source IP address and destination IP address of the sampled service flow on all devices to determine which two There is a service flow between devices, and it is submitted to the controller to further confirm whether it is an X2 service flow. Finally, the controller automatically sends the configuration information detected by TWAMP according to the configuration information (including interface IP, available ports, etc.) of the inbound network equipment and the outbound network equipment of the service flow, thereby realizing a low-cost service flow triggered by the service flow Automatic identification method realizes batch business deployment.
  • FIG. 5 is a schematic flowchart of still another configuration method provided by an embodiment of the present application; in this embodiment, the following steps are included:
  • the traffic analyzer listens to the service flow and collects the analysis of the ingress service flow of the first device and the egress service flow of the second device.
  • all routing devices are bound to the VRF interface to deploy service flow sampling, and the traffic analyzer collects the source and destination IP addresses of the sampled service flows on all routing devices for analysis. Analyze which two routers have service flow. For convenience of description, two devices, a first device and a second device, are used here for description. When multiple devices are used, pairwise analysis is sufficient, and will not be repeated here.
  • the traffic analyzer determines that the first device and the second device are service flows, respectively.
  • the inbound network equipment and the outbound network equipment send a request message to the controller.
  • the traffic analyzer can determine the inbound network equipment and the outbound network equipment of the business flow, but it cannot usually guarantee whether the business flow is an illegal business flow such as attack traffic, or whether it is two different VRFs but the source IP address or destination IP Business flows with the same address. Therefore, the controller needs further recognition and confirmation.
  • the source IP address and the destination IP address already have corresponding TWAMP detection configurations, they can be ignored and no further processing will be performed. Otherwise, you can continue with the next steps.
  • the controller parses the request message to determine whether the inbound network device and the outbound network device are bound to the same routing and forwarding table VRF.
  • the controller forwards the request message to the inbound network device and the outbound network device.
  • the controller determines that the traffic analyzer analyzes the error, and may notify the traffic analyzer of the determination result.
  • the ingress network device parses the request message to obtain the source IP address and the information of the first interface.
  • the ingress network device determines that the source IP address corresponds to the VLINK route or ARP or static route under the first interface, it sends a first response message to the controller.
  • an error indication may be returned to the controller to inform the controller that the service flow is an illegal service flow.
  • the outgoing network device parses the request message to obtain the destination IP address and the information of the second interface.
  • the outgoing network device determines that the destination IP address corresponds to the VLINK route or ARP or static route under the second interface, it sends a second response message to the controller.
  • an error indication may be returned to the controller to inform the controller that the service flow is an illegal service flow.
  • the controller determines that the service flow is an X2 service flow.
  • the controller sends TWAMP detected configuration information to the inbound network device.
  • the controller sends TWAMP detected configuration information to the outgoing network device.
  • the controller returns a service flow identifier to the traffic analyzer, identifying the service flow as a known service flow.
  • the traffic analyzer can no longer perform analysis processing within a predetermined time.
  • FIG. 6 is a schematic diagram of a controller provided by an embodiment of the present application; it may include:
  • the transceiver unit 100 is configured to receive a request message sent by an ingress network device, where the ingress network device is a network device where the service flow flows into the network, and the request packet includes a destination IP address of the service flow ;
  • the processing unit 200 is configured to determine that the service flow is an X2 service flow according to the destination IP address, and instruct the transceiver unit 100 to send TWAMP detected configuration information to the inbound network device and the outbound network device.
  • the end network device is a network device where the service flow flows out of the network.
  • the processing unit 200 is specifically used for:
  • the destination IP address look up the outgoing device and the private network interface corresponding to the destination IP address;
  • the service flow is determined to be an X2 service flow.
  • the transceiver unit 100 is specifically used to:
  • the outgoing network device When the outgoing network device determines that the destination IP address corresponds to its own virtual link VLINK route or address resolution protocol ARP or static route, it receives a response message sent by the outgoing network device;
  • the request message, the response message and the configuration message carrying the configuration information adopt the same message format.
  • the message format includes a version number field, a role field, a message type field, a response value field, a service flow source IP address field, a service flow destination IP address field, and a virtual private network VPN identification field;
  • the version number field is used to indicate the version of the message format
  • the role field is used to indicate a role of a device that sends a message, and the device role includes an inbound network device, a controller, and an outbound network device;
  • the message type field is used to indicate a message type, and the message type includes a request message, a reply message, and a configuration message;
  • the response value field is used to indicate whether the service flow is an X2 service flow, and is valid when the value of the message type field is a reply message;
  • the service flow source IP address field is used to indicate the source IP address of the service flow
  • the destination IP address field of the service flow is used to indicate the destination IP address of the service flow
  • the VPN identification field is used to identify the private network VPN.
  • the controller may include:
  • the transceiving unit 100 is used when the traffic analyzer collects the analysis of the ingress service flow of the first device and the egress service flow of the second device, and determines that the first device is an ingress network device where the service flow flows into the network.
  • the second device is an outgoing network device where the service flow flows out of the network, and receives a request message sent by the traffic analyzer, where the request message includes the first identifier, the first interface, and the A second identifier, a second interface of the outgoing network device, and a source IP address and a destination IP address of the service flow;
  • the processing unit 200 is configured to determine that the service flow is an X2 service flow according to the information in the request message, and instruct the transceiver unit 100 to send the configuration of TWAMP detection to the inbound network device and the outbound network device information.
  • processing unit 200 is specifically used to:
  • the transceiver unit 100 is further configured to receive the outbound The first response message sent by the network device;
  • the transceiver unit 100 is further configured to receive the outgoing end The second response message sent by the network device;
  • the processing unit 200 is further configured to determine that the service flow is an X2 service flow.
  • the request message, the response message and the configuration message carrying the configuration information adopt the same message format.
  • the message format includes a version number field, a role field, a message type field, a response value field, a service flow source IP address field, a service flow destination IP address field, and a virtual private network VPN identification field;
  • the version number field is used to indicate the version of the message format
  • the role field is used to indicate a role of a device that sends a message, and the device role includes an inbound network device, a controller, and an outbound network device;
  • the message type field is used to indicate a message type, and the message type includes a request message, a reply message, and a configuration message;
  • the response value field is used to indicate whether the service flow is an X2 service flow, and is valid when the value of the message type field is a reply message;
  • the service flow source IP address field is used to indicate the source IP address of the service flow
  • the destination IP address field of the service flow is used to indicate the destination IP address of the service flow
  • the VPN identification field is used to identify the private network VPN.
