WO2020135798A1 - 一种保护电路、电池及飞行器 - Google Patents

一种保护电路、电池及飞行器 Download PDF

Info

Publication number
WO2020135798A1
WO2020135798A1 PCT/CN2019/129563 CN2019129563W WO2020135798A1 WO 2020135798 A1 WO2020135798 A1 WO 2020135798A1 CN 2019129563 W CN2019129563 W CN 2019129563W WO 2020135798 A1 WO2020135798 A1 WO 2020135798A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
input
resistor
terminal
Prior art date
Application number
PCT/CN2019/129563
Other languages
English (en)
French (fr)
Inventor
秦威
张辉华
陈法全
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020135798A1 publication Critical patent/WO2020135798A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/04Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to abnormal temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators

Definitions

  • the invention relates to the technical field of circuits, in particular to a protection circuit, a battery with the protection circuit, and an aircraft with the battery.
  • the inventor found that there are at least the following problems in the related art: the use of a dedicated chip is costly on the one hand; on the other hand, since the parameters of the dedicated chip are usually fixed before the factory, so its protection The adaptability and flexibility are not enough.
  • the embodiment of the present invention aims to provide a protection circuit, a battery and an aircraft, without using a special protection chip, which can effectively save costs; and, by adjusting the parameters of the detection circuit and the switch circuit of the protection circuit to adapt to different power supplies Need to effectively improve the adaptability and flexibility of protection.
  • an embodiment of the present invention provides a protection circuit for monitoring a power supply circuit, including:
  • a switch circuit connected to the detection circuit
  • the detection circuit When the detection circuit detects that the power supply circuit is abnormal, the detection circuit outputs a low level so that the switch circuit is in an off state to cut off the power supply loop.
  • the protection circuit further includes: an input positive electrode, an output positive electrode, an input negative electrode, and an output negative electrode, wherein the power supply circuit applies a power supply voltage to the input positive electrode, and the input positive electrode and the output positive electrode connection;
  • the detection circuit includes a detection input terminal and a detection output terminal, and the detection input terminal is connected to the input positive electrode and the output positive electrode;
  • the switch circuit is connected to the detection output terminal, and the switch circuit is connected between the input negative electrode and the output negative electrode.
  • the detection circuit includes: an abnormal collection circuit, a reference circuit, and a comparison circuit;
  • the comparison circuit includes a first comparison input terminal, a second comparison input terminal, and a comparison output terminal; the abnormality collection circuit is connected to the first comparison input terminal, and the reference circuit is connected to the second comparison input terminal, The comparison output terminal is connected to the switch circuit;
  • the comparison output terminal of the comparison circuit When it is detected that the power supply circuit is abnormal, the comparison output terminal of the comparison circuit outputs a low level, so that the switch circuit is in a disconnected state to cut off the power supply loop;
  • the power supply circuit abnormality is determined by the first voltage output by the abnormality collecting circuit and the second voltage output by the reference circuit.
  • the abnormality of the power supply circuit includes at least one of the following abnormalities: an overtemperature of the power supply circuit and an overvoltage of the power supply circuit.
  • the abnormal collection circuit includes: an over-temperature collection circuit, an over-voltage collection circuit, and a first voltage-dividing circuit;
  • the input end of the over-temperature acquisition circuit and the input end of the over-voltage acquisition circuit are both connected to the input positive pole, and the output end of the over-temperature acquisition circuit is connected to the input end of the first voltage-dividing circuit.
  • the output terminal of the first voltage dividing circuit is connected to the output terminal of the overvoltage collecting circuit, and the output terminal of the first voltage dividing circuit serves as the output terminal of the abnormal collecting circuit and the first comparison input terminal connection.
  • the over-temperature acquisition circuit includes a temperature sensor
  • the first end of the temperature sensor is connected to the positive input as the input of the overtemperature acquisition circuit, and the second end of the temperature sensor is used as the output of the overtemperature acquisition circuit and the first voltage divider The input of the circuit is connected.
  • the overvoltage acquisition circuit includes: a first voltage stabilizing diode and a first resistor;
  • the cathode of the first voltage stabilizing diode is connected to the positive input of the input as the input terminal of the overvoltage collecting circuit, and the second end of the first voltage stabilizing diode is connected to the first end of the first resistor.
  • the second terminal of the first resistor is connected to the output terminal of the first voltage dividing circuit as the output terminal of the overvoltage collecting circuit.
  • the first voltage dividing circuit includes a second resistor and a third resistor
  • the first end of the second resistor serves as the input of the first voltage divider circuit and is connected to the output end of the over-temperature acquisition circuit, and the second end of the second resistor serves as the first voltage divider
  • the output terminal of is connected to the first comparison input terminal, and the second terminal of the second resistor is also connected to the first terminal of the third resistor, and the second terminal of the third resistor is grounded.
  • the reference circuit includes a second voltage divider circuit
  • the input terminal of the second voltage divider circuit is connected to the input positive electrode, and the output terminal of the second voltage divider circuit is connected to the second comparison input terminal as the output terminal of the reference circuit.
  • the second voltage dividing circuit includes a fourth resistor and a fifth resistor
  • the first end of the fourth resistor serves as the input of the second voltage-dividing circuit and is connected to the positive input of the input, and the second end of the fourth resistor serves as the output of the second voltage-dividing circuit and the The second comparison input terminal is connected, and the second terminal of the fourth resistor is also connected to the first terminal of the fifth resistor, and the second terminal of the fifth resistor is grounded.
  • the comparison circuit includes a comparator
  • the inverting input terminal of the comparator is connected to the abnormal collection circuit as the first comparison input terminal, and the non-inverting input terminal of the comparator is connected to the reference circuit as the second comparison input terminal.
  • the output terminal of the comparator is connected to the switch circuit as the comparison output terminal.
  • the comparison circuit further includes a first capacitor, a first terminal of the first capacitor is connected to the inverting input terminal of the comparator, and a second terminal of the first capacitor is grounded.
  • the detection circuit further includes a feedback circuit, the input terminal of the feedback circuit is connected to the comparison output terminal of the comparison circuit, and the output terminal of the feedback circuit is connected to the second comparison input terminal of the comparison circuit .
  • the feedback circuit includes a first diode and a sixth resistor.
  • the cathode of the first diode is connected to the input end of the feedback circuit and the comparison output end of the comparison circuit.
  • the anode of a diode is connected to the first end of the sixth resistor, and the second end of the sixth resistor is connected to the second comparison input end of the comparison circuit as the output end of the feedback circuit.
  • the detection circuit further includes: a voltage holding circuit
  • the voltage holding circuit includes a holding input terminal and a holding output terminal, the holding input terminal is connected to the input positive electrode, the holding output terminal is connected to the input terminal of the over-temperature acquisition circuit and the input terminal of the reference circuit, respectively connection;
  • the voltage holding circuit is used to stabilize the power supply voltage to obtain a reference voltage, and input the reference voltage to the input terminal of the over-temperature acquisition circuit and the input terminal of the reference circuit.
  • the voltage holding circuit includes a first voltage stabilizing circuit
  • the output end of the first voltage stabilizing circuit is connected to the input end of the over-temperature collecting circuit and the input end of the reference circuit, respectively, and the first voltage stabilizing circuit is used to perform first voltage stabilization on the power supply voltage Processing to obtain the reference voltage;
  • the first voltage stabilizing circuit includes a seventh resistor and a controllable voltage stabilizing tube, the first end of the seventh resistor is connected to the positive input of the input, and the second end of the seventh resistor is used as the voltage hold
  • the holding output end of the circuit is connected to the reference electrode of the controllable voltage stabilizing tube and the cathode of the controllable voltage stabilizing tube, and the anode of the controllable voltage stabilizing tube is grounded.
  • the voltage holding circuit further includes a second voltage stabilizing circuit, and the second voltage stabilizing circuit includes a voltage stabilizing input terminal and a voltage stabilizing output terminal;
  • the voltage stabilizing input terminal is connected to the input positive electrode
  • the voltage stabilizing output terminal is respectively connected to the comparison circuit and the first voltage stabilizing circuit
  • the second voltage stabilizing circuit is used to perform a second step on the power supply voltage Voltage stabilization processing to obtain an operating voltage, which is used to drive the comparison circuit and the first voltage stabilization circuit to work.
  • the second voltage stabilizing circuit includes: a second diode, an eighth resistor, and a second capacitor;
  • the anode of the second diode is connected to the positive input of the input as the voltage stabilizing input, and the cathode of the second diode is connected to the first end of the eighth resistor.
  • the second end is connected to the comparison circuit and the first voltage stabilizing circuit as the voltage stabilizing output, and the second end of the eighth resistor is also connected to the first end of the second capacitor.
  • the second terminal of the second capacitor is grounded.
  • the second voltage stabilizing circuit further includes a second voltage stabilizing diode, an anode of the second voltage stabilizing diode is grounded, and a cathode of the second voltage stabilizing diode is connected to the second end of the eighth resistor .
  • the switch circuit includes: a third voltage dividing circuit and a MOS tube;
  • the input terminal of the third voltage divider circuit is connected to the detection circuit as the input terminal of the switch circuit, the output terminal of the third voltage divider circuit is connected to the gate of the MOS tube, and the The source electrode is connected to the input negative electrode, and the source electrode of the MOS tube is grounded, and the drain electrode of the MOS tube is connected to the output negative electrode.
  • the third voltage dividing circuit includes a ninth resistor and a tenth resistor
  • the first end of the ninth resistor is connected to the detection circuit as an input end of the third voltage divider circuit, and the second end of the ninth resistor is used as an output end of the third voltage divider circuit and the The gate of the MOS tube is connected, and the second end of the ninth resistor is also connected to the first end of the tenth resistor, and the second end of the tenth resistor is grounded.
  • the switch circuit includes: a third capacitor and a fourth capacitor;
  • the first end of the third capacitor is connected to the gate of the MOS tube, the second end of the third capacitor is connected to the source of the MOS tube, and the first end of the fourth capacitor is connected to the The drain of the MOS tube is connected, and the second end of the fourth capacitor is connected to the source of the MOS tube.
  • an embodiment of the present invention provides a battery including a case, a battery cell accommodated in the case, and a power supply circuit electrically connected to the battery cell, the battery further includes the protection as described above Circuit, the power supply circuit is electrically connected to the protection circuit.
  • an embodiment of the present invention provides an aircraft including a fuselage, an arm connected to the fuselage, a power device provided on the arm, and a battery provided on the fuselage, the The battery is the battery described above, and the battery is used to power the aircraft.
  • the detection circuit of the protection circuit when the detection circuit of the protection circuit detects an abnormality of the power supply circuit, the detection circuit outputs a low level so that the switch circuit of the protection circuit is in an off state to cut off the power supply circuit to prevent abnormality
  • the power supply situation causes damage to the product and product components, such as damage to the battery or the aircraft and its components, thereby increasing the service life of the battery and the aircraft.
  • the protection circuit does not need to use a dedicated overvoltage protection chip, so cost can be effectively saved; on the other hand, the parameters of the detection circuit and the switch circuit of the protection circuit can be adjusted to adapt to different power supply needs, thereby effectively improving Adaptability and flexibility of protection.
  • FIG. 1 is a schematic structural diagram of a protection circuit provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another protection circuit provided by an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of a protection circuit provided by an embodiment of the present invention.
  • FIG. 4 is a circuit diagram of another protection circuit provided by an embodiment of the present invention.
  • FIG. 6 is a circuit diagram of another protection circuit 100a provided by an embodiment of the present invention.
  • FIG. 7 is a circuit diagram of another protection circuit 100b provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a battery provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an aircraft provided by an embodiment of the present invention.
  • the conventional methods of protection processing for abnormal situations are: use a special overvoltage protection chip to achieve protection; use processor detection and control to achieve protection, etc.
  • the cost is high; on the other hand, since the parameters of the dedicated chip are usually fixed before leaving the factory, the protection adaptability and flexibility are not enough.
  • the detection and control method of the processor although it can improve the adaptability and flexibility of the protection, because it is controlled by software and programs, it is prone to program failures such as program running and latching, and its reliability is not high.
  • an embodiment of the present invention provides a protection circuit, a battery, and an aircraft, where the protection circuit is used to monitor the power supply circuit.
  • the protection circuit includes: a detection circuit and a switch circuit connected to the detection circuit. When the detection circuit detects an abnormality in the power supply circuit, the detection circuit outputs a low level, so that the switch circuit is in an off state to cut off the power supply loop, so as to prevent damage to the product and product components caused by abnormal power supply , Such as causing damage to the battery or the aircraft and its components, thereby increasing the service life of the battery and the aircraft.
  • the protection circuit does not require a dedicated protection chip, so it can effectively save costs; on the other hand, the parameters of the detection circuit and the switch circuit of the protection circuit can be adjusted to adapt to different power supply needs, thereby effectively improving the protection Adaptability and flexibility.
  • the protection circuit is a hardware device built from electronic components, it can avoid program failures caused by program control, such as program runaway, latch-up, etc., and improve the reliability of protection.
  • FIG. 1 is a schematic diagram of a protection circuit provided by an embodiment of the present invention.
  • the protection circuit 100 can be applied to various products or electronic devices, for example, batteries, aircraft, automobiles, terminal devices (such as mobile phones, tablets, wearable devices), household appliances (such as air conditioners, refrigerators), etc., To monitor the power supply of various products or electronic equipment to ensure the normal operation of products or electronic equipment.
  • the following uses a battery as an example of a product or an electronic device to specifically describe the protection circuit 100 provided by the embodiment of the present invention.
  • the protection circuit 100 is used to monitor the power supply circuit.
  • the protection circuit 100 includes a detection circuit 10 and a switch circuit 20.
  • the detection circuit 10 is connected to the switch circuit 20.
  • the detection circuit 10 When the detection circuit 10 detects an abnormality in the power supply circuit, the detection circuit 10 outputs a low level, so that the switch circuit 20 is in an off state to cut off the power supply loop, so as to prevent abnormal power supply conditions from causing products and product elements
  • the damage of the device such as the damage of the battery or the aircraft and its components, thereby increasing the service life of the battery and the aircraft.
  • the protection circuit 100 provided by the embodiment of the present invention does not need to use a dedicated protection chip, so it can effectively save costs; on the other hand, the parameters of the detection circuit 10 and the switch circuit 20 of the protection circuit 100 can be adjusted to adapt to different power supply needs , So as to effectively improve the adaptability and flexibility of protection.
  • the protection circuit 100 further includes: an input positive IN+, an output positive OUT+, an input negative IN-, and an output negative OUT-.
  • the power supply circuit applies a power supply voltage to the input positive electrode IN+, and the input positive electrode IN+ is connected to the output positive electrode OUT+.
  • the power supply circuit may be various types of circuits for supplying electric energy to various electric devices to drive the electric devices to work.
  • the power supply circuit of the processor CPU power supply circuit
  • the motor power supply circuit supplies power to the motor of the aircraft to drive the motor to rotate, thereby driving the propeller to rotate to realize the flight of the aircraft.
  • the input positive electrode IN+ of the protection circuit 100 refers to the port connected to the positive electrode of the power supply circuit
  • the input negative electrode IN- of the protection circuit 100 refers to the port connected to the negative electrode of the power supply circuit
  • the output positive electrode OUT+ and output negative electrode of the protection circuit 100 OUT- is the two ports for connecting the electrical equipment, that is, the electrical equipment is connected between the output positive OUT+ and the output negative OUT-.
  • the power supply circuit is formed by the connection of the power supply circuit, the protection circuit 100 and the electrical equipment.
  • the power supply voltage is output by the power supply circuit, and after being protected by the protection circuit 100, it is input to the electrical equipment to drive the electrical equipment to work.
  • the power supply circuit can receive the input of the external power supply. After the external power supply is input to the power supply circuit, the power supply voltage is obtained.
  • the protection process includes: cutting off the power supply circuit when a power supply abnormality occurs; or, keeping the power supply circuit conductive when the power supply is normal, and inputting the power supply voltage to the electric equipment, thereby driving the electric equipment to work.
  • the battery includes a battery cell, a power supply circuit, and a protection circuit 100.
  • the battery cell is connected to the power supply circuit to input the voltage output by the battery cell to the power supply circuit.
  • the voltage output by the battery cell is processed by the power supply circuit to obtain the power supply voltage.
  • the power supply circuit is connected to the protection circuit 100 to input the power supply voltage to the protection circuit 100.
  • the positive electrode of the cell is connected to the positive electrode of the power supply circuit, and the negative electrode of the cell is connected to the negative electrode of the power supply circuit.
  • the positive electrode of the power supply circuit is connected to the input positive electrode IN+ of the protection circuit 100, and the negative electrode of the power supply circuit is connected to the input negative electrode IN- of the protection circuit 100 to input the power supply voltage to the input positive electrode IN+ of the protection circuit 100.
  • the electric device is connected between the output positive electrode OUT+ and the output negative electrode OUT- of the protection circuit 100, and the power supply voltage is input to the electric device after being processed by the protective circuit 100 to supply power to the electric device.
  • the protection circuit 100 cuts off the power supply circuit to prevent the power supply from being abnormal and damaging power consumption modules such as the power system of the aircraft connected to the battery or the battery itself.
  • the above battery may be any type of battery, such as a lithium battery, a nickel-cadmium battery, a nickel-metal hydride battery, a lead-acid battery, and so on.
  • the battery is formed by connecting several single cells (cells) in series.
  • the battery is formed by connecting several single cells in series in order to meet the power supply requirements of various electrical equipment. For example, to meet the power requirements of flying motors of UAVs and other aircraft.
  • the battery includes 4 or more single cells, and the 4 or more single cells are connected in series to meet different power supply requirements.
  • the connection of the detection circuit 10 and the switch circuit 20 specifically includes: the detection circuit 10 includes a detection input terminal 101 and a detection output terminal 102. Wherein, the detection input terminal 101 is connected to the input positive electrode IN+ and the output positive electrode OUT+; the switch circuit 20 is connected to the detection output terminal 102.
