WO2020135752A1 - 量子点的后处理方法 - Google Patents

量子点的后处理方法 Download PDF

Info

Publication number
WO2020135752A1
WO2020135752A1 PCT/CN2019/129309 CN2019129309W WO2020135752A1 WO 2020135752 A1 WO2020135752 A1 WO 2020135752A1 CN 2019129309 W CN2019129309 W CN 2019129309W WO 2020135752 A1 WO2020135752 A1 WO 2020135752A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
dot solution
organic
order
heating
Prior art date
Application number
PCT/CN2019/129309
Other languages
English (en)
French (fr)
Inventor
程陆玲
杨一行
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811612473.1A external-priority patent/CN111378427B/zh
Priority claimed from CN201811612495.8A external-priority patent/CN111378449B/zh
Priority claimed from CN201811611010.3A external-priority patent/CN111378448B/zh
Priority claimed from CN201811611004.8A external-priority patent/CN111378447B/zh
Priority claimed from CN201811610993.9A external-priority patent/CN111378426B/zh
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2020135752A1 publication Critical patent/WO2020135752A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements

Definitions

  • the present application relates to the technical field of quantum dot preparation, and in particular to a post-processing method of quantum dots.
  • Nanoscience and nanotechnology is an emerging science and technology and has potential application value and economic benefits, so it has attracted the attention of scientists worldwide.
  • NCs nanocrystals
  • Semiconductor nanocrystals also known as quantum dots (QD)
  • QD quantum dots
  • Semiconductor nanocrystals also known as quantum dots (QD)
  • QD quantum dots
  • the valence band and conduction band of the semiconductor nanocrystal will also change (quantum size effect), such as The absorption and emission of CdSe nanocrystals cover almost the entire visible spectrum range. Therefore, semiconductor nanocrystals exhibit a size-related photoluminescence property.
  • Semiconductor nanocrystals have been used in many technical fields such as biomarkers, diagnostics, chemical sensors, light emitting diodes, electroluminescent devices, photovoltaic devices, lasers, and electronic transistors.
  • different types of semiconductor quantum dots need to be prepared for applications in different technical fields.
  • the preparation of high-quality semiconductor quantum dots is a prerequisite for the effective application of semiconductor quantum dot size effects.
  • One of the purposes of the embodiments of the present application is to provide a post-processing method of quantum dots, which aims to solve the problem of insufficient solubility when the prepared quantum dots are used directly without processing.
  • a quantum dot post-processing method including the following steps:
  • the first compound is selected from an organic carboxylic acid or an organic amine
  • the first compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine
  • the second compound is selected from an organic carboxylic acid or an organic amine, and the second compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the compound used in the mixing and heating process in only one order is an organic carboxylic acid or the compound used in the combination contains an organic carboxylic acid, and the compound used in the mixing and heating process in only one is an organic amine or used
  • the compound combination contains organic amines.
  • a second aspect provides a quantum dot post-processing method, including the following steps:
  • the first compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine
  • the first compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine
  • the second compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the second compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the third compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the third compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the compound used in the mixing and heating process in only one order is an organic carboxylic acid or the compound combination used contains an organic carboxylic acid, and the compound used in the mixing and heating process in only one order is an organic amine or The compound combination used contains organic amines.
  • a third aspect provides a quantum dot post-processing method, including the following steps:
  • the first compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine
  • the first compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine
  • the second compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the second compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the third compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the third compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the compound used in the mixing and heating process in only one order is an organic carboxylic acid or the compound combination used contains an organic carboxylic acid, and the compound used in the mixing and heating process in only one order is an organic amine or The compound combination used contains organic amines;
  • the mixing and heating process of the three orders includes the order A of mixing and heating the quantum dot solution with the organic amine or the organic amine and the organic phosphine in the order, and the quantum dot solution and the organic with the order Sequence B in which carboxylic acid or organic carboxylic acid and organic phosphine are mixed and heated; and the sequence B is before the sequence A
  • the quantum dots in the initial quantum dot solution are nB-VIA nanocrystal single-core quantum dots or the shell layer is nB-VIA nanocrystal core-shell quantum dots.
  • a fourth aspect provides a post-processing method for quantum dots, including the following steps:
  • the first compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine
  • the first compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine
  • the second compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the second compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the third compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the third compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the compound used in the mixing and heating process in only one order is an organic carboxylic acid or the compound combination used contains an organic carboxylic acid, and the compound used in the mixing and heating process in only one order is an organic amine or The compound combination used contains organic amines.
  • the mixing and heating process of the three orders includes the order A of mixing and heating the quantum dot solution with the organic amine or the organic amine and the organic phosphine in the order, and the quantum dot solution and the organic with the order Sequence B in which carboxylic acid or organic carboxylic acid and organic phosphine are mixed and heated; and the sequence B is after the sequence A
  • the quantum dots in the initial quantum dot solution are single-core quantum dots or shells of IA-IVA-VIIA nanocrystals It is a core-shell quantum dot of IA-IVA-VIIA nanocrystal.
  • a fifth aspect provides a quantum dot post-processing method, including the following steps:
  • the second compound is selected from an organic carboxylic acid or an organic phosphine, and the second compound combination is selected from an organic carboxylic acid and an organic phosphine;
  • the third compound is selected from an organic carboxylic acid or an organic phosphine, and the third compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the compound used in the mixing and heating process in only one order is an organic carboxylic acid or the compound used contains organic carboxylic acid.
  • FIG. 1 is a process flow diagram of a first quantum dot post-processing method provided by an embodiment of the present application
  • FIG. 2 is a process flowchart of a second quantum dot post-processing method provided by an embodiment of the present application
  • FIG. 3 is a process flow diagram of a third quantum dot post-processing method provided by an embodiment of the present application.
  • FIG. 4 is a process flow diagram of a fourth quantum dot post-processing method provided by an embodiment of the present application.
  • FIG. 5 is a process flow diagram of a fifth quantum dot post-processing method provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the indicated technical features quantity.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • some embodiments of the present application provide a post-processing method for quantum dots, including the following steps:
  • the first compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine
  • the first compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine
  • the second compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the second compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the compound used in the process of mixing and heating in an order is an organic carboxylic acid or the compound used contains organic carboxylic acid, and the compound used in the process of mixing and heating in an order is an organic amine or a compound used The combination contains organic amines.
  • the post-processing method of quantum dots provided in the embodiments of the present application adopts the first compound or the first compound combination, the second compound or the second compound combination to sequentially mix the quantum dots in the initial quantum dot solution in two orders And heat.
  • the compound or compound combination used in the mixing and heating process of adjacent order cannot contain organic carboxylic acid or the compound used in the mixing and heating process of adjacent order at the same time Or the compound combination cannot contain organic amines at the same time; and the compound combination used in the same order mixing and heating process cannot contain organic carboxylic acid and organic amine at the same time; and at least one order mixing and heating process uses the compound or compound combination It contains organic carboxylic acid, organic amine or organic phosphine.
  • the first compound or the first compound combination, the second compound or the second compound combination can sufficiently passivate the metal atoms and non-metal atoms on the surface of the quantum dots
  • the ability of quantum dots to resist water and oxygen further improves the stability of quantum dots; on the other hand, the first compound or the first compound combination, the second compound or the second compound combination will be interlaced with each other on the surface of the quantum dot, because the two Different types of compounds or compound combinations and different chain lengths will increase the steric hindrance effect of the ligands on the surface of the quantum dots, thereby increasing the solubility of the quantum dots.
  • the post-processing method of the quantum dots using the above method of the present application can also improve the fluorescence intensity of the quantum dots or improve the transient fluorescence of the quantum dots.
  • the initial quantum dot solution is a solution containing quantum dot nanocrystals and a non-eutectic solvent.
  • the initial quantum dot solution also contains a small amount of organic surface modifier, and a small amount of anionic precursor and/or cationic precursor.
  • the initial quantum dot solution is not strictly limited.
  • the initial quantum dot solution may be a quantum dot solution obtained by preparing quantum dots in one step, a quantum dot solution prepared by preparing quantum dots in a two-step method, or a quantum dot solution prepared by preparing quantum dots in a three-step method .
  • the initial quantum dot solution may also be a quantum dot solution formed by being dispersed in a non-eutectic solvent after purification treatment.
  • the one-step method refers to the long core and long shell of the core-shell quantum dots in a reaction vessel.
  • the two-step method refers to the preparation of core-shell quantum dots including two steps: a long core is carried out in a reaction vessel, and the quantum dot core is taken out and placed in another reaction solvent to form a long shell.
  • the three-step method refers to the preparation of core-shell quantum dots including two steps: a reaction vessel for long cores, the quantum dot cores are taken out and placed in another reaction solvent for intermediate shell growth, and the core-shell quantum containing the intermediate shell layer is taken out The spot is placed in the third reaction vessel for outermost shell growth.
  • the quantum dots in the initial quantum dot solution are oil-soluble quantum dots, that is, the surface of the quantum dots contains oil-soluble ligands.
  • the oil-soluble ligands are small oil-soluble organic molecules, including but not limited to organic carboxylic acids, organic amines, organic phosphonic acids, organic phosphines, organic phosphine oxides, and organic thiols.
  • the quantum dots in the initial quantum dot solution using the post-processing method of the embodiment of the present application may be single-core quantum dots of IIB-VIA nanocrystals or the shell layer is a core-shell of IIB-VIA nanocrystals
  • Quantum dots, single-core quantum dots or shells of mA-VA nanocrystals are core-shell quantum dots of mA-V A nanocrystals
  • single-core quantum dots or shells of IVA-VIA nanocrystals are cores of IVA-VIA nanocrystals
  • Shell quantum dots, single-core quantum dots or shells of IB-mA-VIA nanocrystals are core-shell quantum dots of IB-mA-VIA nanocrystals
  • single core quantum dots or shells of IA-IVA-VIIA nanocrystals are IA -Core-shell quantum dots of IVA-VIIA nanocrystals.
  • step S02 the first compound or the first compound combination, the second compound or the second compound combination are sequentially used to perform two sequential mixing and heat treatments to process the initial quantum dots to improve the quantum Point stability and solubility.
  • the initial quantum dot solution is mixed with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a first order and heated to obtain A first quantum dot solution; mixing the first quantum dot solution with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a second order and heating to obtain a second quantum Point solution.
  • the organic amine is at least one of linear organic amines containing a single amino group, and the number of carbon atoms in the organic amine is 8-18.
  • the organic carboxylic acid is at least one of linear organic carboxylic acids containing a single carboxyl group, and the number of carbon atoms in the organic carboxylic acid is 8-18.
  • the organic phosphine is selected from but not limited to trioctylphosphine and tributylphosphine.
  • the organic amine, organic carboxylic acid, and organic phosphine molecules are liquid at room temperature.
  • the molar ratio of the organic carboxylic acid to the organic phosphine is (3 ⁇ 7) : (7 ⁇ 3 )
  • the molar ratio of the organic amine to the organic phosphine is (3 ⁇ 7) : (7 ⁇ 3).
  • the initial quantum dot solution is combined with the first compound or the first compound in a first order and heated to obtain a first quantum dot solution.
  • the second compound or the combination of the second compound and the quantum dot molar and mass ratio in the first quantum dot solution (0.5 ⁇ 10mmol): 100 mg, will be The first quantum dot
  • the solution is mixed with the second compound or the second compound in a second order and heated to obtain a second quantum dot solution.
  • the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic carboxylic acid at the same time or the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic amine at the same time; and the same order
  • the compound combination used in the mixing and heating process cannot contain both organic carboxylic acid and organic amine; and at least one sequence of the compound or compound combination used in the mixing and heating process contains organic carboxylic acid, organic amine or organic phosphine.
  • the present application may adopt various embodiments to process the initial quantum dots to improve the stability and solubility of the quantum dots.
  • the initial quantum dot solution and the organic acid or the initial quantum dot solution and organic carboxylic acid and organic phosphine are mixed in a first order and heated, the organic carboxylic acid on the initial After the quantum dots are processed, the cation vacancies on the surface of the quantum dots can be optimized, and the fluorescence intensity of the quantum dots is enhanced.
  • the second compound or the second compound combination is used for the second order mixing and heating of the quantum dots, the second compound or the second compound combination and the organic carboxylic acid can be interlaced and attached to the surface of the quantum dots, which not only increases the resistance of the quantum dots Water and oxygen capacity, and can also reduce the turbidity value of the quantum dot mixture, improve the film formation of quantum dots.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are performed Mix and heat in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are performed Mix and heat in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine and The organic phosphine is mixed and heated in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is mixed with The organic amines are mixed and heated in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic phosphine is mixed and heated in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; and the first quantum dot solution is combined with The organic amine and the organic phosphine are mixed in the second order and heated to obtain a second quantum dot solution.
  • mixing the initial quantum dot solution with an organic amine or the initial quantum dot solution with an organic amine and an organic phosphine in a first order and heating can effectively reduce quantum dots
  • the defect state on the surface further increases the fluorescence intensity of the quantum dots.
  • protonated organic amines on the surface of the quantum dots will produce exciton trapping on the surface of the quantum dots, reducing the transient fluorescence lifetime of the quantum dots.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in the second order and heated, the second compound or the second compound combination can post-process the quantum dots, effectively removing the protonated organic amine on the surface of the quantum dots. In turn, the transient fluorescence lifetime of quantum dots is increased.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mix and heat in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to Second order Mix and heat to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed and heated in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution, organic amine and organic phosphine are mixed and heated in a first order to obtain a first quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The carboxylic acid is mixed and heated in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphines are mixed and heated in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acid and organic phosphine are mixed in the second order and heated to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed and heated in a first order, and after the organic phosphine processes the initial quantum dot, the anion vacancy on the surface of the quantum dot is optimized.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in a second order, the second compound or the second compound combination can be interlaced with the first compound or the first compound combination organic phosphine on the surface of the quantum dot, Not only does the steric hindrance effect of the ligands on the surface of the quantum dots increase, but also the barrier effect of the ligands on the surface of the quantum dots is strengthened.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mix and heat in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and Heating to obtain a first quantum dot solution; mixing the first quantum dot solution with an organic amine in a second order and heating to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed and heated in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and an organic The phosphines are mixed and heated in the second order to obtain a second quantum dot solution.
  • the quantum dots in the initial quantum dot solution are nB-VIA nanocrystal single-core quantum dots or the shell layer is nB-VIA nanocrystal core-shell quantum dots; wherein, nB-VIA nanocrystals include ZnS, ZnSe, ZnTe, CdSe, CdS, CdTe, CdZnS, CdZnSe, PbSeS, CdZnSeS, CdZnTe, CdSe/ZnS, CdZnSe/ZnS, CdS/CdSe/CdS, ZnS/CdSe/ZnS, etc. Not limited to this.
  • the mixing and heating process of the two sequences Including: mixing the initial quantum dot solution with organic carboxylic acid or the initial quantum dot solution with organic carboxylic acid and organic phosphine in a first order and heating to obtain a first quantum dot solution; The first quantum dot solution and the organic amine or the first quantum dot solution, the organic amine and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution.
  • Using this method to process single-core quantum dots of nB-VIA nanocrystals or core-shell quantum dots with shells of nB-VIA nanocrystals can not only improve the solubility and stability of quantum dots, but also further improve quantum dots The fluorescence intensity and film-forming properties.
  • the organic carboxylic acid prioritizes the organic amine to post-process the initial quantum dots, which promotes the self-maturation of the quantum dots, and reduces the cation vacancies on the surface of the quantum dots, improving the fluorescence intensity; and then using organic amines to post-process the quantum dots can effectively Reducing the melting point of the quantum dot mixed liquid and the turbidity of the quantum dot mixed liquid can also improve the diversity of ligands on the surface of the quantum dot, which is beneficial to improve the film forming property and the resistance to water and oxygen.
  • the organic phosphine treating nB-VIA nanocrystal single-core quantum dots or nB-VIA nanocrystal core-shell quantum dots can reduce anion defects and increase surface ligand diversity.
  • the initial quantum dot solution and the organic acid are mixed in a first order and added Heat to obtain a first quantum dot solution; mix the first quantum dot solution with an organic amine in a second order and heat to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The amine is mixed in the second order and heated to obtain a second quantum dot solution.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and organic The phosphines are mixed and heated in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The amine and the organic phosphine are mixed in the second order and heated to obtain a second quantum dot solution.
  • the quantum dots in the initial quantum dot solution are nB-VIA nanocrystal single-core quantum dots or the shell layer is nB-VIA nanocrystal core-shell quantum dots
  • the step of mixing and heating the first quantum dot solution with an organic amine or the step of mixing and heating the first quantum dot solution with an organic amine and an organic phosphine, in The temperature is 80°C ⁇ 200°C.
  • the quantum dots in the initial quantum dot solution are HIA-VA nanocrystal single-core quantum dots or the shell layer is mA-VA nanocrystal core-shell quantum dots; wherein, The mA-VA nanocrystals include InP, InN, InAs, InSb, GaAs, GaSb, GaP, GaN, InGaP, etc., but are not limited thereto.
  • the mixing and heating process of the two sequences includes : Mixing the initial quantum dot solution with organic carboxylic acid and organic phosphine in a first order and heating to obtain a first quantum dot solution; mixing the first quantum dot solution with an organic amine in a second order and Heating or mixing the first quantum dot solution with organic amine and organic phosphine in a second order and heating to obtain a second quantum dot solution.
  • the initial quantum dots are post-treated with organic carboxylic acid and organic phosphine to effectively passivate the anion and cation defects on the surface of the quantum dots and increase the fluorescence intensity of the quantum dots.
  • the quantum dots are post-treated with organic amines or organic amines and organic phosphines.
  • Organic amines or organic amines and organic phosphines can be combined with organic carboxylic acids and organic phosphines on the surface of the quantum dots.
  • the steric hindrance effect improves the monodispersity of quantum dots; on the other hand, it also enhances the water and oxygen resistance of quantum dots, which in turn enhances the stability of quantum dots.
  • the first quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The amine is mixed in the second order and heated to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The amine and the organic phosphine are mixed in the second order and heated to obtain a second quantum dot solution.
  • the quantum dots in the initial quantum dot solution are mA-VA nanocrystal single-core quantum dots or the shell layer is mA-VA nanocrystal core-shell quantum dots.
  • the first order mixing and heating steps of the initial quantum dot solution, organic carboxylic acid and organic phosphine are carried out at a temperature of 200-350° (: In some embodiments, the first A step of mixing and heating a quantum dot solution with an organic amine in a second order or a step of mixing and heating the first quantum dot solution with an organic amine and an organic phosphine at a temperature of 80°C ⁇ 200°C.
  • the quantum dots in the initial quantum dot solution are IVA-VIA nanocrystal single-core quantum dots or the shell layer is IVA-VIA nanocrystal core-shell quantum dots; wherein, IVA-VIA nanocrystals include PPbSe, PbS, PbTe, PbSeS, PbSeTe, etc., but are not limited thereto.
  • the mixing and heating process of the two sequences includes : Mix the initial quantum dot solution with the organic phosphine in the first order and heat or heat the initial quantum dot solution with the organic carboxylic acid and the organic phosphine or the initial quantum dot solution with the organic amine and the organic phosphine Mixing and heating in a first order to obtain a first quantum dot solution; mixing the first quantum dot solution with an organic phosphine or mixing the first quantum dot solution with an organic amine and an organic phosphine in a second order and heating Or mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in a second order and heating to obtain a second quantum dot solution .
  • Using this method to process single-core quantum dots of IVA-VIA nanocrystals or core-shell quantum dots with IVA-VIA nanocrystal shells can not only improve the solubility of quantum dots, but also further improve the fluorescence intensity of quantum dots And device stability. Specifically, after processing the quantum dots with organic phosphine, the anion vacancies on the surface of the quantum dots can be optimized to improve the fluorescence intensity.
  • IVA-VIA quantum dots Due to the large exciton diffusion radius of IVA-VIA quantum dots, after processing the IVA-VIA quantum dots with a second compound or combination of second compounds of organic carboxylic acids, organic amines, and organic phosphines, it can be combined with the first compound or the first compound A compound combined with organic phosphine is staggeredly attached to the surface of the quantum dot, which enhances the barrier effect of the ligand on the surface of the quantum dot and reduces the diffusion radius of the exciton, thereby improving the stability of the device prepared by using the quantum dot.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to The second order is mixed and heated to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to a second Mix and heat sequentially to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and an organic phosphine The second order mixing and heating are performed to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphines are mixed and heated in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The amine is mixed in the second order and heated to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Amine and organophosphine The second order mixing and heating are performed to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine The second order mixing and heating are performed to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxyl The acid is mixed in the second order and heated to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic carboxyl The acid and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution.
  • the two orders In the mixing and heating step there is at least one sequence of the composition used in the mixing and heating step. That is: mixing the initial quantum dot solution with the first compound in a first order and heating to obtain a first quantum dot solution; and/or combining the first quantum dot solution with a second compound for a second Mix and heat sequentially to obtain a second quantum dot solution.
  • IVA-VIA quantum dots have many anionic defect states on the surface.
  • the IV A-VI A quantum dot exciton diffusion radius is large and the stability is poor after the device is prepared.
  • At least one compound is used for mixing and heat treatment, which can make the organic carboxyl
  • the acid, organic amine and organic phosphine co-adhered to the surface of the quantum dot can effectively hinder the exciton diffusion radius of the surface of the IVA-VIA quantum dot and thus improve the stability of the device prepared by using this type of quantum dot, and reduce the anion of the IVA-VIA quantum dot
  • the vacancies in turn improve the fluorescence intensity of quantum dots.
  • the initial quantum dot solution and the first compound are combined in a first order and heated at a temperature of 80-150°C to obtain a first quantum dot solution; the first The quantum dot solution and the second compound are combined in a second order and heated at a temperature of 80 to 150°C to obtain a second quantum dot solution.
  • the quantum dots in the initial quantum dot solution are IB-mA-VIA nanocrystal single-core quantum dots or the shell layer is IB-mA-VIA nanocrystal core-shell quantum dots; Wherein, the IB-mA-VI A nanocrystal includes CuInS, CuInSeS, etc., but it is not limited thereto.
  • the mixing and heating process in two orders includes: mixing the initial quantum dot solution with organic amines and organic phosphines in a first order and heating or heating The first quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a second order and heated to obtain Second quantum dot solution.
  • IB-mA-VIA nanocrystal quantum dots contain many types of elements, the surface defect states are also more than other system quantum dots, and the surface exciton diffusion path is large. Therefore, using organic amines and organic phosphines as the first compound combination When the quantum dots are processed, the surface defect states of the quantum dots can be effectively reduced to enhance the fluorescence intensity of the quantum dots, and then the first quantum dot solution and the organic carboxylic acid or the first quantum dot solution and the organic carboxylic acid and Organic phosphine is mixed and heated in the second order.
  • Organic carboxylic acid or organic carboxylic acid and organic phosphine can optimize the crystal form of IB-mA-VIA nanocrystalline quantum dots to make them as consistent as possible, and the composition is more uniform, and then reduced The compound radius of excitons improves the color purity.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic carboxyl The acid is mixed in the second order and heated to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxyl The acid and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution.
  • the steps of mixing and heating the initial quantum dot solution with the organic amine and the organic phosphine in the first order are performed under the condition of a temperature of 200 to 3 50°C.
  • the first quantum dot solution is mixed with an organic carboxylic acid in a second order and heated or the first quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a second order
  • the step of heating is carried out under the condition of a temperature of 200°C to 350°C.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IA-IVA-VIIA nanocrystals or the shell layer are core-shell quantum dots of IA-IVA-VIIA nanocrystals;
  • the IA-IVA-VDA nanocrystals include CsPbCl 3 , CsPbBr 3 , CsPbI 3 and so on, but it is not limited thereto.
  • the three sequences are mixed During the parallel heating process, the two sequential mixing and heating processes include: mixing and heating the initial quantum dot solution with an organic amine or the initial quantum dot solution with an organic amine and an organic phosphine, to obtain A first quantum dot solution; a step of mixing the first quantum dot solution with an organic carboxylic acid in a second order and heating or a second order mixing of the first quantum dot solution with an organic carboxylic acid and an organic phosphine And heating, to obtain a second quantum dot solution.
  • the solubility and stability of the quantum dots be improved, but also the fluorescence intensity and transient fluorescence of the quantum dots can be further improved.
  • post-treatment of the quantum dots with organic amines or organic amines and organic phosphine organic amines can effectively reduce the defect states on the surface of the quantum dots and improve the fluorescence intensity, solubility and stability of the quantum dots.
  • organic amines or organic amines and organic phosphine organic amines can effectively reduce the defect states on the surface of the quantum dots and improve the fluorescence intensity, solubility and stability of the quantum dots.
  • there are protonated organic amines on the surface of quantum dots treated with organic amines Due to the relatively poor photoelectric stability of IA-IVA-VIIA nanocrystals, they are more susceptible to surface electrical properties.
  • the subsequent treatment with organic carboxylic acids or organic carboxylic acids and organic phosphines can effectively eliminate the protonated organic amines on the surface of the quantum dots, improve the surface state of the quantum dots and enhance the fluorescence Intensity and transient fluorescence.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to The second order is mixed and heated to obtain a second quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic carboxylic acid and an organic The phosphines are mixed and heated in the second order to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic carboxyl The acid is mixed in the second order and heated to obtain a second quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic carboxyl The acid and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution.
  • the initial quantum dot solution are IA-IVA-VIIA nanocrystal single-core quantum dots or the shell is IA-IVA-VIIA nanocrystal core-shell quantum dots
  • the initial The step of mixing and heating the quantum dot solution with the organic amine or the initial quantum dot solution with the organic amine and the organic phosphine in the first order is performed under the condition of a temperature of 80 to 250°C.
  • the first quantum dot solution is mixed with an organic carboxylic acid in a second order and heated or the first quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a second order and heated , At a temperature of 80 °C ⁇ 250 °C.
  • the first order of mixing and heating is 20 ⁇ 100 minutes; in the step of mixing and heating the first quantum dot solution with the second compound or the second compound in the second order, the time for the second order mixing and heating is 20 ⁇ 100 minutes.
  • the first quantum dot solution and the first compound or the first compound are combined in a first order of mixing and heating steps, the first quantum dot solution and the second compound Or the second compound combination and the second order mixing and heating steps are all performed in an inert gas environment.
  • an embodiment of the present application provides a post-processing method for quantum dots, including the following steps:
  • A01 provides an initial quantum dot solution
  • A02 mixing the initial quantum dot solution with the first compound or the first compound in a first order of mixing and heating to obtain a first quantum dot solution
  • the first compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine
  • the first compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine
  • the second compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the second compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the third compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the third compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic carboxylic acid at the same time or the compound or compound combination used in the mixing and heating process in the adjacent order cannot be the same Sometimes contains organic amines;
  • At least one compound or compound combination used in the process of mixing and heating in an order contains an organic carboxylic acid, an organic amine, or an organic phosphine.
  • the method for post-processing the quantum dots provided in the embodiments of the present application adopts the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination to the initial quantum dot solution in sequence
  • the quantum dots are mixed and heated in three sequences.
  • the compound used in the mixing and heating process in only one order is an organic carboxylic acid or the compound combination used contains an organic carboxylic acid
  • the compound used in the mixing and heating process in only one is an organic amine or used
  • the compound combination contains organic amines.
  • the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination can sufficiently passivate the quantum
  • the metal atoms and non-metal atoms on the surface of the dot enhance the quantum dot's resistance to water and oxygen and improve the stability of the quantum dot; on the other hand, the first compound or the first compound combination, the second compound or the second compound combination, the first The three compounds or the third compound combination will be interlaced with each other on the surface of the quantum dot. Due to the different types and the different chain lengths of the three types of compounds or compound combinations, the steric hindrance effect of the ligand on the surface of the quantum dot will be increased, which will increase The solubility of quantum dots.
  • the post-processing method of the quantum dots by using the above method in the embodiment of the present application can also improve the fluorescence intensity of the quantum dots or improve the transient fluorescence of the quantum dots.
  • the initial quantum dot solution is a solution containing quantum dot nanocrystals and a non-eutectic solvent.
  • the initial quantum dot solution also contains a small amount of organic surface modifier, and a small amount of anionic precursor and/or cationic precursor.
  • the initial quantum dot solution is not strictly limited.
  • the initial quantum dot solution may be a quantum dot solution obtained by preparing quantum dots in one step, a quantum dot solution prepared by preparing quantum dots in a two-step method, or a quantum dot solution prepared by preparing quantum dots in a three-step method .
  • the initial quantum dot solution may also be a quantum dot solution formed by being dispersed in a non-eutectic solvent after purification treatment.
  • the one-step method refers to the long core and long shell of the core-shell quantum dots in a reaction vessel.
  • the two-step method refers to the preparation of core-shell quantum dots including two steps: a long core in a reaction vessel, the quantum dot core is taken After being put out, it was placed in another reaction solvent for long shell.
  • the three-step method refers to the preparation of core-shell quantum dots including two steps: a reaction vessel for long cores, the quantum dot cores are taken out and placed in another reaction solvent for intermediate shell growth, and the core-shell quantum containing the intermediate shell layer is taken out The spot is placed in the third reaction vessel for outermost shell growth.
  • the quantum dots in the initial quantum dot solution are oil-soluble quantum dots, that is, the surface of the quantum dots contains oil-soluble ligands.
  • the oil-soluble ligands are small oil-soluble organic molecules, including but not limited to organic carboxylic acids, organic amines, organic phosphonic acids, organic phosphines, organic phosphine oxides, and organic thiols.
  • the quantum dots in the initial quantum dot solution using the post-processing method of the embodiment of the present application may be single-core quantum dots of IIB-VIA nanocrystals or the shell layer is a core-shell of IIB-VIA nanocrystals
  • Quantum dots, single-core quantum dots or shells of mA-VA nanocrystals are core-shell quantum dots of mA-V A nanocrystals
  • single-core quantum dots or shells of IVA-VIA nanocrystals are cores of IVA-VIA nanocrystals
  • Shell quantum dots, single-core quantum dots or shells of IB-mA-VIA nanocrystals are core-shell quantum dots of IB-mA-VIA nanocrystals
  • single core quantum dots or shells of IA-IVA-VIIA nanocrystals are IA -Core-shell quantum dots of IVA-VIIA nanocrystals.
  • the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination are used in sequence to mix and heat in three orders Processing, processing the initial quantum dots to improve the stability and solubility of the quantum dots.
  • the initial quantum dot solution is mixed with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a first order and heated to obtain A first quantum dot solution; mixing the first quantum dot solution with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a second order and heating to obtain a second quantum Dot solution; mixing the second quantum dot solution with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the organic amine is at least one of linear organic amines containing a single amino group, and the number of carbon atoms in the organic amine is 8-18.
  • the organic carboxylic acid is at least one of linear organic carboxylic acids containing a single carboxyl group, and the number of carbon atoms in the organic carboxylic acid is 8-18.
  • the organic phosphine is selected from but not limited to trioctylphosphine and tributylphosphine.
  • the organic amine, organic carboxylic acid, and organic phosphine molecules are liquid at room temperature.
  • the molar ratio of the organic carboxylic acid to the organic phosphine is (3 ⁇ 7) : (7 ⁇ 3 ).
  • the molar ratio of the organic amine to the organic phosphine is (3 ⁇ 7) : (7 ⁇ 3).
  • the initial quantum dot solution is combined with the first compound or the first compound in a first order and heated to obtain a first quantum dot solution.
  • the second compound or the combination of the second compound and the quantum dot molar and mass ratio in the first quantum dot solution (0.5 ⁇ 10mmol): 100 mg, will be
  • the first quantum dot solution is combined with the second compound or the second compound in a second order and heated to obtain a second quantum dot solution.
  • the third compound or the combination of the third compound and the second quantum dot solution in the molar and mass ratio of quantum dots (0.5 ⁇ 10mmol): 100 mg will be The second quantum dot solution is combined with the third compound or the third compound in the third order and heated to obtain a third quantum dot solution.
  • different types of compounds or compound combinations may be selected respectively in the mixing and heating in three orders to process the quantum dots in the initial quantum dot solution. It is worth noting that since the organic carboxylic acid and the organic amine will chemically reduce the post-treatment effect when added at the same time, the first compound or the first compound combination, the second compound or the second compound combination, the first The three compounds or the combination of the third compound cannot be added simultaneously for mixing and heating.
  • the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic carboxylic acid at the same time or the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic amine at the same time; and the same order
  • the compound combination used in the mixing and heating process cannot contain both organic carboxylic acid and organic amine; and at least one sequence of the compound or compound combination used in the mixing and heating process contains organic carboxylic acid, organic amine or organic phosphine.
  • the present application may adopt various embodiments to process the initial quantum dots to improve the stability and solubility of the quantum dots.
  • the initial quantum dot solution is mixed with an organic acid or the initial quantum dot solution with an organic carboxylic acid and an organic phosphine in a first order and heated, the organic carboxylic acid on the initial After the quantum dots are processed, the cation vacancies on the surface of the quantum dots can be optimized.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in a second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in a third order
  • the compound combination, the third compound or the third compound combination can be interlaced with the first compound or the first compound combination organic carboxylic acid on the surface of the quantum dot, which not only increases the steric hindrance effect of the ligand on the surface of the quantum dot, but also strengthens the quantum dot
  • the barrier effect of surface ligands reduces the diffusion radius of excitons and thus enhances the fluorescence intensity of quantum dots.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and an organic amine are carried out Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and an organic amine are carried out Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine and The organic phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic carboxylic acid and the organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order And heating to obtain a first quantum dot solution; mixing the first quantum dot solution with an organic phosphine in a second order and heating to obtain a second quantum dot solution; performing the second quantum dot solution with an organic amine Mix and heat in three orders to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are performed Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic amine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is mixed with Organic amines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic amine and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is mixed with The organic amine and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot Solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic phosphine is mixed and heated in a second order to obtain a second quantum dot solution; the second quantum dot solution and the organic The amine is mixed in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is mixed with The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • mixing the initial quantum dot solution with an organic amine or the initial quantum dot solution with an organic amine and an organic phosphine in a first order and heating can effectively reduce quantum dots
  • the defect state on the surface further increases the fluorescence intensity of the quantum dots.
  • protonated organic amines on the surface of the quantum dots will produce exciton trapping on the surface of the quantum dots, reducing the transient fluorescence lifetime of the quantum dots.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in the second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in the third order
  • the second compound or the second compound combination can post-process the quantum dots, effectively removing the protonated organic amine on the surface of the quantum dots, thereby increasing the transient lifetime of the quantum dots.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are performed Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are performed Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution with the organic carboxylic acid and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution, organic amine and organic phosphine are mixed and heated in a first order to obtain a first quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acids are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and an organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acids are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acid and organic phosphine are mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acid and The organic phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution, organic amine and organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic carboxylic acid are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed and heated in a first order, and after the organic phosphine processes the initial quantum dot, the anion vacancy on the surface of the quantum dot is optimized.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in the second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in the third order
  • the combination, the third compound or the third compound combination can be interlaced with the first compound or the first compound combination organic phosphine on the surface of the quantum dot, which not only increases the steric hindrance effect of the ligand on the surface of the quantum dot, but also strengthens the surface coordination of the quantum dot
  • the bulk barrier effect reduces the diffusion radius of excitons and enhances the fluorescence intensity of quantum dots.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic amine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic amine are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution with the organic carboxylic acid and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and an organic The phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic carboxylic acid are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and an organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are nB-VIA nanocrystal single-core quantum dots or the shell layer is nB-VIA nanocrystal core-shell quantum dots; wherein, nB-VIA nanocrystals include ZnS, ZnSe, ZnTe, CdSe, CdS, CdTe, CdZnS, CdZnSe, PbSeS, CdZnSeS, CdZnTe, CdSe/ZnS, CdZnSe/ZnS, CdS/CdSe/CdS, ZnS/CdSe/ZnS, etc. Unlimited Here.
  • the mixing and heating process of the three sequences Including the sequence A of mixing the quantum dot solution in the order with organic amine or organic amine and organic phosphine and heating, and mixing the quantum dot solution in the order with organic carboxylic acid or organic carboxylic acid and organic phosphine And heated B order; and the B order is before the A order.
  • the organic carboxylic acid prioritizes the organic amine to post-process the initial quantum dots, which promotes self-maturation of the quantum dots, and reduces the cation vacancies on the surface of the quantum dots, improving the fluorescence intensity; and then using organic amines to post-process the quantum dots can be effective Reducing the melting point of the quantum dot mixed liquid and the turbidity of the quantum dot mixed liquid can also improve the diversity of ligands on the surface of the quantum dots, which is beneficial to improve the film-forming property.
  • the organic phosphine can process the single-core quantum dots of nB-VIA nanocrystals or the core-shell quantum dots whose shells are nB-VIA nanocrystals, which can reduce anion defects and increase the diversity of surface ligands, and is not affected by organic carboxylic acids Or the effect of the order of treatment of organic amines.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and an organic amine are mixed And heating, or mixing the first quantum dot solution with the organic amine and the organic phosphine in a second order and heating to obtain a second quantum dot solution; and performing the third order with the second quantum dot solution and the organic phosphine Mixed and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and an organic phosphine The third order mixing and heating are performed to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The amine is mixed in a second order and heated or the first quantum dot solution is combined with an organic amine and an organic phosphine in a second order Mixing and heating to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and organic The phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are used Mixing and heating in two orders or mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in second order and heating to obtain a second quantum dot solution; performing the second quantum dot solution with an organic amine Mixing and heating in the third order or mixing the second quantum dot solution with the organic amine and the organic phosphine in the third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are nB-VIA nanocrystal single-core quantum dots or the shell layer is nB-VIA nanocrystal core-shell quantum dots.
  • the step of mixing and heating the quantum dot solution of the order with organic carboxylic acid or mixing and heating the quantum dot solution of the order with organic carboxylic acid and organic phosphine, under the condition of temperature of 200 ⁇ 350°C get on.
  • the step of mixing and heating the quantum dot solution and the organic phosphine in the sequence is performed under the condition of a temperature of 80°C to 350°C.
  • the quantum dots in the initial quantum dot solution are HIA-VA nanocrystal single-core quantum dots or the shell layer is mA-VA nanocrystal core-shell quantum dots; wherein, The mA-VA nanocrystals include InP, InN, InAs, InSb, GaAs, GaSb, GaP, GaN, InGaP, etc., but are not limited thereto.
  • the initial quantum dot solution are mA-VA nanocrystalline single-core quantum dots or the shell layer is mA-VA nanocrystalline core-shell quantum dots
  • the initial quantum dot solution and the organic The amine is mixed in a first order and heated or the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution.
  • the shell layer is processed with core-shell quantum dots of mA-VA nanocrystals, which can not only improve the solubility and stability of quantum dots, but also further improve the transient fluorescence and size uniformity of quantum dots.
  • the quantum dots are post-treated with the organic amine.
  • the protonated organic amine exists on the surface of the quantum dots after the organic amine treatment.
  • the solubility and stability of the quantum dots can be improved, the mA-VA quantum dot particles The diameter is small and the exciton radius is large, so it will increase the non-radiative transition on the surface of the quantum dot and reduce the transient fluorescence.
  • subsequent treatment with compounds or compound combinations containing organic carboxylic acids and organic phosphines can not only eliminate the protonated organic amines on the surface of the quantum dots, but also effectively Improve the size uniformity of quantum dots.
  • the organic carboxylic acid can decompose a part of the crystalline unstable shell on the surface of the core-shell quantum dots; the decomposed metal atoms and the organic carboxylic acid form a metal cation precursor again, and the anion and the organic phosphine form an anion precursor again.
  • the anion and cation precursors formed again in the post-processing process will undergo shell growth again on the surface of the core-shell quantum dots.
  • core-shell quantum dots with small particles will be preferentially due to the large body surface and the fast growth rate.
  • the shell is again long, so the final effect is that the size of the core-shell quantum dots is relatively uniform.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic carboxylic acid and organic
  • the phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; and the first quantum dot solution and the organic phosphine are subjected to a second Mixing in sequence and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to a second Sequentially mixing and heating to obtain a second quantum dot solution; the second quantum dot solution is combined with an organic carboxylic acid and an organic phosphine The third order mixing and heating are performed to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots with mA-VA nanocrystals or the core-shell quantum dots with shells are mA-VA nanocrystals.
  • the quantum dots in the initial quantum dot solution are IVA-VIA nanocrystal single-core quantum dots or the shell layer is IVA-VIA nanocrystal core-shell quantum dots; wherein, IVA-VIA nanocrystals include PPbSe, PbS, PbTe, PbSeS, PbSeTe, etc., but are not limited thereto.
  • the initial quantum dot solution are IVA-VIA nanocrystal single-core quantum dots or the shell is IVA-VIA nanocrystal core-shell quantum dots
  • the initial quantum dot solution and the organic The phosphines are mixed and heated in the first order to obtain a first quantum dot solution.
  • Using this method to process single-core quantum dots of IVA-VIA nanocrystals or core-shell quantum dots with shells of IVA-VIA nanocrystals can not only improve the solubility of quantum dots, but also further improve the fluorescence intensity of quantum dots And device stability.
  • the anion vacancy on the surface of the quantum dots can be optimized to improve the fluorescence intensity.
  • the second compound or combination of second compounds containing organic carboxylic acids and organic amines, the third compound or the combination of third compounds (no order requirement) are required for IVA-VIA quantum dots.
  • the treatment can be interlaced with the first compound or the first compound combination organic phosphine on the surface of the quantum dot, which not only enhances the barrier effect of the ligand on the surface of the quantum dot, reduces the diffusion radius of the exciton, but also enhances The ability of quantum dots to resist water and oxygen further improves the stability of devices fabricated with such quantum dots.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to Mixing and heating in two orders or mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in second order and heating to obtain a second quantum dot solution; performing the second quantum dot solution with an organic amine Third order Mixing and heating or mixing the initial quantum dot solution with organic amine and organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are in a second order Mixing and heating or mixing the first quantum dot solution with organic amine and organic phosphine in a second order and heating to obtain a second quantum dot solution; Mixing in sequence and heating or mixing the initial quantum dot solution with organic carboxylic acid and organic phosphine in third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IVA-VIA nanocrystals or the shell are core-shell quantum dots of IVA-VIA nanocrystals, in some embodiments
  • the first order mixing and heating of the initial quantum dot solution and the organic phosphine is performed under the condition of a temperature of 200-350°C.
  • the step of mixing and heating in the second order is performed at a temperature of 80°C to 200°C.
  • the step of mixing and heating in the third order is performed at a temperature of 80°C to 350°C.
  • the quantum dots in the initial quantum dot solution are IB-mA-VIA nanocrystal single-core quantum dots or the shell layer is IB-mA-VIA nanocrystal core-shell quantum dots; Wherein, the IB-mA-VI A nanocrystal includes CuInS, CuInSeS, etc., but it is not limited thereto.
  • the quantum dots in the initial quantum dot solution are IB-mA-VIA nanocrystal single-core quantum dots or the shell layer is: [B-mA-VIA nanocrystal core-shell quantum dots
  • the The second quantum dot solution is mixed with the organic amine in a third order and heated or the second quantum dot solution is mixed with the organic amine and the organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the solubility and stability of the quantum dots be improved, but also the fluorescence intensity and color purity of the quantum dots can be further improved.
  • IB-mA-VI A nanocrystal quantum dots contain many types of elements, and the surface defect states are more than quantum dots of other systems and the surface exciton diffusion path is large. Therefore, organic phosphine or organic carboxylic acid and organic phosphine are used as When the first compound or the first compound combination or the second compound or the second compound combination is applied to the quantum dot, the surface defect state of the quantum dot can be effectively reduced to enhance the fluorescence intensity of the quantum dot, and then the third compound or the third compound can be used Combined organic amine or organic amine plus organic phosphine to treat quantum dots can be attached to the surface of quantum dots together with the first compound or the first compound combination, the second compound or the second compound combination to hinder quantum together The exciton diffusion path on the dot surface reduces the exciton recombination radius and improves the color purity of quantum dots.