  • FIG. 7 is a schematic diagram of another controller according to an embodiment of the present application.
  • the controller may include a processor 110 and a memory 120.
  • the processor 110 is connected to a memory 120, where the memory 120 is used to store instructions, and the processor 110 is used to execute the instructions stored in the memory 120, so as to implement the steps in the method corresponding to FIG. 2 to FIG. 5 above.
  • controller may further include a transceiver 130.
  • the processor 110, the memory 120 and the transceiver 130 are connected to each other.
  • the processor 110 is used to execute instructions stored in the memory 120 to control the transceiver 130 to receive signals and control the transceiver 130 to send signals to complete the steps performed by the controller in the above method.
  • the transceiver 130 may be the same or different physical entities. When they are the same physical entity, they may be collectively referred to as the transceiver 130, and for different physical entities, they are respectively referred to as a receiver and a transmitter.
  • the memory 120 may be integrated in the processor 110, or may be provided separately from the processor 110.
  • the function of the transceiver 130 may be implemented through a transceiver circuit or a dedicated chip for transceiver.
  • the processor 110 may be realized by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • a general-purpose computer may be considered to implement the mobile terminal provided in the embodiments of the present application.
  • the program codes for implementing the functions of the processor 110 and the transceiver 130 are stored in the memory, and the general processor 110 implements the functions of the processor 110 and the transceiver 130 by executing the codes in the memory.
  • FIG. 7 only shows one memory and processor. In an actual controller, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this.
  • the processor may be a central processing unit (Central Processing Unit, CPU for short), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processing, DSP for short), Application specific integrated circuit (Application Specific Integrated Circuit, ASIC for short), ready-made programmable gate array (Field-Programmable Gate Array, FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the memory may include read-only memory and random access memory, and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the bus may also include a power bus, a control bus, and a status signal bus.
  • a power bus may also include a power bus, a control bus, and a status signal bus.
  • various buses are marked as buses in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they are not described in detail here.
  • the embodiments of the present application further provide a system including the foregoing controller, inbound network equipment, outbound network equipment, and traffic that may exist independently or may also be integrated with the controller Analyzer.
  • the size of the sequence numbers of the above processes does not mean that the execution order is sequential, and the execution order of each process should be determined by its function and inherent logic, and should not correspond to the implementation process of the embodiments of the present application Constitute any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid-state hard disk), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例公开了一种配置方法和控制器,该配置方法应用于使用双向主动测量协议TWAMP进行检测的网络中,可包括:控制器接收入端网络设备发送的请求报文,所述入端网络设备为所述业务流流入所述网络的网络设备,所述请求报文包含所述业务流的目的IP地址;所述控制器根据所述目的IP地址确定所述业务流为X2业务流,向所述入端网络设备和出端网络设备发送TWAMP检测的配置信息,所述出端网络设备为所述业务流流出所述网络的网络设备采用本申请实施例,可对X2业务TWAMP检测进行准确的配置和规划,提升TWAMP检测的效率。

Description

一种配置方法及控制器
本申请要求于2018年12月29日提交中国国家知识产权局、申请号为201811643001.2、发明名称为“一种配置方法及控制器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种配置方法及控制器。
背景技术
