WO2016197950A1 - 一种路径检测的方法、路由设备及系统 - Google Patents

一种路径检测的方法、路由设备及系统 Download PDF

Info

Publication number
WO2016197950A1
WO2016197950A1 PCT/CN2016/085295 CN2016085295W WO2016197950A1 WO 2016197950 A1 WO2016197950 A1 WO 2016197950A1 CN 2016085295 W CN2016085295 W CN 2016085295W WO 2016197950 A1 WO2016197950 A1 WO 2016197950A1
Authority
WO
WIPO (PCT)
Prior art keywords
routing device
path
address
destination
source
Prior art date
Application number
PCT/CN2016/085295
Other languages
English (en)
French (fr)
Inventor
赵达观
陈宏伦
刘凯
叶剑
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2016197950A1 publication Critical patent/WO2016197950A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a path detection method, a routing device, and a system.
  • LTE Long Term Evolution
  • OAM operations, administration and maintenance
  • the LTE network includes a Layer 2 virtual private network (L2VPN) and a Layer 3 virtual private network (L3VPN), and the L2 is a Media Access Control (MAC) layer network.
  • L3 is also the Internet Protocol (IP) layer network.
  • the fault of the transmission path from the L2VPN to the L3VPN can only be detected by manually copying special service packets.
  • the embodiment of the invention provides a path detection method, which can automatically detect a fault of an L2 into an L3 node in a transmission path in an LTE network.
  • Embodiments of the present invention also provide corresponding routing devices and systems.
  • a first aspect of the present invention provides a method for path detection, where the method is applied to a source routing device of a Long Term Evolution (LTE) network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN, and the method includes :
  • LTE Long Term Evolution
  • the source routing device obtains configuration information, where the configuration information includes a detection identifier, a source address, and a destination address, where the source address is an address of the source routing device in the L2VPN, and the destination address is in the L3VPN. Destination routing device address;
  • the source routing device generates a heartbeat packet according to the detection identifier, where the heartbeat packet includes the detection identifier, the source address, the destination address, and an identifier of the detection path, where the detection identifier is used to indicate
  • the heartbeat packet is used for path detection, and the identifier of the detection path is used to indicate that the routing device on the detection path transmits the heartbeat packet hop by hop, and the source address and the destination address are used for the purpose.
  • the routing device determines a backhaul path of the heartbeat message;
  • the source routing device sends the heartbeat packet to a next hop routing device of the source routing device on the detection path.
  • the detecting path includes a service path and a protection path
  • the method further includes :
  • the source routing device obtains the status information of the protection path from the source routing device of the protection path, where the status information is used to indicate that the protection path is faulty or normal;
  • the source routing device switches the service to the protection path when the status information indicates that the protection path is normal.
  • the heartbeat message further includes a magic word and a cyclic redundancy check code, where the magic word and the cyclic redundancy check code are used for
  • the destination routing device performs a check whether it responds to the heartbeat message.
  • a second aspect of the present invention provides a method for path detection, where the method is applied to a destination routing device of a Long Term Evolution (LTE) network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN, and the method includes :
  • LTE Long Term Evolution
  • the destination routing device receives the heartbeat packet sent by the last hop device of the detection path, where the heartbeat packet includes a detection identifier, a source address, and a destination address, and the detection identifier is used to indicate that the heartbeat packet is used for path detection.
  • the source address is an address of the source routing device in the L2VPN
  • the destination address is an address of a destination routing device in the L3VPN;
  • the destination routing device routes the next hop of the destination routing device on the backhaul path
  • the device sends the heartbeat message.
  • the heartbeat packet further includes a magic word and a cyclic redundancy check code, where the destination routing device determines according to the source address and the destination address.
  • the backhaul path of the heartbeat message includes:
  • the destination routing device performs verification according to the magic word and the cyclic redundancy check code to obtain a verification result
  • the destination routing device determines a backhaul path of the heartbeat message according to the source address and the destination address.
  • the detecting path includes a service path and a protection path
  • the method further includes:
  • the destination routing device determines the backhaul path of the heartbeat packet according to the source address and the destination address, including :
  • the destination routing device determines the backhaul path of the heartbeat packet according to the identifier of the source routing device and the identifier of the destination routing device.
  • a third aspect of the present invention provides a routing device, where the routing device is applied to a long-term evolution LTE network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN, where the routing device is a source routing device.
  • the routing device includes:
  • An obtaining module configured to obtain configuration information, where the configuration information includes a detection identifier, a source address, and a destination address, where the source address is an address of the source routing device in the L2VPN, and the destination address is in the L3VPN Destination routing device address;
  • a determining module configured to determine, according to the source address and the destination address obtained by the acquiring module, a detection path from the source routing device in the L2VPN to the destination routing device in the L3VPN;
  • a generating module configured to generate a heartbeat packet according to the detection identifier acquired by the acquiring module, where the heartbeat packet includes the detection identifier, the source address, the destination address, and the determining by the determining module
  • An identifier of the detection path where the detection identifier is used to indicate that the heartbeat packet is used for path detection, and the identifier of the detection path is used to indicate that the routing device on the detection path transmits the heartbeat packet hop by hop,
  • the source address and the destination address are used for the destination routing device Determining a backhaul path of the heartbeat message;
  • a sending module configured to send the heartbeat message generated by the generating module to a next hop routing device of the source routing device on the detection path.
  • the routing device further includes a switching module
  • the acquiring module is further configured to: when the source routing device is a source routing device on the service path, obtain the location from the source routing device of the protection path, where the detection module is configured to include the service path and the protection path. Status information of the protection path, where the status information is used to indicate that the protection path is faulty or normal;
  • the switching module is configured to: when the service path is faulty, when the status information acquired by the acquiring module indicates that the protection path is normal, the service is switched to the protection path.
  • the heartbeat message further includes a magic word and a cyclic redundancy check code, where the magic word and the cyclic redundancy check code are used by The destination routing device performs a check whether it responds to the heartbeat message.
  • a fourth aspect of the present invention provides a routing device, where the routing device is applied to a long-term evolution LTE network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN, and the routing device includes:
  • the receiving module is configured to receive a heartbeat packet sent by the last hop device of the detection path, where the heartbeat packet includes a detection identifier, a source address, and a destination address, where the detection identifier is used to indicate that the heartbeat packet is used for path detection.
  • the source address is an address of the source routing device in the L2VPN
  • the destination address is an address of a destination routing device in the L3VPN;
  • a determining module configured to determine a backhaul path of the heartbeat message according to the source address and the destination address received by the receiving module
  • a sending module configured to send the heartbeat message to a next hop routing device of the destination routing device on the backhaul path determined by the determining module.
  • the determining module is specifically configured to: when the heartbeat message further includes a magic word and a cyclic redundancy check code, perform verification according to the magic word and the cyclic redundancy check code to obtain a verification result.
  • the destination routing device root Determining a backhaul path of the heartbeat message according to the source address and the destination address.
  • the determining module is specifically configured to: when the service path and the destination routing device on the protection path share an Internet Protocol IP address, determine the heartbeat according to the identifier of the source routing device and the identifier of the destination routing device. The return path of the message.
  • a fifth aspect of the present invention provides a long-term evolution LTE path detection system, including: a source routing device and a destination routing device;
  • the source routing device is the routing device of any one of the foregoing third aspect, the first or the second possible implementation manner of the third aspect;
  • the destination routing device is the routing device according to any one of the foregoing fourth aspect, the first or second possible implementation manner of the fourth aspect.
  • the embodiment of the present invention provides a path detection method, which is applied to a source routing device of a long-term evolution LTE network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN, and the method includes: the source The routing device obtains configuration information, where the configuration information includes a detection identifier, a source address, and a destination address, where the source address is an address of the source routing device in the L2VPN, and the destination address is a destination route in the L3VPN.
  • the source routing device determines, according to the source address and the destination address, a detection path from the source routing device in the L2VPN to the destination routing device in the L3VPN;
  • the routing device generates a heartbeat packet according to the detection identifier, where the heartbeat packet includes the detection identifier, the source address, the destination address, and the identifier of the detection path, where the detection identifier is used to indicate the heartbeat
  • the packet is used for path detection, and the identifier of the detection path is used to indicate that the routing device on the detection path transmits the heartbeat packet hop by hop, the source address and Said destination address for the destination device determines the routing path of the return heartbeat message; next-hop routing device, the source device the source device to the routing path for transmitting the heartbeat detecting packet.
  • the fault of the transmission path from the L2VPN to the L3VPN can only be detected by manually copying the special service packet.
  • the path detection method provided by the embodiment of the present invention can automatically detect the transmission path in the LTE network.
  • the L2VPN enters the L3VPN node.
  • FIG. 1 is a schematic diagram of an embodiment of a method for path detection according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another embodiment of a method for path detection according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a method for path detection according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a method for path detection according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a method for path detection according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of a method for path detection according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of a method for path detection according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an embodiment of a routing device according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of a routing device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a routing device according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another embodiment of a routing device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of a routing device according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another embodiment of a routing device according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an embodiment of a path detecting system in an embodiment of the present invention.
  • the embodiment of the invention provides a path detection method, which can automatically detect a fault of an L2 into an L3 node in a transmission path in an LTE network.
  • Embodiments of the present invention also provide corresponding routing devices and systems. The details are described below separately.
  • an embodiment of a method for path detection according to an embodiment of the present invention includes:
  • the Long Term Evolution (LTE) network may have multiple routing devices between the evolved base station eNB and the service gateway (SGW).
  • the routing device in the embodiment of the present invention may be a router or a switch.
  • the LTE network includes a Layer 2 virtual private network (L2VPN) and a Layer 3 virtual private network (L3VPN).
  • L2VPN Layer 2 virtual private network
  • L3VPN Layer 3 virtual private network
  • the LTE network in the embodiment of the present invention can be understood as an LTE service bearer network.
  • the L2 layer is also the Media Access Control (MAC) layer
  • the L3 layer is the Internet Protocol (IP) layer.
  • node A is part of the service path
  • node B is part of the protection path
  • nodes A and B are connected from the virtual Leased Line (VLL) module to the virtual router forwarding (Virtual Router forwarding,
  • VLL virtual Leased Line
  • the entry of the VRF module is the bridge point from the L2VPN to the L3VPN.
  • the VLL module belongs to the L2 layer.
  • the VRF module belongs to the L3 layer.
  • VLL(A)->VRF(C), VLL(A)->VRF(D) is the service path, VLL(B)->VRF(C), VLL(B)->VRF(D) To protect the path.
  • the service path and the protection path can also be reversed, such as: VLL(A)->VRF(C), VLL(A)->VRF(D) is the protection path, VLL(B)->VRF(C), VLL(B)->VRF(D) is the service path.
  • VLL (A) represents the VLL module in node A
  • VLL (B) represents the VLL module in node B
  • VRF (C) represents the VRF module in node C
  • VRF (D) represents the VRF module in node D.
  • VLL (A) or VLL (B) is equivalent to a source routing device
  • the VRF (C) module and the VRF (D) module are equivalent to a destination routing device.
  • the VLL (A) or the VLL (B) receives configuration information of the user or the network, where the configuration information includes a detection identifier, a source address, and a destination address, where the source address is an address of the source routing device in the L2VPN.
  • the source address and the destination address are used by the destination routing device to determine a backhaul path of the heartbeat packet, and send the heartbeat packet to a next hop routing device of the source routing device on the detection path.
  • the detection path may be determined from the VLL (A)->VRF (C), and the heartbeat message may be generated according to the detection identifier.
  • the heartbeat message in the embodiment of the present invention is an extended ping message. As shown in Figure 2, the BITMap[8] field can be added to the existing ping packet to form a heartbeat packet. The BITMap[8] field indicates the payload stream type, and the detection identifier can be carried in this field.
  • the heartbeat message may further include a magic word and a Cyclic Redundancy Check (CRC), and the magic word and the CRC are used by the destination routing device to the heartbeat report. Check the text.
  • the destination routing device determines that both the magic number and the CRC value match, and then continues to identify the content in the specified code stream.
  • the content in the specified code stream may include a backhaul path identifier of the heartbeat message.
  • the destination routing device may determine a corresponding backhaul path identifier according to the source address and the destination address.
  • the heartbeat packet may further include a ReplyType field, where the ReplyType field is used by the destination routing device to add a check result, and the check result may include a default unverified, a checksum-free problem, a check-be-revised packet, and a code stream. Does not support and so on.
  • FIG. 3 is a specific transmission channel of a heartbeat message, and each module on the transmission channel shown in FIG. 3 may be in a routing device, or in multiple routing devices, a user or a network management system.
  • the source routing device on the service path or the protection path is configured to extend the payload of the ping packet, and the heartbeat packet including the payload of the extended ping packet is sent to the destination routing device, where the source routing device is configured.
  • the transmission channel of the heartbeat packet is determined according to the IP address of the source routing device and the IP address of the destination routing device.