  • the switch circuit 20 is connected between the input negative electrode IN- and the output negative electrode OUT-. Since the switch circuit 20 for cutting off the power supply circuit is placed between the input negative electrode IN- and the output negative electrode OUT-, for switching components (such as MOS transistors) in the switch circuit 20 for cutting off the power supply circuit when a power supply abnormality occurs , Transistors and other switching elements) can use switching elements with lower internal resistance and lower price in order to reduce the power loss of the protection circuit 100 and further save costs, especially suitable for large current power supply circuits.
  • the switch circuit 20 may also be connected between the input positive electrode IN+ and the output positive electrode OUT+.
  • the switch circuit 20 can shut off the power supply circuit more thoroughly, avoiding some leakage power consumption, etc., and reducing the power consumption of the route.
  • protection circuit 100 and the detection circuit 10 and the switch circuit 20 of the protection circuit 100 provided in the embodiments of the present invention will be specifically described below with reference to FIGS. 3 and 4.
  • the detection circuit 10 includes an abnormality collection circuit 103, a reference circuit 104 and a comparison circuit 105.
  • the abnormality collection circuit 103 and the reference circuit 104 are both connected to the comparison circuit 105; and the comparison circuit 105 is connected to the switch circuit 20.
  • the comparison circuit 105 includes a first comparison input terminal 1051, a second comparison input terminal 1052, and a comparison output terminal 1053.
  • the abnormality collection circuit 103 is connected to the first comparison input terminal 1051
  • the reference circuit 104 is connected to the second comparison input terminal 1052
  • the comparison output terminal 1053 is connected to the switch circuit 20.
  • the comparison output terminal 1053 of the comparison circuit 105 When an abnormality of the power supply circuit is detected, the comparison output terminal 1053 of the comparison circuit 105 outputs a low level, so that the switch circuit 20 is in an off state to cut off the power supply circuit.
  • the abnormality of the power supply circuit is determined by the first voltage output by the abnormality collection circuit 103 and the second voltage output by the reference circuit 104. That is, the comparison circuit 105 compares the first voltage output by the abnormality collection circuit 103 and the second voltage output by the reference circuit 104, and determines whether the power supply circuit has a power supply abnormality according to the result of the comparison .
  • the comparison circuit 105 when the first voltage is greater than or equal to the second voltage, the comparison circuit 105 outputs a high level, when the first voltage is less than the second voltage, the comparison circuit 105 outputs a low level; or, when the first voltage is greater than or equal to the second voltage At two voltages, the comparison circuit 105 outputs a low level, and when the first voltage is less than the second voltage, the comparison circuit 105 outputs a high level.
  • the abnormality of the power supply circuit includes at least one of the following abnormalities: an overtemperature of the power supply circuit and an overvoltage of the power supply circuit.
  • the protection circuit 100 can protect the power supply circuit from abnormal conditions such as overtemperature and overvoltage in the power supply circuit abnormality.
  • the abnormal collection circuit 103 includes an over-temperature collection circuit 1031, an over-voltage collection circuit 1032, and a first voltage-dividing circuit 1033.
  • the over-temperature collecting circuit 1031 and the over-voltage collecting circuit 1032 are both connected to the first voltage dividing circuit 1033.
  • the input end of the over-temperature acquisition circuit 1031 and the input end of the over-voltage acquisition circuit 1032 are both connected to the input positive electrode IN+, and the output end of the over-temperature acquisition circuit 1031 is connected to the first divided voltage
  • the input terminal of the circuit 1033 is connected, the output terminal of the first voltage dividing circuit 1033 is connected to the output terminal of the overvoltage collecting circuit 1032, and the output terminal of the first voltage dividing circuit 1033 serves as the abnormal collecting circuit
  • the output terminal of 103 is connected to the first comparison input terminal 1051 of the comparison circuit 105.
  • the over-temperature acquisition circuit 1031 includes a temperature sensor RT1.
  • the first end of the temperature sensor RT1 is connected to the input positive electrode IN+ as the input end of the overtemperature acquisition circuit 1031, and the second end of the temperature sensor RT1 is used as the output end of the overtemperature acquisition circuit 1031 It is connected to the input terminal of the first voltage dividing circuit 1033.
  • the temperature sensor RT1 can be any suitable temperature sensor.
  • the temperature sensor RT1 may be a negative temperature coefficient thermistor (Negative Temperature Coefficient, NTC). This negative temperature coefficient thermistor has the characteristic that the higher the temperature, the lower the resistance value.
  • NTC Negative Temperature Coefficient
  • the resistance value of the negative temperature coefficient thermistor corresponds to the temperature in one-to-one correspondence. For details, refer to the table of correspondence between the resistance value of the negative temperature coefficient thermistor and temperature in FIG. 5.
  • the negative temperature coefficient thermistor can reflect the temperature in the process of power supply in time, so as to carry out over-temperature protection in time.
  • the overvoltage acquisition circuit 1032 includes: a first Zener diode ZD1 and a first resistor R1. Wherein, the first Zener diode ZD1 is connected to the first resistor R1.
  • the cathode of the first Zener diode ZD1 is connected to the input anode IN+ as the input terminal of the overvoltage acquisition circuit 1032, and the second end of the first Zener diode ZD1 is connected to the first resistor
  • the first end of R1 is connected, and the second end of the first resistor R1 serves as the output end of the overvoltage acquisition circuit 1032 and the output end of the first voltage divider circuit 1033.
  • the first zener diode ZD1 has the characteristics of unidirectional conduction and reverse breakdown when it exceeds the withstand voltage value. That is, under normal operating conditions, when the voltage of the anode of the first Zener diode ZD1 is greater than the voltage of the cathode, the first Zener diode ZD1 conducts; and when the voltage applied to the cathode of the first Zener diode ZD1 is greater than the first When the withstand voltage value of the Zener diode ZD1 is reached, the first Zener diode ZD1 is reversely broken down. Therefore, the first voltage stabilizing diode ZD1 can reflect the power supply voltage in the power supply process in time for overvoltage protection in time.
  • the overvoltage value of the protection circuit 100 provided by the embodiment of the present invention can be achieved by adjusting the withstand voltage value of the first voltage stabilizing diode ZD1, that is, the first stable voltage with different withstand voltage values can be selected Diode ZD1 to meet different power supply needs.
  • the response time of the first zener diode ZD1 is very short, using the first zener diode ZD1 can effectively improve the response speed of the protection circuit 100.
  • the faster reaction speed can effectively prevent the over-voltage, cut off the power supply circuit quickly, and avoid damage to the product and related components.
  • the cost of the first Zener diode ZD1 is low, which can effectively save costs.
  • the first voltage stabilizing diode ZD1 can be any suitable diode, as long as it can achieve unidirectional conduction and be broken down in reverse when the withstand voltage is exceeded, that is, forward conduction, reverse blocking, When it exceeds the withstand voltage value, it is reversely broken down.
  • the first Zener diode ZD1 may be a germanium diode (Ge tube), a silicon diode (Si tube), and so on.
  • the first zener diode ZD1 may be any type of diode, for example, the first zener diode ZD1 may be a diode of type BZX384-B16, and so on.
  • the first resistor R1 is used for current limiting to prevent excessive current from damaging the components in the comparison circuit 105, thereby ensuring the normal operation of the comparison circuit 105.
  • the resistance of the first resistor R1 can be selected according to actual needs. For example, the resistance of the first resistor R1 is 1K ⁇ .
  • the first voltage dividing circuit 1033 includes a second resistor R2 and a third resistor R3. Among them, the second resistor R2 is connected to the third resistor R3.
  • the first end of the second resistor R2 serves as the input end of the first voltage divider circuit 1033 and is connected to the output end of the overtemperature acquisition circuit 1031, and the second end of the second resistor R2 serves as the The output terminal of the first voltage divider circuit 1033 is connected to the first comparison input terminal 1051, and the second terminal of the second resistor R2 is also connected to the first terminal of the third resistor R3.
  • the second terminal of the three resistor R3 is grounded to GND.
  • the voltage applied to the first comparison input terminal 1051 is also the voltage applied to the third resistor R3.
  • the reference circuit 104 includes: a second voltage divider circuit 1041.
  • the second voltage divider circuit 1041 is connected to the comparison circuit 105.
  • the input terminal of the second voltage divider circuit 1041 is connected to the input positive electrode IN+, and the output terminal of the second voltage divider circuit 1041 serves as the output terminal of the reference circuit 104 and the second comparison input terminal 1052 connection.
  • the second voltage dividing circuit 1041 includes a fourth resistor R4 and a fifth resistor R5. Among them, the fourth resistor R4 and the fifth resistor R5 are connected.
  • the first end of the fourth resistor R4 is connected to the input positive electrode IN+ as the input end of the second voltage divider circuit 1041, and the second end of the fourth resistor R4 is used as the second voltage divider
  • the output terminal of the circuit 1041 is connected to the second comparison input terminal 1052, and the second terminal of the fourth resistor R4 is also connected to the first terminal of the fifth resistor R5, and the first terminal of the fifth resistor R5 Both ends are connected to GND.
  • the comparison circuit 105 includes: a comparator U1.
  • the two input terminals of the comparator U1 are respectively connected to the abnormality collection circuit 103 and the reference circuit 104, and the output terminal of the comparator U1 is connected to the switch circuit 20.
  • the inverting input terminal of the comparator U1 serves as the first comparison input terminal 1051 and is connected to the abnormality collection circuit 103, and the non-inverting input terminal of the comparator U1 serves as the second comparison input terminal 1052
  • the reference circuit 104 is connected, and the output terminal of the comparator U1 is connected to the switch circuit 20 as the comparison output terminal 1053.
  • the comparator U1 may be any suitable voltage comparator or a chip that can realize a voltage comparison function. That is, the comparator U1 may be any suitable one that can achieve a high level when the voltage at its non-inverting input terminal is greater than the voltage at the inverting input terminal, and a low output when the voltage at its non-inverting input terminal is less than the voltage at the inverting input terminal. Level voltage comparator or voltage chip. For example, the comparator U1 may be a TP2271 or other voltage comparison chip.
  • the comparison circuit 105 in order to input a smooth and stable voltage at the inverting input terminal of the comparator U1, as shown in FIG. 4, the comparison circuit 105 further includes a first capacitor C1.
  • the first terminal of the first capacitor C1 is connected to the inverting input terminal of the comparator U1, and the second terminal of the first capacitor C1 is grounded to GND.
  • the first capacitor C1 is used to implement a filtering function, so that the inverting input terminal of the comparator U1 obtains a smooth and stable voltage.
  • the detection circuit 10 further includes a feedback circuit 106, which can be specifically seen in FIG. 4.
  • the input terminal of the feedback circuit 106 is connected to the comparison output terminal 1053 of the comparison circuit 105, and the output terminal of the feedback circuit 106 is connected to the second comparison input terminal 1052 of the comparison circuit 105.
  • the input terminal of the feedback circuit 106 is connected to the output terminal of the comparator U1 of the comparison circuit 105, and the output terminal of the feedback circuit 106 is connected to the positive phase input terminal of the comparator U1 of the comparison circuit 105.
  • the feedback circuit 106 is used to realize the hysteresis function. Specifically, when the power supply circuit recovers from the abnormal condition to the critical point of normal power supply, the feedback circuit 106 pulls down the voltage of the positive phase input terminal of the comparator U1 to make the comparator U1 The output of the output will not immediately output a high level, but after a period of time delay, that is, when the voltage of the inverting input of the comparator U1 drops to a certain level, the comparator U1 can output a high level, so that The switch circuit 20 is in a conducting state, so that the power supply circuit is conducting.
  • the feedback circuit 106 can effectively prevent the comparator U1 from repeatedly outputting a high level or a low level at a critical value (such as a critical temperature or a critical voltage), thereby causing the switching circuit 20 to be repeatedly turned on or off. As a result, the power supply voltage in the power supply circuit fluctuates, thereby damaging the product or related components.
  • a critical value such as a critical temperature or a critical voltage
  • the feedback circuit 106 includes a first diode D1 and a sixth resistor R6.
  • the cathode of the first diode D1 serves as the input terminal of the feedback circuit 106 and the comparison circuit 105
  • the comparison output terminal 1053 (such as the output terminal of the comparator U1) is connected, the anode of the first diode D1 is connected to the first terminal of the sixth resistor R6, and the second terminal of the sixth resistor R6 is used as a
  • the output terminal of the feedback circuit 106 is connected to the second comparison input terminal 1052 of the comparison circuit 105 (such as the non-inverting input terminal of the comparator U1).
  • the output terminal of the comparator U1 When the power supply circuit is abnormal, the output terminal of the comparator U1 outputs a low level, so that the switch circuit 20 is in the off state to cut off the power supply loop. Then, when the power supply circuit recovers from the abnormal to the normal threshold, at this time, the output terminal of the comparator U1 outputs a low level.
  • the first A diode D1 conducts forward, so the voltage at the positive input terminal of the comparator U1 will be lowered by the parallel connection of the fifth resistor R5 and the sixth resistor R6, so when the power supply circuit recovers from abnormal to the normal threshold After that, the comparator U1 will not immediately output a high level, but after a period of time delay, that is, when the voltage of the inverting input terminal of the comparator U1 decreases to a certain level again, the comparator U1 can output a high level.
  • the switching circuit 20 is put into a conducting state, so that the power supply circuit is conducting. That is, the feedback circuit 106 composed of the first diode D1 and the sixth resistor R6 has a hysteresis effect, which can effectively prevent fluctuation interference at a critical value.
  • the first diode D1 may be any suitable diode, as long as it can realize the unidirectional conduction function, that is, forward conduction and reverse blocking.
  • the first diode D1 may be a germanium diode (Ge tube), a silicon diode (Si tube), and so on.
  • the first diode D1 may be any type of diode.
  • the first diode D1 may be a type 1N4148WS diode.
  • the detection circuit 10 in order to prevent interference of the fluctuation of the power supply voltage on the detection of abnormality by the detection circuit 10, the detection circuit 10 further includes a voltage holding circuit 107.
  • the voltage holding circuit 107 includes a holding input terminal 1071 and a holding output terminal 1072.
  • the holding input terminal 1071 is connected to the input positive electrode IN+, and the holding output terminal 1072 is connected to the input terminal of the overtemperature acquisition circuit 1031 and the input terminal of the reference circuit 104, respectively.
  • the voltage holding circuit 107 is used to stabilize the power supply voltage to obtain a reference voltage, and input the reference voltage to the input terminal of the overtemperature acquisition circuit 1031 and the input terminal of the reference circuit 104 .
  • the voltage holding circuit 107 includes a first voltage stabilizing circuit 1073.
  • the first voltage stabilizing circuit 1073 is connected to the over-temperature collecting circuit 1031 and the reference circuit 104 respectively.
  • the first voltage stabilizing circuit 1073 is used to perform a first voltage stabilizing process on the power supply voltage input to the voltage holding circuit 107 to obtain the reference voltage.
  • the reference voltage is a reference standard for comparing the voltage of the comparison circuit 105. Specifically, the reference voltage is input to the reference circuit 104, and the voltage divided by the reference circuit 104 is input to the second comparison input terminal 1052 of the comparison circuit 105 to compare with the voltage of the first comparison input terminal 1051 of the comparison circuit 105. Compare. That is, the voltage of the reference voltage after being divided by the reference circuit 104 is the reference voltage of the comparison circuit 105.
  • the size of the reference voltage can be adjusted as needed, for example, the reference voltage can be 2.5V, 3V, 3.5V, etc. That is, the size of the reference voltage is not limited.
  • the first voltage stabilizing circuit 1073 includes a seventh resistor R7 and a controllable voltage stabilizing tube U2.
  • the first terminal of the seventh resistor R7 is connected to the input positive electrode IN+, and the second terminal of the seventh resistor R7 serves as a reference for the holding output terminal 1072 of the voltage holding circuit 107 and the controllable voltage regulator U2
  • a pole (R pole) is connected to the cathode (K pole) of the controllable voltage regulator U2, and the anode (A pole) of the controllable voltage regulator U2 is grounded to GND.
  • the seventh resistor R7 is used for current limiting to prevent the excessively high current from damaging the controllable voltage regulator U2, thereby ensuring the normal operation of the controllable voltage regulator U2.
  • the controllable voltage stabilizing tube U2 is used for performing a first voltage stabilizing process on the power supply voltage to obtain the reference voltage.
  • the power supply voltage when the power supply voltage fluctuates, the power supply voltage is subjected to a first voltage stabilization process through the controllable voltage stabilizer U2, so that a stable reference voltage is input to the comparison circuit 105, for example, a 2.5V reference voltage.
  • controllable voltage regulator U2 can be any suitable chip for realizing the controllable voltage regulator function.
  • controllable regulator U2 can be TL431 or other controllable regulator chip.
  • the resistance of the seventh resistor R7 can be selected according to actual needs.
  • the resistance of the seventh resistor R7 is 20K ⁇ .
  • the comparison circuit 105 and the first voltage stabilizing circuit 1073 also require voltage driving, in order to ensure that the comparison circuit 105 and the first voltage stabilizing circuit 1073 in the detection circuit 10 can work normally, the comparison circuit 105 and the first stabilizing circuit The driving of the voltage circuit 1073 provides a stable voltage.
  • the voltage holding circuit 107 further includes a second voltage stabilizing circuit 1074.
  • the second voltage stabilizing circuit 1074 includes a voltage stabilizing input terminal and a voltage stabilizing output terminal.
  • the voltage stabilizing input terminal is connected to the input positive electrode IN+, and the voltage stabilizing output terminal is respectively connected to the comparison circuit 105 and the first voltage stabilizing circuit 1073.
  • the second voltage stabilizing circuit 1074 is used to perform a second voltage stabilization process on the power supply voltage to obtain an operating voltage, and the operating voltage is used to drive the comparison circuit 105 and the first voltage stabilizing circuit 1073 to work.
  • the second voltage stabilizing circuit 1074 provides a stable operating voltage for the comparison circuit 105 and the first voltage stabilizing circuit 1073.
  • the voltage holding circuit 107 includes a second voltage stabilizing circuit 1074
  • the first end of the seventh resistor R7 is connected to the input positive electrode IN+, which means that the first end of the seventh resistor R7 passes through the
  • the two voltage stabilizing circuits 1074 are connected to the input positive electrode IN+.
  • the second voltage stabilizing circuit 1074 includes a second diode D2, an eighth resistor R8, and a second capacitor C2.
  • the anode of the second diode D2 is connected to the positive input IN+ as the voltage stabilizing input, and the cathode of the second diode D2 is connected to the first end of the eighth resistor R8,
  • the second end of the eighth resistor R8 is connected to the comparison circuit 105 and the first voltage stabilizing circuit 1073 as the stabilized voltage output terminal, and the second end of the eighth resistor R8 is also connected to the second capacitor C2 Is connected to the first terminal, and the second terminal of the second capacitor C2 is grounded to GND.
  • the energy storage effect of the second capacitor C2 and the single-pass characteristic of the second diode D2 make the second voltage stabilizing circuit 1074 still keep the output operating voltage free from fluctuations in a short time In order to ensure the normal operation of the comparison circuit 105 and the first voltage stabilizing circuit 1073.
  • the operating voltage output by the second voltage stabilizing circuit 1074 is maintained within a reasonable voltage range, thereby ensuring the comparison The normal operation of the circuit 105 and the first voltage stabilizing circuit 1073.
  • the second diode D2 has a one-way single-pass characteristic, therefore, it can realize the anti-backflushing function, that is, when a reverse connection occurs, for example, the positive electrode of the power supply circuit is connected to the input negative electrode IN- of the protection circuit 100 When the negative electrode of the power supply circuit is connected to the input positive electrode IN+ of the protection circuit 100, the power supply circuit is cut off to prevent backflushing.
