WO2023060548A1 - 可移动平台及其供电控制方法、存储介质 - Google Patents

可移动平台及其供电控制方法、存储介质 Download PDF

Info

Publication number
WO2023060548A1
WO2023060548A1 PCT/CN2021/124073 CN2021124073W WO2023060548A1 WO 2023060548 A1 WO2023060548 A1 WO 2023060548A1 CN 2021124073 W CN2021124073 W CN 2021124073W WO 2023060548 A1 WO2023060548 A1 WO 2023060548A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable platform
power
battery assembly
voltage
battery
Prior art date
Application number
PCT/CN2021/124073
Other languages
English (en)
French (fr)
Inventor
訾强
柯鑫
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2021/124073 priority Critical patent/WO2023060548A1/zh
Priority to CN202180007893.0A priority patent/CN114946100A/zh
Publication of WO2023060548A1 publication Critical patent/WO2023060548A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of mobile platforms, and in particular to a mobile platform, a method for controlling power supply thereof, and a storage medium.
  • Movable platforms such as unmanned aerial vehicles or unmanned vehicles
  • batteries such as lithium-ion batteries.
  • batteries due to the limitation of battery life, it is often necessary to replace the battery.
  • the battery In the process of replacing the battery of the current unmanned aerial vehicle, there will be a large surge current on the battery.
  • the maximum discharge current value allowed by the battery is exceeded, the battery will be damaged.
  • the battery will produce lithium due to overcurrent, which will affect the battery life. , which may further cause a fire accident.
  • the present application provides a movable platform, its power supply control method, and a storage medium, aiming at solving technical problems such as overcurrent in a battery of the movable platform.
  • an embodiment of the present application provides a power supply control method for a mobile platform, the mobile platform includes a battery assembly for powering the mobile platform, the battery assembly includes at least one battery, and the Methods include:
  • the operating state including a stationary state
  • the movable platform When the movable platform is in the static state, detect the number of batteries included in the battery assembly; when it is detected that the number of batteries has changed, adjust the battery according to the voltage of the battery after the number has changed The supply current of the components;
  • the battery assembly is controlled to supply power to the movable platform with the adjusted supply current.
  • the embodiment of the present application provides a mobile platform capable of carrying a battery assembly for powering the mobile platform, and the battery assembly includes at least one battery;
  • the mobile platform includes one or more processors, working individually or jointly, for performing the following steps:
  • the operating state including a stationary state
  • the movable platform When the movable platform is in the static state, detect the number of batteries included in the battery assembly; when it is detected that the number of batteries has changed, adjust the battery according to the voltage of the battery after the number has changed The supply current of the components;
  • the battery assembly is controlled to supply power to the movable platform with the adjusted supply current.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the processor implements the steps of the above method .
  • Embodiments of the present application provide a mobile platform and its power supply control method and storage medium.
  • the mobile platform includes a battery assembly for power supply, and the battery assembly includes at least one battery; when the mobile platform is in a static state and the battery is replaced
  • the supply current of the battery assembly is limited, thereby preventing the battery assembly from being damaged due to a large output current.
  • FIG. 1 is a schematic flowchart of a power supply control method for a mobile platform provided in an embodiment of the present application
  • Figure 2 is a schematic diagram of the current battery supplying power to the load
  • Fig. 3 is a schematic structural diagram of a movable platform in an embodiment
  • Fig. 4 is a schematic diagram of battery power supply in the mobile platform in one embodiment
  • Figure 5 is a schematic diagram of battery power in a mobile platform in another embodiment
  • Fig. 6 is a schematic diagram of battery power supply in the mobile platform in yet another embodiment
  • FIG. 7 is a schematic flow chart of a power supply control method in an embodiment
  • Fig. 8 is a schematic diagram of a battery supplying power to a power system in an embodiment
  • Fig. 10 is a schematic block diagram of a mobile platform provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a power supply control method for a mobile platform provided in an embodiment of the present application.
  • the method for controlling the power supply of the movable platform can be applied in the movable platform, and is used for controlling the battery to supply power to the movable platform and other processes.
  • the movable platform may include at least one of an unmanned aerial vehicle, an unmanned vehicle, and the like.
  • the unmanned aerial vehicle may be a rotor-type drone, such as a quad-rotor drone, a hexacopter drone, an octo-rotor drone, or a fixed-wing drone.
  • multi-rotor unmanned aerial vehicle has been popularized and used in more and more fields due to its advantages of simple and stable structure, convenient control, flexible application and low cost.
  • multi-rotor unmanned aerial vehicles mainly use lithium-ion batteries to provide energy for the entire flight system, but due to the constraints of battery life, it is a strong demand to replace batteries during flight operations.
  • Most UAVs need to power off the entire flight system, replace the battery, and then restart during the battery replacement process.
  • the integrity of the flight operation data will be affected due to the power failure of the flight system, and on the other hand, the time cost will be increased, which will affect the efficiency of the flight operation.
  • the current technical solution for battery replacement in electronic devices is mainly a multi-battery parallel connection solution, in which multiple batteries 41 are connected in parallel to supply power to a load 42 of the device.
  • the other battery 41 can continue to supply power to the load 42; in order to prevent the two batteries 41 from causing current backflow due to the large difference between the voltage U1 and the voltage U2, usually the output of each battery 41
  • the solution shown in FIG. 2 is applied to the movable platform, it will damage the battery of the movable platform, reduce the life of the battery, and even affect the safety of the movable platform when it is in motion. Therefore, the inventors of the present application have improved the battery-powered solution to solve technical problems such as overcurrent in the battery of the mobile platform.
  • the mobile platform 100 includes a battery assembly 200 for powering the mobile platform 100 , and the battery assembly 200 includes at least one battery 210 .
  • the movable platform 100 is provided with one or more battery accommodating parts 10 , and the battery 210 can be detachably accommodated in the battery accommodating parts 10 .
  • the battery assembly 200 includes a battery accommodating assembly (not shown in the figure), on which one or more battery accommodating parts 10 are arranged, and the battery 210 is disposed in the battery accommodating parts 10 .
  • the battery 210 is fixedly connected in the battery containing part 10, and the battery assembly 200 can be detachably connected with the movable platform 100; or, the battery containing assembly is fixedly connected with the movable platform 100, and the battery 210 can be detachably accommodated in the battery The battery housing part 10 on the housing assembly.
  • the movable platform 100 includes a power system 110, and the pose of the movable platform changes when the power system 110 works.
  • the power system 110 includes an electric controller and/or a rotor assembly, wherein the rotor assembly may include a motor and a rotor, the electric controller is used to determine the rotation of the motor, and the motor drives the rotor to rotate; optionally, The ESC can be set separately or integrally with the rotor assembly; optionally, the power system 110 can also include a gimbal mounted on the movable platform 100 .
  • the power system 110 includes wheels and a motor for driving the wheels.
  • the movable platform 100 further includes a control system 120 , and the control system 120 is used to control the operation of the power system 110 to adjust the pose of the movable platform 100 .
  • the control system 120 includes a controller and a sensor.
  • the controller can obtain information such as the position, posture, and positional relationship with other objects (such as the ground, buildings, trees, etc.) of the movable platform 100 through the sensor, Control the work of the power system 110 according to the obtained information, such as adjusting the posture and posture of the movable platform 100 by controlling the working state (steering, rotating speed) of the motor through the electric regulation.
  • the power supply control method of the movable platform can be realized by the controller in the control system 120, or can also be realized by other processors and control circuits, for example, it can be realized by the processor and control circuit in the battery pack Realization, of course, is not limited to this.
  • the method for controlling power supply of a mobile platform includes steps S110 to S130.
  • the pose of the movable platform does not change due to the action of the power system 110, such as the unmanned aerial vehicle is in a non-take-off state.
  • control system when the movable platform is in a static state, can control the power system to perform a self-check to determine whether the state of the power system affects the operation of the movable platform.
  • the self-check determines that the state of the power system does not meet the requirements, Issue a prompt message.
  • the working state also includes a motion state.
  • the power system works to change the pose of the movable platform.
  • the motion state of an unmanned aerial vehicle includes one or more of the following: take-off, hovering, cruising, ascending, descending, obstacle avoidance, return flight.
  • the detection of the working state of the movable platform includes: acquiring the current and/or power of the power system of the movable platform; determining the movable platform according to the current and/or power of the power system The working status of the platform.
  • the battery assembly and the power system can communicate to obtain the current and/or power of the power system. According to the current and/or power of the power system, the working state of the movable platform can be accurately determined.
  • the movable platform when the current of the power system is greater than or equal to a preset current threshold and/or the power is greater than or equal to a preset power threshold, it is determined that the movable platform is in a moving state. For example, when the power consumed by the power system is greater than or equal to a preset power threshold, the lift provided by the rotor can make the UAV hover, ascend or land.
  • the movable platform when the current of the power system is less than a preset current threshold and/or the power is less than a preset power threshold, it is determined that the movable platform is in a static state. For example, when the power consumed by the power system is less than a preset power threshold, the lift provided by the rotor is less than the gravity of the UAV, and the UAV does not take off.
  • the detection of the working state of the movable platform includes: acquiring the position and/or altitude of the movable platform; determining the movable platform according to the position and/or altitude of the movable platform The working status of the platform.
  • the position and/or altitude of the movable platform may be determined according to sensors mounted on the movable platform, such as a GPS receiver, an inertial measurement unit (Inertial Measurement Unit, IMU), an altimeter, and the like. According to the position and/or altitude of the movable platform, the working state of the movable platform can be accurately determined.
  • sensors mounted on the movable platform such as a GPS receiver, an inertial measurement unit (Inertial Measurement Unit, IMU), an altimeter, and the like.
  • IMU Inertial Measurement Unit
  • the rate of change of the position of the movable platform is greater than or equal to a preset speed threshold, and/or the altitude is greater than or equal to a preset height threshold, it is determined that the movable platform is in a moving state .
  • a speed threshold and the altitude is greater than a height threshold
  • the movable platform is in a flying working state, for example, when the movable platform is located on a moving vehicle or on a mountain peak Accurately judge the working status of the movable platform.
  • the rate of change of the position of the movable platform is less than a preset speed threshold and the altitude is lower than a preset height threshold, it is determined that the movable platform is in a static state. For example, it can prevent the wrong judgment of the working state of the movable platform when the unmanned aerial vehicle is hovering or cruising at low altitude.
  • the battery is provided with a current regulation circuit, and by controlling the state of the current regulation circuit on the battery, the supply current of the battery can be adjusted, thereby regulating the supply current of the battery assembly.
  • the battery assembly further includes a current regulation circuit connected to the battery, and by controlling the state of the current regulation circuit, the supply current of the battery assembly can be adjusted.
  • the current regulation circuit includes a resistance circuit, and the supply current of the battery assembly can be adjusted by adjusting the resistance value of the output loop connected to the battery by the resistance circuit.
  • the current regulating circuit may include a constant current circuit, and the constant current circuit is used to limit the supply current of the battery pack.
  • the movable platform When the movable platform is in the static state, detect the quantity of batteries included in the battery assembly to determine whether hot swapping has occurred on the movable platform; when it is detected that the quantity of the batteries changes, that is, thermal When plugging and unplugging, by adjusting the power supply current of the battery component according to the voltage of the changed battery according to the number, the power supply current of the battery component can be limited, and the battery component can be prevented from being damaged due to a large output current.
  • the battery assembly when an increase in the number of batteries is detected, the battery assembly is controlled to supply power to the movable platform with an adjusted supply current according to the voltage of the increased number of batteries.
  • the voltage of the battery added on the mobile platform is not equal to the voltage of the battery that has been supplying power for a period of time, that is, the voltage of the battery added on the mobile platform is different from the load of the mobile platform (such as the power system and/or Or control system) terminal voltage is not equal, will generate a large surge current.
  • a fully-charged battery when a fully-charged battery is connected to a mobile platform, there is a voltage difference between the low-power battery and the fully-charged battery that has been powered for a period of time, and a large surge current will be generated; for example, the power system needs The power is higher, and generally there is a larger capacitance in parallel, which can be called a load capacitor to eliminate the ripple voltage and ensure a stable working state.
  • the load capacitor has a strong current absorption capacity, and there will be a higher voltage difference A large surge current is generated; the embodiment of the present application can prevent the battery assembly from being damaged by outputting a large current by limiting the supply current of the battery assembly when the number of the batteries is detected to increase.