  • the source routing device may also determine the transmission of the heartbeat packet according to the identifier of the source routing device and the identifier of the destination routing device.
  • the transmission channel of the heartbeat packet is a specific path that the heartbeat packet needs to pass from the source routing device to the destination routing device.
  • the destination routing device directly returns the source IP address, the master-slave identifier, and the tunnel identifier in the payload of the heartbeat packet.
  • the tunnel is the specific channel through which the heartbeat packets go through the source routing device. For example: for the business path L2 into L3 node VLL (A) and L2 in the protection path into L3 node VLL (B), VLL (A) and VLL (B) each of the virtual Ethernet (Virtual-Ethernet, VE) two The heartbeat packet is sent to the IP address of the port connected to the L3 routing device.
  • the specific implementation method is as follows:
  • L2 into L3 heartbeat detection Covers the path from the Network to Network Interface (NNI) of the L2VPN to the L3VPN of the backhaul, and the active/standby path of the standby L2 into the L3 node.
  • NNI Network to Network Interface
  • the virtual-Ethernet (VE) state corresponding to the multi-chassis link aggregation group (MC-LAG) is fixed to up.
  • the heartbeat packet entering the L2NNI of the L3 node on the service path is sent to the VE corresponding to the L3 node on the service path for processing.
  • the access side PW is fixedly bridged to the L2VE of the L2 into the L3 node on the protection path or the L2VE of the L3 into the L3 node of the protection path.
  • the L2 into the L3 node on the service path and the protection path that is, the VLL (A) and VLL (B) in Figure 1, both construct heartbeat packets and send them to the L3 node in the core network for detection to ensure coverage. path.
  • the VLL (B) on the protection path choose whether to send from the L2 user network interface (UNI) or the L2NNI according to the MC-LAG bridging mode to avoid direct pass (dual node interconnection PW, referred to as DNI PW). ) arrives at VLL(A) on the business path.
  • heartbeat packet format selection borrowing the existing L2VPN ping function
  • the source IP address can be specified by the user or the network administrator, using the IP address of the same network segment of the base station corresponding to the L2UNI, and selecting the VPN loopback IP of the core layer 3 device by the destination IP address.
  • the address is configured to be in the same network segment as the IP address of the core network device.
  • the network element A covers L2NNI, MC-LAG, L2UNI, VE, fast reroute (FRR) main route, and automatic protection switching (APS)1.
  • the return trip is from VRF(C) to VLL(A).
  • the ping packet generated by the L2UNI will reach the L3VE of the working NE and be forwarded.
  • Heartbeat message 2 Ping message 2: VLL (A)->VRF (D):
  • the ping packet 2 is generated from the L2NNI, and the destination IP address is specified as the outbound interface of the VRF (D). Starting from network element A, it covers L2NNI, MC-LAG, FI network route to D network element, and APS2. The destination routing node sends the ping packet 2 directly from the protection route to the network element A by identifying the ping packet 2.
  • Dual-homed IP means that VRF (C) and VRF (D) have the same IP address, and the L3 core node works and protects the same dual-homed loopback IP address.
  • the heartbeat packet sent from NE A passes the same path as the service packet. After the VRF (C) or VRF (D) is received, the returned switch is selected according to the Label Switching Router (LSR) identifier and the destination LSR ID of the ping packet payload.
  • LSR Label Switching Router
  • heartbeat message 4 Ping message 4: VLL (B) -> VRF (D):
  • the source LSR ID and the destination LSR ID are sent to the ping packet payload sent by the VLL (B).
  • the node D finds the corresponding tunnel according to the LSR ID in the payload of the heartbeat message 4 and transmits it back.
  • Heartbeat message five Ping message 5: VLL (B) -> VRF (C):
  • Heartbeat message 6 Ping message 6: VLL (B) -> double return IP address:
  • the L3 core node works and protects the same dual-homed loopback IP address.
  • the ping packet sent from the B network element passes the same path as the service. After the C or D is received, the returned tunnel is selected according to the source LSR ID and the destination LSR ID of the ping packet payload.
  • the method for detecting a path provided by the foregoing scenario may be compared with the method for detecting a transmission path of the L2VPN to the L3VPN in the prior art, and the path detection method provided by the embodiment of the present invention may be compared. Automatically detect any transmission path in an LTE network The failure of L2 into the L3 node in the path.
  • an embodiment of a method for path detection according to an embodiment of the present invention includes:
  • the source routing device obtains configuration information, where the configuration information includes a detection identifier, a source address, and a destination address, where the source address is an address of the source routing device in the L2VPN, and the destination address is in the L3VPN.
  • the destination routing device is the routing device of the Long Term Evolution (LTE) network, and the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN.
  • LTE Long Term Evolution
  • the source routing device determines, according to the source address and the destination address, a detection path from the source routing device in the L2VPN to the destination routing device in the L3VPN.
  • the source routing device generates a heartbeat packet according to the detection identifier, where the heartbeat packet includes the detection identifier, the source address, the destination address, and the identifier of the detection path, where the detection identifier is used. Instructing the heartbeat message to be used for path detection, where the identifier of the detection path is used to indicate that the routing device on the detection path transmits the heartbeat packet hop by hop, and the source address and the destination address are used for The destination routing device determines a backhaul path of the heartbeat message.
  • the source routing device sends the heartbeat packet to a next hop routing device of the source routing device on the detection path.
  • the embodiment of the present invention provides a path detection method, which is applied to a source routing device of a long-term evolution LTE network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN, and the method includes: the source The routing device obtains configuration information, where the configuration information includes a detection identifier, a source address, and a destination address, where the source address is an address of the source routing device in the L2VPN, and the destination address is a destination route in the L3VPN.
  • the source routing device determines, according to the source address and the destination address, a detection path from the source routing device in the L2VPN to the destination routing device in the L3VPN;
  • the routing device generates a heartbeat packet according to the detection identifier, where the heartbeat packet includes the detection identifier, the source address, the destination address, and the identifier of the detection path, where the detection identifier is used to indicate the heartbeat
  • the packet is used for path detection, and the identifier of the detection path is used to indicate that the routing device on the detection path transmits the heartbeat packet hop by hop, the source address and Said destination address for the destination device determines the routing path of the return heartbeat message; the source device to the routing The next hop routing device of the source routing device on the detection path sends the heartbeat packet.
  • the fault of the transmission path from the L2VPN to the L3VPN can only be detected by manually copying the special service packet.
  • the path detection method provided by the embodiment of the present invention can automatically detect the transmission path in the LTE network.
  • L2 enters the fault of the L3 node.
  • the method may further include:
  • the source routing device reports the alarm information to the network management device when the heartbeat packet returned by the destination routing device is not received within the preset time.
  • the alarm can be reported to the network management device in time to ensure that the path is maintained in time, so that the service packet is not transmitted after the path is faulty, and the service packet is lost.
  • the detection path includes a service
  • the method may further include: a path and a protection path, and when the source routing device is a source routing device on the service path, the method may further include:
  • the source routing device obtains the status information of the protection path from the source routing device of the protection path, where the status information is used to indicate that the protection path is faulty or normal;
  • the source routing device switches the service to the protection path when the status information indicates that the protection path is normal.
  • the protection path is also periodically detected, and the service path determines the state of the protection path according to the state information of the protection path, so as to prevent the service from being switched when the protection path is faulty, and the service packet is lost after the handover. It also wastes switching resources.
  • the magic word and the cyclic redundancy check code are further included, and the magic word and the cyclic redundancy check code are used by the destination routing device to check the heartbeat message.
  • the method for the path detection provided by the embodiment of the present invention can be understood by referring to FIG. 1 to FIG. 5 and the description of the part.
  • FIG. 7 another embodiment of a method for path detection according to an embodiment of the present invention includes:
  • the destination routing device receives the heartbeat packet sent by the last hop device of the detection path, where the heartbeat packet includes a detection identifier, a source address, and a destination address, and the detection identifier is used to indicate that the heartbeat packet is used for path detection.
  • the source address is the address of the source routing device in the L2VPN
  • the destination address is the address of the destination routing device in the L3VPN, where the destination routing device is a routing device in the LTE network.
  • the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN.
  • the destination routing device determines a backhaul path of the heartbeat packet according to the source address and the destination address.
  • the destination routing device sends the heartbeat packet to a next hop routing device of the destination routing device on the backhaul path.
  • the method for detecting a path provided by the embodiment of the present invention is applied to a destination routing device of a long-term evolution LTE network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN, and the method includes: the destination route The device receives the heartbeat packet sent by the last hop device of the detection path, where the heartbeat packet includes a detection identifier, a source address, and a destination address, where the detection identifier is used to indicate that the heartbeat packet is used for path detection, where the source The address is the address of the source routing device in the L2VPN, and the destination address is an address of the destination routing device in the L3VPN; the destination routing device determines the content according to the source address and the destination address.
  • the fault of the transmission path from the L2VPN to the L3VPN can be detected by manually copying the special service packet.
  • the path detection method provided by the embodiment of the present invention can automatically detect any transmission in the LTE network. The failure of L2 into the L3 node in the path.
  • the heartbeat packet further includes a magic word and a cyclic redundancy.
  • the check code, the destination routing device determines the backhaul path of the heartbeat packet according to the source address and the destination address, and may include:
  • the destination routing device performs verification according to the magic word and the cyclic redundancy check code to obtain a verification result
  • the destination routing device root Determining a backhaul path of the heartbeat message according to the source address and the destination address.
  • the detection path includes a service, where the foregoing embodiment of the present invention, or the first optional embodiment, is used.
  • the path and the protection path may further include:
  • the destination routing device determines the backhaul path of the heartbeat packet according to the source address and the destination address, including :
  • the destination routing device determines the backhaul path of the heartbeat packet according to the identifier of the source routing device and the identifier of the destination routing device.
  • the method for the path detection provided by the embodiment of the present invention can be understood by referring to FIG. 1 to FIG. 5 and the description of the part.
  • an embodiment of the routing device 30 includes: the routing device 30 is applied to a long-term evolution LTE network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN.
  • the routing device 30 is a source routing device, the routing device 30 includes:
  • the obtaining module 301 is configured to obtain configuration information, where the configuration information includes a detection identifier, a source address, and a destination address, where the source address is an address of the source routing device in the L2VPN, and the destination address is the L3VPN The address of the destination routing device in ;
  • a determining module 302 configured to determine, according to the source address and the destination address obtained by the obtaining module 301, a detection path from the source routing device in the L2VPN to the destination routing device in the L3VPN ;
  • the generating module 303 is configured to generate a heartbeat packet according to the detection identifier acquired by the acquiring module 301, where the heartbeat packet includes the detection identifier, the source address, the destination address, and the determining module 302 determines The identifier of the detection path, the detection identifier is used to indicate that the heartbeat packet is used for path detection, and the identifier of the detection path is used to indicate that the routing device on the detection path transmits the heartbeat packet hop by hop
  • the source address and the destination address are used by the destination routing device to determine a backhaul path of the heartbeat packet;
  • the sending module 304 is configured to send the heartbeat message generated by the generating module 303 to the next hop routing device of the source routing device on the detection path.
  • the routing device provided by the embodiment of the present invention is applied to a long-term evolution LTE network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN.
  • the routing device 30 is a source routing device, the routing is performed.
  • the device 30 includes: an obtaining module 301 for acquiring configuration information, where the configuration information includes a detection identifier, a source address, and a destination address, where the source address is an address of the source routing device in the L2VPN, and the destination address is the The address of the destination routing device in the L3VPN; the determining module 302 determines, according to the source address and the destination address obtained by the obtaining module 301, the source routing device in the L2VPN to the L3VPN a detection path of the destination routing device; the generating module 303 generates a heartbeat packet according to the detection identifier acquired by the obtaining module 302, where the heartbeat packet includes the detection identifier, the source address, the destination address, and the Determining, by the module, an identifier of the detection path, where the detection identifier is used to indicate that the heartbeat message is used for path detection, and the identifier of the detection path is used for Instructing the routing device on the detection path to transmit the heartbeat packet hop by hop, the source
  • the fault of the transmission path from the L2VPN to the L3VPN can only be detected by manually copying the special service packet.
  • the routing device provided by the embodiment of the present invention can automatically detect the L2 in the transmission path in the LTE network. The failure of the L3 node.
  • the sending module 304 is further configured to report the alarm information to the network management device when the heartbeat message returned by the destination routing device is not received within the preset time.
  • the route is The device 30 also includes a switching module 305,
  • the obtaining module 301 is further configured to: when the source routing device is a source routing device on the service path, obtain the service path and the protection path, and obtain the source routing device from the source routing device of the protection path. Status information of the protection path, where the status information is used to indicate that the protection path is faulty or normal;
  • the switching module 305 is configured to: when the service path is faulty, when the acquiring module 301 The acquired status information indicates that the protection path is normal, and then the service is switched to the protection path.
  • the routing device provided by the embodiment of the present invention can be understood by referring to the description in the parts of FIG. 1 to FIG. 6 , and details are not described herein.