  • the role of the second voltage stabilizing circuit 1074 is to ensure the normal operation of the core circuit of the protection circuit 100, such as the comparison circuit 105, in a rapidly changing voltage environment, thereby ensuring the reliability of the protection circuit 100.
  • the second voltage stabilizing circuit 1074 in order to prevent the voltage output by the second voltage stabilizing circuit 1074 from being too high and damaging the comparison circuit 105 and the first voltage stabilizing circuit 1073, and to further ensure that the voltage output from the second voltage stabilizing circuit 1074 is stable, etc., please Referring to 4, the second voltage stabilizing circuit 1074 further includes a second voltage stabilizing diode ZD2.
  • the anode of the second zener diode ZD2 is grounded to GND, and the cathode of the second zener diode ZD2 is connected to the second end of the eighth resistor R8.
  • the second voltage stabilizing diode ZD2 may be any suitable diode, as long as it can achieve a voltage stabilizing function.
  • the second Zener diode ZD2 may be a germanium diode (Ge tube), a silicon diode (Si tube), and so on.
  • the second zener diode ZD2 may be any type of diode, for example, the second zener diode ZD2 may be a diode of type BZX384-B18, and so on.
  • the seventh resistor R7, the controllable voltage regulator U2, the second diode D2, the eighth resistor R8, the second voltage regulator diode ZD2 and the first One or more of the two capacitors C2 can also be replaced by other electronic components.
  • the above-mentioned seventh resistor R7 and eighth resistor R8 are replaced with a sliding rheostat.
  • the operating voltage output by the second voltage stabilizing circuit 1074 can change the voltage value of the output operating voltage by adjusting the parameters of each electronic component. For example, increase the resistance of the eighth resistor R8 to reduce the voltage value of the operating voltage; select other types of regulator diodes to make the output of the operating voltage more convergent in the environment where the power supply voltage is too high.
  • the switch circuit 20 includes: a third voltage dividing circuit 201 and a MOS transistor Q1. Among them, the third voltage dividing circuit 201 is connected to the MOS transistor Q1. Among them, the MOS transistor Q1 may be an N-channel MOS transistor.
  • the input end of the third voltage divider circuit 201 is connected to the detection circuit 10 as the input end of the switch circuit 20, and the output end of the third voltage divider circuit 201 is connected to the gate of the MOS transistor Q1
  • the pole (G pole) is connected, the source (S pole) of the MOS transistor Q1 is connected to the input negative electrode IN-, and the source (S pole) of the MOS transistor Q1 is grounded, and the The drain (D pole) is connected to the output negative electrode OUT-.
  • the third voltage divider circuit 201 includes a ninth resistor R9 and a tenth resistor R10. Among them, the ninth resistor R9 is connected to the tenth resistor R10.
  • the first end of the ninth resistor R9 is connected to the detection circuit 10 as an input end of the third voltage divider circuit 201, and the second end of the ninth resistor R9 is used as the third voltage divider
  • the output terminal of the circuit 201 is connected to the gate of the MOS transistor Q1, and the second terminal of the ninth resistor R9 is also connected to the first terminal of the tenth resistor R10. Both ends are connected to GND.
  • the switch circuit 20 in order to input a smooth and stable voltage to the gate source and drain source of the MOS transistor Q1, as shown in FIG. 4, the switch circuit 20 includes a third capacitor C3 and a fourth capacitor C4.
  • the first end of the third capacitor C3 is connected to the gate of the MOS transistor Q1, the second end of the third capacitor C3 is connected to the source of the MOS transistor Q1, and the first end of the fourth capacitor C4 One end is connected to the drain of the MOS transistor Q1, and the second end of the fourth capacitor C4 is connected to the source of the MOS transistor Q1.
  • Both the third capacitor C3 and the fourth capacitor C4 are used to implement a filtering function, so that the gate source and drain source of the MOS transistor Q1 obtain a smooth and stable voltage.
  • the MOS transistor Q1 may also be replaced with other devices that can realize the function of the MOS transistor Q1, and is not limited to the devices listed in the figure.
  • the MOS transistor Q1 may also be a P-channel MOS transistor; or, a transistor may be used instead of the MOS transistor Q1.
  • the transistor can be an NPN crystal transistor.
  • the connection structure of the base (B pole) of the transistor in the circuit is the same as the connection structure of the gate of the MOS transistor Q1 in the circuit; the connection structure of the emitter (E pole) of the transistor in the circuit and the source of the MOS transistor Q1
  • the connection structure of the electrodes in the circuit is the same.
  • the connection structure of the collector (C pole) of the triode is the same as the connection structure of the drain of the MOS transistor Q1 in the circuit. Therefore, it will not be repeated here. For details, please refer to the above description .
  • the first voltage stabilizing circuit 1073 provides a stable reference voltage of 2.5V
  • the resistance value of the first resistor R1 is 1K ⁇
  • the resistance value of the second resistor R2 is 2K ⁇
  • the resistance of the third resistor R3 The value is 10K ⁇
  • the resistance value of the fourth resistor R4 is 12K ⁇
  • the resistance value of the fifth resistor R5 is 10K ⁇ .
  • the resistance value of the negative temperature coefficient thermistor RT1 is about 100K ⁇ , and combined with the above assumptions, the voltage input to the positive phase input terminal of the comparator U1 is about 1.136V, and the voltage input to the comparator U1 The voltage at the inverting input terminal is about 0.223V. At this time, the comparator U1 outputs a high level.
  • the operating voltage input to the comparator U1 can be stabilized within a safe range ( Less than the withstand voltage value of MOS tube Q1), if it is stable at about 18V, so the output voltage of the output terminal of comparator U1 is basically stable at about 18V, so that the MOS tube Q1 will not be burned. At this time, the MOS tube Q1 is in a conducting state, so that the entire power supply loop is in a conducting state.
  • the high level output from the output terminal of the comparator U1 will not be reverse-charged to the non-inverting input terminal of the comparator U1.
  • the breakdown voltage VZ is between 15.7V-16.3V, so The overvoltage protection value of the overvoltage protection is approximately equal to (VZ+(1.136-0.227))V, which is between 16.609V-17.209V.
  • the comparator U1 when the power supply voltage exceeds the range of 16.609V-17.209V, the voltage at the non-inverting input terminal of the comparator U1 is less than the voltage at the non-inverting input terminal, and the comparator U1 outputs a low level, so that the MOS transistor Q1 is in the off state, thereby When the power supply circuit is cut off, overtemperature protection occurs.
  • the resistance value table of different temperatures of the negative temperature coefficient thermistor RT1 of Figure 5 can be obtained, when the temperature is equal to At 80°C, the resistance value of the RT1 with a negative temperature coefficient is 10K ⁇ .
  • the voltage at the positive input terminal of the comparator U1 is approximately equal to the voltage at the positive input terminal. That is, the temperature equal to 80°C is the critical temperature value.
  • the comparator U1 when the temperature exceeds 80 °C, the voltage of the positive input terminal of the comparator U1 is less than the voltage of the positive input terminal, the comparator U1 outputs a low level, so that the MOS transistor Q1 is in the off state, thereby cutting off the power supply circuit, that is, Overtemperature protection has occurred.
  • the voltage of the positive phase input terminal of the comparator U1 will be The resistance of the fifth resistor R5 and the sixth resistor R6 in parallel is lowered (according to empirical data, the voltage is reduced by about 10%), so when the temperature drops from 80 °C, the comparator U1 will not immediately output a high level, probably The high level will not be output until the temperature drops to 75°C; or, when the supply voltage drops from 16.609V-17.209V, the comparator U1 will not immediately output high level, and will probably wait until the supply voltage drops to 16.509V-17.109 Only when V is output high level, to make the power supply circuit return to normal work.
  • the feedback circuit 106 composed of the first diode D1 and the sixth resistor R6 has a hysteresis effect, which can effectively prevent the comparator U1 from repeatedly outputting a high level at a critical temperature value or a critical voltage value Or low level, which causes the switch circuit 20 to repeatedly turn on or off, which causes the power supply voltage in the power supply circuit to fluctuate, thereby damaging the product or related components.
  • the preset temperature threshold is a critical value for overtemperature
  • the preset voltage threshold is a critical point for overvoltage. That is, the preset voltage threshold is used to define whether an overvoltage occurs, and the preset temperature threshold is used to define whether an overtemperature occurs.
  • the power supply voltage when the power supply voltage is greater than the preset voltage threshold, it indicates that there is overvoltage, when the power supply voltage is less than or equal to the preset voltage threshold, it indicates that there is no overvoltage; when the temperature is greater than the preset temperature threshold, it indicates that there is overtemperature When the temperature is less than or equal to the preset temperature threshold, it indicates that there is no overpressure. If over-voltage or over-temperature occurs, it may cause product damage and components in the circuit to burn out or even catch fire due to heat and breakdown. For example, it may cause damage to the battery or cause an aircraft bomber to rely on the battery for power supply.
  • the preset voltage threshold and the preset temperature threshold can be adjusted according to actual conditions to adapt to different power supply needs and different power supply needs.
  • the voltage value of the overvoltage protection of the protection circuit 100 can be adjusted according to requirements, and is not limited to the value of the example.
  • the specific voltage protection range can be adjusted by adjusting the withstand voltage value and the first resistance of the first Zener diode ZD1
  • the resistance value of R1, the resistance value of the fourth resistance R4 is 12K ⁇
  • the resistance value of the fifth resistance R5 is 10K ⁇ .
  • the temperature value of the temperature protection of the protection circuit 100 can also be adjusted according to needs, and is not limited to the value of the example.
  • the specific temperature protection range can be adjusted by adjusting the resistance value of the negative temperature coefficient thermistor NTC, the second resistor R2, the third The resistance value of the resistor R3, the resistance value of the fourth resistor R4, and the resistance value of the fifth resistor R5 are realized.
  • controllable voltage regulator U2 can also be a two-in-one device with the comparator U1.
  • the difference between the protection circuit 100a and the protection circuit 100 is that the controllable voltage regulator U2 and the comparator U1 are a two-in-one device, that is, the function of the voltage regulator U2 can be controlled.
  • the function of the comparator U1 can be integrated on one chip, for example, on the chip U1a of the model AP4310.
  • the above-mentioned controllable voltage-stabilizing tube U2 can also be replaced with other devices that can realize the function of the above-mentioned controllable voltage-stabilizing tube U2, and is not limited to the devices listed in the figure.
  • a low dropout linear regulator LDO
  • the difference between the protection circuit 100b and the protection circuit 100 is that a low-dropout linear regulator replaces the controllable regulator U2.
  • the detection circuit 10 when the detection circuit 10 detects an abnormality of the power supply circuit, the detection circuit 10 outputs a low level, so that the switch circuit 20 is in an off state to cut off the power supply loop, so as to prevent abnormality
  • the power supply situation causes damage to the product and product components, such as damage to the battery or the aircraft and its components, thereby increasing the service life of the battery and the aircraft.
  • the protection circuit 100 provided by the embodiment of the present invention does not need to use a dedicated protection chip, so it can effectively save costs; on the other hand, the parameters of the detection circuit 10 and the switch circuit 20 of the protection circuit 100 can be adjusted to adapt to different power supply needs , So as to effectively improve the adaptability and flexibility of protection.
  • the protection circuit 100 is a pure hardware device built with diodes, MOS tubes, resistors, etc., on the one hand, it can avoid program failures caused by program control, such as program running, latching, etc., and improve the reliability of protection. In this aspect, the response speed of the protection circuit 100 can be effectively improved, and the cost can be saved, which is particularly suitable for overvoltage and overtemperature protection. Moreover, the protection circuit 100 has fewer electrical components, which saves line space, and is a good choice for products with smaller space sizes.
  • the protection circuit 100 since the protection circuit 100 has a hysteresis function, to a certain extent, it avoids that the comparator U1 repeatedly outputs a high level or a low level at the critical point of overtemperature and overvoltage, which causes the switching circuit 20 to repeatedly Turn on or off, causing the power supply voltage in the power supply circuit to fluctuate, thereby damaging the product or related components.
  • the battery 800 may be a manganese zinc battery, a lead storage battery, a lithium battery, or other types of power supply modules.
  • the battery 800 includes a casing (not shown), a battery cell 810 housed in the casing, and a power supply circuit 820 electrically connected to the battery cell 810, a battery input positive B+, and a battery output positive PACK+, The input negative B- of the battery, the output negative PACK- of the battery, and the protection circuit 100 as described above.
  • the power supply circuit 820 is connected to the protection circuit 100.
  • the number of the battery cells 810 may be several, that is, in this embodiment, the number of the battery cells 810 is not limited. Among them, several batteries are connected in series to meet different power supply needs.
  • the positive electrode of the battery cell 810 is connected to the positive electrode of the power supply circuit 820 as the input positive electrode B+ of the battery, and the positive electrode of the power supply circuit 820 is connected to the input positive electrode IN+ of the protection circuit 100, and the negative electrode of the battery cell 810 is used as the input of the battery
  • the negative electrode B- is connected to the negative electrode of the power supply circuit 820, and the negative electrode of the power supply circuit 820 is connected to the input negative electrode IN- of the protection circuit 100.
  • the output positive electrode OUT+ of the protection circuit 100 serves as the output positive electrode PACK+ of the battery, and the output negative electrode OUT- of the protection circuit 100 As the output negative PACK- of the battery, it is used to connect the electric equipment and supply power to the electric equipment.
  • the switching circuit 20 of the protection circuit 100 is connected between the input negative B- of the battery and the output negative PACK- of the battery.
  • the input positive electrode B+ of the battery is the total positive terminal of the battery 800, that is, the highest voltage terminal of the battery 800.
  • the input negative electrode B- of the battery is the total negative terminal of the battery 800, that is, the lowest voltage terminal of the battery 800.
  • the positive output PACK+ of the battery is the positive output end of the battery 800.
  • the positive output PACK+ of the battery is also the positive charging port of the battery 800.
  • the output negative PACK- of the battery is the negative output terminal of the battery 800, and the output negative PACK- of the battery is the negative charging port of the battery 800.
  • the discharge current is returned to the output negative PACK- of the battery by the input positive B+ of the battery and the output positive PACK+ through the load of the electrical equipment and the like.
  • the protection circuit 100 may also be connected between the input positive B+ of the battery and the output positive PACK+ of the battery.
  • the protection circuit 100 of the battery 800 can protect abnormal conditions such as over-temperature and over-voltage.
  • protection circuit 100 when the protection circuit 100 is connected between the input negative B- of the battery and the output negative PACK- of the battery, for switching components (such as MOS tubes, (Transistors such as transistors) can use low-resistance and low-cost switching components in order to reduce the power consumption of the protection circuit 100 and further save costs, which is especially suitable for high-current power supply circuits.
  • switching components such as MOS tubes, (Transistors such as transistors) can use low-resistance and low-cost switching components in order to reduce the power consumption of the protection circuit 100 and further save costs, which is especially suitable for high-current power supply circuits.
  • FIG. 9 is a schematic diagram of an aircraft according to an embodiment of the present invention.
  • the aircraft 900 includes a fuselage (not shown), an arm (not shown) connected to the fuselage, a power device 910 provided on the arm, and a battery provided on the fuselage.
  • the battery of the aircraft 900 may be the battery 800 described above.
  • the battery 800 is used to power the aircraft 900.
  • the battery 800 does not need to use a special protection chip, so it can effectively save costs; on the other hand, the parameters of the detection circuit 10 and the switch circuit 20 of the protection circuit 100 can be adjusted to adapt to different power supply needs, thereby effectively improving protection Adaptability and flexibility.
  • the aircraft 900 may be an unmanned aerial vehicle, an unmanned boat, or other movable devices.
  • the drone may be a rotorcraft (rotorcraft), for example, a multi-rotor aircraft propelled by multiple propulsion devices through the air.
  • the embodiments of the present invention are not limited thereto, and the drone may also be Other types of drones, such as fixed-wing drones, unmanned airships, umbrella-wing drones, flapping-wing drones, etc.
  • the battery 800 is respectively connected to the power device 910, the flight control system, the gimbal, and the image acquisition device to provide power for the power device 910, the flight control system, the gimbal, and the image acquisition device.
  • the battery 800 provides power to the power unit 910 and the flight control system, so as to ensure the normal operation of the power unit 910 and the flight control system, so as to realize the flight of the aircraft 900 and thereby complete the designated flight mission.
  • the power device 910 is installed in the arm of the aircraft 900
  • the flight control system is installed in the fuselage of the aircraft 900
  • the gimbal is installed in the fuselage of the aircraft 900.
  • the flight control system can be combined with the power device 910, the gimbal, and the image acquisition device Coupling to achieve communication.
  • the power unit 910 may include an electronic governor (abbreviated as electric governor), one or more propellers, and one or more motors corresponding to the one or more propellers, wherein the motor is connected between the electronic governor and the propeller
  • the motor and propeller are provided on the corresponding arm of the aircraft 900.
  • the electronic governor is used to receive the driving signal generated by the flight control system and provide the driving current to the motor according to the driving signal to control the speed of the motor.
  • the motor is used to drive the propeller to rotate, thereby providing power for the flight of the aircraft 900, which enables the aircraft 900 to achieve one or more degrees of freedom of movement.
  • aircraft 900 may rotate about one or more axes of rotation.
  • the rotation axis may include a roll axis, a pan axis, and a pitch axis.
  • the motor may be a DC motor or an AC motor.
  • the motor may be a brushless motor or a brush motor.
  • the flight control system may include a flight controller and a sensing system.
  • the flight controller is connected to the sensing system.
  • the sensor system is used to measure the attitude information of the aircraft 900, that is, the position information and status information of the aircraft 900 in space, for example, three-dimensional position, three-dimensional angle, three-dimensional velocity, three-dimensional acceleration, and three-dimensional angular velocity.
  • the sensing system may include, for example, at least one of a gyroscope, an electronic compass, an inertial measurement unit (IMU), a visual sensor, a global navigation satellite system, and a barometer.
  • the global navigation satellite system may be a global positioning system (Global Positioning System, GPS).
  • the flight controller is used to control the flight of the aircraft 900.
  • the flight 900 can be controlled according to the attitude information measured by the sensor system.
  • the flight controller may control the aircraft 900 according to pre-programmed program instructions, and may also control the aircraft 900 by responding to one or more control instructions from other devices.
  • the gimbal can include ESCs and motors. Among them, the ESC of the gimbal is connected to the motor. The gimbal is used to carry an image acquisition device. The flight controller can control the movement of the gimbal through ESC and motor.
  • the gimbal may further include a controller for controlling the motion of the gimbal by controlling the ESC and the motor.
  • the gimbal may be independent of the aircraft 900, or may be a part of the aircraft 900.
  • the motor of the gimbal may be a DC motor or an AC motor.
  • the motor of the gimbal can be a brushless motor or a brush motor.
  • the gimbal can be located at the top of the fuselage or at the bottom of the fuselage.
  • the image collection device may be a device for collecting images, such as a camera or a video camera, and the image collection device may communicate with the flight control system and shoot under the control of the flight control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Protection Of Static Devices (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本发明涉及电路技术领域,公开了一种保护电路、电池及飞行器。其中,保护电路用于对供电电路进行监控,包括:检测电路;开关电路,与所述检测电路连接;当所述检测电路检测到所述供电电路异常时,所述检测电路输出低电平,以使所述开关电路处于断开状态,以切断供电回路。本发明实施例提供的保护电路无需采用专用的保护芯片,可有效的节省成本;并且,还可通过调整保护电路的检测电路及开关电路的参数以适应不同的供电需要,有效提高保护的适应性及灵活性。