  • the magnitude of the supply current of the battery assembly is adjusted to be less than or equal to a preset current threshold, and the current threshold can be determined according to the voltage of the at least one battery. For example, the higher the voltage of the battery, the greater the determined current threshold; or the voltage difference between the batteries with the changed number can be determined according to the voltage of the batteries with the changed number, and the voltage difference between different batteries The larger the voltage difference, the smaller the determined current threshold.
  • the current output by the battery in the battery assembly can be limited to reduce the damage to the battery.
  • the conduction of the circuit between the battery assembly and the movable platform is controlled, so that the battery assembly supplies power to the movable platform with the adjusted supply current.
  • the switch can be arranged on the battery assembly or on the movable platform, and the conduction or disconnection of the circuit between the battery assembly and the movable platform is controlled by closing or opening the switch.
  • the first switch 31 between the battery assembly 200 and the control system 120 of the movable platform 100 can be closed to control the battery assembly 200 and the movable platform
  • the circuit between the control system 120 of 100 is turned on, and the second switch 32 between the battery assembly 200 and the power system 110 of the movable platform 100 is closed to control the battery assembly 200 and the movable platform 100
  • the electric circuit between the power system 110 of the mobile platform 100 is conducted, so that the battery assembly 200 supplies power to the control system 120 and the power system 110 of the mobile platform 100 , for example to support the take-off of the unmanned aerial vehicle.
  • the first switch 31 and the second switch 32 may include at least one of the following: MOS switch (metal-oxide semiconductor FET, metal-oxide semiconductor field effect transistor), BJT switch (Bipolar Junction Transistor, bipolar Transistor), JFET switch (Junction Field-Effect Transistor, junction field effect transistor), IGBT switch (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor), can be driven on or off by the corresponding driver chip.
  • MOS switch metal-oxide semiconductor FET, metal-oxide semiconductor field effect transistor
  • BJT switch Bipolar Junction Transistor, bipolar Transistor
  • JFET switch Joint Field-Effect Transistor, junction field effect transistor
  • IGBT switch Insulated Gate Bipolar Transistor, insulated gate bipolar transistor
  • the power supply control method of the movable platform in the embodiment of the present application can adjust the power supply current of the battery component according to the voltage of the battery when the movable platform is in a static state, and by controlling the battery component to supply power with the adjusted power supply current, the battery component can be limited.
  • the power supply current can prevent the battery components from being damaged due to the large output current, and ensure the safety of the battery and connectors.
  • the adjusting the supply current of the battery assembly according to the voltage of the batteries after the quantity change includes: when the quantity of the batteries with the quantity changed is equal to 1, determining the voltage of the batteries with the quantity changed as The voltage difference between the batteries is used to adjust the supply current of the battery assembly according to the voltage difference between the batteries after the quantity has been changed. In some embodiments, the adjusting the supply current of the battery assembly according to the voltage of the batteries after the quantity change includes: acquiring the voltage of the batteries with the quantity changed; determining the quantity change according to the voltage of the batteries with the quantity changed The voltage difference between the last batteries; adjust the supply current of the battery assembly according to the voltage difference.
  • the voltage difference can be determined according to the voltage of the battery added on the movable platform and the voltage of the battery on the movable platform that has been powered for a period of time; or can be determined according to the voltage of the battery added on the movable platform The voltage at the load terminal of the movable platform and the voltage at the load terminal of the movable platform determine the voltage difference.
  • the greater the voltage difference the greater the current generated.
  • the supply current of the battery assembly can be more accurately limited.
  • the mobile platform performs corresponding tasks and can also prevent damage caused by overcurrent.
  • the adjusting the supply current of the battery assembly according to the voltage difference includes: when the voltage difference is greater than or equal to a preset first voltage threshold, adjusting the supply current of the battery assembly to a first A supply current; wherein the magnitude of the first supply current is less than or equal to a preset first current threshold. It can be understood that when the voltage difference is greater than or equal to the preset first voltage threshold, the size of the supply current of the battery assembly is adjusted to be less than or equal to the preset first current threshold, and the first current threshold can be adjusted according to the battery's The voltage, the capacitance of the load of the movable platform, the required power of the load, etc. are determined.
  • the controlling the battery assembly to supply power to the movable platform with an adjusted supply current includes: controlling the battery assembly to The first supply current supplies power to the movable platform.
  • the adjusting the supply current of the battery assembly according to the voltage difference includes: when the voltage difference is less than a preset first voltage threshold, adjusting the supply current of the battery assembly to a second power supply current, wherein the magnitude of the second supply current is less than or equal to a preset second current threshold. It can be understood that when the voltage difference is less than the preset first voltage threshold, the magnitude of the supply current of the battery assembly is adjusted to be less than or equal to the preset second current threshold.
  • the controlling the battery assembly to supply power to the movable platform with an adjusted supply current includes: controlling the battery assembly to supply power to the movable platform with the A second supply current supplies power to the movable platform.
  • the second current threshold is greater than the first current threshold.
  • the size of the power supply current of the battery assembly is adjusted to be less than or equal to the smaller first current threshold, and the power supply mode of the battery assembly at this time can be called the first current mode or small current mode;
  • the voltage difference is less than the preset first voltage threshold, adjust the power supply current of the battery pack to be less than or equal to the larger second current threshold, and the power supply mode of the battery pack at this time can be called the second Two current mode or high current mode.
  • the adjusting the power supply current of the battery assembly in step S120 includes: adjusting the power supply mode of the battery assembly; the power supply mode may include a first power supply mode and a second power supply mode, and the first power supply mode A power supply mode is used to indicate that the power supply current of the battery component is less than or equal to the first current threshold, and the second power supply mode is used to indicate that the power supply current of the battery component is less than or equal to the second current threshold.
  • the resistance value of the output loop connected to the battery by the resistance circuit can be adjusted, so as to adjust the power supply current of the battery assembly.
  • controlling the battery assembly to supply power to the movable platform with the first supply current includes: controlling the conduction of the circuit between the battery assembly and the control system of the movable platform , and controlling the disconnection of the circuit between the battery assembly and the power system of the movable platform; controlling the battery assembly to supply power to the control system with the first supply current.
  • the circuit between the battery assembly and the control system of the movable platform is controlled to conduct, so that the battery assembly 200 can supply the control system 120 with the first supply current.
  • Power supply by turning off the second switch 32, the circuit between the battery assembly and the power system of the movable platform is controlled to be disconnected, so as to prevent a large voltage difference from generating an excessive surge current.
  • the second switch 32 between the battery assembly and the power system, thereby controlling the disconnection of the circuit between the battery assembly and the power system, it is possible to prevent the voltage difference between the batteries on the movable platform from causing excessive inrush current, thereby reducing battery life. Since the magnitude of the first power supply current of the battery assembly 200 is less than or equal to the smaller first current threshold, the current between the batteries will not be too large, and it can support the work of the control system, such as realizing the self-checking of the movable platform, human computer interaction, communication with terminal equipment and other tasks.
  • controlling the battery assembly to supply power to the movable platform with the second supply current includes: controlling the conduction of the circuit between the battery assembly and the control system of the movable platform , and controlling the conduction of the circuit between the battery assembly and the power system of the movable platform; controlling the battery assembly to supply power to the control system and the power system with the second supply current.
  • the power system 110 can work to adjust the posture of the movable platform, for example, the lift provided by the rotor in the power system 110 can make the unmanned aerial vehicle take off from a static state.
  • the controlling the conduction of the circuit between the battery assembly and the power system of the movable platform includes: determining the voltage difference between at least one of the batteries according to the voltage of the batteries; when When the voltage difference is greater than the second voltage threshold, the battery with the higher voltage is controlled to charge the battery with the lower voltage, so as to adjust the voltage difference to the second voltage threshold.
  • the voltage difference when the voltage difference is greater than the second voltage threshold, the voltage difference can be reduced by controlling a battery with a higher voltage to charge a battery with a lower voltage, so that the surge between the battery and the load can be further reduced current.
  • the third switch 33 among the plurality of batteries 210 is closed, and the control voltage is lower than Larger batteries charge smaller voltage batteries.
  • controlling the closing of the second switch between the battery assembly and the power system of the movable platform includes: when the voltage difference is less than or equal to the second voltage threshold, controlling the battery A second switch between the assembly and the powertrain of the mobile platform is closed to enable the battery assembly to power the powertrain. When the voltage difference is less than or equal to the second voltage threshold, the second switch is closed to enable the battery assembly to supply power to the power system, thereby reducing the surge current between the batteries.
  • the second voltage threshold is less than the first voltage threshold.
  • the power supply current of the battery assembly is adjusted to the first power supply current, and the control of the battery assembly and the movable platform is controlled
  • the first switch between the systems is closed to conduct the circuit between the battery assembly and the control system of the movable platform, so that the battery assembly supplies power to the control system with the first supply current , wherein the magnitude of the first supply current is less than or equal to the preset first current threshold; when the voltage difference is greater than or equal to the preset first voltage threshold, it is also greater than the second voltage threshold, and multiple batteries can be controlled
  • the third switch between is closed, so that the battery with higher voltage charges the battery with lower voltage, and the size of the voltage difference is adjusted to the first voltage threshold; when the voltage difference is less than the first voltage threshold, adjust the power supply current of the battery pack to the second power supply current, and the battery with higher voltage continues to charge the battery with lower voltage, and adjust the voltage difference to the second voltage threshold; when When the voltage difference is less than or equal to the
  • the working state includes a moving state
  • the method further includes: when the movable platform is in a moving state, adjusting the supply current of the battery assembly to a third supply current, wherein the first 3.
  • the magnitude of the power supply current is less than or equal to the preset third current threshold; the controlling the battery component to supply power to the movable platform with the adjusted power supply current includes: controlling the battery component to supply power with the third power supply Electric current powers the movable platform.
  • the third current threshold is greater than the first current threshold, may be greater than, equal to or less than the second current threshold, and may be determined according to the power requirement when the movable platform is in motion.
  • controlling the battery assembly to supply power to the movable platform with the third supply current includes: controlling a second switch between the battery assembly and the power system of the movable platform to close; The battery assembly is controlled to supply power to the power system with the third power supply current. By supplying power to the power system, the movable platform can be safely moved.
  • the power supply control method of the mobile platform provided in the embodiment of the present application can adjust the power supply current of the battery component according to the voltage of the battery when the mobile platform is in a static state, and control the battery component to supply power with the adjusted power supply current, which can limit the power supply of the battery.
  • the power supply current of the components prevents the battery components from being damaged due to the large output current, and ensures the safety of the batteries and connectors.
  • the unmanned aerial vehicle includes a battery assembly 200 , a power system 110 , and a control system 120 .
  • a switch circuit 130 may also be included, and the switch circuit 130 may be integrated with the battery assembly 200 or provided separately, of course, it is not limited thereto, for example, part of the circuit of the switch circuit 130 is provided on the battery assembly 200, and another part of the circuit is provided on the power system 110 on.
  • the battery assembly 200 includes at least one battery 210
  • the power system 110 includes an electric regulator and a motor
  • the control system 120 includes a main controller and a flight controller.
  • the main controller obtains the working state of the UAV from the flight controller, and when the UAV is in motion, adjusts the power supply mode of the battery 210 to adjust the supply current of the battery assembly 200 to the third supply current, and controls the switch circuit 130 (For example, the switch circuit 130 is controlled by an enable signal) to make the battery assembly 200 supply power to the power system 110 of the movable platform with a third power supply current.