  • another embodiment of the routing device 40 includes: the routing device 40 is applied to a Long Term Evolution (LTE) network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN.
  • LTE Long Term Evolution
  • the routing device 40 includes:
  • the receiving module 401 is configured to receive a heartbeat packet sent by the last hop device of the detection path, where the heartbeat packet includes a detection identifier, a source address, and a destination address, where the detection identifier is used to indicate that the heartbeat packet is used for the path.
  • the source address is the address of the source routing device in the L2VPN
  • the destination address is an address of the destination routing device in the L3VPN;
  • a determining module 402 configured to determine, according to the source address and the destination address received by the receiving module 401, a backhaul path of the heartbeat message
  • the sending module 403 is configured to send the heartbeat message to the next hop routing device of the destination routing device on the backhaul path determined by the determining module 402.
  • the routing device provided by the embodiment of the present invention is applied to a long-term evolution LTE network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN, and the routing device 40 includes: the receiving module 401 receives the detection path.
  • a heartbeat packet sent by the device, the heartbeat packet includes a detection identifier, a source address, and a destination address, where the detection identifier is used to indicate that the heartbeat packet is used for path detection, and the source address is in the L2VPN.
  • the address of the source routing device, the destination address is an address of the destination routing device in the L3VPN; the determining module 402 determines the heartbeat according to the source address and the destination address received by the receiving module 401 The backhaul path of the message; the sending module 403 sends the heartbeat message to the next hop routing device of the destination routing device on the backhaul path determined by the determining module 402.
  • the routing device provided by the embodiment of the present invention can automatically detect the L2 in the transmission path in the LTE network.
  • the hardware and software of the L3 node is faulty.
  • the determining module 402 is specifically configured to: when the heartbeat message further includes a magic word and a loop redundancy And verifying the code according to the magic word and the cyclic redundancy check code to obtain a check result, and when the check result indicates that the heartbeat message needs to be responded to, the destination routing device Determining a backhaul path of the heartbeat message according to the source address and the destination address.
  • the determining module 402 is specifically configured to determine, according to the identifier of the source routing device and the identifier of the destination routing device, when the service path and the destination routing device on the protection path share an Internet Protocol IP address.
  • the return path of the heartbeat message is specifically configured to determine, according to the identifier of the source routing device and the identifier of the destination routing device, when the service path and the destination routing device on the protection path share an Internet Protocol IP address.
  • the routing device provided by the embodiment of the present invention can be understood by referring to the description in the parts of FIG. 1 to FIG. 5 and FIG. 7.
  • the receiving module and the sending module may be implemented by an input/output I/O device (such as a network card), the determining module, the switching module,
  • the generation module may be implemented by a processor executing a program or instruction in a memory (in other words, by a processor and a special instruction in a memory coupled to the processor); in another implementation,
  • the receiving module and the sending module may be implemented by an input/output I/O device (such as a network card), and the determining module, the switching module, and the generating module may also be implemented by using a dedicated circuit, and the specific implementation manner is as follows.
  • the receiving module and the sending module may be implemented by an input/output I/O device (such as a network card), and the determining module, the switching module, and the generating module may also pass through the field programmable gate array ( FPGA, Field-Programmable Gate Array) is implemented.
  • FPGA Field-Programmable Gate Array
  • the hardware structure of a routing device may include:
  • Transceiver device software device and hardware device
  • the transceiver device is a hardware circuit for completing packet transmission and reception
  • Hardware devices can also be called “hardware processing modules", or simpler, or simply “hardware”. Hardware devices mainly include dedicated hardware circuits based on FPGAs and ASICs (and other supporting devices). Devices, such as memory, are hardware circuits that implement certain functions. The processing speed is often much faster than that of general-purpose processors. However, once the functions are customized, they are difficult to change. Therefore, they are not flexible to implement. Some fixed features. It should be noted that the hardware device may also include an MCU (microprocessor, such as a single chip microcomputer) or a processor such as a CPU in practical applications, but the main function of these processors is not to complete the processing of big data, but mainly used for processing. Some control is performed. In this application scenario, the system that is paired with these devices is a hardware device.
  • MCU microprocessor, such as a single chip microcomputer
  • Software devices mainly include general-purpose processors (such as CPU) and some supporting devices (such as memory, hard disk and other storage devices), which can be programmed to let the processor have the corresponding processing functions.
  • general-purpose processors such as CPU
  • some supporting devices such as memory, hard disk and other storage devices
  • the processed data can be sent through the transceiver device through the hardware device, or the processed data can be sent to the transceiver device through an interface connected to the transceiver device.
  • the transceiver device is configured to perform the receiving and sending of the center hop message in the foregoing embodiment, where the software device or the hardware device is configured to obtain the configuration information, and determine the source routing device in the L2VPN to the L3VPN.
  • the destination route device detects a path, generates a heartbeat message, and the like.
  • the receiving module and the sending module may be implemented by an input/output I/O device (such as a network card), and the routing device may be a technical solution that can be implemented by a processor executing a program or instruction in the memory.
  • FIG. 12 is a schematic structural diagram of a routing device 50 according to an embodiment of the present invention.
  • the routing device 50 is applied to a long-term evolution LTE network, where the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN.
  • the routing device is a source routing device
  • the routing device 50 includes a processor 510.
  • Memory 550 and input/output I/O device 530 which may include read only memory and random access memory, and provide operational instructions and data to processor 510.
  • a portion of the memory 550 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 550 stores elements, executable modules or data structures, or a subset thereof, or their extension set:
  • the operation instruction stored by the memory 550 is called (the operation instruction Can be stored in the operating system),
  • configuration information includes a detection identifier, a source address, and a destination address, where the source address is an address of the source routing device in the L2VPN, and the destination address is a destination routing device in the L3VPN. address;
  • the detection identifier Generating, according to the detection identifier, a heartbeat packet, where the heartbeat packet includes the detection identifier, the source address, the destination address, and the identifier of the detection path, where the detection identifier is used to indicate the heartbeat packet
  • the identifier of the detection path is used to indicate that the routing device on the detection path transmits the heartbeat packet hop by hop, and the source address and the destination address are used by the destination routing device to determine the The return path of the heartbeat message;
  • the heartbeat message is sent by the I/O device 530 to the next hop routing device of the source routing device on the detection path.
  • the routing device provided by the embodiment of the present invention can automatically detect the transmission path in the LTE network, compared with the detection of the transmission path of the L2VPN to the L3VPN in the prior art. L2 into the L3 node hardware and software failure.
  • the processor 510 controls the operation of the routing device 50, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 550 can include read only memory and random access memory and provides instructions and data to processor 510. A portion of the memory 550 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the various components of the routing device 50 are coupled together by a bus system 520.
  • the bus system 520 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 520 in the figure.
  • Processor 510 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in a form of software.
  • the processor 510 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component. Can The methods, steps, and logical block diagrams disclosed in the embodiments of the present invention are implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 550, and the processor 510 reads the information in the memory 550 and performs the steps of the above method in combination with its hardware.
  • the I/O device 530 is further configured to report the alarm information to the network management device when the heartbeat message returned by the destination routing device is not received within the preset time.
  • the I/O device 530 is further configured to acquire status information of the protection path from a source routing device of the protection path, where the status information is used to indicate that the protection path is faulty or normal;
  • the processor 510 is configured to, when the service path is faulty, switch the service to the protection path when the status information indicates that the protection path is normal.
  • the heartbeat message further includes a magic word and a cyclic redundancy check code, where the magic word and the cyclic redundancy check code are used by the destination routing device to respond to the heartbeat message. Verification.
  • FIG. 12 For the corresponding embodiment of FIG. 12 and other optional embodiments, reference may be made to the description of the routing device in FIG. 1 to FIG. 5, FIG. 6 and FIG. 8 to FIG. 9, and the details are not described herein.
  • FIG. 13 is a schematic structural diagram of a routing device 60 according to an embodiment of the present invention.
  • the routing device 60 is applied to a Long Term Evolution (LTE) network, which includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN, and the routing device 60 includes a processor 610, a memory 650, and input/output I/O.
  • LTE Long Term Evolution
  • memory 650 can include read only memory and random access memory, and provides operational instructions and data to processor 610.
  • a portion of the memory 650 can also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 650 stores the following elements, executable modules or data structures, or a subset thereof, or their extended set:
  • the operation instruction can be stored in the operating system
  • the heartbeat The packet includes a detection identifier, a source address, and a destination address, where the detection identifier is used to indicate that the heartbeat packet is used for path detection, and the source address is an address of the source routing device in the L2VPN, and the destination is The address is the address of the destination routing device in the L3VPN;
  • the heartbeat message is sent by the I/O device 630 to the next hop routing device of the destination routing device on the backhaul path.
  • the routing device provided by the embodiment of the present invention can automatically detect the transmission path in the LTE network, compared with the detection of the transmission path of the L2VPN to the L3VPN in the prior art.
  • L2 enters the fault of the L3 node.
  • the processor 610 controls the operation of the routing device 60, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 650 can include read only memory and random access memory and provides instructions and data to processor 610. A portion of the memory 650 can also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the various components of the routing device 60 are coupled together by a bus system 620.
  • the bus system 620 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 620 in the figure.
  • Processor 610 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the processor 610 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 650, and the processor 610 reads the information in the memory 650 and performs the steps of the above method in combination with its hardware.
  • the processor 610 is further configured to: when the heartbeat message further includes a magic word and a cyclic redundancy check code, perform verification according to the magic word and the cyclic redundancy check code to obtain a calibration As a result, when the check result indicates that the heartbeat message needs to be responded to, the destination routing device determines the backhaul path of the heartbeat message according to the source address and the destination address.
  • the processor 610 is further configured to determine, according to the identifier of the source routing device and the identifier of the destination routing device, when the service path and the destination routing device on the protection path share an Internet Protocol IP address.
  • the backhaul path of the heartbeat message is further configured to determine, according to the identifier of the source routing device and the identifier of the destination routing device, when the service path and the destination routing device on the protection path share an Internet Protocol IP address.
  • the backhaul path of the heartbeat message is further configured to determine, according to the identifier of the source routing device and the identifier of the destination routing device, when the service path and the destination routing device on the protection path share an Internet Protocol IP address.
  • the routing device provided by the embodiment of the present invention can be understood by referring to the description in the parts of FIG. 1 to FIG. 5 and FIG. 7.
  • a long-term evolution LTE path detection system provided by an embodiment of the present invention includes: a source routing device 30 and a destination routing device 40, and a source routing device 30 and a destination routing device 40 are applied to a source routing device of a long-term evolution LTE network.
  • the LTE network includes a Layer 2 virtual private network L2VPN and a Layer 3 virtual private network L3VPN;
  • the source routing device 30 is configured to:
  • configuration information includes a detection identifier, a source address, and a destination address, where the source address is an address of the source routing device in the L2VPN, and the destination address is a destination routing device in the L3VPN. address;
  • the detection identifier Generating, according to the detection identifier, a heartbeat packet, where the heartbeat packet includes the detection identifier, the source address, the destination address, and the identifier of the detection path, where the detection identifier is used to indicate the heartbeat packet
  • the identifier of the detection path is used to indicate that the routing device on the detection path transmits the heartbeat packet hop by hop, and the source address and the destination address are used by the destination routing device to determine the The return path of the heartbeat message;
  • the destination routing device 40 is configured to:
  • the heartbeat message includes a detection identifier, a source address, and a destination address, where the detection identifier is used to indicate that the heartbeat message is used for the path
  • the source address is the address of the source routing device in the L2VPN
  • the destination address is an address of the destination routing device in the L3VPN
  • the routing device provided by the embodiment of the present invention can automatically detect the transmission path in the LTE network, compared with the detection of the transmission path of the L2VPN to the L3VPN in the prior art. L2 into the L3 node hardware and software failure.
  • a person skilled in the art may understand that all or part of the various steps of the foregoing embodiments may be performed by a program to instruct related hardware.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: ROM, RAM, disk or CD.
  • the method, the routing device, and the system for the path detection provided by the embodiments of the present invention are described in detail.
  • the principles and implementation manners of the present invention are described in the specific examples. The description of the above embodiments is only used to help understand The method of the present invention and its core idea; at the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific implementation manner and the scope of application. It is understood to be a limitation of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种路径检测的方法,应用于长期演进LTE网络的源路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述方法包括:获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址,根据所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径,根据所述检测标识生成心跳报文,向所述检测路径上所述源路由设备的下一跳路由设备发送所述心跳报文。本发明实施例提供的路径检测的方法,可以自动检测LTE网络中传输路径中L2进L3节点的故障。