  • the initial quantum dot solution is mixed with an organic acid or the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot A solution; mixing the first quantum dot solution with an organic phosphine in a second order and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine or combining the second quantum dot solution with The organic amine and the organic phosphine are mixed in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid or The first quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is combined with an organic amine or the second quantum dot solution Mix with organic amine and organic phosphine in the third order and heat to obtain the third quantum dot solution.
  • the mixing and heating steps of the first order are performed under the condition of a temperature of 250-350°C.
  • the step of mixing and heating in the second order is performed at a temperature of 150°C to 250°C.
  • the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and an organic phosphine in a third order and heated
  • the steps are carried out at a temperature of 80 °C ⁇ 350 °C.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IA-IVA-VIIA nanocrystals or the shell layer are core-shell quantum dots of IA-IVA-VIIA nanocrystals;
  • the IA-IVA-VDA nanocrystals include CsPbCl 3 , CsPbBr 3 , CsPbI 3 and so on, but it is not limited thereto.
  • the three sequences are mixed And the heating process, including the order A of mixing the quantum dot solution with the organic amine or the organic amine and the organic phosphine and heating, and the quantum dot solution with the organic carboxylic acid or the organic carboxylic acid and the organic
  • the phosphine is mixed and heated in sequence B; and the sequence B follows the sequence A. At this time, not only can the solubility and stability of the quantum dots be improved, but also the fluorescence intensity and transient fluorescence of the quantum dots can be further improved.
  • organic amines preferentially perform post-treatment of quantum dots with organic carboxylic acids, which can improve the solubility and stability of quantum dots
  • organic carboxylic acids there are protonated organic amines on the surface of quantum dots treated with organic amines. Due to the relatively poor photoelectric stability of IA-IVA-VIIA nanocrystals, they are more susceptible to surface electrical properties.
  • the subsequent treatment with organic carboxylic acids can effectively eliminate the protonated organic amines on the surface of the quantum dots, improve the surface state of the quantum dots and enhance the fluorescence intensity and transient fluorescence.
  • the treatment sequence of IA-IVA-VIIA nanocrystals by organic phosphine can reduce anion defects and increase surface ligand diversity, and is not affected by the treatment sequence of organic carboxylic acid or organic amine.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to Mixing and heating in two orders or mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in second order and heating to obtain a second quantum dot solution; performing the second quantum dot solution with organic phosphine Mix and heat in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxyl Acid is mixed in a second order and heated or the first quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with The organic phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to a second Sequential mixing and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating or performing the second quantum dot solution with an organic carboxylic acid and an organic phosphine Mix and heat in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine Performing second order mixing and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating or heating the second quantum dot solution with an organic carboxylic acid and The organic phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to a second Sequential mixing Heating or mixing the first quantum dot solution with the organic amine and the organic phosphine in a second order and heating to obtain a second quantum dot solution; performing the third order with the second quantum dot solution and the organic carboxylic acid Mixing and heating or mixing the second quantum dot solution with organic carboxylic acid and organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots with IA-IVA-VIIA nanocrystals or the shell is core-shell quantum dots with IA-IVA-VIIA nanocrystals
  • the first order of mixing and heating in the step of mixing and heating the initial quantum dot solution with the first compound or the first compound in a first order, the first order of mixing and heating The time is 20 ⁇ 100 minutes; in the step of mixing and heating the first quantum dot solution with the second compound or the second compound in the second order, the time for the second order mixing and heating is 20 ⁇ 100 minutes; in the step of mixing and heating the second quantum dot solution with the third compound or the third compound in the third order, the mixing and heating time of the third order is 20 to 100 minutes.
  • the first quantum dot solution is combined with the first compound or the first compound in a first order of mixing and heating steps, the first quantum dot solution and the second compound Or the second compound combination, the second order mixing and heating step, the second quantum dot solution and the third compound or the third compound combination, the third order mixing and heating step, all in an inert gas environment get on.
  • an embodiment of the present application provides a quantum dot post-processing method, including the following steps:
  • the initial quantum dot solution is combined with the first compound or the first compound in a first order and heated to obtain a first quantum dot solution
  • the first compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine
  • the first compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine
  • the second compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the second compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the third compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the third compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the compound used in the mixing and heating process in only one order is an organic carboxylic acid or the compound combination used contains an organic carboxylic acid, and the compound used in the mixing and heating process in only one order is an organic amine or The compound combination used contains organic amines;
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IIB-VIA nanocrystals or the shell layer are core-shell quantum dots of IIB-VIA nanocrystals.
  • the method for post-processing the quantum dots adopts the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination to the initial quantum dot solution in sequence
  • the quantum dots are mixed and heated in three sequences.
  • the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic carboxylic acid at the same time or the compound combination in the mixing and heating process in the adjacent order cannot contain organic amine at the same time;
  • the compound or compound combination used in the heating process cannot contain organic carboxylic acid and organic amine at the same time; and the compound or compound combination used in the heating process in at least one order contains organic carboxylic acid, organic amine or organic phosphine.
  • the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination can sufficiently passivate the quantum
  • the metal atoms and non-metal atoms on the surface of the dot enhance the quantum dot's resistance to water and oxygen and improve the stability of the quantum dot;
  • the first compound or the first compound combination, the second compound or the second compound combination, the first The three compounds or the third compound combination will be interlaced with each other on the surface of the quantum dot.
  • the post-processing method for the quantum dots by using the above method in the embodiment of the present application can also improve the fluorescence intensity of the quantum dots or improve the transient fluorescence of the quantum dots.
  • the initial quantum dot solution is a solution containing quantum dot nanocrystals and a non-eutectic solvent.
  • the initial quantum dot solution also contains a small amount of organic surface modifier, and a small amount of anionic precursor and/or cationic precursor.
  • the initial quantum dot solution is not strictly limited.
  • the initial quantum dot solution may be a quantum dot solution obtained by preparing quantum dots in one step, a quantum dot solution prepared by preparing quantum dots in a two-step method, or a quantum dot solution prepared by preparing quantum dots in a three-step method .
  • the initial quantum dot solution may also be a quantum dot solution formed by being dispersed in a non-eutectic solvent after purification treatment.
  • the one-step method refers to the long core and long shell of the core-shell quantum dots in a reaction vessel.
  • the two-step method refers to the preparation of core-shell quantum dots including two steps: a long core is carried out in a reaction vessel, and the quantum dot core is taken out and placed in another reaction solvent to form a long shell.
  • the three-step method refers to the preparation of core-shell quantum dots including two steps: a reaction vessel for long cores, the quantum dot cores are taken out and placed in another reaction solvent for intermediate shell growth, and the core-shell quantum containing the intermediate shell layer is taken out The spot is placed in the third reaction vessel for outermost shell growth.
  • the quantum dots in the initial quantum dot solution are oil-soluble quantum dots, that is, the surface of the quantum dots contains oil-soluble ligands.
  • the oil-soluble ligands are small oil-soluble organic molecules, including but not limited to organic carboxylic acids, organic amines, organic phosphonic acids, organic phosphines, organic phosphine oxides, and organic thiols.
  • the quantum dots in the initial quantum dot solution using the post-processing method of the embodiment of the present application may be single-core quantum dots of IIB-VIA nanocrystals or the shell layer is a core-shell of IIB-VIA nanocrystals
  • Quantum dots, single-core quantum dots or shells of mA-VA nanocrystals are core-shell quantum dots of mA-V A nanocrystals
  • single-core quantum dots or shells of IVA-VIA nanocrystals are cores of IVA-VIA nanocrystals
  • Shell quantum dots, single-core quantum dots or shells of IB-mA-VIA nanocrystals are core-shell quantum dots of IB-mA-VIA nanocrystals
  • single core quantum dots or shells of IA-IVA-VIIA nanocrystals are IA -Core-shell quantum dots of IVA-VIIA nanocrystals.
  • step B02 the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination are used in sequence to mix and heat in three orders Processing, processing the initial quantum dots to improve the stability and solubility of the quantum dots.
  • the initial quantum dot solution is mixed with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a first order and heated to obtain A first quantum dot solution; mixing the first quantum dot solution with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a second order and heating to obtain a second quantum Dot solution; mixing the second quantum dot solution with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the organic amine is at least one of linear organic amines containing a single amino group, and the number of carbon atoms in the organic amine is 8-18.
  • the organic carboxylic acid is at least one of linear organic carboxylic acids containing a single carboxyl group, and the number of carbon atoms in the organic carboxylic acid is 8-18.
  • the organic phosphine is selected from but not limited to trioctylphosphine and tributylphosphine.
  • the organic amine, organic carboxylic acid, and organic phosphine molecules are liquid at room temperature.
  • the molar ratio of the organic carboxylic acid to the organic phosphine is (3 ⁇ 7) : (7 ⁇ 3 ).
  • the molar ratio of the organic amine to the organic phosphine is (3 ⁇ 7) : (7 ⁇ 3).
  • the initial quantum dot solution is combined with the first compound or the first compound in a first order and heated to obtain a first quantum dot solution.
  • the second compound or the combination of the second compound and the quantum dot molar and mass ratio in the first quantum dot solution (0.5 ⁇ 10mmol): 100 mg, will be
  • the first quantum dot solution is combined with the second compound or the second compound in a second order and heated to obtain a second quantum dot solution.
  • the third compound or the combination of the third compound and the second quantum dot solution in the quantum dot molar to mass ratio (0.5 ⁇ 10mmol): 100 mg the The second quantum dot solution is combined with the third compound or the third compound in the third order and heated to obtain a third quantum dot solution.
  • different types of compounds can be selected in the mixing and heating in three orders Substance or compound combination to process the quantum dots in the initial quantum dot solution. It is worth noting that since the organic carboxylic acid and the organic amine will chemically reduce the post-treatment effect when added at the same time, the first compound or the first compound combination, the second compound or the second compound combination, the first The three compounds or the combination of the third compound cannot be added simultaneously for mixing and heating.
  • the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic carboxylic acid at the same time or the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic amine at the same time; and the same order
  • the compound combination used in the mixing and heating process cannot contain both organic carboxylic acid and organic amine; and at least one sequence of the compound or compound combination used in the mixing and heating process contains organic carboxylic acid, organic amine or organic phosphine.
  • the present application may adopt various embodiments to process the initial quantum dots to improve the stability and solubility of the quantum dots.
  • the initial quantum dot solution is mixed with an organic acid or the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated. After the quantum dots are processed, the cation vacancies on the surface of the quantum dots can be optimized.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in a second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in a third order
  • the compound combination, the third compound or the third compound combination can be interlaced with the first compound or the first compound combination organic carboxylic acid on the surface of the quantum dot, which not only increases the steric hindrance effect of the ligand on the surface of the quantum dot, but also strengthens the quantum dot
  • the barrier effect of surface ligands reduces the diffusion radius of excitons and thus enhances the fluorescence intensity of quantum dots.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are carried out Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are carried out Second order Mixing and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with organic carboxylic acid and organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine and The organic phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic carboxylic acid and the organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are carried out Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic amine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are performed Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution, organic carboxylic acid and organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic amine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with Organic amines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic amine and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with Organic amine and organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot Solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic amine are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; and the first quantum dot solution is combined with The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine or the initial quantum dot solution, the organic amine and the organic phosphine are mixed and heated in a first order, which can effectively reduce quantum dots
  • the defect state on the surface further increases the fluorescence intensity of the quantum dots.
  • protonated organic amines on the surface of the quantum dots will produce exciton trapping on the surface of the quantum dots, reducing the transient fluorescence lifetime of the quantum dots.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in the second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in the third order
  • the second compound or the second compound combination can post-process the quantum dots, effectively removing the protonated organic amine on the surface of the quantum dots, thereby increasing the transient lifetime of the quantum dots.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and Heating to obtain a first quantum dot solution; mixing the first quantum dot solution with an organic carboxylic acid in a second order and heating to obtain a second quantum dot solution; performing the second quantum dot solution with an organic phosphine Mix and heat in three orders to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are performed Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution with the organic carboxylic acid and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution, organic amine and organic phosphine are mixed and heated in a first order to obtain a first quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acid is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic The phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acids are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acid and organic phosphine are mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carrying out the second order mixing and heating of the carboxylic acid and the organic phosphine to obtain a second quantum dot solution; mixing and heating the second order quantum dot solution with the organic amine and the organic phosphine in a third order to obtain a third quantum dot solution .
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic carboxylic acid are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated. After the organic phosphine processes the initial quantum dot, the anion vacancy on the surface of the quantum dot is optimized.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in the second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in the third order
  • the combination, the third compound or the third compound combination can be interlaced with the first compound or the first compound combination organic phosphine on the surface of the quantum dot, which not only increases the steric hindrance effect of the ligand on the surface of the quantum dot, but also strengthens the surface coordination of the quantum dot.
  • the barrier effect of the body reduces the diffusion radius of the exciton In turn, the fluorescence intensity of quantum dots is enhanced.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic amine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic amine are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution with the organic carboxylic acid and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and Heating to obtain a first quantum dot solution; mixing the first quantum dot solution with an organic amine and an organic phosphine in a second order and heating to obtain a second quantum dot solution; combining the second quantum dot solution with an organic carboxyl
  • the acid is mixed in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and an organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IIB-VIA nanocrystals or the shell is nB-VIA nanocrystal core-shell quantum dots; wherein, the nB-VIA nanocrystals include ZnS, ZnSe, ZnTe, CdSe, CdS, CdTe, CdZnS, CdZnSe, PbSeS, CdZnSeS, CdZnTe, CdSe/ZnS, CdZnSe/ZnS, CdS/CdSe/CdS, ZnS/CdSe/ZnS, etc. Not limited to this.
  • the mixing and heating process of the three sequences Including the sequence A of mixing the quantum dot solution in the order with organic amine or organic amine and organic phosphine and heating, and mixing the quantum dot solution in the order with organic carboxylic acid or organic carboxylic acid and organic phosphine And heated B order; and the B order is before the A order.
  • the organic carboxylic acid prioritizes the organic amine to post-process the initial quantum dots, which promotes self-maturation of the quantum dots, and reduces the cation vacancies on the surface of the quantum dots, improving the fluorescence intensity; and then using organic amines to post-process the quantum dots can be effective Reducing the melting point of the quantum dot mixed liquid and the turbidity of the quantum dot mixed liquid can also improve the diversity of ligands on the surface of the quantum dots, which is beneficial to improve the film-forming property.
  • the organic phosphine can process the single-core quantum dots of nB-VIA nanocrystals or the core-shell quantum dots whose shells are nB-VIA nanocrystals, which can reduce anion defects and increase the diversity of surface ligands, and is not affected by organic carboxylic acids Or the effect of the order of treatment of organic amines.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and an organic amine are mixed And heated Step or mixing the first quantum dot solution with the organic amine and the organic phosphine in a second order and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with the organic phosphine in a third order and Heating to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and an organic phosphine The third order mixing and heating are performed to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Amine is mixed in a second order and heated or the first quantum dot solution is mixed with an organic amine and an organic phosphine in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic The phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and organic The phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid Mixing and heating in two orders or mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in second order and heating to obtain a second quantum dot solution; performing the second quantum dot solution with an organic amine Mixing and heating in the third order or mixing the second quantum dot solution with the organic amine and the organic phosphine in the third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are nB-VIA nanocrystal single-core quantum dots or the shell layer is nB-VIA nanocrystal core-shell quantum dots.
  • the step of mixing and heating the quantum dot solution with organic amine in the order or heating and mixing the quantum dot solution with organic amine and organic phosphine in the order at a temperature of 80°C ⁇ 200°C Under conditions.
  • the steps of mixing and heating the quantum dot solution and the organic phosphine in the sequence are performed under the condition of a temperature of 80°C to 350°C.
  • the quantum dots in the initial quantum dot solution are HIA-VA nanocrystal single-core quantum dots or the shell layer is mA-VA nanocrystal core-shell quantum dots; wherein, The mA-VA nanocrystals include InP, InN, InAs, InSb, GaAs, GaSb, GaP, GaN, InGaP, etc., but are not limited thereto.
  • the initial quantum dot solution When the quantum dots in the initial quantum dot solution are mA-VA nanocrystalline single-core quantum dots or the shell layer is mA-VA nanocrystalline core-shell quantum dots, the initial quantum dot solution and the organic The amine is mixed in a first order and heated or the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution.
  • Using this method to process single-core quantum dots of mA-VA nanocrystals or core-shell quantum dots with shells of mA-VA nanocrystals can not only improve the solubility and stability of quantum dots, but also further improve quantum dots The transient fluorescence and size uniformity.
  • the quantum dots are post-treated with the organic amine.
  • the protonated organic amine exists on the surface of the quantum dots after the organic amine treatment.
  • the solubility and stability of the quantum dots can be improved, the mA-VA quantum dot particles The diameter is small and the exciton radius is large, so it will increase the non-radiative transition on the surface of the quantum dot and reduce the transient fluorescence.
  • subsequent treatment with compounds or compound combinations containing organic carboxylic acids and organic phosphines can not only eliminate the protonated organic amines on the surface of the quantum dots, but also effectively Improve the size uniformity of quantum dots.
  • the organic carboxylic acid can decompose a part of the crystalline unstable shell on the core-shell quantum dot surface; the decomposed metal atoms and the organic carboxylic acid form a metal cation precursor again, and the anion and the organic phosphine form an anion precursor again.
  • the anion and cation precursors formed again in the post-processing process will undergo shell growth again on the surface of the core-shell quantum dots.
  • core-shell quantum dots with small particles will be preferentially due to the large body surface and the fast growth rate.
  • the shell is again long, so the final effect is that the size of the core-shell quantum dots is relatively uniform.
  • the first quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic carboxylic acid and organic
  • the phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated
  • first quantum dot solution To obtain a first quantum dot solution; mix the first quantum dot solution with an organic phosphine in a second order and heat to obtain a second quantum dot solution; perform a third with the second quantum dot solution and an organic carboxylic acid Mix and heat sequentially to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to a second Mixing in sequence and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with organic carboxylic acid and organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are HIA-VA nanocrystal single-core quantum dots or the shell layer is HIA-VA nanocrystal core-shell quantum dots.
  • the step of mixing the quantum dot solution and the organic phosphine in the sequence and heating is performed at a temperature of 80°C to 350°C.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IVA-VIA nanocrystals or the shell layer are core-shell quantum dots of IVA-VIA nanocrystals; wherein, IVA-VIA nanocrystals include PPbSe, PbS, PbTe, PbSeS, PbSeTe, etc., but are not limited thereto.
  • the initial quantum dot solution are IVA-VIA nanocrystal single-core quantum dots or the shell is IVA-VIA nanocrystal core-shell quantum dots
  • the initial quantum dot solution and the organic The phosphines are mixed and heated in the first order to obtain a first quantum dot solution.
  • Using this method to process single-core quantum dots of IVA-VIA nanocrystals or core-shell quantum dots with shells of IVA-VIA nanocrystals can not only improve the solubility of quantum dots, but also further improve the fluorescence intensity of quantum dots And device stability.
  • organic Phosphine treatment of quantum dots can optimize the anion vacancies on the surface of quantum dots to improve the fluorescence intensity.
  • the second compound or combination of second compounds containing organic carboxylic acids and organic amines, the third compound or the combination of third compounds (no order requirement) are required for IVA-VIA quantum dots.
  • the treatment can be interlaced with the first compound or the first compound combination organic phosphine on the surface of the quantum dot, which not only enhances the barrier effect of the ligand on the surface of the quantum dot, reduces the diffusion radius of the exciton, but also enhances The ability of quantum dots to resist water and oxygen further improves the stability of devices fabricated with such quantum dots.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to Mixing and heating in two orders or mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in second order and heating to obtain a second quantum dot solution; performing the second quantum dot solution with an organic amine Mixing and heating in the third order or mixing the initial quantum dot solution with the organic amine and the organic phosphine in the third order and heating to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are in a second order Mixing and heating or mixing the first quantum dot solution with organic amine and organic phosphine in a second order and heating to obtain a second quantum dot solution; Mixing in sequence and heating or mixing the initial quantum dot solution with organic carboxylic acid and organic phosphine in third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots with IVA-VIA nanocrystals or the shells are core-shell quantum dots with IVA-VIA nanocrystals.
  • the first order mixing and heating of the initial quantum dot solution and the organic phosphine is performed under the condition of a temperature of 200-350°C.
  • the step of mixing and heating in the second order is performed at a temperature of 80°C to 200°C.
  • the step of mixing and heating in the third order is performed at a temperature of 80°C to 350°C.
  • the quantum dots in the initial quantum dot solution are IB-mA-VIA nanocrystal single-core quantum dots or the shell layer is IB-mA-VIA nanocrystal core-shell quantum dots; Wherein, the IB-mA-VI A nanocrystal includes CuInS, CuInSeS, etc., but it is not limited thereto.
  • the quantum dots in the initial quantum dot solution are IB-mA-VIA nanocrystal single-core quantum dots or the shell layer is: [B-mA-VIA nanocrystal core-shell quantum dots
  • the The second quantum dot solution is mixed with the organic amine in a third order and heated or the second quantum dot solution is mixed with the organic amine and the organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the solubility and stability of the quantum dots be improved, but also the fluorescence intensity and color purity of the quantum dots can be further improved.
  • IB-mA-VI A nanocrystal quantum dots contain many types of elements, and the surface defect states are more than quantum dots of other systems and the surface exciton diffusion path is large. Therefore, organic phosphine or organic carboxylic acid and organic phosphine are used as When the first compound or the first compound combination or the second compound or the second compound combination is applied to the quantum dot, the surface defect state of the quantum dot can be effectively reduced to enhance the fluorescence intensity of the quantum dot, and then the third compound or the third compound can be used Combined organic amines or organic amines plus organic phosphines to treat quantum dots can be attached to the surface of quantum dots together with the first compound or the first compound combination, the second compound or the second compound combination to jointly hinder the exciton diffusion path on the quantum dot surface and reduce The exciton recombination radius further improves the color purity of quantum dots.
  • the initial quantum dot solution is mixed with an organic acid or the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot A solution; mixing the first quantum dot solution with an organic phosphine in a second order and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine or combining the second quantum dot solution with The organic amine and the organic phosphine are mixed in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid or The first quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is combined with an organic amine or the second quantum dot solution Mix with organic amine and organic phosphine in the third order and heat to obtain the third quantum dot solution.
  • the mixing and heating steps of the first order are performed under the condition of a temperature of 250-350°C.
  • the step of mixing and heating in the second order is performed at a temperature of 150°C to 250°C.
  • the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and an organic phosphine in a third order and heated The steps in Wen The temperature is 80°C ⁇ 350°C.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IA-IVA-VIIA nanocrystals or the shell layer are core-shell quantum dots of IA-IVA-VIIA nanocrystals;
  • the IA-IVA-VDA nanocrystals include CsPbCl 3 , CsPbBr 3 , CsPbI 3 and so on, but it is not limited thereto.
  • the three sequences are mixed And the heating process, including the order A of mixing the quantum dot solution with the organic amine or the organic amine and the organic phosphine and heating, and the quantum dot solution with the organic carboxylic acid or the organic carboxylic acid and the organic
  • the phosphine is mixed and heated in sequence B; and the sequence B follows the sequence A. At this time, not only can the solubility and stability of the quantum dots be improved, but also the fluorescence intensity and transient fluorescence of the quantum dots can be further improved.
  • organic amines preferentially post-process quantum dots with organic carboxylic acids, which can improve the solubility and stability of quantum dots.
  • protonated organic amines exist on the surface of quantum dots after organic amine treatment. Since IA-IVA-VIIA nanometers The photoelectric stability of the crystal is relatively poor and it is easily affected by the electrical properties of the surface.
  • the treatment with organic carboxylic acids can effectively eliminate the protonated organic amines on the surface of the quantum dots, improve the surface state of the quantum dots and enhance the fluorescence intensity and transient fluorescence.
  • the treatment sequence of organic phosphine on IA-IVA-VIIA nanocrystals can reduce anion defects and increase surface ligand diversity, and is not affected by the treatment sequence of organic carboxylic acid or organic amine.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to Mixing and heating in two orders or mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in second order and heating to obtain a second quantum dot solution; performing the second quantum dot solution with organic phosphine Mix and heat in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxyl Acid is mixed in a second order and heated or the first quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with The organic phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated To obtain a first quantum dot solution; mix the first quantum dot solution with an organic phosphine in a second order and heat to obtain a second quantum dot solution; perform a third with the second quantum dot solution and an organic carboxylic acid Mixing in sequence and heating or mixing the second quantum dot solution with organic carboxylic acid and organic phosphine in third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine Performing second order mixing and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating or heating the second quantum dot solution with an organic carboxylic acid and The organic phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; and the first quantum dot solution and the organic amine are subjected to a second Mixing and heating in sequence or mixing the first quantum dot solution with organic amine and organic phosphine in second sequence and heating to obtain a second quantum dot solution; performing the second quantum dot solution with organic carboxylic acid Mixing in three orders and heating or mixing the second quantum dot solution with organic carboxylic acid and organic phosphine in third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IA-IVA-VIIA nanocrystals or the shell layer are core-shell quantum dots of IA-IVA-VIIA nanocrystals
  • the first order of mixing and heating The time is 20 ⁇ 100 minutes; in the step of mixing and heating the first quantum dot solution with the second compound or the second compound in the second order, the time for the second order mixing and heating is 20 ⁇ 100 minutes; mix the second quantum dot solution with the third compound or the third compound in a third order and add In the heating step, the mixing and heating time of the third order is 20 to 100 minutes.
  • the first quantum dot solution is combined with the first compound or the first compound in a first order of mixing and heating steps, the first quantum dot solution and the second compound Or the second compound combination, the second order mixing and heating step, the second quantum dot solution and the third compound or the third compound combination, the third order mixing and heating step, all in an inert gas environment get on.
  • an embodiment of the present application provides a quantum dot post-processing method, including the following steps:
  • the first compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine
  • the first compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine
  • the second compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the second compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the third compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine, and the third compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine;
  • the compound used in the mixing and heating process in only one order is an organic carboxylic acid or the compound combination used contains an organic carboxylic acid, and the compound used in the mixing and heating process in only one is an organic amine or used
  • the compound combination contains organic amines;
  • the quantum dots in the initial quantum dot solution are IA-IVA-VIIA nanocrystal single-core quantum dots or the shell layer is IA-IVA-VIIA nanocrystal core-shell quantum dots.
  • the post-processing method of quantum dots provided in the embodiments of the present application adopts the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination to the initial quantum dot solution in turn
  • the quantum dots are mixed and heated in three sequences. Among them, there is only one order of mixing
  • the compound used in the heating process is an organic carboxylic acid or the compound combination used contains an organic carboxylic acid, and only one compound used in the mixing and heating process is an organic amine or the compound combination used contains an organic amine.
  • the method for post-processing quantum dots by using the above method in the embodiments of the present application.
  • the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination can sufficiently passivate the quantum
  • the metal atoms and non-metal atoms on the surface of the dot enhance the quantum dot's resistance to water and oxygen and improve the stability of the quantum dot; on the other hand, the first compound or the first compound combination, the second compound or the second compound combination
  • the three compounds or the third compound combination will be interlaced with each other on the surface of the quantum dot. Due to the different types and the different chain lengths of the three types of compounds or compound combinations, the steric hindrance effect of the ligand on the surface of the quantum dot will be increased, which will increase The solubility of quantum dots.
  • the post-processing method for the quantum dots by using the above method in the embodiment of the present application can also improve the fluorescence intensity of the quantum dots or improve the transient fluorescence of the quantum dots.
  • the initial quantum dot solution is a solution containing quantum dot nanocrystals and a non-eutectic solvent.
  • the initial quantum dot solution also contains a small amount of organic surface modifier, and a small amount of anionic precursor and/or cationic precursor.
  • the initial quantum dot solution is not strictly limited.
  • the initial quantum dot solution may be a quantum dot solution obtained by preparing quantum dots in one step, a quantum dot solution prepared by preparing quantum dots in a two-step method, or a quantum dot solution prepared by preparing quantum dots in a three-step method .
  • the initial quantum dot solution may also be a quantum dot solution formed by being dispersed in a non-eutectic solvent after purification treatment.
  • the one-step method refers to the long core and long shell of the core-shell quantum dots in a reaction vessel.
  • the two-step method refers to the preparation of core-shell quantum dots including two steps: a long core is carried out in a reaction vessel, and the quantum dot core is taken out and placed in another reaction solvent to form a long shell.
  • the three-step method refers to the preparation of core-shell quantum dots including two steps: a reaction vessel for long cores, the quantum dot cores are taken out and placed in another reaction solvent for intermediate shell growth, and the core-shell quantum containing the intermediate shell layer is taken out The spot is placed in the third reaction vessel for outermost shell growth.
  • the quantum dots in the initial quantum dot solution are oil-soluble quantum dots, that is, the surface of the quantum dots contains oil-soluble ligands.
  • the oil-soluble ligands are small oil-soluble organic molecules, including but not limited to organic carboxylic acids, organic amines, organic phosphonic acids, organic phosphines, organic phosphine oxides, and organic thiols.
  • the quantum dots in the initial quantum dot solution using the post-processing method of the embodiment of the present application may be single-core quantum dots of IIB-VIA nanocrystals or the shell layer is a core-shell of IIB-VIA nanocrystals
  • Quantum dots, single-core quantum dots or shells of mA-VA nanocrystals are core-shell quantum dots of mA-V A nanocrystals
  • single-core quantum dots or shells of IVA-VIA nanocrystals are cores of IVA-VIA nanocrystals
  • Shell quantum dots, single-core quantum dots or shells of IB-mA-VIA nanocrystals are core-shell quantum dots of IB-mA-VIA nanocrystals
  • single core quantum dots or shells of IA-IVA-VIIA nanocrystals are IA -Core-shell quantum dots of IVA-VIIA nanocrystals.
  • step C02 the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination are used in sequence to mix and heat in three orders Processing, processing the initial quantum dots to improve the stability and solubility of the quantum dots.
  • the initial quantum dot solution is mixed with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a first order and heated to obtain A first quantum dot solution; mixing the first quantum dot solution with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a second order and heating to obtain a second quantum Dot solution; mixing the second quantum dot solution with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the organic amine is at least one of linear organic amines containing a single amino group, and the number of carbon atoms in the organic amine is 8-18.
  • the organic carboxylic acid is at least one of linear organic carboxylic acids containing a single carboxyl group, and the number of carbon atoms in the organic carboxylic acid is 8-18.
  • the organic phosphine is selected from but not limited to trioctylphosphine and tributylphosphine.
  • the organic amine, organic carboxylic acid, and organic phosphine molecules are liquid at room temperature.
  • the molar ratio of the organic carboxylic acid to the organic phosphine is (3 ⁇ 7) : (7 ⁇ 3 )
  • the molar ratio of the organic amine to the organic phosphine is (3 ⁇ 7) : (7 ⁇ 3).
  • the first compound or the combination of the first compound and the initial quantum dot solution quantum dot molar to mass ratio (0.5 ⁇ 10mmol) : 100 mg
  • the The initial quantum dot solution is combined with the first compound or the first compound in a first order and heated to obtain a first quantum dot solution.
  • the second compound or the combination of the second compound and the quantum dot molar and mass ratio in the first quantum dot solution 0.5 ⁇ 10mmol: 100 mg
  • the first quantum dot solution is combined with the second compound or the second compound in a second order and heated to obtain a second quantum dot solution.
  • the third compound or the combination of the third compound and the quantum dot molar and mass ratio in the second quantum dot solution (0.5 ⁇ 10mmol): 100 mg, will be The second quantum dot solution is combined with the third compound or the third compound in the third order and heated to obtain a third quantum dot solution.
  • different types of compounds or compound combinations may be selected respectively in the mixing and heating in three orders to process the quantum dots in the initial quantum dot solution. It is worth noting that since the organic carboxylic acid and the organic amine will chemically reduce the post-treatment effect when added at the same time, the first compound or the first compound combination, the second compound or the second compound combination, the first The three compounds or the combination of the third compound cannot be added simultaneously for mixing and heating.
  • the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic carboxylic acid at the same time or the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic amine at the same time; and the same order
  • the compound combination used in the mixing and heating process cannot contain both organic carboxylic acid and organic amine; and at least one sequence of the compound or compound combination used in the mixing and heating process contains organic carboxylic acid, organic amine or organic phosphine.
  • the present application may adopt various embodiments to process the initial quantum dots to improve the stability and solubility of the quantum dots.
  • the initial quantum dot solution is mixed with an organic acid or the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated. After the quantum dots are processed, the cation vacancies on the surface of the quantum dots can be optimized.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in a second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in a third order
  • the compound combination, the third compound or the third compound combination can be interlaced with the first compound or the first compound combination organic carboxylic acid on the surface of the quantum dot, which not only increases the steric hindrance effect of the ligand on the surface of the quantum dot, but also strengthens the quantum dot
  • the barrier effect of surface ligands reduces the diffusion radius of excitons and enhances the quantum dot The fluorescence intensity.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are carried out Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are carried out Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine and The organic phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic carboxylic acid and the organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic amine in a third order and heating to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are carried out Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic carboxylic acid and organic phosphine are subjected to a first order Mix and heat to obtain the first quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic amine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is mixed with Organic amines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; and the first quantum dot solution is combined with The organic amine and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic amine and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot Solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic amine are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; and the first quantum dot solution is combined with The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • mixing the initial quantum dot solution with an organic amine or the initial quantum dot solution with an organic amine and an organic phosphine in a first order and heating can effectively reduce quantum dots
  • the defect state on the surface further increases the fluorescence intensity of the quantum dots.
  • the organic amine containing protonation on the surface of the quantum dot will produce exciton trapping on the surface of the quantum dot, which reduces the transient fluorescence lifetime of the quantum dot.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in the second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in the third order
  • the second compound or the second compound combination can post-process the quantum dots, effectively removing the protonated organic amine on the surface of the quantum dots, thereby increasing the transient lifetime of the quantum dots.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are performed Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution with the organic carboxylic acid and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acids are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and an organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acids are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acid and organic phosphine are mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carrying out the second order mixing and heating of the carboxylic acid and the organic phosphine to obtain a second quantum dot solution; mixing and heating the second order quantum dot solution with the organic amine and the organic phosphine in a third order to obtain a third quantum dot solution .
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic carboxylic acid are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Phosphine Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution with the organic carboxylic acid and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed and heated in a first order. After the organic phosphine processes the initial quantum dot, the anion vacancy on the surface of the quantum dot is optimized.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in the second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in the third order
  • the combination, the third compound or the third compound combination can be interlaced with the first compound or the first compound combination organic phosphine on the surface of the quantum dot, which not only increases the steric hindrance effect of the ligand on the surface of the quantum dot, but also strengthens the surface coordination of the quantum dot
  • the bulk barrier effect reduces the diffusion radius of excitons and enhances the fluorescence intensity of quantum dots.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic amine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic amine are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution with the organic carboxylic acid and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and an organic The phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic carboxylic acid are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and an organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IIB-VIA nanocrystals or the shell layers are nB-VIA nanocrystal core-shell quantum dots; wherein, nB-VIA nanocrystals include ZnS, ZnSe, ZnTe, CdSe, CdS, CdTe, CdZnS, CdZnSe, PbSeS, CdZnSeS, CdZnTe, CdSe/ZnS, CdZnSe/ZnS, CdS/CdSe/CdS, ZnS/CdSe/ZnS, etc. Not limited to this.
  • the mixing and heating process of the three sequences Including the sequence A of mixing the quantum dot solution in the order with organic amine or organic amine and organic phosphine and heating, and mixing the quantum dot solution in the order with organic carboxylic acid or organic carboxylic acid and organic phosphine And heated B order; and the B order is before the A order.
  • organic carboxylic acid Prioritize organic amines for post-treatment of the initial quantum dots, promote quantum dot self-maturation, and reduce the cation vacancies on the surface of the quantum dots, improve fluorescence intensity; and then use organic amines for post-treatment of quantum dots can effectively reduce the quantum dot mixture
  • the melting point reduces the turbidity of the quantum dot mixture, and at the same time, it can improve the diversity of ligands on the surface of the quantum dot, which is beneficial to improve the film-forming property.
  • the organic phosphine can process the single-core quantum dots of nB-VIA nanocrystals or the core-shell quantum dots whose shells are nB-VIA nanocrystals, which can reduce anion defects and increase the diversity of surface ligands, and is not affected by organic carboxylic acids Or the effect of the order of treatment of organic amines.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and an organic amine are mixed And heating, or mixing the first quantum dot solution with the organic amine and the organic phosphine in a second order and heating to obtain a second quantum dot solution; and performing the third order with the second quantum dot solution and the organic phosphine Mixed and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and an organic phosphine The third order mixing and heating are performed to obtain a third quantum dot solution.
  • the first quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Amine is mixed in a second order and heated or the first quantum dot solution is mixed with an organic amine and an organic phosphine in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic The phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and organic The phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated To obtain a first quantum dot solution; mixing the first quantum dot solution with an organic carboxylic acid in a second order and heating or mixing the first quantum dot solution with an organic carboxylic acid and an organic phosphine in a second order And heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine in a third order and heating or mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order And heating, to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are nB-VIA nanocrystal single-core quantum dots or the shell layer is nB-VIA nanocrystal core-shell quantum dots.
  • the step of mixing and heating the quantum dot solution of the order with organic carboxylic acid or mixing and heating the quantum dot solution of the order with organic carboxylic acid and organic phosphine, under the condition of temperature of 200 ⁇ 350°C get on.
  • the step of mixing and heating the quantum dot solution and the organic phosphine in the sequence is performed under the condition of a temperature of 80°C to 350°C.
  • the quantum dots in the initial quantum dot solution are HIA-VA nanocrystal single-core quantum dots or the shell layer is mA-VA nanocrystal core-shell quantum dots; wherein, The mA-VA nanocrystals include InP, InN, InAs, InSb, GaAs, GaSb, GaP, GaN, InGaP, etc., but are not limited thereto.
  • the initial quantum dot solution are mA-VA nanocrystal single-core quantum dots or the shell layer is mA-VA nanocrystal core-shell quantum dots
  • the initial quantum dot solution and the organic The amine is mixed in a first order and heated or the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution.
  • Using this method to process single-core quantum dots of mA-VA nanocrystals or core-shell quantum dots with shells of mA-VA nanocrystals can not only improve the solubility and stability of quantum dots, but also further improve quantum dots The transient fluorescence and size uniformity.
  • the quantum dots are post-treated with the organic amine.
  • the protonated organic amine exists on the surface of the quantum dots after the organic amine treatment.
  • the solubility and stability of the quantum dots can be improved, the mA-VA quantum dot particles The diameter is small and the exciton radius is large, so it will increase the non-radiative transition on the surface of the quantum dot and reduce the transient fluorescence.
  • subsequent treatment with compounds or compound combinations containing organic carboxylic acids and organic phosphines can not only eliminate the protonated organic amines on the surface of the quantum dots, but also effectively Improve the size uniformity of quantum dots.
  • organic carboxylic acids can make the core
  • the shells with unstable crystals on the surface of the shell quantum dots decompose a part; the decomposed metal atoms and the organic carboxylic acid form the metal cation precursor again, and the anion and the organic phosphine form the anion precursor again.
  • the anion and cation precursors formed again in the post-processing process will undergo shell growth again on the surface of the core-shell quantum dots.
  • core-shell quantum dots with small particles will be preferentially due to the large body surface and the fast growth rate.
  • the shell is again long, so the final effect is that the size of the core-shell quantum dots is relatively uniform.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic carboxylic acid and an organic The phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to a second Mixing in sequence and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated
  • first quantum dot solution To obtain a first quantum dot solution; mixing the first quantum dot solution with an organic phosphine in a second order and heating to obtain a second quantum dot solution; combining the second quantum dot solution with an organic carboxylic acid and an organic phosphine The third order mixing and heating are performed to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are mA-VA nanocrystalline single-core quantum dots or the shell is mA-VA nanocrystalline core-shell quantum dots.
  • the quantum dot solution in this order is mixed with an organic phosphine
  • the step of combined heating is performed under the condition of a temperature of 80°C to 350°C.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IVA-VIA nanocrystals or the shell layer are core-shell quantum dots of IVA-VIA nanocrystals; wherein, IVA-VIA nanocrystals include PPbSe, PbS, PbTe, PbSeS, PbSeTe, etc., but are not limited thereto.
  • the initial quantum dot solution are IVA-VIA nanocrystal single-core quantum dots or the shell is IVA-VIA nanocrystal core-shell quantum dots
  • the initial quantum dot solution and the organic The phosphines are mixed and heated in the first order to obtain a first quantum dot solution.
  • Using this method to process single-core quantum dots of IVA-VIA nanocrystals or core-shell quantum dots with shells of IVA-VIA nanocrystals can not only improve the solubility of quantum dots, but also further improve the fluorescence intensity of quantum dots And device stability.
  • the anion vacancy on the surface of the quantum dots can be optimized to improve the fluorescence intensity.
  • the second compound or combination of second compounds containing organic carboxylic acids and organic amines, the third compound or the combination of third compounds (no order requirement) are required for IVA-VIA quantum dots.
  • the treatment can be interlaced with the first compound or the first compound combination organic phosphine on the surface of the quantum dot, which not only enhances the barrier effect of the ligand on the surface of the quantum dot, reduces the diffusion radius of the exciton, but also enhances The ability of quantum dots to resist water and oxygen further improves the stability of devices fabricated with such quantum dots.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to Mixing and heating in two orders or mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in second order and heating to obtain a second quantum dot solution; performing the second quantum dot solution with an organic amine Mixing and heating in the third order or mixing the initial quantum dot solution with the organic amine and the organic phosphine in the third order and heating to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are in a second order Mixing and heating or mixing the first quantum dot solution with organic amine and organic phosphine in a second order and heating to obtain a second quantum dot solution; Mixing in sequence and heating or mixing the initial quantum dot solution with organic carboxylic acid and organic phosphine in third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots with IVA-VIA nanocrystals or the shell are core-shell quantum dots with IVA-VIA nanocrystals.
  • the first order mixing and heating of the initial quantum dot solution and the organic phosphine is performed under the condition of a temperature of 200-350°C.
  • the step of mixing and heating in the second order is performed at a temperature of 80°C to 200°C.
  • the step of mixing and heating in the third order is performed at a temperature of 80°C to 350°C.
  • the quantum dots in the initial quantum dot solution are IB-mA-VIA nanocrystal single-core quantum dots or the shell is IB-mA-VIA nanocrystal core-shell quantum dots;
  • the IB-mA-VI A nanocrystal includes CuInS, CuInSeS, etc., but it is not limited thereto.
  • the quantum dots in the initial quantum dot solution are IB-mA-VIA nanocrystal single-core quantum dots or the shell layer is: [B-mA-VIA nanocrystal core-shell quantum dots
  • the The second quantum dot solution is mixed with the organic amine in a third order and heated or the second quantum dot solution is mixed with the organic amine and the organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the solubility and stability of the quantum dots be improved, but also the fluorescence intensity and color purity of the quantum dots can be further improved.
  • IB-mA-VI A nanocrystal quantum dots contain many types of elements, and the surface defect states are more than quantum dots of other systems and the surface exciton diffusion path is large. Therefore, organic phosphine or organic carboxylic acid and organic phosphine are used as When the first compound or the first compound combination or the second compound or the second compound combination is applied to the quantum dot, the surface defect state of the quantum dot can be effectively reduced to enhance the fluorescence intensity of the quantum dot, and then the third compound or the third compound can be used Combined organic amines or organic amines plus organic phosphines to treat quantum dots can be attached to the surface of quantum dots together with the first compound or the first compound combination, the second compound or the second compound combination to jointly hinder the exciton diffusion path on the quantum dot surface and reduce The exciton recombination radius further improves the color purity of quantum dots.