  • the first switch and the second switch in the switch circuit 130 can be controlled to close; control the battery assembly 200 powers the control system 120 and/or the power system 110 with the second supply current.
  • the unmanned aerial vehicle is in a static state, detect the quantity of the batteries 210 that the battery assembly 200 comprises; The voltage determines the voltage difference between the batteries 210 .
  • the power supply mode of the battery 210 is adjusted to a low current mode, that is, the power supply current of the battery assembly 200 is adjusted to be less than or equal to the preset first current threshold.
  • the first supply current and controlling the switch circuit 130 to disconnect the battery assembly 200 from the power system 110, so that the attitude of the unmanned aerial vehicle does not change due to the action of the power system 110, such as the unmanned aerial vehicle remains stationary.
  • the power supply mode of the battery 210 is adjusted to adjust the supply current of the battery assembly 200 to a second supply current less than or equal to the preset second current threshold.
  • the switch circuit 130 can be controlled to communicate with the battery assembly 200 and the power system 110 , and the ESC can also be controlled to control the switch circuit 130 to communicate with the battery assembly 200 to supply power to the motor through an enable signal.
  • the control switch circuit 130 disconnects the battery assembly 200 from the power system 110, if there is no The manned aircraft remains in a static state; the battery 210 with a higher voltage can also be continuously controlled to charge the battery 210 with a lower voltage, and the voltage difference continues to decrease.
  • the control switch circuit 130 connects the battery assembly 200 and the power system 110 so that the battery assembly 200 supplies power to the control system 120 and/or the power system 110 with the second supply current.
  • the switch between the battery assembly and the power system is controlled.
  • the switch is disconnected, so that the unmanned aerial vehicle cannot take off; when the unmanned aerial vehicle is in motion, the switch can be forcibly closed to ensure the stability of the power supply of the unmanned aerial vehicle, such as the stability of the power supply of the power system, Ensure flight safety.
  • the power supply current of the battery assembly is adjusted to a smaller first power supply current to support the operation of the control system.
  • the power supply current of the battery assembly is adjusted to a larger second voltage; and when the voltage difference of the battery is less than the second voltage threshold, the power supply current of the battery assembly is controlled.
  • the switch between the systems is closed, and the unmanned aerial vehicle can perform operations such as take-off.
  • the movable platform does not move when there is an excessive voltage difference in the battery. For example, when the battery has an excessive voltage difference, the power supply to the power system is cut off so that the unmanned aerial vehicle cannot take off, and the battery current backflow is eliminated. risks of. Guaranteed to be in flight state again.
  • the battery with the higher voltage can be controlled to charge the battery with the lower voltage, and the voltage difference can be reduced to reduce the surge current.
  • the second switch 32 between the battery assembly 200 and the power system 110 is connected in parallel with the pre-charging circuit 34, and the second switch 32 and the pre-charging circuit 34 can be called a slow start circuit.
  • the start-up circuit may also include a drive circuit for the switch.
  • the precharge circuit 34 includes, for example, a resistance circuit.
  • the voltage of the power system is U1, and when a battery with a voltage of U2 is added to the movable platform, the voltage on the input side of the slow start circuit increases; please refer to Irush1 without a pre-charging circuit in Figure 9 And Irush2 when there is a pre-charging circuit, due to the existence of the pre-charging circuit, the inrush current Irush will be greatly suppressed; the capacitor in the power system is charged through the pre-charging circuit, and the voltage of the capacitor is increased.
  • the second switch can be controlled to close to provide a low-impedance voltage path for the power system to obtain a larger current to meet the power requirements. system needs, reducing voltage drop and power dissipation.
  • the third switch between multiple batteries is also connected in parallel with a pre-charging circuit, which can suppress the current when a battery with a higher voltage charges a battery with a lower voltage.
  • mobile platforms such as unmanned aerial vehicles
  • the surge current caused by the voltage mutation can be suppressed through the slow start pre-charging circuit, and the intelligent switching of the battery supply current and the pre-charging during the battery hot replacement process can be realized by fusing battery information and working status Monitoring to ensure the safety and stability of power supply.
  • FIG. 10 is a schematic block diagram of a mobile platform 700 provided by an embodiment of the present application.
  • the movable platform 700 may be applicable to the aforementioned power supply control method.
  • the mobile platform 700 may include at least one of an unmanned aerial vehicle, a cloud platform, an unmanned vehicle, and the like.
  • the unmanned aerial vehicle may be a rotor-type drone, such as a quad-rotor drone, a hexacopter drone, an octo-rotor drone, or a fixed-wing drone.
  • the mobile platform 700 can carry a battery assembly 200 for powering the mobile platform 700 , and the battery assembly 200 includes at least one battery 210 .
  • the movable platform 700 is provided with one or more battery accommodating parts 10 , and the battery 210 can be detachably accommodated in the battery accommodating parts 10 .
  • the battery assembly 200 includes a battery accommodating assembly (not shown in the figure), on which one or more battery accommodating parts 10 are arranged, and the battery 210 is disposed in the battery accommodating parts 10 .
  • the battery 210 is fixedly connected in the battery containing part 10, and the battery assembly 200 can be detachably connected with the movable platform 700; or, the battery containing assembly is fixedly connected with the movable platform 700, and the battery 210 can be detachably accommodated in the battery The battery housing part 10 on the housing assembly.
  • the movable platform 700 includes a power system 110, and the pose of the movable platform changes when the power system 110 works.
  • the power system 110 includes an electric controller and/or a rotor assembly, wherein the rotor assembly may include a motor and a rotor, the electric controller is used to determine the rotation of the motor, and the motor drives the rotor to rotate; optionally, The ESC can be set separately or integrally with the rotor assembly; optionally, the power system 110 can also include a gimbal mounted on the movable platform 700 .
  • the power system 110 includes wheels and a motor for driving the wheels.
  • the movable platform 700 further includes a control system 120 , and the control system 120 is used to control the operation of the power system 110 to adjust the pose of the movable platform 700 .
  • the control system 120 includes a controller and a sensor, and the controller can obtain information such as the position, posture, and positional relationship with other objects (such as the ground, buildings, trees, etc.) of the movable platform 700 through the sensor, Control the work of the power system 110 according to the obtained information, such as adjusting the posture and posture of the movable platform 700 by controlling the working state (steering, rotating speed) of the motor through the electric regulation.
  • the mobile platform 700 includes one or more processors 701 , and the one or more processors 701 work individually or jointly to execute the steps of the aforementioned power supply control method for the mobile platform.
  • the processor 701 may be, for example, a processor in the control system 120, or may be a processor independent from the control system 120, which is not limited in this embodiment of the present application.
  • the mobile platform 700 also includes a memory.
  • processor 701 and the memory are connected through a bus, such as an I2C (Inter-integrated Circuit) bus.
  • I2C Inter-integrated Circuit
  • the processor 701 may be a micro-controller unit (Micro-controller Unit, MCU), a central processing unit (Central Processing Unit, CPU), or a digital signal processor (Digital Signal Processor, DSP), etc., and of course it is not limited thereto.
  • MCU micro-controller Unit
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the memory may be a Flash chip, a read-only memory (ROM, Read-Only Memory) disk, an optical disk, a U disk, or a mobile hard disk.
  • the processor 701 is configured to run a computer program stored in the memory, and implement the steps of the aforementioned power supply control method for the mobile platform when the computer program is executed.
  • the processor 701 is configured to run a computer program stored in the memory, and implement the following steps when executing the computer program:
  • the operating state including a stationary state
  • the movable platform When the movable platform is in the static state, detect the number of batteries included in the battery assembly; when it is detected that the number of batteries has changed, adjust the battery according to the voltage of the battery after the number has changed The supply current of the components;
  • the battery assembly is controlled to supply power to the movable platform with the adjusted supply current.
  • the processor executes the voltage of the battery changed according to the quantity and adjusts the supply current of the battery assembly, it is used for:
  • the supply current of the battery assembly is adjusted according to the voltage difference between the batteries whose number has been changed.
  • the processor executes the voltage of the battery changed according to the quantity and adjusts the supply current of the battery assembly, it is used for:
  • the supply current of the battery assembly is adjusted according to the voltage difference.
  • the processor executes the adjusting the supply current of the battery assembly according to the voltage difference, it is used to:
  • the power supply current of the battery assembly is adjusted to a first power supply current; wherein the magnitude of the first power supply current is less than or equal to the preset first current threshold;
  • the processor executes the controlling the battery assembly to supply power to the movable platform with the adjusted supply current, it is used for:
  • the battery assembly is controlled to supply power to the movable platform with the first supply current.
  • the processor executes the controlling the battery assembly to supply power to the movable platform with the first power supply current, it is used for:
  • the battery assembly is controlled to supply power to the control system with the first supply current.
  • the processor executes the adjusting the supply current of the battery assembly according to the voltage difference, it is used to:
  • the second current threshold is greater than the first current threshold
  • the processor executes the controlling the battery assembly to supply power to the movable platform with the adjusted supply current, it is used for:
  • the battery assembly is controlled to supply power to the movable platform with the second power supply current.
  • the processor executes the controlling the battery assembly to supply power to the movable platform with the second power supply current, it is used for:
  • the battery assembly is controlled to supply power to the control system and the power system with the second supply current.
  • the working state includes a motion state
  • the processor is further configured to execute:
  • the power supply current of the battery assembly is adjusted to a third power supply current, wherein the magnitude of the third power supply current is less than or equal to a preset third current threshold.
  • the processor executes the controlling the battery assembly to supply power to the movable platform with the adjusted supply current, it is used for:
  • the processor executes the control to conduct the circuit between the battery assembly and the power system of the movable platform, it is used for:
  • the battery with the higher voltage is controlled to charge the battery with the lower voltage, so as to adjust the voltage difference to the second voltage threshold.
  • the processor executes the controlling the battery assembly to supply power to the movable platform with the third power supply current, it is used for:
  • the battery assembly is controlled to supply power to the power system with the third power supply current.
  • the processor controls the conduction of the circuit between the battery assembly and the power system of the movable platform according to the voltage of at least one of the batteries, it is used for:
  • the conduction of the circuit between the battery assembly and the power system of the movable platform is controlled according to the voltage difference.
  • the processor executes the step of controlling the conduction of the circuit between the battery assembly and the power system of the movable platform according to the voltage difference, it is used for:
  • the circuit between the battery assembly and the power system of the movable platform is controlled to be turned on.
  • the processor executes the step of controlling the conduction of the circuit between the battery assembly and the power system of the movable platform according to the voltage difference, it is used for:
  • the processor executes the voltage of the battery changed according to the quantity and adjusts the supply current of the battery assembly, it is used for:
  • the supply current of the battery assembly is adjusted according to the voltage difference.
  • the processor when the processor performs the detection of the working state of the movable platform, it is used to:
  • the processor when the processor performs the determining the working state of the movable platform according to the current and/or power of the power system, it is used to:
  • the processor when the processor performs the determining the working state of the movable platform according to the current and/or power of the power system, it is used to:
  • the processor when the processor performs the detection of the working state of the movable platform, it is used to:
  • the working state of the movable platform is determined according to the position and/or altitude of the movable platform.
  • the processor executes the determining the working state of the movable platform according to the position and/or altitude of the movable platform, it is configured to:
  • the rate of change of the position of the movable platform is greater than or equal to a preset speed threshold, and/or the altitude is greater than or equal to a preset height threshold, it is determined that the movable platform is in a moving state.
  • the processor executes the determining the working state of the movable platform according to the position and/or altitude of the movable platform, it is configured to:
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, the computer program includes program instructions, and when the computer program is executed by a processor, the processor implements The steps of the method for controlling the power supply of the mobile platform provided in the above embodiments.
  • the computer-readable storage medium may be an internal storage unit of the removable platform described in any of the foregoing embodiments, such as a hard disk or a memory of the removable platform.
  • the computer-readable storage medium can also be an external storage device of the removable platform, such as a plug-in hard disk equipped on the removable platform, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital , SD) card, flash memory card (Flash Card), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种可移动平台的供电控制方法,包括:检测可移动平台的工作状态,所述工作状态包括静止状态(S110);当所述可移动平台处于所述静止状态时,检测所述电池组件所包括的电池的数量;当检测到所述电池的数量发生改变时,根据数量改变后的电池的电压,调整所述电池组件的供电电流(S120);控制所述电池组件以调整后的供电电流为所述可移动平台供电(S130)。本申请能够防止电池出现过电流。还提供了可移动平台和存储介质。