Description

一种路径检测的方法、路由设备及系统
本申请要求于2015年6月11日提交中国专利局、申请号为201510319676.1、发明名称为“一种路径检测的方法、路由设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体涉及一种路径检测的方法、路由设备及系统。
背景技术
随着移动通信的快速发展,4G网络大容量,全IP(英文全称:Internet Protocol)化,动态路径等特性对长期演进(Long Term Evolution,LTE)业务的可靠性提出了新的操作、管理和维护(operation,administration and maintenance,OAM)需求。
LTE网络包括二层虚拟专用网(L2VPN,Layer 2 virtual private network)和三层虚拟专用网(L3VPN,Layer 3 virtual private network),L2也就是媒体接入控制(MAC,Media Access Control)层网络,L3也就是网络协议(Internet Protocol,IP)层网络。
现有技术中,从L2VPN到L3VPN的传输路径的故障只能通过人工方式仿造特殊的业务报文进行检测。
发明内容
本发明实施例提供一种路径检测的方法,可以自动检测LTE网络中传输路径中L2进L3节点的故障。本发明实施例还提供了相应的路由设备及系统。
本发明第一方面提供一种路径检测的方法,所述方法应用于长期演进LTE网络的源路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述方法包括:
所述源路由设备获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
所述源路由设备根据所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径;
所述源路由设备根据所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文,所述源地址和所述目的地址用于所述目的路由设备确定所述心跳报文的回程路径;
所述源路由设备向所述检测路径上所述源路由设备的下一跳路由设备发送所述心跳报文。
结合第一方面,在第一种可能的实现方式中,所述检测路径包括业务路径和保护路径,且当所述源路由设备为所述业务路径上的源路由设备时,所述方法还包括:
所述源路由设备从所述保护路径的源路由设备获取所述保护路径的状态信息,所述状态信息用于指示所述保护路径故障或者正常;
所述源路由设备在所述业务路径故障时,当所述状态信息指示所述保护路径正常,则切换业务到所述保护路径。
结合第一方面,在第二种可能的实现方式中,所述心跳报文中还包括魔术字和循环冗余校验码,所述魔术字和所述循环冗余校验码用于所述目的路由设备进行是否响应所述心跳报文的校验。
本发明第二方面提供一种路径检测的方法,所述方法应用于长期演进LTE网络的目的路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述方法包括:
所述目的路由设备接收检测路径的上一跳设备发送的心跳报文,所述心跳报文包括检测标识、源地址和目的地址,所述检测标识用于指示所述心跳报文用于路径检测,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径;
所述目的路由设备向所述回程路径上所述目的路由设备的下一跳路由 设备发送所述心跳报文。
结合第二方面,在第一种可能的实现方式中,所述心跳报文中还包括魔术字和循环冗余校验码,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径,包括:
所述目的路由设备根据所述魔术字和所述循环冗余校验码进行校验,得到校验结果;
当所述校验结果指示需要响应所述心跳报文时,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径。
结合第二方面或第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述检测路径包括业务路径和保护路径,所述方法还包括:
当所述业务路径和所述保护路径上的目的路由设备共用一个互联网协议IP地址时,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径,包括:
所述目的路由设备根据源路由设备的标识和所述目的路由设备的标识,确定所述心跳报文的回程路径。
本发明第三方面提供一种路由设备,所述路由设备应用于长期演进LTE网络,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,当所述路由设备为源路由设备时,所述路由设备包括:
获取模块,用于获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
确定模块,用于根据所述获取模块获取的所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径;
生成模块,用于根据所述获取模块获取的所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述确定模块确定的所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文,所述源地址和所述目的地址用于所述目的路由设备 确定所述心跳报文的回程路径;
发送模块,用于向所述检测路径上所述源路由设备的下一跳路由设备发送所述生成模块生成的所述心跳报文。
结合第三方面,在第一种可能的实现方式中,所述路由设备还包括切换模块,
所述获取模块,还用于在所述检测路径包括业务路径和保护路径,且当所述源路由设备为所述业务路径上的源路由设备时,从所述保护路径的源路由设备获取所述保护路径的状态信息,所述状态信息用于指示所述保护路径故障或者正常;
所述切换模块,用于在所述业务路径故障时,当所述获取模块获取的所述状态信息指示所述保护路径正常,则切换业务到所述保护路径。
结合第三方面,在第二种可能的实现方式中,所述心跳报文中还包括魔术字和循环冗余校验码,所述魔术字和所述循环冗余校验码用于所述目的路由设备进行是否响应所述心跳报文的校验。
本发明第四方面提供一种路由设备,所述路由设备应用于长期演进LTE网络,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述路由设备包括:
接收模块,用于接收检测路径的上一跳设备发送的心跳报文,所述心跳报文包括检测标识、源地址和目的地址,所述检测标识用于指示所述心跳报文用于路径检测,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
确定模块,用于根据所述接收模块接收的所述源地址和所述目的地址,确定所述心跳报文的回程路径;
发送模块,用于向所述确定模块确定的所述回程路径上所述目的路由设备的下一跳路由设备发送所述心跳报文。
结合第四方面,在第一种可能的实现方式中,
所述确定模块,具体用于当所述心跳报文中还包括魔术字和循环冗余校验码时,根据所述魔术字和所述循环冗余校验码进行校验,得到校验结果,当所述校验结果指示需要响应所述心跳报文时,所述目的路由设备根 据所述源地址和所述目的地址,确定所述心跳报文的回程路径。
结合第四方面或第四方面第一种可能的实现方式,在第二种可能的实现方式中,
所述确定模块,具体用于当所述业务路径和所述保护路径上的目的路由设备共用一个互联网协议IP地址时,根据源路由设备的标识和所述目的路由设备的标识,确定所述心跳报文的回程路径。
本发明第五方面提供一种长期演进LTE路径检测系统,包括:源路由设备和目的路由设备;
所述源路由设备为上述第三方面、第三方面第一或第二种可能的实现方式中任一所述的路由设备;
所述目的路由设备为上述第四方面、第四方面第一或第二种可能的实现方式中任一所述的路由设备。
本发明实施例提供一种路径检测的方法,应用于长期演进LTE网络的源路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述方法包括:所述源路由设备获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;所述源路由设备根据所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径;所述源路由设备根据所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文,所述源地址和所述目的地址用于所述目的路由设备确定所述心跳报文的回程路径;所述源路由设备向所述检测路径上所述源路由设备的下一跳路由设备发送所述心跳报文。与现有技术中从L2VPN到L3VPN的传输路径的故障只能通过人工方式仿造特殊的业务报文进行检测相比,本发明实施例提供的路径检测的方法,可以自动检测LTE网络中传输路径中L2VPN进L3VPN节点的故障。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中路径检测的方法的一实施例示意图;
图2是本发明实施例中路径检测的方法的另一实施例示意图;
图3是本发明实施例中路径检测的方法的另一实施例示意图;
图4是本发明实施例中路径检测的方法的另一实施例示意图;
图5是本发明实施例中路径检测的方法的另一实施例示意图;
图6是本发明实施例中路径检测的方法的另一实施例示意图;
图7是本发明实施例中路径检测的方法的另一实施例示意图;
图8是本发明实施例中路由设备的一实施例示意图;
图9是本发明实施例中路由设备的另一实施例示意图;
图10是本发明实施例中路由设备的另一实施例示意图;
图11是本发明实施例中路由设备的另一实施例示意图;
图12是本发明实施例中路由设备的另一实施例示意图;
图13是本发明实施例中路由设备的另一实施例示意图;
图14是本发明实施例中路径检测系统的一实施例示意图。
具体实施方式
本发明实施例提供一种路径检测的方法,可以自动检测LTE网络中传输路径中L2进L3节点的故障。本发明实施例还提供了相应的路由设备及系统。以下分别进行详细说明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面介绍本发明实施例中会用到的一些专用名词的中英文全称、以及英文简称的对应关系。
参阅图1,本发明实施例提供的路径检测的方法的一实施例包括:
长期演进(Long Term Evolution,LTE)网络在演进基站eNB与服务网关(Service Gateway,SGW)之间可以有多个路由设备,本发明实施例中的路由设备可以是路由器、也可以是交换机。
LTE网络包括二层虚拟专用网(Layer 2 virtual private network,L2VPN)和三层虚拟专用网(Layer 3 virtual private network,L3VPN),本发明实施例中的LTE网络可以理解为是LTE业务承载网络。L2层也就是媒体接入控制(MAC,Media Access Control)层,L3层也就是网络协议(Internet Protocol,IP)层。如图1所示,节点A为业务路径的一部分,节点B为保护路径的一部分,节点A和B中从虚拟租用线(Virtual Leased Line,VLL)模块的出口到虚拟路由转发(Virtual Router forwarding,VRF)模块的入口为从L2VPN进入L3VPN的桥接点,VLL模块属于L2层,VRF模块属于L3层,节点A中的VLL模块与节点B中的VLL模块通过框间备份伪线路(inter-chassis backup pseudo wire,ICB PW)通信。图1中,VLL(A)->VRF(C),VLL(A)->VRF(D)为业务路径,VLL(B)->VRF(C),VLL(B)->VRF(D)为保护路径。当然业务路径和保护路径也可以反过来配置,如:VLL(A)->VRF(C),VLL(A)->VRF(D)为保护路径,VLL(B)->VRF(C),VLL(B)->VRF(D)为业务路径。当然,VLL(A)->VRF(C),VLL(A)->VRF(D),VLL(B)->VRF(C),VLL(B)->VRF(D)之间可能还有其他的路由设备。其中,VLL(A)表示节点A中的VLL模块,VLL(B)表示节点B中的VLL模块,VRF(C)表示节点C中的VRF模块,VRF(D)表示节点D中的VRF模块。
在本发明实施例的路径检测的过程中,VLL(A)或VLL(B)相当于源路由设备,VRF(C)模块和VRF(D)模块相当于目的路由设备。VLL(A)或VLL(B)接收用户或者网络的配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址,根据所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径;根据所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述 检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文,所述源地址和所述目的地址用于所述目的路由设备确定所述心跳报文的回程路径;向所述检测路径上所述源路由设备的下一跳路由设备发送所述心跳报文。
例如:当配置信息包括检测标识、VLL(A)的地址、VRF(C)的地址时,则可以确定检测路径从VLL(A)->VRF(C),则可以根据检测标识生成心跳报文。本发明实施例中的心跳报文是扩展的ping报文。如图2所示,可以在现有的ping报文的基础上新增BITMap[8]字段以形成心跳报文。BITMap[8]字段表示净荷码流类型,可以在该字段携带检测标识。另外,心跳报文中还可以包括魔术字(magic word)和循环冗余校验码(Cyclic Redundancy Check,CRC),所述魔术字和所述CRC用于所述目的路由设备对所述心跳报文进行校验。所述目的路由设备确定magic number和CRC值都匹配,则继续往后识别指定码流中的内容。所述指定码流中的内容可以包括心跳报文的回程路径标识。所述目的路由设备可以根据源地址和目的地址,确定相应的回程路径标识。所述心跳报文中还可以包括ReplyType字段,ReplyType字段用于所述目的路由设备添加校验结果,校验结果可以包括缺省未校验、校验无问题、校验被改包、码流不支持等情况。