  • the initial quantum dot solution is mixed with an organic acid or the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot A solution; mixing the first quantum dot solution with an organic phosphine in a second order and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine or combining the second quantum dot solution with The organic amine and the organic phosphine are mixed in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated
  • first quantum dot solution To obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid or the first quantum Dot solution and organic carboxylic acid and organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic amine or the second quantum dot solution and the organic amine and organic The phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the mixing and heating steps of the first order are performed under the condition of a temperature of 250-350°C.
  • the step of mixing and heating in the second order is performed at a temperature of 150°C to 250°C.
  • the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and an organic phosphine in a third order and heated
  • the steps are carried out at a temperature of 80 °C ⁇ 350 °C.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IA-IVA-VIIA nanocrystals or the shell layer are core-shell quantum dots of IA-IVA-VIIA nanocrystals;
  • the IA-IVA-VDA nanocrystals include CsPbCl 3 , CsPbBr 3 , CsPbI 3 and so on, but it is not limited thereto.
  • the three sequences are mixed And the heating process, including the order A of mixing the quantum dot solution with the organic amine or the organic amine and the organic phosphine and heating, and the quantum dot solution with the organic carboxylic acid or the organic carboxylic acid and the organic
  • the phosphine is mixed and heated in sequence B; and the sequence B follows the sequence A. At this time, not only can the solubility and stability of the quantum dots be improved, but also the fluorescence intensity and transient fluorescence of the quantum dots can be further improved.
  • organic amines preferentially post-treat quantum dots with organic carboxylic acids to improve the solubility and stability of quantum dots, but there are protonated organic amines on the surface of quantum dots after organic amine treatment.
  • the photoelectric stability of the crystal is relatively poor and it is easily affected by the electrical properties of the surface.
  • the treatment with organic carboxylic acids can effectively eliminate the protonated organic amines on the surface of the quantum dots, improve the surface state of the quantum dots and enhance the fluorescence intensity and transient fluorescence.
  • the treatment sequence of organic phosphine on IA-IVA-VIIA nanocrystals can reduce anion defects and increase surface ligand diversity, and is not affected by the treatment sequence of organic carboxylic acids or organic amines.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to the first Mixed order Combining heating or mixing the first quantum dot solution with the organic carboxylic acid and the organic phosphine in a second order and heating to obtain a second quantum dot solution; performing the third order of the second quantum dot solution with the organic phosphine Mix and heat to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic carboxylate Acid is mixed in a second order and heated or the first quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with The organic phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to a second Sequential mixing and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating or performing the second quantum dot solution with an organic carboxylic acid and an organic phosphine Mix and heat in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine Performing second order mixing and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating or heating the second quantum dot solution with an organic carboxylic acid and The organic phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to a second Mixing and heating in sequence or mixing the first quantum dot solution with organic amine and organic phosphine in second sequence and heating to obtain a second quantum dot solution; performing the second quantum dot solution with organic carboxylic acid Mixing in three orders and heating or mixing the second quantum dot solution with organic carboxylic acid and organic phosphine in third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IA-IVA-VIIA nanocrystals or the shell layer are core-shell quantum dots of IA-IVA-VIIA nanocrystals
  • the first order of mixing and heating in the step of mixing and heating the initial quantum dot solution with the first compound or the first compound in a first order, the first order of mixing and heating The time is 20 ⁇ 100 minutes; in the step of mixing and heating the first quantum dot solution with the second compound or the second compound in the second order, the time for the second order mixing and heating is 20 ⁇ 100 minutes; in the step of mixing and heating the second quantum dot solution with the third compound or the third compound in the third order, the mixing and heating time of the third order is 20 to 100 minutes.
  • the first quantum dot solution and the first compound or the first compound are combined in a first order of mixing and heating steps, the first quantum dot solution and the second compound Or the second compound combination, the second order mixing and heating step, the second quantum dot solution and the third compound or the third compound combination, the third order mixing and heating step, all in an inert gas environment get on.
  • an embodiment of the present application provides a quantum dot post-processing method, including the following steps:
  • D01 ⁇ Provide an initial quantum dot solution
  • the second compound is selected from an organic carboxylic acid, an organic amine or an organic phosphine
  • the second compound combination is selected from an organic carboxylic acid and an organic phosphine or an organic amine and an organic phosphine
  • the third compound is selected from an organic carboxylic acid, an organic amine, or an organic phosphine, and the third compound combination is selected from Organic carboxylic acid and organic phosphine or organic amine and organic phosphine;
  • the compound used in the mixing and heating process in only one order is an organic carboxylic acid or the compound combination used contains an organic carboxylic acid, and the compound used in the mixing and heating process in only one order is an organic amine or The compound combination used contains organic amines.
  • the post-processing method of quantum dots provided in the embodiments of the present application adopts the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination to the initial quantum dot solution sequentially
  • the quantum dots are mixed and heated in three sequences.
  • the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic carboxylic acid at the same time or the compound combination in the mixing and heating process in the adjacent order cannot contain organic amine at the same time;
  • the compound or compound combination used in the heating process cannot contain organic carboxylic acid and organic amine at the same time; and the compound or compound combination used in the heating process in at least one order contains organic carboxylic acid, organic amine or organic phosphine.
  • the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination can sufficiently passivate the quantum
  • the metal atoms and non-metal atoms on the surface of the dot enhance the quantum dot's resistance to water and oxygen and improve the stability of the quantum dot;
  • the first compound or the first compound combination, the second compound or the second compound combination, the The three compounds or the third compound combination will be interlaced with each other on the surface of the quantum dot.
  • the post-processing method of the quantum dots by using the above method in the embodiment of the present application can also improve the fluorescence intensity of the quantum dots or improve the transient fluorescence of the quantum dots.
  • the initial quantum dot solution is a solution containing quantum dot nanocrystals and a non-eutectic solvent.
  • the initial quantum dot solution also contains a small amount of organic surface modifier, and a small amount of anionic precursor and/or cationic precursor.
  • the initial quantum dot solution is not strictly limited.
  • the initial quantum dot solution may be a quantum dot solution obtained by preparing quantum dots in one step, a quantum dot solution prepared by preparing quantum dots in a two-step method, or a quantum dot solution prepared by preparing quantum dots in a three-step method .
  • the initial quantum dot solution may also be a quantum dot solution formed by being dispersed in a non-eutectic solvent after purification treatment.
  • the one-step method refers to the long core and long shell of the core-shell quantum dots in a reaction vessel.
  • the method refers to the preparation of core-shell quantum dots including two steps: Long cores are carried out in one reaction vessel, and the quantum dot cores are taken out and placed in another reaction solvent for long shells.
  • the three-step method refers to the preparation of core-shell quantum dots including two steps: a reaction vessel for long cores, the quantum dot cores are taken out and placed in another reaction solvent for intermediate shell growth, and the core-shell quantum containing the intermediate shell layer is taken out The spot is placed in the third reaction vessel for outermost shell growth.
  • the quantum dots in the initial quantum dot solution are oil-soluble quantum dots, that is, the surface of the quantum dots contains oil-soluble ligands.
  • the oil-soluble ligands are small oil-soluble organic molecules, including but not limited to organic carboxylic acids, organic amines, organic phosphonic acids, organic phosphines, organic phosphine oxides, and organic thiols.
  • the quantum dots in the initial quantum dot solution using the post-processing method of the embodiment of the present application may be single-core quantum dots of IIB-VIA nanocrystals or the shell layer is a core-shell of IIB-VIA nanocrystals
  • Quantum dots, single-core quantum dots or shells of mA-VA nanocrystals are core-shell quantum dots of mA-V A nanocrystals
  • single-core quantum dots or shells of IVA-VIA nanocrystals are cores of IVA-VIA nanocrystals
  • Shell quantum dots, single-core quantum dots or shells of IB-mA-VIA nanocrystals are core-shell quantum dots of IB-mA-VIA nanocrystals
  • single core quantum dots or shells of IA-IVA-VIIA nanocrystals are IA -Core-shell quantum dots of IVA-VIIA nanocrystals.
  • step D02 the first compound or the first compound combination, the second compound or the second compound combination, the third compound or the third compound combination are used in sequence to mix and heat in three orders Processing, processing the initial quantum dots to improve the stability and solubility of the quantum dots.
  • the initial quantum dot solution is mixed with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a first order and heated to obtain A first quantum dot solution; mixing the first quantum dot solution with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a second order and heating to obtain a second quantum Dot solution; mixing the second quantum dot solution with organic carboxylic acid, organic amine, organic phosphine, organic carboxylic acid and organic phosphine or organic amine and organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the organic amine is at least one of linear organic amines containing a single amino group, and the number of carbon atoms in the organic amine is 8-18.
  • the organic carboxylic acid is at least one of linear organic carboxylic acids containing a single carboxyl group, and the number of carbon atoms in the organic carboxylic acid is 8-18.
  • the organic phosphine is selected from but not limited to trioctylphosphine and tributylphosphine.
  • the organic amine, organic carboxylic acid, and organic phosphine molecules are liquid at room temperature.
  • the molar ratio of the organic carboxylic acid to the organic phosphine is (3 ⁇ 7) : (7 ⁇ 3 ).
  • the molar ratio of the organic amine to the organic phosphine is (3 ⁇ 7) : (7 ⁇ 3).
  • the initial quantum dot solution is combined with the first compound or the first compound in a first order and heated to obtain a first quantum dot solution.
  • the second compound or the combination of the second compound and the quantum dot molar and mass ratio in the first quantum dot solution (0.5 ⁇ 10mmol): 100 mg, will be
  • the first quantum dot solution is combined with the second compound or the second compound in a second order and heated to obtain a second quantum dot solution.
  • the third compound or the combination of the third compound and the second quantum dot solution quantum dot molar to mass ratio (0.5 ⁇ 10mmol): 100 mg,
  • the second quantum dot solution is combined with the third compound or the third compound in the third order and heated to obtain a third quantum dot solution.
  • different types of compounds or compound combinations may be selected in the three orders of mixing and heating, respectively, to process the quantum dots in the initial quantum dot solution. It is worth noting that since the organic carboxylic acid and the organic amine will chemically reduce the post-treatment effect when added at the same time, the first compound or the first compound combination, the second compound or the second compound combination, the first The three compounds or the combination of the third compound cannot be added simultaneously for mixing and heating.
  • the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic carboxylic acid at the same time or the compound or compound combination used in the mixing and heating process in the adjacent order cannot contain organic amine at the same time; and the same order
  • the compound combination used in the mixing and heating process cannot contain both organic carboxylic acid and organic amine; and at least one sequence of the compound or compound combination used in the mixing and heating process contains organic carboxylic acid, organic amine or organic phosphine.
  • the present application may adopt various embodiments to process the initial quantum dots to improve the stability of the quantum dots and Solubility.
  • the initial quantum dot solution and the organic acid or the initial quantum dot solution and organic carboxylic acid and organic phosphine are mixed in a first order and heated, the organic carboxylic acid on the initial After the quantum dots are processed, the cation vacancies on the surface of the quantum dots can be optimized.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in a second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in a third order
  • the compound combination, the third compound or the third compound combination can be interlaced with the first compound or the first compound combination organic carboxylic acid on the surface of the quantum dot, which not only increases the steric hindrance effect of the ligand on the surface of the quantum dot, but also strengthens the quantum dot
  • the barrier effect of surface ligands reduces the diffusion radius of excitons and thus enhances the fluorescence intensity of quantum dots.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are performed Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are performed Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and The organic phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic carboxylic acid and the organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are carried out Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic amine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are carried out Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is mixed with The organic amine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; and the first quantum dot solution is combined with Organic amines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is mixed with The organic amine and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is mixed with The organic amine and the organic phosphine are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot Solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with Organophosphine Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic amine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • mixing the initial quantum dot solution with an organic amine or the initial quantum dot solution with an organic amine and an organic phosphine in a first order and heating can effectively reduce quantum dots
  • the defect state on the surface further increases the fluorescence intensity of the quantum dots.
  • protonated organic amines on the surface of the quantum dots will produce exciton trapping on the surface of the quantum dots, reducing the transient fluorescence lifetime of the quantum dots.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in the second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in the third order
  • the second compound or the second compound combination can post-process the quantum dots, effectively removing the protonated organic amine on the surface of the quantum dots, thereby increasing the transient lifetime of the quantum dots.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are performed Mixing and heating in a second order to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed and heated in a second order to obtain a second quantum dot solution; the second quantum dot solution and the organic The phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • the first quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution with the organic carboxylic acid and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution, organic amine and organic phosphine are mixed and heated in a first order to obtain a first quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acids are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and an organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acids are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Carboxylic acid and organic phosphine are mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is subjected to a first order with an organic amine and an organic phosphine Mixing and heating to obtain a first quantum dot solution; mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in a second order and heating to obtain a second quantum dot solution; applying the second quantum dot solution The solution is mixed with organic amine and organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic carboxylic acid are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic amine and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed and heated in a first order, and after the organic phosphine processes the initial quantum dot, the anion vacancy on the surface of the quantum dot is optimized.
  • the second compound or the second compound combination is used to mix and heat the quantum dots in the second order
  • the third compound or the third compound combination is used to mix and heat the quantum dots in the third order
  • the combination, the third compound or the third compound combination can be interlaced with the first compound or the first compound combination organic phosphine on the surface of the quantum dot, which not only increases the steric hindrance effect of the ligand on the surface of the quantum dot, but also strengthens the surface coordination of the quantum dot
  • the bulk barrier effect reduces the diffusion radius of excitons and enhances the fluorescence intensity of quantum dots.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are carried out Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic amine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are performed Mixing and heating in the second order to obtain a second quantum dot solution; combining the second quantum dot solution with an organic amine and an organic The phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic amine are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid and The organic phosphine is mixed in the second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with the organic amine and the organic phosphine in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are subjected to Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution with the organic carboxylic acid and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and an organic The phosphine is mixed and heated in the second order to obtain a second quantum dot solution; the second quantum dot solution and the organic carboxylic acid are mixed and heated in a third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic amine and an organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single core quantum dots of IIB-VIA nanocrystals or the shell layers are core shell quantum dots of nB-VIA nanocrystals; wherein, nB-VIA nanocrystals include ZnS, ZnSe, ZnTe, CdSe, CdS, CdTe, CdZnS, CdZnSe, PbSeS, CdZnSeS , CdZnTe, CdSe/ZnS, CdZnSe/ZnS, CdS/CdSe/CdS, ZnS/CdSe/ZnS, etc., but not limited to this.
  • the mixing and heating process of the three orders Including the sequence A of mixing the quantum dot solution in the order with organic amine or organic amine and organic phosphine and heating, and mixing the quantum dot solution in the order with organic carboxylic acid or organic carboxylic acid and organic phosphine And heated B order; and the B order is before the A order.
  • the organic carboxylic acid prioritizes the organic amine to post-process the initial quantum dots, which promotes self-maturation of the quantum dots, and reduces the cation vacancies on the surface of the quantum dots, improving the fluorescence intensity; and then using organic amines to post-process the quantum dots can be effective Reducing the melting point of the quantum dot mixed liquid and the turbidity of the quantum dot mixed liquid can also improve the diversity of ligands on the surface of the quantum dots, which is beneficial to improve the film-forming property.
  • the organic phosphine can process the single-core quantum dots of nB-VIA nanocrystals or the core-shell quantum dots whose shells are nB-VIA nanocrystals, which can reduce anion defects and increase the diversity of surface ligands, and is not affected by organic carboxylic acids Or the effect of the order of treatment of organic amines.
  • the initial quantum dot solution and the organic carboxylic acid are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are mixed And heating, or mixing the first quantum dot solution with the organic amine and the organic phosphine in a second order and heating to obtain a second quantum dot solution; and performing the third order with the second quantum dot solution and the organic phosphine Mixed and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphines are mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and an organic phosphine The third order mixing and heating are performed to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic Amine for second Sequentially mixing and heating or mixing the first quantum dot solution with the organic amine and the organic phosphine in a second order and heating to obtain a second quantum dot solution; and performing the third for the second quantum dot solution and the organic phosphine Mix and heat sequentially to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic The phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and organic The phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated
  • first quantum dot solution To obtain a first quantum dot solution; mixing the first quantum dot solution with an organic carboxylic acid in a second order and heating or mixing the first quantum dot solution with an organic carboxylic acid and an organic phosphine in a second order And heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine in a third order and heating or mixing the second quantum dot solution with an organic amine and an organic phosphine in a third order And heating, to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are nB-VIA nanocrystal single-core quantum dots or the shell layer is nB-VIA nanocrystal core-shell quantum dots.
  • the step of mixing and heating the quantum dot solution of the order with organic carboxylic acid or mixing and heating the quantum dot solution of the order with organic carboxylic acid and organic phosphine, under the condition of temperature of 200 ⁇ 350°C get on.
  • the step of mixing and heating the quantum dot solution and the organic phosphine in the sequence is performed under the condition of a temperature of 80°C to 350°C.
  • the quantum dots in the initial quantum dot solution are HIA-VA nanocrystal single-core quantum dots or the shell layer is mA-VA nanocrystal core-shell quantum dots; wherein, The mA-VA nanocrystals include InP, InN, InAs, InSb, GaAs, GaSb, GaP, GaN, InGaP, etc., but are not limited thereto.
  • the initial quantum dot solution are mA-VA nanocrystalline single-core quantum dots or the shell layer is mA-VA nanocrystalline core-shell quantum dots
  • the initial quantum dot solution and the organic The amine is mixed in the first order and heated or the first quantum dot solution is mixed with the organic amine and the organic phosphine in the first order And heating, to obtain the first quantum dot solution.
  • Using this method to process single-core quantum dots of mA-VA nanocrystals or core-shell quantum dots with shells of mA-VA nanocrystals can not only improve the solubility and stability of quantum dots, but also further improve quantum dots The transient fluorescence and size uniformity.
  • the quantum dots are post-treated with the organic amine.
  • the protonated organic amine exists on the surface of the quantum dots after the organic amine treatment.
  • the solubility and stability of the quantum dots can be improved, the mA-VA quantum dot particles The diameter is small and the exciton radius is large, so it will increase the non-radiative transition on the surface of the quantum dot and reduce the transient fluorescence.
  • subsequent treatment with compounds or compound combinations containing organic carboxylic acids and organic phosphines can not only eliminate the protonated organic amines on the surface of the quantum dots, but also effectively Improve the size uniformity of quantum dots.
  • the organic carboxylic acid can decompose a part of the crystalline unstable shell on the surface of the core-shell quantum dots; the decomposed metal atoms and the organic carboxylic acid form a metal cation precursor again, and the anion and the organic phosphine form an anion precursor again.
  • the anion and cation precursors formed again in the post-processing process will undergo shell growth again on the surface of the core-shell quantum dots.
  • core-shell quantum dots with small particles will be preferentially due to the large body surface and the fast growth rate.
  • the shell is long again, so the final effect is that the size of the core-shell quantum dots is relatively uniform.
  • the first quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to the first Mixing and heating in the second order to obtain a second quantum dot solution; mixing the second quantum dot solution and the organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution is combined with an organic carboxylic acid and an organic The phosphine is mixed in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution and the organic phosphine are mixed in a third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to a second Mixing in sequence and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; and the first quantum dot solution and the organic phosphine are subjected to a second Sequential mixing And heating to obtain a second quantum dot solution; mixing the second quantum dot solution with organic carboxylic acid and organic phosphine in a third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots with mA-VA nanocrystals or core-shell quantum dots with a shell layer of mA-VA nanocrystals, in some embodiments,
  • the quantum dots in the initial quantum dot solution are IVA-VIA nanocrystal single-core quantum dots or the shell layer is IVA-VIA nanocrystal core-shell quantum dots; wherein, IVA-VIA nanocrystals include PPbSe, PbS, PbTe, PbSeS, PbSeTe, etc., but are not limited thereto.
  • the initial quantum dot solution are IVA-VIA nanocrystal single-core quantum dots or the shell is IVA-VIA nanocrystal core-shell quantum dots
  • the initial quantum dot solution and the organic The phosphines are mixed and heated in the first order to obtain a first quantum dot solution.
  • Using this method to process single-core quantum dots of IVA-VIA nanocrystals or core-shell quantum dots with shells of IVA-VIA nanocrystals can not only improve the solubility of quantum dots, but also further improve the fluorescence intensity of quantum dots And device stability.
  • the anion vacancy on the surface of the quantum dots can be optimized to improve the fluorescence intensity.
  • the second compound or combination of second compounds containing organic carboxylic acids and organic amines, the third compound or the combination of third compounds (no order requirement) are required for IVA-VIA quantum dots.
  • the treatment can be interlaced with the first compound or the first compound combination organic phosphine on the surface of the quantum dot, which not only enhances the barrier effect of the ligand on the surface of the quantum dot, reduces the diffusion radius of the exciton, but also enhances The ability of quantum dots to resist water and oxygen further improves the stability of devices fabricated with such quantum dots.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to the first Second order mixing and heating or mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in second order and Heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine in a third order and heating or mixing the initial quantum dot solution with an organic amine and an organic phosphine in a third order and heating To obtain a third quantum dot solution.
  • the first quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic amine are in a second order Mixing and heating or mixing the first quantum dot solution with organic amine and organic phosphine in a second order and heating to obtain a second quantum dot solution; Mixing in sequence and heating or mixing the initial quantum dot solution with organic carboxylic acid and organic phosphine in third order and heating to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are IVA-VIA nanocrystal single-core quantum dots or the shell is IVA-VIA nanocrystal core-shell quantum dots.
  • the first order mixing and heating of the initial quantum dot solution and the organic phosphine is performed under the condition of a temperature of 200-350°C.
  • the step of mixing and heating in the second order is performed at a temperature of 80°C to 200°C.
  • the step of mixing and heating in the third order is performed at a temperature of 80°C to 350°C.
  • the quantum dots in the initial quantum dot solution are IB-mA-VIA nanocrystal single-core quantum dots or the shell layer is IB-mA-VIA nanocrystal core-shell quantum dots; Wherein, the IB-mA-VI A nanocrystal includes CuInS, CuInSeS, etc., but it is not limited thereto.
  • the quantum dots in the initial quantum dot solution are IB-mA-VIA nanocrystal single-core quantum dots or the shell is: [B-mA-VIA nanocrystal core-shell quantum dots
  • the The second quantum dot solution is mixed with the organic amine in a third order and heated or the second quantum dot solution is mixed with the organic amine and the organic phosphine in a third order and heated to obtain a third quantum dot solution.
  • the solubility and stability of the quantum dots can be improved, but also the fluorescence intensity and color purity of the quantum dots can be further improved.
  • IB-mA-VI A nanocrystal quantum dots contain many types of elements, and the surface defect states are more than quantum dots of other systems and the surface exciton diffusion path is large. Therefore, organic phosphine or organic carboxylic acid and organic phosphine are used as When the first compound or the first compound combination or the second compound or the second compound combination is applied to the quantum dot, the surface defect state of the quantum dot can be effectively reduced to enhance the fluorescence intensity of the quantum dot, and then the third compound or the third compound can be used Combined with organic amine or organic amine plus organic phosphine to process quantum dots, it can be combined with the first compound or first The compound combination, the second compound, or the second compound combination are attached to the surface of the quantum dot together to hinder the exciton diffusion path on the surface of the quantum dot, reduce the resonant radius of the exciton, and improve the color purity of the quantum dot.
  • the initial quantum dot solution is mixed with an organic acid or the initial quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a first order and heated to obtain a first quantum dot A solution; mixing the first quantum dot solution with an organic phosphine in a second order and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic amine or combining the second quantum dot solution with The organic amine and the organic phosphine are mixed in the third order and heated to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid or The first quantum dot solution is mixed with organic carboxylic acid and organic phosphine in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is combined with an organic amine or the second quantum dot solution Mix with organic amine and organic phosphine in the third order and heat to obtain the third quantum dot solution.
  • the mixing and heating steps of the first order are performed under the condition of a temperature of 250-350°C.
  • the step of mixing and heating in the second order is performed at a temperature of 150°C to 250°C.
  • the second quantum dot solution is mixed with an organic amine in a third order and heated or the second quantum dot solution is mixed with an organic amine and an organic phosphine in a third order and heated
  • the steps are carried out at a temperature of 80 °C ⁇ 350 °C.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IA-IVA-VIIA nanocrystals or the shell layer are core-shell quantum dots of IA-IVA-VIIA nanocrystals;
  • the IA-IVA-VDA nanocrystals include CsPbCl 3 , CsPbBr 3 , CsPbI 3 and so on, but it is not limited thereto.
  • the three sequences are mixed And the heating process, including the order A of mixing the quantum dot solution with the organic amine or the organic amine and the organic phosphine and heating, and the quantum dot solution with the organic carboxylic acid or the organic carboxylic acid and the organic
  • the phosphine is mixed and heated in sequence B; and the sequence B follows the sequence A. At this time, not only can the solubility and stability of the quantum dots be improved, but also the fluorescence intensity and transient fluorescence of the quantum dots can be further improved.
  • Organic amines preferentially perform post-treatment of quantum dots with organic carboxylic acids, which can improve the solubility and stability of quantum dots, but there are protonated organic amines on the surface of quantum dots after organic amine treatment. Due to the photoelectricity of IA-IVA-VIIA nanocrystals Relatively poor stability is more susceptible to surface electrical properties. In order to make up for the effects produced by the treatment with organic amines, the subsequent treatment with organic carboxylic acids can effectively eliminate the protonated organic amines on the surface of the quantum dots, improve the surface state of the quantum dots and enhance the fluorescence intensity and transient fluorescence. In addition, the treatment sequence of IA-IVA-VIIA nanocrystals by organic phosphine can reduce anion defects and increase surface ligand diversity, and is not affected by the treatment sequence of organic carboxylic acid or organic amine.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxylic acid are subjected to Mixing and heating in two orders or mixing the first quantum dot solution with organic carboxylic acid and organic phosphine in second order and heating to obtain a second quantum dot solution; performing the second quantum dot solution with organic phosphine Mix and heat in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic carboxyl Acid is mixed in a second order and heated or the first quantum dot solution is mixed with an organic carboxylic acid and an organic phosphine in a second order and heated to obtain a second quantum dot solution; the second quantum dot solution is mixed with The organic phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic amine are mixed in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine are subjected to a second Sequential mixing and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating or performing the second quantum dot solution with an organic carboxylic acid and an organic phosphine Mix and heat in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution is mixed with an organic amine and an organic phosphine in a first order and heated to obtain a first quantum dot solution; the first quantum dot solution and the organic phosphine Performing second order mixing and heating to obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating or heating the second quantum dot solution with an organic carboxylic acid and The organic phosphine is mixed and heated in the third order to obtain a third quantum dot solution.
  • the initial quantum dot solution and the organic phosphine are mixed in a first order and heated To obtain a first quantum dot solution; mixing the first quantum dot solution with an organic amine in a second order and heating or mixing the first quantum dot solution with an organic amine and an organic phosphine in a second order and heating To obtain a second quantum dot solution; mixing the second quantum dot solution with an organic carboxylic acid in a third order and heating or mixing the second quantum dot solution with an organic carboxylic acid and an organic phosphine in a third order And heating, to obtain a third quantum dot solution.
  • the quantum dots in the initial quantum dot solution are single-core quantum dots of IA-IVA-VIIA nanocrystals or the shell layer are core-shell quantum dots of IA-IVA-VIIA nanocrystals
  • the first order of mixing and heating The time is 20 ⁇ 100 minutes; in the step of mixing and heating the first quantum dot solution with the second compound or the second compound in the second order, the time for the second order mixing and heating is 20 ⁇ 100 minutes; in the step of mixing and heating the second quantum dot solution with the third compound or the third compound in the third order, the mixing and heating time of the third order is 20 to 100 minutes.
  • the first quantum dot solution is combined with the first compound or the first compound in a first order of mixing and heating steps, the first quantum dot solution and the second compound Or the second compound combination, the second order mixing and heating step, the second quantum dot solution and the third compound or the third compound combination, the third order mixing and heating step, all in an inert gas environment get on.
  • the embodiments of the present application also provide a quantum dot prepared by the above method.
  • the embodiments of the present application provide applications of quantum dots in the fields of optical devices, optical films, core-shell structure nanocrystalline inks, glues, biological probes, and the like.
  • the optical device includes but is not limited to a quantum dot light-emitting diode and a quantum dot sensitized battery.
  • the optical film includes but is not limited to a quantum dot light-emitting barrier film, a quantum dot light-emitting tube, and the like.
  • the core-shell structure nanocrystalline ink includes, but is not limited to, an ink formed by combining quantum dots with other different chemical solvents at different ratios.
  • the glue includes, but is not limited to, a glue formed by combining core-shell structure nanocrystals with other different chemical reagents according to different viscosity ratios.
  • a quantum dot post-processing method includes the following steps:
  • CdSe quantum dots are matured by using OA: 1 ml of oleic acid is added to the CdSe quantum dots in 2) and heated and matured at a temperature of 310° C. for 60 min.
  • step 41) Add the appropriate amount of ethyl acetate and ethanol to the quantum dot mixture in step 3) to centrifuge the CdSe quantum dot solution, and then disperse the CdSe quantum dot solution obtained by centrifugation again in the appropriate amount of chloroform solution to disperse it Then, add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting CdSe quantum dots are vacuum dried.
  • the CdSe quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the CdSe quantum dots, but also further improve the fluorescence intensity and film formation of the quantum dots.
  • a quantum dot post-processing method includes the following steps:
  • TOP trioctylphosphine oxide
  • TOP trioctylphosphine oxide
  • CdSe quantum dots are matured by using OA: 1 ml of oleic acid is added to the CdSe/ZnS quantum dots in 2) and heated and matured at 310°C for 60 minutes.
  • the prepared CdSe/ZnS quantum dot solution is cooled to room temperature.
  • step 41) Add the appropriate amount of ethyl acetate and ethanol to the quantum dot mixture in step 3) to centrifuge the CdSe/ZnS quantum dot solution, and then disperse the CdSe/ZnS quantum dot solution obtained by centrifugation again in the appropriate amount of chloroform Disperse it in the solution, and then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting CdSe/ZnS quantum dots are vacuum dried.
  • the CdSe quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the CdSe quantum dots, but also further improve the fluorescence intensity and film formation of the quantum dots.
  • the absorbance of CdSe solution concentration 15mg/ml
  • the range of absorbance value is 0.085 ⁇ 0.15.
  • a quantum dot post-processing method includes the following steps:
  • step 1) the prepared InP quantum dots dispersed in n-hexane 2 ml were added to 10 ml of the 18-dilute solution.
  • the InP quantum dot solution was heated to 150° C. and exhausted for 20 min to remove excess in the solution. N-hexane solution, and then increase the temperature of the InP solution to 300°C.
  • step 3 Add an appropriate amount of ethyl acetate and ethanol to the quantum dot mixed solution in step 3) to centrifuge the InP quantum dot solution, and disperse the InP quantum dot solution obtained by centrifugation again in an appropriate amount of chloroform solution to disperse it. Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting InP quantum dots are vacuum dried.
  • the InP quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the InP quantum dots, but also further improve the fluorescence intensity of the quantum dots. Visible by UV; fluorescence spectrometer integrating sphere (Edinburgh -FS5) quantum yield (QY) tested at room temperature and stand for 30 days in a solution, wherein a range QY values of the other points 1 J 38 - 50% and 36 to 46% Optical spectrum test. The absorbance of InP solution (concentration 15mg/ml) at 700nm, where the absorbance value range is 0.085 ⁇ 0.17.
  • a quantum dot post-processing method includes the following steps:
  • step 1) 2 ml of GaP quantum dots dispersed in n-hexane were added to 10 ml of an 18-dilute solution.
  • the GaP quantum dot solution was heated to 150°C and exhausted to remove 20 mGa of excess solution. N-hexane solution, and then increase the temperature of the GaP solution to 300°C.
  • step 3 Add the appropriate amount of ethyl acetate and ethanol to the quantum dot mixed solution in step 3) to centrifuge the GaP quantum dot solution, and then disperse the GaP quantum dot solution obtained by centrifugation in an appropriate amount of chloroform solution to disperse it. Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the GaP quantum dots finally obtained are vacuum dried.
  • the GaP quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the GaP quantum dots, but also further improve the fluorescence intensity of the quantum dots.
  • a quantum dot post-processing method includes the following steps:
  • step 3 Adding an appropriate amount of ethyl acetate and ethanol to the quantum dot mixed solution in step 3) to centrifuge the PbS quantum dot solution, dispersing the PbS quantum dot solution obtained by centrifugation again in an appropriate amount of chloroform solution to disperse it, Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting PbS quantum dots are vacuum dried.
  • the PbS quantum dots prepared in the examples of the present application can not only improve the solubility of the PbS quantum dots, but also further improve the fluorescence intensity and device stability of the quantum dots.
  • the quantum yield (QY) of the solution at room temperature was tested by the integrating sphere of a fluorescence spectrometer (Edinburgh-FS5), where the QY value ranged from 71 to 86%; the PbS solution (concentration 15mg/ml) was tested by UV-visible light spectroscopy The absorbance at 700nm, where the absorbance value is in the range of 0.06 ⁇ 0.
  • the attenuation rate of the device efficiency of the PbS near-infrared QLED device is tested by the QLED test system on the first day and after 10, and the attenuation rate range is 10 ⁇ 30%.
  • a quantum dot post-processing method including the following steps:
  • step 1) 2 ml of PbSe quantum dots dispersed in n-hexane were added to 10 ml of 18-diluted solution.
  • the PbSe quantum dot solution was heated to 150°C and exhausted for 20 min to remove excess in the solution. N-hexane solution, and then increase the temperature of the PbSe solution to 300°C.
  • PbSe core-shell quantum dots are cured using OA and TOP: 0.5ml of OA and 0.5ml of TOP are added to the PbSe quantum dots in step 2) and heated and matured at 310°C for 60 minutes.
  • step 3 Adding an appropriate amount of ethyl acetate and ethanol to the quantum dot mixed solution in step 3) to centrifuge the PbSe quantum dot solution, and dispersing the PbSe quantum dot solution obtained by centrifugation again in an appropriate amount of chloroform solution to disperse it, Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting PbSe quantum dots are vacuum dried.
  • the PbSe quantum dots prepared in the examples of the present application can not only improve the solubility of the PbSe quantum dots, but also further improve the fluorescence intensity and device stability of the quantum dots.
  • the quantum yield (QY) of the solution at room temperature was tested by the integrating sphere of a fluorescence spectrometer (Edinburgh-FS5), where the QY value ranged from 32 to 52%; the PbSe solution (concentration 15mg/ml) was tested by ultraviolet-visible spectrum )
  • the attenuation rate of the device efficiency after the first day and 10 of the PbSe near-infrared QLE D device was tested by the QLED test system, where the attenuation rate range is 15 ⁇ 36%.
  • a quantum dot post-processing method including the following steps:
  • P30ml of acetone is added to the mixed solution of vector sub-dots for centrifugal separation
  • step 1) 2 ml of PbS quantum dots dispersed in n-hexane were added to 10 ml of 18-dilute solution.
  • the PbS quantum dot solution was heated to 150°C and exhausted for 20 min to remove excess in the solution. N-hexane solution, and then raise the temperature of the PbS solution to 300°C.
  • PbS core-shell quantum dots are cured using OA and TOP: 0.5ml of TOP and 0.5ml of OA are added to the PbS quantum dots in step 2) and heated and matured at 310°C for 60 minutes.
  • step 3 Add the appropriate amount of ethyl acetate and ethanol to the quantum dot mixed solution in step 3) to centrifuge the PbS quantum dot solution, and disperse the PbS quantum dot solution obtained by centrifugation again in an appropriate amount of chloroform solution to disperse it. Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting PbS quantum dots are vacuum dried.
  • the PbS quantum dots prepared in the examples of the present application can not only improve the solubility of the PbS quantum dots, but also further improve the fluorescence intensity and device stability of the quantum dots.
  • the quantum yield (QY) of the solution at room temperature was tested by the integrating sphere of a fluorescence spectrometer (Edinburgh-FS5), where the QY value ranged from 75 to 80%; the PbS solution (concentration 15mg/ml) was tested by UV-visible light spectroscopy
  • the absorbance at 700nm, where the absorbance value is in the range of 0.065 ⁇ 0.11, and the attenuation rate of the device efficiency of the PbS near-infrared QLED device on the first day and after 10 is tested by the QLED test system, where the attenuation rate ranges from 15 to 36 %.
  • a quantum dot post-processing method includes the following steps:
  • step 3 Adding an appropriate amount of ethyl acetate and ethanol to the quantum dot mixed solution in step 3) to centrifuge the CuInSeS quantum dot solution, dispersing the CuInSeS quantum dot solution obtained by centrifugation again in an appropriate amount of chloroform solution to disperse it, Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting CuInSeS quantum dots are vacuum dried.
  • the CuInSeS quantum dots prepared in the examples of the present application can not only improve the solubility of CuInSeS quantum dots, but also further improve the fluorescence intensity and color purity of the quantum dots.
  • a quantum dot post-processing method includes the following steps:
  • step 1) 2 ml of CuInS quantum dots dispersed in n-hexane were added to 10 ml of 18-diluted solution.
  • the CuInS quantum dot solution was heated to 150°C and exhausted for 20 min to remove excess in the solution. N-hexane solution, and then increase the temperature of the CuInS solution to 300°C.
  • CuInS quantum dots are matured using OAm and TOP: 0.5ml of TOP and 0.5ml of OAm are added to the CuInS quantum dots in step 2) and heated and matured at 310°C for 60 minutes.
  • a quantum dot post-processing method includes the following steps:
  • step 1) the prepared CsPbBr 3 quantum dots dispersed in n-hexane were added to 10 ml of octadecene In the solution, first heat the CsPbBr 3 quantum dot solution to 150°C and exhaust for 20 min to remove the excess n-hexane solution in the solution, and then increase the temperature of the CsPbBr 3 quantum dot solution to 300°C
  • OAm was added to the CsPbBr 3 quantum dots in step 2) and heated and cooked at 150°C for 60 min.
  • the prepared CsPbBr 3 quantum dot solution is cooled to room temperature.
  • the CsPbBr 3 quantum dots prepared in the examples of the present application can not only improve the solubility of the CsPbBr 3 quantum dots, but also further improve the fluorescence intensity and transient fluorescence lifetime of the quantum dots.
  • the quantum yield (QY) of the solution at room temperature and after 30 days of storage was measured by a fluorescence spectrometer integrating sphere (Edinburgh-FS5)
  • a quantum dot post-processing method includes the following steps:
  • step 1) 2 ml of CsPbBr 3 quantum dots dispersed in n-hexane were added to 10 ml of 18-diluted solution.
  • the CsPbBr 3 quantum dot solution was heated to 150°C and exhausted for 20 min to remove the solution. Excess n-hexane solution, and then raise the temperature of the CsPbBr 3 quantum dot solution to 300°C
  • OAm was added to the CsPbBr 3 quantum dots in step 2) and heated and cooked at 150°C for 60 min.
  • Am-cured CsPbBr 3 quantum dots were heated and cooked at 150°C for 40 min.
  • the CsPbBr 3 quantum dots prepared in the examples of the present application can not only improve the solubility of the CsPbBr 3 quantum dots, but also further improve the fluorescence intensity and transient fluorescence lifetime of the quantum dots.
  • the quantum yield (QY) of the solution at room temperature and after 30 days of storage was measured by a fluorescence spectrometer integrating sphere (Edinburgh-FS5)
  • the range of QY value is 75 ⁇ 85% and 72 ⁇ 83% respectively ; the absorbance at 700nm of CsPb Br3 solution (concentration 15mg/ml) is tested by ultraviolet-visible fluorescence spectroscopy, where the range of absorbance value is 0.06 ⁇ 0. 10.
  • the oil-soluble red CdSe quantum dots are prepared as follows:
  • octadecene (ODE) 15 ml is first evacuated at room temperature for 30 mins, heated to 180°C and exhausted for 60 mins, then maintained at 180° (: vacuumed 30 1111118, cooled to room temperature for use.
  • TOP trioctylphosphine oxide
  • the precursor is heated to 300°C, and the 2ml selenium (Se) precursor in step 2) is extracted into a three-necked bottle and reacted for 10 minutes to prepare CdSe quantum dots. After stopping the reaction, it is cooled to room temperature. Toluene and methanol are added to perform centrifugal washing and drying. The red CdSe quantum dots are scattered in the noodles.
  • CdSe quantum dots are matured using OA: take 1 ml of oleic acid and add it to the amount of CdSe in step 2) The sub-point is heated and cooked at 310°C for 60 minutes.
  • Se quantum dots were heated and cooked at 310°C for 40 min.
  • step 3 Adding an appropriate amount of ethyl acetate and ethanol to the quantum dot mixture in step 3) to centrifuge the CdSe quantum dot solution, and dispersing the CdSe quantum dot solution obtained by centrifugation again in an appropriate amount of chloroform solution to disperse it. Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting CdSe quantum dots are vacuum dried.
  • the CdSe quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the CdSe quantum dots, but also further improve the fluorescence intensity and film formation of the quantum dots.
  • a quantum dot post-processing method includes the following steps:
  • TOP trioctylphosphine oxide
  • step 1) 2 ml of CdZnSeS/ZnS quantum dots dispersed in n-hexane were added to 10 ml of the 18-dilute solution.
  • the CdSe quantum dot solution was heated to 150°C and exhausted for 20 min to remove the solution. The excess n-hexane solution, and then raise the temperature of the CdSe solution to 300°C.
  • CdZnSeS/ZnS quantum dots are matured by using OA: 1 ml of oleic acid is added to the CdZnSeS/ZnS quantum dots in step 2) and heated and matured at 310°C for 60 min.
  • step 3 Add the appropriate amount of ethyl acetate and ethanol to the quantum dot mixture in step 3) to centrifuge the CdZnSeS/ZnS quantum dot solution, and then disperse the CdZnSeS/ZnS quantum dot solution obtained by centrifugation again in the appropriate amount of chloroform solution Disperse it, and then add acetone and methanol to the solution for precipitation centrifugal separation. This step is repeated once; the resulting CdZnSeS/ZnS quantum dots are vacuum dried.
  • the CdZnSeS/ZnS quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the CdZnSeS/ZnS quantum dots, but also further improve the fluorescence intensity and film formation of the quantum dots.
  • the quantum yield of the solution at room temperature and after 30 days of storage was measured by an integrating sphere of a fluorescence spectrometer (Edinburgh-FS5) (QY), where the range of QY value is 80 ⁇ 90% and 77 ⁇ 85% respectively ; the absorbance at 700nm of CdZnSeS/ZnS solution (concentration 15mg/ml) is tested by ultraviolet-visible fluorescence spectroscopy, where the range of absorbance value is 0.09 ⁇ 0.16, the flatness rate of CdZnSeS/ZnS core-shell quantum dots measured by AFM is 72 ⁇ 90%.
  • Edinburgh-FS5 fluorescence spectrometer
  • a quantum dot post-processing method includes the following steps:
  • TOP trioctylphosphine oxide
  • TOP trioctylphosphine oxide
  • the ZnSe quantum dots were heated and matured at 310°C for 40 min.
  • step 3 Add the appropriate amount of ethyl acetate and ethanol to the mixed solution of quantum dots in step 3) to centrifuge the CdSe/ZnSe quantum dot solution, and disperse the CdSe/ZnSe quantum dot solution obtained by centrifugation again in the appropriate amount of chloroform solution Disperse it, and then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting CdSe/ZnSe quantum dots are vacuum dried.
  • the CdSe/ZnSe quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the CdSe/ZnSe quantum dots, but also further improve the fluorescence intensity and film formation of the quantum dots.
  • the absorbance at 700 nm of CdS e/ZnSe solution was tested.
  • the absorbance value range was 0.0 85-0.16.
  • the flatness rate of CdSe/ZnSe core-shell quantum dots was 73-90% by AFM.