无线接入网网络协议化(Internet Protocol Radio Access Network,简称IP RAN)的第五代移动通信技术(the 5th Generation mobile communication technology,简称5G)方案采用双向主动测量协议(Two-Way Active Measurement Protocol,简称TWAMP)等性能监测技术测量第四代移动通信技术(the 4th Generation mobile communication technology,简称4G)/5G业务的延迟、抖动以及丢包率等性能指标,需要覆盖S1业务和X2业务两种无线业务的性能指标。
其中,X2业务相关的数据业务流可简称为X2业务流,通常指基站到另一个基站的业务流,理论上基站间物理距离比较近,都可能存在X2业务流。可参见图1基站(eNB)与另一个基站之间的业务流的流向以虚线箭头指示,在IP RAN网络中的业务流的入端网络设备可以是CSG,出端网络设备可以是另一个CSG。但是,由于在初始业务部署时无法明确的知道哪两个CSG下挂的基站之间有X2业务,即无法确定哪两台CSG之间有X2业务流,因此无法知道要在哪两台CSG之间需要配置针对X2业务的TWAMP检测。如果在所有CSG之间两两部署TWAMP检测,由于一个基站的相邻基站数量有限,不可能与所有的基站都会有X2业务,因此一个CSG仅会和少量的CSG有X2业务,与多数CSG没有X2业务。因此在所有CSG之间都两两部署TWAMP检测,将造成大量的冗余无效配置。且CSG的TWAMP容量有限,冗余配置对设备容量也将构成挑战。
发明内容
本申请实施例所要解决的技术问题在于,提供一种基于TWAMP检测的配置方法及控制器,以解决对X2业务TWAMP检测无法准确配置的问题,提升TWAMP检测的效率。
第一方面,本申请的实施例提供了一种配置方法,应用于使用双向主动测量协议TWAMP进行检测的网络中,可包括:
控制器接收入端网络设备发送的请求报文,所述入端网络设备为所述业务流流入所述网络的网络设备,所述请求报文包含所述业务流的目的IP地址;
所述控制器根据所述目的IP地址确定所述业务流为X2业务流,向所述入端网络设备和出端网络设备发送TWAMP检测的配置信息,所述出端网络设备为所述业务流流出所述网络的网络设备。
通过识别业务流的入端网络设备和出端网络设备的信息,并根据业务流的目的IP地址确定该业务流是否为正确的X2业务流,从而可以根据入端网络设备和出端网络设备绑 VRF的接口地址等信息自动发送TWAMP检测的配置信息,提升了系统检测效率,可实现批量业务TWAMP检测部署。
在一种可能的实现方式中,所述控制器根据所述目的IP地址确定所述业务流为X2业务流,包括:
所述控制器根据所述目的IP地址,查找所述目的IP地址对应的出端设备和私网接口;
所述控制器确定查找到的所述出端设备和私网接口为通过掩码匹配的出端设备和私网接口,则确定所述业务流为X2业务流。
通过掩码匹配的方式识别X2业务流,方便快捷,效率高。
在一种可能的实现方式中,所述向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息,包括:
所述控制器将所述请求报文转发给所述出端网络设备;
当所述出端网络设备确定所述目的IP地址与自身的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述控制器接收所述出端网络设备发送的应答报文;
所述控制器向所述入端网络设备转发所述应答报文;
所述控制器分别向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
在一种可能的实现方式中,所述请求报文、所述应答报文和携带所述配置信息的配置报文采用相同的报文格式,所述报文格式中包括角色字段、消息类型字段、响应值字段、业务流源IP地址字段和业务流目的IP地址字段;
其中,所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端网络设备、控制器和出端网络设备;
所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;
所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;
所述业务流源IP地址字段用于指示所述业务流的源IP地址;
所述业务流目的IP地址字段用于指示所述业务流的目的IP地址。
第二方面,本申请的实施例提供了一种配置方法,应用于使用双向主动测量协议TWAMP进行检测的网络中,可包括:
当流量分析器采集第一设备的入口业务流和第二设备的出口业务流分析,并确定所述第一设备为业务流流入所述网络的入端网络设备,所述第二设备为业务流流出所述网络的出端网络设备之后,控制器接收所述流量分析器发送的请求报文,所述请求报文包含所述入端网络设备的第一标识、第一接口、所述出端网络设备的第二标识、第二接口以及所述业务流的源IP地址和目的IP地址;
所述控制器根据所述请求报文中的信息确定所述业务流为X2业务流,向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
在一种可能的实现方式中,所述控制器根据所述请求报文中的信息确定所述业务流为X2业务流,包括:
所述控制器确定所述入端网络设备和所述出端网络设备绑定了相同的路由转发表VRF;
所述控制器指示所述入端网络设备确定所述源IP地址是否与所述第一接口下的VLINK路由或ARP或静态路由对应,并指示所述出端网络设备确定所述目的IP地址是否与所述第二接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应;
当所述入端网络设备确定所述源IP地址与所述第一接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述控制器接收所述出端网络设备发送的第一应答报文;
当所述出端网络设备确定所述目的IP地址与所述第二接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述控制器接收所述出端网络设备发送的第二应答报文;
所述控制器确定所述业务流为X2业务流。
在一种可能的实现方式中,所述请求报文、所述应答报文和携带所述配置信息的配置报文采用相同的报文格式,所述报文格式中包括角色字段、消息类型字段、响应值字段、业务流源IP地址字段和业务流目的IP地址字段;
其中,所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端设备、控制器和出端设备;
所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;
所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;
所述业务流源IP地址字段用于指示所述业务流的源IP地址;
所述业务流目的IP地址字段用于指示所述业务流的目的IP地址。
第三方面,本申请的实施例提供了一种控制器,可包括:
收发单元,用于接收入端网络设备发送的请求报文,所述入端网络设备为所述业务流流入所述网络的网络设备,所述请求报文包含所述业务流的目的IP地址;
处理单元,用于根据所述目的IP地址确定所述业务流为X2业务流,指示所述收发单元向所述入端网络设备和出端网络设备发送TWAMP检测的配置信息,所述出端网络设备为所述业务流流出所述网络的网络设备。
在一种可能的实现方式中,所述处理单元具体用于:
根据所述目的IP地址,查找所述目的IP地址对应的出端设备和私网接口;
确定查找到的所述出端设备和私网接口为通过掩码匹配的出端设备和私网接口,则确定所述业务流为X2业务流。
在一种可能的实现方式中,所述收发单元具体用于:
将所述请求报文转发给所述出端网络设备;
当所述出端网络设备确定所述目的IP地址与自身的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,接收所述出端网络设备发送的应答报文;
向所述入端网络设备转发所述应答报文;
分别向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
在一种可能的实现方式中,所述请求报文、所述应答报文和携带所述配置信息的配置报文采用相同的报文格式,所述报文格式中包括角色字段、消息类型字段、响应值字段、业务流源IP地址字段和业务流目的IP地址字段;
其中,所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端网络设备、控制器和出端网络设备;
所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;
所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;
所述业务流源IP地址字段用于指示所述业务流的源IP地址;
所述业务流目的IP地址字段用于指示所述业务流的目的IP地址。
第四方面,本申请的实施例提供了一种控制器,可包括:
收发单元,用于当流量分析器采集第一设备的入口业务流和第二设备的出口业务流分析,并确定所述第一设备为业务流流入所述网络的入端网络设备,所述第二设备为业务流流出所述网络的出端网络设备之后,接收所述流量分析器发送的请求报文,所述请求报文包含所述入端网络设备的第一标识、第一接口、所述出端网络设备的第二标识、第二接口以及所述业务流的源IP地址和目的IP地址;