Description

可移动平台及其供电控制方法、存储介质 技术领域
本申请涉及可移动平台技术领域,尤其涉及一种可移动平台及其供电控制方法、存储介质。
背景技术
可移动平台,如无人飞行器或无人车,通常由电池供电,例如由锂离子电池供电。但是受电池续航能力的制约,经常需要更换电池。目前的无人飞行器在更换电池过程中,电池上会存在较大的浪涌电流,超出电池允许的最大放电电流值时,会损伤电池,例如电芯会因过流产生析锂,影响电池寿命,进一步可能导致燃烧起火事故。
发明内容
本申请提供了一种可移动平台及其供电控制方法、存储介质,旨在解决可移动平台的电池出现过电流等技术问题。
第一方面,本申请实施例提供了一种可移动平台的供电控制方法,所述可移动平台包括用于为所述可移动平台供电的电池组件,所述电池组件包括至少一块电池,所述方法包括:
检测可移动平台的工作状态,所述工作状态包括静止状态;
当所述可移动平台处于所述静止状态时,检测所述电池组件所包括的电池的数量;当检测到所述电池的数量发生改变时,根据数量改变后的电池的电压,调整所述电池组件的供电电流;
控制所述电池组件以调整后的供电电流为所述可移动平台供电。
第二方面,本申请实施例提供了一种可移动平台,能够搭载用于为所述可 移动平台供电的电池组件,所述电池组件包括至少一块电池;
所述可移动平台包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
检测可移动平台的工作状态,所述工作状态包括静止状态;
当所述可移动平台处于所述静止状态时,检测所述电池组件所包括的电池的数量;当检测到所述电池的数量发生改变时,根据数量改变后的电池的电压,调整所述电池组件的供电电流;
控制所述电池组件以调整后的供电电流为所述可移动平台供电。
第三方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现上述的方法的步骤。
本申请实施例提供了一种可移动平台及其供电控制方法、存储介质,可移动平台包括用于供电的电池组件,电池组件包括至少一块电池;在可移动平台处于静止状态并且更换了电池的情况下,通过根据电池的电压调整电池组件的供电电流,并控制电池组件以调整后的供电电流供电,以限制电池组件的供电电流,从而防止电池组件输出较大的电流产生损伤。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请实施例的公开内容。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种可移动平台的供电控制方法的流程示意图;
图2是目前电池向负载供电的示意图;
图3是一实施方式中可移动平台的结构示意图;
图4是一实施方式中可移动平台中的电池供电的示意图;
图5是另一实施方式中可移动平台中的电池供电的示意图;
图6是又一实施方式中可移动平台中的电池供电的示意图;
图7是一实施方式中供电控制方法的流程示意图;
图8是一实施方式中电池向动力系统供电的示意图;
图9是一实施方式中预充电路的效果示意图;
图10是本申请实施例提供的一种可移动平台的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,图1是本申请实施例提供的一种可移动平台的供电控制方法的流程示意图。所述可移动平台的供电控制方法可以应用在可移动平台中,用于控制电池给可移动平台供电等过程。
示例性的,可移动平台可以包括无人飞行器、无人车等中的至少一种。进一步而言,无人飞行器可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。
举例而言,多旋翼无人飞行器因其结构简洁稳定、控制方便、应用灵活及成本低等优势,在越来越多的领域当中得到推广使用。目前多旋翼无人飞行器主要由锂离子电池为整个飞行系统提供能量,但是受电池续航能力的制约,在飞行作业过程中更换电池是一种强需求。绝大数无人飞行器在更换电池过程中,都需要对整个飞行系统断电、更换电池、再重新启动。在这个关机再重新开机启动过程中,一方面由于飞行系统断电会影响飞行作业数据的完整性,另一方面也增加了时间成本,影响飞行作业的效率。
请参阅图2,目前应用于电子设备中实现电池替换的技术方案,主要是多电池并联方案,将多个电池41并联对设备的负载42进行供电。当其中一个电池41被取下时,另一个电池41可以继续为负载42供电;为了防止两块电池41因为电压U1与电压U2相差过大而产生电流倒灌,通常会在每路电池41的输出支路上设有开关43,虽然可以通过切断开关43防止产生电流倒灌,但是无法抑制电池41替换时的浪涌电流:例如第一个电池41的电压U1给设备供电,第二个电池41通过开关43连通负载42,断开第一个电池41的开关43可以防止电池电压互充,但是当两块电池41因为电压U1与电压U2相差过大时,第二个电池41到负载的线路上仍会存在较大的浪涌电流,浪涌电流超出电池41允许的最大放电电流值时,电池41的电芯会因过流产生析锂,进一步可能导致燃烧起火事故。
如果将图2所示的方案应用在可移动平台中,会损伤可移动平台的电池,降低了电池的寿命,甚至影响可移动平台运动时的安全性。因此,本申请的发明人对电池供电的方案进行了改进,以解决可移动平台的电池出现过电流等技术问题。
请参阅图3,可移动平台100包括用于为可移动平台100供电的电池组件200,电池组件200包括至少一块电池210。
示例性的,如图3所示,可移动平台100上设有一个或多个电池容纳部10,电池210能够可拆卸的容纳于电池容纳部10。
示例性的,电池组件200包括电池容纳组件(图未示),电池容纳组件上设有一个或多个电池容纳部10,电池210设置在电池容纳部10中。可选的,电池210固定连接在电池容纳部10中,电池组件200能够与可移动平台100可拆卸连接;或者,电池容纳组件与可移动平台100固定连接,电池210能够可拆卸的容纳于电池容纳组件上的电池容纳部10。
在一些实施方式中,可移动平台100包括动力系统110,动力系统110工作时可移动平台的位姿发生变化。示例性的,可移动平台100包括无人飞行器时,动力系统110包括电调和/或旋翼组件,其中旋翼组件可以包括电机和旋翼,电调用于确定电机转动,电机带动旋翼转动;可选的,电调可以与旋翼组件分别设置或一体设置;可选的,动力系统110还可以包括可移动平台100搭载的 云台。示例性的,可移动平台100包括无人车时,动力系统110包括车轮和用于驱动车轮的电机。
在一些实施方式中,可移动平台100还包括控制系统120,控制系统120用于控制动力系统110工作,以调整可移动平台100的位姿。示例性的,控制系统120包括控制器和传感器,控制器可以通过传感器获取例如可移动平台100的位置、姿态、与其他物体(如地面、建筑物、树木等)之间的位置关系等信息,根据获取的信息控制动力系统110工作,如通过电调控制电机的工作状态(转向、转速)调整可移动平台100的位姿。
一些实施方式中,可移动平台的供电控制方法可以由控制系统120中的控制器实现,或者也可以由其他处理器、控制电路实现,举例而言,可以由电池组件中的处理器、控制电路实现,当然也不限于此。
如图1所示,本申请实施例的可移动平台的供电控制方法包括步骤S110至步骤S130。
S110、检测可移动平台的工作状态,所述工作状态包括静止状态。
可以理解的,可移动平台处于静止状态时,可移动平台的位姿不因动力系统110的动作而发生变化,如无人飞行器处于未起飞状态。
在一些实施方式中,可移动平台处于静止状态时,控制系统可以控制动力系统进行自检,确定动力系统的状态是否影响可移动平台的运行,当自检确定动力系统的状态不满足要求时,发出提示信息。
在一些实施方式中,所述工作状态还包括运动状态。可移动平台处于运动状态时,动力系统工作使可移动平台的位姿发生变化,例如无人飞行器的运动状态包括以下一种或多种:起飞、悬停、巡航、上升、下降、避障、返航。
在一些实施方式中,所述检测可移动平台的工作状态,包括:获取所述可移动平台的动力系统的电流和/或功率;根据所述动力系统的电流和/或功率确定所述可移动平台的工作状态。
示例性的,电池组件和动力系统之间能够进行通信,以获取动力系统的电流和/或功率。根据动力系统的电流和/或功率,可以准确的确定可移动平台的工作状态。
示例性的,当所述动力系统的电流大于或等于预设的电流阈值和/或所述功 率大于或等于预设的功率阈值时,确定所述可移动平台处于运动状态。举例而言,动力系统消耗的功率大于或等于预设的功率阈值时,旋翼提供的升力能够使无人飞行器悬停、上升或降落。
示例性的,当所述动力系统的电流小于预设的电流阈值和/或所述功率小于预设的功率阈值时,确定所述可移动平台处于静止状态。举例而言,动力系统消耗的功率小于预设的功率阈值时,旋翼提供的升力小于无人飞行器的重力,无人飞行器不起飞。
在一些实施方式中,所述检测可移动平台的工作状态,包括:获取所述可移动平台的位置和/或海拔高度;根据所述可移动平台的位置和/或海拔高度确定所述可移动平台的工作状态。
示例性的,可以根据可移动平台搭载的传感器,如GPS接收机、惯性测量单元(Inertial Measurement Unit,IMU)、高度计等确定可移动平台的位置和/或海拔高度。根据可移动平台的位置和/或海拔高度,可以准确的确定可移动平台的工作状态。
示例性的,当所述可移动平台的位置的变化速率大于或等于预设的速度阈值,和/或所述海拔高度大于或等于预设的高度阈值时,确定所述可移动平台处于运动状态。举例而言,当所述可移动平台的速度大于速度阈值,且海拔高度大于高度阈值时,确定可移动平台处于飞行的工作状态,例如可以在可移动平台位于行驶的交通工具上或山峰上时准确判断可移动平台的工作状态。
示例性的,当所述可移动平台的位置的变化速率小于预设的速度阈值,且所述海拔高度小于预设的高度阈值时,确定所述可移动平台处于静止状态。举例而言,可以防止在无人飞行器悬停或低空巡航时判断错可移动平台的工作状态。
S120、当所述可移动平台处于所述静止状态时,检测所述电池组件所包括的电池的数量;当检测到所述电池的数量发生改变时,根据数量改变后的电池的电压,调整所述电池组件的供电电流。
在一些实施方式中,电池上设有电流调节电路,通过控制电池上的电流调节电路的状态,可以调节电池的供电电流,从而调节电池组件的供电电流。在另一些实施方式中,电池组件还包括电流调节电路,电流调节电路与电池连接, 通过控制该电流调节电路的状态,可以调节电池组件的供电电流。
举例而言,电流调节电路包括电阻电路,通过调节电阻电路接入电池的输出回路的阻值,可以调节电池组件的供电电流。当然也不限于此,例如电流调节电路可以包括恒流电路,恒流电路用于限制电池组件的供电电流。
当所述可移动平台处于所述静止状态时,检测所述电池组件所包括的电池的数量以确定可移动平台是否发生了热插拔;当检测到所述电池的数量发生改变,即发生热插拔时,通过根据数量改变后的电池的电压,调整所述电池组件的供电电流,可以限制电池组件的供电电流,防止电池组件输出较大的电流产生损伤。
示例性的,当检测到所述电池的数量增加时,根据数量增加后的电池的电压,控制所述电池组件以调整后的供电电流为所述可移动平台供电。可以理解的,可移动平台上增加的电池的电压与已经供电一段时间的电池之间的电压不相等,也即可移动平台上增加的电池的电压与可移动平台的负载(如动力系统和/或控制系统)端的电压不相等,会产生较大的浪涌电流。
举例而言,当满电电池接入可移动平台时,已经供电一段时间的低电量电池和满电电池之间存在电压差,会有一个较大的浪涌电流产生;例如,动力系统需要的功率较高,一般并联有较大的电容,可称为负载电容,以消除纹波电压和保证工作状态稳定,该负载电容具有很强的电流吸收能力,在电压差较高时会有一个较大的浪涌电流产生;本申请实施例可以在检测到所述电池的数量增加时,通过限制电池组件的供电电流,防止电池组件输出较大的电流产生损伤。
示例性的,调整所述电池组件的供电电流的大小小于或等于预设的电流阈值,该电流阈值可以根据所述至少一块所述电池的电压确定。举例而言,所述电池的电压越高,确定的电流阈值也越大;或者可以根据所述数量改变后的电池的电压确定所述数量改变后的电池之间的电压差,不同电池之间的电压差越大,确定的电流阈值越小,当电池之间的电压差过大时可以限制电池组件中电池输出的电流,降低对电池的损伤。
可以理解的,当数量改变后的电池的数量大于1时,将数量改变后的电池的电压中最大的电压与最小的电压的差值确定为所述电池之间的电压差。
S130、控制所述电池组件以调整后的供电电流为所述可移动平台供电。
示例性的,控制电池组件和可移动平台之间的电路导通,使电池组件以调整后的供电电流为所述可移动平台供电。开关可以设置在电池组件上,或者设置在可移动平台上,通过使开关闭合或断开控制电池组件和可移动平台之间的电路的导通或断开。