  • a quantum dot post-processing method includes the following steps:
  • TOP trioctylphosphine oxide
  • step 1) 2 ml of CdZnS/ZnS quantum dots dispersed in n-hexane were added to 10 ml of 18-diluted solution.
  • the CdSe quantum dot solution was heated to 150°C and exhausted for 20 min to remove the solution. The excess n-hexane solution, and then raise the temperature of the CdSe solution to 300°C.
  • CdZnS/ZnS quantum dots were heated and matured at 310°C for 60 min.
  • S/ZnS quantum dots were heated and cooked at 310°C for 40 min.
  • the CdSe/ZnSe quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the CdSe/ZnSe quantum dots, but also further improve the fluorescence intensity and film formation of the quantum dots.
  • a quantum dot post-processing method includes the following steps: 1. Preparation of Indium Phosphide (inP) Quantum Dots
  • step 1) 2 ml of InP quantum dots dispersed in n-hexane were added to 10 ml of 18-diluted solution.
  • the InP quantum dot solution was heated to 150°C and exhausted for 20 min to remove the solution Excess n-hexane solution, and then increase the temperature of the InP solution to 300°C.
  • P quantum dots are heated and cooked at 310°C for 60 minutes.
  • P quantum dots were heated and cooked at 310°C for 40 minutes.
  • P quantum dots are heated and matured at 310°C for 40 minutes.
  • step 3 Add the appropriate amount of ethyl acetate and ethanol to the mixed solution of quantum dots in step 3) to centrifuge the InP quantum dot solution, and disperse the InP quantum dot solution obtained by centrifugation again in the appropriate amount of chloroform solution to disperse it. Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting InP quantum dots are vacuum dried.
  • the InP quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the InP quantum dots, but also further improve the transient fluorescence lifetime and size uniformity of the quantum dots.
  • a quantum dot post-processing method including the following steps:
  • step 1) 2 ml of GaP quantum dots dispersed in n-hexane were added to 10 ml of the 18-dilute solution, and the GaP quantum dot solution was first heated to 150°C to exhaust 20 mGa removal solution Excess n-hexane solution, and then increase the temperature of the GaP solution to 300°C.
  • the prepared GaP quantum dot solution is cooled to room temperature.
  • step 3 Add the appropriate amount of ethyl acetate and ethanol to the quantum dot mixed solution in step 3) to centrifuge the GaP quantum dot solution, and disperse the GaP quantum dot solution obtained by centrifugation again in an appropriate amount of chloroform solution to disperse it. Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the GaP quantum dots finally obtained are vacuum dried.
  • the GaP quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the GaP quantum dots, but also further improve the transient fluorescence lifetime and size uniformity of the quantum dots.
  • the quantum yield (QY) of the solution after 30 days of placement and the test transient light lifetime are tested.
  • the range of QY value is 36 ⁇ 42%, and the lifetime value is 25 ⁇ 30ns;
  • the absorbance at 700nm of GaP solution was tested by UV-visible spectroscopy.
  • the absorbance value range was 0.083 ⁇ 0.17.
  • the size dispersion of InP quantum dots was measured by scanning transmission electron microscope. The range is 3 ⁇ 9%.
  • a quantum dot post-processing method includes the following steps:
  • step 1) 2 ml of InP quantum dots dispersed in n-hexane were added to 10 ml of 18-diluted solution.
  • the InP quantum dot solution was heated to 150°C and exhausted for 20 min to remove the solution Excess n-hexane solution, and then increase the temperature of the InP solution to 300°C.
  • P-cured InP core-shell quantum dots were heated at 310°C for 40 minutes.
  • P quantum dots are heated and matured at 310°C for 40 minutes.
  • step 3 Add the appropriate amount of ethyl acetate and ethanol to the quantum dot mixed solution in step 3) to centrifuge the InP quantum dot solution, and disperse the InP quantum dot solution obtained by centrifugation again in an appropriate amount of chloroform solution to disperse it. Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting InP quantum dots are vacuum dried.
  • the InP quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the InP quantum dots, but also further improve the transient fluorescence lifetime and size uniformity of the quantum dots.
  • the quantum yield (QY) of the solution after 30 days of placement and the transient optical lifetime of the test are tested.
  • the QY value range is 40 ⁇ 45%, and the lifetime value is 26 ⁇ 32ns; Tested by UV-visible spectroscopy.
  • the absorbance of InP solution (concentration 15mg/ml) at 700nm, where the absorbance value range is 0.06 ⁇ 0.
  • the size dispersion of InP quantum dots is tested by scanning transmission electron microscope. The range of values is 3 to 10%.
  • a quantum dot post-processing method includes the following steps:
  • PbS lead sulfide
  • lead precursor Take 0.25 mmol of Pb(Ac) 2 , 0.5 minor oleic acid, 10 ml of octadecene and add them to a 50 ml three-necked flask, heat to 250°C to dissolve it Clear and transparent solution and keep at this temperature.
  • step 1) 2 ml of PbS quantum dots dispersed in n-hexane were added to and 10 ml of an 18-dilute solution.
  • the PbS quantum dot solution was heated to 150°C and exhausted for 20 min to remove the solution Excess n-hexane solution, and then raise the temperature of the PbS solution to 300°C.
  • step 3 Adding an appropriate amount of ethyl acetate and ethanol to the quantum dot mixed solution in step 3) to centrifuge the PbS quantum dot solution, and dispersing the PbS quantum dot solution obtained by centrifugation again in an appropriate amount of chloroform solution to disperse it, Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting PbS quantum dots are vacuum dried.
  • the PbS quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the PbS quantum dots And can further improve the fluorescence intensity and device stability of quantum dots.
  • a quantum dot post-processing method includes the following steps:
  • step 1) 2 ml of PbSe quantum dots dispersed in n-hexane were added to 10 ml of 18-diluted solution.
  • the PbSe quantum dot solution was heated to 150° C. and exhausted for 20 min to remove the solution. Excess n-hexane solution, and then increase the temperature of the PbSe solution to 300°C.
  • Se quantum dots are heated and matured at 310°C for 60 min.
  • step 3 Add the appropriate amount of ethyl acetate and ethanol to the quantum dot mixed solution in step 3) to centrifuge the PbSe quantum dot solution, and disperse the PbSe quantum dot solution obtained by centrifugation again in the appropriate amount of chloroform solution to disperse it. Then add acetone and methanol to the solution for precipitation and centrifugal separation. This step is repeated once; the resulting PbSe quantum dots are vacuum dried.
  • the PbSe quantum dots prepared in the examples of the present application can not only improve the solubility and stability of the PbSe quantum dots, but also further improve the fluorescence intensity and device stability of the quantum dots.
  • the attenuation rate range is 15 ⁇ 36%.
  • a quantum dot post-processing method includes the following steps:
  • step 1) Processing of Lead Sulfide (PbS) Quantum Dots
  • step 2) 2 ml of PbS quantum dots dispersed in n-hexane were added to 10 ml of the 18-dilute solution.
  • step 2) the PbS quantum dot solution was heated to 150° C. and exhausted for 20 min to remove the solution. Excess n-hexane solution, and then raise the temperature of the PbS solution to 300°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请公开一种量子点的后处理方法,包括:提供初始量子点溶液;将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混合并加热,得到第一量子点溶液;将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序的混合并加热,得到第二量子点溶液。

Description

说明书 发明名称:量子点的后处理方法
[0001] 本申请要求于 2018年 12月 27日在中国专利局提交的、 申请号为 201811612473.1
、 申请名称为“量子点的后处理方法”的中国专利申请, 于 2018年 12月 27日在中国 专利局提交的、 申请号为 201811612495.8、 申请名称为“量子点的后处理方法”的 中国专利申请, 于 2018年 12月 27日在中国专利局提交的、 申请号为 20181161101 0.3、 申请名称为“量子点的后处理方法”的中国专利申请, 于 2018年 12月 27日在 中国专利局提交的、 申请号为 201811610993.9、 申请名称为“量子点的后处理方 法”的中国专利申请, 以及于 2018年 12月 27日在中国专利局提交的、 申请号为 201 811611004.8、 申请名称为“量子点的后处理方法”的中国专利申请的优先权, 其 全部内容通过引用结合在本申请中。
技术领域
[0002] 本申请涉及量子点制备技术领域, 尤其涉及一种量子点的后处理方法。
背景技术
[0003] 纳米科学和纳米技术是一门新兴的科学技术并且存在潜在的应用价值和经济效 益, 因而在世界范围内备受科学家的关注。 相对于体相材料, 纳米晶体(NCs)能 够呈现出非常有趣的现象主要是依赖于其电学、 光学、 磁学和电化学特性 (相 应的体相材料是无法实现) 。 半导体纳米晶体, 又称量子点 (QD) , 其尺寸范 围从 1到 10 nm, 当粒径大小发生变化时, 半导体纳米晶的带隙价带和导带也会 改变 (量子尺寸效应) , 如 CdSe纳米晶体的吸收和发射几乎覆盖了整个可见光 谱范围, 因此, 半导体纳米晶体表现出与尺寸有关的光致发光性质的现象。 半 导体纳米晶体已经在许多技术领域被应用如生物标记、 诊断、 化学传感器、 发 光二极管、 电子发光器件、 光伏器件、 激光器和电子晶体管等。 然而针对不同 技术领域的应用需要自备不同类别的半导体量子点, 制备高质量的半导体量子 点是半导体量子点尺寸效应有效应用的前提。
[0004] 在过去的几十年中, 为了得到高质量的半导体纳米晶, 科研学者开了了很多种 方法。 现有的技术中主要有表面配体处理、 核壳结构的设计。 通常, 制备得到 的量子点不作处理直接用作功能材料, 这种量子点在使用时存在溶解性弱等问 题。
发明概述
技术问题
[0005] 本申请实施例的目的之一在于: 提供一种量子点的后处理方法, 旨在解决制备 得到的量子点不作处理直接使用时存在溶解性能不足的的问题。
问题的解决方案
技术解决方案
[0006] 为解决上述技术问题, 本申请实施例采用的技术方案是:
[0007] 第一方面, 提供了一种量子点的后处理方法, 包括如下步骤:
[0008] 提供初始量子点溶液;
[0009] 将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混合并 加热, 得到第一量子点溶液;
[0010] 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序的混合并 加热, 得到第二量子点溶液;
[0011] 其中, 所述第一化合物选自有机羧酸或有机胺, 所述第一化合物组合选自有机 羧酸和有机膦或有机胺和有机膦;
[0012] 所述第二化合物选自有机羧酸或有机胺, 所述第二化合物组合选自有机羧酸和 有机膦或有机胺和有机膦;
[0013] 且仅有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用的化合物 组合中含有有机羧酸, 且仅有一个的混合并加热过程中采用的化合物为有机胺 或采用的化合物组合中含有有机胺。
[0014] 第二方面, 提供一种量子点的后处理方法, 包括如下步骤:
[0015] 提供初始量子点溶液;
[0016] 将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混合并 加热, 得到第一量子点溶液;
[0017] 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序的混合并 加热, 得到第二量子点溶液; [0018] 将所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并 加热, 得到第三量子点溶液;
[0019] 其中, 所述第一化合物选自有机羧酸、 有机胺或有机膦, 所述第一化合物组合 选自有机羧酸和有机膦或有机胺和有机膦;
[0020] 所述第二化合物选自有机羧酸、 有机胺或有机膦, 所述第二化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0021] 所述第三化合物选自有机羧酸、 有机胺或有机膦, 所述第三化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0022] 且仅有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用的化合物 组合中含有有机羧酸, 且仅有一个次序的混合并加热过程中采用的化合物为有 机胺或采用的化合物组合中含有有机胺。
[0023] 第三方面, 提供了一种量子点的后处理方法, 包括如下步骤:
[0024] 提供初始量子点溶液;
[0025] 将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混合并 加热, 得到第一量子点溶液;
[0026] 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序的混合并 加热, 得到第二量子点溶液;
[0027] 将所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并 加热, 得到第三量子点溶液;
[0028] 其中, 所述第一化合物选自有机羧酸、 有机胺或有机膦, 所述第一化合物组合 选自有机羧酸和有机膦或有机胺和有机膦;
[0029] 所述第二化合物选自有机羧酸、 有机胺或有机膦, 所述第二化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0030] 所述第三化合物选自有机羧酸、 有机胺或有机膦, 所述第三化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0031] 且仅有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用的化合物 组合中含有有机羧酸, 且仅有一个次序的混合并加热过程中采用的化合物为有 机胺或采用的化合物组合中含有有机胺; [0032] 三个次序的混合并加热过程中, 包括将所述次序的量子点溶液与有机胺或有机 胺和有机膦进行混合并加热的 A次序, 以及将所述次序的量子点溶液与有机羧酸 或有机羧酸和有机膦进行混合并加热的 B次序; 且所述 B次序在所述 A次序之前
[0033] 所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单核量子点或者壳层为 nB- VIA纳米晶的核壳量子点。
[0034] 第四方面, 提供了量子点的后处理方法, 包括如下步骤:
[0035] 提供初始量子点溶液;
[0036] 将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混合并 加热, 得到第一量子点溶液;
[0037] 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序的混合并 加热, 得到第二量子点溶液;
[0038] 将所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并 加热, 得到第三量子点溶液;
[0039] 其中, 所述第一化合物选自有机羧酸、 有机胺或有机膦, 所述第一化合物组合 选自有机羧酸和有机膦或有机胺和有机膦;
[0040] 所述第二化合物选自有机羧酸、 有机胺或有机膦, 所述第二化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0041] 所述第三化合物选自有机羧酸、 有机胺或有机膦, 所述第三化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0042] 且仅有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用的化合物 组合中含有有机羧酸, 且仅有一个次序的混合并加热过程中采用的化合物为有 机胺或采用的化合物组合中含有有机胺。
[0043] 三个次序的混合并加热过程中, 包括将所述次序的量子点溶液与有机胺或有机 胺和有机膦进行混合并加热的 A次序, 以及将所述次序的量子点溶液与有机羧酸 或有机羧酸和有机膦进行混合并加热的 B次序; 且所述 B次序在所述 A次序之后
[0044] 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳层 为 IA-IVA-VIIA纳米晶的核壳量子点。
[0045] 第五方面, 提供了一种量子点的后处理方法, 包括如下步骤:
[0046] 提供初始量子点溶液;
[0047] 将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混合并 加热, 得到第一量子点溶液;
[0048] 将所述初始量子点溶液与有机胺或有机胺和有机膦进行第一次序的混合并加热
[0049] 将所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并 加热, 得到第三量子点溶液;
[0050] 其中, 所述第二化合物选自有机羧酸或有机膦, 所述第二化合物组合选自有机 羧酸和有机膦;
[0051] 所述第三化合物选自有机羧酸或有机膦, 所述第三化合物组合选自有机羧酸和 有机膦或有机胺和有机膦;
[0052] 且仅有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用的化合物 组合中含有有机羧酸。
发明的有益效果
对附图的简要说明
附图说明
[0053] 为了更清楚地说明本申请实施例中的技术方案, 下面将对实施例或示范性技术 描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本申请的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动 的前提下, 还可以根据这些附图获得其它的附图。
[0054] 图 1是本申请实施例提供的第一种量子点的后处理方法的工艺流程图;
[0055] 图 2是本申请实施例提供的第二种量子点的后处理方法的工艺流程图;
[0056] 图 3是本申请实施例提供的第三种量子点的后处理方法的工艺流程图;
[0057] 图 4是本申请实施例提供的第四种量子点的后处理方法的工艺流程图;
[0058] 图 5是本申请实施例提供的第五种量子点的后处理方法的工艺流程图。
发明实施例 本发明的实施方式
[0059] 为了使本申请的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本申请进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅用以 解释本申请, 并不用于限定本申请。
[0060] 在本申请的描述中, 需要理解的是, 术语“第一”、 “第二”仅用于描述目的, 而 不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。 由 此, 限定有“第一”、 “第二”的特征可以明示或者隐含地包括一个或者更多个该特 征。 在本申请的描述中, “多个”的含义是两个或两个以上, 除非另有明确具体的 限定。
[0061] 为了说明本申请所述的技术方案, 以下结合具体附图及实施例进行详细说明。
[0062] 如图 1所示, 本申请一些实施例提供了一种量子点的后处理方法, 包括如下步 骤:
[0063] S01 ·提供初始量子点溶液;
[0064] S02.将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混 合并加热, 得到第一量子点溶液;
[0065] 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序的混合并 加热, 得到第二量子点溶液;
[0066] 其中, 所述第一化合物选自有机羧酸、 有机胺或有机膦, 所述第一化合物组合 选自有机羧酸和有机膦或有机胺和有机膦;
[0067] 所述第二化合物选自有机羧酸、 有机胺或有机膦, 所述第二化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0068] 且有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用的化合物组 合中含有有机羧酸, 有一个次序的混合并加热过程中采用的化合物为有机胺或 采用的化合物组合中含有有机胺。
[0069] 本申请实施例提供的量子点的后处理方法, 采用第一化合物或第一化合物组合 、 第二化合物或第二化合物组合依次对初始量子点溶液中的量子点进行两个次 序的混合并加热。 其中, 相邻次序的混合并加热过程中采用的化合物或化合物 组合中不能同时含有有机羧酸或者相邻次序的混合并加热过程中采用的化合物 或化合物组合中不能同时含有有机胺; 且同一次序的混合并加热过程中采用的 化合物组合不能同时含有有机羧酸和有机胺; 且至少有一个次序的混合并加热 过程中采用的化合物或化合物组合中含有有机羧酸、 有机胺或有机膦。 采用本 申请上述方法对量子点进行后处理方法, 一方面, 第一化合物或第一化合物组 合、 第二化合物或第二化合物组合能够充分的钝化量子点表面的金属原子和非 金属原子, 提升量子点的抗水氧的能力进而改善量子点的稳定性; 另一方面, 第一化合物或第一化合物组合、 第二化合物或第二化合物组合会相互交错的结 合在量子点的表面, 因两类化合物或化合物组合的类别不同以及链长各有差异 , 会增加量子点表面配体的空间位阻效应, 进而增加量子点的溶解性。 此外, 采用本申请上述方法对量子点进行后处理方法, 还可以改善量子点的荧光强度 或改善量子点的瞬态荧光。
[0070] 具体的, 上述步骤 S01中, 所述初始量子点溶液为包含有量子点纳米晶和非共 融溶剂的溶液。 此外, 所述初始量子点溶液还含有少量的有机表面修饰剂, 少 量的阴离子前驱体和 /或阳离子前驱体。
[0071] 本申请实施例中, 所述初始量子点溶液没有严格限定。 所述初始量子点溶液可 以是一步法制备量子点得到的量子点溶液, 也可以是两步法制备制备量子点得 到的量子点溶液, 还可以是三步法制备制备量子点得到的量子点溶液。 此外, 所述初始量子点溶液还可以是经提纯处理后分散在非共融溶剂中形成的量子点 溶液。 其中, 一步法是指核壳量子点在一个反应容器中进行长核和长壳。 两步 法是指核壳量子点的制备包括两步: 在一个反应容器进行长核, 将量子点核取 出后放置在另一个反应溶剂中进行长壳。 三步法是指核壳量子点的制备包括两 步: 一个反应容器进行长核, 将量子点核取出后放置在另一个反应溶剂中进行 中间壳层生长, 取出含有中间壳层的核壳量子点放置在第三个反应容器中进行 最外层壳层生长。
[0072] 在一些实施例中, 所述初始量子点溶液中的量子点为油溶性量子点, 即所述量 子点表面含有油溶性配体。 具体的, 所述油溶性配体为油溶性有机小分子, 包 括但不限于有机羧酸类、 有机胺类、 有机膦酸类、 有机膦类、 有机氧膦类、 有 机硫醇。 [0073] 具体的, 采用本申请实施例后处理方法的所述初始量子点溶液中的量子点, 可 以为 IIB-VIA纳米晶的单核量子点或者壳层为 IIB-VIA纳米晶的核壳量子点, mA- VA纳米晶的单核量子点或者壳层为 mA-V A纳米晶的核壳量子点, IVA-VIA纳米 晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点, IB-mA-VIA纳米晶的 单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点, IA-IVA-VIIA纳米晶的 单核量子点或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点。
[0074] 上述步骤 S02中, 依次采用所述第一化合物或第一化合物组合、 所述第二化合 物或第二化合物组合进行两个次序的混合并加热处理, 对初始量子点进行处理 , 改善量子点的稳定性和溶解性。
[0075] 本申请实施例中, 将所述初始量子点溶液与有机羧酸、 有机胺、 有机膦、 有机 羧酸和有机膦或有机胺和有机膦进行第一次序的混合并加热, 得到第一量子点 溶液; 将所述第一量子点溶液与有机羧酸、 有机胺、 有机膦、 有机羧酸和有机 膦或有机胺和有机膦进行第二次序的混合并加热, 得到第二量子点溶液。
[0076] 在一些实施例中, 所述有机胺为含有单个氨基的直链有机胺中的至少一种, 且 所述有机胺中的碳原子的个数为 8~18。 在一些实施例中, 所述有机羧酸为含有 单个羧基的直链有机羧酸中的至少一种, 且所述有机羧酸中的碳原子的个数为 8 ~18。 在一些实施例中, 所述有机膦选自但不限于三辛基膦、 三丁基膦。 在一些 实施例中, 所述有机胺、 有机羧酸、 有机膦分子在室温下为液态。
[0077] 在一些实施例中, 采用所述有机羧酸和有机膦作为同一次序的化合物组合时, 所述有机羧酸与所述有机膦的摩尔比为 (3~7) : (7~3) 在一些实施例中, 采用所述有机胺和有机膦作为同一次序的化合物组合时, 所述有机胺与所述有 机膦的摩尔比为 (3~7) : (7~3) 。
[0078] 在一些实施例中, 按所述第一化合物或所述第一化合物组合与所述初始量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述初始量子点 溶液与第一化合物或第一化合物组合进行第一次序的混合并加热, 得到第一量 子点溶液。
[0079] 在一些实施例中, 按所述第二化合物或所述第二化合物组合与所述第一量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第一量子点 溶液与第二化合物或第二化合物组合进行第二次序的混合并加热, 得到第二量 子点溶液。
[0080] 本申请实施例中, 可以在两个次序的混合并加热中, 分别选择不同类型的化合 物或化合物组合, 对所述初始量子点溶液中的量子点进行处理。 值得注意的是 , 由于同时添加时有机羧酸和有机胺会发生化学反应降低后处理效果, 因此所 述第一化合物或第一化合物组合、 所述第二化合物或第二化合物组合不能同时 添加进行混合并加热。 此外, 相邻次序的混合并加热过程中采用的化合物或化 合物组合中不能同时含有有机羧酸或者相邻次序的混合并加热过程中采用的化 合物或化合物组合中不能同时含有有机胺; 且同一次序的混合并加热过程中采 用的化合物组合不能同时含有有机羧酸和有机胺; 且至少有一个次序的混合并 加热过程中采用的化合物或化合物组合中含有有机羧酸、 有机胺或有机膦。
[0081] 本申请可以采用多种实施方式对初始量子点进行处理, 改善量子点的稳定性和 溶解性。
[0082] 在一种实施方式中, 将所述初始量子点溶液与有机竣酸或所述初始量子点溶液 与有机羧酸和有机膦进行第一次序的混合并加热, 有机羧酸对初始量子点进行 处理后, 能够优化量子点表面的阳离子空位, 增强了量子点的荧光强度。 在采 用第二化合物或第二化合物组合对量子点进行第二次序的混合并加热后, 第二 化合物或第二化合物组合能够与有机羧酸共同交错附着在量子点表面, 不仅增 加量子点的抗水氧能力, 而且又能够降低量子点混合液的浊度值, 改善量子点 的成膜性。
[0083] 在一些实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合并加 热, 得到第一量子点溶液。
[0084] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序 的混合并加热, 得到第二量子点溶液。
[0085] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序 的混合并加热, 得到第二量子点溶液。 [0086] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液。
[0087] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液。
[0088] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行 第二次序的混合并加热, 得到第二量子点溶液。
[0089] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行 第二次序的混合并加热, 得到第二量子点溶液。
[0090] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液。
[0091] 在另一种实施方式中, 将所述初始量子点溶液与有机胺或将所述初始量子点溶 液与有机胺和有机膦进行第一次序的混合并加热, 能够有效降低量子点表面的 缺陷态, 进而提高量子点的荧光强度。 但有机胺对初始量子点进行处理后, 由 于量子点表面含有质子化的有机胺在量子点表面会产生激子捕获, 降低量子点 的瞬态荧光寿命。 采用第二化合物或第二化合物组合对量子点进行第二次序的 混合并加热后, 第二化合物或第二化合物组合能够对量子点进行后处理, 有效 去除量子点表面的质子化的有机胺, 进而增加了量子点的瞬态荧光寿命。
[0092] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液。
[0093] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液。
[0094] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的 混合并加热, 得到第二量子点溶液。
[0095] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液。
[0096] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液。
[0097] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行 第二次序的混合并加热, 得到第二量子点溶液。
[0098] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第 二次序的混合并加热, 得到第二量子点溶液。
[0099] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液。
[0100] 在再一种实施方式中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 有机膦对初始量子点进行处理后, 优化量子点表面的阴离子空位。 采用 第二化合物或第二化合物组合对量子点进行第二次序的混合并加热后, 第二化 合物或第二化合物组合能够与第一化合物或第一化合物组合有机膦共同交错附 着在量子点表面, 不仅增加量子点表面配体空间位阻效应, 而且也加强了量子 点表面配体的势垒效应, 减小了激子的扩散半径进而增强了量子点的荧光强度 和稳定性。
[0101] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热
, 得到第一量子点溶液。
[0102] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液。
[0103] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的 混合并加热, 得到第二量子点溶液。
[0104] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液。
[0105] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第 二次序的混合并加热, 得到第二量子点溶液。
[0106] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单 核量子点或者壳层为 nB-VIA纳米晶的核壳量子点; 其中, 所述 nB-VIA纳米晶包 括 ZnS、 ZnSe、 ZnTe、 CdSe、 CdS、 CdTe、 CdZnS、 CdZnSe、 PbSeS、 CdZnSeS 、 CdZnTe、 CdSe/ZnS、 CdZnSe/ZnS、 CdS/CdSe/CdS、 ZnS/CdSe/ZnS等, 但不限 于此。
[0107] 当所述初始量子点溶液中的量子点为 nB-viA纳米晶的单核量子点或者壳层为 n B-VIA纳米晶的核壳量子点时, 两个次序的混合并加热过程中, 包括: 将所述初 始量子点溶液与有机羧酸或将所述初始量子点溶液与有机羧酸和有机膦进行第 一次序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺 或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到 第二量子点溶液。 采用该方法对 nB-VIA纳米晶的单核量子点或者壳层为 nB-VIA 纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶解性和稳定性, 而且 还能够进一步改善量子点的荧光强度和成膜性。 具体的, 有机羧酸优先有机胺 对初始量子点进行后处理, 促使量子点发生自熟化, 并且降低量子点表面的阳 离子空位, 改善荧光强度; 而后利用有机胺对量子点进行后处理能够有效的降 低量子点混合液的熔点, 降低量子点混合液的浊度同时, 又能够改善量子点表 面配体的多样性, 进而有利于提高成膜性和抗水氧能力。 所述有机膦对 nB-VIA 纳米晶的单核量子点或者壳层为 nB-VIA纳米晶的核壳量子点进行处理, 能够降 低阴离子缺陷并且增加表面配体多样性。
[0108] 在一些实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合并加 热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的混 合并加热, 得到第二量子点溶液。
[0109] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二 次序的混合并加热, 得到第二量子点溶液。
[0110] 在一些实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合并加 热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第二 次序的混合并加热, 得到第二量子点溶液。
[0111] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦 进行第二次序的混合并加热, 得到第二量子点溶液。
[0112] 所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单核量子点或者壳层为 nB- VIA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述次序的量子 点溶液与有机羧酸进行混合并加热的步骤或将所述次序的量子点溶液与有机羧 酸和有机膦进行混合并加热的步骤, 在温度为 200~350°C的条件下进行。 在一些 实施例中, 将所述第一量子点溶液与有机胺进行混合并加热的步骤或将所述第 一量子点溶液与有机胺和有机膦进行第二次序的混合并加热的步骤, 在温度为 8 0°C~200°C的条件下进行。
[0113] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 HIA-VA纳米晶的单 核量子点或者壳层为 mA-VA纳米晶的核壳量子点; 其中, 所述 mA-VA纳米晶包 括 InP、 InN、 InAs、 InSb、 GaAs、 GaSb、 GaP、 GaN、 InGaP等, 但不限于此。
[0114] 当所述初始量子点溶液中的量子点为 mA-VA纳米晶的单核量子点或者壳层为 mA-VA纳米晶的核壳量子点时, 两个次序的混合并加热过程包括: 将所述初始 量子点溶液与有机羧酸和有机膦进行第一次序的混合并加热, 得到第一量子点 溶液; 将所述第一量子点溶液与有机胺进行第二次序的混合并加热或将所述第 一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到第二量子点 溶液。 采用该方法对 mA-VA纳米晶的单核量子点或者壳层为 mA-VA纳米晶的核 壳量子点进行处理, 不仅能够改善量子点的溶解性和稳定性, 而且还能够进一 步改善量子点的瞬态荧光。 具体的, 先利用有机羧酸和有机膦对初始量子点进 行后处理, 有效钝化量子点表面的阴、 阳离子缺陷, 增加量子点的荧光强度。 在一些实施例中, 利用有机胺或有机胺和有机膦对量子点进行后处理, 有机胺 或机胺和有机膦能够与量子点表面的有机羧酸、 有机膦结合, 一方面增加量子 点的空间位阻效应, 从而提高量子点的单分散性; 另一方面也增强了量子点的 抗水氧性能, 进而增强量子点的稳定性。
[0115] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二 次序的混合并加热, 得到第二量子点溶液。
[0116] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦 进行第二次序的混合并加热, 得到第二量子点溶液。
[0117] 所述初始量子点溶液中的量子点为 mA-VA纳米晶的单核量子点或者壳层为 mA -VA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述初始量子点 溶液与有机羧酸和有机膦进行第一次序的混合并加热的步骤, 在温度为 200~350 °(:的条件下进行。 在一些实施例中, 将所述第一量子点溶液与有机胺进行第二次 序的混合并加热的步骤或将所述第一量子点溶液与有机胺和有机膦进行第二次 序的混合并加热的步骤, 在温度为 80°C~200°C的条件下进行。
[0118] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单 核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点; 其中, 所述 IVA-VIA纳米晶 包括 PPbSe、 PbS、 PbTe、 PbSeS、 PbSeTe等, 但不限于此。
[0119] 当所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点时, 两个次序的混合并加热过程包括: 将所述初始 量子点溶液与有机膦进行第一次序的混合并加热或将所述初始量子点溶液与有 机羧酸和有机膦或将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦或将所述第 一量子点溶液与有机胺和有机膦进行第二次序的混合并加热或将所述第一量子 点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第二量子点溶液 。 采用该方法对 IVA- VIA纳米晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳 量子点进行处理, 不仅能够改善量子点的溶解性, 而且还能够进一步改善量子 点的荧光强度和器件稳定性。 具体的, 有机膦对量子点进行处理后能够优化量 子点表面的阴离子空位改善荧光强度。 由于 IVA- VIA量子点激子扩散半径较大, 利用机羧酸、 有机胺、 有机膦的第二化合物或第二化合物组合对 IVA- VIA量子点 的进行处理后, 能够与第一化合物或第一化合物组合有机膦共同交错附着在量 子点表面, 增强了量子点表面配体的势垒效应减小了激子的扩散半径, 进而改 善利用该类量子点制备成器件的稳定性。
[0120] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热, 得到第二量子点溶液。
[0121] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热
, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行第二 次序的混合并加热, 得到第二量子点溶液。
[0122] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的混合 并加热, 得到第二量子点溶液。
[0123] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第二次 序的混合并加热, 得到第二量子点溶液。
[0124] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二 次序的混合并加热, 得到第二量子点溶液。
[0125] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二 次序的混合并加热, 得到第二量子点溶液。
[0126] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦 进行第二次序的混合并加热, 得到第二量子点溶液。
[0127] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次 序的混合并加热, 得到第二量子点溶液。
[0128] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二 次序的混合并加热, 得到第二量子点溶液。
[0129] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦 进行第二次序的混合并加热, 得到第二量子点溶液。
[0130] 所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IV A- VIA纳米晶的核壳量子点的上述实施例中, 所述两个次序的混合并加热步骤中 , 至少有一个次序的混合并加热步骤采用的组合物。 即: 将所述初始量子点溶 液与第一化合物组合进行第一次序的混合并加热, 得到第一量子点溶液; 和 /或 将所述第一量子点溶液与第二化合物组合进行第二次序的混合并加热, 得到第 二量子点溶液。 IVA- VIA量子点表面的阴离子缺陷态较多, 另外, IV A- VI A量 子点激子扩散半径较大制备成器件后稳定性差, 至少采用化合物进行一次的混 合并加热处理, 可以使有机羧酸、 有机胺与有机膦共同附着在量子点表面能够 有效阻碍 IVA- VIA量子点表面的激子扩散半径进而提升了利用该类量子点制备 成器件的稳定性, 降低 IVA- VIA量子点的阴离子空位进而改善量子点的荧光强 度。 在一些实施例中, 将所述初始量子点溶液与第一化合物组合进行第一次序 的混合并在温度为 80~150°C的条件加热, 得到第一量子点溶液; 将所述第一量 子点溶液与第二化合物组合进行第二次序的混合并在温度为 80~150°C的条件加 热, 得到第二量子点溶液。
[0131] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的 单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点; 其中, 所述 IB-mA- VI A纳米晶包括 CuInS、 CuInSeS等, 但不限于此。
[0132] 当所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层 为 IB-mA- VIA纳米晶的核壳量子点时, 两个次序的混合并加热过程包括: 将所 述初始量子点溶液与有机胺和有机膦进行第一次序的混合并加热或者将所述初 始量子点溶液与有机胺进行第一次序的混合并加热, 得到第一量子点溶液; 将 所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第 二量子点溶液。 此时, 不仅能够改善量子点的溶解性和稳定性, 而且还能够进 一步改善量子点的荧光强度和色纯。 具体的, IB-mA- VIA纳米晶量子点所含元 素类别多, 表面缺陷态也多于其它体系量子点并且表面激子扩散路径大, 因此 , 利用有机胺和有机膦作为第一化合物组合对量子点进行处理时, 能够有效的 降低量子点的表面缺陷态增强量子点的荧光强度, 而后将所述第一量子点溶液 与有机羧酸或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合 并加热, 有机羧酸或有机羧酸和有机膦能够优化 IB-mA- VIA纳米晶量子点的晶 型使其尽可能地一致, 并且成分更加均一化, 进而降低激子的复合半径, 改进 色纯。
[0133] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二 次序的混合并加热, 得到第二量子点溶液。
[0134] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦 进行第二次序的混合并加热, 得到第二量子点溶液。
[0135] 所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点的实施例中, 在一些实施例中, 将所述初始量 子点溶液与有机胺和有机膦进行第一次序的混合并加热的步骤, 在温度为 200~3 50°C的条件下进行。 在一些实施例中, 将所述第一量子点溶液与有机羧酸进行第 二次序的混合并加热的步骤或将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热的步骤, 在温度为 200°C~350°C的条件下进行。
[0136] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶 的单核量子点或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点; 其中, 所述 IA-IVA- VDA纳米晶包括 CsPbCl 3、 CsPbBr 3、 CsPbI 3等, 但不限于此。 [0137] 当所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳 层为 IA-IVA-VIIA纳米晶的核壳量子点时, 三个次序的混合并加热过程中, 两个 次序的混合并加热过程包括: 将所述初始量子点溶液与有机胺或将所述初始量 子点溶液与有机胺和有机膦进行第一次序的混合并加热, 得到第一量子点溶液 ; 将所述第一量子点溶液与有机羧酸进行第二次序的混合并加热的步骤或将所 述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第二 量子点溶液。 此时, 不仅能够改善量子点的溶解性和稳定性, 而且还能够进一 步改善量子点的荧光强度和瞬态荧光。 具体的, 有机胺或有机胺和有机膦有机 胺对量子点进行后处理, 能够有效降低量子点表面的缺陷态, 改善量子点的荧 光强度、 溶解性和稳定性。 但有机胺处理后的量子点表面存在质子化的有机胺 , 由于 IA-IVA-VIIA纳米晶的光电稳定性相对较差比较易受表面电学性质的影响 。 为了弥补上有机胺处理后所产生的效果, 而后有机羧酸或有机羧酸和有机膦 的处理能够有效消除量子点表面的质子化的有机胺, 使量子点的表面态得到改 善进而增强了荧光强度和瞬态荧光。
[0138] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热, 得到第二量子点溶液。
[0139] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行第二 次序的混合并加热, 得到第二量子点溶液。
[0140] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二 次序的混合并加热, 得到第二量子点溶液。
[0141] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦 进行第二次序的混合并加热, 得到第二量子点溶液。
[0142] 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳层 为 IA-IVA-VIIA纳米晶的核壳量子点的实施例中, 在一些实施例中, 将所述初始 量子点溶液与有机胺或将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热的步骤, 在温度为 80~250°C的条件下进行。 在一些实施例中, 将 所述第一量子点溶液与有机羧酸进行第二次序的混合并加热或将所述第一量子 点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 在温度为 80°C~250°C的 条件下进行。
[0143] 本申请上述实施例中, 将所述初始量子点溶液与第一化合物或第一化合物组合 进行第一次序的混合并加热的步骤中, 所述第一次序的混合并加热的时间为 20~ 100分钟; 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序 的混合并加热的步骤中, 所述第二次序的混合并加热的时间为 20~100分钟。
[0144] 本申请上述实施例中, 将所述初始量子点溶液与第一化合物或第一化合物组合 进行第一次序的混合并加热的步骤, 将所述第一量子点溶液与第二化合物或第 二化合物组合进行第二次序的混合并加热的步骤, 均在惰性气体环境中进行。
[0145] 如图 2所示, 本申请实施例提供了一种量子点的后处理方法, 包括如下步骤:
[0146] A01.提供初始量子点溶液;
[0147] A02.将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混 合并加热, 得到第一量子点溶液;
[0148] 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序的混合并 加热, 得到第二量子点溶液;