处理单元,用于根据所述请求报文中的信息确定所述业务流为X2业务流,向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
在一种可能的实现方式中,所述处理单元具体用于:
确定所述入端网络设备和所述出端网络设备绑定了相同的路由转发表VRF;
指示所述入端网络设备确定所述源IP地址是否与所述第一接口下的VLINK路由或
ARP或静态路由对应,并指示所述出端网络设备确定所述目的IP地址是否与所述第二接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应;
当所述入端网络设备确定所述源IP地址与所述第一接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述收发单元还用于接收所述出端网络设备发送的第一应答报文;
当所述出端网络设备确定所述目的IP地址与所述第二接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述收发单元还用于接收所述出端网络设备发送的第二应答报文;
所述处理单元还用于确定所述业务流为X2业务流。
在一种可能的实现方式中,所述请求报文、所述应答报文和携带所述配置信息的配置报文采用相同的报文格式,所述报文格式中包括角色字段、消息类型字段、响应值字段、业务流源IP地址字段和业务流目的IP地址字段;
其中,所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端设备、控制器和出端设备;
所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;
所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;
所述业务流源IP地址字段用于指示所述业务流的源IP地址;
所述业务流目的IP地址字段用于指示所述业务流的目的IP地址第五方面,本申请的实施例提供了一种控制器,可包括:
处理器和存储器,所述处理器和存储器连接,其中,所述存储器用于存储计算机指令,所述处理器用于调用所述存储器中存储的计算机指令,执行本申请实施例第一方面或第二方面或第一方面任一实现方式或第二方面任一实现方式中的步骤。
第六方面,本申请的实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现上述第一方面或第二方面或第一方面任一实现方式或第二方面任一实现方式所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种IP RAN网络系统架构中X2业务流路径的参考示意图;
图2为本申请实施例提供的一种配置方法的流程示意图;
图3为本申请实施例提供的另一种配置方法的流程示意图;
图4为本申请实施例提供的又一种配置方法的流程示意图;
图5为本申请实施例提供的又一种配置方法的流程示意图;
图6为本申请实施例提供的一种控制器的组成示意图;
图7为本申请实施例提供的另一种控制器的组成示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请可应用于IP RAN网络中,该网络中包括网络设备,所述网络设备是执行路由转发功能的设备,可以是路由器、交换机、转发器等设备。所述路由器、交换机、转发器可以是物理设备,也可以是基于虚拟化技术实现的虚拟设备(如,虚拟服务器、虚拟路由器、虚拟交换机、虚拟转发器)。根据网络设备在网络中部署的位置和角色不同,所述网络设备也可以称为基站侧网关(cell site gateway,简称CSG)、接入业务网关(access service gateway,简称ASG)、路由反射器(Route reflector,简称RR)、基站控制器侧网关(radio network controller site gateway,RSG)等。可请参照图1,为一种IP RAN网络系统架构中X2业务流路径的参考示意图,在图1所示架构下,由基站(eNB)、CSG、ASG、RR、RSG等组成。
其中,CSG下挂在eNB,RSG下挂在EPC(图1未示),ASG可用于连接核心层和聚合层,RR可用于连接ASG和RSG或连接其他RR。所有的CSG和RSG两两之间都存在S1业务流,S1业务的流可简称为S1业务流,通常指基站到演进型分组核心网设备(Evolved Packet Core,简称EPC)的业务流,在IP RAN网络中的业务流的入端网络设备可以是CSG,出端网络设备可以是RSG(CSG下挂基站,RSG下挂基站控制器),由于所有的CSG和所有的RSG两两之间都存在S1业务流,因此S1业务的TWAMP部署可以在所有的CSG与所有的RSG之间进行配置。而CSG和CSG之间是否存在X2业务流则并不明确。不同的CSG之间可能存在X2流的情况包括但不限于如下几种:
(1)同接入环上的CSG节点之间,如图1所示的CSG1-CSG2;
(2)同ASG下挂的不同接入环上的CSG节点之间,如图1所示的CSG1-CSG4;
(3)跨ASG下挂的不同接入环上的CSG节点之间,如图1所示的CSG2-CSG3。
IP RAN方案的虚拟专用网络(Virtual Private Network,简称VPN)和公网隧道设计从业务上可以保障上述三种场景的X2业务流正确转发,但是在业务初始部署时无法明确的知道哪两个CSG下挂的基站之间有X2业务,也就无法确定哪两台CSG之间有X2业务流,因此无法知道要在哪两台CSG之间配置针对X2业务的TWAMP检测,无法进行预先规划。而且在第三代移动通信技术(the 3th Generation mobile communication technology,简称3G)3G/4G时期X2业务的流量所占比例较小,约13%左右,但在5G时代乃至后续更高级别的通信技术中,两个基站直接互通的X2业务的流量比例将比较高,因此对X2业务的性能检测是非常必要的。在本申请实施例中,通过流识别和设备识别,可以识别出正常的X2业务流,并识别确认该业务流在IP RAN网络中的入端设备和出端设备。然后可以根据入端设备、出端设备绑路由转发表(Virtual Routing Forwarding,简称VRF)的接口IP等信息进行TWAMP检测的配置信息自动发送。解决在IP RAN网络中对5G业务部署TWAMP检测时无法准确的知道哪些基站之间有X2业务,又不可能在所有基站之间全网部署TWAMP检测的难题,实现TWAMP的免规划和自动部署。
下面结合图2-图5对本申请的配置方法进行详细描述。本实施例中配置方法可应用于使用TWAMP进行检测的网络中。为了便于说明,在这些实施例中,均针对X2业务流的识别和TWAMP检测的配置进行描述。需要说明的是,S1业务流的识别和TWAMP检测的配置同样可以采用本申请实施例所述的方法进行,本申请实施例不再赘述。
请参见图2,图2为本申请实施例提供的一种配置方法的流程示意图;具体包括如下步骤:
S201.控制器接收入端网络设备发送的请求报文。
其中,所述控制器可以是网络管理器或网络云引擎IP化(Network Cloud Engine-IP,简称NCE-IP)的控制器设备。入端网络设备和后续描述的出端网络设备可以是实体或虚拟化的路由器设备或交换机设备或转发器设备等。
可选地,所述请求报文包含所述业务流的目的IP地址。
该业务流对应的IP报文的源IP地址是源基站的地址,目的IP地址可以命中VRF私网路由实现IP报文的正常转发。
S202.所述控制器根据所述目的IP地址判断所述业务流是否为X2业务流。若是,则执行步骤S203,否则执行步骤S204。
S203.所述控制器向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
S204.确定所述业务流为非法业务流。
在本申请实施例中,通过识别业务流的入端网络设备和出端网络设备的信息,并根据业务流的目的IP地址确定该业务流是否为正确的X2业务流,从而可以根据入端网络设备和出端网络设备绑VRF的接口地址等信息自动发送TWAMP检测的配置信息,提升了系统检测效率,可实现批量业务TWAMP检测部署。
参见图3,图3为本申请实施例提供的另一种配置方法的流程示意图;在本实施例中,包括:
S301.入端网络设备侦听业务流,记录业务流的目的IP地址。
可选地,如果该目的IP地址已有对应的TWAMP检测的配置,则可以进行忽略,不再进行后续处理。否则可继续执行后续步骤。
S302.若目的IP地址不是入端网络设备其他绑VRF接口连接的基站或EPC的IP地址,则入端网络设备向控制器发送请求报文。
可选地,若目的IP地址是入端网络设备其他绑VRF接口连接的基站的IP地址,则说明一个CSG连接两个基站,两基站间出现X2业务流,此时无需TWAMP检测。
若目的IP地址是入端网络设备其他绑VRF接口连接的EPC的IP地址,则说明RSG连接EPC同时就近单挂了一个基站,出现S1业务流,此时也无需TWAMP检测。因此出现上述两种情况时可以进行忽略,不再进行后续处理。否则可继续执行后续步骤。
S303.控制器解析请求报文,获取目的IP地址,查找目的IP地址对应的出端网络设备和私网接口。