举例而言,请参阅图4,可以使所述电池组件200和所述可移动平台100的控制系统120之间的第一开关闭31闭合,以控制所述电池组件200和所述可移动平台100的控制系统120之间的电路导通,以及使所述电池组件200和所述可移动平台100的动力系统110之间的第二开关32闭合,以控制所述电池组件200和所述可移动平台100的动力系统110之间的电路导通,从而使电池组件200给可移动平台100的控制系统120和动力系统110供电,例如支持无人飞行器起飞。
举例而言,第一开关闭31、第二开关32可以包括以下至少一种:MOS开关(metal-oxide semiconductor FET,金属-氧化物半导体场效应晶体管)、BJT开关(Bipolar Junction Transistor,双极性晶体管),JFET开关(Junction Field-Effect Transistor,结型场效应晶体管),IGBT开关(Insulated Gate Bipolar Transistor,绝缘栅双极晶体管),可以由对应的驱动芯片驱动闭合或断开。
本申请实施例的可移动平台的供电控制方法,可以在可移动平台处于静止状态时,根据电池的电压调整电池组件的供电电流,通过控制电池组件以调整后的供电电流供电,可以限制电池组件的供电电流,防止电池组件输出较大的电流产生损伤,保障电池和连接器的安全。
在一些实施方式中,所述根据数量改变后的电池的电压,调整所述电池组件的供电电流,包括:当数量改变后的电池的数量等于1时,将数量改变后的电池的电压确定为所述电池之间的电压差,根据数量改变后的所述电池之间的电压差调整所述电池组件的供电电流。在一些实施方式中,所述根据数量改变后的电池的电压,调整所述电池组件的供电电流,包括:获取数量改变后的电池的电压;根据所述数量改变后的电池的电压确定数量改变后的电池之间的电压差;根据所述电压差调整所述电池组件的供电电流。
示例性的,可以根据所述可移动平台上增加的电池的电压与所述可移动平台上已经供电一段时间的电池的电压确定所述电压差;或者可以根据所述可移动平台上增加的电池的电压与所述可移动平台的负载端的电压确定所述电压差。
根据欧姆定律可知,所述电压差越大,产生的电流也越大,通过根据所述电压差调整所述电池组件的供电电流,可以更准确的限制电池组件的供电电流,例如既可使可移动平台执行相应的任务,也可以防止过电流造成的损伤。
示例性的,所述根据所述电压差调整所述电池组件的供电电流,包括:当所述电压差大于或等于预设的第一电压阈值时,将所述电池组件的供电电流调整为第一供电电流;其中所述第一供电电流的大小小于或等于预设的第一电流阈值。可以理解的,当所述电压差大于或等于预设的第一电压阈值时,调整电池组件的供电电流的大小小于或等于预设的第一电流阈值,所述第一电流阈值可以根据电池的电压、可移动平台的负载的电容、负载的需求功率等确定。
可选的,当所述电压差大于或等于预设的第一电压阈值时,所述控制所述电池组件以调整后的供电电流为所述可移动平台供电,包括:控制所述电池组件以所述第一供电电流为所述可移动平台供电。
示例性的,所述根据所述电压差调整所述电池组件的供电电流,包括:当所述电压差小于预设的第一电压阈值时,将所述电池组件的供电电流调整为第二供电电流,其中所述第二供电电流的大小小于或等于预设的第二电流阈值。可以理解的,当所述电压差小于预设的第一电压阈值时,调整电池组件的供电电流的大小小于或等于预设的第二电流阈值。
可选的,当所述电压差小于预设的第一电压阈值时,所述控制所述电池组件以调整后的供电电流为所述可移动平台供电,包括:控制所述电池组件以所述第二供电电流为所述可移动平台供电。
具体的,所述第二电流阈值大于所述第一电流阈值。当所述电压差大于或等于预设的第一电压阈值时,调整电池组件的供电电流的大小小于或等于较小的第一电流阈值,此时电池组件的供电模式可以称为第一电流模式或小电流模式;当所述电压差小于预设的第一电压阈值时,调整电池组件的供电电流的大小小于或等于较大的第二电流阈值,此时电池组件的供电模式可以称为第二电流模式或大电流模式。
在一些实施方式中,步骤S120中所述调整所述电池组件的供电电流,包括:调整所述电池组件的供电模式;所述供电模式可以包括第一供电模式和第二供电模式,所述第一供电模式用于指示电池组件的供电电流的大小小于或等于所述第一电流阈值,所述第二供电模式用于指示电池组件的供电电流的大小小于或等于所述第二电流阈值。示例性的,可以根据调整后的供电模式调节电阻电路接入电池的输出回路的阻值,以调节电池组件的供电电流。
在一些实施方式中,所述控制所述电池组件以所述第一供电电流为所述可移动平台供电,包括:控制所述电池组件和所述可移动平台的控制系统之间的电路导通,以及控制所述电池组件和所述可移动平台的动力系统之间的电路断开;控制所述电池组件以所述第一供电电流为所述控制系统供电。
示例性的,请参阅图3,当电池210之间的电压差大于或等于预设的第一电压阈值时,电池组件200的第一供电电流的大小小于或等于较小的第一电流阈值,通过使第一开关31闭合,控制所述电池组件和所述可移动平台的控制系统之间的电路导通,从而使所述电池组件200可以以所述第一供电电流为所述控制系统120供电;通过使第二开关32断开,控制所述电池组件和所述可移动平台的动力系统之间的电路断开,以防止较大的电压差产生过大的浪涌电流。
举例而言,通过断开电池组件和动力系统之间的第二开关32,从而控制电池组件和动力系统之间的电路断开,可以防止可移动平台上的电池之间的电压差引起过大的浪涌电流,从而减少电池的寿命。由于电池组件200的第一供电电流的大小小于或等于较小的第一电流阈值,电池之间的电流也不会过大,而且可以支持控制系统工作,例如实现可移动平台的自检、人机交互、与终端设备的通信等任务。
在一些实施方式中,所述控制所述电池组件以所述第二供电电流为所述可移动平台供电,包括:控制所述电池组件和所述可移动平台的控制系统之间的电路导通,以及控制所述电池组件和所述可移动平台的动力系统之间的电路导通;控制所述电池组件以所述第二供电电流为所述控制系统及所述动力系统供电。
示例性的,请参阅图3,当电池210之间的电压差小于预设的第一电压阈值时,电池组件200的第二供电电流的大小小于或等于较大的第二电流阈值, 供电电流可以较大;通过使第一开关31闭合,控制所述电池组件和所述可移动平台的控制系统之间的电路导通,从而使电池组件200可以为所述控制系统120供电;通过使第二开关32闭合,控制所述电池组件和所述可移动平台的控制系统之间的电路导通,从而使电池组件200也可以为动力系统110供电。由于电池210之间的电压差较小,也可以防止产生过大的浪涌电流。电池组件200为动力系统110供电时,动力系统110工作可以调整可移动平台的位姿,例如动力系统110中的旋翼提供的升力能够使无人飞行器从静止状态起飞。
在一些实施方式中,所述控制所述电池组件和所述可移动平台的动力系统之间的电路导通,包括:根据所述电池的电压确定至少一块所述电池之间的电压差;当所述电压差大于第二电压阈值时,控制电压较大的电池为电压较小的电池充电,以将所述电压差的大小调整至所述第二电压阈值。
示例性的,当所述电压差大于第二电压阈值时,可以通过控制电压较大的电池为电压较小的电池充电,降低所述电压差,从而可以进一步降低电池和负载之间的浪涌电流。
示例性的,请参阅图5,当电池组件200中的多个电池210之间的电压差大于第二电压阈值时,使所述多个电池210之间的第三开关33闭合,控制电压较大的电池为电压较小的电池充电。
示例性的,所述控制所述电池组件和所述可移动平台的动力系统之间的第二开关闭合,包括:当所述电压差小于或等于所述第二电压阈值时,控制所述电池组件和所述可移动平台的动力系统之间的第二开关闭合,以使所述电池组件能够为所述动力系统供电。当电压差小于或等于所述第二电压阈值时,闭合第二开关,使电池组件为所述动力系统供电,可以降低电池之间的浪涌电流。
在一些实施方式中,所述第二电压阈值小于所述第一电压阈值。
示例性的,当所述电压差大于或等于预设的第一电压阈值时,将所述电池组件的供电电流调整为第一供电电流,以及控制所述电池组件和所述可移动平台的控制系统之间的第一开关闭合,以使所述电池组件和所述可移动平台的控制系统之间的电路导通,从而使所述电池组件以所述第一供电电流为所述控制系统供电,其中所述第一供电电流的大小小于或等于预设的第一电流阈值;所述电压差大于或等于预设的第一电压阈值时也大于所述第二电压阈值,可以控 制多个电池之间的第三开关闭合,以使电压较大的电池为电压较小的电池充电,将所述电压差的大小调整至所述第一电压阈值;当所述电压差小于所述第一电压阈值时,将所述电池组件的供电电流调整为第二供电电流,以及电压较大的电池继续为电压较小的电池充电,将所述电压差的大小调整至所述第二电压阈值;当所述电压差小于或等于所述第二电压阈值时,也小于所述第一电压阈值,控制所述电池组件和所述可移动平台的动力系统之间的第二开关闭合,以使所述电池组件和所述可移动平台的动力系统之间的电路导通,从而使所述电池组件以所述第二供电电流为所述控制系统及所述动力系统供电。
在一些实施方式中,所述工作状态包括运动状态,所述方法还包括:当所述可移动平台处于运动状态时,将所述电池组件的供电电流调整为第三供电电流,其中所述第三供电电流的大小小于或等于预设的第三电流阈值;所述控制所述电池组件以调整后的供电电流为所述可移动平台供电,包括:控制所述电池组件以所述第三供电电流为所述可移动平台供电。
示例性的,所述的第三电流阈值大于所述第一电流阈值,可以大于、等于或小于所述第二电流阈值,可以根据可移动平台处于运动状态时的功率需求确定。
示例性的,所述控制所述电池组件以所述第三供电电流为所述可移动平台供电,包括:控制所述电池组件和所述可移动平台的动力系统之间的第二开关闭合;控制所述电池组件以所述第三供电电流为所述动力系统供电。通过对动力系统进行供电,确保可移动平台安全的进行运动。
本申请实施例提供的可移动平台的供电控制方法,可以在可移动平台处于静止状态时,根据电池的电压调整电池组件的供电电流,通过控制电池组件以调整后的供电电流供电,可以限制电池组件的供电电流,防止电池组件输出较大的电流产生损伤,保障电池和连接器的安全。
在一些实施方式中,请参阅图6和图7,无人飞行器包括电池组件200、动力系统110、控制系统120。还可以包括开关电路130,开关电路130可以与电池组件200一体式设置或者分别单独设置,当然也不限于此,例如开关电路130的部分电路设置在电池组件200上,另一部分电路设置在动力系统110上。其中,电池组件200包括至少一块电池210,动力系统110包括电调和电机,控 制系统120包括主控制器和飞行控制器。
主控制器从飞行控制器获取无人飞行器的工作状态,当无人飞行器处于运动状态时,调整电池210的供电模式以将电池组件200的供电电流调整为第三供电电流,以及控制开关电路130(如通过使能信号控制开关电路130)使电池组件200以第三供电电流为可移动平台的动力系统110供电,具体可以控制开关电路130中的第一开关和第二开关闭合;控制电池组件200以第二供电电流为控制系统120和/或动力系统110供电。当无人飞行器处于静止状态时,检测电池组件200所包括的电池210的数量;当检测到电池210的数量发生变化,且电池210的数量大于1时,获取电池210的电压,根据电池210的电压确定电池210之间的电压差。
当电压差大于或等于预设的第一电压阈值,如0.7V时,调整电池210的供电模式为小电流模式,即将电池组件200的供电电流调整为小于或等于预设的第一电流阈值的第一供电电流;以及控制开关电路130断开电池组件200和动力系统110的连通,无人飞行器的位姿不因动力系统110的动作而发生变化,如无人飞行器保持静止状态。还可以控制电压较大的电池210为电压较小的电池210充电,以降低电压差的大小,例如控制开关电路130中的第三开关闭合,以使电压较大的电池为电压较小的电池充电。
如图7所示,当电压差小于第一电压阈值时,调整电池210的供电模式以将电池组件200的供电电流调整为小于或等于预设的第二电流阈值的第二供电电流。
示例性的,当电压差小于第一电压阈值时,可以控制开关电路130连通电池组件200和动力系统110,还可以控制电调通过使能信号控制开关电路130连通电池组件200向电机的供电。
示例性的,如图7所示,当电压差小于第一电压阈值且大于或等于第二电压阈值,如0.2V时,控制开关电路130断开电池组件200和动力系统110的连通,如无人飞行器保持静止状态;还可以继续控制电压较大的电池210为电压较小的电池210充电,电压差继续降低。当电压差小于第二电压阈值时,控制开关电路130连通电池组件200和动力系统110,以使电池组件200以第二供电电流为控制系统120和/或动力系统110供电。
举例而言,通过综合电池的电压信息和无人飞行器的工作状态信息,对电池组件和动力系统之间的开关进行控制。在电池的电压差过大时断开该开关,使无人飞行器无法起飞;当无人飞行器在运动状态时,可以强制闭合该开关,确保无人飞行器的供电稳定,如动力系统供电的稳定,保障飞行安全。
示例性的,当电池的电压差过大时调整电池组件的供电电流为较小的第一供电电流,以支持控制系统的工作。