[0149] 将所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并 加热, 得到第三量子点溶液;
[0150] 其中, 所述第一化合物选自有机羧酸、 有机胺或有机膦, 所述第一化合物组合 选自有机羧酸和有机膦或有机胺和有机膦;
[0151] 所述第二化合物选自有机羧酸、 有机胺或有机膦, 所述第二化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0152] 所述第三化合物选自有机羧酸、 有机胺或有机膦, 所述第三化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0153] 且相邻次序的混合并加热过程中采用的化合物或化合物组合中不能同时含有有 机羧酸或者相邻次序的混合并加热过程中采用的化合物或化合物组合中不能同 时含有有机胺;
[0154] 且同一次序的混合并加热过程中采用的化合物组合不能同时含有有机羧酸和有 机胺;
[0155] 且至少有一个次序的混合并加热过程中采用的化合物或化合物组合中含有有机 羧酸、 有机胺或有机膦。
[0156] 本申请实施例提供的量子点的后处理方法, 采用第一化合物或第一化合物组合 、 第二化合物或第二化合物组合、 第三化合物或第三化合物组合依次对初始量 子点溶液中的量子点进行三个次序的混合并加热。 其中, 且仅有一个次序的混 合并加热过程中采用的化合物为有机羧酸或采用的化合物组合中含有有机羧酸 , 且仅有一个的混合并加热过程中采用的化合物为有机胺或采用的化合物组合 中含有有机胺。 采用本申请实施例上述方法对量子点进行后处理方法, 一方面 , 第一化合物或第一化合物组合、 第二化合物或第二化合物组合、 第三化合物 或第三化合物组合能够充分的钝化量子点表面的金属原子和非金属原子, 提升 量子点的抗水氧的能力进而改善量子点的稳定性; 另一方面, 第一化合物或第 一化合物组合、 第二化合物或第二化合物组合、 第三化合物或第三化合物组合 会相互交错的结合在量子点的表面, 因三类化合物或化合物组合的类别不同以 及链长各有差异, 会增加量子点表面配体的空间位阻效应, 进而增加量子点的 溶解性。 此外, 采用本申请实施例上述方法对量子点进行后处理方法, 还可以 改善量子点的荧光强度或改善量子点的瞬态荧光。
[0157] 具体的, 上述步骤 A01中, 所述初始量子点溶液为包含有量子点纳米晶和非共 融溶剂的溶液。 此外, 所述初始量子点溶液还含有少量的有机表面修饰剂, 少 量的阴离子前驱体和 /或阳离子前驱体。
[0158] 本申请实施例中, 所述初始量子点溶液没有严格限定。 所述初始量子点溶液可 以是一步法制备量子点得到的量子点溶液, 也可以是两步法制备制备量子点得 到的量子点溶液, 还可以是三步法制备制备量子点得到的量子点溶液。 此外, 所述初始量子点溶液还可以是经提纯处理后分散在非共融溶剂中形成的量子点 溶液。 其中, 一步法是指核壳量子点在一个反应容器中进行长核和长壳。 两步 法是指核壳量子点的制备包括两步: 在一个反应容器进行长核, 将量子点核取 出后放置在另一个反应溶剂中进行长壳。 三步法是指核壳量子点的制备包括两 步: 一个反应容器进行长核, 将量子点核取出后放置在另一个反应溶剂中进行 中间壳层生长, 取出含有中间壳层的核壳量子点放置在第三个反应容器中进行 最外层壳层生长。
[0159] 在一些实施例中, 所述初始量子点溶液中的量子点为油溶性量子点, 即所述量 子点表面含有油溶性配体。 具体的, 所述油溶性配体为油溶性有机小分子, 包 括但不限于有机羧酸类、 有机胺类、 有机膦酸类、 有机膦类、 有机氧膦类、 有 机硫醇。
[0160] 具体的, 采用本申请实施例后处理方法的所述初始量子点溶液中的量子点, 可 以为 IIB-VIA纳米晶的单核量子点或者壳层为 IIB-VIA纳米晶的核壳量子点, mA- VA纳米晶的单核量子点或者壳层为 mA-V A纳米晶的核壳量子点, IVA-VIA纳米 晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点, IB-mA-VIA纳米晶的 单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点, IA-IVA-VIIA纳米晶的 单核量子点或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点。
[0161] 上述步骤 A02中, 依次采用所述第一化合物或第一化合物组合、 所述第二化合 物或第二化合物组合、 所述第三化合物或第三化合物组合进行三个次序的混合 并加热处理, 对初始量子点进行处理, 改善量子点的稳定性和溶解性。
[0162] 本申请实施例中, 将所述初始量子点溶液与有机羧酸、 有机胺、 有机膦、 有机 羧酸和有机膦或有机胺和有机膦进行第一次序的混合并加热, 得到第一量子点 溶液; 将所述第一量子点溶液与有机羧酸、 有机胺、 有机膦、 有机羧酸和有机 膦或有机胺和有机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所 述第二量子点溶液与有机羧酸、 有机胺、 有机膦、 有机羧酸和有机膦或有机胺 和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0163] 在一些实施例中, 所述有机胺为含有单个氨基的直链有机胺中的至少一种, 且 所述有机胺中的碳原子的个数为 8~18。 在一些实施例中, 所述有机羧酸为含有 单个羧基的直链有机羧酸中的至少一种, 且所述有机羧酸中的碳原子的个数为 8 ~18。 在一些实施例中, 所述有机膦选自但不限于三辛基膦、 三丁基膦。 在一些 实施例中, 所述有机胺、 有机羧酸、 有机膦分子在室温下为液态。 [0164] 在一些实施例中, 采用所述有机羧酸和有机膦作为同一次序的化合物组合时, 所述有机羧酸与所述有机膦的摩尔比为 (3~7) : (7~3) 。 在一些实施例中, 采用所述有机胺和有机膦作为同一次序的化合物组合时, 所述有机胺与所述有 机膦的摩尔比为 (3~7) : (7~3) 。
[0165] 在一些实施例中, 按所述第一化合物或所述第一化合物组合与所述初始量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述初始量子点 溶液与第一化合物或第一化合物组合进行第一次序的混合并加热, 得到第一量 子点溶液。
[0166] 在一些实施例中, 按所述第二化合物或所述第二化合物组合与所述第一量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第一量子点 溶液与第二化合物或第二化合物组合进行第二次序的混合并加热, 得到第二量 子点溶液。
[0167] 在一些实施例中, 按所述第三化合物或所述第三化合物组合与所述第二量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第二量子点 溶液与第三化合物或第三化合物组合进行第三次序的混合并加热, 得到第三量 子点溶液。
[0168] 本申请实施例中, 可以在三个次序的混合并加热中, 分别选择不同类型的化合 物或化合物组合, 对所述初始量子点溶液中的量子点进行处理。 值得注意的是 , 由于同时添加时有机羧酸和有机胺会发生化学反应降低后处理效果, 因此所 述第一化合物或第一化合物组合、 所述第二化合物或第二化合物组合、 所述第 三化合物或第三化合物组合三者不能同时添加进行混合并加热。 此外, 相邻次 序的混合并加热过程中采用的化合物或化合物组合中不能同时含有有机羧酸或 者相邻次序的混合并加热过程中采用的化合物或化合物组合中不能同时含有有 机胺; 且同一次序的混合并加热过程中采用的化合物组合不能同时含有有机羧 酸和有机胺; 且至少有一个次序的混合并加热过程中采用的化合物或化合物组 合中含有有机羧酸、 有机胺或有机膦。
[0169] 本申请可以采用多种实施方式对初始量子点进行处理, 改善量子点的稳定性和 溶解性。 [0170] 在一种实施方式中, 将所述初始量子点溶液与有机竣酸或所述初始量子点溶液 与有机羧酸和有机膦进行第一次序的混合并加热, 有机羧酸对初始量子点进行 处理后, 能够优化量子点表面的阳离子空位。 进一步在采用第二化合物或第二 化合物组合对量子点进行第二次序的混合并加热, 采用第三化合物或第三化合 物组合对量子点进行第三次序的混合并加热, 第二化合物或第二化合物组合、 第三化合物或第三化合物组合能够与第一化合物或第一化合物组合有机羧酸共 同交错附着在量子点表面, 不仅增加量子点表面配体空间位阻效应, 而且也加 强了量子点表面配体的势垒效应, 减小了激子的扩散半径进而增强了量子点的 荧光强度。
[0171] 在一些实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合并加 热, 得到第一量子点溶液。
[0172] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0173] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有 机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0174] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0175] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0176] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热, 得到第三量子点溶液。
[0177] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0178] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液。
[0179] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0180] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0181] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0182] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0183] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺进行第三次序的混合并加热, 得到第三量子点溶液。
[0184] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0185] 在另一种实施方式中, 将所述初始量子点溶液与有机胺或将所述初始量子点溶 液与有机胺和有机膦进行第一次序的混合并加热, 能够有效降低量子点表面的 缺陷态, 进而提高量子点的荧光强度。 但有机胺对初始量子点进行处理后, 由 于量子点表面含有质子化的有机胺在量子点表面会产生激子捕获, 降低量子点 的瞬态荧光寿命。 采用第二化合物或第二化合物组合对量子点进行第二次序的 混合并加热、 第三化合物或第三化合物组合对量子点进行第三次序的混合并加 热后, 第二化合物或第二化合物组合、 第三化合物或第三化合物组合能够对量 子点进行后处理, 有效去除量子点表面的质子化的有机胺, 进而增加了量子点 的瞬态変光寿命。
[0186] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液。
[0187] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0188] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0189] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。 [0190] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0191] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第 三次序的混合并加热, 得到第三量子点溶液。
[0192] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0193] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液。
[0194] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0195] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0196] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0197] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0198] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸进行第三次序的混合并加热, 得到第三量子点溶液。
[0199] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0200] 在再一种实施方式中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 有机膦对初始量子点进行处理后, 优化量子点表面的阴离子空位。 进一 步采用第二化合物或第二化合物组合对量子点进行第二次序的混合并加热、 第 三化合物或第三化合物组合对量子点进行第三次序的混合并加热后, 第二化合 物或第二化合物组合、 第三化合物或第三化合物组合能够与第一化合物或第一 化合物组合有机膦共同交错附着在量子点表面, 不仅增加量子点表面配体空间 位阻效应, 而且也加强了量子点表面配体的势垒效应, 减小了激子的扩散半径 进而增强了量子点的荧光强度。
[0201] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液。
[0202] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热, 得到第三量子点溶液。
[0203] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。 [0204] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺进行第三次序的混合并加热, 得到第三量子点溶液。
[0205] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0206] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第 三次序的混合并加热, 得到第三量子点溶液。
[0207] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0208] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸进行第三次序的混合并加热, 得到第三量子点溶液。
[0209] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0210] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单 核量子点或者壳层为 nB-VIA纳米晶的核壳量子点; 其中, 所述 nB-VIA纳米晶包 括 ZnS、 ZnSe、 ZnTe、 CdSe、 CdS、 CdTe、 CdZnS、 CdZnSe、 PbSeS、 CdZnSeS 、 CdZnTe、 CdSe/ZnS、 CdZnSe/ZnS、 CdS/CdSe/CdS、 ZnS/CdSe/ZnS等, 但不限 于此。
[0211] 当所述初始量子点溶液中的量子点为 IIB-VIA纳米晶的单核量子点或者壳层为 n B-VIA纳米晶的核壳量子点时, 三个次序的混合并加热过程中, 包括将所述次序 的量子点溶液与有机胺或有机胺和有机膦进行混合并加热的 A次序, 以及将所述 次序的量子点溶液与有机羧酸或有机羧酸和有机膦进行混合并加热的 B次序; 且 所述 B次序在所述 A次序之前。 采用该方法对 IIB-VIA纳米晶的单核量子点或者壳 层为 IIB-VIA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶解性和稳 定性, 而且还能够进一步改善量子点的荧光强度和成膜性。 具体的, 有机羧酸 优先有机胺对初始量子点进行后处理, 促使量子点发生自熟化, 并且降低量子 点表面的阳离子空位, 改善荧光强度; 而后利用有机胺对量子点进行后处理能 够有效的降低量子点混合液的熔点, 降低量子点混合液的浊度同时, 又能够改 善量子点表面配体的多样性, 进而有利于提高成膜性。 所述有机膦对 nB-VIA纳 米晶的单核量子点或者壳层为 nB-VIA纳米晶的核壳量子点进行处理, 能够降低 阴离子缺陷并且增加表面配体多样性, 且不受有机羧酸或有机胺先后处理顺序 的影响。
[0212] 在一些实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合并加 热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行混合并加热的 步骤或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0213] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺第 三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序 的混合并加热, 得到第三量子点溶液。
[0214] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二 次序的混合并加热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三 次序的混合并加热, 得到第三量子点溶液。
[0215] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进 行第三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三 次序的混合并加热, 得到第三量子点溶液。
[0216] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸行第二次序的混合 并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并加 热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第三次序的混 合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序的混合并加 热, 得到第三量子点溶液。
[0217] 所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单核量子点或者壳层为 nB- VIA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述次序的量子 点溶液与有机羧酸进行混合并加热或将所述次序的量子点溶液与有机羧酸和有 机膦进行混合并加热的步骤, 在温度为 200~350°C的条件下进行。 在一些实施例 中, 将所述次序的量子点溶液与有机胺进行混合并加热或将所述次序的量子点 溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~200°C的条件下进 行。 在一些实施例中, 将所述次序的量子点溶液与有机膦进行混合并加热的步 骤, 在温度为 80°C~350°C的条件下进行。
[0218] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 HIA-VA纳米晶的单 核量子点或者壳层为 mA-VA纳米晶的核壳量子点; 其中, 所述 mA-VA纳米晶包 括 InP、 InN、 InAs、 InSb、 GaAs、 GaSb、 GaP、 GaN、 InGaP等, 但不限于此。
[0219] 当所述初始量子点溶液中的量子点为 mA-VA纳米晶的单核量子点或者壳层为 mA-VA纳米晶的核壳量子点时, 将所述初始量子点溶液与有机胺进行第一次序 的混合并加热或将所述初始量子点溶液与有机胺和有机膦进行第一次序的混合 并加热, 得到第一量子点溶液。 采用该方法对 mA-VA纳米晶的单核量子点或者 壳层为 mA-VA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶解性和 稳定性, 而且还能够进一步改善量子点的瞬态荧光和尺寸均一性。 具体的, 利 用所述有机胺对量子点进行后处理, 有机胺处理后的量子点表面存在质子化的 有机胺, 虽然能够改善量子点的溶解性和稳定性, 但由于 mA-VA量子点粒径较 小且激子半径大, 因此会增加量子点表面的非辐射跃迁降低了瞬态荧光。 为了 弥补上有机胺处理后所产生的效果, 后续采用含有机羧酸、 有机膦的化合物或 化合物组合 (没有顺序要求) 进行处理, 不仅能够消除量子点表面的质子化的 有机胺, 而且能够有效改善量子点的尺寸均一性。 具体的, 有机羧酸能够使核 壳量子点表面结晶不稳定的壳体给分解掉一部分; 分解后的金属原子与有机羧 酸再次形成金属阳离子前躯体, 阴离子与有机膦再次形成阴离子前躯体。 后处 理过程中再次形成的阴、 阳离子前躯体会在核壳量子点表面进行再次壳层生长 , 而再次的壳层生长时颗粒小的核壳量子点由于相对体表面大、 生长速率快优 先进行再次长壳, 因此最终体现的效果是核壳量子点的尺寸相对均一性较好。
[0220] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次 序的混合并加热, 得到第三量子点溶液。
[0221] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进 行第三次序的混合并加热, 得到第三量子点溶液。
[0222] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次 序的混合并加热, 得到第三量子点溶液。
[0223] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机膦进 行第三次序的混合并加热, 得到第三量子点溶液。
[0224] 所述初始量子点溶液中的量子点为 mA-VA纳米晶的单核量子点或者壳层为 mA -VA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述次序的量子 点溶液与有机羧酸进行混合并加热的步骤或将所述次序的量子点溶液与有机羧 酸和有机膦进行混合并加热的步骤, 在温度为 150~350°C的条件下进行。 在一些 实施例中, 将所述次序的量子点溶液与有机胺进行混合并加热的步骤或将所述 次序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~15 0°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机膦进行混 合并加热的步骤, 在温度为 80°C~350°C的条件下进行。
[0225] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单 核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点; 其中, 所述 IVA-VIA纳米晶 包括 PPbSe、 PbS、 PbTe、 PbSeS、 PbSeTe等, 但不限于此。
[0226] 当所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点时, 将所述初始量子点溶液与有机膦进行第一次序 的混合并加热, 得到第一量子点溶液。 采用该方法对 IVA-VIA纳米晶的单核量子 点或者壳层为 IVA- VIA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶 解性, 而且还能够进一步改善量子点的荧光强度和器件稳定性。 具体的, 有机 膦对量子点进行处理后能够优化量子点表面的阴离子空位改善荧光强度。 由于 IVA-VIA量子点激子扩散半径较大, 利用含有机羧酸、 有机胺的第二化合物或第 二化合物组合、 第三化合物或第三化合物组合 (没有顺序要求) 对 IVA-VIA量子 点的进行处理后, 能够与第一化合物或第一化合物组合有机膦共同交错附着在 量子点表面, 不仅增强了量子点表面配体的势垒效应减小了激子的扩散半径, 而且也增强了量子点的抗水氧的能力, 进而改善了利用该类量子点制备成器件 的稳定性。
[0227] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第三次序的 混合并加热或将所述初始量子点溶液与有机胺和有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0228] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机胺第二次序的混合并加 热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得 到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次序的混合并 加热或将所述初始量子点溶液与有机羧酸和有机膦进行第三次序的混合并加热 , 得到第三量子点溶液。
[0229] 所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IV A- VIA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述初始量子 点溶液与有机膦进行第一次序的混合并加热的步骤在温度为 200~350°C的条件下 进行。 在一些实施例中, 所述第二次序的混合并加热的步骤在温度为 80°C~200°C 的条件下进行。 在一些实施例中, 所述第三次序的混合并加热的步骤在温度为 8 0°C~350°C的条件下进行。
[0230] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的 单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点; 其中, 所述 IB-mA- VI A纳米晶包括 CuInS、 CuInSeS等, 但不限于此。
[0231] 当所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层 为: [B-mA- VIA纳米晶的核壳量子点时, 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序 的混合并加热, 得到第三量子点溶液。 此时, 不仅能够改善量子点的溶解性和 稳定性, 而且还能够进一步改善量子点的荧光强度和色纯。 具体的, IB-mA-VI A纳米晶量子点所含元素类别多, 表面缺陷态也多于其它体系量子点并且表面激 子扩散路径大, 因此, 利用有机膦或有机羧酸和有机膦作为第一化合物或第一 化合物组合或第二化合物或第二化合物组合对量子点进行处理时, 能够有效的 降低量子点的表面缺陷态增强量子点的荧光强度, 而后利用第三化合物或第三 化合物组合有机胺或有机胺加有机膦处理量子点, 能够与第一化合物或第一化 合物组合、 第二化合物或第二化合物组合一起附着在量子点表面共同阻碍量子 点表面的激子扩散路径, 降低激子复合半径进而改善量子点的色纯。
[0232] 在一些实施例中, 将所述初始量子点溶液与有机竣酸或将所述初始量子点溶液 与有机羧酸和有机膦进行第一次序的混合并加热, 得到第一量子点溶液; 将所 述第一量子点溶液与有机膦进行第二次序的混合并加热, 得到第二量子点溶液 ; 将所述第二量子点溶液与有机胺或将所述第二量子点溶液与有机胺和有机膦 进行第三次序的混合并加热, 得到第三量子点溶液。
[0233] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸或将所述第一量子 点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第二量子点溶液 ; 将所述第二量子点溶液与有机胺或将所述第二量子点溶液与有机胺和有机膦 进行第三次序的混合并加热, 得到第三量子点溶液。
[0234] 所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层为 IB-mA-VIA纳米晶的核壳量子点的实施例中, 在一些实施例中, 所述第一次序 的混合并加热的步骤在温度为 250~350°C的条件下进行。 在一些实施例中, 所述 第二次序的混合并加热的步骤在温度为 150°C~250°C的条件下进行。 在一些实施 例中, 将所述第二量子点溶液与有机胺进行第三次序的混合并加热的步骤或将 所述第二量子点溶液与有机胺和有机膦进行第三次序的混合并加热的步骤在温 度为 80°C~350°C的条件下进行。
[0235] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶 的单核量子点或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点; 其中, 所述 IA-IVA- VDA纳米晶包括 CsPbCl 3、 CsPbBr 3、 CsPbI 3等, 但不限于此。
[0236] 当所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳 层为 IA-IVA-VIIA纳米晶的核壳量子点时, 三个次序的混合并加热过程中, 包括 将所述次序的量子点溶液与有机胺或有机胺和有机膦进行混合并加热的 A次序, 以及将所述次序的量子点溶液与有机羧酸或有机羧酸和有机膦进行混合并加热 的 B次序; 且所述 B次序在所述 A次序之后。 此时, 不仅能够改善量子点的溶解 性和稳定性, 而且还能够进一步改善量子点的荧光强度和瞬态荧光。 具体的, 有机胺优先有机羧酸对量子点进行后处理, 能够改善量子点的溶解性和稳定性 , 但有机胺处理后的量子点表面存在质子化的有机胺, 由于 IA-IVA-VIIA纳米晶 的光电稳定性相对较差比较易受表面电学性质的影响。 为了弥补上有机胺处理 后所产生的效果, 而后有机羧酸的处理能够有效消除量子点表面的质子化的有 机胺, 使量子点的表面态得到改善进而增强了荧光强度和瞬态荧光。 此外, 有 机膦对 IA-IVA-VIIA纳米晶的处理先后顺序能够降低阴离子缺陷并且增加表面配 体多样性, 并且不受有机羧酸或有机胺先后处理顺序的影响。
[0237] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次序的 混合并加热, 得到第三量子点溶液。
[0238] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二 次序的混合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0239] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次 序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第三次序的 混合并加热, 得到第三量子点溶液。
[0240] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次 序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进 行第三次序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0241] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的混合 并加热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热 , 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次序的混 合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0242] 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳层 为 IA-IVA-VIIA纳米晶的核壳量子点的实施例中, 在一些实施例中, 将所述次序 的量子点溶液与有机羧酸进行混合并加热的步骤或将所述次序的量子点溶液与 有机羧酸和有机膦进行混合并加热的步骤, 在温度为 200~250°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机胺进行混合并加热的步骤或 将所述次序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 8 0°C~250°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机膦 进行混合并加热的步骤, 在温度为 80°C~250°C的条件下进行。
[0243] 本申请上述实施例中, 将所述初始量子点溶液与第一化合物或第一化合物组合 进行第一次序的混合并加热的步骤中, 所述第一次序的混合并加热的时间为 20~ 100分钟; 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序 的混合并加热的步骤中, 所述第二次序的混合并加热的时间为 20~100分钟; 将 所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并加 热的步骤中, 所述第三次序的混合并加热的时间为 20~100分钟。
[0244] 本申请上述实施例中, 将所述初始量子点溶液与第一化合物或第一化合物组合 进行第一次序的混合并加热的步骤, 将所述第一量子点溶液与第二化合物或第 二化合物组合进行第二次序的混合并加热的步骤, 将所述第二量子点溶液与第 三化合物或第三化合物组合进行第三次序的混合并加热的步骤, 均在惰性气体 环境中进行。
[0245] 如图 3所示, 本申请实施例提供了一种量子点的后处理方法, 包括如下步骤:
[0246] B01.提供初始量子点溶液;
[0247] B02.将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混 合并加热, 得到第一量子点溶液;
[0248] 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序的混合并 加热, 得到第二量子点溶液;
[0249] 将所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并 加热, 得到第三量子点溶液;
[0250] 其中, 所述第一化合物选自有机羧酸、 有机胺或有机膦, 所述第一化合物组合 选自有机羧酸和有机膦或有机胺和有机膦;
[0251] 所述第二化合物选自有机羧酸、 有机胺或有机膦, 所述第二化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0252] 所述第三化合物选自有机羧酸、 有机胺或有机膦, 所述第三化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0253] 且仅有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用的化合物 组合中含有有机羧酸, 且仅有一个次序的混合并加热过程中采用的化合物为有 机胺或采用的化合物组合中含有有机胺;
[0254] 所述初始量子点溶液中的量子点为 IIB-VIA纳米晶的单核量子点或者壳层为 IIB- VIA纳米晶的核壳量子点。
[0255] 本申请实施例提供的量子点的后处理方法, 采用第一化合物或第一化合物组合 、 第二化合物或第二化合物组合、 第三化合物或第三化合物组合依次对初始量 子点溶液中的量子点进行三个次序的混合并加热。 其中, 相邻次序的混合并加 热过程中采用的化合物或化合物组合中不能同时含有有机羧酸或者相邻次序的 混合并加热过程中采用化合物组合中不能同时含有有机胺; 且同一次序的混合 并加热过程中采用的化合物或化合物组合不能同时含有有机羧酸和有机胺; 且 至少有一个次序的混合并加热过程中采用的化合物或化合物组合中含有有机羧 酸、 有机胺或有机膦。 采用本申请实施例上述方法对量子点进行后处理方法, 一方面, 第一化合物或第一化合物组合、 第二化合物或第二化合物组合、 第三 化合物或第三化合物组合能够充分的钝化量子点表面的金属原子和非金属原子 , 提升量子点的抗水氧的能力进而改善量子点的稳定性; 另一方面, 第一化合 物或第一化合物组合、 第二化合物或第二化合物组合、 第三化合物或第三化合 物组合会相互交错的结合在量子点的表面, 因三类化合物或化合物组合的类别 不同以及链长各有差异, 会增加量子点表面配体的空间位阻效应, 进而增加量 子点的溶解性。 此外, 采用本申请实施例上述方法对量子点进行后处理方法, 还可以改善量子点的荧光强度或改善量子点的瞬态荧光。
[0256] 具体的, 上述步骤 B01中, 所述初始量子点溶液为包含有量子点纳米晶和非共 融溶剂的溶液。 此外, 所述初始量子点溶液还含有少量的有机表面修饰剂, 少 量的阴离子前驱体和 /或阳离子前驱体。
[0257] 本申请实施例中, 所述初始量子点溶液没有严格限定。 所述初始量子点溶液可 以是一步法制备量子点得到的量子点溶液, 也可以是两步法制备制备量子点得 到的量子点溶液, 还可以是三步法制备制备量子点得到的量子点溶液。 此外, 所述初始量子点溶液还可以是经提纯处理后分散在非共融溶剂中形成的量子点 溶液。 其中, 一步法是指核壳量子点在一个反应容器中进行长核和长壳。 两步 法是指核壳量子点的制备包括两步: 在一个反应容器进行长核, 将量子点核取 出后放置在另一个反应溶剂中进行长壳。 三步法是指核壳量子点的制备包括两 步: 一个反应容器进行长核, 将量子点核取出后放置在另一个反应溶剂中进行 中间壳层生长, 取出含有中间壳层的核壳量子点放置在第三个反应容器中进行 最外层壳层生长。
[0258] 在一些实施例中, 所述初始量子点溶液中的量子点为油溶性量子点, 即所述量 子点表面含有油溶性配体。 具体的, 所述油溶性配体为油溶性有机小分子, 包 括但不限于有机羧酸类、 有机胺类、 有机膦酸类、 有机膦类、 有机氧膦类、 有 机硫醇。
[0259] 具体的, 采用本申请实施例后处理方法的所述初始量子点溶液中的量子点, 可 以为 IIB-VIA纳米晶的单核量子点或者壳层为 IIB-VIA纳米晶的核壳量子点, mA- VA纳米晶的单核量子点或者壳层为 mA-V A纳米晶的核壳量子点, IVA-VIA纳米 晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点, IB-mA-VIA纳米晶的 单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点, IA-IVA-VIIA纳米晶的 单核量子点或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点。
[0260] 上述步骤 B02中, 依次采用所述第一化合物或第一化合物组合、 所述第二化合 物或第二化合物组合、 所述第三化合物或第三化合物组合进行三个次序的混合 并加热处理, 对初始量子点进行处理, 改善量子点的稳定性和溶解性。 [0261] 本申请实施例中, 将所述初始量子点溶液与有机羧酸、 有机胺、 有机膦、 有机 羧酸和有机膦或有机胺和有机膦进行第一次序的混合并加热, 得到第一量子点 溶液; 将所述第一量子点溶液与有机羧酸、 有机胺、 有机膦、 有机羧酸和有机 膦或有机胺和有机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所 述第二量子点溶液与有机羧酸、 有机胺、 有机膦、 有机羧酸和有机膦或有机胺 和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0262] 在一些实施例中, 所述有机胺为含有单个氨基的直链有机胺中的至少一种, 且 所述有机胺中的碳原子的个数为 8~18。 在一些实施例中, 所述有机羧酸为含有 单个羧基的直链有机羧酸中的至少一种, 且所述有机羧酸中的碳原子的个数为 8 ~18。 在一些实施例中, 所述有机膦选自但不限于三辛基膦、 三丁基膦。 在一些 实施例中, 所述有机胺、 有机羧酸、 有机膦分子在室温下为液态。
[0263] 在一些实施例中, 采用所述有机羧酸和有机膦作为同一次序的化合物组合时, 所述有机羧酸与所述有机膦的摩尔比为 (3~7) : (7~3) 。 在一些实施例中, 采用所述有机胺和有机膦作为同一次序的化合物组合时, 所述有机胺与所述有 机膦的摩尔比为 (3~7) : (7~3) 。
[0264] 在一些实施例中, 按所述第一化合物或所述第一化合物组合与所述初始量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述初始量子点 溶液与第一化合物或第一化合物组合进行第一次序的混合并加热, 得到第一量 子点溶液。
[0265] 在一些实施例中, 按所述第二化合物或所述第二化合物组合与所述第一量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第一量子点 溶液与第二化合物或第二化合物组合进行第二次序的混合并加热, 得到第二量 子点溶液。
[0266] 在一些实施例中, 按所述第三化合物或所述第三化合物组合与所述第二量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第二量子点 溶液与第三化合物或第三化合物组合进行第三次序的混合并加热, 得到第三量 子点溶液。
[0267] 本申请实施例中, 可以在三个次序的混合并加热中, 分别选择不同类型的化合 物或化合物组合, 对所述初始量子点溶液中的量子点进行处理。 值得注意的是 , 由于同时添加时有机羧酸和有机胺会发生化学反应降低后处理效果, 因此所 述第一化合物或第一化合物组合、 所述第二化合物或第二化合物组合、 所述第 三化合物或第三化合物组合三者不能同时添加进行混合并加热。 此外, 相邻次 序的混合并加热过程中采用的化合物或化合物组合中不能同时含有有机羧酸或 者相邻次序的混合并加热过程中采用的化合物或化合物组合中不能同时含有有 机胺; 且同一次序的混合并加热过程中采用的化合物组合不能同时含有有机羧 酸和有机胺; 且至少有一个次序的混合并加热过程中采用的化合物或化合物组 合中含有有机羧酸、 有机胺或有机膦。
[0268] 本申请可以采用多种实施方式对初始量子点进行处理, 改善量子点的稳定性和 溶解性。
[0269] 在一种实施方式中, 将所述初始量子点溶液与有机竣酸或所述初始量子点溶液 与有机羧酸和有机膦进行第一次序的混合并加热, 有机羧酸对初始量子点进行 处理后, 能够优化量子点表面的阳离子空位。 进一步在采用第二化合物或第二 化合物组合对量子点进行第二次序的混合并加热, 采用第三化合物或第三化合 物组合对量子点进行第三次序的混合并加热, 第二化合物或第二化合物组合、 第三化合物或第三化合物组合能够与第一化合物或第一化合物组合有机羧酸共 同交错附着在量子点表面, 不仅增加量子点表面配体空间位阻效应, 而且也加 强了量子点表面配体的势垒效应, 减小了激子的扩散半径进而增强了量子点的 荧光强度。
[0270] 在一些实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合并加 热, 得到第一量子点溶液。
[0271] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0272] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有 机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0273] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0274] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0275] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热, 得到第三量子点溶液。
[0276] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0277] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液。
[0278] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0279] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。 [0280] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0281] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0282] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺进行第三次序的混合并加热, 得到第三量子点溶液。
[0283] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0284] 在另一种实施方式中, 将所述初始量子点溶液与有机胺或将所述初始量子点溶 液与有机胺和有机膦进行第一次序的混合并加热, 能够有效降低量子点表面的 缺陷态, 进而提高量子点的荧光强度。 但有机胺对初始量子点进行处理后, 由 于量子点表面含有质子化的有机胺在量子点表面会产生激子捕获, 降低量子点 的瞬态荧光寿命。 采用第二化合物或第二化合物组合对量子点进行第二次序的 混合并加热、 第三化合物或第三化合物组合对量子点进行第三次序的混合并加 热后, 第二化合物或第二化合物组合、 第三化合物或第三化合物组合能够对量 子点进行后处理, 有效去除量子点表面的质子化的有机胺, 进而增加了量子点 的瞬态変光寿命。
[0285] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液。
[0286] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0287] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0288] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0289] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0290] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第 三次序的混合并加热, 得到第三量子点溶液。
[0291] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0292] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液。
[0293] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0294] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0295] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0296] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0297] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸进行第三次序的混合并加热, 得到第三量子点溶液。
[0298] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0299] 在再一种实施方式中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 有机膦对初始量子点进行处理后, 优化量子点表面的阴离子空位。 进一 步采用第二化合物或第二化合物组合对量子点进行第二次序的混合并加热、 第 三化合物或第三化合物组合对量子点进行第三次序的混合并加热后, 第二化合 物或第二化合物组合、 第三化合物或第三化合物组合能够与第一化合物或第一 化合物组合有机膦共同交错附着在量子点表面, 不仅增加量子点表面配体空间 位阻效应, 而且也加强了量子点表面配体的势垒效应, 减小了激子的扩散半径 进而增强了量子点的荧光强度。
[0300] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液。
[0301] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热, 得到第三量子点溶液。
[0302] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0303] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺进行第三次序的混合并加热, 得到第三量子点溶液。
[0304] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0305] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第 三次序的混合并加热, 得到第三量子点溶液。
[0306] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0307] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸进行第三次序的混合并加热, 得到第三量子点溶液。
[0308] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0309] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IIB-VIA纳米晶的单 核量子点或者壳层为 nB-VIA纳米晶的核壳量子点; 其中, 所述 nB-VIA纳米晶包 括 ZnS、 ZnSe、 ZnTe、 CdSe、 CdS、 CdTe、 CdZnS、 CdZnSe、 PbSeS、 CdZnSeS 、 CdZnTe、 CdSe/ZnS、 CdZnSe/ZnS、 CdS/CdSe/CdS、 ZnS/CdSe/ZnS等, 但不限 于此。
[0310] 当所述初始量子点溶液中的量子点为 nB-viA纳米晶的单核量子点或者壳层为 n B-VIA纳米晶的核壳量子点时, 三个次序的混合并加热过程中, 包括将所述次序 的量子点溶液与有机胺或有机胺和有机膦进行混合并加热的 A次序, 以及将所述 次序的量子点溶液与有机羧酸或有机羧酸和有机膦进行混合并加热的 B次序; 且 所述 B次序在所述 A次序之前。 采用该方法对 IIB-VIA纳米晶的单核量子点或者壳 层为 IIB-VIA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶解性和稳 定性, 而且还能够进一步改善量子点的荧光强度和成膜性。 具体的, 有机羧酸 优先有机胺对初始量子点进行后处理, 促使量子点发生自熟化, 并且降低量子 点表面的阳离子空位, 改善荧光强度; 而后利用有机胺对量子点进行后处理能 够有效的降低量子点混合液的熔点, 降低量子点混合液的浊度同时, 又能够改 善量子点表面配体的多样性, 进而有利于提高成膜性。 所述有机膦对 nB-VIA纳 米晶的单核量子点或者壳层为 nB-VIA纳米晶的核壳量子点进行处理, 能够降低 阴离子缺陷并且增加表面配体多样性, 且不受有机羧酸或有机胺先后处理顺序 的影响。
[0311] 在一些实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合并加 热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行混合并加热的 步骤或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0312] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺第 三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序 的混合并加热, 得到第三量子点溶液。
[0313] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二 次序的混合并加热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三 次序的混合并加热, 得到第三量子点溶液。
[0314] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进 行第三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三 次序的混合并加热, 得到第三量子点溶液。
[0315] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸行第二次序的混合 并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并加 热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第三次序的混 合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序的混合并加 热, 得到第三量子点溶液。
[0316] 所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单核量子点或者壳层为 nB- VIA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述次序的量子 点溶液与有机羧酸进行混合并加热或将所述次序的量子点溶液与有机羧酸和有 机膦进行混合并加热的步骤, 在温度为 200~350°C的条件下进行。 在一些实施例 中, 将所述次序的量子点溶液与有机胺进行混合并加热或将所述次序的量子点 溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~200°C的条件下进 行。 在一些实施例中, 将所述次序的量子点溶液与有机膦进行混合并加热的步 骤, 在温度为 80°C~350°C的条件下进行。
[0317] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 HIA-VA纳米晶的单 核量子点或者壳层为 mA-VA纳米晶的核壳量子点; 其中, 所述 mA-VA纳米晶包 括 InP、 InN、 InAs、 InSb、 GaAs、 GaSb、 GaP、 GaN、 InGaP等, 但不限于此。
[0318] 当所述初始量子点溶液中的量子点为 mA-VA纳米晶的单核量子点或者壳层为 mA-VA纳米晶的核壳量子点时, 将所述初始量子点溶液与有机胺进行第一次序 的混合并加热或将所述初始量子点溶液与有机胺和有机膦进行第一次序的混合 并加热, 得到第一量子点溶液。 采用该方法对 mA-VA纳米晶的单核量子点或者 壳层为 mA-VA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶解性和 稳定性, 而且还能够进一步改善量子点的瞬态荧光和尺寸均一性。 具体的, 利 用所述有机胺对量子点进行后处理, 有机胺处理后的量子点表面存在质子化的 有机胺, 虽然能够改善量子点的溶解性和稳定性, 但由于 mA-VA量子点粒径较 小且激子半径大, 因此会增加量子点表面的非辐射跃迁降低了瞬态荧光。 为了 弥补上有机胺处理后所产生的效果, 后续采用含有机羧酸、 有机膦的化合物或 化合物组合 (没有顺序要求) 进行处理, 不仅能够消除量子点表面的质子化的 有机胺, 而且能够有效改善量子点的尺寸均一性。 具体的, 有机羧酸能够使核 壳量子点表面结晶不稳定的壳体给分解掉一部分; 分解后的金属原子与有机羧 酸再次形成金属阳离子前躯体, 阴离子与有机膦再次形成阴离子前躯体。 后处 理过程中再次形成的阴、 阳离子前躯体会在核壳量子点表面进行再次壳层生长 , 而再次的壳层生长时颗粒小的核壳量子点由于相对体表面大、 生长速率快优 先进行再次长壳, 因此最终体现的效果是核壳量子点的尺寸相对均一性较好。
[0319] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次 序的混合并加热, 得到第三量子点溶液。 [0320] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进 行第三次序的混合并加热, 得到第三量子点溶液。
[0321] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热
, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次 序的混合并加热, 得到第三量子点溶液。
[0322] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机膦进 行第三次序的混合并加热, 得到第三量子点溶液。
[0323] 所述初始量子点溶液中的量子点为 HIA-VA纳米晶的单核量子点或者壳层为 HIA -VA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述次序的量子 点溶液与有机羧酸进行混合并加热的步骤或将所述次序的量子点溶液与有机羧 酸和有机膦进行混合并加热的步骤, 在温度为 150~350°C的条件下进行。 在一些 实施例中, 将所述次序的量子点溶液与有机胺进行混合并加热的步骤或将所述 次序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~15 0°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机膦进行混 合并加热的步骤, 在温度为 80°C~350°C的条件下进行。
[0324] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单 核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点; 其中, 所述 IVA-VIA纳米晶 包括 PPbSe、 PbS、 PbTe、 PbSeS、 PbSeTe等, 但不限于此。
[0325] 当所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点时, 将所述初始量子点溶液与有机膦进行第一次序 的混合并加热, 得到第一量子点溶液。 采用该方法对 IVA-VIA纳米晶的单核量子 点或者壳层为 IVA- VIA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶 解性, 而且还能够进一步改善量子点的荧光强度和器件稳定性。 具体的, 有机 膦对量子点进行处理后能够优化量子点表面的阴离子空位改善荧光强度。 由于 IVA- VIA量子点激子扩散半径较大, 利用含有机羧酸、 有机胺的第二化合物或第 二化合物组合、 第三化合物或第三化合物组合 (没有顺序要求) 对 IVA-VIA量子 点的进行处理后, 能够与第一化合物或第一化合物组合有机膦共同交错附着在 量子点表面, 不仅增强了量子点表面配体的势垒效应减小了激子的扩散半径, 而且也增强了量子点的抗水氧的能力, 进而改善了利用该类量子点制备成器件 的稳定性。