Description

一种保护电路、电池及飞行器 技术领域
本发明涉及电路技术领域,特别是涉及一种保护电路、具有该保护电路的电池,以及具有该电池的飞行器。
背景技术
在电路设计中,为了避免产品及其元器件的损坏,通常会对供电异常的情况进行保护处理,以延长产品使用寿命等。目前,对供电异常的情况进行保护处理的方式通常是:使用专用保护芯片等。
在实现本发明的过程中,发明人发现相关技术中至少存在如下问题:采用专用芯片一方面成本高;另一方面,由于专用芯片其参数在出厂前通常已固定设置好了,因此,其保护的适应性及灵活性不够。
发明内容
本发明实施例旨在提供一种保护电路、电池及飞行器,无需采用专用的保护芯片,可有效的节省成本;并且,还可通过调整保护电路的检测电路及开关电路的参数以适应不同的供电需要,有效提高保护的适应性及灵活性。
本发明实施例公开了以下技术方案:
在第一方面,本发明实施例提供了一种保护电路,用于对供电电路进行监控,包括:
检测电路;
开关电路,与所述检测电路连接;
当所述检测电路检测到所述供电电路异常时,所述检测电路输出低电平,以使所述开关电路处于断开状态,以切断供电回路。
可选的,所述保护电路还包括:输入正极、输出正极、输入负极、 输出负极,其中,所述供电电路将供电电压施加于所述输入正极,并且,所述输入正极与所述输出正极连接;
所述检测电路包括检测输入端和检测输出端,所述检测输入端与所述输入正极及所述输出正极连接;
所述开关电路与所述检测输出端连接,并且,所述开关电路连接于输入负极与输出负极之间。
可选的,所述检测电路包括:异常采集电路、基准电路以及比较电路;
所述比较电路包括第一比较输入端、第二比较输入端及比较输出端;所述异常采集电路与所述第一比较输入端连接,所述基准电路与所述第二比较输入端连接,所述比较输出端与所述开关电路连接;
当检测到所述供电电路异常时,所述比较电路的比较输出端输出低电平,以使所述开关电路处于断开状态,以切断供电回路;
其中,所述供电电路异常由所述异常采集电路所输出的第一电压及所述基准电路所输出的第二电压所确定。
可选的,所述供电电路异常包括至少一种以下异常情况:所述供电电路发生过温和所述供电电路发生过压。
可选的,所述异常采集电路包括:过温采集电路、过压采集电路以及第一分压电路;
所述过温采集电路的输入端及所述过压采集电路的输入端均与所述输入正极连接,所述过温采集电路的输出端与所述第一分压电路的输入端连接,所述第一分压电路的输出端与所述过压采集电路的输出端连接,并且,所述第一分压电路的输出端作为所述异常采集电路的输出端与所述第一比较输入端连接。
可选的,所述过温采集电路包括温度传感器;
所述温度传感器的第一端作为所述过温采集电路的输入端与所述输入正极连接,所述温度传感器的第二端作为所述过温采集电路的输出端与所述第一分压电路的输入端连接。
可选的,所述过压采集电路包括:第一稳压二极管和第一电阻;
所述第一稳压二极管的阴极作为所述过压采集电路的输入端与所 述输入正极连接,所述第一稳压二极管的第二端与所述第一电阻的第一端连接,所述第一电阻的第二端作为所述过压采集电路的输出端与所述第一分压电路的输出端连接。
可选的,所述第一分压电路包括第二电阻和第三电阻;
所述第二电阻的第一端作为所述第一分压电路的输入端与所述过温采集电路的输出端端连接,所述第二电阻的第二端作为所述第一分压电路的输出端与所述第一比较输入端连接,并且,所述第二电阻的第二端还与所述第三电阻的第一端连接,所述第三电阻的第二端接地。
可选的,所述基准电路包括第二分压电路;
所述第二分压电路的输入端与所述输入正极连接,所述第二分压电路的输出端作为所述基准电路的输出端与所述第二比较输入端连接。
可选的,所述第二分压电路包括第四电阻和第五电阻;
所述第四电阻的第一端作为所述第二分压电路的输入端与所述输入正极连接,所述第四电阻的第二端作为所述第二分压电路的输出端与所述第二比较输入端连接,并且,所述第四电阻的第二端还与所述第五电阻的第一端连接,所述第五电阻的第二端接地。
可选的,所述比较电路包括比较器;
所述比较器的反相输入端作为所述第一比较输入端与所述异常采集电路连接,所述比较器的正相输入端作为所述第二比较输入端与所述基准电路连接,所述比较器的输出端作为所述比较输出端与所述开关电路连接。
可选的,所述比较电路还包括第一电容,所述第一电容的第一端与所述比较器的反相输入端连接,所述第一电容的第二端接地。
可选的,所述检测电路还包括反馈电路,所述反馈电路的输入端与所述比较电路的比较输出端连接,所述反馈电路的输出端与所述比较电路的第二比较输入端连接。
可选的,所述反馈电路包括第一二极管及第六电阻,所述第一二极管的阴极作为所述反馈电路的输入端与所述比较电路的比较输出端连接,所述第一二极管的阳极与所述第六电阻的第一端连接,所述第六电阻的第二端作为所述反馈电路的输出端所述比较电路的第二比较输入 端连接。
可选的,所述检测电路还包括:电压保持电路;
所述电压保持电路包括保持输入端及保持输出端,所述保持输入端与所述输入正极连接,所述保持输出端分别与所述过温采集电路的输入端及所述基准电路的输入端连接;
所述电压保持电路用于对所述供电电压进行稳压处理,以得到基准电压,并将所述基准电压输入至所述过温采集电路的输入端及所述基准电路的输入端。
可选的,所述电压保持电路包括第一稳压电路;
所述第一稳压电路的输出端分别与所述过温采集电路的输入端及所述基准电路的输入端连接,所述第一稳压电路用于对所述供电电压进行第一稳压处理,以得到所述基准电压;
其中,所述第一稳压电路包括第七电阻及可控稳压管,所述第七电阻的第一端与所述输入正极连接,所述第七电阻的第二端作为所述电压保持电路的保持输出端与所述可控稳压管的参考极及所述可控稳压管的阴极连接,所述可控稳压管的阳极接地。
可选的,所述电压保持电路还包括第二稳压电路,所述第二稳压电路包括稳压输入端与稳压输出端;
所述稳压输入端与所述输入正极连接,所述稳压输出端分别与所述比较电路及第一稳压电路连接,所述第二稳压电路用于对所述供电电压进行第二稳压处理,以得到工作电压,所述工作电压用于驱动所述比较电路及第一稳压电路工作。
可选的,所述第二稳压电路包括:第二二极管、第八电阻及第二电容;
所述第二二极管的阳极作为所述稳压输入端与所述输入正极连接,所述第二二极管的阴极与所述第八电阻的第一端连接,所述第八电阻的第二端作为所述稳压输出端与所述比较电路及所述第一稳压电路连接,并且,所述第八电阻的第二端还与所述第二电容的第一端连接,所述第二电容的第二端接地。
可选的,所述第二稳压电路还包括第二稳压二极管,所述第二稳压 二极管的阳极接地,所述第二稳压二极管的阴极与所述第八电阻的第二端连接。
可选的,所述开关电路包括:第三分压电路和MOS管;
所述第三分压电路的输入端作为所述开关电路的输入端与所述检测电路连接,所述第三分压电路的输出端与所述MOS管的栅极连接,所述MOS管的源极与所述输入负极连接,并且,所述MOS管的源极接地,所述MOS管的漏极与所述输出负极连接。
可选的,所述第三分压电路包括第九电阻和第十电阻;
所述第九电阻的第一端作为所述第三分压电路的输入端与所述检测电路连接,所述第九电阻的第二端作为所述第三分压电路的输出端与所述MOS管的栅极连接,并且,所述第九电阻的第二端还与所述第十电阻的第一端连接,所述第十电阻的第二端接地。
可选的,所述开关电路包括:第三电容和第四电容;
所述第三电容的第一端与所述MOS管的栅极连接,所述第三电容的第二端与所述MOS管的源极连接,所述第四电容的第一端与所述MOS管的漏极连接,所述第四电容的第二端与所述MOS管的源极连接。
在第二方面,本发明实施例提供了一种电池,包括壳体、收容于所述壳体内的电芯和与所述电芯电连接的供电电路,所述电池还包括如上所述的保护电路,所述供电电路与所述保护电路电连接。
在第三方面,本发明实施例提供了一种飞行器,包括机身、与所述机身相连的机臂、设于所述机臂的动力装置和设于所述机身的电池,所述电池为上述的电池,所述电池用于给所述飞行器供电。
在本发明各个实施例中,当保护电路的检测电路检测到供电电路异常时,所述检测电路输出低电平,以使保护电路的开关电路处于断开状态,以切断供电回路,以便防止异常供电情况造成产品及产品元器件的损坏,如造成电池或飞行器等及其元器件的损坏,从而提高电池及飞行器的使用寿命。一方面,该保护电路无需采用专用的过压保护芯片,因此,可以有效的节省成本;另一方面,可通过调整保护电路的检测电路及开关电路的参数以适应不同的供电需要,从而有效提高保护的适应性 及灵活性。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的一种保护电路的结构示意图;
图2是本发明实施例提供的另一种保护电路的结构示意图;
图3是本发明实施例提供的一种保护电路的电路图;
图4是本发明实施例提供的另一种保护电路的电路图;
图5是本发明实施例提供的负温度系数热敏电阻的电阻值与温度对应关系表;
图6是本发明实施例提供的另一种保护电路100a的电路图;
图7是本发明实施例提供的另一种保护电路100b的电路图;
图8是本发明实施例提供的一种电池的示意图;
图9是本发明实施例提供的一种飞行器的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在电路设计中,为了避免产品及其元器件的损坏,通常会对供电异常的情况进行保护处理,以延长产品使用寿命等。例如,当发生过压、过温等异常情况时,及时进行过压保护、过温保护等,以避免因过压、过温等异常情况导致的线路中的元器件等因发热、击穿而烧坏甚至起火的情况的发生。
目前,针对异常情况进行保护处理的常规的做法有:使用专用过压保护芯片实现保护;利用处理器检测、控制以实现保护等。
对于采用专用芯片的方式,一方面,其成本高;另一方面,由于专用芯片其参数在出厂前通常已固定设置好了,因此,其保护的适应性及灵活性不够。
而对于处理器检测、控制的方式而言,虽然可以提高保护的适应性及灵活性,但是由于其是采用软件、程序控制的,容易出现程序跑飞、栓锁等程序故障,其可靠性不高。
基于上述情况,本发明实施例提供了一种保护电路、电池及飞行器,其中,该保护电路用于对供电电路进行监控。该保护电路包括:检测电路及与该检测电路连接的开关电路。当所述检测电路检测到供电电路异常时,所述检测电路输出低电平,以使所述开关电路处于断开状态,以切断供电回路,以便防止异常供电情况造成产品及产品元器件的损坏,如造成电池或飞行器等及其元器件的损坏,从而提高电池及飞行器的使用寿命。
一方面,该保护电路无需采用专用的保护芯片,因此,可以有效的节省成本;另一方面,可通过调整保护电路的检测电路及开关电路的参数以适应不同的供电需要,从而有效提高保护的适应性及灵活性。
此外,由于该保护电路是一个由电子元器件搭建的硬件装置,因此,可避免因程序控制而导致程序跑飞、栓锁等程序故障,提高保护的可靠性。
下面结合附图,对本发明实施例提供的保护电路、电池及飞行器进行具体说明。
请参阅图1,是本发明实施例提供一种保护电路的示意图。其中,该保护电路100可以适用于各种产品或电子设备等,例如,电池、飞行器、汽车、终端设备(如手机、平板、可穿戴设备)、家用电器设备(如空调、冰箱)等等,以监控各种产品或电子设备的供电情况,从而保证产品或电子设备的正常运行。
下面以电池作为产品或电子设备的示例,对本发明实施例提供的保护电路100进行具体描述。
其中,该保护电路100用于对供电电路进行监控。该保护电路100包括:检测电路10和开关电路20。其中,该检测电路10与该开关电路20连接。
当所述检测电路10检测到供电电路异常时,所述检测电路10输出低电平,以使所述开关电路20处于断开状态,以切断供电回路,以便防止异常供电情况造成产品及产品元器件的损坏,如造成电池或飞行器等及其元器件的损坏,从而提高电池及飞行器的使用寿命。
本发明实施例提供的保护电路100无需采用专用的保护芯片,因此,可以有效的节省成本;另一方面,可通过调整保护电路100的检测电路10及开关电路20的参数以适应不同的供电需要,从而有效提高保护的适应性及灵活性。
如图2所示,该保护电路100还包括:输入正极IN+、输出正极OUT+、输入负极IN-、输出负极OUT-。其中,所述供电电路将供电电压施加于所述输入正极IN+,并且,所述输入正极IN+与所述输出正极OUT+连接。
其中,该供电电路可以为各种类型的用于为各种用电设备提供电能以驱动用电设备工作的电路。例如,处理器的供电电路(CPU供电电路)、电机供电电路等。例如,通过电机供电电路为飞行器的电机供电,以驱 动电机旋转,从而带动螺旋桨旋转,以实现飞行器的飞行。
保护电路100的输入正极IN+是指与该供电电路的正极连接的端口,保护电路100的输入负极IN-是与指与该供电电路的负极连接的端口,保护电路100的输出正极OUT+和输出负极OUT-为用于连接用电设备的两个端口,也即,用电设备连接于输出正极OUT+与输出负极OUT-之间。
其中,通过供电电路、保护电路100及用电设备的连接以形成供电回路。供电电压由供电电路输出,经过保护电路100进行保护处理后,输入至用电设备,以驱动用电设备工作。并且,供电电路可接收外部电源的输入。外部电源输入到供电电路处理后得到供电电压。该保护处理包括:当出现供电异常时切断供电回路;或者,在供电正常时保持供电回路导通,已将供电电压输入至用电设备,从而驱动用电设备工作。
例如,以电池为例,电池包括电芯、供电电路及保护电路100,电芯与供电电路连接,以将电芯输出的电压输入至供电电路。电芯输出的电压经供电电路处理后得到供电电压。并且,供电电路与保护电路100连接,以将该供电电压输入至该保护电路100。
具体的,电芯的正极与供电电路的正极连接,电芯的负极与供电电路的负极连接。并且,供电电路的正极与保护电路100的输入正极IN+连接,供电电路的负极与保护电路100的输入负极IN-连接,以将供电电压输入至该保护电路100的输入正极IN+。并且,用电设备连接与该保护电路100的输出正极OUT+与输出负极OUT-之间,该供电电压通过保护电路100的处理后输入至用电设备,以为该用电设备供电。
例如,当供电正常时,供电电压输出至与该电池连接的飞行器的动力系统等用电模块中,以驱动该动力系统工作,从而实现飞行器的飞行。或者,当供电异常时,保护电路100切断供电回路,以防止供电异常而损坏与该电池连接的飞行器的动力系统等用电模块或电池本身。
需要说明的是,上述电池可以为任何类型的电池,如锂电池、镉镍电池、镍氢电池、铅酸电池等等。并且该电池为由若干个单体电池(电芯)串联而成。电池采用若干个单体电池串联而成以便于满足各种用电设备的供电需求。例如,满足无人机等飞行器的电机升空的功率需要。例如,该电池包括有4个或4个以上的单体电池,该4个或4个以上的 单体电池串联连接,以满足不同的供电需求。
在一些实现方式中,上述检测电路10与开关电路20连接具体包括:所述检测电路10包括检测输入端101和检测输出端102。其中,所述检测输入端101与所述输入正极IN+及所述输出正极OUT+连接;所述开关电路20与所述检测输出端102连接。
并且,所述开关电路20连接于输入负极IN-与输出负极OUT-之间。由于用于切断供电回路的开关电路20置于输入负极IN-与输出负极OUT-之间,因此,对于在发生供电异常时用于切断供电回路的开关电路20中的开关元器件(如MOS管、三极管等开关元件)可以选用内阻较低、价格较低的开关元器件,以便减少保护电路100的电量损耗,进一步节约成本,特别适合大电流供电电路。
需要说明的是,在一些实施例中,所述开关电路20还可以连接于输入正极IN+与输出正极OUT+之间。当所述开关电路20设置于输入正极IN+与输出正极OUT+之间时,开关电路20可以把供电电路关断的更彻底,避免了一些漏电功耗等,降低路线的功耗。
下面结合图3和图4,对本发明实施例提供的保护电路100以及保护电路100的检测电路10和开关电路20进行具体说明。