示例性的,当电池的电压差小于第一电压阈值时,调整电池组件的供电电流为较大的第而供电电流另一极当电池的电压差小于第二电压阈值时,控制电池组件和动力系统之间的开关闭合,无人飞行器可以进行起飞等操作。
在一些实施方式中,可以确保可移动平台不在电池存在过大压差的情况下运动,如电池存在过大压差时断开向动力系统的供电使无人飞行器不能起飞,消除了电池电流倒灌的风险。又保证了处于飞行状态时。
在一些实施方式中,当电池之间的电压差较大时,可以控制电压较大的电池为电压较小的电池充电,降低所述电压差,以降低浪涌电流。
在一些实施方式中,如图8所示,电池组件200和动力系统110之间的第二开关32与预充电路34并联,第二开关32与预充电路34可以称为缓启动电路,缓启动电路还可以包括开关的驱动电路。预充电路34例如包括电阻电路。当电池组件200中的电池210与动力系统110之间存在电压差时,电池210通过预充电路34向动力系统110充电,以降低电池210与动力系统110之间的电压差,电池210输出的电压的上升速度较慢,可以抑制电流的浪涌电流。当电压差较小时可以控制第二开关32闭合,为大电流负载提供低阻抗通路。
示例性的,请参阅图9,动力系统的电压为U1,可移动平台上增加电压为U2的电池时,缓启动电路输入侧的电压升高;请参见图9中无预充电路时的Irush1和有预充电路时的Irush2,由于预充电路的存在,浪涌电流Irush会被极大的抑制;通过预充电路对动力系统中的电容充电,提高电容的电压。当动力系统中电容的电压达到设定阈值或者与电池之间的电压差小于对应的阈值时,可以控制第二开关闭合,为动力系统获取较大的电流提供一个低阻抗电压的通路,满足动力系统的需求,降低压降和功耗。
在一些实施方式中,多个电池之间的第三开关闭也并联有预充电路,可以 抑制电压较大的电池为电压较小的电池充电时的电流。
在一些实施方式中,可以实现可移动平台,如无人飞行器的电池热替换(不断电更换电池),在抑制电池热替换浪涌电流的同时又能兼顾保障飞行系统供电安全。为实现无人飞行器长时间不断电持续工作提供了一种安全、稳定、可靠的实现路径,也可以无人飞行器提高续航作业能力。可以保障飞行作业的连续性,提高无人飞行器的作业效率,进一步扩大多旋翼无人飞行器的应用范围。
针对电池热替换过程中浪涌电流,可以通过缓启动预充电路抑制电压突变带来的浪涌电流,通过融合电池信息和工作状态,实现电池供电电流的智能切换及电池热替换过程中预充监测,从而保障供电安全性与稳定性。
请参阅图10,图10是本申请实施例提供的可移动平台700的示意性框图。可选的,可移动平台700可适用于前述的供电控制方法。
示例性的,所述可移动平台700可以包括无人飞行器、云台、无人车等中的至少一种。进一步而言,无人飞行器可以为旋翼型无人机,例如四旋翼无人机、六旋翼无人机、八旋翼无人机,也可以是固定翼无人机。
如图10所示,可移动平台700能够搭载用于为可移动平台700供电的电池组件200,电池组件200包括至少一块电池210。
示例性的,如图3所示,可移动平台700上设有一个或多个电池容纳部10,电池210能够可拆卸的容纳于电池容纳部10。
示例性的,电池组件200包括电池容纳组件(图未示),电池容纳组件上设有一个或多个电池容纳部10,电池210设置在电池容纳部10中。可选的,电池210固定连接在电池容纳部10中,电池组件200能够与可移动平台700可拆卸连接;或者,电池容纳组件与可移动平台700固定连接,电池210能够可拆卸的容纳于电池容纳组件上的电池容纳部10。
在一些实施方式中,可移动平台700包括动力系统110,动力系统110工作时可移动平台的位姿发生变化。示例性的,可移动平台700包括无人飞行器时,动力系统110包括电调和/或旋翼组件,其中旋翼组件可以包括电机和旋翼,电调用于确定电机转动,电机带动旋翼转动;可选的,电调可以与旋翼组件分别设置或一体设置;可选的,动力系统110还可以包括可移动平台700搭载的云台。示例性的,可移动平台700包括无人车时,动力系统110包括车轮和用 于驱动车轮的电机。
在一些实施方式中,可移动平台700还包括控制系统120,控制系统120用于控制动力系统110工作,以调整可移动平台700的位姿。示例性的,控制系统120包括控制器和传感器,控制器可以通过传感器获取例如可移动平台700的位置、姿态、与其他物体(如地面、建筑物、树木等)之间的位置关系等信息,根据获取的信息控制动力系统110工作,如通过电调控制电机的工作状态(转向、转速)调整可移动平台700的位姿。
该可移动平台700包括一个或多个处理器701,一个或多个处理器701单独地或共同地工作,用于执行前述的可移动平台的供电控制方法的步骤。处理器701例如可以为控制系统120中的处理器,或者可以为与控制系统120分别独立的处理器,本申请实施例对此不做限制。
示例性的,可移动平台700还包括存储器。
示例性的,处理器701和存储器通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线。
具体地,处理器701可以是微控制单元(Micro-controller Unit,MCU)、中央处理单元(Central Processing Unit,CPU)或数字信号处理器(Digital Signal Processor,DSP)等,当然也不限于此。
具体地,存储器可以是Flash芯片、只读存储器(ROM,Read-Only Memory)磁盘、光盘、U盘或移动硬盘等。
其中,所述处理器701用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现前述的可移动平台的供电控制方法的步骤。
示例性的,所述处理器701用于运行存储在存储器中的计算机程序,并在执行所述计算机程序时实现如下步骤:
检测可移动平台的工作状态,所述工作状态包括静止状态;
当所述可移动平台处于所述静止状态时,检测所述电池组件所包括的电池的数量;当检测到所述电池的数量发生改变时,根据数量改变后的电池的电压,调整所述电池组件的供电电流;
控制所述电池组件以调整后的供电电流为所述可移动平台供电。
可选的,所述处理器执行所述根据数量改变后的电池的电压,调整所述电 池组件的供电电流时,用于:
获取数量改变后的电池的电压;
根据数量改变后的电池的电压确定数量改变后的电池之间的电压差;
根据数量改变后的电池之间的电压差调整所述电池组件的供电电流。
可选的,所述处理器执行所述根据数量改变后的电池的电压,调整所述电池组件的供电电流时,用于:
当所述电池的数量大于1时,获取数量改变后的电池的电压;
根据所述数量改变后的电池的电压确定所述数量改变后的电池之间的电压差;
根据所述电压差调整所述电池组件的供电电流。
可选的,所述处理器执行所述根据所述电压差调整所述电池组件的供电电流时,用于:
当所述电压差大于或等于预设的第一电压阈值时,将所述电池组件的供电电流调整为第一供电电流;其中所述第一供电电流的大小小于或等于预设的第一电流阈值;
所述处理器执行所述控制所述电池组件以调整后的供电电流为所述可移动平台供电时,用于:
控制所述电池组件以所述第一供电电流为所述可移动平台供电。
可选的,所述处理器执行所述控制所述电池组件以所述第一供电电流为所述可移动平台供电时,用于:
控制所述电池组件和所述可移动平台的控制系统之间的电路导通,以及
控制所述电池组件和所述可移动平台的动力系统之间的电路断开;
控制所述电池组件以所述第一供电电流为所述控制系统供电。
可选的,所述处理器执行所述根据所述电压差调整所述电池组件的供电电流时,用于:
当所述电压差小于预设的第一电压阈值时,将所述电池组件的供电电流调整为第二供电电流,其中所述第二供电电流的大小小于或等于预设的第二电流阈值;
其中,所述第二电流阈值大于所述第一电流阈值;
所述处理器执行所述控制所述电池组件以调整后的供电电流为所述可移动平台供电时,用于:
控制所述电池组件以所述第二供电电流为所述可移动平台供电。
可选的,所述处理器执行所述控制所述电池组件以所述第二供电电流为所述可移动平台供电时,用于:
控制所述电池组件和所述可移动平台的控制系统之间的电路导通,以及
控制所述电池组件和所述可移动平台的动力系统之间的电路导通;
控制所述电池组件以所述第二供电电流为所述控制系统及所述动力系统供电。
可选的,所述工作状态包括运动状态,所述处理器还用于执行:
当所述可移动平台处于运动状态时,将所述电池组件的供电电流调整为第三供电电流,其中所述第三供电电流的大小小于或等于预设的第三电流阈值。
可选的,所述处理器执行所述控制所述电池组件以调整后的供电电流为所述可移动平台供电时,用于:
控制所述电池组件以所述第三供电电流为所述可移动平台供电。
可选的,所述处理器执行所述控制所述电池组件和所述可移动平台的动力系统之间的电路导通时,用于:
根据所述电池的电压确定至少一块所述电池之间的电压差;
当所述电压差大于第二电压阈值时,控制电压较大的电池为电压较小的电池充电,以将所述电压差的大小调整至所述第二电压阈值。
可选的,所述处理器执行所述控制所述电池组件以所述第三供电电流为所述可移动平台供电时,用于:
根据至少一块所述电池的电压控制所述电池组件和所述可移动平台的动力系统之间的电路导通;
控制所述电池组件以所述第三供电电流为所述动力系统供电。
可选的,所述处理器执行根据至少一块所述电池的电压控制所述电池组件和所述可移动平台的动力系统之间的电路导通时,用于:
获取至少一块所述电池的电压;
根据所述电压确定至少一块所述电池之间的电压差;
根据所述电压差控制所述电池组件和所述可移动平台的动力系统之间的电路导通。
可选的,所述处理器执行所述根据所述电压差控制所述电池组件和所述可移动平台的动力系统之间的电路导通时,用于:
根据所述电池的电压确定至少一块所述电池之间的电压差;
当所述电压差大于第二电压阈值时,控制电压较大的电池为电压较小的电池充电,以将所述电压差的大小调整至所述第二电压阈值;
当所述电压差的大小调整至所述第二电压阈值时,控制所述电池组件和所述可移动平台的动力系统之间的电路导通。
可选的,所述处理器执行所述根据所述电压差控制所述电池组件和所述可移动平台的动力系统之间的电路导通时,用于:
当所述电压差小于或等于所述第二电压阈值时,控制所述电池组件和所述可移动平台的动力系统之间的电路导通,以使所述电池组件能够为所述动力系统供电。
可选的,所述处理器执行所述根据数量改变后的电池的电压,调整所述电池组件的供电电流时,用于:
当改变后的电池的数量等于1时,获取所述数量改变后的电池的电压;
将所述数量改变后的电池的电压确定为所述数量改变后的电池之间的电压差;
根据所述电压差调整所述电池组件的供电电流。
可选的,所述处理器执行所述检测可移动平台的工作状态时,用于:
获取所述可移动平台的动力系统的电流和/或功率;
根据所述动力系统的电流和/或功率确定所述可移动平台的工作状态。
可选的,所述处理器执行所述根据所述动力系统的电流和/或功率确定所述可移动平台的工作状态时,用于:
当所述动力系统的电流大于或等于预设的电流阈值和/或所述功率大于或等于预设的功率阈值时,确定所述可移动平台处于运动状态。
可选的,所述处理器执行所述根据所述动力系统的电流和/或功率确定所述可移动平台的工作状态时,用于:
当所述动力系统的电流小于预设的电流阈值和/或所述功率小于预设的功率阈值时,确定所述可移动平台处于静止状态。
可选的,所述处理器执行所述检测可移动平台的工作状态时,用于:
获取所述可移动平台的位置和/或海拔高度;
根据所述可移动平台的位置和/或海拔高度确定所述可移动平台的工作状态。
可选的,所述处理器执行所述根据所述可移动平台的位置和/或海拔高度确定所述可移动平台的工作状态时,用于:
当所述可移动平台的位置的变化速率大于或等于预设的速度阈值,和/或所述海拔高度大于或等于预设的高度阈值时,确定所述可移动平台处于运动状态。
可选的,所述处理器执行所述根据所述可移动平台的位置和/或海拔高度确定所述可移动平台的工作状态时,用于:
当所述可移动平台的位置的变化速率小于预设的速度阈值,且所述海拔高度小于预设的高度阈值时,确定所述可移动平台处于静止状态。
本申请实施例提供的可移动平台的具体原理和实现方式均与前述实施例的可移动平台的供电控制方法类似,此处不再赘述。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序中包括程序指令,所述计算机程序被处理器执行时使所述处理器实现上述实施例提供的可移动平台的供电控制方法的步骤。
其中,所述计算机可读存储介质可以是前述任一实施例所述的可移动平台的内部存储单元,例如所述可移动平台的硬盘或内存。所述计算机可读存储介质也可以是所述可移动平台的外部存储设备,例如所述可移动平台上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
应当理解,在此本申请中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。
还应当理解,在本申请和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (37)