[0326] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第三次序的 混合并加热或将所述初始量子点溶液与有机胺和有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0327] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机胺第二次序的混合并加 热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得 到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次序的混合并 加热或将所述初始量子点溶液与有机羧酸和有机膦进行第三次序的混合并加热 , 得到第三量子点溶液。
[0328] 所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IV A- VIA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述初始量子 点溶液与有机膦进行第一次序的混合并加热的步骤在温度为 200~350°C的条件下 进行。 在一些实施例中, 所述第二次序的混合并加热的步骤在温度为 80°C~200°C 的条件下进行。 在一些实施例中, 所述第三次序的混合并加热的步骤在温度为 8 0°C~350°C的条件下进行。
[0329] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的 单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点; 其中, 所述 IB-mA- VI A纳米晶包括 CuInS、 CuInSeS等, 但不限于此。 [0330] 当所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层 为: [B-mA- VIA纳米晶的核壳量子点时, 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序 的混合并加热, 得到第三量子点溶液。 此时, 不仅能够改善量子点的溶解性和 稳定性, 而且还能够进一步改善量子点的荧光强度和色纯。 具体的, IB-mA-VI A纳米晶量子点所含元素类别多, 表面缺陷态也多于其它体系量子点并且表面激 子扩散路径大, 因此, 利用有机膦或有机羧酸和有机膦作为第一化合物或第一 化合物组合或第二化合物或第二化合物组合对量子点进行处理时, 能够有效的 降低量子点的表面缺陷态增强量子点的荧光强度, 而后利用第三化合物或第三 化合物组合有机胺或有机胺加有机膦处理量子点, 能够与第一化合物或第一化 合物组合、 第二化合物或第二化合物组合一起附着在量子点表面共同阻碍量子 点表面的激子扩散路径, 降低激子复合半径进而改善量子点的色纯。
[0331] 在一些实施例中, 将所述初始量子点溶液与有机竣酸或将所述初始量子点溶液 与有机羧酸和有机膦进行第一次序的混合并加热, 得到第一量子点溶液; 将所 述第一量子点溶液与有机膦进行第二次序的混合并加热, 得到第二量子点溶液 ; 将所述第二量子点溶液与有机胺或将所述第二量子点溶液与有机胺和有机膦 进行第三次序的混合并加热, 得到第三量子点溶液。
[0332] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸或将所述第一量子 点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第二量子点溶液 ; 将所述第二量子点溶液与有机胺或将所述第二量子点溶液与有机胺和有机膦 进行第三次序的混合并加热, 得到第三量子点溶液。
[0333] 所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点的实施例中, 在一些实施例中, 所述第一次序 的混合并加热的步骤在温度为 250~350°C的条件下进行。 在一些实施例中, 所述 第二次序的混合并加热的步骤在温度为 150°C~250°C的条件下进行。 在一些实施 例中, 将所述第二量子点溶液与有机胺进行第三次序的混合并加热的步骤或将 所述第二量子点溶液与有机胺和有机膦进行第三次序的混合并加热的步骤在温 度为 80°C~350°C的条件下进行。
[0334] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶 的单核量子点或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点; 其中, 所述 IA-IVA- VDA纳米晶包括 CsPbCl 3、 CsPbBr 3、 CsPbI 3等, 但不限于此。
[0335] 当所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳 层为 IA-IVA-VIIA纳米晶的核壳量子点时, 三个次序的混合并加热过程中, 包括 将所述次序的量子点溶液与有机胺或有机胺和有机膦进行混合并加热的 A次序, 以及将所述次序的量子点溶液与有机羧酸或有机羧酸和有机膦进行混合并加热 的 B次序; 且所述 B次序在所述 A次序之后。 此时, 不仅能够改善量子点的溶解 性和稳定性, 而且还能够进一步改善量子点的荧光强度和瞬态荧光。 具体的, 有机胺优先有机羧酸对量子点进行后处理, 能够改善量子点的溶解性和稳定性 , 但有机胺处理后的量子点表面存在质子化的有机胺, 由于 IA-IVA-VIIA纳米晶 的光电稳定性相对较差比较易受表面电学性质的影响。 为了弥补上有机胺处理 后所产生的效果, 而后有机羧酸的处理能够有效消除量子点表面的质子化的有 机胺, 使量子点的表面态得到改善进而增强了荧光强度和瞬态荧光。 此外, 有 机膦对 IA-IVA-VIIA纳米晶的处理先后顺序能够降低阴离子缺陷并且增加表面配 体多样性, 并且不受有机羧酸或有机胺先后处理顺序的影响。
[0336] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次序的 混合并加热, 得到第三量子点溶液。
[0337] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二 次序的混合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0338] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次 序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第三次序的 混合并加热, 得到第三量子点溶液。
[0339] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次 序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进 行第三次序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0340] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的混合 并加热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热 , 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次序的混 合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0341] 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳层 为 IA-IVA-VIIA纳米晶的核壳量子点的实施例中, 在一些实施例中, 将所述次序 的量子点溶液与有机羧酸进行混合并加热的步骤或将所述次序的量子点溶液与 有机羧酸和有机膦进行混合并加热的步骤, 在温度为 200~250°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机胺进行混合并加热的步骤或 将所述次序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 8 0°C~250°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机膦 进行混合并加热的步骤, 在温度为 80°C~250°C的条件下进行。
[0342] 本申请上述实施例中, 将所述初始量子点溶液与第一化合物或第一化合物组合 进行第一次序的混合并加热的步骤中, 所述第一次序的混合并加热的时间为 20~ 100分钟; 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序 的混合并加热的步骤中, 所述第二次序的混合并加热的时间为 20~100分钟; 将 所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并加 热的步骤中, 所述第三次序的混合并加热的时间为 20~100分钟。
[0343] 本申请上述实施例中, 将所述初始量子点溶液与第一化合物或第一化合物组合 进行第一次序的混合并加热的步骤, 将所述第一量子点溶液与第二化合物或第 二化合物组合进行第二次序的混合并加热的步骤, 将所述第二量子点溶液与第 三化合物或第三化合物组合进行第三次序的混合并加热的步骤, 均在惰性气体 环境中进行。
[0344] 如图 4所示, 本申请实施例提供了一种量子点的后处理方法, 包括如下步骤:
[0345] C01 ·提供初始量子点溶液;
[0346] C02.将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混 合并加热, 得到第一量子点溶液;
[0347] 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序的混合并 加热, 得到第二量子点溶液;
[0348] 将所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并 加热, 得到第三量子点溶液;
[0349] 其中, 所述第一化合物选自有机羧酸、 有机胺或有机膦, 所述第一化合物组合 选自有机羧酸和有机膦或有机胺和有机膦;
[0350] 所述第二化合物选自有机羧酸、 有机胺或有机膦, 所述第二化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0351] 所述第三化合物选自有机羧酸、 有机胺或有机膦, 所述第三化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0352] 仅有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用的化合物组 合中含有有机羧酸, 且仅有一个的混合并加热过程中采用的化合物为有机胺或 采用的化合物组合中含有有机胺;
[0353] 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳层 为 IA-IVA-VIIA纳米晶的核壳量子点。
[0354] 本申请实施例提供的量子点的后处理方法, 采用第一化合物或第一化合物组合 、 第二化合物或第二化合物组合、 第三化合物或第三化合物组合依次对初始量 子点溶液中的量子点进行三个次序的混合并加热。 其中, 仅有一个次序的混合 并加热过程中采用的化合物为有机羧酸或采用的化合物组合中含有有机羧酸, 且仅有一个的混合并加热过程中采用的化合物为有机胺或采用的化合物组合中 含有有机胺。 采用本申请实施例上述方法对量子点进行后处理方法, 一方面, 第一化合物或第一化合物组合、 第二化合物或第二化合物组合、 第三化合物或 第三化合物组合能够充分的钝化量子点表面的金属原子和非金属原子, 提升量 子点的抗水氧的能力进而改善量子点的稳定性; 另一方面, 第一化合物或第一 化合物组合、 第二化合物或第二化合物组合、 第三化合物或第三化合物组合会 相互交错的结合在量子点的表面, 因三类化合物或化合物组合的类别不同以及 链长各有差异, 会增加量子点表面配体的空间位阻效应, 进而增加量子点的溶 解性。 此外, 采用本申请实施例上述方法对量子点进行后处理方法, 还可以改 善量子点的荧光强度或改善量子点的瞬态荧光。
[0355] 具体的, 上述步骤 C01中, 所述初始量子点溶液为包含有量子点纳米晶和非共 融溶剂的溶液。 此外, 所述初始量子点溶液还含有少量的有机表面修饰剂, 少 量的阴离子前驱体和 /或阳离子前驱体。
[0356] 本申请实施例中, 所述初始量子点溶液没有严格限定。 所述初始量子点溶液可 以是一步法制备量子点得到的量子点溶液, 也可以是两步法制备制备量子点得 到的量子点溶液, 还可以是三步法制备制备量子点得到的量子点溶液。 此外, 所述初始量子点溶液还可以是经提纯处理后分散在非共融溶剂中形成的量子点 溶液。 其中, 一步法是指核壳量子点在一个反应容器中进行长核和长壳。 两步 法是指核壳量子点的制备包括两步: 在一个反应容器进行长核, 将量子点核取 出后放置在另一个反应溶剂中进行长壳。 三步法是指核壳量子点的制备包括两 步: 一个反应容器进行长核, 将量子点核取出后放置在另一个反应溶剂中进行 中间壳层生长, 取出含有中间壳层的核壳量子点放置在第三个反应容器中进行 最外层壳层生长。
[0357] 在一些实施例中, 所述初始量子点溶液中的量子点为油溶性量子点, 即所述量 子点表面含有油溶性配体。 具体的, 所述油溶性配体为油溶性有机小分子, 包 括但不限于有机羧酸类、 有机胺类、 有机膦酸类、 有机膦类、 有机氧膦类、 有 机硫醇。 [0358] 具体的, 采用本申请实施例后处理方法的所述初始量子点溶液中的量子点, 可 以为 IIB-VIA纳米晶的单核量子点或者壳层为 IIB-VIA纳米晶的核壳量子点, mA- VA纳米晶的单核量子点或者壳层为 mA-V A纳米晶的核壳量子点, IVA-VIA纳米 晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点, IB-mA-VIA纳米晶的 单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点, IA-IVA-VIIA纳米晶的 单核量子点或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点。
[0359] 上述步骤 C02中, 依次采用所述第一化合物或第一化合物组合、 所述第二化合 物或第二化合物组合、 所述第三化合物或第三化合物组合进行三个次序的混合 并加热处理, 对初始量子点进行处理, 改善量子点的稳定性和溶解性。
[0360] 本申请实施例中, 将所述初始量子点溶液与有机羧酸、 有机胺、 有机膦、 有机 羧酸和有机膦或有机胺和有机膦进行第一次序的混合并加热, 得到第一量子点 溶液; 将所述第一量子点溶液与有机羧酸、 有机胺、 有机膦、 有机羧酸和有机 膦或有机胺和有机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所 述第二量子点溶液与有机羧酸、 有机胺、 有机膦、 有机羧酸和有机膦或有机胺 和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0361] 在一些实施例中, 所述有机胺为含有单个氨基的直链有机胺中的至少一种, 且 所述有机胺中的碳原子的个数为 8~18。 在一些实施例中, 所述有机羧酸为含有 单个羧基的直链有机羧酸中的至少一种, 且所述有机羧酸中的碳原子的个数为 8 ~18。 在一些实施例中, 所述有机膦选自但不限于三辛基膦、 三丁基膦。 在一些 实施例中, 所述有机胺、 有机羧酸、 有机膦分子在室温下为液态。
[0362] 在一些实施例中, 采用所述有机羧酸和有机膦作为同一次序的化合物组合时, 所述有机羧酸与所述有机膦的摩尔比为 (3~7) : (7~3) 在一些实施例中, 采用所述有机胺和有机膦作为同一次序的化合物组合时, 所述有机胺与所述有 机膦的摩尔比为 (3~7) : (7~3) 。
[0363] 在一些实施例中, 按所述第一化合物或所述第一化合物组合与所述初始量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述初始量子点 溶液与第一化合物或第一化合物组合进行第一次序的混合并加热, 得到第一量 子点溶液。 [0364] 在一些实施例中, 按所述第二化合物或所述第二化合物组合与所述第一量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第一量子点 溶液与第二化合物或第二化合物组合进行第二次序的混合并加热, 得到第二量 子点溶液。
[0365] 在一些实施例中, 按所述第三化合物或所述第三化合物组合与所述第二量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第二量子点 溶液与第三化合物或第三化合物组合进行第三次序的混合并加热, 得到第三量 子点溶液。
[0366] 本申请实施例中, 可以在三个次序的混合并加热中, 分别选择不同类型的化合 物或化合物组合, 对所述初始量子点溶液中的量子点进行处理。 值得注意的是 , 由于同时添加时有机羧酸和有机胺会发生化学反应降低后处理效果, 因此所 述第一化合物或第一化合物组合、 所述第二化合物或第二化合物组合、 所述第 三化合物或第三化合物组合三者不能同时添加进行混合并加热。 此外, 相邻次 序的混合并加热过程中采用的化合物或化合物组合中不能同时含有有机羧酸或 者相邻次序的混合并加热过程中采用的化合物或化合物组合中不能同时含有有 机胺; 且同一次序的混合并加热过程中采用的化合物组合不能同时含有有机羧 酸和有机胺; 且至少有一个次序的混合并加热过程中采用的化合物或化合物组 合中含有有机羧酸、 有机胺或有机膦。
[0367] 本申请可以采用多种实施方式对初始量子点进行处理, 改善量子点的稳定性和 溶解性。
[0368] 在一种实施方式中, 将所述初始量子点溶液与有机竣酸或所述初始量子点溶液 与有机羧酸和有机膦进行第一次序的混合并加热, 有机羧酸对初始量子点进行 处理后, 能够优化量子点表面的阳离子空位。 进一步在采用第二化合物或第二 化合物组合对量子点进行第二次序的混合并加热, 采用第三化合物或第三化合 物组合对量子点进行第三次序的混合并加热, 第二化合物或第二化合物组合、 第三化合物或第三化合物组合能够与第一化合物或第一化合物组合有机羧酸共 同交错附着在量子点表面, 不仅增加量子点表面配体空间位阻效应, 而且也加 强了量子点表面配体的势垒效应, 减小了激子的扩散半径进而增强了量子点的 荧光强度。
[0369] 在一些实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合并加 热, 得到第一量子点溶液。
[0370] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0371] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有 机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0372] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0373] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0374] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热, 得到第三量子点溶液。
[0375] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0376] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液。
[0377] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0378] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0379] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0380] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0381] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺进行第三次序的混合并加热, 得到第三量子点溶液。
[0382] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0383] 在另一种实施方式中, 将所述初始量子点溶液与有机胺或将所述初始量子点溶 液与有机胺和有机膦进行第一次序的混合并加热, 能够有效降低量子点表面的 缺陷态, 进而提高量子点的荧光强度。 但有机胺对初始量子点进行处理后, 由 于量子点表面含有质子化的有机胺在量子点表面会产生激子捕获, 降低量子点 的瞬态荧光寿命。 采用第二化合物或第二化合物组合对量子点进行第二次序的 混合并加热、 第三化合物或第三化合物组合对量子点进行第三次序的混合并加 热后, 第二化合物或第二化合物组合、 第三化合物或第三化合物组合能够对量 子点进行后处理, 有效去除量子点表面的质子化的有机胺, 进而增加了量子点 的瞬态変光寿命。
[0384] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液。
[0385] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0386] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0387] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0388] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0389] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第 三次序的混合并加热, 得到第三量子点溶液。 [0390] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0391] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液。
[0392] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0393] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0394] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0395] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0396] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸进行第三次序的混合并加热, 得到第三量子点溶液。
[0397] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0398] 在再一种实施方式中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 有机膦对初始量子点进行处理后, 优化量子点表面的阴离子空位。 进一 步采用第二化合物或第二化合物组合对量子点进行第二次序的混合并加热、 第 三化合物或第三化合物组合对量子点进行第三次序的混合并加热后, 第二化合 物或第二化合物组合、 第三化合物或第三化合物组合能够与第一化合物或第一 化合物组合有机膦共同交错附着在量子点表面, 不仅增加量子点表面配体空间 位阻效应, 而且也加强了量子点表面配体的势垒效应, 减小了激子的扩散半径 进而增强了量子点的荧光强度。
[0399] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液。
[0400] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热, 得到第三量子点溶液。
[0401] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0402] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺进行第三次序的混合并加热, 得到第三量子点溶液。
[0403] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。 [0404] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第 三次序的混合并加热, 得到第三量子点溶液。
[0405] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0406] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸进行第三次序的混合并加热, 得到第三量子点溶液。
[0407] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0408] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IIB-VIA纳米晶的单 核量子点或者壳层为 nB-VIA纳米晶的核壳量子点; 其中, 所述 nB-VIA纳米晶包 括 ZnS、 ZnSe、 ZnTe、 CdSe、 CdS、 CdTe、 CdZnS、 CdZnSe、 PbSeS、 CdZnSeS 、 CdZnTe、 CdSe/ZnS、 CdZnSe/ZnS、 CdS/CdSe/CdS、 ZnS/CdSe/ZnS等, 但不限 于此。
[0409] 当所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单核量子点或者壳层为 n B-VIA纳米晶的核壳量子点时, 三个次序的混合并加热过程中, 包括将所述次序 的量子点溶液与有机胺或有机胺和有机膦进行混合并加热的 A次序, 以及将所述 次序的量子点溶液与有机羧酸或有机羧酸和有机膦进行混合并加热的 B次序; 且 所述 B次序在所述 A次序之前。 采用该方法对 IIB-VIA纳米晶的单核量子点或者壳 层为 IIB-VIA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶解性和稳 定性, 而且还能够进一步改善量子点的荧光强度和成膜性。 具体的, 有机羧酸 优先有机胺对初始量子点进行后处理, 促使量子点发生自熟化, 并且降低量子 点表面的阳离子空位, 改善荧光强度; 而后利用有机胺对量子点进行后处理能 够有效的降低量子点混合液的熔点, 降低量子点混合液的浊度同时, 又能够改 善量子点表面配体的多样性, 进而有利于提高成膜性。 所述有机膦对 nB-VIA纳 米晶的单核量子点或者壳层为 nB-VIA纳米晶的核壳量子点进行处理, 能够降低 阴离子缺陷并且增加表面配体多样性, 且不受有机羧酸或有机胺先后处理顺序 的影响。
[0410] 在一些实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合并加 热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行混合并加热的 步骤或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0411] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺第 三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序 的混合并加热, 得到第三量子点溶液。
[0412] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二 次序的混合并加热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三 次序的混合并加热, 得到第三量子点溶液。
[0413] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进 行第三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三 次序的混合并加热, 得到第三量子点溶液。
[0414] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸行第二次序的混合 并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并加 热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第三次序的混 合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序的混合并加 热, 得到第三量子点溶液。
[0415] 所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单核量子点或者壳层为 nB- VIA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述次序的量子 点溶液与有机羧酸进行混合并加热或将所述次序的量子点溶液与有机羧酸和有 机膦进行混合并加热的步骤, 在温度为 200~350°C的条件下进行。 在一些实施例 中, 将所述次序的量子点溶液与有机胺进行混合并加热或将所述次序的量子点 溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~200°C的条件下进 行。 在一些实施例中, 将所述次序的量子点溶液与有机膦进行混合并加热的步 骤, 在温度为 80°C~350°C的条件下进行。
[0416] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 HIA-VA纳米晶的单 核量子点或者壳层为 mA-VA纳米晶的核壳量子点; 其中, 所述 mA-VA纳米晶包 括 InP、 InN、 InAs、 InSb、 GaAs、 GaSb、 GaP、 GaN、 InGaP等, 但不限于此。
[0417] 当所述初始量子点溶液中的量子点为 mA-VA纳米晶的单核量子点或者壳层为 mA-VA纳米晶的核壳量子点时, 将所述初始量子点溶液与有机胺进行第一次序 的混合并加热或将所述初始量子点溶液与有机胺和有机膦进行第一次序的混合 并加热, 得到第一量子点溶液。 采用该方法对 mA-VA纳米晶的单核量子点或者 壳层为 mA-VA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶解性和 稳定性, 而且还能够进一步改善量子点的瞬态荧光和尺寸均一性。 具体的, 利 用所述有机胺对量子点进行后处理, 有机胺处理后的量子点表面存在质子化的 有机胺, 虽然能够改善量子点的溶解性和稳定性, 但由于 mA-VA量子点粒径较 小且激子半径大, 因此会增加量子点表面的非辐射跃迁降低了瞬态荧光。 为了 弥补上有机胺处理后所产生的效果, 后续采用含有机羧酸、 有机膦的化合物或 化合物组合 (没有顺序要求) 进行处理, 不仅能够消除量子点表面的质子化的 有机胺, 而且能够有效改善量子点的尺寸均一性。 具体的, 有机羧酸能够使核 壳量子点表面结晶不稳定的壳体给分解掉一部分; 分解后的金属原子与有机羧 酸再次形成金属阳离子前躯体, 阴离子与有机膦再次形成阴离子前躯体。 后处 理过程中再次形成的阴、 阳离子前躯体会在核壳量子点表面进行再次壳层生长 , 而再次的壳层生长时颗粒小的核壳量子点由于相对体表面大、 生长速率快优 先进行再次长壳, 因此最终体现的效果是核壳量子点的尺寸相对均一性较好。
[0418] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次 序的混合并加热, 得到第三量子点溶液。
[0419] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进 行第三次序的混合并加热, 得到第三量子点溶液。
[0420] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次 序的混合并加热, 得到第三量子点溶液。
[0421] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热
, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机膦进 行第三次序的混合并加热, 得到第三量子点溶液。
[0422] 所述初始量子点溶液中的量子点为 mA-VA纳米晶的单核量子点或者壳层为 mA -VA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述次序的量子 点溶液与有机羧酸进行混合并加热的步骤或将所述次序的量子点溶液与有机羧 酸和有机膦进行混合并加热的步骤, 在温度为 150~350°C的条件下进行。 在一些 实施例中, 将所述次序的量子点溶液与有机胺进行混合并加热的步骤或将所述 次序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~15 0°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机膦进行混 合并加热的步骤, 在温度为 80°C~350°C的条件下进行。
[0423] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单 核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点; 其中, 所述 IVA-VIA纳米晶 包括 PPbSe、 PbS、 PbTe、 PbSeS、 PbSeTe等, 但不限于此。
[0424] 当所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点时, 将所述初始量子点溶液与有机膦进行第一次序 的混合并加热, 得到第一量子点溶液。 采用该方法对 IVA-VIA纳米晶的单核量子 点或者壳层为 IVA- VIA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶 解性, 而且还能够进一步改善量子点的荧光强度和器件稳定性。 具体的, 有机 膦对量子点进行处理后能够优化量子点表面的阴离子空位改善荧光强度。 由于 IVA-VIA量子点激子扩散半径较大, 利用含有机羧酸、 有机胺的第二化合物或第 二化合物组合、 第三化合物或第三化合物组合 (没有顺序要求) 对 IVA-VIA量子 点的进行处理后, 能够与第一化合物或第一化合物组合有机膦共同交错附着在 量子点表面, 不仅增强了量子点表面配体的势垒效应减小了激子的扩散半径, 而且也增强了量子点的抗水氧的能力, 进而改善了利用该类量子点制备成器件 的稳定性。
[0425] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第三次序的 混合并加热或将所述初始量子点溶液与有机胺和有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0426] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机胺第二次序的混合并加 热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得 到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次序的混合并 加热或将所述初始量子点溶液与有机羧酸和有机膦进行第三次序的混合并加热 , 得到第三量子点溶液。 [0427] 所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IV A- VIA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述初始量子 点溶液与有机膦进行第一次序的混合并加热的步骤在温度为 200~350°C的条件下 进行。 在一些实施例中, 所述第二次序的混合并加热的步骤在温度为 80°C~200°C 的条件下进行。 在一些实施例中, 所述第三次序的混合并加热的步骤在温度为 8 0°C~350°C的条件下进行。
[0428] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的 单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点; 其中, 所述 IB-mA- VI A纳米晶包括 CuInS、 CuInSeS等, 但不限于此。
[0429] 当所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层 为: [B-mA- VIA纳米晶的核壳量子点时, 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序 的混合并加热, 得到第三量子点溶液。 此时, 不仅能够改善量子点的溶解性和 稳定性, 而且还能够进一步改善量子点的荧光强度和色纯。 具体的, IB-mA-VI A纳米晶量子点所含元素类别多, 表面缺陷态也多于其它体系量子点并且表面激 子扩散路径大, 因此, 利用有机膦或有机羧酸和有机膦作为第一化合物或第一 化合物组合或第二化合物或第二化合物组合对量子点进行处理时, 能够有效的 降低量子点的表面缺陷态增强量子点的荧光强度, 而后利用第三化合物或第三 化合物组合有机胺或有机胺加有机膦处理量子点, 能够与第一化合物或第一化 合物组合、 第二化合物或第二化合物组合一起附着在量子点表面共同阻碍量子 点表面的激子扩散路径, 降低激子复合半径进而改善量子点的色纯。
[0430] 在一些实施例中, 将所述初始量子点溶液与有机竣酸或将所述初始量子点溶液 与有机羧酸和有机膦进行第一次序的混合并加热, 得到第一量子点溶液; 将所 述第一量子点溶液与有机膦进行第二次序的混合并加热, 得到第二量子点溶液 ; 将所述第二量子点溶液与有机胺或将所述第二量子点溶液与有机胺和有机膦 进行第三次序的混合并加热, 得到第三量子点溶液。
[0431] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热
, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸或将所述第一量子 点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第二量子点溶液 ; 将所述第二量子点溶液与有机胺或将所述第二量子点溶液与有机胺和有机膦 进行第三次序的混合并加热, 得到第三量子点溶液。
[0432] 所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层为 IB-mA-VIA纳米晶的核壳量子点的实施例中, 在一些实施例中, 所述第一次序 的混合并加热的步骤在温度为 250~350°C的条件下进行。 在一些实施例中, 所述 第二次序的混合并加热的步骤在温度为 150°C~250°C的条件下进行。 在一些实施 例中, 将所述第二量子点溶液与有机胺进行第三次序的混合并加热的步骤或将 所述第二量子点溶液与有机胺和有机膦进行第三次序的混合并加热的步骤在温 度为 80°C~350°C的条件下进行。
[0433] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶 的单核量子点或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点; 其中, 所述 IA-IVA- VDA纳米晶包括 CsPbCl 3、 CsPbBr 3、 CsPbI 3等, 但不限于此。
[0434] 当所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳 层为 IA-IVA-VIIA纳米晶的核壳量子点时, 三个次序的混合并加热过程中, 包括 将所述次序的量子点溶液与有机胺或有机胺和有机膦进行混合并加热的 A次序, 以及将所述次序的量子点溶液与有机羧酸或有机羧酸和有机膦进行混合并加热 的 B次序; 且所述 B次序在所述 A次序之后。 此时, 不仅能够改善量子点的溶解 性和稳定性, 而且还能够进一步改善量子点的荧光强度和瞬态荧光。 具体的, 有机胺优先有机羧酸对量子点进行后处理, 能够改善量子点的溶解性和稳定性 , 但有机胺处理后的量子点表面存在质子化的有机胺, 由于 IA-IVA-VIIA纳米晶 的光电稳定性相对较差比较易受表面电学性质的影响。 为了弥补上有机胺处理 后所产生的效果, 而后有机羧酸的处理能够有效消除量子点表面的质子化的有 机胺, 使量子点的表面态得到改善进而增强了荧光强度和瞬态荧光。 此外, 有 机膦对 IA-IVA-VIIA纳米晶的处理先后顺序能够降低阴离子缺陷并且增加表面配 体多样性, 并且不受有机羧酸或有机胺先后处理顺序的影响。
[0435] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次序的 混合并加热, 得到第三量子点溶液。
[0436] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二 次序的混合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0437] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次 序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第三次序的 混合并加热, 得到第三量子点溶液。
[0438] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次 序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进 行第三次序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0439] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的混合 并加热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热 , 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次序的混 合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0440] 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳层 为 IA-IVA-VIIA纳米晶的核壳量子点的实施例中, 在一些实施例中, 将所述次序 的量子点溶液与有机羧酸进行混合并加热的步骤或将所述次序的量子点溶液与 有机羧酸和有机膦进行混合并加热的步骤, 在温度为 200~250°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机胺进行混合并加热的步骤或 将所述次序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 8 0°C~250°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机膦 进行混合并加热的步骤, 在温度为 80°C~250°C的条件下进行。
[0441] 本申请上述实施例中, 将所述初始量子点溶液与第一化合物或第一化合物组合 进行第一次序的混合并加热的步骤中, 所述第一次序的混合并加热的时间为 20~ 100分钟; 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序 的混合并加热的步骤中, 所述第二次序的混合并加热的时间为 20~100分钟; 将 所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并加 热的步骤中, 所述第三次序的混合并加热的时间为 20~100分钟。
[0442] 本申请上述实施例中, 将所述初始量子点溶液与第一化合物或第一化合物组合 进行第一次序的混合并加热的步骤, 将所述第一量子点溶液与第二化合物或第 二化合物组合进行第二次序的混合并加热的步骤, 将所述第二量子点溶液与第 三化合物或第三化合物组合进行第三次序的混合并加热的步骤, 均在惰性气体 环境中进行。
[0443] 如图 5所示, 本申请实施例提供了一种量子点的后处理方法, 包括如下步骤:
[0444] D01 ·提供初始量子点溶液;
[0445] D02.将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混 合并加热, 得到第一量子点溶液;
[0446] 将所述初始量子点溶液与有机胺或有机胺和有机膦进行第一次序的混合并加热 , 即将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序的混 合并加热, 得到第一量子点溶液, 且所述第一化合物选自有机羧酸、 有机胺或 有机膦, 所述第一化合物组合选自有机羧酸和有机膦或有机胺和有机膦;
[0447] 将所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并 加热, 得到第三量子点溶液;
[0448] 其中, 所述第二化合物选自有机羧酸、 有机胺或有机膦, 所述第二化合物组合 选自有机羧酸和有机膦或有机胺和有机膦;
[0449] 所述第三化合物选自有机羧酸、 有机胺或有机膦, 所述第三化合物组合选自有 机羧酸和有机膦或有机胺和有机膦;
[0450] 且仅有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用的化合物 组合中含有有机羧酸, 且仅有一个次序的混合并加热过程中采用的化合物为有 机胺或采用的化合物组合中含有有机胺。
[0451] 本申请实施例提供的量子点的后处理方法, 采用第一化合物或第一化合物组合 、 第二化合物或第二化合物组合、 第三化合物或第三化合物组合依次对初始量 子点溶液中的量子点进行三个次序的混合并加热。 其中, 相邻次序的混合并加 热过程中采用的化合物或化合物组合中不能同时含有有机羧酸或者相邻次序的 混合并加热过程中采用化合物组合中不能同时含有有机胺; 且同一次序的混合 并加热过程中采用的化合物或化合物组合不能同时含有有机羧酸和有机胺; 且 至少有一个次序的混合并加热过程中采用的化合物或化合物组合中含有有机羧 酸、 有机胺或有机膦。 采用本申请实施例上述方法对量子点进行后处理方法, 一方面, 第一化合物或第一化合物组合、 第二化合物或第二化合物组合、 第三 化合物或第三化合物组合能够充分的钝化量子点表面的金属原子和非金属原子 , 提升量子点的抗水氧的能力进而改善量子点的稳定性; 另一方面, 第一化合 物或第一化合物组合、 第二化合物或第二化合物组合、 第三化合物或第三化合 物组合会相互交错的结合在量子点的表面, 因三类化合物或化合物组合的类别 不同以及链长各有差异, 会增加量子点表面配体的空间位阻效应, 进而增加量 子点的溶解性。 此外, 采用本申请实施例上述方法对量子点进行后处理方法, 还可以改善量子点的荧光强度或改善量子点的瞬态荧光。
[0452] 具体的, 上述步骤 D01中, 所述初始量子点溶液为包含有量子点纳米晶和非共 融溶剂的溶液。 此外, 所述初始量子点溶液还含有少量的有机表面修饰剂, 少 量的阴离子前驱体和 /或阳离子前驱体。
[0453] 本申请实施例中, 所述初始量子点溶液没有严格限定。 所述初始量子点溶液可 以是一步法制备量子点得到的量子点溶液, 也可以是两步法制备制备量子点得 到的量子点溶液, 还可以是三步法制备制备量子点得到的量子点溶液。 此外, 所述初始量子点溶液还可以是经提纯处理后分散在非共融溶剂中形成的量子点 溶液。 其中, 一步法是指核壳量子点在一个反应容器中进行长核和长壳。 两步 法是指核壳量子点的制备包括两步: 在一个反应容器进行长核, 将量子点核取 出后放置在另一个反应溶剂中进行长壳。 三步法是指核壳量子点的制备包括两 步: 一个反应容器进行长核, 将量子点核取出后放置在另一个反应溶剂中进行 中间壳层生长, 取出含有中间壳层的核壳量子点放置在第三个反应容器中进行 最外层壳层生长。
[0454] 在一些实施例中, 所述初始量子点溶液中的量子点为油溶性量子点, 即所述量 子点表面含有油溶性配体。 具体的, 所述油溶性配体为油溶性有机小分子, 包 括但不限于有机羧酸类、 有机胺类、 有机膦酸类、 有机膦类、 有机氧膦类、 有 机硫醇。
[0455] 具体的, 采用本申请实施例后处理方法的所述初始量子点溶液中的量子点, 可 以为 IIB-VIA纳米晶的单核量子点或者壳层为 IIB-VIA纳米晶的核壳量子点, mA- VA纳米晶的单核量子点或者壳层为 mA-V A纳米晶的核壳量子点, IVA-VIA纳米 晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点, IB-mA-VIA纳米晶的 单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点, IA-IVA-VIIA纳米晶的 单核量子点或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点。
[0456] 上述步骤 D02中, 依次采用所述第一化合物或第一化合物组合、 所述第二化合 物或第二化合物组合、 所述第三化合物或第三化合物组合进行三个次序的混合 并加热处理, 对初始量子点进行处理, 改善量子点的稳定性和溶解性。
[0457] 本申请实施例中, 将所述初始量子点溶液与有机羧酸、 有机胺、 有机膦、 有机 羧酸和有机膦或有机胺和有机膦进行第一次序的混合并加热, 得到第一量子点 溶液; 将所述第一量子点溶液与有机羧酸、 有机胺、 有机膦、 有机羧酸和有机 膦或有机胺和有机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所 述第二量子点溶液与有机羧酸、 有机胺、 有机膦、 有机羧酸和有机膦或有机胺 和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0458] 在一些实施例中, 所述有机胺为含有单个氨基的直链有机胺中的至少一种, 且 所述有机胺中的碳原子的个数为 8~18。 在一些实施例中, 所述有机羧酸为含有 单个羧基的直链有机羧酸中的至少一种, 且所述有机羧酸中的碳原子的个数为 8 ~18。 在一些实施例中, 所述有机膦选自但不限于三辛基膦、 三丁基膦。 在一些 实施例中, 所述有机胺、 有机羧酸、 有机膦分子在室温下为液态。
[0459] 在一些实施例中, 采用所述有机羧酸和有机膦作为同一次序的化合物组合时, 所述有机羧酸与所述有机膦的摩尔比为 (3~7) : (7~3) 。 在一些实施例中, 采用所述有机胺和有机膦作为同一次序的化合物组合时, 所述有机胺与所述有 机膦的摩尔比为 (3~7) : (7~3) 。
[0460] 在一些实施例中, 按所述第一化合物或所述第一化合物组合与所述初始量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述初始量子点 溶液与第一化合物或第一化合物组合进行第一次序的混合并加热, 得到第一量 子点溶液。
[0461] 在一些实施例中, 按所述第二化合物或所述第二化合物组合与所述第一量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第一量子点 溶液与第二化合物或第二化合物组合进行第二次序的混合并加热, 得到第二量 子点溶液。
[0462] 在一些实施例中, 按所述第三化合物或所述第三化合物组合与所述第二量子点 溶液中量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第二量子点 溶液与第三化合物或第三化合物组合进行第三次序的混合并加热, 得到第三量 子点溶液。
[0463] 本申请实施例中, 可以在三个次序的混合并加热中, 分别选择不同类型的化合 物或化合物组合, 对所述初始量子点溶液中的量子点进行处理。 值得注意的是 , 由于同时添加时有机羧酸和有机胺会发生化学反应降低后处理效果, 因此所 述第一化合物或第一化合物组合、 所述第二化合物或第二化合物组合、 所述第 三化合物或第三化合物组合三者不能同时添加进行混合并加热。 此外, 相邻次 序的混合并加热过程中采用的化合物或化合物组合中不能同时含有有机羧酸或 者相邻次序的混合并加热过程中采用的化合物或化合物组合中不能同时含有有 机胺; 且同一次序的混合并加热过程中采用的化合物组合不能同时含有有机羧 酸和有机胺; 且至少有一个次序的混合并加热过程中采用的化合物或化合物组 合中含有有机羧酸、 有机胺或有机膦。
[0464] 本申请可以采用多种实施方式对初始量子点进行处理, 改善量子点的稳定性和 溶解性。
[0465] 在一种实施方式中, 将所述初始量子点溶液与有机竣酸或所述初始量子点溶液 与有机羧酸和有机膦进行第一次序的混合并加热, 有机羧酸对初始量子点进行 处理后, 能够优化量子点表面的阳离子空位。 进一步在采用第二化合物或第二 化合物组合对量子点进行第二次序的混合并加热, 采用第三化合物或第三化合 物组合对量子点进行第三次序的混合并加热, 第二化合物或第二化合物组合、 第三化合物或第三化合物组合能够与第一化合物或第一化合物组合有机羧酸共 同交错附着在量子点表面, 不仅增加量子点表面配体空间位阻效应, 而且也加 强了量子点表面配体的势垒效应, 减小了激子的扩散半径进而增强了量子点的 荧光强度。
[0466] 在一些实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合并加 热, 得到第一量子点溶液。
[0467] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0468] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有 机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0469] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0470] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。 [0471] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热, 得到第三量子点溶液。
[0472] 在一些具体实施例中, 将所述初始量子点溶液与有机竣酸进行第一次序的混合 并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0473] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液。
[0474] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0475] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0476] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0477] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机羧酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0478] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺进行第三次序的混合并加热, 得到第三量子点溶液。
[0479] 在一些具体实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次 序的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0480] 在另一种实施方式中, 将所述初始量子点溶液与有机胺或将所述初始量子点溶 液与有机胺和有机膦进行第一次序的混合并加热, 能够有效降低量子点表面的 缺陷态, 进而提高量子点的荧光强度。 但有机胺对初始量子点进行处理后, 由 于量子点表面含有质子化的有机胺在量子点表面会产生激子捕获, 降低量子点 的瞬态荧光寿命。 采用第二化合物或第二化合物组合对量子点进行第二次序的 混合并加热、 第三化合物或第三化合物组合对量子点进行第三次序的混合并加 热后, 第二化合物或第二化合物组合、 第三化合物或第三化合物组合能够对量 子点进行后处理, 有效去除量子点表面的质子化的有机胺, 进而增加了量子点 的瞬态変光寿命。
[0481] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液。
[0482] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0483] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0484] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0485] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0486] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第 三次序的混合并加热, 得到第三量子点溶液。
[0487] 在一些具体实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0488] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液。
[0489] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0490] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0491] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0492] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有 机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶 液与有机胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0493] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸进行第三次序的混合并加热, 得到第三量子点溶液。
[0494] 在一些具体实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序 的混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0495] 在再一种实施方式中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 有机膦对初始量子点进行处理后, 优化量子点表面的阴离子空位。 进一 步采用第二化合物或第二化合物组合对量子点进行第二次序的混合并加热、 第 三化合物或第三化合物组合对量子点进行第三次序的混合并加热后, 第二化合 物或第二化合物组合、 第三化合物或第三化合物组合能够与第一化合物或第一 化合物组合有机膦共同交错附着在量子点表面, 不仅增加量子点表面配体空间 位阻效应, 而且也加强了量子点表面配体的势垒效应, 减小了激子的扩散半径 进而增强了量子点的荧光强度。
[0496] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液。