请参阅图3,该检测电路10包括:异常采集电路103、基准电路104以及比较电路105。其中,该异常采集电路103及基准电路104均与比较电路105连接;并且,该比较电路105与开关电路20连接。
具体的,所述比较电路105包括第一比较输入端1051、第二比较输入端1052及比较输出端1053。其中,所述异常采集电路103与所述第一比较输入端1051连接,所述基准电路104与所述第二比较输入端1052连接,所述比较输出端1053与所述开关电路20连接。
当检测到所述供电电路异常时,所述比较电路105的比较输出端1053输出低电平,以使所述开关电路20处于断开状态,以切断供电回路。
其中,所述供电电路异常由所述异常采集电路103所输出的第一电压及所述基准电路104所输出的第二电压所确定。也即,通过比较电路105将所述异常采集电路103所输出的第一电压及所述基准电路104所 输出的第二电压进行比较,根据比较的结果,确定是否供电电路是否存在供电异常的情况。
例如,当第一电压大于或等于第二电压时,比较电路105输出高电平,当第一电压小于第二电压时,比较电路105输出低电平;或者,当第一电压大于或等于第二电压时,比较电路105输出低电平,当第一电压小于第二电压时,比较电路105输出高电平。
其中,所述供电电路异常包括至少一种以下异常情况:所述供电电路发生过温和所述供电电路发生过压。
由于受内部或外部因素的影响,通常在供电过程中会存在多种异常情况。例如,发生过压、过温等异常情况。而通过本发明实施例提供的保护电路100可以对供电电路异常中的供电电路发生过温、供电电路发生过压等异常情况进行保护。
具体的,所述异常采集电路103包括:过温采集电路1031、过压采集电路1032以及第一分压电路1033。其中,该过温采集电路1031和过压采集电路1032均与该第一分压电路1033连接。
具体的,所述过温采集电路1031的输入端及所述过压采集电路1032的输入端均与所述输入正极IN+连接,所述过温采集电路1031的输出端与所述第一分压电路1033的输入端连接,所述第一分压电路1033的输出端与所述过压采集电路1032的输出端连接,并且,所述第一分压电路1033的输出端作为所述异常采集电路103的输出端与所述比较电路105的第一比较输入端1051连接。
在一些实现方式中,该过温采集电路1031包括温度传感器RT1。
其中,所述温度传感器RT1的第一端作为所述过温采集电路1031的输入端与所述输入正极IN+连接,所述温度传感器RT1的第二端作为所述过温采集电路1031的输出端与所述第一分压电路1033的输入端连接。
其中,该温度传感器RT1可以为任何合适的温度传感器。例如,该温度传感器RT1可以为负温度系数热敏电阻(Negative Temperature Coefficient,NTC)。该负温度系数热敏电阻具有温度越高,电阻值越低的特性。
其中,该负温度系数热敏电阻的电阻值与温度一一对应,具体的可以参见图5中负温度系数热敏电阻的电阻值与温度对应关系表。通过负温度系数热敏电阻可以及时反映出供电过程中的温度,以便及时进行过温保护。
请复参阅图3,所述过压采集电路1032包括:第一稳压二极管ZD1和第一电阻R1。其中,该第一稳压二极管ZD1与该第一电阻R1连接。
具体的,所述第一稳压二极管ZD1的阴极作为所述过压采集电路1032的输入端与所述输入正极IN+连接,所述第一稳压二极管ZD1的第二端与所述第一电阻R1的第一端连接,所述第一电阻R1的第二端作为所述过压采集电路1032的输出端与所述第一分压电路1033的输出端连接。
其中,第一稳压二极管ZD1具有单向导通及超过耐压值时被反向击穿的特性。也即,在正常工作情况下,当第一稳压二极管ZD1阳极的电压大于阴极的电压时,第一稳压二极管ZD1导通;而当施加于第一稳压二极管ZD1阴极的电压大于第一稳压二极管ZD1的耐压值时,第一稳压二极管ZD1被反向击穿。因此,通过第一稳压二极管ZD1可以及时的反映出供电过程中的供电电压,以便及时进行过压保护。
由此可知,本发明实施例所提供的保护电路100的过压值可以通过调整所述第一稳压二极管ZD1的耐压值来实现,也即,可以通过选用不同耐压值的第一稳压二极管ZD1,以适应不同的供电需要。
由于第一稳压二极管ZD1的响应时间很短,采用该第一稳压二极管ZD1可以有效的提高保护电路100的响应速度。而较快的反应速度可以有效的防止发生过压时,迅速的切断供电回路,避免产品及相关元器件被损坏。此外,第一稳压二极管ZD1的成本低廉,可以有效的节约成本。
需要说明的是,该第一稳压二极管ZD1可以为任何合适的二极管,只要能够实现单向导通、超过耐压值时被反向击穿即可,也即正向导通,反向阻断,超过耐压值时被反向击穿。例如,该第一稳压二极管ZD1可以为锗二极管(Ge管)和硅二极管(Si管)等等。
在一些实现方式中,该第一稳压二极管ZD1可以为任何型号的二极管,例如,该第一稳压二极管ZD1可以为型号为BZX384-B16的二极管 等。
其中,所述第一电阻R1用于限流,以防止过高的电流损坏比较电路105中的元器件,从而确保比较电路105的正常工作。该第一电阻R1的阻值可以根据实际需要选取,例如,该第一电阻R1的阻值为1KΩ。
其中,所述第一分压电路1033包括第二电阻R2和第三电阻R3。其中,第二电阻R2与第三电阻R3连接。
具体的,所述第二电阻R2的第一端作为所述第一分压电路1033的输入端与所述过温采集电路1031的输出端连接,所述第二电阻R2的第二端作为所述第一分压电路1033的输出端与所述第一比较输入端1051连接,并且,所述第二电阻R2的第二端还与所述第三电阻R3的第一端连接,所述第三电阻R3的第二端接地GND。
其中,施加于第一比较输入端1051电压也即为施加于第三电阻R3上的电压。
其中,所述基准电路104包括:第二分压电路1041。该第二分压电路1041与比较电路105连接。
具体的,所述第二分压电路1041的输入端与所述输入正极IN+连接,所述第二分压电路1041的输出端作为所述基准电路104的输出端与所述第二比较输入端1052连接。
在一些实现方式中,所述第二分压电路1041包括第四电阻R4和第五电阻R5。其中,该第四电阻R4和第五电阻R5连接。
具体的,所述第四电阻R4的第一端作为所述第二分压电路1041的输入端与所述输入正极IN+连接,所述第四电阻R4的第二端作为所述第二分压电路1041的输出端与所述第二比较输入端1052连接,并且,所述第四电阻R4的第二端还与所述第五电阻R5的第一端连接,所述第五电阻R5的第二端接地GND。
其中,所述比较电路105包括:比较器U1。该比较器U1的两输入端分别与异常采集电路103及基准电路104连接,该比较器U1的输出端与开关电路20连接。
具体的,所述比较器U1的反相输入端作为所述第一比较输入端1051与所述异常采集电路103连接,所述比较器U1的正相输入端作为所述 第二比较输入端1052与所述基准电路104连接,所述比较器U1的输出端作为所述比较输出端1053与所述开关电路20连接。
需要说明的是,比较器U1可以为任意合适的电压比较器或可实现电压比较功能的芯片。也即,比较器U1可以为任意合适的可实现当其正相输入端的电压大于反相输入端的电压时,输出高电平,当其正相输入端的电压小于反相输入端的电压时,输出低电平的电压比较器或电压芯片。例如,该比较器U1可以为TP2271或其他电压比较芯片等。
在一些实施例中,为了在比较器U1的反相输入端输入平滑稳定的电压,如图4所示,所述比较电路105还包括第一电容C1。
其中,所述第一电容C1的第一端与所述比较器U1的反相输入端连接,所述第一电容C1的第二端接地GND。所述第一电容C1用于实现滤波功能,以使比较器U1的反相输入端获得平滑稳定的电压。
在一些实施例中,为了防止临界值时的波动干扰,所述检测电路10还包括反馈电路106,具体的可见图4。
其中,所述反馈电路106的输入端与所述比较电路105的比较输出端1053连接,所述反馈电路106的输出端与比较电路105的第二比较输入端1052连接。
具体的,所述反馈电路106的输入端与比较电路105的比较器U1的输出端连接,所述反馈电路106的输出端与比较电路105的比较器U1的正相输入端连接。
其中,反馈电路106用于实现回滞功能,具体的,当供电电路由异常情况恢复到正常供电的临界点时,反馈电路106通过拉低比较器U1的正相输入端的电压,使得比较器U1的输出端不会马上输出高电平,而是经过一段时间的延时后,也即比较器U1的反相输入端的电压再降低到一定程度时,比较器U1才能输出高电平,以使开关电路20处于导通状态,从而使得供电回路导通。
通过该反馈电路106可以有效的防止在临界值(如临界温度或临界电压)的时候,比较器U1反复的输出高电平或低电平,从而导致开关电路20反复的导通或关断,而造成供电回路中的供电电压波动,从而损坏产品或相关元器件。
如图4所示,所述反馈电路106包括第一二极管D1及第六电阻R6,所述第一二极管D1的阴极作为所述反馈电路106的输入端与所述比较电路105的比较输出端1053(如比较器U1的输出端)连接,所述第一二极管D1的阳极与所述第六电阻R6的第一端连接,所述第六电阻R6的第二端作为所述反馈电路106的输出端与比较电路105的第二比较输入端1052(如比较器U1的正相输入端)连接。
当供电电路异常时,所述比较器U1的输出端输出低电平,以使所述开关电路20处于关断状态,以切断供电回路。而后,当供电电路由异常恢复到正常的临界值时,此时,比较器U1的输出端输出低电平,由于第一二极管D1及第六电阻R6构成的反馈电路106的存在,第一二极管D1正向导通,所以比较器U1的正相输入端的电压会被第五电阻R5和第六电阻R6并联的电阻拉低一些,所以当供电电路由异常恢复到正常的临界值时之后比较器U1不会立马输出高电平,而是经过一段时间的延时后,也即比较器U1的反相输入端的电压再降低到一定程度时,比较器U1才能输出高电平,以使开关电路20处于导通状态,从而使得供电回路导通。也即,该第一二极管D1及第六电阻R6所组成的反馈电路106起到一个回滞的效果,可以有效的防止临界值时的波动干扰。
需要说明的是,该第一二极管D1可以为任何合适的二极管,只要能够实现单向导通功能即可,也即正向导通,反向阻断。例如,该第一二极管D1可以为锗二极管(Ge管)和硅二极管(Si管)等等。
在一些实现方式中,该第一二极管D1可以为任何型号的二极管,例如,该第一二极管D1可以为型号为1N4148WS的二极管等。
在一些实施例中,为了防止供电电压的波动对检测电路10对异常的检测的干扰,所述检测电路10还包括:电压保持电路107。
其中,所述电压保持电路107包括保持输入端1071及保持输出端1072。所述保持输入端1071与所述输入正极IN+连接,所述保持输出端1072分别与所述过温采集电路1031的输入端及所述基准电路104的输入端连接。
所述电压保持电路107用于对所述供电电压进行稳压处理,以得到基准电压,并将所述基准电压输入至所述过温采集电路1031的输入端 及所述基准电路104的输入端。
在一些实现方式中,该电压保持电路107包括第一稳压电路1073。其中,所述第一稳压电路1073分别与所述过温采集电路1031及所述基准电路104连接。所述第一稳压电路1073用于对输入至该电压保持电路107的供电电压进行第一稳压处理,以得到所述基准电压。
其中,该基准电压为比较电路105的电压的比较的参考标准。具体的,基准电压输入到基准电路104中,经过基准电路104的分压处理后的电压输入至比较电路105的第二比较输入端1052,以与比较电路105的第一比较输入端1051的电压进行比较。也即,基准电压经过基准电路104的分压处理后的电压即为比较电路105的参考电压。
需要说明的是,该基准电压的大小可以根据需要进行调整,例如,该基准电压可以为2.5V、3V、3.5V等等。也即,该基准电压的大小不受限制。
在一些实现方式中,所述第一稳压电路1073包括第七电阻R7及可控稳压管U2。
所述第七电阻R7的第一端与所述输入正极IN+连接,所述七电阻R7的第二端作为所述电压保持电路107的保持输出端1072与所述可控稳压管U2的参考极(R极)及所述可控稳压管U2的阴极(K极)连接,所述可控稳压管U2的阳极(A极)接地GND。
其中,所述第七电阻R7用于限流,以防止过高的电流损坏可控稳压管U2,从而确保可控稳压管U2的正常工作。所述可控稳压管U2用于对所述供电电压进行第一稳压处理,以得到所述基准电压。
例如,当供电电压波动时,通过可控稳压管U2对该供电电压进行第一稳压处理,从而为比较电路105输入稳定的基准电压,比如,输入2.5V的基准电压。
其中,该可控稳压管U2可以为任何合适的实现可控稳压功能的芯片。例如,该可控稳压管U2可以为TL431或其他可控稳压芯片等。该第七电阻R7的阻值可以根据实际需要选取,例如,该第七电阻R7的阻值为20KΩ。
由于比较电路105及第一稳压电路1073也需要电压的驱动,因此, 为了确保检测电路10中的比较电路105及第一稳压电路1073可正常工作,也需要为比较电路105及第一稳压电路1073的驱动提供稳定的电压。
基于此,在一些实施例中,所述电压保持电路107还包括第二稳压电路1074。其中,所述第二稳压电路1074包括稳压输入端与稳压输出端。所述稳压输入端与所述输入正极IN+连接,所述稳压输出端分别与所述比较电路105及第一稳压电路1073连接。
所述第二稳压电路1074用于对所述供电电压进行第二稳压处理,以得到工作电压,所述工作电压用于驱动所述比较电路105及第一稳压电路1073工作。通过该第二稳压电路1074以为比较电路105及第一稳压电路1073提供稳定的工作电压。
需要说明的是,当所述电压保持电路107包括第二稳压电路1074时,上述第七电阻R7的第一端与所述输入正极IN+连接,是指第七电阻R7的第一端通过第二稳压电路1074与所述输入正极IN+连接。
在一些实现方式中,所述第二稳压电路1074包括:第二二极管D2、第八电阻R8及第二电容C2。
其中,所述第二二极管D2的阳极作为所述稳压输入端与所述输入正极IN+连接,所述第二二极管D2的阴极与所述第八电阻R8的第一端连接,所述第八电阻R8的第二端作为所述稳压输出端与比较电路105及第一稳压电路1073连接,并且,所述第八电阻R8的第二端还与所述第二电容C2的第一端连接,所述第二电容C2的第二端接地GND。
当所述供电电压波动时,第二电容C2的储能作用与第二二极管D2的单通特性使得第二稳压电路1074依然能保持输出的工作电压在短时间内不受波动的作用,从而保证所述比较电路105及第一稳压电路1073的正常工作。
并且,当所述供电电压突然被拉高时,由于第八电阻R8的限流作用,从而保证第二稳压电路1074所输出的工作电压保持在一个合理的电压范围内,从而保证所述比较电路105及第一稳压电路1073的正常工作。
并且,第二二极管D2具有单向单通特性,因此,其可以实现防反 灌功能,也即,在出现反接时,如供电电路的正极与该保护电路100的输入负极IN-连接,供电电路的负极与该保护电路100的输入正极IN+连接时,切断供电回路,以防止反灌。
由上可知,第二稳压电路1074的作用即是保证在剧烈变化的电压环境中,保证保护电路100的核心电路,如比较电路105的正常工作,从而确保保护电路100的可靠性。
在一些实施例中,为了防止第二稳压电路1074输出的电压过高而损坏所述比较电路105及第一稳压电路1073,以及进一步保障第二稳压电路1074输出的电压稳定等,请参阅4,所述第二稳压电路1074还包括第二稳压二极管ZD2。
其中,所述第二稳压二极管ZD2的阳极接地GND,所述第二稳压二极管ZD2的阴极与所述第八电阻R8的第二端连接。