如图3所示,图3为心跳报文的具体传输通道,图3所示的传输通道上的各个模块,可以是在一个路由设备中,也可以是在多个路由设备中,用户或网管配置心跳报文的配置信息时指示业务路径或者保护路径上的源路由设备扩展ping报文净荷,并将包括扩展ping报文净荷的心跳报文发往目的路由设备,所述源路由设备根据源路由设备的IP地址和目的路由设备的IP地址确定所述心跳报文的传输通道,当然所述源路由设备也可以根据源路由设备的标识和目的路由设备的标识确定心跳报文的传输通道。所述心跳报文的传输通道就是所述心跳报文从源路由设备到目的路由设备所要经由的具体路径。所述目的路由设备根据心跳报文净荷中的源IP地址、主从标识、Tunnel标识,校验后直接从对应Tunnel进行回传。Tunnel是该心跳报文要经历图3中的哪些模块返回源路由设备的具体通道。例如:对于业务路径上的 L2进L3的节点VLL(A)和保护路径上的L2进L3的节点VLL(B),VLL(A)和VLL(B)中的每个虚拟以太网(Virtual-Ethernet,VE)各发两路心跳报文到与L3路由设备相连的端口IP地址。具体的实现方法如下:
1、L2进L3心跳检测:覆盖从L2VPN的网络间接口(Network to Network Interface,NNI)到回程的L3VPN的路径,以及覆盖备L2进L3节点的主备路径。
2、用户或网管自定义ping报文格式:可以在VRF(C)和VRF(D)节点指定回到VLL(A)还是VLL(B),净荷自定义,还可检测改包(modification)功能。
3、对于业务路径上的L2进L3节点,由于跨网元链路聚集(multi-chassis link aggregation group,MC-LAG)对应的虚拟以太网接口(Virtual-Ethernet,VE)状态固定为up,所以从所述业务路径上的L2进L3节点的L2NNI进入的心跳报文,会被送往该业务路径上的L2进L3节点对应的VE进行处理。对于保护路径上的L2进L3节点,接入侧PW固定桥接到该保护路径上的L2进L3节点的L2VE或该保护路径上的L2进L3节点的L3VE。
4、业务路径和保护路径上的L2进L3节点,也就是图1中的VLL(A)和VLL(B),都构造心跳报文,发往核心网中的L3节点进行检测,确保覆盖所有路径。对于保护路径上的VLL(B),根据MC-LAG的桥接方式选择从L2用户网络侧接口(User Networks interface,UNI)处还是L2NNI处发送,避免直接通过(dual node interconnection PW,简称:DNI PW)到达业务路径上的VLL(A)。
5、心跳报文格式选择:借用已有的L2VPN Ping功能,源IP地址可以由用户或网管指定,采用该L2UNI对应的基站同网段IP地址,目的IP地址选择核心三层设备的VPN Loopback IP地址,配置为和核心网设备IP地址同网段。
如图4所示,心跳报文一、Ping报文1:VLL(A)->VRF(C):
网元A覆盖L2NNI、MC-LAG、L2UNI、VE、快速重路由(fast reroute,FRR)主路由,自动保护倒换(automatic protection switching,APS)1。回程为从VRF(C)到VLL(A)。
工作PW down时,L2UNI处生成的ping报文会到达工作网元的L3VE并被转发出去。
心跳报文二、Ping报文2:VLL(A)->VRF(D):
从L2NNI生成ping报文2,目的IP地址指定为VRF(D)的出接口。从网元A开始,覆盖L2NNI,MC-LAG、到D网元FIB路由、APS2。回程时目的路由节点通过识别该ping报文2,直接从保护路由传送该ping报文2,直接送到网元A。
心跳报文三、Ping报文3:VLL(A)->双归IP VRF(C、D):
双归IP(C、D)是指VRF(C)和VRF(D)具有相同的IP地址,L3核心节点工作和保护配置一个相同的双归环回IP地址。从网元A发出的心跳报文通过跟业务报文相同的路径。VRF(C)或VRF(D)收到后,根据ping报文净荷带的源标签交换路由器(Label Switching Router,LSR)标识和目的LSR ID选择返回的Tunnel。
如图5所示,心跳报文四:Ping报文4:VLL(B)->VRF(D):
1)从VLL(B)的L2NNI生成ping报文4,目的IP地址指定为VRF(D)的出接口,业务路径可覆盖L2进L3的所有路径。
VLL(B)发出的ping报文净荷中要带上源LSR ID和目的LSR ID,节点D根据心跳报文4的净荷中的LSR ID找到对应Tunnel进行回传。
心跳报文五:Ping报文5:VLL(B)->VRF(C):
指定C节点的出接口IP地址,从L2NNI处生成ping报文5。覆盖节点B的L2NNI、MC-LAG、VE、L3路由。在C节点,ping报文响应回程要看净荷,指定往保护APS路径返回即可。
心跳报文六、Ping报文6:VLL(B)->双归IP地址:
L3核心节点工作和保护配置一个相同的双归环回IP地址。从B网元发出的ping报文通过业务相同的路径。C或D收到后,根据ping报文净荷带的源LSR ID和目的LSR ID选择返回的Tunnel。
以上场景提供的路径检测的方法,与现有技术中L2VPN到L3VPN的传输路径的故障只能通过人工方式仿造特殊的业务报文进行检测相比,本发明实施例提供的路径检测的方法,可以自动检测LTE网络中任意一条传输路 径中L2进L3节点的故障。
参阅图6,本发明实施例提供的路径检测的方法的一实施例包括:
101、源路由设备获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址,所述源路由设备为长期演进LTE网络的路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN。
102、所述源路由设备根据所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径。
103、所述源路由设备根据所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文,所述源地址和所述目的地址用于所述目的路由设备确定所述心跳报文的回程路径。
104、所述源路由设备向所述检测路径上所述源路由设备的下一跳路由设备发送所述心跳报文。
本发明实施例提供一种路径检测的方法,应用于长期演进LTE网络的源路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述方法包括:所述源路由设备获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;所述源路由设备根据所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径;所述源路由设备根据所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文,所述源地址和所述目的地址用于所述目的路由设备确定所述心跳报文的回程路径;所述源路由设备向所述 检测路径上所述源路由设备的下一跳路由设备发送所述心跳报文。与现有技术中从L2VPN到L3VPN的传输路径的故障只能通过人工方式仿造特殊的业务报文进行检测相比,本发明实施例提供的路径检测的方法,可以自动检测LTE网络中传输路径中L2进L3节点的故障。
可选地,在上述图6对应的实施例的基础上,本发明实施例提供的路径检测的方法的第一个可选实施例中,所述方法还可以包括:
所述源路由设备在预置时间内未接收到所述目的路由设备返回的心跳报文时,向网管设备上报告警信息。
本发明实施例中,在确定路径故障后,可以及时向网管设备上报告警,使路径得到及时的维护,从而避免出现在路径故障后,还继续传输业务报文,导致业务报文丢失。
可选地,在上述图6对应的实施例或第一个可选实施例的基础上,本发明实施例提供的路径检测的方法的第二个可选实施例中,所述检测路径包括业务路径和保护路径,且当所述源路由设备为所述业务路径上的源路由设备时,所述方法还可以包括:
所述源路由设备从所述保护路径的源路由设备获取所述保护路径的状态信息,所述状态信息用于指示所述保护路径故障或者正常;
所述源路由设备在所述业务路径故障时,当所述状态信息指示所述保护路径正常,则切换业务到所述保护路径。
本发明实施例中,对保护路径也会定时检测,业务路径会根据保护路径的状态信息确定保护路径的状态,以避免在保护路径故障时,还进行业务切换,导致切换后业务报文丢失,而且还浪费了切换资源。
可选地,在上述图6对应的实施例或第一个可选实施例的基础上,本发明实施例提供的路径检测的方法的第三个可选实施例中,所述心跳报文中还包括魔术字和循环冗余校验码,所述魔术字和所述循环冗余校验码用于所述目的路由设备对所述心跳报文进行校验。
本发明实施例提供的路径检测的方法可以参阅图1至图5、部分的描述进行理解,本处不做过多赘述。
参阅图7,本发明实施例提供的路径检测的方法的另一实施例包括:
201、目的路由设备接收检测路径的上一跳设备发送的心跳报文,所述心跳报文包括检测标识、源地址和目的地址,所述检测标识用于指示所述心跳报文用于路径检测,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址,其中,所述目的路由设备为LTE网络中的路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN。
202、所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径。
203、所述目的路由设备向所述回程路径上所述目的路由设备的下一跳路由设备发送所述心跳报文。
本发明实施例提供的路径检测的方法,应用于长期演进LTE网络的目的路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述方法包括:所述目的路由设备接收检测路径的上一跳设备发送的心跳报文,所述心跳报文包括检测标识、源地址和目的地址,所述检测标识用于指示所述心跳报文用于路径检测,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径;所述目的路由设备向所述回程路径上所述目的路由设备的下一跳路由设备发送所述心跳报文。与现有技术中从L2VPN到L3VPN的传输路径的故障只能通过人工方式仿造特殊的业务报文进行检测相比,本发明实施例提供的路径检测的方法,可以自动检测LTE网络中任意一条传输路径中L2进L3节点的故障。
可选地,在上述图7对应的实施例的基础上,本发明实施例提供的路径检测的方法的第一个可选实施例中,所述心跳报文中还包括魔术字和循环冗余校验码,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径,可以包括:
所述目的路由设备根据所述魔术字和所述循环冗余校验码进行校验,得到校验结果;
当所述校验结果指示需要响应所述心跳报文时,所述目的路由设备根 据所述源地址和所述目的地址,确定所述心跳报文的回程路径。
可选地,在上述图7对应的实施例或第一个可选实施例的基础上,本发明实施例提供的路径检测的方法的第二个可选实施例中,所述检测路径包括业务路径和保护路径,所述方法还可以包括:
当所述业务路径和所述保护路径上的目的路由设备共用一个互联网协议IP地址时,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径,包括:
所述目的路由设备根据源路由设备的标识和所述目的路由设备的标识,确定所述心跳报文的回程路径。
本发明实施例提供的路径检测的方法可以参阅图1至图5、部分的描述进行理解,本处不做过多赘述。
参阅图8,本发明实施例提供的路由设备30的一实施例包括:所述路由设备30应用于长期演进LTE网络,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,当所述路由设备30为源路由设备时,所述路由设备30包括:
获取模块301,用于获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
确定模块302,用于根据所述获取模块301获取的所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径;
生成模块303,用于根据所述获取模块301获取的所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述确定模块302确定的所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文,所述源地址和所述目的地址用于所述目的路由设备确定所述心跳报文的回程路径;
发送模块304,用于向所述检测路径上所述源路由设备的下一跳路由设备发送所述生成模块303生成的所述心跳报文。
本发明实施例提供的路由设备,应用于长期演进LTE网络,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,当所述路由设备30为源路由设备时,所述路由设备30包括:获取模块301获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;确定模块302根据所述获取模块301获取的所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径;生成模块303根据所述获取模块302获取的所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述确定模块确定的所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文,所述源地址和所述目的地址用于所述目的路由设备确定所述心跳报文的回程路径;发送模块304向所述检测路径上所述源路由设备的下一跳路由设备发送所述生成模块303生成的所述心跳报文。与现有技术中从L2VPN到L3VPN的传输路径的故障只能通过人工方式仿造特殊的业务报文进行检测相比,本发明实施例提供的路由设备,可以自动检测LTE网络中传输路径中L2进L3节点的故障。
可选地,在上述图8对应的实施例的基础上,本发明实施例提供的路由设备30的第一个可选实施例中,
所述发送模块304,还用于在预置时间内未接收到所述目的路由设备返回的心跳报文时,向网管设备上报告警信息。
可选地,在上述图8对应的实施例或第一个可选实施例的基础上,参阅图9,本发明实施例提供的路由设备30的第一个可选实施例中,所述路由设备30还包括切换模块305,