S304.若查找到的出端网络设备和私网接口为通过掩码匹配的出端网络设备和私网接口,则控制器确定业务流为X2业务流,重封装请求报文并向出端网络设备转发请求报文。
可选地,若查找到的出端网络设备和私网接口不是通过掩码匹配的出端网络设备和私网接口,则控制器确定业务流为非法业务流,不再进行后续处理。控制器已知的掩码通常对应一段IP地址,若目的IP地址不在该段IP地址中,则说明目的IP地址与掩码不匹配,若目的IP地址在该段IP地址中,则说明IP地址与掩码匹配。
S305.出端网络设备解析请求报文,获取目的IP地址。
然后可以查看该目的IP地址是否是自身绑定VRF接口对应的基站。(如果是S1业务流,则此时对应的是EPC)。具体方式可以采用步骤S306中的方式来进行确定。
S306.当确定目的IP地址与自身的虚拟链路VLINK路由或ARP或静态路由对应时,出端网络设备向控制器发送应答报文。
若不满足上述所有条件时,则控制器确定业务流为非法业务流,不再进行后续处理。
S307.控制器向入端网络设备转发应答报文。
S308.控制器向入端网络设备发送TWAMP检测的配置信息。
S309.控制器向出端网络设备发送TWAMP检测的配置信息。
其中,TWAMP检测的配置信息中可以包括但不限于:提供TWAMP服务(server)的设备、检测时使用的端口号、发包参数、检测时使用的IP地址。更具体地,对于TWAMP检测的参数配置规则,X2业务入端网络设备CSG可作为TWAMP server,S1业务入端网络设备RSG可作为TWAMP server;端口号可选取各个设备上未使用的端口;发包参数可按照预定的默认值发送;IP地址为两端设备私网IP地址。
可选地,在本实施例中,所述请求报文、所述应答报文和携带所述配置信息的配置报文可以采用相同的报文格式或不同的报文格式。
当采用相同的报文格式时,所述报文格式中可以包括但不限于版本号(Version)字段、角色(Role)字段、消息类型(Message type)字段、响应值(Response value)字段、业务流源IP地址(Stream source ip)字段、业务流目的IP地址(Stream destination ip)字段和虚拟专用网络VPN标识(Vpn target)字段;
其中,版本号字段用于指示所述报文格式的版本;例如取值为1表示版本1。
所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端网络设备、控制器和出端网络设备;例如入端网络设备可取值0,控制器取值1,出端网络设备取值2。
所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;例如请求报文取值0,应答报文取值1,配置报文取值2。
所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;默认可取值0;当Message type为1时有意义,是X2业务流取值1,业务流非法取值非1。
所述业务流源IP地址字段用于指示所述业务流的源IP地址;
所述业务流目的IP地址字段用于指示所述业务流的目的IP地址;
所述VPN标识字段用于标识私网VPN。
而对于上述报文的传输协议,在传输层可采用传输控制协议(Transmission Control Protocol,TCP),对于该报文更外层的IP报文,源地址或目的地址可以是设备的本地环回(loopback)0接口的IP地址或NCE-IP的IP地址。
请参见图4,图4为本申请实施例提供的又一种配置方法的流程示意图;在本实施例中,可包括:
S401.当流量分析器采集第一设备的入口业务流和第二设备的出口业务流分析,并确定所述第一设备为业务流的入端网络设备,所述第二设备为业务流的出端网络设备之后,控制器接收所述流量分析器发送的请求报文。
其中,所述请求报文包含所述入端网络设备的第一标识、第一接口、所述出端网络设备的第二标识、第二接口以及所述业务流的源IP地址和目的IP地址。
S402.所述控制器根据所述请求报文中的信息判断所述业务流是否为X2业务流;若是,则执行步骤S403,否则执行步骤S404。
S403.所述控制器向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
S404.确定所述业务流为非法业务流。
在本申请实施例中,可以在所有路由器绑定VRF的接口均部署业务流采样,由流量分析器收集所有设备上的采样业务流的源IP地址和目的IP地址进行分析,得出哪两台设备之间存在业务流,并提交给控制器进一步确认是否为X2业务流。最后由控制器根据该业务流的入端网络设备和出端网络设备的配置信息(包括接口IP、可用端口等)自动发送TWAMP检测的配置信息,从而实现低成本、靠业务流触发的业务流自动识别方式实现批量的业务部署。
请参见图5,图5为本申请实施例提供的又一种配置方法的流程示意图;在本实施例中,包括如下步骤:
S501.流量分析器侦听业务流,采集第一设备的入口业务流和第二设备的出口业务流分析。
需要说明的是,在本申请实施例中,所有路由设备绑定VRF的接口均部署业务流采样,由流量分析器收集所有路由设备上的采样业务流的源IP地址、目的IP地址做分析,分析出哪两台路由设备之间存在业务流。为了便于说明,此处以第一设备和第二设备两台设备进行描述。多台设备时采用两两配对分析即可,此处不再赘述。
S502.若第一设备入口业务流的源IP地址和目的IP地址与第二设备出口业务流的源IP地址和目的IP地址相同,则流量分析器确定第一设备和第二设备分别为业务流的入端网络设备和出端网络设备,向控制器发送请求报文。
流量分析器能确定业务流的入端网络设备和出端网络设备,但通常不能保障该业务流是否为攻击流量等非法业务流,也不能保障是否为两个不同VRF但源IP地址或目的IP地址相同的业务流。因此,需要控制器进一步识别确认。
可选地,如果该源IP地址和目的IP地址已有对应的TWAMP检测的配置,则可以进行忽略,不再进行后续处理。否则可继续执行后续步骤。
S503.控制器解析请求报文,判断入端网络设备和出端网络设备是否绑定了相同的路由转发表VRF。
S504.若入端网络设备和出端网络设备是否绑定了相同的VRF,则控制器向入端网络设备和出端网络设备转发请求报文。
可选地,若入端网络设备和出端网络设备没有绑定相同的VRF,则控制器确定流量分析器分析错误,可通知流量分析器该确定结果。
S505.入端网络设备解析请求报文,获取源IP地址和第一接口的信息。
S506.入端网络设备确定源IP地址与第一接口下的VLINK路由或ARP或静态路由对应时,向控制器发送第一应答报文。
可选地,若不满足上述所有条件,则可以向控制器返回错误指示,告知控制器该业务流为非法业务流。
S507.出端网络设备解析请求报文,获取目的IP地址和第二接口的信息。
S508.出端网络设备确定目的IP地址与第二接口下的VLINK路由或ARP或静态路由对应时,向控制器发送第二应答报文。
可选地,若不满足上述所有条件,则可以向控制器返回错误指示,告知控制器该业务流为非法业务流。
S509.控制器确定业务流为X2业务流。
S510.控制器向入端网络设备发送TWAMP检测的配置信息。
S511.控制器向出端网络设备发送TWAMP检测的配置信息。
S512.控制器向流量分析器返回业务流标识,标识该业务流为已知业务流。
对于已知业务流,流量分析器在预定的时间内可以不再进行分析处理。
对于TWAMP检测的配置信息的配置规则、报文格式以及报文传输协议等的描述可以参见图3所示实施例中的描述,此处不再赘述。
请参照图6,为本申请实施例提供的一种控制器的组成示意图;可包括:
收发单元100,用于接收入端网络设备发送的请求报文,所述入端网络设备为所述业务流流入所述网络的网络设备,所述请求报文包含所述业务流的目的IP地址;
处理单元200,用于根据所述目的IP地址确定所述业务流为X2业务流,指示所述收发单元100向所述入端网络设备和出端网络设备发送TWAMP检测的配置信息,所述出端网络设备为所述业务流流出所述网络的网络设备。
所述处理单元200具体用于:
根据所述目的IP地址,查找所述目的IP地址对应的出端设备和私网接口;
确定查找到的所述出端设备和私网接口为通过掩码匹配的出端设备和私网接口,则确定所述业务流为X2业务流。
可选地,若所述业务流是X2业务流,则所述收发单元100具体用于:
将所述请求报文转发给所述出端网络设备;
当所述出端网络设备确定所述目的IP地址与自身的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,接收所述出端网络设备发送的应答报文;
向所述入端网络设备转发所述应答报文;
分别向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
可选地,所述请求报文、所述应答报文和携带所述配置信息的配置报文采用相同的报文格式。
可选地,所述报文格式中包括版本号字段、角色字段、消息类型字段、响应值字段、业务流源IP地址字段、业务流目的IP地址字段和虚拟专用网络VPN标识字段;
其中,版本号字段用于指示所述报文格式的版本;
所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端网络设备、控制器和出端网络设备;