  1. 一种可移动平台的供电控制方法,所述可移动平台包括用于为所述可移动平台供电的电池组件,所述电池组件包括至少一块电池,其特征在于,所述方法包括:
    检测可移动平台的工作状态,所述工作状态包括静止状态;
    当所述可移动平台处于所述静止状态时,检测所述电池组件所包括的电池的数量;当检测到所述电池的数量发生改变时,根据数量改变后的电池的电压,调整所述电池组件的供电电流;
    控制所述电池组件以调整后的供电电流为所述可移动平台供电。
  2. 根据权利要求1所述的方法,其特征在于,所述根据数量改变后的电池的电压,调整所述电池组件的供电电流,包括:
    当改变后的电池的数量大于1时,获取数量改变后的电池的电压;
    根据所述数量改变后的电池的电压确定至少一块所述电池之间的电压差;
    根据所述电压差调整所述电池组件的供电电流。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述电压差调整所述电池组件的供电电流,包括:
    当所述电压差大于或等于预设的第一电压阈值时,将所述电池组件的供电电流调整为第一供电电流;其中所述第一供电电流的大小小于或等于预设的第一电流阈值;
    所述控制所述电池组件以调整后的供电电流为所述可移动平台供电,包括:
    控制所述电池组件以所述第一供电电流为所述可移动平台供电。
  4. 根据权利要求3所述的方法,其特征在于,所述控制所述电池组件以所述第一供电电流为所述可移动平台供电,包括:
    控制所述电池组件和所述可移动平台的控制系统之间的电路导通,以及
    控制所述电池组件和所述可移动平台的动力系统之间的电路断开;
    控制所述电池组件以所述第一供电电流为所述控制系统供电。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述电压差调整所述电池组件的供电电流,包括:
    当所述电压差小于预设的第一电压阈值时,将所述电池组件的供电电流调整为第二供电电流,其中所述第二供电电流的大小小于或等于预设的第二电流阈值;
    其中,所述第二电流阈值大于所述第一电流阈值;
    所述控制所述电池组件以调整后的供电电流为所述可移动平台供电,包括:
    控制所述电池组件以所述第二供电电流为所述可移动平台供电。
  6. 根据权利要求5所述的方法,其特征在于,所述控制所述电池组件以所述第二供电电流为所述可移动平台供电,包括:
    控制所述电池组件和所述可移动平台的控制系统之间的电路导通,以及
    根据所述电压差控制所述电池组件和所述可移动平台的动力系统之间的电路导通;
    控制所述电池组件以所述第二供电电流为所述控制系统及所述动力系统供电。
  7. 根据权利要求1所述的方法,其特征在于,所述工作状态包括运动状态,所述方法还包括:
    当所述可移动平台处于运动状态时,将所述电池组件的供电电流调整为第三供电电流,其中所述第三供电电流的大小小于或等于预设的第三电流阈值;
    所述控制所述电池组件以调整后的供电电流为所述可移动平台供电,包括:
    控制所述电池组件以所述第三供电电流为所述可移动平台供电。
  8. 根据权利要求7所述的方法,其特征在于,所述控制所述电池组件以所述第三供电电流为所述可移动平台供电,包括:
    根据至少一块所述电池的电压控制所述电池组件和所述可移动平台的动力系统之间的电路导通;
    控制所述电池组件以所述第三供电电流为所述动力系统供电。
  9. 根据权利要求8所述的方法,其特征在于,所述根据至少一块所述电池的电压控制所述电池组件和所述可移动平台的动力系统之间的电路导通,包括:
    获取至少一块所述电池的电压;
    根据所述电压确定至少一块所述电池之间的电压差;
    根据所述电压差控制所述电池组件和所述可移动平台的动力系统之间的电 路导通。
  10. 根据权利要求6或9所述的方法,其特征在于,所述根据所述电压差控制所述电池组件和所述可移动平台的动力系统之间的电路导通,包括:
    根据所述电池的电压确定至少一块所述电池之间的电压差;
    当所述电压差大于第二电压阈值时,控制电压较大的电池为电压较小的电池充电,以将所述电压差的大小调整至所述第二电压阈值;
    当所述电压差的大小调整至所述第二电压阈值时,控制所述电池组件和所述可移动平台的动力系统之间的电路导通。
  11. 根据权利要求6或9所述的方法,其特征在于,所述根据所述电压差控制所述电池组件和所述可移动平台的动力系统之间的电路导通,包括:
    当所述电压差小于或等于所述第二电压阈值时,控制所述电池组件和所述可移动平台的动力系统之间的电路导通,以使所述电池组件能够为所述动力系统供电。
  12. 根据权利要求1所述的方法,其特征在于,所述根据数量改变后的电池的电压,调整所述电池组件的供电电流,包括:
    当改变后的电池的数量等于1时,获取数量改变后的电池的电压;
    将所述数量改变后的电池的电压确定为所述数量改变后的电池之间的电压差;
    根据所述电压差调整所述电池组件的供电电流。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述检测可移动平台的工作状态,包括:
    获取所述可移动平台的动力系统的电流和/或功率;
    根据所述动力系统的电流和/或功率确定所述可移动平台的工作状态。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述动力系统的电流和/或功率确定所述可移动平台的工作状态,包括:
    当所述动力系统的电流大于或等于预设的电流阈值和/或所述功率大于或等于预设的功率阈值时,确定所述可移动平台处于运动状态。
  15. 根据权利要求13所述的方法,其特征在于,所述根据所述动力系统的 电流和/或功率确定所述可移动平台的工作状态,包括:
    当所述动力系统的电流小于预设的电流阈值和/或所述功率小于预设的功率阈值时,确定所述可移动平台处于静止状态。
  16. 根据权利要求1-12中任一项所述的方法,其特征在于,所述检测可移动平台的工作状态,包括:
    获取所述可移动平台的位置和/或海拔高度;
    根据所述可移动平台的位置和/或海拔高度确定所述可移动平台的工作状态。
  17. 根据权利要求16所述的方法,其特征在于,所述根据所述可移动平台的位置和/或海拔高度确定所述可移动平台的工作状态,包括:
    当所述可移动平台的位置的变化速率大于或等于预设的速度阈值,确定所述可移动平台处于运动状态;和/或
    所述海拔高度大于或等于预设的高度阈值时,确定所述可移动平台处于运动状态。
  18. 根据权利要求16所述的方法,其特征在于,所述根据所述可移动平台的位置和/或海拔高度确定所述可移动平台的工作状态,包括:
    当所述可移动平台的位置的变化速率小于预设的速度阈值,且所述海拔高度小于预设的高度阈值时,确定所述可移动平台处于静止状态。
  19. 一种可移动平台,其特征在于,能够搭载用于为所述可移动平台供电的电池组件,所述电池组件包括至少一块电池;
    所述可移动平台包括一个或多个处理器,单独地或共同地工作,用于执行如下步骤:
    检测可移动平台的工作状态,所述工作状态包括静止状态;
    当所述可移动平台处于所述静止状态时,检测所述电池组件所包括的电池的数量;
    当检测到所述电池的数量发生改变时,根据数量改变后的电池的电压,调整所述电池组件的供电电流;
    控制所述电池组件以调整后的供电电流为所述可移动平台供电。
  20. 根据权利要求19所述的可移动平台,其特征在于,所述处理器执行所 述根据数量改变后的电池的电压,调整所述电池组件的供电电流时,用于:
    当所述电池的数量大于1时,获取数量改变后的电池的电压;
    根据所述数量改变后的电池的电压确定所述数量改变后的电池之间的电压差;
    根据所述电压差调整所述电池组件的供电电流。
  21. 根据权利要求20所述的可移动平台,其特征在于,所述处理器执行所述根据所述电压差调整所述电池组件的供电电流时,用于:
    当所述电压差大于或等于预设的第一电压阈值时,将所述电池组件的供电电流调整为第一供电电流;其中所述第一供电电流的大小小于或等于预设的第一电流阈值;
    所述处理器执行所述控制所述电池组件以调整后的供电电流为所述可移动平台供电时,用于:
    控制所述电池组件以所述第一供电电流为所述可移动平台供电。
  22. 根据权利要求21所述的可移动平台,其特征在于,所述处理器执行所述控制所述电池组件以所述第一供电电流为所述可移动平台供电时,用于:
    控制所述电池组件和所述可移动平台的控制系统之间的电路导通,以及
    控制所述电池组件和所述可移动平台的动力系统之间的电路断开;
    控制所述电池组件以所述第一供电电流为所述控制系统供电。
  23. 根据权利要求20所述的可移动平台,其特征在于,所述处理器执行所述根据所述电压差调整所述电池组件的供电电流时,用于:
    当所述电压差小于预设的第一电压阈值时,将所述电池组件的供电电流调整为第二供电电流,其中所述第二供电电流的大小小于或等于预设的第二电流阈值;
    其中,所述第二电流阈值大于所述第一电流阈值;
    所述处理器执行所述控制所述电池组件以调整后的供电电流为所述可移动平台供电时,用于:
    控制所述电池组件以所述第二供电电流为所述可移动平台供电。
  24. 根据权利要求23所述的可移动平台,其特征在于,所述处理器执行所述控制所述电池组件以所述第二供电电流为所述可移动平台供电时,用于:
    控制所述电池组件和所述可移动平台的控制系统之间的电路导通,以及
    根据所述电压控制所述电池组件和所述可移动平台的动力系统之间的电路导通;
    控制所述电池组件以所述第二供电电流为所述控制系统及所述动力系统供电。
  25. 根据权利要求19所述的可移动平台,其特征在于,所述工作状态包括运动状态,所述处理器还用于执行:
    当所述可移动平台处于运动状态时,将所述电池组件的供电电流调整为第三供电电流,其中所述第三供电电流的大小小于或等于预设的第三电流阈值;
    所述处理器执行所述控制所述电池组件以调整后的供电电流为所述可移动平台供电时,用于:
    控制所述电池组件以所述第三供电电流为所述可移动平台供电。
  26. 根据权利要求25所述的可移动平台,其特征在于,所述处理器执行所述控制所述电池组件以所述第三供电电流为所述可移动平台供电时,用于:
    根据至少一块所述电池的电压控制所述电池组件和所述可移动平台的动力系统之间的电路导通;
    控制所述电池组件以所述第三供电电流为所述动力系统供电。
  27. 根据权利要求26所述的可移动平台,其特征在于,所述处理器执行根据至少一块所述电池的电压控制所述电池组件和所述可移动平台的动力系统之间的电路导通时,用于:
    获取至少一块所述电池的电压;
    根据所述电压确定至少一块所述电池之间的电压差;
    根据所述电压差控制所述电池组件和所述可移动平台的动力系统之间的电路导通。
  28. 根据权利要求24或27所述的可移动平台,其特征在于,所述处理器执行所述根据所述电压差控制所述电池组件和所述可移动平台的动力系统之间的电路导通时,用于:
    根据所述电池的电压确定至少一块所述电池之间的电压差;
    当所述电压差大于第二电压阈值时,控制电压较大的电池为电压较小的电 池充电,以将所述电压差的大小调整至所述第二电压阈值;
    当所述电压差的大小调整至所述第二电压阈值时,控制所述电池组件和所述可移动平台的动力系统之间的电路导通。
  29. 根据权利要求24或27所述的可移动平台,其特征在于,所述处理器执行所述根据所述电压差控制所述电池组件和所述可移动平台的动力系统之间的电路导通时,用于:
    当所述电压差小于或等于所述第二电压阈值时,控制所述电池组件和所述可移动平台的动力系统之间的电路导通,以使所述电池组件能够为所述动力系统供电。
  30. 根据权利要求19所述的可移动平台,其特征在于,所述处理器执行所述根据数量改变后的电池的电压,调整所述电池组件的供电电流时,用于:
    当改变后的电池的数量等于1时,获取所述数量改变后的电池的电压;
    将所述数量改变后的电池的电压确定为所述数量改变后的电池之间的电压差;
    根据所述电压差调整所述电池组件的供电电流。
  31. 根据权利要求19-30中任一项所述的可移动平台,其特征在于,所述处理器执行所述检测可移动平台的工作状态时,用于:
    获取所述可移动平台的动力系统的电流和/或功率;
    根据所述动力系统的电流和/或功率确定所述可移动平台的工作状态。
  32. 根据权利要求31所述的可移动平台,其特征在于,所述处理器执行所述根据所述动力系统的电流和/或功率确定所述可移动平台的工作状态时,用于:
    当所述动力系统的电流大于或等于预设的电流阈值和/或所述功率大于或等于预设的功率阈值时,确定所述可移动平台处于运动状态。
  33. 根据权利要求31所述的可移动平台,其特征在于,所述处理器执行所述根据所述动力系统的电流和/或功率确定所述可移动平台的工作状态时,用于:
    当所述动力系统的电流小于预设的电流阈值和/或所述功率小于预设的功率阈值时,确定所述可移动平台处于静止状态。
  34. 根据权利要求19-30中任一项所述的可移动平台,其特征在于,所述处理器执行所述检测可移动平台的工作状态时,用于:
    获取所述可移动平台的位置和/或海拔高度;
    根据所述可移动平台的位置和/或海拔高度确定所述可移动平台的工作状态。
  35. 根据权利要求34所述的可移动平台,其特征在于,所述处理器执行所述根据所述可移动平台的位置和/或海拔高度确定所述可移动平台的工作状态时,用于:
    当所述可移动平台的位置的变化速率大于或等于预设的速度阈值,和/或所述海拔高度大于或等于预设的高度阈值时,确定所述可移动平台处于运动状态。
  36. 根据权利要求34所述的可移动平台,其特征在于,所述处理器执行所述根据所述可移动平台的位置和/或海拔高度确定所述可移动平台的工作状态时,用于:
    当所述可移动平台的位置的变化速率小于预设的速度阈值,且所述海拔高度小于预设的高度阈值时,确定所述可移动平台处于静止状态。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时使所述处理器实现如权利要求1-18中任一项所述的可移动平台的供电控制方法的步骤。
PCT/CN2021/124073 2021-10-15 2021-10-15 可移动平台及其供电控制方法、存储介质 WO2023060548A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/124073 WO2023060548A1 (zh) 2021-10-15 2021-10-15 可移动平台及其供电控制方法、存储介质
CN202180007893.0A CN114946100A (zh) 2021-10-15 2021-10-15 可移动平台及其供电控制方法、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124073 WO2023060548A1 (zh) 2021-10-15 2021-10-15 可移动平台及其供电控制方法、存储介质