所述获取模块301,还用于在所述检测路径包括业务路径和保护路径,且当所述源路由设备为所述业务路径上的源路由设备时,从所述保护路径的源路由设备获取所述保护路径的状态信息,所述状态信息用于指示所述保护路径故障或者正常;
所述切换模块305,用于在所述业务路径故障时,当所述获取模块301 获取的所述状态信息指示所述保护路径正常,则切换业务到所述保护路径。
本发明实施例提供的路由设备可以参阅图1至图6部分的描述进行理解,本处不做过多赘述。
参阅图10,本发明实施例提供的路由设备40的另一实施例包括:所述路由设备40应用于长期演进LTE网络,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述路由设备40包括:
接收模块401,用于接收检测路径的上一跳设备发送的心跳报文,所述心跳报文包括检测标识、源地址和目的地址,所述检测标识用于指示所述心跳报文用于路径检测,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
确定模块402,用于根据所述接收模块401接收的所述源地址和所述目的地址,确定所述心跳报文的回程路径;
发送模块403,用于向所述确定模块402确定的所述回程路径上所述目的路由设备的下一跳路由设备发送所述心跳报文。
本发明实施例提供的路由设备,应用于长期演进LTE网络,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述路由设备40包括:接收模块401接收检测路径的上一跳设备发送的心跳报文,所述心跳报文包括检测标识、源地址和目的地址,所述检测标识用于指示所述心跳报文用于路径检测,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;确定模块402根据所述接收模块401接收的所述源地址和所述目的地址,确定所述心跳报文的回程路径;发送模块403向所述确定模块402确定的所述回程路径上所述目的路由设备的下一跳路由设备发送所述心跳报文。与现有技术中从L2VPN到L3VPN的传输路径的故障只能通过人工方式仿造特殊的业务报文进行检测相比,本发明实施例提供的路由设备,可以自动检测LTE网络中传输路径中L2进L3节点的软硬件故障。
可选地,在上述图10对应的实施例的基础上,本发明实施例提供的路由设备40的第一个可选实施例中,
所述确定模块402,具体用于当所述心跳报文中还包括魔术字和循环冗 余校验码时,根据所述魔术字和所述循环冗余校验码进行校验,得到校验结果,当所述校验结果指示需要响应所述心跳报文时,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径。
可选地,在上述图10对应的实施例或第一个可选实施例的基础上,本发明实施例提供的路由设备40的第二个可选实施例中,
所述确定模块402,具体用于当所述业务路径和所述保护路径上的目的路由设备共用一个互联网协议IP地址时,根据源路由设备的标识和所述目的路由设备的标识,确定所述心跳报文的回程路径。
本发明实施例提供的路由设备可以参阅图1至图5、图7部分的描述进行理解,本处不做过多赘述。
在路由设备的多个实施例中,应当理解的是,在一种实现方式下,接收模块、发送模块可以是由输入/输出I/O设备(比如网卡)来实现,确定模块、切换模块、生成模块可以由处理器执行存储器中的程序或指令来实现的(换言之,即由处理器以及与所述处理器耦合的存储器中的特殊指令相互配合来实现);在另一种实现方式下,接收模块、发送模块可以是由输入/输出I/O设备(比如网卡)来实现,确定模块、切换模块、生成模块也可以分别通过专有电路来实现,具体实现方式参见现有技术,这里不再赘述;在再一种实现方式下,接收模块、发送模块可以是由输入/输出I/O设备(比如网卡)来实现,确定模块、切换模块、生成模块也可以通过现场可编程门阵列(FPGA,Field-Programmable Gate Array)来实现,具体实现方式参见现有技术,这里不再赘述,本发明包括但不限于前述实现方式,应当理解的是,只要按照本发明的思想实现的方案,都落入本发明实施例所保护的范围。
本实施例提供了一种路由设备的硬件结构,参见图11所示,一种路由设备的硬件结构可以包括:
收发器件、软件器件以及硬件器件三部分;
收发器件为用于完成包收发的硬件电路;
硬件器件也可称“硬件处理模块”,或者更简单的,也可简称为“硬件”,硬件器件主要包括基于FPGA、ASIC之类专用硬件电路(也会配合其他配套 器件,如存储器)来实现某些特定功能的硬件电路,其处理速度相比通用处理器往往要快很多,但功能一经定制,便很难更改,因此,实现起来并不灵活,通常用来处理一些固定的功能。需要说明的是,硬件器件在实际应用中,也可以包括MCU(微处理器,如单片机)、或者CPU等处理器,但这些处理器的主要功能并不是完成大数据的处理,而主要用于进行一些控制,在这种应用场景下,由这些器件搭配的系统为硬件器件。
软件器件(或者也简单“软件”)主要包括通用的处理器(例如CPU)及其一些配套的器件(如内存、硬盘等存储设备),可以通过编程来让处理器具备相应的处理功能,用软件来实现时,可以根据业务需求灵活配置,但往往速度相比硬件器件来说要慢。软件处理完后,可以通过硬件器件将处理完的数据通过收发器件进行发送,也可以通过一个与收发器件相连的接口向收发器件发送处理完的数据。
本实施例中,收发器件用于进行上述实施例中心跳报文的接收和发送,软件器件或硬件器件用于获取配置信息、确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径,生成心跳报文等。
硬件器件及软件器件的其他功能在前述实施例中已经详细论述,这里不再赘述。
下面结合附图就接收模块、发送模块可以是由输入/输出I/O设备(比如网卡)来实现,路由设备可以是可以由处理器执行存储器中的程序或指令来实现的技术方案来做详细的介绍:
图12是本发明实施例提供的路由设备50的结构示意图。路由设备50应用于长期演进LTE网络,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,当所述路由设备为源路由设备时,所述路由设备50包括处理器510、存储器550和输入/输出I/O设备530,存储器550可以包括只读存储器和随机存取存储器,并向处理器510提供操作指令和数据。存储器550的一部分还可以包括非易失性随机存取存储器(NVRAM)。
在一些实施方式中,存储器550存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本发明实施例中,通过调用存储器550存储的操作指令(该操作指令 可存储在操作系统中),
获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
根据所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径;
根据所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文,所述源地址和所述目的地址用于所述目的路由设备确定所述心跳报文的回程路径;
通过I/O设备530向所述检测路径上所述源路由设备的下一跳路由设备发送所述心跳报文。
可见,与现有技术中从L2VPN到L3VPN的传输路径的故障只能通过人工方式仿造特殊的业务报文进行检测相比,本发明实施例提供的路由设备,可以自动检测LTE网络中传输路径中L2进L3节点的软硬件故障。
处理器510控制路由设备50的操作,处理器510还可以称为CPU(Central Processing Unit,中央处理单元)。存储器550可以包括只读存储器和随机存取存储器,并向处理器510提供指令和数据。存储器550的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中路由设备50的各个组件通过总线系统520耦合在一起,其中总线系统520除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统520。
上述本发明实施例揭示的方法可以应用于处理器510中,或者由处理器510实现。处理器510可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器510中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器510可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可 以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器550,处理器510读取存储器550中的信息,结合其硬件完成上述方法的步骤。
可选地,I/O设备530还用于在预置时间内未接收到所述目的路由设备返回的心跳报文时,向网管设备上报告警信息。
可选地,I/O设备530还用于从所述保护路径的源路由设备获取所述保护路径的状态信息,所述状态信息用于指示所述保护路径故障或者正常;
处理器510用于在所述业务路径故障时,当所述状态信息指示所述保护路径正常,则切换业务到所述保护路径。
可选地,所述心跳报文中还包括魔术字和循环冗余校验码,所述魔术字和所述循环冗余校验码用于所述目的路由设备进行是否响应所述心跳报文的校验。
图12对应的实施例以及其他可选实施例可以参阅图1-图5,图6、图8-图9路由设备部分的描述进行理解,本处不做过多赘述。
图13是本发明实施例提供的路由设备60的结构示意图。所述路由设备60应用于长期演进LTE网络,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述路由设备60包括处理器610、存储器650和输入/输出I/O设备630,存储器650可以包括只读存储器和随机存取存储器,并向处理器610提供操作指令和数据。存储器650的一部分还可以包括非易失性随机存取存储器(NVRAM)。
在一些实施方式中,存储器650存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本发明实施例中,通过调用存储器650存储的操作指令(该操作指令可存储在操作系统中),
通过I/O设备630接收检测路径的上一跳设备发送的心跳报文,所述心跳 报文包括检测标识、源地址和目的地址,所述检测标识用于指示所述心跳报文用于路径检测,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
根据所述源地址和所述目的地址,确定所述心跳报文的回程路径;
通过I/O设备630向所述回程路径上所述目的路由设备的下一跳路由设备发送所述心跳报文。
可见,与现有技术中从L2VPN到L3VPN的传输路径的故障只能通过人工方式仿造特殊的业务报文进行检测相比,本发明实施例提供的路由设备,可以自动检测LTE网络中传输路径中L2进L3节点的故障。
处理器610控制路由设备60的操作,处理器610还可以称为CPU(Central Processing Unit,中央处理单元)。存储器650可以包括只读存储器和随机存取存储器,并向处理器610提供指令和数据。存储器650的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中路由设备60的各个组件通过总线系统620耦合在一起,其中总线系统620除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统620。
上述本发明实施例揭示的方法可以应用于处理器610中,或者由处理器610实现。处理器610可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器610可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器650,处理器610读取存储器650中的信息,结合其硬件完成上述方法的步骤。
可选地,处理器610还用于当所述心跳报文中还包括魔术字和循环冗余校验码时,根据所述魔术字和所述循环冗余校验码进行校验,得到校验结果,当所述校验结果指示需要响应所述心跳报文时,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径。
可选地,处理器610还用于:当所述业务路径和所述保护路径上的目的路由设备共用一个互联网协议IP地址时,根据源路由设备的标识和所述目的路由设备的标识,确定所述心跳报文的回程路径。
本发明实施例提供的路由设备可以参阅图1至图5、图7部分的描述进行理解,本处不做过多赘述。
参阅图14,本发明实施例提供的长期演进LTE路径检测系统,包括:源路由设备30和目的路由设备40,源路由设备30和目的路由设备40应用于长期演进LTE网络的源路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN;
所述源路由设备30用于:
获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
根据所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径;
根据所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文,所述源地址和所述目的地址用于所述目的路由设备确定所述心跳报文的回程路径;
向所述检测路径上所述源路由设备的下一跳路由设备发送所述心跳报文;
所述目的路由设备40用于:
接收检测路径的上一跳设备发送的心跳报文,所述心跳报文包括检测标识、源地址和目的地址,所述检测标识用于指示所述心跳报文用于路径 检测,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
根据所述源地址和所述目的地址,确定所述心跳报文的回程路径;
向所述回程路径上所述目的路由设备的下一跳路由设备发送所述心跳报文。
可见,与现有技术中从L2VPN到L3VPN的传输路径的故障只能通过人工方式仿造特殊的业务报文进行检测相比,本发明实施例提供的路由设备,可以自动检测LTE网络中传输路径中L2进L3节点的软硬件故障。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。以上对本发明实施例所提供的路径检测的方法、路由设备以及系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (13)