需要说明的是,该第二稳压二极管ZD2可以为任何合适的二极管,只要能够实现稳压功能即可。例如,该第二稳压二极管ZD2可以为锗二极管(Ge管)和硅二极管(Si管)等等。
在一些实现方式中,该第二稳压二极管ZD2可以为任何型号的二极管,例如,该第二稳压二极管ZD2可以为型号为BZX384-B18的二极管等。
还需要说明的是,在一些其它实施例中,上述电路中所述第七电阻R7、可控稳压管U2、第二二极管D2、第八电阻R8、第二稳压二极管ZD2与第二电容C2中一个或多个也可以由其他电子元器件的替代。例如,用滑动变阻器代替上述第七电阻R7、第八电阻R8。
并且,由第二稳压电路1074输出的工作电压可以通过调节各电子元器件参数,改变输出的工作电压的电压值。比如,增加第八电阻R8的阻值而减小工作电压的电压值;选用其他类型的稳压二级管,使工作电压在供电电压过高的环境中工作电压的输出更加收敛等。
请复参阅图3,所述开关电路20包括:第三分压电路201和MOS管Q1。其中,第三分压电路201和MOS管Q1连接。其中,MOS管Q1可以为N沟道MOS管。
具体的,所述第三分压电路201的输入端作为所述开关电路20的 输入端与所述检测电路10连接,所述第三分压电路201的输出端与所述MOS管Q1的栅极(G极)连接,所述MOS管Q1的源极(S极)与所述输入负极IN-连接,并且,所述MOS管Q1的源极(S极)接地,所述MOS管Q1的漏极(D极)与所述输出负极OUT-连接。
在一些实现方式中,所述第三分压电路201包括:第九电阻R9和第十电阻R10。其中,第九电阻R9与第十电阻R10连接。
具体的,所述第九电阻R9的第一端作为所述第三分压电路201的输入端与所述检测电路10连接,所述第九电阻R9的第二端作为所述第三分压电路201的输出端与所述MOS管Q1的栅极连接,并且,所述第九电阻R9的第二端还与所述第十电阻R10的第一端连接,所述第十电阻R10的第二端接地GND。
在一些实施例中,为了在MOS管Q1的栅源极、漏源极输入平滑稳定的电压,如图4所示,所述开关电路20包括:第三电容C3和第四电容C4。
所述第三电容C3的第一端与所述MOS管Q1的栅极连接,所述第三电容C3的第二端与所述MOS管Q1的源极连接,所述第四电容C4的第一端与所述MOS管Q1的漏极连接,所述第四电容C4的第二端与所述MOS管Q1的源极连接。所述第三电容C3、第四电容C4均用于实现滤波功能,以使MOS管Q1的栅源极、漏源极获得平滑稳定的电压。
需要说明的是,在一些其它实施例中,上述MOS管Q1也可以用其它可实现上述MOS管Q1的功能的器件进行替代,并不局限于图中所列举器件。比如,所述MOS管Q1还可以为P沟道MOS管;或者,用三极管替代上述MOS管Q1。
其中,该三极管可以为NPN型晶体三极管。该三极管的基极(B极)在电路中的连接结构与MOS管Q1的栅极在电路中的连接结构相同;该三极管的发射极(E极)在电路的连接结构与MOS管Q1的源极在电路中的连接结构相同,该三极管的集电极(C极)的电路的连接结构与MOS管Q1漏极在电路中的连接结构相同,因此,在此不再赘述,具体可参考上述描述。
以下是本发明实施例提供的保护电路100的工作原理:
请参阅图3或图4,假设第一稳压电路1073的提供稳定基准电压为2.5V、第一电阻R1的电阻值为1KΩ、第二电阻R2的电阻值为2KΩ、第三电阻R3的电阻值为10KΩ、第四电阻R4的电阻值为12KΩ、第五电阻R5的电阻值为10KΩ。
对于进行过压保护而言,当供电电路正常工作时,也即供电电路未发生过压时;或者,对于进行过温保护而言,当供电电路正常工作时,也即供电电路未发生过温时,假设环境温度25℃,负温度系数热敏电阻RT1对应的电阻值大约100KΩ,并且结合上述假设可得输入至比较器U1的正相输入端的电压大约为1.136V,输入至比较器U1的反相输入端的电压大约为0.223V,此时,比较器U1输出高电平,其中,由于第二稳压二极管ZD2的存在,使得输入至比较器U1的工作电压可以稳定在一个安全范围内(小于MOS管Q1的耐压值),如稳定在18V左右,所以比较器U1的输出端输出的电压也基本稳定在18V左右,从而不会烧坏MOS管Q1。此时,MOS管Q1处于导通状态,从而整个供电回路处于导通状态。此外,由于第一二极管D1的存在,比较器U1的输出端输出的高电平也不会反灌到比较器U1的正相输入端上。
当电路发生过压保护时,也即,供电电压超过预设电压阈值,例如,以第一稳压二极管ZD1为BZX384-B16为例,其击穿电压VZ在15.7V-16.3V之间,所以过压保护的过压保护值大约等于(VZ+(1.136-0.227))V,也即16.609V-17.209V之间。因此,当供电电压超过16.609V-17.209V的范围时,比较器U1的正相输入端的电压小于正相输入端的电压,比较器U1输出低电平,以使MOS管Q1处于断开状态,从而切断供电回路,也即发生了过温保护。
当供电电路发生过温时,也即,温度超过预设温度阈值,例如,温度超过80℃时,由图5的负温度系数热敏RT1电阻的不同温度的阻值表可得,当温度等于80℃时,负温度系数热敏RT1的电阻值为10KΩ,比较器U1的正相输入端的电压与正相输入端的电压大致相等,也即温度等于80℃为临界温度值。因此,当温度超过80℃时,比较器U1的正相输入端的电压小于正相输入端的电压,比较器U1输出低电平,以使MOS管Q1处于断开状态,从而切断供电回路,也即发生了过温保护。
此外,当供电电路由异常情况恢复到正常供电的临界点(临界温度值或临界电压值)时,由于比较器U1的输出端输出低电平,所以比较器U1的正相输入端的电压会被第五电阻R5和第六电阻R6并联的电阻拉低一些(根据经验数据,电压大约降低了10%),所以当温度由80℃以降下来之后比较器U1不会立马输出高电平,大概会等到温度降低到75℃时才会输出高电平;或者,当供电电压由16.609V-17.209V以降下来之后比较器U1不会立马输出高电平,大概会等到供电电压降低到16.509V-17.109V时才会输出高电平,以使供电电路恢复正常工作。
该第一二极管D1及第六电阻R6所组成的反馈电路106起到一个回滞的效果,可以有效的防止在临界温度值或临界电压值的时候,比较器U1反复的输出高电平或低电平,从而导致开关电路20反复的导通或关断,而造成供电回路中的供电电压波动,从而损坏产品或相关元器件。
需要说明的是,该预设温度阈值为发生过温的临界值,该预设电压阈值为发生过压的临界点。也即,该预设电压阈值用于界定是否发生过压,该预设温度阈值用于界定是否发生过温。
具体的,当供电电压大于预设电压阈值时,表明存在过压的情况,当供电电压小于或等于预设电压阈值时,表明未过压;当温度大于预设温度阈值时,表明存在过温的情况,当温度小于或等于预设温度阈值时,表明未过压。若发生过压或过温,则可能导致产品损坏及线路中的元器件等因发热、击穿而烧坏甚至起火。例如,导致电池损坏或导致依赖该电池供电的飞行器炸机等。
其中,该预设电压阈值、预设温度阈值可以根据实际情况进行调整,以适应不同供电需要,以及不同的供电需求。
还需要说明的是,保护电路100的过压保护的电压值可以根据需求调整,也不限于实例的数值,具体的电压保护范围可以通过调整第一稳压二极管ZD1的耐压值、第一电阻R1的电阻值、第四电阻R4的电阻值为12KΩ、第五电阻R5的电阻值为10KΩ实现。
并且,保护电路100的温度保护的温度值也可以根据需求调整,也不限于实例的数值,具体的温度保护范围可以通过调整负温度系数热敏电阻NTC、第二电阻R2的电阻值、第三电阻R3的电阻值、第四电阻R4 的电阻值、第五电阻R5的电阻值实现。
此外,可控稳压管U2也可以和比较器U1是一个二合一器件。例如,如图6所示,该保护电路100a与上述保护电路100的区别点在于,可控稳压管U2与比较器U1是一个二合一器件,也即可控稳压管U2的功能与比较器U1的功能可集成与一个芯片上,例如,集成于型号为AP4310的芯片U1a。
在一些其他实施例中,上述可控稳压管U2还可以用其它可实现上述可控稳压管U2的功能的器件进行替代,并不局限于图中所列举器件。比如,用低压差线性稳压器(low dropout regulator,LDO)代替上述可控稳压管U2。例如,如图7所示,该保护电路100b与上述保护电路100的区别点在于,低压差线性稳压器替换上述可控稳压管U2。
在本发明实施例中,当所述检测电路10检测到供电电路异常时,所述检测电路10输出低电平,以使所述开关电路20处于断开状态,以切断供电回路,以便防止异常供电情况造成产品及产品元器件的损坏,如造成电池或飞行器等及其元器件的损坏,从而提高电池及飞行器的使用寿命。
本发明实施例提供的保护电路100无需采用专用的保护芯片,因此,可以有效的节省成本;另一方面,可通过调整保护电路100的检测电路10及开关电路20的参数以适应不同的供电需要,从而有效提高保护的适应性及灵活性。
并且,由于保护电路100为采用二极管、MOS管、电阻等搭建的纯硬件装置,因此,一方面可避免因程序控制而导致程序跑飞、栓锁等程序故障,提高保护的可靠性,另一方面可以有效的提高保护电路100的响应速度,节约成本,特别适用于过压、过温保护。且该保护电路100的电器元件较少,比较节省线路空间,针对较小空间尺寸的产品是一个不错的选择。
此外,该保护电路100由于具有回滞功能,所以一定程度上避免了在过温、过压的临界点时,比较器U1反复的输出高电平或低电平,从而导致开关电路20反复的导通或关断,而造成供电回路中的供电电压波动,从而损坏产品或相关元器件。
请参阅图8,为本发明实施例提供的一种电池的示意图。其中,所述电池800可以是锰锌电池、铅蓄电池、锂电池或者其他类型供电模块等。所述电池800包括:壳体(图未示)、收容于所述壳体内的电芯810和与所述电芯810电连接的供电电路820、电池的输入正极B+、电池的输出正极PACK+、电池的输入负极B-、电池的输出负极PACK-以及如上所述的保护电路100。其中,供电电路820与保护电路100连接。
需要说明第是,该电芯810的数量可以为若干个,也即,在本实施例中,该电芯810的数量不受限制。其中,若干个电芯串联连接,以适应不同的供电需要。
在一些实现方式中,电芯810的正极作为电池的输入正极B+与供电电路820的正极连接,并且,供电电路820的正极与保护电路100输入正极IN+连接,电芯810的负极作为电池的输入负极B-与供电电路820的负极连接,并且,供电电路820的负极与保护电路100输入负极IN-连接,保护电路100的输出正极OUT+作为电池的输出正极PACK+,保护电路100的输出负极OUT-作为电池的输出负极PACK-,以连接用电设备,为用电设备供电。
所述保护电路100的开关电路20连接于电池的输入负极B-与电池的输出负极PACK-之间。
其中,该电池的输入正极B+为电池800的总正端,也即为电池800的最高电压端。该电池的输入负极B-为电池800的总负端,也即为电池800的最低电压端。
该电池的输出正极PACK+为电池800的正极输出端。该电池的输出正极PACK+也为电池800的正极充电端口。该电池的输出负极PACK-为电池800的负极输出端,并且,该电池的输出负极PACK-为电池800的负极充电端口。
当电池800放电且无异常情况时,放电电流由电池的输入正极B+、输出正极PACK+,经用电设备等负载回到电池的输出负极PACK-。
需要说明的是,在一些实施例中,所述保护电路100还可以连接于电池的输入正极B+与电池的输出正极PACK+之间。
在本发明实施例中,电池800的保护电路100可以对过温过压等异常情况进行保护。
并且,当保护电路100连接于电池的输入负极B-与电池的输出负极PACK-之间时,对于在发生供电异常时用于切断供电回路的开关电路20中的开关元器件(如MOS管、三极管等开关元件)可以选用内阻较低、价格较低的开关元器件,以便减少保护电路100的电量损耗,进一步节约成本,特别适合大电流供电电路。
请参阅图9,为本发明实施例提供的一种飞行器的示意图。其中,该飞行器900包括:机身(图未示)、与所述机身相连的机臂(图未示)、设于所述机臂的动力装置910和设于所述机身的电池。其中,飞行器900的电池可以为上述电池800。所述电池800用于为所述飞行器900供电。
该电池800可以无需采用专用的保护芯片,因此,可以有效的节省成本;另一方面,可通过调整保护电路100的检测电路10及开关电路20的参数以适应不同的供电需要,从而有效提高保护的适应性及灵活性。
其中,该飞行器900可以为无人机、无人船或其它可移动装置等等。以无人机为例,该无人机可以是旋翼飞行器(rotorcraft),例如,由多个推动装置通过空气推动的多旋翼飞行器,本发明的实施例并不限于此,无人机也可以是其它类型的无人机,如固定翼无人机、无人飞艇、伞翼无人机、扑翼无人机等等。
其中,其中,电池800分别与动力装置910、飞行控制系统、云台、图像采集装置连接,以为动力装置910、飞行控制系统、云台、图像采集装置提供电力。例如,通过电池800为动力装置910及飞行控制系统提供电力,从而保证动力装置910及飞行控制系统的正常工作,以实现飞行器900的飞行,从而完成指定的飞行任务。
此外,动力装置910设置于飞行器900的机臂,飞行控制系统设置于飞行器900的机身内,云台安装于飞行器900的机身,飞行控制系统可以与动力装置910、云台、图像采集装置进行耦合,以实现通信。
动力装置910可以包括电子调速器(简称为电调)、一个或多个螺旋 桨以及与一个或多个螺旋桨相对应的一个或多个电机,其中,电机连接在电子调速器与螺旋桨之间,电机和螺旋桨设置在对应的飞行器900的机臂上。
电子调速器用于接收飞行控制系统产生的驱动信号,并根据驱动信号提供驱动电流给电机,以控制电机的转速。电机用于驱动螺旋桨旋转,从而为飞行器900的飞行提供动力,该动力使得飞行器900能够实现一个或多个自由度的运动。在某些实施例中,飞行器900可以围绕一个或多个旋转轴旋转。例如,上述旋转轴可以包括横滚轴、平移轴和俯仰轴。可以理解的是,电机可以是直流电机,也可以交流电机。另外,电机可以是无刷电机,也可以有刷电机。
飞行控制系统可以包括飞行控制器和传感系统。飞行控制器和传感系统连接。
传感系统用于测量飞行器900的姿态信息,即飞行器900在空间的位置信息和状态信息,例如,三维位置、三维角度、三维速度、三维加速度和三维角速度等。传感系统例如可以包括陀螺仪、电子罗盘、惯性测量单元(Inertial Measurement Unit,IMU)、视觉传感器、全球导航卫星系统和气压计等传感器中的至少一种。例如,全球导航卫星系统可以是全球定位系统(Global Positioning System,GPS)。飞行控制器用于控制飞行器900的飞行,例如,可以根据传感系统测量的姿态信息控制飞行器900的飞行。
可以理解的是,飞行控制器可以按照预先编好的程序指令对飞行器900进行控制,也可以通过响应来自其它设备的一个或多个控制指令对飞行器900进行控制。
云台可以包括电调和电机。其中,云台的电调和电机连接。云台用于搭载图像采集装置。飞行控制器可以通过电调和电机控制云台的运动。
可选地,在一些其它实施例中,云台还可以包括控制器,用于通过控制电调和电机来控制云台的运动。可以理解的是,云台可以独立于飞行器900,也可以为飞行器900的一部分。可以理解的是,云台的电机可以是直流电机,也可以交流电机。另外,云台的电机可以是无刷电机, 也可以有刷电机。还可以理解的是,云台可以位于机身的顶部,也可以位于机身的底部。
图像采集装置可以是照相机或摄像机等用于采集图像的装置,图像采集装置可以与飞行控制系统通信,并在飞行控制系统的控制下进行拍摄。
可以理解的是,上述对于飞行器900的各组成部分的命名仅是出于标识的目的,并不应理解为对本发明的实施例的限制。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (24)