Publications (1)

Publication Number Publication Date
WO2023060548A1 true WO2023060548A1 (zh) 2023-04-20

Family

ID=82905944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124073 WO2023060548A1 (zh) 2021-10-15 2021-10-15 可移动平台及其供电控制方法、存储介质

Country Status (2)

Country Link
CN (1) CN114946100A (zh)
WO (1) WO2023060548A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477024B1 (en) * 1999-03-12 2002-11-05 Toyota Jidosha Kabushiki Kaisha Fault determination apparatus and fault determination method for a battery set
CN107834617A (zh) * 2017-08-09 2018-03-23 南京纬力创新能源科技有限公司 多电压无人机平台的供电系统
JP2019088069A (ja) * 2017-11-06 2019-06-06 株式会社豊田自動織機 電池パック
CN112352365A (zh) * 2019-11-18 2021-02-09 深圳市大疆创新科技有限公司 一种电池、控制方法及可移动设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477024B1 (en) * 1999-03-12 2002-11-05 Toyota Jidosha Kabushiki Kaisha Fault determination apparatus and fault determination method for a battery set
CN107834617A (zh) * 2017-08-09 2018-03-23 南京纬力创新能源科技有限公司 多电压无人机平台的供电系统
JP2019088069A (ja) * 2017-11-06 2019-06-06 株式会社豊田自動織機 電池パック
CN112352365A (zh) * 2019-11-18 2021-02-09 深圳市大疆创新科技有限公司 一种电池、控制方法及可移动设备

Also Published As

Publication number Publication date
CN114946100A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
US20200307390A1 (en) Systems and methods for maintaining attitude control under degraded energy source conditions using multiple propulsors
US10953754B1 (en) Systems and methods for restricting power to a load to prevent engaging circuit protection
WO2020119722A1 (zh) 一种保护电路、电池及飞行器
US8880916B2 (en) Circuits and methods for controlling battery management systems
US20200338989A1 (en) Battery control method, battery control system, unmanned aerial vehicle, and battery
WO2021217315A1 (zh) 充电控制方法、充电器、充电系统及存储介质
US9153987B2 (en) Battery charger voltage control method for instant boot-up
WO2020135798A1 (zh) 一种保护电路、电池及飞行器
US9246340B2 (en) Battery pack
US20140268556A1 (en) Detachable computing system having dual batteries
US10857894B2 (en) Control apparatus, electrical power storage apparatus and system for mobile object
CN104635899A (zh) 电源供应电路、电源供应系统以及电源供应方法
EP1595324A1 (en) Circuit and method of operation for an electrical power supply
KR20080113232A (ko) 과-전류 및 단락 보호에서의 전력 서지 필터링
WO2014105230A1 (en) Power management system and method
WO2020103474A1 (zh) 一种充电电路及充电系统
US20200094979A1 (en) Unmanned aerial vehicle charging control method, system and unmanned aerial vehicle
WO2018205167A1 (zh) 电池管理系统、电池和无人飞行器
EP3648235A1 (en) Battery pack having fastening recognition function
WO2017107782A1 (zh) 无人机系统的供电方法、无人机供电系统和无人机系统
CN109792392A (zh) 保护电路
WO2021142591A1 (zh) 电池控制方法、可移动平台、系统及计算机可读存储介质
WO2023060548A1 (zh) 可移动平台及其供电控制方法、存储介质
CN109625293B (zh) 飞行控制方法、系统和无人飞行器
EP4236012A1 (en) Charging and discharging control circuit and method, and device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960280

Country of ref document: EP

Kind code of ref document: A1