  1. 一种路径检测的方法,其特征在于,所述方法应用于长期演进LTE网络的源路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述方法包括:
    所述源路由设备获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
    所述源路由设备根据所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设备的检测路径;
    所述源路由设备根据所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文;
    所述源路由设备向所述检测路径上所述源路由设备的下一跳路由设备发送所述心跳报文。
  2. 根据权利要求1所述的方法,其特征在于,所述检测路径包括业务路径和保护路径,且当所述源路由设备为所述业务路径上的源路由设备时,所述方法还包括:
    所述源路由设备从所述保护路径的源路由设备获取所述保护路径的状态信息,所述状态信息用于指示所述保护路径故障或者正常;
    所述源路由设备在所述业务路径故障且所述状态信息指示所述保护路径正常时,切换业务到所述保护路径。
  3. 根据权利要求1或2所述的方法,其特征在于,所述心跳报文中还包括魔术字和循环冗余校验码,所述魔术字和所述循环冗余校验码用于所述目的路由设备对所述心跳报文进行校验。
  4. 一种路径检测的方法,其特征在于,所述方法应用于长期演进LTE网络的目的路由设备,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述方法包括:
    所述目的路由设备接收检测路径的上一跳设备发送的心跳报文,所述 心跳报文包括检测标识、源地址和目的地址,所述检测标识用于指示所述心跳报文用于路径检测,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
    所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径;
    所述目的路由设备向所述回程路径上所述目的路由设备的下一跳路由设备发送所述心跳报文。
  5. 根据权利要求4所述的方法,其特征在于,所述心跳报文中还包括魔术字和循环冗余校验码,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径,包括:
    所述目的路由设备根据所述魔术字和所述循环冗余校验码对所述心跳报文进行校验,得到校验结果;
    当所述校验结果指示需要响应所述心跳报文时,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径。
  6. 根据权利要求4或5所述的方法,其特征在于,所述检测路径包括业务路径和保护路径,所述方法还包括:
    当所述业务路径和所述保护路径上的目的路由设备共用一个互联网协议IP地址时,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径,包括:
    所述目的路由设备根据源路由设备的标识和所述目的路由设备的标识,确定所述心跳报文的回程路径。
  7. 一种路由设备,其特征在于,所述路由设备应用于长期演进LTE网络,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,当所述路由设备为源路由设备时,所述路由设备包括:
    获取模块,用于获取配置信息,所述配置信息包括检测标识、源地址和目的地址,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
    确定模块,用于根据所述获取模块获取的所述源地址和所述目的地址,确定从所述L2VPN中的所述源路由设备到所述L3VPN中的所述目的路由设 备的检测路径;
    生成模块,用于根据所述获取模块获取的所述检测标识生成心跳报文,所述心跳报文包括所述检测标识、所述源地址、所述目的地址和所述确定模块确定的所述检测路径的标识,所述检测标识用于指示所述心跳报文用于路径检测,所述检测路径的标识用于指示所述检测路径上的路由设备逐跳传输所述心跳报文;
    发送模块,用于向所述检测路径上所述源路由设备的下一跳路由设备发送所述生成模块生成的所述心跳报文。
  8. 根据权利要求7所述的路由设备,其特征在于,所述路由设备还包括切换模块,
    所述获取模块,还用于在所述检测路径包括业务路径和保护路径,且当所述源路由设备为所述业务路径上的源路由设备时,从所述保护路径的源路由设备获取所述保护路径的状态信息,所述状态信息用于指示所述保护路径故障或者正常;
    所述切换模块,用于在所述业务路径故障时,当所述获取模块获取的所述状态信息指示所述保护路径正常,则切换业务到所述保护路径。
  9. 根据权利要求7所述的路由设备,其特征在于,所述心跳报文中还包括魔术字和循环冗余校验码,所述魔术字和所述循环冗余校验码用于所述目的路由设备对所述心跳报文进行校验。
  10. 一种路由设备,其特征在于,所述路由设备应用于长期演进LTE网络,所述LTE网络包括二层虚拟专用网L2VPN和三层虚拟专用网L3VPN,所述路由设备包括:
    接收模块,用于接收检测路径的上一跳设备发送的心跳报文,所述心跳报文包括检测标识、源地址和目的地址,所述检测标识用于指示所述心跳报文用于路径检测,所述源地址为所述L2VPN中的所述源路由设备的地址,所述目的地址为所述L3VPN中的目的路由设备的地址;
    确定模块,用于根据所述接收模块接收的所述源地址和所述目的地址,确定所述心跳报文的回程路径;
    发送模块,用于向所述确定模块确定的所述回程路径上所述目的路由 设备的下一跳路由设备发送所述心跳报文。
  11. 根据权利要求10所述的路由设备,其特征在于,
    所述确定模块,具体用于当所述心跳报文中还包括魔术字和循环冗余校验码时,根据所述魔术字和所述循环冗余校验码进行校验,得到校验结果,当所述校验结果指示需要响应所述心跳报文时,所述目的路由设备根据所述源地址和所述目的地址,确定所述心跳报文的回程路径。
  12. 根据权利要求10或11所述的路由设备,其特征在于,
    所述确定模块,具体用于当所述业务路径和所述保护路径上的目的路由设备共用一个互联网协议IP地址时,根据源路由设备的标识和所述目的路由设备的标识,确定所述心跳报文的回程路径。
  13. 一种长期演进LTE路径检测系统,其特征在于,包括:源路由设备和目的路由设备;
    所述源路由设备为上述权利要求7-9任一所述的路由设备;
    所述目的路由设备为上述权利要求10-12任一所述的路由设备。
PCT/CN2016/085295 2015-06-11 2016-06-08 一种路径检测的方法、路由设备及系统 WO2016197950A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510319676.1A CN106301991B (zh) 2015-06-11 2015-06-11 一种路径检测的方法、路由设备及系统
CN201510319676.1 2015-06-11