所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;
所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;
所述业务流源IP地址字段用于指示所述业务流的源IP地址;
所述业务流目的IP地址字段用于指示所述业务流的目的IP地址;
所述VPN标识字段用于标识私网VPN。
在另一种实现方式中,控制器可包括:
收发单元100,用于当流量分析器采集第一设备的入口业务流和第二设备的出口业务流分析,并确定所述第一设备为业务流流入所述网络的入端网络设备,所述第二设备为业务流流出所述网络的出端网络设备之后,接收所述流量分析器发送的请求报文,所述请求报文包含所述入端网络设备的第一标识、第一接口、所述出端网络设备的第二标识、第二接口以及所述业务流的源IP地址和目的IP地址;
处理单元200,用于根据所述请求报文中的信息确定所述业务流为X2业务流,指示所述收发单元100向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
可选地,所述处理单元200具体用于:
确定所述入端网络设备和所述出端网络设备绑定了相同的路由转发表VRF;
指示所述入端网络设备确定所述源IP地址是否与所述第一接口下的VLINK路由或ARP或静态路由对应,并指示所述出端网络设备确定所述目的IP地址是否与所述第二接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应;
当所述入端网络设备确定所述源IP地址与所述第一接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述收发单元100还用于接收所述出端网络设备发送的第一应答报文;
当所述出端网络设备确定所述目的IP地址与所述第二接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述收发单元100还用于接收所述出端网络设备发送的第二应答报文;
所述处理单元200还用于确定所述业务流为X2业务流。
可选地,所述请求报文、所述应答报文和携带所述配置信息的配置报文采用相同的报文格式。
可选地,所述报文格式中包括版本号字段、角色字段、消息类型字段、响应值字段、业务流源IP地址字段、业务流目的IP地址字段和虚拟专用网络VPN标识字段;
其中,版本号字段用于指示所述报文格式的版本;
所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端网络设备、控制器和出端网络设备;
所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;
所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;
所述业务流源IP地址字段用于指示所述业务流的源IP地址;
所述业务流目的IP地址字段用于指示所述业务流的目的IP地址;
所述VPN标识字段用于标识私网VPN。
该控制器所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法实施例中关于这些内容的描述,此处不做赘述。
请参照图7,为本申请实施例提供的另一种控制器的组成示意图;如图7所示,该控制器可以包括处理器110和存储器120。处理器110和存储器120连接,该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以实现如上图2-图5对应的方法中的步骤。
进一步的,该控制器还可以包括收发器130。其中,处理器110、存储器120和收发器130相互相连。
处理器110用于执行该存储器120存储的指令,以控制收发器130接收信号,并控制收发器130发送信号,完成上述方法中控制器执行的步骤。其中,收发器130可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器130,为不同的物理实体时刻分别称为接收器和发射器。所述存储器120可以集成在所述处理器110中,也可以与所述处理器110分开设置。
作为一种实现方式,收发器130的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的移动该终端。即将实现处理器110,收发器130功能的程序代码存储在存储器中,通用处理器110通过执行存储器中的代码来实现处理器110,收发器130的功能。
该控制器所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和处理器。在实际的控制器中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现成可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例提供的方法,本申请实施例还提供一种系统,其包括前述的控制器、入端网络设备、出端网络设备,以及可能独立存在或也可与控制器集成设置的流量分析器。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block,简称ILB)和步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种配置方法,其特征在于,应用于使用双向主动测量协议TWAMP进行检测的网络中,包括:
    控制器接收入端网络设备发送的请求报文,所述入端网络设备为所述业务流流入所述网络的网络设备,所述请求报文包含所述业务流的目的IP地址;
    所述控制器根据所述目的IP地址确定所述业务流为X2业务流,向所述入端网络设备和出端网络设备发送TWAMP检测的配置信息,所述出端网络设备为所述业务流流出所述网络的网络设备。
  2. 根据权利要求1所述的配置方法,其特征在于,所述控制器根据所述目的IP地址确定所述业务流为X2业务流,包括:
    所述控制器根据所述目的IP地址,查找所述目的IP地址对应的出端设备和私网接口;
    所述控制器确定查找到的所述出端设备和私网接口为通过掩码匹配的出端设备和私网接口,则确定所述业务流为X2业务流。
  3. 根据权利要求1所述的配置方法,其特征在于,所述向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息,包括:
    所述控制器将所述请求报文转发给所述出端网络设备;
    当所述出端网络设备确定所述目的IP地址与自身的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述控制器接收所述出端网络设备发送的应答报文;
    所述控制器向所述入端网络设备转发所述应答报文;
    所述控制器分别向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
  4. 根据权利要求1-3任一项所述的配置方法,其特征在于,
    所述请求报文、所述应答报文和携带所述配置信息的配置报文采用相同的报文格式,所述报文格式中包括角色字段、消息类型字段、响应值字段、业务流源IP地址字段和业务流目的IP地址字段;
    其中,所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端网络设备、控制器和出端网络设备;
    所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;
    所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;
    所述业务流源IP地址字段用于指示所述业务流的源IP地址;
    所述业务流目的IP地址字段用于指示所述业务流的目的IP地址。
  5. 一种配置方法,应用于使用双向主动测量协议TWAMP进行检测的网络中,其特征在于,包括:
    当流量分析器采集第一设备的入口业务流和第二设备的出口业务流分析,并确定所述第一设备为业务流流入所述网络的入端网络设备,所述第二设备为业务流流出所述网络的出端网络设备之后,控制器接收所述流量分析器发送的请求报文,所述请求报文包含所述入端网络设备的第一标识、第一接口、所述出端网络设备的第二标识、第二接口以及所述业务流的源IP地址和目的IP地址;
    所述控制器根据所述请求报文中的信息确定所述业务流为X2业务流,向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
  6. 根据权利要求5所述的配置方法,其特征在于,所述控制器根据所述请求报文中的信息确定所述业务流为X2业务流,包括:
    所述控制器确定所述入端网络设备和所述出端网络设备绑定了相同的路由转发表VRF;
    所述控制器指示所述入端网络设备确定所述源IP地址是否与所述第一接口下的VLINK路由或ARP或静态路由对应,并指示所述出端网络设备确定所述目的IP地址是否与所述第二接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应;