  1. 一种保护电路,用于对供电电路进行监控,其特征在于,包括:
    检测电路;
    开关电路,与所述检测电路连接;
    当所述检测电路检测到所述供电电路异常时,所述检测电路输出低电平,以使所述开关电路处于断开状态,以切断供电回路。
  2. 根据权利要求1所述的保护电路,其特征在于,所述保护电路还包括:输入正极、输出正极、输入负极、输出负极,其中,所述供电电路将供电电压施加于所述输入正极,并且,所述输入正极与所述输出正极连接;
    所述检测电路包括检测输入端和检测输出端,所述检测输入端与所述输入正极及所述输出正极连接;
    所述开关电路与所述检测输出端连接,并且,所述开关电路连接于输入负极与输出负极之间。
  3. 根据权利要求2所述的保护电路,其特征在于,所述检测电路包括:异常采集电路、基准电路以及比较电路;
    所述比较电路包括第一比较输入端、第二比较输入端及比较输出端;所述异常采集电路与所述第一比较输入端连接,所述基准电路与所述第二比较输入端连接,所述比较输出端与所述开关电路连接;
    当检测到所述供电电路异常时,所述比较电路的比较输出端输出低电平,以使所述开关电路处于断开状态,以切断供电回路;
    其中,所述供电电路异常由所述异常采集电路所输出的第一电压及所述基准电路所输出的第二电压所确定。
  4. 根据权利要求3所述的保护电路,其特征在于,所述供电电路异常包括至少一种以下异常情况:所述供电电路发生过温和所述供电电 路发生过压。
  5. 根据权利要求3或4所述的保护电路,其特征在于,所述异常采集电路包括:过温采集电路、过压采集电路以及第一分压电路;
    所述过温采集电路的输入端及所述过压采集电路的输入端均与所述输入正极连接,所述过温采集电路的输出端与所述第一分压电路的输入端连接,所述第一分压电路的输出端与所述过压采集电路的输出端连接,并且,所述第一分压电路的输出端作为所述异常采集电路的输出端与所述第一比较输入端连接。
  6. 根据权利要求5所述的保护电路,其特征在于,所述过温采集电路包括温度传感器;
    所述温度传感器的第一端作为所述过温采集电路的输入端与所述输入正极连接,所述温度传感器的第二端作为所述过温采集电路的输出端与所述第一分压电路的输入端连接。
  7. 根据权利要求5或6所述的保护电路,其特征在于,所述过压采集电路包括:第一稳压二极管和第一电阻;
    所述第一稳压二极管的阴极作为所述过压采集电路的输入端与所述输入正极连接,所述第一稳压二极管的第二端与所述第一电阻的第一端连接,所述第一电阻的第二端作为所述过压采集电路的输出端与所述第一分压电路的输出端连接。
  8. 根据权利要求5-7任一项所述的保护电路,其特征在于,所述第一分压电路包括第二电阻和第三电阻;
    所述第二电阻的第一端作为所述第一分压电路的输入端与所述过温采集电路的输出端端连接,所述第二电阻的第二端作为所述第一分压电路的输出端与所述第一比较输入端连接,并且,所述第二电阻的第二端还与所述第三电阻的第一端连接,所述第三电阻的第二端接地。
  9. 根据权利要求3-8任一项所述的保护电路,其特征在于,所述基准电路包括第二分压电路;
    所述第二分压电路的输入端与所述输入正极连接,所述第二分压电路的输出端作为所述基准电路的输出端与所述第二比较输入端连接。
  10. 根据权利要求9所述的保护电路,其特征在于,所述第二分压电路包括第四电阻和第五电阻;
    所述第四电阻的第一端作为所述第二分压电路的输入端与所述输入正极连接,所述第四电阻的第二端作为所述第二分压电路的输出端与所述第二比较输入端连接,并且,所述第四电阻的第二端还与所述第五电阻的第一端连接,所述第五电阻的第二端接地。
  11. 根据权利要求3-10任一项所述的保护电路,其特征在于,所述比较电路包括比较器;
    所述比较器的反相输入端作为所述第一比较输入端与所述异常采集电路连接,所述比较器的正相输入端作为所述第二比较输入端与所述基准电路连接,所述比较器的输出端作为所述比较输出端与所述开关电路连接。
  12. 根据权利要求11所述的保护电路,其特征在于,所述比较电路还包括第一电容,所述第一电容的第一端与所述比较器的反相输入端连接,所述第一电容的第二端接地。
  13. 根据权利要求3-12任一项所述的保护电路,其特征在于,所述检测电路还包括反馈电路,所述反馈电路的输入端与所述比较电路的比较输出端连接,所述反馈电路的输出端与所述比较电路的第二比较输入端连接。
  14. 根据权利要求13所述的保护电路,其特征在于,所述反馈电路包括第一二极管及第六电阻,所述第一二极管的阴极作为所述反馈电 路的输入端与所述比较电路的比较输出端连接,所述第一二极管的阳极与所述第六电阻的第一端连接,所述第六电阻的第二端作为所述反馈电路的输出端所述比较电路的第二比较输入端连接。
  15. 根据权利要求5-14任一项所述的保护电路,其特征在于,所述检测电路还包括:电压保持电路;
    所述电压保持电路包括保持输入端及保持输出端,所述保持输入端与所述输入正极连接,所述保持输出端分别与所述过温采集电路的输入端及所述基准电路的输入端连接;
    所述电压保持电路用于对所述供电电压进行稳压处理,以得到基准电压,并将所述基准电压输入至所述过温采集电路的输入端及所述基准电路的输入端。
  16. 根据权利要求15所述的保护电路,其特征在于,所述电压保持电路包括第一稳压电路;
    所述第一稳压电路的输出端分别与所述过温采集电路的输入端及所述基准电路的输入端连接,所述第一稳压电路用于对所述供电电压进行第一稳压处理,以得到所述基准电压;
    其中,所述第一稳压电路包括第七电阻及可控稳压管,所述第七电阻的第一端与所述输入正极连接,所述第七电阻的第二端作为所述电压保持电路的保持输出端与所述可控稳压管的参考极及所述可控稳压管的阴极连接,所述可控稳压管的阳极接地。
  17. 根据权利要求16所述的保护电路,其特征在于,所述电压保持电路还包括第二稳压电路,所述第二稳压电路包括稳压输入端与稳压输出端;
    所述稳压输入端与所述输入正极连接,所述稳压输出端分别与所述比较电路及第一稳压电路连接,所述第二稳压电路用于对所述供电电压进行第二稳压处理,以得到工作电压,所述工作电压用于驱动所述比较电路及第一稳压电路工作。
  18. 根据权利要求17所述的保护电路,其特征在于,所述第二稳压电路包括:第二二极管、第八电阻及第二电容;
    所述第二二极管的阳极作为所述稳压输入端与所述输入正极连接,所述第二二极管的阴极与所述第八电阻的第一端连接,所述第八电阻的第二端作为所述稳压输出端与所述比较电路及所述第一稳压电路连接,并且,所述第八电阻的第二端还与所述第二电容的第一端连接,所述第二电容的第二端接地。
  19. 根据权利要求18所述的保护电路,其特征在于,所述第二稳压电路还包括第二稳压二极管,所述第二稳压二极管的阳极接地,所述第二稳压二极管的阴极与所述第八电阻的第二端连接。
  20. 根据权利要求1-19任一项所述的保护电路,其特征在于,所述开关电路包括:第三分压电路和MOS管;
    所述第三分压电路的输入端作为所述开关电路的输入端与所述检测电路连接,所述第三分压电路的输出端与所述MOS管的栅极连接,所述MOS管的源极与所述输入负极连接,并且,所述MOS管的源极接地,所述MOS管的漏极与所述输出负极连接。
  21. 根据权利要求20所述的保护电路,其特征在于,所述第三分压电路包括第九电阻和第十电阻;
    所述第九电阻的第一端作为所述第三分压电路的输入端与所述检测电路连接,所述第九电阻的第二端作为所述第三分压电路的输出端与所述MOS管的栅极连接,并且,所述第九电阻的第二端还与所述第十电阻的第一端连接,所述第十电阻的第二端接地。
  22. 根据权利要求20或21所述的保护电路,其特征在于,所述开关电路包括:第三电容和第四电容;
    所述第三电容的第一端与所述MOS管的栅极连接,所述第三电容的 第二端与所述MOS管的源极连接,所述第四电容的第一端与所述MOS管的漏极连接,所述第四电容的第二端与所述MOS管的源极连接。
  23. 一种电池,包括壳体、收容于所述壳体内的电芯和与所述电芯电连接的供电电路,其特征在于,所述电池还包括如权利要求1-22任一项所述的保护电路,所述供电电路与所述保护电路电连接。
  24. 一种飞行器,其特征在于,包括机身、与所述机身相连的机臂、设于所述机臂的动力装置和设于所述机身的电池,其特征在于,所述电池为权利要求23所述的电池,所述电池用于给所述飞行器供电。
PCT/CN2019/129563 2018-12-29 2019-12-28 一种保护电路、电池及飞行器 WO2020135798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811644530.4 2018-12-29
CN201811644530.4A CN109546612A (zh) 2018-12-29 2018-12-29 一种保护电路、电池及飞行器