Publications (1)

Publication Number Publication Date
WO2016197950A1 true WO2016197950A1 (zh) 2016-12-15

Family

ID=57504607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085295 WO2016197950A1 (zh) 2015-06-11 2016-06-08 一种路径检测的方法、路由设备及系统

Country Status (2)

Country Link
CN (1) CN106301991B (zh)
WO (1) WO2016197950A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111083665A (zh) * 2019-12-05 2020-04-28 上海旗旌科技有限公司 一种双主控交互通信的方法及设备
CN112468353A (zh) * 2019-09-09 2021-03-09 华为数字技术(苏州)有限公司 一种网络可达性检测方法及装置
CN116208524A (zh) * 2018-06-06 2023-06-02 华为技术有限公司 一种数据报文的检测方法、设备及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107547383B (zh) * 2017-07-26 2020-04-03 新华三技术有限公司 路径检测方法及装置
CN114465935B (zh) * 2022-01-11 2024-05-14 深圳绿米联创科技有限公司 为网络系统生成网络拓扑图的方法及相关设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415857A (en) * 2004-06-30 2006-01-04 Zarlink Semiconductor Inc Rapid end-to-end failover in a packet switched network
CN102891798A (zh) * 2012-09-28 2013-01-23 华为技术有限公司 心跳报文传输方法及装置
CN102984011A (zh) * 2012-12-04 2013-03-20 杭州华三通信技术有限公司 链路故障定位方法及设备
CN103874105A (zh) * 2012-12-10 2014-06-18 中国移动通信集团公司 一种路径追踪方法、系统及一种网关设备
CN104702431A (zh) * 2013-12-10 2015-06-10 中国移动通信集团内蒙古有限公司 一种虚拟专用网双断保护的方法及装置
CN104702478A (zh) * 2013-12-10 2015-06-10 中兴通讯股份有限公司 虚拟路由转发实例处理方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017021A1 (de) * 2005-04-13 2006-10-19 Siemens Ag Verfahren und Vorrichtung zur Kommunikation zwischen Netzknotenelementen
CN101945050B (zh) * 2010-09-25 2014-03-26 中国科学院计算技术研究所 一种基于胖树结构的动态容错方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415857A (en) * 2004-06-30 2006-01-04 Zarlink Semiconductor Inc Rapid end-to-end failover in a packet switched network
CN102891798A (zh) * 2012-09-28 2013-01-23 华为技术有限公司 心跳报文传输方法及装置
CN102984011A (zh) * 2012-12-04 2013-03-20 杭州华三通信技术有限公司 链路故障定位方法及设备
CN103874105A (zh) * 2012-12-10 2014-06-18 中国移动通信集团公司 一种路径追踪方法、系统及一种网关设备
CN104702431A (zh) * 2013-12-10 2015-06-10 中国移动通信集团内蒙古有限公司 一种虚拟专用网双断保护的方法及装置
CN104702478A (zh) * 2013-12-10 2015-06-10 中兴通讯股份有限公司 虚拟路由转发实例处理方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116208524A (zh) * 2018-06-06 2023-06-02 华为技术有限公司 一种数据报文的检测方法、设备及系统
CN112468353A (zh) * 2019-09-09 2021-03-09 华为数字技术(苏州)有限公司 一种网络可达性检测方法及装置
CN112468353B (zh) * 2019-09-09 2023-11-21 华为数字技术(苏州)有限公司 一种网络可达性检测方法及装置
CN111083665A (zh) * 2019-12-05 2020-04-28 上海旗旌科技有限公司 一种双主控交互通信的方法及设备
CN111083665B (zh) * 2019-12-05 2023-09-19 上海旗旌科技有限公司 一种双主控交互通信的方法及设备

Also Published As

Publication number Publication date
CN106301991A (zh) 2017-01-04
CN106301991B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
EP3591912B1 (en) Evpn packet processing method, device and system
CN109873760B (zh) 处理路由的方法和装置、以及数据传输的方法和装置
CN107846342B (zh) 一种vxlan报文的转发方法、设备及系统
WO2018166233A1 (zh) 一种处理路由的方法、设备及系统
US7599303B2 (en) System and methods for sending trace messages
WO2019120042A1 (zh) 一种网络中传输报文的方法和节点
WO2016197950A1 (zh) 一种路径检测的方法、路由设备及系统
EP2364539B1 (en) A system and method of implementing lightweight not-via ip fast reroutes in a telecommunications network
WO2017157052A1 (zh) 基于隧道绑定的通信方法和网络设备
US9979632B2 (en) Avoiding data traffic loss in a ring multihomed, in an active-standby manner, to a transport network
US9755957B2 (en) Pseudowire control channel for signaling events
CN113794637B (zh) Sid列表的处理方法及装置
WO2008055426A1 (fr) Procédé, système et appareil de nœud pour transmettre un message de gestion de défaut de connectivité ethernet
US11799716B2 (en) Core isolation for logical tunnels stitching multi-homed EVPN and L2 circuit
US11349749B2 (en) Node protection for bum traffic for multi-homed node failure
CN108243114B (zh) 一种转发报文的方法、设备及系统
WO2018113294A1 (zh) 一种转发报文的方法、设备及系统
US11943148B2 (en) Traffic flow processing method and apparatus
CN109788018B (zh) 跨域的业务互通方法、网络设备及存储介质
KR20220093155A (ko) 패킷 전달 방법, 제1 네트워크 디바이스 및 제1 디바이스 그룹
US20130308617A1 (en) Continuous Virtual Private Local Area Network (LAN) Service (VPLS) Over Wireline and Wireless Networks
Huynh et al. RRR: Rapid ring recovery submillisecond decentralized recovery for ethernet ring
WO2019056239A1 (zh) 报文同步方法和装置
CN110545240B (zh) 基于分布式聚合系统的标签转发表的建立及报文转发方法
CN115914087A (zh) 报文转发方法、装置、设备、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806848

Country of ref document: EP

Kind code of ref document: A1