    当所述入端网络设备确定所述源IP地址与所述第一接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述控制器接收所述出端网络设备发送的第一应答报文;
    当所述出端网络设备确定所述目的IP地址与所述第二接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述控制器接收所述出端网络设备发送的第二应答报文;
    所述控制器确定所述业务流为X2业务流。
  7. 根据权利要求5或6所述的配置方法,其特征在于,
    所述请求报文、所述应答报文和携带所述配置信息的配置报文采用相同的报文格式,所述报文格式中包括角色字段、消息类型字段、响应值字段、业务流源IP地址字段和业务流目的IP地址字段;
    其中,所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端设备、控制器和出端设备;
    所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;
    所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;
    所述业务流源IP地址字段用于指示所述业务流的源IP地址;
    所述业务流目的IP地址字段用于指示所述业务流的目的IP地址。
  8. 一种控制器,其特征在于,包括:
    收发单元,用于接收入端网络设备发送的请求报文,所述入端网络设备为所述业务流流入所述网络的网络设备,所述请求报文包含所述业务流的目的IP地址;
    处理单元,用于根据所述目的IP地址确定所述业务流为X2业务流,指示所述收发单元向所述入端网络设备和出端网络设备发送TWAMP检测的配置信息,所述出端网络设备为所述业务流流出所述网络的网络设备。
  9. 根据权利要求8所述的控制器,其特征在于,所述处理单元具体用于:
    根据所述目的IP地址,查找所述目的IP地址对应的出端设备和私网接口;
    确定查找到的所述出端设备和私网接口为通过掩码匹配的出端设备和私网接口,则确定所述业务流为X2业务流。
  10. 根据权利要求8所述的控制器,其特征在于,所述收发单元具体用于:
    将所述请求报文转发给所述出端网络设备;
    当所述出端网络设备确定所述目的IP地址与自身的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,接收所述出端网络设备发送的应答报文;
    向所述入端网络设备转发所述应答报文;
    分别向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
  11. 根据权利要求8-10任一项所述的控制器,其特征在于,
    所述请求报文、所述应答报文和携带所述配置信息的配置报文采用相同的报文格式,所述报文格式中包括角色字段、消息类型字段、响应值字段、业务流源IP地址字段和业务流目的IP地址字段;
    其中,所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端网络设备、控制器和出端网络设备;
    所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;
    所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;
    所述业务流源IP地址字段用于指示所述业务流的源IP地址;
    所述业务流目的IP地址字段用于指示所述业务流的目的IP地址。
  12. 一种控制器,其特征在于,包括:
    收发单元,用于当流量分析器采集第一设备的入口业务流和第二设备的出口业务流分析,并确定所述第一设备为业务流流入所述网络的入端网络设备,所述第二设备为业务流流出所述网络的出端网络设备之后,接收所述流量分析器发送的请求报文,所述请求报文包含所述入端网络设备的第一标识、第一接口、所述出端网络设备的第二标识、第二接口以及所述业务流的源IP地址和目的IP地址;
    处理单元,用于根据所述请求报文中的信息确定所述业务流为X2业务流,指示所述收发单元向所述入端网络设备和所述出端网络设备发送TWAMP检测的配置信息。
  13. 根据权利要求12所述的控制器,其特征在于,所述处理单元具体用于:
    确定所述入端网络设备和所述出端网络设备绑定了相同的路由转发表VRF;
    指示所述入端网络设备确定所述源IP地址是否与所述第一接口下的VLINK路由或ARP或静态路由对应,并指示所述出端网络设备确定所述目的IP地址是否与所述第二接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应;
    当所述入端网络设备确定所述源IP地址与所述第一接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述收发单元还用于接收所述出端网络设备发送的第一应答报文;
    当所述出端网络设备确定所述目的IP地址与所述第二接口下的虚拟链路VLINK路由或地址解析协议ARP或静态路由对应时,所述收发单元还用于接收所述出端网络设备发送的第二应答报文;
    所述处理单元还用于确定所述业务流为X2业务流。
  14. 根据权利要求12或13所述的控制器,其特征在于,
    所述请求报文、所述应答报文和携带所述配置信息的配置报文采用相同的报文格式,所述报文格式中包括角色字段、消息类型字段、响应值字段、业务流源IP地址字段和业务流目的IP地址字段;
    其中,所述角色字段用于指示发送报文的设备角色,所述设备角色包括入端设备、控制器和出端设备;
    所述消息类型字段用于指示消息类型,所述消息类型包括请求报文、应答报文和配置报文;
    所述响应值字段用于指示所述业务流是否为X2业务流,当所述消息类型字段取值为应答报文时有效;
    所述业务流源IP地址字段用于指示所述业务流的源IP地址;
    所述业务流目的IP地址字段用于指示所述业务流的目的IP地址。
  15. 一种控制器,其特征在于,包括:
    处理器和存储器,所述处理器和存储器连接,其中,所述存储器用于存储计算机指令,所述处理器用于调用所述存储器中存储的计算机指令,执行如权利要求1-4或5-7任一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现如权利要求1-4或5-7任一项所述的方法。
PCT/CN2019/129772 2018-12-29 2019-12-30 一种配置方法及控制器 WO2020135854A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19903310.1A EP3893542A4 (en) 2018-12-29 2019-12-30 CONFIGURATION PROCEDURE AND CONTROL
US17/360,926 US11838846B2 (en) 2018-12-29 2021-06-28 Configuration method and controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811643001.2A CN111385822B (zh) 2018-12-29 2018-12-29 一种配置方法及控制器
CN201811643001.2 2018-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/360,926 Continuation US11838846B2 (en) 2018-12-29 2021-06-28 Configuration method and controller

Publications (1)

Publication Number Publication Date
WO2020135854A1 true WO2020135854A1 (zh) 2020-07-02

Family

ID=71129685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129772 WO2020135854A1 (zh) 2018-12-29 2019-12-30 一种配置方法及控制器

Country Status (4)

Country Link
US (1) US11838846B2 (zh)
EP (1) EP3893542A4 (zh)
CN (1) CN111385822B (zh)
WO (1) WO2020135854A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115733769A (zh) * 2021-08-27 2023-03-03 中兴通讯股份有限公司 链路测试方法、电子设备及存储介质
CN114553583B (zh) * 2022-03-01 2024-01-30 恒安嘉新(北京)科技股份公司 一种网络安全分析系统、方法、设备与存储介质