Publications (1)

Publication Number Publication Date
WO2020135798A1 true WO2020135798A1 (zh) 2020-07-02

Family

ID=65831573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129563 WO2020135798A1 (zh) 2018-12-29 2019-12-28 一种保护电路、电池及飞行器

Country Status (2)

Country Link
CN (1) CN109546612A (zh)
WO (1) WO2020135798A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114043898A (zh) * 2021-10-18 2022-02-15 深圳市普兰斯通科技有限公司 充电机保护电路、方法及充电机
CN114156836A (zh) * 2021-11-10 2022-03-08 深圳欣锐科技股份有限公司 高压放电保护电路、高压放电器和用电设备
CN115996033A (zh) * 2023-03-22 2023-04-21 敏业信息科技(上海)有限公司 一种电磁干扰滤波器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109546612A (zh) * 2018-12-29 2019-03-29 深圳市道通智能航空技术有限公司 一种保护电路、电池及飞行器
CN110176750A (zh) * 2019-05-24 2019-08-27 深圳市道通智能航空技术有限公司 过压保护电路
CN110400981A (zh) * 2019-06-20 2019-11-01 江苏永贵新能源科技有限公司 一种用于机车蓄电池安全保护电路
CN110808729B (zh) * 2019-10-10 2023-06-16 贵州天义电器有限责任公司 一种高精度电压比较电路
CN113552504A (zh) * 2021-08-26 2021-10-26 深圳哈鼎能源有限公司 一种排线测试电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306757A (ja) * 2006-05-15 2007-11-22 Hanshin Electric Co Ltd スイッチング電源回路
CN202034757U (zh) * 2011-04-27 2011-11-09 北京立华莱康平台科技有限公司 保护电路
CN104218538A (zh) * 2013-05-30 2014-12-17 深圳市海洋王照明工程有限公司 电池过放电保护电路
CN109546612A (zh) * 2018-12-29 2019-03-29 深圳市道通智能航空技术有限公司 一种保护电路、电池及飞行器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204103465U (zh) * 2014-10-10 2015-01-14 东莞新能源科技有限公司 动力锂电池的过温过压保护电路
CN104617549A (zh) * 2015-02-06 2015-05-13 青岛歌尔声学科技有限公司 一种过压保护电路及电子产品
CN205489457U (zh) * 2016-02-29 2016-08-17 深圳市航嘉驰源电气股份有限公司 一种过温保护电路及车载点烟装置
CN205986243U (zh) * 2016-08-22 2017-02-22 深圳拓邦股份有限公司 电池充电保护锁存电路及双重保护电路
CN205986102U (zh) * 2016-08-30 2017-02-22 广州小百合信息技术有限公司 供电保护电路
CN210111579U (zh) * 2018-12-29 2020-02-21 深圳市道通智能航空技术有限公司 一种保护电路、电池及飞行器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306757A (ja) * 2006-05-15 2007-11-22 Hanshin Electric Co Ltd スイッチング電源回路
CN202034757U (zh) * 2011-04-27 2011-11-09 北京立华莱康平台科技有限公司 保护电路
CN104218538A (zh) * 2013-05-30 2014-12-17 深圳市海洋王照明工程有限公司 电池过放电保护电路
CN109546612A (zh) * 2018-12-29 2019-03-29 深圳市道通智能航空技术有限公司 一种保护电路、电池及飞行器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114043898A (zh) * 2021-10-18 2022-02-15 深圳市普兰斯通科技有限公司 充电机保护电路、方法及充电机
CN114156836A (zh) * 2021-11-10 2022-03-08 深圳欣锐科技股份有限公司 高压放电保护电路、高压放电器和用电设备
CN114156836B (zh) * 2021-11-10 2023-06-20 深圳欣锐科技股份有限公司 高压放电保护电路、高压放电器和用电设备
CN115996033A (zh) * 2023-03-22 2023-04-21 敏业信息科技(上海)有限公司 一种电磁干扰滤波器

Also Published As

Publication number Publication date
CN109546612A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2020135798A1 (zh) 一种保护电路、电池及飞行器
WO2020119722A1 (zh) 一种保护电路、电池及飞行器
JP7157116B2 (ja) バッテリー及びバッテリー付き無人機
US11338684B2 (en) Systems and methods for restricting power to a load to prevent engaging circuit protection device for an aircraft
US20210245623A1 (en) Battery and unmanned aerial vehicle with the battery
US10270381B2 (en) Intelligent power control system and method for electric motors, and unmanned aerial vehicle (UAV) having the same
US20170207640A1 (en) Method and system for managing battery assembly
US11682909B2 (en) Multi-battery system and management thereof
WO2020103474A1 (zh) 一种充电电路及充电系统
WO2020244589A1 (zh) 一种充电方法及充电设备
WO2018076193A1 (zh) 电池温度检测方法、控制系统、电池及无人飞行器
WO2020098709A1 (zh) 一种电池的防反向充电电路及电池管理系统
WO2021142591A1 (zh) 电池控制方法、可移动平台、系统及计算机可读存储介质
CN210111579U (zh) 一种保护电路、电池及飞行器
WO2019041100A1 (zh) 充电系统及充电方法
CN109274065B (zh) 一种监控电路、电池及飞行器
WO2020035042A1 (zh) 飞行器的供电方法、装置、飞行控制系统及飞行器
EP4236012A1 (en) Charging and discharging control circuit and method, and device and storage medium
CN208013787U (zh) 一种基于单片机的物流飞控
WO2023060548A1 (zh) 可移动平台及其供电控制方法、存储介质
CN211655831U (zh) 供电控制电路、供电控制系统及可移动平台
CN217805302U (zh) 飞行器用油电混合动力系统
CN204391835U (zh) 电池、应用于该电池的充电系统及使用该电池的飞行器
JP2023018328A (ja) 蓄電システム、電気機器、及び、制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904254

Country of ref document: EP

Kind code of ref document: A1