[0497] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热, 得到第三量子点溶液。
[0498] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0499] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺进行第三次序的混合并加热, 得到第三量子点溶液。
[0500] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行 第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机 胺和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0501] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第 三次序的混合并加热, 得到第三量子点溶液。
[0502] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机 膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0503] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸进行第三次序的混合并加热, 得到第三量子点溶液。
[0504] 在一些具体实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并 加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺和有机膦进行第 二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧 酸和有机膦进行第三次序的混合并加热, 得到第三量子点溶液。
[0505] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IIB-VIA纳米晶的单 核量子点或者壳层为 nB-VIA纳米晶的核壳量子点; 其中, 所述 nB-VIA纳米晶包 括 ZnS、 ZnSe、 ZnTe、 CdSe、 CdS、 CdTe、 CdZnS、 CdZnSe、 PbSeS、 CdZnSeS 、 CdZnTe、 CdSe/ZnS、 CdZnSe/ZnS、 CdS/CdSe/CdS、 ZnS/CdSe/ZnS等, 但不限 于此。
[0506] 当所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单核量子点或者壳层为 n B-VIA纳米晶的核壳量子点时, 三个次序的混合并加热过程中, 包括将所述次序 的量子点溶液与有机胺或有机胺和有机膦进行混合并加热的 A次序, 以及将所述 次序的量子点溶液与有机羧酸或有机羧酸和有机膦进行混合并加热的 B次序; 且 所述 B次序在所述 A次序之前。 采用该方法对 IIB-VIA纳米晶的单核量子点或者壳 层为 IIB-VIA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶解性和稳 定性, 而且还能够进一步改善量子点的荧光强度和成膜性。 具体的, 有机羧酸 优先有机胺对初始量子点进行后处理, 促使量子点发生自熟化, 并且降低量子 点表面的阳离子空位, 改善荧光强度; 而后利用有机胺对量子点进行后处理能 够有效的降低量子点混合液的熔点, 降低量子点混合液的浊度同时, 又能够改 善量子点表面配体的多样性, 进而有利于提高成膜性。 所述有机膦对 nB-VIA纳 米晶的单核量子点或者壳层为 nB-VIA纳米晶的核壳量子点进行处理, 能够降低 阴离子缺陷并且增加表面配体多样性, 且不受有机羧酸或有机胺先后处理顺序 的影响。
[0507] 在一些实施例中, 将所述初始量子点溶液与有机羧酸进行第一次序的混合并加 热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行混合并加热的 步骤或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0508] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺第 三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序 的混合并加热, 得到第三量子点溶液。
[0509] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二 次序的混合并加热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的 混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三 次序的混合并加热, 得到第三量子点溶液。
[0510] 在一些实施例中, 将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的 混合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进 行第三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三 次序的混合并加热, 得到第三量子点溶液。
[0511] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热
, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸行第二次序的混合 并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并加 热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第三次序的混 合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序的混合并加 热, 得到第三量子点溶液。
[0512] 所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单核量子点或者壳层为 nB- VIA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述次序的量子 点溶液与有机羧酸进行混合并加热或将所述次序的量子点溶液与有机羧酸和有 机膦进行混合并加热的步骤, 在温度为 200~350°C的条件下进行。 在一些实施例 中, 将所述次序的量子点溶液与有机胺进行混合并加热或将所述次序的量子点 溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~200°C的条件下进 行。 在一些实施例中, 将所述次序的量子点溶液与有机膦进行混合并加热的步 骤, 在温度为 80°C~350°C的条件下进行。
[0513] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 HIA-VA纳米晶的单 核量子点或者壳层为 mA-VA纳米晶的核壳量子点; 其中, 所述 mA-VA纳米晶包 括 InP、 InN、 InAs、 InSb、 GaAs、 GaSb、 GaP、 GaN、 InGaP等, 但不限于此。
[0514] 当所述初始量子点溶液中的量子点为 mA-VA纳米晶的单核量子点或者壳层为 mA-VA纳米晶的核壳量子点时, 将所述初始量子点溶液与有机胺进行第一次序 的混合并加热或将所述初始量子点溶液与有机胺和有机膦进行第一次序的混合 并加热, 得到第一量子点溶液。 采用该方法对 mA-VA纳米晶的单核量子点或者 壳层为 mA-VA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶解性和 稳定性, 而且还能够进一步改善量子点的瞬态荧光和尺寸均一性。 具体的, 利 用所述有机胺对量子点进行后处理, 有机胺处理后的量子点表面存在质子化的 有机胺, 虽然能够改善量子点的溶解性和稳定性, 但由于 mA-VA量子点粒径较 小且激子半径大, 因此会增加量子点表面的非辐射跃迁降低了瞬态荧光。 为了 弥补上有机胺处理后所产生的效果, 后续采用含有机羧酸、 有机膦的化合物或 化合物组合 (没有顺序要求) 进行处理, 不仅能够消除量子点表面的质子化的 有机胺, 而且能够有效改善量子点的尺寸均一性。 具体的, 有机羧酸能够使核 壳量子点表面结晶不稳定的壳体给分解掉一部分; 分解后的金属原子与有机羧 酸再次形成金属阳离子前躯体, 阴离子与有机膦再次形成阴离子前躯体。 后处 理过程中再次形成的阴、 阳离子前躯体会在核壳量子点表面进行再次壳层生长 , 而再次的壳层生长时颗粒小的核壳量子点由于相对体表面大、 生长速率快优 先进行再次长壳, 因此最终体现的效果是核壳量子点的尺寸相对均一性较好。
[0515] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次 序的混合并加热, 得到第三量子点溶液。
[0516] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸和有机膦进行第二 次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进 行第三次序的混合并加热, 得到第三量子点溶液。
[0517] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次 序的混合并加热, 得到第三量子点溶液。
[0518] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸和有机膦进 行第三次序的混合并加热, 得到第三量子点溶液。
[0519] 所述初始量子点溶液中的量子点为 mA-VA纳米晶的单核量子点或者壳层为 mA -VA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述次序的量子 点溶液与有机羧酸进行混合并加热的步骤或将所述次序的量子点溶液与有机羧 酸和有机膦进行混合并加热的步骤, 在温度为 150~350°C的条件下进行。 在一些 实施例中, 将所述次序的量子点溶液与有机胺进行混合并加热的步骤或将所述 次序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~15 0°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机膦进行混 合并加热的步骤, 在温度为 80°C~350°C的条件下进行。
[0520] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单 核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点; 其中, 所述 IVA-VIA纳米晶 包括 PPbSe、 PbS、 PbTe、 PbSeS、 PbSeTe等, 但不限于此。
[0521] 当所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IVA- VIA纳米晶的核壳量子点时, 将所述初始量子点溶液与有机膦进行第一次序 的混合并加热, 得到第一量子点溶液。 采用该方法对 IVA-VIA纳米晶的单核量子 点或者壳层为 IVA- VIA纳米晶的核壳量子点进行处理, 不仅能够改善量子点的溶 解性, 而且还能够进一步改善量子点的荧光强度和器件稳定性。 具体的, 有机 膦对量子点进行处理后能够优化量子点表面的阴离子空位改善荧光强度。 由于 IVA-VIA量子点激子扩散半径较大, 利用含有机羧酸、 有机胺的第二化合物或第 二化合物组合、 第三化合物或第三化合物组合 (没有顺序要求) 对 IVA-VIA量子 点的进行处理后, 能够与第一化合物或第一化合物组合有机膦共同交错附着在 量子点表面, 不仅增强了量子点表面配体的势垒效应减小了激子的扩散半径, 而且也增强了量子点的抗水氧的能力, 进而改善了利用该类量子点制备成器件 的稳定性。
[0522] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机胺进行第三次序的 混合并加热或将所述初始量子点溶液与有机胺和有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0523] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机胺第二次序的混合并加 热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得 到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次序的混合并 加热或将所述初始量子点溶液与有机羧酸和有机膦进行第三次序的混合并加热 , 得到第三量子点溶液。
[0524] 所述初始量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IV A- VIA纳米晶的核壳量子点的上述实施例中, 在一些实施例中, 将所述初始量子 点溶液与有机膦进行第一次序的混合并加热的步骤在温度为 200~350°C的条件下 进行。 在一些实施例中, 所述第二次序的混合并加热的步骤在温度为 80°C~200°C 的条件下进行。 在一些实施例中, 所述第三次序的混合并加热的步骤在温度为 8 0°C~350°C的条件下进行。
[0525] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的 单核量子点或者壳层为 IB-mA- VIA纳米晶的核壳量子点; 其中, 所述 IB-mA- VI A纳米晶包括 CuInS、 CuInSeS等, 但不限于此。
[0526] 当所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层 为:[B-mA- VIA纳米晶的核壳量子点时, 将所述第二量子点溶液与有机胺进行第 三次序的混合并加热或将所述第二量子点溶液与有机胺和有机膦进行第三次序 的混合并加热, 得到第三量子点溶液。 此时, 不仅能够改善量子点的溶解性和 稳定性, 而且还能够进一步改善量子点的荧光强度和色纯。 具体的, IB-mA-VI A纳米晶量子点所含元素类别多, 表面缺陷态也多于其它体系量子点并且表面激 子扩散路径大, 因此, 利用有机膦或有机羧酸和有机膦作为第一化合物或第一 化合物组合或第二化合物或第二化合物组合对量子点进行处理时, 能够有效的 降低量子点的表面缺陷态增强量子点的荧光强度, 而后利用第三化合物或第三 化合物组合有机胺或有机胺加有机膦处理量子点, 能够与第一化合物或第一化 合物组合、 第二化合物或第二化合物组合一起附着在量子点表面共同阻碍量子 点表面的激子扩散路径, 降低激子复合半径进而改善量子点的色纯。
[0527] 在一些实施例中, 将所述初始量子点溶液与有机竣酸或将所述初始量子点溶液 与有机羧酸和有机膦进行第一次序的混合并加热, 得到第一量子点溶液; 将所 述第一量子点溶液与有机膦进行第二次序的混合并加热, 得到第二量子点溶液 ; 将所述第二量子点溶液与有机胺或将所述第二量子点溶液与有机胺和有机膦 进行第三次序的混合并加热, 得到第三量子点溶液。
[0528] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸或将所述第一量子 点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第二量子点溶液 ; 将所述第二量子点溶液与有机胺或将所述第二量子点溶液与有机胺和有机膦 进行第三次序的混合并加热, 得到第三量子点溶液。
[0529] 所述初始量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层为 IB-mA-VIA纳米晶的核壳量子点的实施例中, 在一些实施例中, 所述第一次序 的混合并加热的步骤在温度为 250~350°C的条件下进行。 在一些实施例中, 所述 第二次序的混合并加热的步骤在温度为 150°C~250°C的条件下进行。 在一些实施 例中, 将所述第二量子点溶液与有机胺进行第三次序的混合并加热的步骤或将 所述第二量子点溶液与有机胺和有机膦进行第三次序的混合并加热的步骤在温 度为 80°C~350°C的条件下进行。
[0530] 在一个具体实施例中, 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶 的单核量子点或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点; 其中, 所述 IA-IVA- VDA纳米晶包括 CsPbCl 3、 CsPbBr 3、 CsPbI 3等, 但不限于此。
[0531] 当所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳 层为 IA-IVA-VIIA纳米晶的核壳量子点时, 三个次序的混合并加热过程中, 包括 将所述次序的量子点溶液与有机胺或有机胺和有机膦进行混合并加热的 A次序, 以及将所述次序的量子点溶液与有机羧酸或有机羧酸和有机膦进行混合并加热 的 B次序; 且所述 B次序在所述 A次序之后。 此时, 不仅能够改善量子点的溶解 性和稳定性, 而且还能够进一步改善量子点的荧光强度和瞬态荧光。 具体的, 有机胺优先有机羧酸对量子点进行后处理, 能够改善量子点的溶解性和稳定性 , 但有机胺处理后的量子点表面存在质子化的有机胺, 由于 IA-IVA-VIIA纳米晶 的光电稳定性相对较差比较易受表面电学性质的影响。 为了弥补上有机胺处理 后所产生的效果, 而后有机羧酸的处理能够有效消除量子点表面的质子化的有 机胺, 使量子点的表面态得到改善进而增强了荧光强度和瞬态荧光。 此外, 有 机膦对 IA-IVA-VIIA纳米晶的处理先后顺序能够降低阴离子缺陷并且增加表面配 体多样性, 并且不受有机羧酸或有机胺先后处理顺序的影响。
[0532] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混 合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第三次序的 混合并加热, 得到第三量子点溶液。
[0533] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机羧酸进行第二 次序的混合并加热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序 的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0534] 在一些实施例中, 将所述初始量子点溶液与有机胺进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次 序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第三次序的 混合并加热, 得到第三量子点溶液。
[0535] 在一些实施例中, 将所述初始量子点溶液与有机胺和有机膦进行第一次序的混 合并加热, 得到第一量子点溶液; 将所述第一量子点溶液与有机膦进行第二次 序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进 行第三次序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[0536] 在一些实施例中, 将所述初始量子点溶液与有机膦进行第一次序的混合并加热 , 得到第一量子点溶液; 将所述第一量子点溶液与有机胺进行第二次序的混合 并加热或将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热 , 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次序的混 合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[0537] 所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳层 为 IA-IVA-VIIA纳米晶的核壳量子点的实施例中, 在一些实施例中, 将所述次序 的量子点溶液与有机羧酸进行混合并加热的步骤或将所述次序的量子点溶液与 有机羧酸和有机膦进行混合并加热的步骤, 在温度为 200~250°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机胺进行混合并加热的步骤或 将所述次序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 8 0°C~250°C的条件下进行。 在一些实施例中, 将所述次序的量子点溶液与有机膦 进行混合并加热的步骤, 在温度为 80°C~250°C的条件下进行。
[0538] 本申请上述实施例中, 将所述初始量子点溶液与第一化合物或第一化合物组合 进行第一次序的混合并加热的步骤中, 所述第一次序的混合并加热的时间为 20~ 100分钟; 将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序 的混合并加热的步骤中, 所述第二次序的混合并加热的时间为 20~100分钟; 将 所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序的混合并加 热的步骤中, 所述第三次序的混合并加热的时间为 20~100分钟。
[0539] 本申请上述实施例中, 将所述初始量子点溶液与第一化合物或第一化合物组合 进行第一次序的混合并加热的步骤, 将所述第一量子点溶液与第二化合物或第 二化合物组合进行第二次序的混合并加热的步骤, 将所述第二量子点溶液与第 三化合物或第三化合物组合进行第三次序的混合并加热的步骤, 均在惰性气体 环境中进行。
[0540] 本申请实施例还提供了一种由上述方法制备得到的量子点。
[0541] 在一些实施例中, 本申请实施例提供了量子点在光学器件、 光学膜、 核壳结构 纳米晶墨水、 胶水、 生物探针等领域的应用。
[0542] 具体的, 所述光学器件包括但不限于量子点发光二极管、 量子点敏化电池。 [0543] 具体的, 所述光学膜包括但不限于量子点发光阻隔膜、 量子点发光管等。
[0544] 具体的, 所述核壳结构纳米晶墨水包括但不限于为量子点与其它不同化学溶剂 按照不同的比例进行组合而成的墨水。
[0545] 具体的, 所述胶水包括但不限于核壳结构纳米晶与其它不同化学试剂按照不同 的粘度比例组合而成的胶水。
[0546] 下面结合具体实施例进行说明。
[0547] 实施例 1
[0548] 一种量子点后处理方法, 包括以下步骤:
[0549] 1 ·硒化镉 (CdSe) 量子点的制备
[0550] 11) 镉前躯体的制备: 取 0.25 mmol的 CdO、 0.5 mmol的十八烷基膦酸、 3 g三 辛基氧膦一起加入到 50ml的三口烧瓶中, 加热到 380。(:溶解使其变为澄清透明的 溶液并保持在这一温度。
[0551] 12) Se前躯体的制备: 取 0.5 mmol的 Se源溶液在 lml的三辛基膦中室温搅拌至 澄清备用。
[0552] 13) CdSe量子点的制备: 将 12) 中的全部 Se注入前向 11) 中注入 lml的三辛基 膦溶液待溶液温度回复升温到 380°C时注入 Se源反应 30 s, 然后注入 10ml的十八 稀淬灭反应冷却至室温后进行清洗。
[0553] 14) CdSe量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 CdSe量子点分散在 10ml的正己焼中备用。
[0554] 2.硒化镉 (CdSe) 量子点的处理
[0555] 21) CdSe量子点核的分散处理: 取 1) 中制备好分散在正己烷中的 CdSe量子点
2 ml加入到 10ml的十八稀溶液中, 首先对 CdSe量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷溶液, 然后再将 CdSe溶液的温度升高到 300°C。
[0556] 3.利用油酸和油胺对 CdSe量子点进行后处理
[0557] 31) 利用 OA对 CdSe量子点进行熟化: 取 lml的油酸添加到 2) 中的 CdSe量子点 中在 310°C温度下加热熟化 60min。
[0558] 32) 待 OA熟化结束后向混合液中添加 lml的油胺滴加到上述 OA熟化过的 CdSe 量子点中 310°C温度下加热熟化 40min。 [0559] 33) 待后处理过程结束后将制备得到的 CdSe量子点溶液冷却至室温。
[0560] 4.CdSe量子点的提纯。
[0561] 41) 向步骤 3)中量子点混合液中添加适量的乙酸乙酯和乙醇对 CdSe量子点溶液 进行离心, 将离心得到的 CdSe量子点溶液再次分散在适量的氯仿溶液当中使其 分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最终得到的 CdSe量子点进行真空干燥。
[0562] 本申请实施例制备得到的 CdSe量子点, 不仅能够改善 CdSe量子点的溶解性和 稳定性, 而且可以进一步改进量子点的荧光强度和成膜。 通过荧光光谱仪的积 分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分别为 82~90%和 76~85% ; 通过紫外可见荧光光谱测试 CdSe溶液 ( 浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.085~0.15, 通过 AFM测试 CdSe核壳量子点的平整率为 70~89%。
[0563] 实施例 2
[0564] 一种量子点后处理方法, 包括以下步骤:
[0565] 1.油溶性红色 CdSe/ZnS量子点的制备如下:
[0566] 11) 油酸镉{Cd(OA) 2}与油酸锌{Zn(OA) 2}前躯体的制备:
[0567] 在三口烧瓶中加入氧化镉 (CdO) lmmol、 醋酸锌{Zn(Ac)2
8mmol、 油酸 (OA) 8 ml、 十八烯 (ODE) 15 ml先常温抽真空 30 mins后, 加热 到180°(:排氩气60 1111118, 维持180°(:抽真空30 1^118, 冷却至室温备用。
[0568] 12) 硒 (Se) 前驱体一的制备:
[0569] 称 lOmmol的 Se加入到 10ml的三辛基氧膦 (TOP) 中, 加热到 170°C维持 30min , 然后降温到 140°C。
[0570] 13) 硫(S-TOP)前驱体二的制备:
[0571] 称 20mmol的 S加入到 10ml的三辛基氧膦 (TOP) 中, 加热到 170°C维持 30min, 然后降温到 140°C。
[0572] 14) 将 11) 中的油酸镉{Cd(OA)2}与油酸锌{Zn(OA)2}前躯体加热到 300°C, 抽 取步骤 2) 中的 2ml硒 (Se) 前驱体加入到三口瓶中反应 10min制备得到 CdSe/ZnS 量子点, 停止反应后冷却至室温添加甲苯、 甲醇进行离心分离清洗干燥出红色 C dSe/ZnS量子点分散在正己焼中。
[0573] 2. CdSe/ZnS量子点的处理
[0574] 21) CdSe/ZnS量子点的分散处理: 取步骤 1) 中制备好分散在正己烷中的 CdSe/
ZnS量子点 2 ml加入到 10ml的十八稀溶液中, 首先对 CdSe量子点溶液加热到 150
°C排气 20
min去除溶液中多余的正己烷溶液, 然后再将 CdSe溶液的温度升高到 300°C。
[0575] 3.利用第一化合物 (油酸) 和第二化合物组合 (油酸加三辛基膦) 对 CdSe/ZnS 量子点进行后处理
[0576] 31) 利用 OA对 CdSe量子点进行熟化: 取 lml的油酸添加到 2) 中的 CdSe/ZnS量 子点中在 310°C温度下加热熟化 60min。
[0577] 32) 待 OA熟化结束后向混合液中添加 0.5ml的油胺和 0.5ml的三辛基膦滴加到上 述 OA熟化过的 CdSe/ZnS量子点中 310°C温度下加热熟化 40min。
[0578] 33) 待后处理过程结束后将制备得到的 CdSe/ZnS量子点溶液冷却至室温。
[0579] 4.CdSe/ZnS量子点的提纯。
[0580] 41) 向步骤 3)中量子点混合液中添加适量的乙酸乙酯和乙醇对 CdSe/ZnS量子点 溶液进行离心离, 将离心得到的 CdSe/ZnS量子点溶液再次分散在适量的氯仿溶 液当中使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤 重复一次; 最终得到的 CdSe/ZnS量子点进行真空干燥。
[0581] 本申请实施例制备得到的 CdSe量子点, 不仅能够改善 CdSe量子点的溶解性和 稳定性, 而且可以进一步改进量子点的荧光强度和成膜。 通过荧光光谱仪的积 分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) 其中 QY值的范围分别为 82~90%和 76~85% ; 通过紫外可见荧光光谱测试 CdSe溶液 ( 浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.085~0.15。
[0582] 实施例 3
[0583] 一种量子点后处理方法, 包括以下步骤:
[0584] 1.膦化铟 (inP) 量子点的制备
[0585] 11) 铟前躯体的制备: 取 0.25 mmol的 In( Ac) 3、 0.5 minor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0586] 12) P前躯体的制备: 取 0.5 mmol的 TMSP源溶液分散在 2ml的十八稀中室温搅 拌至澄清备用。
[0587] 13) InP量子点的制备: 将步骤 12) 中的全部 P源注入反应 30 s, 然后注入 10ml 的十八稀淬灭反应冷却至室温后进行清洗。
[0588] 14) InP量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 InP量子点分散在 10ml的正己焼中备用。
[0589] 2.膦化铟 (InP) 量子点的处理
[0590] 取步骤 1)中制备好分散在正己烷中的 InP量子点 2 ml加入到 10ml的十八稀溶液中 , 首先对 InP量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷溶液, 然后再将 InP溶液的温度升高到 300°C。
[0591] 3 ·利用第一化合物组合 (油酸和有机膦) 、 第二化合物 (有机胺) 对 InP量子 点的后处理。
[0592] 31) 利用 OA和 TOP对 InP量子点进行熟化: 取 0.5ml的 OA和 0.5ml的 TOP添加到 2
) 中的 InP量子点中, 在 310°C温度下加热熟化 60min。
[0593] 32) 待 OA和 TOP熟化结束后向混合液中添加 1ml的 OAm滴加到上述 OA和 TOP 熟化过的 InP量子点中 310°C温度下加热熟化 40min。
[0594] 33) 待后处理过程结束后将制备得到的 InP量子点溶液冷却至室温。
[0595] 4. InP量子点的提纯
[0596] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 InP量子点溶液进行 离心分离, 将离心得到的 InP量子点溶液再次分散在适量的氯仿溶液当中使其分 散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最 终得到的 InP量子点进行真空干燥。
[0597] 本申请实施例制备得到的 InP量子点, 不仅能够改善 InP量子点的溶解性和稳定 性, 而且可以进一步改进量子点的荧光强度。 通过荧光光谱仪的积分球 (爱丁 堡 -FS5) 测试室温和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分 另1 J为 38~50%和 36~46% ; 通过紫外可见変光光谱测试 .InP溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.085~0.17。 [0598] 实施例 4
[0599] 一种量子点后处理方法, 包括以下步骤:
[0600] 1 ·膦化镓 (GaP) 量子点的制备
[0601] 11) 铟前躯体的制备: 取 0.25 mmol的 Ga(Ac) 3、 0.5 mmor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0602] 12) P前躯体的制备: 取 0.5 mmol的 TMSP源溶液分散在 2ml的十八稀中室温搅 拌至澄清备用。
[0603] 13) GaP量子点的制备: 将步骤 12) 中的全部 P源注入反应 30 s, 然后注入 10ml 的十八稀淬灭反应冷却至室温后进行清洗。
[0604] 14) GaP量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 InP量子点分散在 10ml的正己焼中备用。
[0605] 2 ·膦化镓 (GaP) 量子点的处理
[0606] 取步骤 1) 中制备好分散在正己烷中的 GaP量子点 2 ml加入到 10ml的十八稀溶液 中, 首先对 GaP量子点溶液加热到 150°C排气 20 mGa去除溶液中多余的正己烷溶 液, 然后再将 GaP溶液的温度升高到 300°C。
[0607] 3.利用第一化合物组合 (油酸和有机膦) 、 第二化合物组合 (油胺和有机膦) 对 GaP核壳量子点的后处理。
[0608] 31) 利用 OA和 TOP对 GaP核壳量子点进行熟化: 取 0.5ml的 OA和 0.5ml的 TOP添 加到步骤 3) 中的 GaP量子点中在 310°C温度下加热熟化 60min。
[0609] 32) 待 OA和 TOP熟化结束后向混合液中添加 0.5ml的 OAm和 0.5ml的 TOP滴加到 上述 OA和 TOP熟化过的 GaP量子点中 310°C温度下加热熟化 40mGa。
[0610] 33) 待后处理过程结束后将制备得到的 GaP量子点溶液冷却至室温。
[0611] 4.GaP量子点的提纯。
[0612] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 GaP量子点溶液进行 离心分离, 将离心得到的 GaP量子点溶液再次分散在适量的氯仿溶液当中使其分 散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最 终得到的 GaP量子点进行真空干燥。 [0613] 本申请实施例制备得到的 GaP量子点, 不仅能够改善 GaP量子点的溶解性和稳 定性, 而且可以进一步改进量子点的荧光强度。 通过荧光光谱仪的积分球 (爱 丁堡 -FS5) 测试室温和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围 分别为 38~50%和 35~46% ; 通过紫外可见変光光谱测试 GaP溶液 (浓度 15mg/ml ) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.075~0.17。
[0614] 实施例 5
[0615] 一种量子点后处理方法, 包括以下步骤:
[0616] 1.硫化铅 (PbS) 量子点的制备
[0617] 11) 铅前躯体的制备: 取 0.25 mmol的 Pb(Ac) 2、 0.5 minor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0618] 12) S前躯体的制备: 取 0.5 mmol的(TMS)2S源溶液分散在2ml的十八稀中室温 搅拌至澄清备用。
[0619] 13) PbS量子点的制备: 将步骤 12) 中的全部 S前躯体注入反应 30
s , 然后注入 10ml的十八稀淬灭反应冷却至室温后进行清洗。
[0620] 14) PbS量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 PbS量子点分散在 10ml的正己焼中备用。
[0621] 2.硫化铅 (PbS) 量子点的处理
[0622] 取步骤 1) 中制备好分散在正己烷中的 PbS量子点 2 ml加入到 10ml的十八稀溶液 中, 首先对 PbS量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷溶液 , 然后再将 PbS溶液的温度升高到 300°C。
[0623] 3.利用第一化合物组合 (OAm和 TOP) 、 第二化合物 (OA) 对 PbS量子点的 后处理。
[0624] 31) 利用 OAm+TOP对 PbS核壳量子点进行熟化: 取 0.5ml的 TOP和 0.5ml的 OAm 添加到步骤 2) 中的 PbS量子点中在 310°C温度下加热熟化 60min。
[0625] 32) 待 OAm+TOP熟化结束后向混合液中添加 1ml的 OA滴加到上述 OAm+TOP 熟化过的 PbS量子点中 310°C温度下加热熟化 40min。
[0626] 33) 待后处理过程结束后将制备得到的 PbS量子点溶液冷却至室温。 [0627] 4. PbS量子点的提纯。
[0628] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 PbS量子点溶液进行 离心分离, 将离心得到的 PbS量子点溶液再次分散在适量的氯仿溶液当中使其分 散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最 终得到的 PbS量子点进行真空干燥。
[0629] 本申请实施例制备得到的 PbS量子点, 不仅能够改善 PbS量子点的溶解性, 而且 可以进一步改进量子点的荧光强度和器件稳定性。 通过荧光光谱仪的积分球 ( 爱丁堡 -FS5) 测试室温下的溶液的量子产率 (QY) , 其中 QY值的范围为 71~86 % ; 通过紫外可见変光光谱测试 PbS溶液 (浓度 15mg/ml) 的在 700nm下的吸光度 , 其中吸光度值的范围为 0.06~0丄, 通过 QLED测试系统测试 PbS近红外 QLED器 件的第 1天和 10后的器件效率的衰减率, 其中衰减率的范围为 10~30%。
[0630] 实施例 6
[0631] 一种量子点后处理方法, 包括以下步骤:
[0632] 1 ·硫化铅 (PbSe) 量子点的制备
[0633] 11) 铅前躯体的制备: 取 0.25 mmol的 Pb(Ac) 2、 0.5 minor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0634] 12) Se前躯体的制备: 取 0.5 mmol的(TMSe) 2Se源溶液分散在 2ml的十八稀中室 温搅拌至澄清备用。
[0635] 13) PbSe量子点的制备: 将步骤 12) 中的全部 Se前躯体注入反应 30 Se, 然后 注入 10ml的十八稀淬灭反应冷却至室温后进行清洗。
[0636] 14) PbSe量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 PbSe量子点分散在 10ml的正己焼中备用。
[0637] 2 ·硫化铅 (PbSe) 量子点的处理
[0638] 取步骤 1) 中制备好分散在正己烷中的 PbSe量子点 2 ml加入到 10ml的十八稀溶 液中, 首先对 PbSe量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷 溶液, 然后再将 PbSe溶液的温度升高到 300°C。
[0639] 3.利用第一化合物组合 (OA和 TOP) 、 第二化合物 (OAm) 对 PbSe核壳量子 点的后处理。
[0640] 31) 利用 OA和 TOP对 PbSe核壳量子点进行熟化: 取 0.5ml的 OA和 0.5ml的 TOP 添加到步骤 2) 中的 PbSe量子点中在 310°C温度下加热熟化 60min。
[0641] 32) 待 OA和 TOP熟化结束后向混合液中添加 1ml的 OAm滴加到上述 OA和 TOP 熟化过的 PbSe核壳量子点中 310°C温度下加热熟化 40min。
[0642] 3) 待后处理过程结束后将制备得到的 PbSe量子点溶液冷却至室温。
[0643] 4.PbSe核壳量子点的提纯。
[0644] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 PbSe量子点溶液进 行离心分离, 将离心得到的 PbSe量子点溶液再次分散在适量的氯仿溶液当中使 其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次 ; 最终得到的 PbSe量子点进行真空干燥。
[0645] 本申请实施例制备得到的 PbSe量子点, 不仅能够改善 PbSe量子点的溶解性, 而 且可以进一步改进量子点的荧光强度和器件稳定性。 通过荧光光谱仪的积分球 (爱丁堡 -FS5) 测试室温下的溶液的量子产率 (QY) , 其中 QY值的范围为 32~5 2%; 通过紫外可见変光光谱测试 PbSe溶液 (浓度 15mg/ml) 的在 700nm下的吸光 度, 其中吸光度值的范围为 0.06~0.11., 通过 QLED测试系统测试 PbSe近红外 QLE D器件的第 1天和 10后的器件效率的衰减率, 其中衰减率的范围为 15~36%。
[0646] 实施例 7
[0647] 一种量子点后处理方法, 包括以下步骤:
[0648] 1.硫化铅 (PbS) 量子点的制备
[0649] 11) 铅前躯体的制备: 取 0.25 mmol的 Pb(Ac) 2、 0.5 minor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0650] 12) S前躯体的制备: 取 0.5 mInol的(TMS)2S源溶液分散在2ml的十八稀中室温 搅拌至澄清备用。
[0651] 13) PbS量子点的制备: 将步骤 12) 中的全部 S前躯体注入反应 30
s , 然后注入 10ml的十八稀淬灭反应冷却至室温后进行清洗。
[0652] 14) PbS量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 PbS量子点分散在 10ml的正己焼中备用。
[0653] 2.硫化铅 (PbS) 量子点的处理
[0654] 取步骤 1) 中制备好分散在正己烷中的 PbS量子点 2 ml加入到 10ml的十八稀溶液 中, 首先对 PbS量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷溶液 , 然后再将 PbS溶液的温度升高到 300°C。
[0655] 3.利用第一化合物组合 (OA和 TOP) 、 第二化合物组合 (OAm和 TOP) 对
PbS量子点的后处理。
[0656] 31) 利用 OA和 TOP对 PbS核壳量子点进行熟化: 取 0.5ml的 TOP和 0.5ml的 OA添 加到步骤 2) 中的 PbS量子点中在 310°C温度下加热熟化 60min。
[0657] 32) 待 OA和 TOP熟化结束后向混合液中添加 0.5ml的 OAm和 0.5ml的 TOP滴加到 上述 TOP熟化过的 PbS量子点中 310°C温度下加热熟化 40min。
[0658] 33) 待后处理过程结束后将制备得到的 PbS量子点溶液冷却至室温。
[0659] 4. PbS量子点的提纯。
[0660] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 PbS量子点溶液进行 离心分离, 将离心得到的 PbS量子点溶液再次分散在适量的氯仿溶液当中使其分 散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最 终得到的 PbS量子点进行真空干燥。
[0661] 本申请实施例制备得到的 PbS量子点, 不仅能够改善 PbS量子点的溶解性, 而且 可以进一步改进量子点的荧光强度和器件稳定性。 通过荧光光谱仪的积分球 ( 爱丁堡 -FS5) 测试室温下的溶液的量子产率 (QY) , 其中 QY值的范围为 75~80 % ; 通过紫外可见変光光谱测试 PbS溶液 (浓度 15mg/ml) 的在 700nm下的吸光度 , 其中吸光度值的范围为 0.065~0.11, 通过 QLED测试系统测试 PbS近红外 QLED 器件的第 1天和 10后的器件效率的衰减率, 其中衰减率的范围为 15~36%。
[0662] 实施例 8
[0663] 一种量子点后处理方法, 包括以下步骤:
[0664] 1.铜铟硒硫 (CuInSeS) 量子点的制备
[0665] 11) 镉前躯体的制备: 取 0.25 mmol的 Cu(Ac) 2、 0.3mmol的 In(Ac) 3、 3ml的油酸 和 20ml的十八稀一起加入到 50ml的三口烧瓶中, 加热到 300°C溶解使其变为澄清 透明的溶液并保持在这一温度。
[0666] 12) Se和 S前躯体的制备: 取 0.5 mmol的 Se粉和 lmmol的 S粉一起分散在 3ml的 三辛基膦中。
[0667] 13) CuInSeS量子点的制备: 将步骤 12) 中的全部 Se和 S前躯体注入反应 lOmin
, 然后注入 10ml的十八稀淬灭反应冷却至室温后进行清洗。
[0668] 14) CuInSeS量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心 分离量子点, 将离心分离后的 CuInSeS量子点分散在 10ml的正己焼中备用。
[0669] 2.铜铟硒硫 (CuInSeS) 量子点的处理
[0670] 取步骤 1) 中制备好分散在正己烷中的 CuInSeS量子点 2 ml加入到 10ml的十八稀 溶液中, 首先对 CuInSeS量子点溶液加热到 150°C排气 20 min去除溶液中多余的正 己烷溶液, 然后再将 CuInSeS溶液的温度升高到 300°C
[0671] 3.利用第一化合物 (油胺) 、 第二化合物组合 (油酸和三辛基膦) 对 CuInSeS 量子点进行后处理
[0672] 31) 利用 OAm对 CuInSeS量子点进行熟化: 取 lml的油胺添加到步骤 2) 中的 Cu
InSeS量子点中在 310°C温度下加热熟化 60min
[0673] 32) 待 OAm熟化结束后向混合液中添加 0.5ml的 TOP和 0.5ml的 OA滴加到上述 0
Am熟化过的 CuInSeS量子点中 310°C温度下加热熟化 40min
[0674] 33) 待后处理过程结束后将制备得到的 CuInSeS量子点溶液冷却至室温。
[0675] 4. CuInSeS量子点的提纯。
[0676] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CuInSeS量子点溶液 进行离心离, 将离心得到的 CuInSeS量子点溶液再次分散在适量的氯仿溶液当中 使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一 次; 最终得到的 CuInSeS量子点进行真空干燥。
[0677] 本申请实施例制备得到的 CuInSeS量子点, 不仅能够改善 CuInSeS量子点的溶解 性, 而且可以进一步改进量子点的荧光强度和色纯。 通过荧光光谱仪的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值 的范围分别为 73~80%和 72~82% ; 通过紫外可见荧光光谱测试 CuInSeS溶液 (浓 度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.06~0.11, 通过荧 光光谱仪 (爱丁堡 -FS5) 测试 CuInSeS量子点半峰宽的减少范围 l~5 nm。
[0678] 实施例 9
[0679] 一种量子点后处理方法, 包括以下步骤:
[0680] 1.铜铟硫 (CuInS) 量子点的制备
[0681] 11) 镉前躯体的制备: 取 0.25 mmol的 Cu(Ac) 2、 0.3mmol的 In(Ac) 3、 3ml的油酸 和 20ml的十八稀一起加入到 50ml的三口烧瓶中, 加热到 300°C溶解使其变为澄清 透明的溶液并保持在这一温度。
[0682] 12) S前躯体的制备: 取 lmmol的 S粉一起分散在 3ml的三辛基膦中。
[0683] 13) CuInS量子点的制备: 将步骤 12) 中的全部 S前躯体注入反应 lOmin, 然后 注入 10ml的十八稀淬灭反应冷却至室温后进行清洗。
[0684] 14) CuInS量子点的清洗提纯: 向量子点混合液中添加 30ml的丙酮进行离心分 离量子点, 将离心分离后的 CuInS量子点分散在 10ml的正己焼中备用。
[0685] 2.铜铟硫 (CuInS) 量子点的处理
[0686] 取步骤 1) 中制备好分散在正己烷中的 CuInS量子点 2 ml加入到 10ml的十八稀溶 液中, 首先对 CuInS量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷 溶液, 然后再将 CuInS溶液的温度升高到 300°C。
[0687] 3.利用第一化合物组合 (油胺和三辛基膦) 、 第二化合物组合 (油酸和三辛基 膦) 对 CuInS量子点进行后处理
[0688] 31) 利用 OAm和 TOP对 CuInS量子点进行熟化: 取 0.5ml的 TOP和 0.5ml的 OAm 添加到步骤 2) 中的 CuInS量子点中在 310°C温度下加热熟化 60min。
[0689] 32) 待 OAm和 TOP熟化结束后向混合液中添加 0.5ml的 OA和 0.5ml的 TOP滴加到 上述 OAm和 TOP熟化过的 CuInSeS量子点中 310°C温度下加热熟化 40min。
[0690] 33) 待后处理过程结束后将制备得到的 CuInS量子点溶液冷却至室温。
[0691] 4.CuInS量子点的提纯。
[0692] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CuInS量子点溶液进 行离心离, 将离心得到的 CuInS量子点溶液再次分散在适量的氯仿溶液当中使其 分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最终得到的 CuInS量子点进行真空干燥。 [0693] 本申请实施例制备得到的 CuInS量子点, 不仅能够改善 CuInS量子点的溶解性, 而且可以进一步改进量子点的荧光强度和色纯。 通过荧光光谱仪的积分球 (爱 丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范 围分别为 74~84%和 72~82% ; 通过紫外可见荧光光谱测试 CuInS溶液 (浓度 15mg/ ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.06~0.11, 通过変光光谱仪 (爱丁堡 -FS5) 测试 CuInS量子点半峰宽的减少范围 l~7nm。
[0694] 实施例 10
[0695] 一种量子点后处理方法, 包括以下步骤:
[0696] 11) 油酸铯{Cs(OA)}储备液的制备:
[0697] 称取 0.814g碳酸铯{Cs 2C0 3
}加入到 100ml的三口烧瓶中, 然后再向烧瓶中加入 30ml的十八烯 (ODE) 和 2.5 ml的油酸 (OA) ; 在惰性气体下先常温排气 20min, 然后再加热到 120°C排气 60 min然后再加热到 160°C使所有的碳酸铯{Cs 2CO 3}全部与油酸反应, 然后溶液温 度被保持在 160°C, 避免油酸铯{ Cs(OA)}溶液凝固。
[0698] 12) 制备 CsPbBr3量子点:
[0699] 取 50ml的十八烯 (ODE) 、 5ml的油胺 (OAm) 和 0.7g的溴化铅 (PbBr 2) —起 加入到 100ml的三口烧瓶当中, 在惰性气体下先常温排气 20min, 然后在加热到 1 20°C排气 30min, 然后将混合液加热到 180°C, 取 0.04mmol的油酸铯{Cs(OA)}储 备液快速热注入到混合液当中反应 10s后将反应混合液快速的转移到冰水浴当中 。 利用甲苯和甲醇对冷却后的混合液进行高速离心分离沉淀, 将最终的样品分 散在甲苯当中制备成 15mg/ml的溶液当中。
[0700] 13) 后处理 CsPbBr 3量子点:
[0701] 取 lml的上述 12) 制备好的 CsPbBr3量子点甲苯溶液, 将 50微升的油酸 (OA) 添加到量子点溶液中搅拌 30min, 然后再添加 100微升含有 0.05mmol的双十二烷 基二甲基氯化铵 (DDAB) 溶液再搅拌 30min, 然后利用丁醇对混合液进行离心 分离沉淀, 分离后再分散到正己烷当中。
[0702] 2. CsPbBr 3量子点的处理
[0703] 取步骤 1) 中制备好分散在正己烷中的 CsPbBr 3量子点 2 ml加入到 10ml的十八稀 溶液中, 首先对 CsPbBr 3量子点溶液加热到 150°C排气 20 min去除溶液中多余的正 己烷溶液, 然后再将 CsPbBr 3量子点溶液的温度升高到 300°C
[0704] 3 ·利用第一化合物 (OAm) 、 第二化合物 (OA) 为例对 CsPbBr 3量子点进行 后处理
[0705] 31) 利用 OAm对 CsPbBr 3量子点进行熟化: 取 lml的
OAm添加到步骤 2) 中的 CsPbBr 3量子点中在 150°C温度下加热熟化 60min。
[0706] 32) 待 OAm熟化结束后向混合液中添加 lml的 OA滴加到上述 OAm熟化过的 CsP bBr 3量子点中 150°C温度下加热熟化 40min。
[0707] 33) 待后处理过程结束后将制备得到的 CsPbBr 3量子点溶液冷却至室温。
[0708] 4. CsPbBr 3量子点的提纯。
[0709] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CsPbBr 3量子点溶液 进行离心离, 将离心得到的 CsPbBr 3量子点溶液再次分散在适量的氯仿溶液当中 使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一 次; 最终得到的 CsPbBr 3量子点进行真空干燥。
[0710] 本申请实施例制备得到的 CsPbBr 3量子点, 不仅能够改善 CsPbBr 3量子点的溶 解性, 而且可以进一步改进量子点的荧光强度和瞬态荧光寿命。 通过荧光光谱 仪的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY)
, 其中 QY值的范围分别为 75~85%和 73~82% ; 通过紫外可见荧光光谱测试 CsPb Br 3
溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.05~0.10
[0711] 实施例 11
[0712] 一种量子点后处理方法, 包括以下步骤:
[0713] 11) 油酸铯{Cs(OA)}储备液的制备:
[0714] 称取 0.814g碳酸铯{Cs 2C0 3
}加入到 100ml的三口烧瓶中, 然后再向烧瓶中加入 30ml的十八烯 (ODE) 和 2.5 ml的油酸 (OA) ; 在惰性气体下先常温排气 20min, 然后再加热到 120°C排气 60 min然后再加热到哦 160°C使所有的碳酸铯{Cs 2CO 3}全部与油酸反应, 然后溶液 温度被保持在 160°C, 避免油酸铯{ Cs(OA)}溶液凝固。
[0715] 12) 制备 CsPbBr 3量子点:
[0716] 取 50ml的十八烯 (ODE) 、 5ml的油胺 (OAm) 和 0.7g的溴化铅 (PbBr 2) —起 加入到 100ml的三口烧瓶当中, 在惰性气体下先常温排气 20min, 然后在加热到 1 20°C排气 30min, 然后将混合液加热到 180°C, 取 0.04mmol的油酸铯{Cs(OA)}储 备液快速热注入到混合液当中反应 10s后将反应混合液快速的转移到冰水浴当中 。 利用甲苯和甲醇对冷却后的混合液进行高速离心分离沉淀, 将最终的样品分 散在甲苯当中制备成 15mg/ml的溶液当中。
[0717] 13) 后处理 CsPbBr 3量子点:
[0718] 取 lml的上述 12) 制备好的 CsPbBr 3量子点甲苯溶液, 将 50微升的油酸 (OA) 添加到量子点溶液中搅拌 30min, 然后再添加 100微升含有 0.05mmol的双十二烷 基二甲基氯化铵 (DDAB) 溶液再搅拌 30min, 然后利用丁醇对混合液进行离心 分离沉淀, 分离后再分散到正己烷当中。
[0719] 2. CsPbBr 3量子点的处理
[0720] 取步骤 1) 中制备好分散在正己烷中的 CsPbBr 3量子点 2 ml加入到 10ml的十八稀 溶液中, 首先对 CsPbBr 3量子点溶液加热到 150°C排气 20 min去除溶液中多余的正 己烷溶液, 然后再将 CsPbBr 3量子点溶液的温度升高到 300°C
[0721] 3.利用第一化合物组合 (OAm) 、 第二化合物组合 (OA和 TOP) 为例对 CsPbB r 3量子点进行后处理
[0722] 31) 利用 OAm对 CsPbBr 3量子点进行熟化: lml的
OAm添加到步骤 2) 中的 CsPbBr 3量子点中在 150°C温度下加热熟化 60min。
[0723] 32) 待 OAm熟化结束后向混合液中添加 0.5ml的 OA和 0.5ml的 TOP滴加到上述 O
Am熟化过的 CsPbBr 3量子点中 150°C温度下加热熟化 40min。
[0724] 33) 待后处理过程结束后将制备得到的 CsPbBr 3量子点溶液冷却至室温。
[0725] 4. CsPbBr 3量子点的提纯。
[0726] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CsPbBr 3量子点溶液 进行离心离, 将离心得到的 CsPbBr 3量子点溶液再次分散在适量的氯仿溶液当中 使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一 次; 最终得到的 CsPbBr 3量子点进行真空干燥。
[0727] 本申请实施例制备得到的 CsPbBr 3量子点, 不仅能够改善 CsPbBr 3量子点的溶 解性, 而且可以进一步改进量子点的荧光强度和瞬态荧光寿命。 通过荧光光谱 仪的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY)
, 其中 QY值的范围分别为 75~85%和 72~83% ; 通过紫外可见荧光光谱测试 CsPb Br3溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.06~0. 10。
[0728] 实施例 12
[0729] 1.油溶性红色 CdSe量子点的制备如下:
[0730] 11) 油酸镉{Cd(OA) 2}前躯体的制备
[0731] 在三口烧瓶中加入氧化镉 (CdO) lmmol、 油酸 (OA) 8
ml、 十八烯 (ODE) 15 ml先常温抽真空 30 mins, 加热到 180°C排氩气 60 mins, 然后维持180°(:抽真空30 1111118, 冷却至室温备用。
[0732] I2) 硒 (Se) 前驱体一的制备:
[0733] 称 lOmmol的 Se加入到 10ml的三辛基氧膦 (TOP) 中, 加热到 170°C维持 30min , 然后降温到 140°C。
[0734] 13) 将步骤 11) 中的油酸镉{Cd(OA)2
}前躯体加热到 300°C, 抽取步骤 2) 中的 2ml硒 (Se) 前驱体加入到三口瓶中反 应 lOmin制备得到 CdSe量子点, 停止反应后冷却至室温添加甲苯、 甲醇进行离心 分离清洗干燥出红色 CdSe量子点分散在正己焼中。
[0735] 2. CdSe量子点的处理
[0736] 取步骤 1) 中制备好分散在正己烷中的 CdSe量子点 2 ml加入到 10ml的十八稀溶 液中, 首先对 CdSe量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷 溶液, 然后再将 CdSe溶液的温度升高到 300°C。
[0737] 3.