CN115002008B (zh) * 2022-08-05 2022-11-04 北京云脉芯联科技有限公司 一种网络时延测量的方法、装置、设备以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958197A (zh) * 2012-11-19 2013-03-06 华为技术有限公司 建立x2业务信令连接的方法及基站、蜂窝节点网关
WO2014091327A2 (en) * 2012-12-14 2014-06-19 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for augmenting twamp
EP2765740A1 (en) * 2013-02-11 2014-08-13 Telefonaktiebolaget L M Ericsson (PUBL) Dynamic Provisioning of TWAMP
CN104426801A (zh) * 2013-09-05 2015-03-18 中国移动通信集团广东有限公司 一种ptn网络的规划方法及装置
CN107995015A (zh) * 2016-10-27 2018-05-04 中兴通讯股份有限公司 获取twamp端到端检测路径的方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321092A (zh) * 2008-07-07 2008-12-10 上海华为技术有限公司 一种测量互联网协议传输网服务质量的方法和装置
CN102638898A (zh) * 2011-02-11 2012-08-15 中兴通讯股份有限公司 一种基于多点协作的集中式有线口数据传输方法及系统
CN102299923B (zh) * 2011-08-18 2015-06-17 工业和信息化部电信传输研究所 一种互联网性能测量系统中的探针注册方法
US9130393B2 (en) * 2011-09-26 2015-09-08 Belkin International, Inc. Systems and methods to isolate lower amplitude signals for analysis in the presence of large amplitude transients
CN103200590A (zh) * 2012-01-10 2013-07-10 鼎桥通信技术有限公司 一种性能指标统计方法和系统
US9628358B2 (en) * 2012-10-05 2017-04-18 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for piggybacking radio data in IP measurements
EP3375139B1 (en) * 2015-11-12 2021-03-10 Telefonaktiebolaget LM Ericsson (publ) Method and system for general packet radio service tunneling protocol (gtp) probing
CN106936661B (zh) * 2015-12-31 2020-01-03 华为技术有限公司 一种网络监测方法、装置及系统
CN106507398B (zh) * 2016-12-28 2019-06-21 南京邮电大学 一种基于持续学习的网络自优化方法
US10461847B2 (en) * 2017-05-26 2019-10-29 Qualcomm Incorporated Terrestrial wireless positioning in licensed and unlicensed frequency bands
CN108541001B (zh) * 2018-03-27 2020-10-23 电子科技大学 一种用于能量可收集双向协作通信的中断率优化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102958197A (zh) * 2012-11-19 2013-03-06 华为技术有限公司 建立x2业务信令连接的方法及基站、蜂窝节点网关
WO2014091327A2 (en) * 2012-12-14 2014-06-19 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for augmenting twamp
EP2765740A1 (en) * 2013-02-11 2014-08-13 Telefonaktiebolaget L M Ericsson (PUBL) Dynamic Provisioning of TWAMP
CN104426801A (zh) * 2013-09-05 2015-03-18 中国移动通信集团广东有限公司 一种ptn网络的规划方法及装置
CN107995015A (zh) * 2016-10-27 2018-05-04 中兴通讯股份有限公司 获取twamp端到端检测路径的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3893542A4

Also Published As

Publication number Publication date
US11838846B2 (en) 2023-12-05
EP3893542A1 (en) 2021-10-13
CN111385822B (zh) 2021-11-09
CN111385822A (zh) 2020-07-07
US20210329529A1 (en) 2021-10-21
EP3893542A4 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
JP7079866B2 (ja) パケット処理方法、及びデバイス
EP3713162A1 (en) Route processing method and apparatus, and data transmission method and apparatus
EP3154227B1 (en) Packet transmission method, node, path management server and storage medium
US10085253B2 (en) Methods and apparatus for controlling wireless access points
US9231820B2 (en) Methods and apparatus for controlling wireless access points
CN107078963B (zh) 虚拟可扩展局域网中的路由追踪
WO2020135854A1 (zh) 一种配置方法及控制器
US10448246B2 (en) Network re-convergence point
WO2016101646A1 (zh) 以太虚拟网络的接入方法及装置
WO2015100650A1 (zh) 一种报文处理方法、装置及系统
WO2019149063A1 (zh) 一种传输数据的方法、通信装置及用户面功能实体
JP2006270839A (ja) レイヤ2機器の設定制御装置
CN110324225B (zh) 一种处理报文的方法及装置
CN111371634B (zh) 一种通信方法、装置及系统
WO2015144018A1 (zh) 信息发送方法、装置及通信系统
CN109787878A (zh) 一种隧道链路检测方法及相关设备
EP3632046B1 (en) Determination of quality of service of a network tunnel
WO2016197950A1 (zh) 一种路径检测的方法、路由设备及系统
WO2020169039A1 (zh) 一种策略管理的方法及装置
BR112020007561A2 (pt) gerenciamento da conexão com outras portas de acesso residenciais de uma porta de acesso residencial que implementa agregação de conexão
CN103428064A (zh) 支持基站内的虚拟专用局域网服务(vpls)的方法和系统
WO2016155204A1 (zh) 报文的测试处理方法及装置
WO2023035836A1 (zh) 一种报文处理方法及相关装置
KR20220024832A (ko) 포트 제어를 지원하는 방법 및 장비
US11502872B1 (en) Isolation of clients within a virtual local area network (VLAN) in a fabric network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903310

Country of ref document: EP

Effective date: 20210706