利用第一处理 (油酸) 、 第二处理剂 (油胺) 、 第三处理剂 (三辛基膦) 对 CdS e量子点进行后处理
[0738] 31) 利用 OA对 CdSe量子点进行熟化: 取 lml的油酸添加到步骤 2) 中的 CdSe量 子点中在 310°C温度下加热熟化 60min。
[0739] 32) 待 OA熟化结束后向混合液中添加 1ml的油胺滴加到上述 OA熟化过的 CdSe 量子点中 310°C温度下加热熟化 40min。
[0740] 33) 待 OAm熟化结束后向混合液中添加 1ml的三辛基膦到上述 OAm熟化过的 Cd
Se量子点中 310°C温度下加热熟化 40min。
[0741] 34) 待后处理过程结束后将制备得到的 CdSe量子点溶液冷却至室温。
[0742] 4. CdSe量子点的提纯
[0743] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CdSe量子点溶液进 行离心离, 将离心得到的 CdSe量子点溶液再次分散在适量的氯仿溶液当中使其 分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最终得到的 CdSe量子点进行真空干燥。
[0744] 本申请实施例制备得到的 CdSe量子点, 不仅能够改善 CdSe量子点的溶解性和 稳定性, 而且可以进一步改进量子点的荧光强度和成膜。 通过荧光光谱仪的积 分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分别为 80~90%和 76~85% ; 通过紫外可见荧光光谱测试 CdSe溶液 ( 浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.09~0.15, 通过 AFM测试 CdSe核壳量子点的平整率为 70~89%。
[0745] 实施例 13
[0746] 一种量子点后处理方法, 包括以下步骤:
[0747] 1.油溶性红色 CdZnSeS/ZnS量子点的制备如下
[0748] 11) 油酸镉{Cd(OA) 2}与油酸锌{Zn(OA) 2}前躯体的制备:
[0749] 在三口烧瓶中加入氧化镉 (CdO) lmmol、 醋酸锌{Zn(Ac) 2
8mmol、 油酸 (OA) 8 ml、 十八烯 (ODE) 15 ml先常温抽真空 30
mins , 加热到180°(:排氩气60 1^118, 然后维持 180°C抽真空 30 mins, 冷却至室温 备用。
[0750] I2) 硒 (Se) 前驱体一的制备
[0751] 称 lOmmol的 Se加入到 10ml的三辛基氧膦 (TOP) 中, 加热到 170°C维持 30min
, 然后降温到 140°C。 [0752] 13) 硫(S-TOP)前驱体二的制备:
[0753] 称 20mmol的 S加入到 10ml的三辛基氧膦 (TOP) 中, 加热到 170°C维持 30min, 然后降温到 140°C。
[0754] 14) 将步骤 11) 中的油酸镉{Cd(OA)2}与油酸锌{Zn(OA)2}前躯体加热到 300°C
, 抽取步骤 12) 中的 2ml硒 (Se) 和 4ml的硫 (S) 混合前驱体加入到三口瓶中反 应 lOmin制备得到 CdZnSeS/ZnS量子点, 停止反应后冷却至室温添加甲苯、 甲醇 进行离心分离清洗干燥出红色 CdZnSeS/ZnS量子点分散在正己烷中。
[0755] 2. CdZnSeS/ZnS量子点的处理
[0756] 取步骤 1) 中制备好分散在正己烷中的 CdZnSeS/ZnS量子点 2 ml加入到 10ml的十 八稀溶液中, 首先对 CdSe量子点溶液加热到 150°C排气 20 min去除溶液中多余的 正己烷溶液, 然后再将 CdSe溶液的温度升高到 300°C。
[0757] 3 ·利用第一化合物 (油酸) 、 第二化合物 (三辛基膦) 、 第三化合物 (油胺) 对 CdZnSeS/ZnS量子点进行后处理
[0758] 31) 利用 OA对 CdZnSeS/ZnS量子点进行熟化: 取 lml的油酸添加到步骤 2) 中 的 CdZnSeS/ZnS量子点中在 310°C温度下加热熟化 60min。
[0759] 32) 待 OA熟化结束后向混合液中添加 lml的三辛基膦滴加到上述 OA熟化过的 C dZnSeS/ZnS量子点中 310°C温度下加热熟化 40min。
[0760] 33) 待三辛基膦熟化结束后向混合液中添加 lml的油胺到上述三辛基膦熟化过 的 CdZnSeS/ZnS量子点中 310°C温度下加热熟化 40min。
[0761] 34) 待后处理过程结束后将制备得到的 CdZnSeS/ZnS量子点溶液冷却至室温。
[0762] 4. CdZnSeS/ZnS量子点的提纯
[0763] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CdZnSeS/ZnS量子 点溶液进行离心离, 将离心得到的 CdZnSeS/ZnS量子点溶液再次分散在适量的氯 仿溶液当中使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此 步骤重复一次; 最终得到的 CdZnSeS/ZnS量子点进行真空干燥。
[0764] 本申请实施例制备得到的 CdZnSeS/ZnS量子点, 不仅能够改善 CdZnSeS/ZnS量 子点的溶解性和稳定性, 而且可以进一步改进量子点的荧光强度和成膜。 通过 荧光光谱仪的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分别为 80~90%和 77~85% ; 通过紫外可见荧光光谱测 试 CdZnSeS/ZnS溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的 范围为 0.09~0.16, 通过 AFM测试 CdZnSeS/ZnS核壳量子点的平整率为 72~90%。
[0765] 实施例 14
[0766] 一种量子点后处理方法, 包括以下步骤:
[0767] 1.油溶性红色 CdSe/ZnSe量子点的制备如下
[0768] 11) 油酸镉{Cd(OA) 2}与油酸锌{Zn(OA) 2}前躯体的制备:
[0769] 在三口烧瓶中加入氧化镉 (CdO) lmmol、 醋酸锌{Zn(Ac)2
8mmol、 油酸 (OA) 8 ml、 十八烯 (ODE) 15 ml先常温抽真空 30
mins , 加热到180°(:排氩气60 1^118, 然后维持 180°C抽真空 30 mins, 冷却至室温 备用。
[0770] I2) 硒 (Se) 前驱体一的制备:
[0771] 称 lOmmol的 Se加入到 10ml的三辛基氧膦 (TOP) 中, 加热到 170°C维持 30min
, 然后降温到 140°C。
[0772] 13) 硫(S-TOP)前驱体二的制备:
[0773] 称 20mmol的 S加入到 10ml的三辛基氧膦 (TOP) 中, 加热到 170°C维持 30min, 然后降温到 140°C。
[0774] 14) 将步骤 11) 中的油酸镉{Cd(OA)2}与油酸锌{Zn(OA)2}前躯体加热到 300°C
, 抽取步骤 12) 中的 2ml硒 (Se) 前驱体加入到三口瓶中反应 10min制备得到 CdS e/ZnSe量子点, 停止反应后冷却至室温添加甲苯、 甲醇进行离心分离清洗干燥出 红色 CdSe/ZnSe量子点分散在正己烷中。
[0775] 2. CdSe/ZnSe量子点的处理
[0776] 取步骤 1) 中制备好分散在正己烷中的 CdSe/ZnSe量子点 2 ml加入到 10ml的十八 稀溶液中, 首先对 CdSe量子点溶液加热到 150°C排气 20 min去除溶液中多余的正 己烷溶液, 然后再将 CdSe溶液的温度升高到 300°C。
[0777] 3 ·利用第一化合物 (三辛基膦) 、 第二化合物 (油酸) 、 第三化合物 (油胺) 对 CdSe/ZnSe量子点进行后处理
[0778] 31) 利用 TOP对 CdSe/ZnSe量子点进行熟化: 取 lml的 TOP添加到步骤 2) 中的 C dSe/ZnSe量子点中在 310°C温度下加热熟化 60min。
[0779] 32) 待 TOP熟化结束后向混合液中添加 1ml的 OA滴加到上述 TOP熟化过的 CdSe/
ZnSe量子点中 310°C温度下加热熟化 40min。
[0780] 33) 待 OA熟化结束后向混合液中添加 1ml的油胺到上述 OA熟化过的 CdSe/ZnSe 量子点中 310°C温度下加热熟化 40min。
[0781] 34) 待后处理过程结束后将制备得到的 CdSe/ZnSe量子点溶液冷却至室温。
[0782] 4. CdSe/ZnSe量子点的提纯。
[0783] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CdSe/ZnSe量子点溶 液进行离心离, 将离心得到的 CdSe/ZnSe量子点溶液再次分散在适量的氯仿溶液 当中使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重 复一次; 最终得到的 CdSe/ZnSe量子点进行真空干燥。
[0784] 本申请实施例制备得到的 CdSe/ZnSe量子点, 不仅能够改善 CdSe/ZnSe量子点的 溶解性和稳定性, 而且可以进一步改进量子点的荧光强度和成膜。 通过荧光光 谱仪的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY ) , 其中 QY值的范围分别为 81~92%和 78~84% ; 通过紫外可见荧光光谱测试 CdS e/ZnSe溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.0 85-0.16 , 通过 AFM测试 CdSe/ZnSe核壳量子点的平整率为 73~90%。
[0785] 实施例 15
[0786] 一种量子点后处理方法, 包括以下步骤:
[0787] 1.油溶性红色 CdZnS/ZnS量子点的制备如下:
[0788] 11) 油酸镉{Cd(OA) 2}与油酸锌{Zn(OA) 2}前躯体的制备:
[0789] 在三口烧瓶中加入氧化镉 (CdO) lmmol、 醋酸锌{Zn(Ac)2
8mmol、 油酸 (OA) 8 ml、 十八烯 (ODE) 15 ml先常温抽真空 30
mins , 加热到180°(:排氩气60 1^118, 然后维持 180°C抽真空 30 mins, 冷却至室温 备用。
[0790] I2) 硒 (Se) 前驱体一的制备:
[0791] 称 lOmmol的 Se加入到 10ml的三辛基氧膦 (TOP) 中, 加热到 170°C维持 30min
, 然后降温到 140°C。 [0792] 13) 硫(S-TOP)前驱体二的制备:
[0793] 称 20mmol的 S加入到 10ml的三辛基氧膦 (TOP) 中, 加热到 170°C维持 30min, 然后降温到 140°C。
[0794] 14) 将步骤 11) 中的油酸镉{Cd(OA)2}与油酸锌{Zn(OA)2}前躯体加热到 300°C
, 抽取步骤 12) 中的 4ml硫 (S) 前驱体加入到三口瓶中反应 lOmin制备得到 CdZn S/ZnS量子点, 停止反应后冷却至室温添加甲苯、 甲醇进行离心分离清洗干燥出 红色 CdZnS/ZnS量子点分散在正己烷中。
[0795] 2. CdZnS/ZnS量子点的处理
[0796] 取步骤 1) 中制备好分散在正己烷中的 CdZnS/ZnS量子点 2 ml加入到 10ml的十八 稀溶液中, 首先对 CdSe量子点溶液加热到 150°C排气 20 min去除溶液中多余的正 己烷溶液, 然后再将 CdSe溶液的温度升高到 300°C。
[0797] 3 ·利用第一化合物 (三辛基膦) 、 第二化合物 (油酸) 、 第三化合物组合 (油 胺 +三辛基膦) 对 CdZnS/ZnS量子点进行后处理
[0798] 31) 利用 TOP对 CdZnS/ZnS量子点进行熟化: 取 lml的 TOP添加到步骤 2) 中的
CdZnS/ZnS量子点中在 310°C温度下加热熟化 60min。
[0799] 32) 待 TOP熟化结束后向混合液中添加 lml的 OA滴加到上述 TOP熟化过的 CdZn
S/ZnS量子点中 310°C温度下加热熟化 40min。
[0800] 33) 待 OA熟化结束后向混合液中添加 0.5ml的油胺和 0.5ml的 TOP到上述 OA熟 化过的 CdZnS/ZnS量子点中 310°C温度下加热熟化 40min。
[0801] 34) 待后处理过程结束后将制备得到的 CdZnS/ZnS量子点溶液冷却至室温。
[0802] 本申请实施例制备得到的 CdSe/ZnSe量子点, 不仅能够改善 CdSe/ZnSe量子点的 溶解性和稳定性, 而且可以进一步改进量子点的荧光强度和成膜。 通过荧光光 谱仪的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY ) , 其中 QY值的范围分别为 81~92%和 79~83% ; 通过紫外可见荧光光谱测试 CdS e/ZnSe溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.0 85-0.13 , 通过 AFM测试 CdSe/ZnSe核壳量子点的平整率为 75~91%。
[0803] 实施例 16
[0804] 一种量子点后处理方法, 包括以下步骤: [0805] 1.膦化铟 (inP) 量子点的制备
[0806] 11) 铟前躯体的制备: 取 0.25 mmol的 In( Ac) 3、 0.5 minor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0807] 12) P前躯体的制备: 取 0.5 mmol的 TMSP源溶液分散在 2ml的十八稀中室温搅 拌至澄清备用。
[0808] 13) InP量子点的制备: 将步骤 12) 中的全部 P源注入反应 30 s, 然后注入 10ml 的十八稀淬灭反应冷却至室温后进行清洗。
[0809] 14) InP量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 InP量子点分散在 10ml的正己焼中备用。
[0810] 2.膦化铟 (InP) 量子点的处理
[0811] 取步骤 1) 中制备好分散在正己烷中的 InP量子点 2 ml加入到和 10ml的十八稀溶 液中, 首先对 InP量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷溶 液, 然后再将 InP溶液的温度升高到 300°C。
[0812] 3.利用第一化合物 (油胺) 、 第二化合物 (三辛基膦) 、 第三化合物 (油酸) 对 InP量子点的后处理
[0813] 31) 利用 OAm对 InP核壳量子点进行熟化: 取 lml的 OAm添加到步骤 2) 中的 In
P量子点中在 310°C温度下加热熟化 60min。
[0814] 32) 待 OAm熟化结束后向混合液中添加 lml的 TOP滴加到上述 OAm熟化过的 In
P量子点中 310°C温度下加热熟化 40min。
[0815] 33) 待 TOP熟化处理结束后向混合液中添加 lml的 OA滴加到上述 OA熟化过的 In
P量子点 310°C下加热熟化 40min。
[0816] 34) 待后处理过程结束后将制备得到的 InP量子点溶液冷却至室温。
[0817] 4InP量子点的提纯。
[0818] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 InP量子点溶液进行 离心分离, 将离心得到的 InP量子点溶液再次分散在适量的氯仿溶液当中使其分 散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最 终得到的 InP量子点进行真空干燥。 [0819] 本申请实施例制备得到的 InP量子点, 不仅能够改善 InP量子点的溶解性和稳定 性, 而且可以进一步改进量子点的瞬态荧光寿命和尺寸均一性。 通过荧光光谱 仪的积分球 (爱丁堡 -FS5) 测试放置 30天后的溶液的量子产率 (QY) 和测试瞬 态変光寿命, 其中 QY值的范围为 38~50%, 寿命值为 25~30ns ; 通过紫外可见変 光光谱测试 .InP溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的 范围为 0.085~0.17, 通过扫描透射电子显微镜测试 InP量子点的尺寸离散率其中离 散率值的范围为 3~10%。
[0820] 实施例 17
[0821] 一种量子点后处理方法, 包括以下步骤:
[0822] 1.膦化镓 (GaP) 量子点的制备
[0823] 11) 铟前躯体的制备: 取 0.25 mmol的 Ga(Ac) 3、 0.5 mmor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0824] 12) P前躯体的制备: 取 0.5 mmol的 TMSP源溶液分散在 2ml的十八稀中室温搅 拌至澄清备用。
[0825] 13) GaP量子点的制备: 将步骤 12) 中的全部 P源注入反应 30 s, 然后注入 10ml 的十八稀淬灭反应冷却至室温后进行清洗。
[0826] 14) GaP量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 InP量子点分散在 10ml的正己焼中备用。
[0827] 2 ·膦化镓 (GaP) 量子点的处理
[0828] 取步骤 1) 中制备好分散在正己烷中的 GaP量子点 2 ml加入到和 10ml的十八稀溶 液中, 首先对 GaP量子点溶液加热到 150°C排气 20 mGa去除溶液中多余的正己烷 溶液, 然后再将 GaP溶液的温度升高到 300°C。
[0829] 3 ·利用第一化合物 (油胺) 、 第二化合物 (油酸) 、 第三化合物 (三辛基膦) 对 GaP核壳量子点的后处理。
[0830] 31) 利用 OAm对 GaP核壳量子点进行熟化: 取 lml的 OAm添加到步骤 2) 中的 G aP量子点中在 310°C温度下加热熟化 60min。
[0831] 32) 待 OAm熟化结束后向混合液中添加 lml的 OA滴加到上述 OAm熟化过的 GaP 量子点中 310°C温度下加热熟化 40mGa。
[0832] 33) 待 OA熟化处理结束后向混合液中添加 1ml的 TOP滴加到上述 OA熟化过的 G aP量子点 310°C下加热熟化 40min。
[0833] 34) 待后处理过程结束后将制备得到的 GaP量子点溶液冷却至室温。
[0834] 4.GaP量子点的提纯。
[0835] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 GaP量子点溶液进行 离心分离, 将离心得到的 GaP量子点溶液再次分散在适量的氯仿溶液当中使其分 散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最 终得到的 GaP量子点进行真空干燥。
[0836] 本申请实施例制备得到的 .GaP量子点, 不仅能够改善 .GaP量子点的溶解性和稳 定性, 而且可以进一步改进量子点的瞬态荧光寿命和尺寸均一性。 通过荧光光 谱仪的积分球 (爱丁堡 -FS5) 测试放置 30天后的溶液的量子产率 (QY) 和测试 瞬态変光寿命, 其中 QY值的范围为 36~42%, 寿命值为 25~30ns ; 通过紫外可见 変光光谱测试 GaP溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值 的范围为 0.083~0.17, 通过扫描透射电子显微镜测试 InP量子点的尺寸离散率其中 离散率值的范围为 3~9%。
[0837] 实施例 18
[0838] 一种量子点后处理方法, 包括以下步骤:
[0839] 11.膦化铟 (InP) 量子点的制备
[0840] 11) 铟前躯体的制备: 取 0.25 mmol的 In( Ac) 3、 0.5 minor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0841] 12) P前躯体的制备: 取 0.5 mmol的 TMSP源溶液分散在 2ml的十八稀中室温搅 拌至澄清备用。
[0842] 13) InP量子点的制备: 将步骤 12) 中的全部 P源注入反应 30 s, 然后注入 10ml 的十八稀淬灭反应冷却至室温后进行清洗。
[0843] 14) InP量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 InP量子点分散在 10ml的正己焼中备用。 [0844] 2.膦化铟 (InP) 量子点的处理
[0845] 取步骤 1) 中制备好分散在正己烷中的 InP量子点 2 ml加入到和 10ml的十八稀溶 液中, 首先对 InP量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷溶 液, 然后再将 InP溶液的温度升高到 300°C。
[0846] 3.利用第一化合物组合 (油胺 +三辛基膦) 、 第二化合物 (三辛基膦) 、 第三 化合物 (油酸) 对 InP量子点的后处理。
[0847] 31) 利用 OAm+TOP对 InP核壳量子点进行熟化: 取 0.5ml的 OAm和 0.5ml的 TOP 添加到步骤 2) 中的 InP量子点中在 310°C温度下加热熟化 60min。
[0848] 32) 待 OAm和 TOP熟化结束后向混合液中添加 1ml的 TOP滴加到上述 OAm和 TO
P熟化过的 InP核壳量子点中 310°C温度下加热熟化 40min。
[0849] 33) 待 TOP熟化处理结束后向混合液中添加 1ml的 OA滴加到上述 OA熟化过的 In
P量子点 310°C下加热熟化 40min。
[0850] 34) 待后处理过程结束后将制备得到的 InP量子点溶液冷却至室温。
[0851] 4.InP核壳量子点的提纯。
[0852] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 InP量子点溶液进行 离心分离, 将离心得到的 InP量子点溶液再次分散在适量的氯仿溶液当中使其分 散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最 终得到的 InP量子点进行真空干燥。
[0853] 本申请实施例制备得到的 InP量子点, 不仅能够改善 InP量子点的溶解性和稳定 性, 而且可以进一步改进量子点的瞬态荧光寿命和尺寸均一性。 通过荧光光谱 仪的积分球 (爱丁堡 -FS5) 测试放置 30天后的溶液的量子产率 (QY) 和测试瞬 态変光寿命, 其中 QY值的范围为 40~45%, 寿命值为 26~32ns ; 通过紫外可见変 光光谱测试 .InP溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的 范围为 0.06~0丄, 通过扫描透射电子显微镜测试 InP量子点的尺寸离散率其中离 散率值的范围为 3~10%。
[0854] 实施例 19
[0855] 一种量子点后处理方法, 包括以下步骤:
[0856] 1.硫化铅 (PbS) 量子点的制备 [0857] 11) 铅前躯体的制备: 取 0.25 mmol的 Pb(Ac) 2、 0.5 minor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0858] 12) S前躯体的制备: 取 0.5 mmol的(TMS)2S源溶液分散在2ml的十八稀中室温 搅拌至澄清备用。
[0859] 13) PbS量子点的制备: 将步骤 12) 中的全部 S源注入反应 30 s, 然后注入 10ml 的十八稀淬灭反应冷却至室温后进行清洗。
[0860] 14) PbS量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 PbS量子点分散在 10ml的正己焼中备用。
[0861] 2.硫化铅 (PbS) 量子点的处理
[0862] 取步骤 1) 中制备好分散在正己烷中的 PbS量子点 2 ml加入到和 10ml的十八稀溶 液中, 首先对 PbS量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷溶 液, 然后再将 PbS溶液的温度升高到 300°C。
[0863] 3.利用第一化合物 (TOP) 、 第二化合物 (OA) 、 第三化合物 (OAm) 对
PbS量子点的后处理。
[0864] 31) 利用 TOP对 PbS核壳量子点进行熟化: 取 lml的 TOP添加到步骤 2) 中的 PbS 量子点中在 310°C温度下加热熟化 60min。
[0865] 32) 待 TOP熟化结束后向混合液中添加 lml的 OA滴加到上述 TOP熟化过的 PbS 量子点中 310°C温度下加热熟化 40min。
[0866] 33) 待 OA熟化处理结束后向混合液中添加 lml的 OAm滴加到上述 OA熟化过的 P bS量子点 110°C下加热熟化 40min。
[0867] 34) 待后处理过程结束后将制备得到的 PbS量子点溶液冷却至室温。
[0868] 4.PbS量子点的提纯。
[0869] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 PbS量子点溶液进行 离心分离, 将离心得到的 PbS量子点溶液再次分散在适量的氯仿溶液当中使其分 散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最 终得到的 PbS量子点进行真空干燥。
[0870] 本申请实施例制备得到的 PbS量子点, 不仅能够改善 PbS量子点的溶解性和稳定 性, 而且可以进一步改进量子点的荧光强度和器件稳定性。 通过荧光光谱仪的 积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其 中 QY值的范围分别为 70~86%和 68~71% ; 通过紫外可见荧光光谱测试 PbS溶液 ( 浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.06~0.1, 通过 Q LED测试系统测试 PbS近红外 QLED器件的第 1天和 10后的器件效率的衰减率, 其 中衰减率的范围为 10~30%。
[0871] 实施例 20
[0872] 一种量子点后处理方法, 包括以下步骤:
[0873] 1 ·硫化铅 (PbSe) 量子点的制备
[0874] 11) 铅前躯体的制备: 取 0.25 mmol的 Pb(Ac) 2、 0.5 minor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0875] 12) Se前躯体的制备: 取 0.5 mmol的(TMSe) 2Se源溶液分散在 2ml的十八稀中室 温搅拌至澄清备用。
[0876] 13) PbSe量子点的制备: 将步骤 12) 中的全部 Se源注入反应 30
Se, 然后注入 10ml的十八稀淬灭反应冷却至室温后进行清洗。
[0877] 14) PbSe量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 PbSe量子点分散在 10ml的正己焼中备用。
[0878] 2 ·硫化铅 (PbSe) 量子点的处理
[0879] 取步骤 1) 中制备好分散在正己烷中的 PbSe量子点 2 ml加入到和 10ml的十八稀 溶液中, 首先对 PbSe量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己 烷溶液, 然后再将 PbSe溶液的温度升高到 300°C。
[0880] 3.利用第一化合物 (TOP) 、 第二化合物 (OAm) 、 第三化合物 (OA) 对
PbSe核壳量子点的后处理。
[0881] 31) 利用 TOP对 PbSe核壳量子点进行熟化: 取 lml的 TOP添加到步骤 2) 中的 Pb
Se量子点中在 310°C温度下加热熟化 60min。
[0882] 32) 待 TOP熟化结束后向混合液中添加 lml的 OAm滴加到上述 TOP熟化过的 PbS e核壳量子点中 310°C温度下加热熟化 40min。 [0883] 33) 待 OAm熟化处理结束后向混合液中添加 1ml的 OA滴加到上述 OAm熟化过 的 PbSe核壳量子点 110°C下加热熟化 40min。
[0884] 34) 待后处理过程结束后将制备得到的 PbSe量子点溶液冷却至室温。
[0885] 4.PbSe核壳量子点的提纯。
[0886] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 PbSe量子点溶液进 行离心分离, 将离心得到的 PbSe量子点溶液再次分散在适量的氯仿溶液当中使 其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次 ; 最终得到的 PbSe量子点进行真空干燥。
[0887] 本申请实施例制备得到的 PbSe量子点, 不仅能够改善 PbSe量子点的溶解性和稳 定性, 而且可以进一步改进量子点的荧光强度和器件稳定性。 通过荧光光谱仪 的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分别为 32~52%和 35~45% ; 通过紫外可见荧光光谱测试 PbSe溶 液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.06~0.11, 通过 QLED测试系统测试 PbSe近红外 QLED器件的第 1天和 10后的器件效率的衰减 率, 其中衰减率的范围为 15~36%。
[0888] 实施例 21
[0889] 一种量子点后处理方法, 包括以下步骤:
[0890] 1.硫化铅 (PbS) 量子点的制备
[0891] 11) 铅前躯体的制备: 取 0.25 mmol的 Pb(Ac) 2、 0.5 minor油酸、 10ml的十八稀 一起加入到 50ml的三口烧瓶中, 加热到 250°C溶解使其变为澄清透明的溶液并保 持在这一温度。
[0892] 12) S前躯体的制备: 取 0.5 mmol的(TMS)2S源溶液分散在2ml的十八稀中室温 搅拌至澄清备用。
[0893] 13) PbS量子点的制备: 将步骤 12) 中的全部 S源注入反应 30 s, 然后注入 10ml 的十八稀淬灭反应冷却至室温后进行清洗。
[0894] 14) PbS量子点的清洗提纯: 向量子点混合液中添力 P30ml的丙酮进行离心分离 量子点, 将离心分离后的 PbS量子点分散在 10ml的正己焼中备用。
[0895] 2.硫化铅 (PbS) 量子点的处理 [0896] 取步骤 1) 中制备好分散在正己烷中的 PbS量子点 2 ml加入到和 10ml的十八稀溶 液中, 首先对 PbS量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷溶 液, 然后再将 PbS溶液的温度升高到 300°C。
[0897] 3.
利用第一化合物 (TOP) 、 第二化合物 (OA) 、 第三化合物组合 (OAm和 TOP ) 对 PbS量子点的后处理。
[0898] 31) 利用 TOP对 PbS核壳量子点进行熟化: 取 lml的 TOP添加到步骤 2) 中的 PbS 量子点中在 310°C温度下加热熟化 60min。
[0899] 32) 待 TOP熟化结束后向混合液中添加 lml的 OA滴加到上述 TOP熟化过的 PbS 量子点中 310°C温度下加热熟化 40min。
[0900] 33) 待 OA熟化处理结束后向混合液中添加 0.5ml的 OAm和 0.5ml的 TOP滴加到上 述 OA熟化过的 PbS量子点 110°C下加热熟化 40min。
[0901] 34) 待后处理过程结束后将制备得到的 PbS量子点溶液冷却至室温。
[0902] 4.PbS量子点的提纯。
[0903] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 PbS量子点溶液进行 离心分离, 将离心得到的 PbS量子点溶液再次分散在适量的氯仿溶液当中使其分 散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最 终得到的 PbS量子点进行真空干燥。
[0904] 本申请实施例制备得到的 PbS量子点, 不仅能够改善 PbS量子点的溶解性和稳定 性, 而且可以进一步改进量子点的荧光强度和器件稳定性。 通过荧光光谱仪的 积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其 中 QY值的范围分别为 75~80%和 72~82% ; 通过紫外可见荧光光谱测试 PbS溶液 ( 浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.06~0.11, 通过 QLED测试系统测试 PbS近红外 QLED器件的第 1天和 10后的器件效率的衰减率, 其中衰减率的范围为 15~36%。
[0905] 实施例 22
[0906] 一种量子点后处理方法, 包括以下步骤:
[0907] 1.铜铟硒硫 (CuInSeS) 量子点的制备 [0908] 11) 镉前躯体的制备: 取 0.25 mmol的 Cu(Ac) 2、 0.3mmol的 In(Ac) 3、 3ml的油酸 和 20ml的十八稀一起加入到 50ml的三口烧瓶中, 加热到 300°C溶解使其变为澄清 透明的溶液并保持在这一温度。
[0909] 12) Se和 S前躯体的制备: 取 0.5 mmol的 Se粉和 lmmol的 S粉一起分散在 3ml的 三辛基膦中。
[0910] 13) CuInSeS量子点的制备: 将步骤 12) 中的全部 Se和 S源注入反应 lOmin, 然 后注入 10ml的十八稀淬灭反应冷却至室温后进行清洗。
[0911] 14) CuInSeS量子点的清洗提纯: 向量子点混合液中添加 30ml的丙酮进行离心 分离量子点, 将离心分离后的 CuInSeS量子点分散在 10ml的正己焼中备用。
[0912] 2.铜铟硒硫 (CuInSeS) 量子点的处理
[0913] 取步骤 1) 中制备好分散在正己烷中的 CuInSeS量子点 2 ml加入到 10ml的十八稀 溶液中, 首先对 CuInSeS量子点溶液加热到 150°C排气 20 min去除溶液中多余的正 己烷溶液, 然后再将 CuInSeS溶液的温度升高到 300°C。
[0914] 3 ·利用第一化合物 (油酸) 、 第二化合物 (三辛基膦) 、 第三化合物 (油胺) 对 CuInSeS量子点进行后处理
[0915] 31) 利用 OA对 CuInSeS量子点进行熟化: 取 lml的油酸添加到步骤 2) 中的 Culn
SeS量子点中在 310°C温度下加热熟化 60min。
[0916] 32) 待 0A熟化结束后向混合液中添加 lml的 TOP滴加到上述 0A熟化过的 CuInS eS量子点中 310°C温度下加热熟化 40min。
[0917] 33) 待 TOP熟化结束后向混合液中添加 lml的 OAm到上述 TOP熟化过的 CuInSeS 量子点中 310°C温度下加热熟化 40min。
[0918] 34) 待后处理过程结束后将制备得到的 CuInSeS量子点溶液冷却至室温。
[0919] 4. CuInSeS量子点的提纯
[0920] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CuInSeS量子点溶液 进行离心离, 将离心得到的 CuInSeS量子点溶液再次分散在适量的氯仿溶液当中 使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一 次; 最终得到的 CuInSeS量子点进行真空干燥。
[0921] 本申请实施例制备得到的 CuInSeS量子点, 不仅能够改善 CuInSeS量子点的溶解 性和稳定性, 而且可以进一步改进量子点的荧光强度和色纯。 通过荧光光谱仪 的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分别为 75~80%和 72~82% ; 通过紫外可见荧光光谱测试 CuInSeS 溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.06~0.11 , 通过荧光光谱仪 (爱丁堡 -FS5) 测试 CuInSeS量子点半峰宽的减少范围 l~5 nm
[0922] 实施例 23
[0923] 一种量子点后处理方法, 包括以下步骤:
[0924] 1 ·铜铟硫 (CuInS) 量子点的制备
[0925] 11) 镉前躯体的制备: 取 0.25 mmol的 Cu(Ac) 2、 0.3mmol的 In(Ac) 3、 3ml的油酸 和 20ml的十八稀一起加入到 50ml的三口烧瓶中, 加热到 300°C溶解使其变为澄清 透明的溶液并保持在这一温度。
[0926] 12) S前躯体的制备: 取 lmmol的 S粉一起分散在 3ml的三辛基膦中。
[0927] 13) CuInS量子点的制备: 将步骤 12) 中的全部 S源注入反应 lOmin, 然后注入 1
0ml的十八稀淬灭反应冷却至室温后进行清洗。
[0928] 14) CuInS量子点的清洗提纯: 向量子点混合液中添加 30ml的丙酮进行离心分 离量子点, 将离心分离后的 CuInS量子点分散在 10ml的正己焼中备用。
[0929] 2 ·铜铟硫 (CuInS) 量子点的处理
[0930] 取步骤 1) 中制备好分散在正己烷中的 CuInS量子点 2 ml加入到 10ml的十八稀溶 液中, 首先对 CuInS量子点溶液加热到 150°C排气 20 min去除溶液中多余的正己烷 溶液, 然后再将 CuInS溶液的温度升高到 300°C。
[0931] 3 ·利用第一化合物 (三辛基膦) 、 第二化合物 (油酸) 、 第三化合物 (油胺) 对 CuInS量子点进行后处理
[0932] 31) 利用 TOP对 CuInS量子点进行熟化: 取 lml的 TOP添加到步骤 2) 中的 CuInS 量子点中在 310°C温度下加热熟化 60min。
[0933] 32) 待 TOP熟化结束后向混合液中添加 lml的油酸滴加到上述 TOP熟化过的 Cul nSeS量子点中 310°C温度下加热熟化 40min。
[0934] 33) 待 OA熟化结束后向混合液中添加 lml的 OAm到上述 OA熟化过的 CuInS量子 点中 310°C温度下加热熟化 40min。
[0935] 34) 待后处理过程结束后将制备得到的 CuInS量子点溶液冷却至室温。
[0936] 4.CuInS量子点的提纯。
[0937] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CuInS量子点溶液进 行离心离, 将离心得到的 CuInS量子点溶液再次分散在适量的氯仿溶液当中使其 分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一次; 最终得到的 CuInS量子点进行真空干燥。
[0938] 本申请实施例制备得到的 CuInS量子点, 不仅能够改善 CuInS量子点的溶解性和 稳定性, 而且可以进一步改进量子点的荧光强度和色纯。 通过荧光光谱仪的积 分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分别为 74~84%和 72~82% ; 通过紫外可见荧光光谱测试 CuInS溶液 ( 浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.06~0.11, 通过 荧光光谱仪 (爱丁堡 -FS5) 测试 CuInS量子点半峰宽的减少范围 l~6 nm。
[0939] 实施例 24
[0940] 一种量子点后处理方法, 包括以下步骤:
[0941] 1.铜铟硒硫 (CuInSeS) 量子点的制备
[0942] 11) 镉前躯体的制备: 取 0.25 mmol的 Cu(Ac) 2、 0.3mmol的 In(Ac) 3、 3ml的油酸 和 20ml的十八稀一起加入到 50ml的三口烧瓶中, 加热到 300°C溶解使其变为澄清 透明的溶液并保持在这一温度。
[0943] 12) Se和 S前躯体的制备: 取 0.5 mmol的 Se粉和 lmmol的 S粉一起分散在 3ml的 三辛基膦中。
[0944] 13) CuInSeS量子点的制备: 将步骤 12) 中的全部 Se和 S源注入反应 lOmin, 然 后注入 10ml的十八稀淬灭反应冷却至室温后进行清洗。
[0945] 14) CuInSeS量子点的清洗提纯: 向量子点混合液中添加 30ml的丙酮进行离心 分离量子点, 将离心分离后的 CuInSeS量子点分散在 10ml的正己焼中备用。
[0946] 2.铜铟硒硫 (CuInSeS) 量子点的处理
[0947] 取步骤 1) 中制备好分散在正己烷中的 CuInSeS量子点 2 ml加入到 10ml的十八稀 溶液中, 首先对 CuInSeS量子点溶液加热到 150°C排气 20 min去除溶液中多余的正 己烷溶液, 然后再将 CuInSeS溶液的温度升高到 300°C。
[0948] 3 ·利用第一化合物 (油酸) 、 第二化合物 (三辛基膦) 、 第三化合物组合 (油 胺和三辛基膦) 对 CuInSeS量子点进行后处理
[0949] 31) 利用 OA对 CuInSeS量子点进行熟化: 取 lml的油酸添加到步骤 2) 中的 Culn
SeS量子点中在 310°C温度下加热熟化 60min。
[0950] 32) 待 OA熟化结束后向混合液中添加 lml的 TOP滴加到上述 OA熟化过的 CuInS eS量子点中 310°C温度下加热熟化 40min。
[0951] 33) 待 TOP熟化结束后向混合液中添加 0.5ml的 OAm和 0.5ml的 TOP到上述 TOP 熟化过的 CuInSeS量子点中 310°C温度下加热熟化 40min。
[0952] 34) 待后处理过程结束后将制备得到的 CuInSeS量子点溶液冷却至室温。
[0953] 4. CuInSeS量子点的提纯。
[0954] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CuInSeS量子点溶液 进行离心离, 将离心得到的 CuInSeS量子点溶液再次分散在适量的氯仿溶液当中 使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一 次; 最终得到的 CuInSeS量子点进行真空干燥。
[0955] 本申请实施例制备得到的 CuInSeS量子点, 不仅能够改善 CuInSeS量子点的溶解 性和稳定性, 而且可以进一步改进量子点的荧光强度和色纯。 通过荧光光谱仪 的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分别为 75~85%和 73~83% ; 通过紫外可见荧光光谱测试 CuInSeS 溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围为 0.05~0.10 , 通过荧光光谱仪 (爱丁堡 -FS5) 测试 CuInSeS量子点半峰宽的减少范围 l~6 nm
[0956] 实施例 25
[0957] 一种量子点后处理方法, 包括以下步骤:
[0958] l.CsPbBr 3量子点的制备
[0959] 11) 油酸铯{Cs(OA)}储备液的制备:
[0960] 称取 0.814g碳酸铯{Cs 2C0 3
}加入到 100ml的三口烧瓶中, 然后再向烧瓶中加入 30ml的十八烯 (ODE) 和 2.5 ml的油酸 (OA) ; 在惰性气体下先常温排气 20min, 加热到 120°C排气 60min加 热到哦 160°C使所有的碳酸铯{Cs 2CO 3
}全部与油酸反应, 然后溶液温度被保持在 160°C, 避免油酸铯{Cs(OA)}溶液凝 固。
[0961] 12) 制备 CsPbBr 3量子点:
[0962] 取 50ml的十八烯 (ODE) 、 5ml的油胺 (OAm) 和 0.7g的溴化铅 (PbBr 2)—起 加入到 100ml的三口烧瓶当中, 在惰性气体下先常温排气 20min, 加热到 120°C排 气 30min, 然后将混合液加热到 180°C, 取 0.04mmol的油酸铯{Cs(OA)}储备液决 速热注入到混合液当中反应 10s后将反应混合液快速的转移到冰水浴当中。 利用 甲苯和甲醇对冷却后的混合液进行高速离心分离沉淀, 将最终的样品分散在甲 苯当中制备成 15mg/ml的溶液当中。
[0963] 13) 后处理 CsPbBr 3量子点:
[0964] 取 lml的上述步骤 12) 制备好的 CsPbBr 3
量子点甲苯溶液, 将 50微升的油酸 (OA) 添加到量子点溶液中搅拌 30min, 然 后再添加 100微升含有 0.05mmol的双十二烷基二甲基氯化铵 (DDAB) 溶液再搅 拌 30min, 然后利用丁醇对混合液进行离心分离沉淀, 分离后再分散到正己烷当 中。
[0965] 2. CsPbBr 3量子点的处理
[0966] 取步骤 1) 中制备好分散在正己烷中的 CsPbBr 3量子点 2 ml加入到 10ml的十八稀 溶液中, 首先对 CsPbBr 3量子点溶液加热到 150°C排气 20 min去除溶液中多余的正 己烷溶液, 然后再将 CsPbBr 3量子点溶液的温度升高到 300°C
[0967] 3 ·利用第一化合物 (OAm) 、 第二化合物 (OA) 、 第三化合物 (TOP) 为例 对 CsPbBr 3量子点进行后处理
[0968] 31) 利用 OAm对 CsPbBr 3量子点进行熟化: 取 lml的
OAm添加到步骤 2) 中的 CsPbBr 3量子点中在 150°C温度下加热熟化 60min。
[0969] 32) 待 OAm熟化结束后向混合液中添加 lml的 OA滴加到上述 OAm熟化过的 CsP bBr 3量子点中 150°C温度下加热熟化 40min。
[0970] 33) 待 OA熟化结束后向混合液中添加 lml的 TOP到上述 OA熟化过的 CsPbBr 3量 子点中 150°C温度下加热熟化 40min。
[0971] 34) 待后处理过程结束后将制备得到的 CsPbBr 3量子点溶液冷却至室温。
[0972] 4. CsPbBr 3量子点的提纯。
[0973] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CsPbBr 3量子点溶液 进行离心离, 将离心得到的 CsPbBr 3量子点溶液再次分散在适量的氯仿溶液当中 使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一 次; 最终得到的 CsPbBr 3量子点进行真空干燥。
[0974] 本申请实施例制备得到的 CsPbBr 3量子点, 不仅能够改善 CsPbBr 3量子点的溶 解性和稳定性, 而且可以进一步改进量子点的荧光强度和瞬态荧光寿命。 通过 荧光光谱仪的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分别为 75~85%和 73~82% ; 通过紫外可见荧光光谱测 试 CsPbBr3溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围 为 0.05~0.10, 通过荧光光谱仪 (爱丁堡 -FS5) 的瞬态荧光光谱测试 CsPbBr3量子 点的瞬态寿命, 寿命值为 25~30ns。
[0975] 实施例 26
[0976] 一种量子点后处理方法, 包括以下步骤:
[0977] 1. CsPbBr 3量子点的制备
[0978] 11) 油酸铯{Cs(OA)}储备液的制备:
[0979] 称取 0.814g碳酸铯{Cs 2C0 3
}加入到 100ml的三口烧瓶中, 然后再向烧瓶中加入 30ml的十八烯 (ODE) 和 2.5 ml的油酸 (OA) ; 在惰性气体下先常温排气 20min, 加热到 120°C排气 60min加 热到哦 160°C使所有的碳酸铯{Cs 2CO 3
}全部与油酸反应, 然后溶液温度被保持在 160°C, 避免油酸铯{Cs(OA)}溶液凝 固。
[0980] 12) 制备 CsPbBr 3量子点:
[0981] 取 50ml的十八烯 (ODE) 、 5ml的油胺 (OAm) 和 0.7g的溴化铅 (PbBr 2) —起 加入到 100ml的三口烧瓶当中, 在惰性气体下先常温排气 20min, 加热到 120°C排 气 30min, 然后将混合液加热到 180°C, 取 0.04mmol的油酸铯{Cs(OA)}储备液决 速热注入到混合液当中反应 10s后将反应混合液快速的转移到冰水浴当中。 利用 甲苯和甲醇对冷却后的混合液进行高速离心分离沉淀, 将最终的样品分散在甲 苯当中制备成 15mg/ml的溶液当中。
[0982] 13) 后处理 CsPbBr 3量子点:
[0983] 取 lml的上述步骤 12) 制备好的 CsPbBr 3
量子点甲苯溶液, 将 50微升的油酸 (OA) 添加到量子点溶液中搅拌 30min, 然 后再添加 100微升含有 0.05mmol的双十二烷基二甲基氯化铵 (DDAB) 溶液再搅 拌 30min, 然后利用丁醇对混合液进行离心分离沉淀, 分离后再分散到正己烷当 中。
[0984] 2. CsPbBr 3量子点的处理
[0985] 取步骤 1) 中制备好分散在正己烷中的 CsPbBr 3量子点 2 ml加入到 10ml的十八稀 溶液中, 首先对 CsPbBr 3量子点溶液加热到 150°C排气 20 min去除溶液中多余的正 己烷溶液, 然后再将 CsPbBr 3量子点溶液的温度升高到 300°C
[0986] 3 ·利用第一化合物 (OAm) 、 第二化合物 (TOP) 、 第三化合物 (OA) 为例 对 CsPbBr 3量子点进行后处理
[0987] 31) 利用 OAm对 CsPbBr 3量子点进行熟化: lml的
OAm添加到步骤 2) 中的 CsPbBr 3量子点中在 150°C温度下加热熟化 60min。
[0988] 32) 待 OAm熟化结束后向混合液中添加 lml的 TOP滴加到上述 OAm熟化过的 Cs
PbBr 3量子点中 150°C温度下加热熟化 40min。
[0989] 33) 待 TOP熟化结束后向混合液中添加 lml的 OA到上述 TOP熟化过的 CsPbBr 3 量子点中 1500°C温度下加热熟化 40min。
[0990] 34) 待后处理过程结束后将制备得到的 CsPbBr 3量子点溶液冷却至室温。
[0991] 4. CsPbBr 3量子点的提纯
[0992] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CsPbBr 3量子点溶液 进行离心离, 将离心得到的 CsPbBr 3量子点溶液再次分散在适量的氯仿溶液当中 使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一 次; 最终得到的 CsPbBr 3量子点进行真空干燥。
[0993] 本申请实施例制备得到的 CsPbBr 3量子点, 不仅能够改善 CsPbBr 3量子点的溶 解性和稳定性, 而且可以进一步改进量子点的荧光强度和瞬态荧光寿命。 通过 荧光光谱仪的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分别为 75~85%和 72~83% ; 通过紫外可见荧光光谱测 试 CsPbBr 3溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围 为 0.06~0.10, 通过荧光光谱仪 (爱丁堡 -FS5) 的瞬态荧光光谱测试 CsPbBr3量子 点的瞬态寿命, 寿命值为 25~30ns。
[0994] 实施例 27
[0995] 一种量子点后处理方法, 包括以下步骤:
[0996] 1. CsPbBr 3量子点的制备
[0997] 11) 油酸铯{Cs(OA)}储备液的制备:
[0998] 称取 0.814g碳酸铯{Cs 2C0 3
}加入到 100ml的三口烧瓶中, 然后再向烧瓶中加入 30ml的十八烯 (ODE) 和 2.5 ml的油酸 (OA) ; 在惰性气体下先常温排气 20min, 加热到 120°C排气 60min加 热到哦 160°C使所有的碳酸铯{Cs 2CO 3
}全部与油酸反应, 然后溶液温度被保持在 160°C, 避免油酸铯{Cs(OA)}溶液凝 固。
[0999] 12) 制备 CsPbBr 3量子点:
[1000] 取 50ml的十八烯 (ODE) 、 5ml的油胺 (OAm) 和 0.7g的溴化铅 (PbBr 2) —起 加入到 100ml的三口烧瓶当中, 在惰性气体下先常温排气 20min, 加热到 120°C排 气 30min, 然后将混合液加热到 180°C, 取 0.04mmol的油酸铯{Cs(OA)}储备液决 速热注入到混合液当中反应 10s后将反应混合液快速的转移到冰水浴当中。 利用 甲苯和甲醇对冷却后的混合液进行高速离心分离沉淀, 将最终的样品分散在甲 苯当中制备成 15mg/ml的溶液当中。
[1001] 13) 后处理 CsPbBr 3量子点:
[1002] 取 lml的上述步骤 12) 制备好的 CsPbBr 3
量子点甲苯溶液, 将 50微升的油酸 (OA) 添加到量子点溶液中搅拌 30min, 然 后再添加 100微升含有 0.05mmol的双十二烷基二甲基氯化铵 (DDAB) 溶液再搅 拌 30min, 然后利用丁醇对混合液进行离心分离沉淀, 分离后再分散到正己烷当 中。
[1003] 2. CsPbBr 3量子点的处理
[1004] 取步骤 1) 中制备好分散在正己烷中的 CsPbBr 3量子点 2 ml加入到 10ml的十八稀 溶液中, 首先对 CsPbBr 3量子点溶液加热到 150°C排气 20 min去除溶液中多余的正 己烷溶液, 然后再将 CsPbBr 3量子点溶液的温度升高到 300°C
[1005] 3.利用第一化合物 (TOP) 、 第二化合物 (OAm) 、 第三化合物 (OA和 TOP
) 为例对 CsPbBr 3量子点进行后处理
[1006] 31) 利用 TOP对 CsPbBr 3量子点进行熟化: 取 lml的
TOP添加到步骤 2) 中的 CsPbBr 3量子点中在 150°C温度下加热熟化 60min。
[1007] 32) 待 TOP熟化结束后向混合液中添加 lml的 OAm滴加到上述 TOP熟化过的 CsP bBr 3量子点中 150°C温度下加热熟化 40min。
[1008] 33) 待 OAm熟化结束后向混合液中添加 0.5ml的 TOP和 0.5ml的 OA到上述 OAm 熟化过的 CsPbBr 3量子点中 150°C温度下加热熟化 40min。
[1009] 34) 待后处理过程结束后将制备得到的 CsPbBr3量子点溶液冷却至室温。
[1010] 4. CsPbBr 3量子点的提纯
[1011] 向步骤 3) 中量子点混合液中添加适量的乙酸乙酯和乙醇对 CsPbBr 3量子点溶液 进行离心离, 将离心得到的 CsPbBr 3量子点溶液再次分散在适量的氯仿溶液当中 使其分散, 然后再向溶液中添加丙酮和甲醇进行沉淀离心分离, 此步骤重复一 次; 最终得到的 CsPbBr 3量子点进行真空干燥。
[1012] 本申请实施例制备得到的 CsPbBr 3量子点, 不仅能够改善 CsPbBr 3量子点的溶 解性和稳定性, 而且可以进一步改进量子点的荧光强度和瞬态荧光寿命。 通过 荧光光谱仪的积分球 (爱丁堡 -FS5) 测试室温下和放置 30天后的溶液的量子产率 (QY) , 其中 QY值的范围分别为 75~85%和 73~84% ; 通过紫外可见荧光光谱测 试 CsPbBr 3溶液 (浓度 15mg/ml) 的在 700nm下的吸光度, 其中吸光度值的范围 为 0.055~0.10, 通过荧光光谱仪 (爱丁堡 -FS5) 的瞬态荧光光谱测试 CsPbBr3量 子点的瞬态寿命, 寿命值为 25~30ns。
[1013] 以上所述仅为本申请的较佳实施例而已, 并不用以限制本申请, 凡在本申请的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本申请的保 护范围之内。

Claims

权利要求书
[权利要求 1] 量子点的后处理方法, 其特征在于, 包括如下步骤:
提供初始量子点溶液;
将所述初始量子点溶液与第一化合物或第一化合物组合进行第一次序 的混合并加热, 得到第一量子点溶液;
将所述第一量子点溶液与第二化合物或第二化合物组合进行第二次序 的混合并加热, 得到第二量子点溶液。
[权利要求 2] 根据权利要求 1所述的量子点的后处理方法, 其特征在于, 所述第一 化合物选自有机羧酸或有机胺, 所述第一化合物组合选自有机羧酸和 有机膦或有机胺和有机膦; 所述第二化合物选自有机羧酸或有机胺, 所述第二化合物组合选自有机羧酸和有机膦或有机胺和有机膦; 且有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用的 化合物组合中含有有机羧酸, 有一个次序的混合并加热过程中采用的 化合物为有机胺或采用的化合物组合中含有有机胺。
[权利要求 3] 根据权利要求 2所述的量子点的后处理方法, 其特征在于, 所述初始 量子点溶液中的量子点为 IIB-VIA纳米晶的单核量子点或者壳层为 nB- VIA纳米晶的核壳量子点;
两个次序的混合并加热过程包括:
将所述初始量子点溶液与有机羧酸进行第一次序的混合并加热或将所 述初始量子点溶液与有机羧酸和有机膦进行第一次序的混合并加热, 得到第一量子点溶液;
将所述第一量子点溶液与有机胺进行第二次序的混合并加热或将所述 第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到 第二量子点溶液。
[权利要求 4] 根据权利要求 3所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机羧酸进行第一次序的混合并加热的步骤或将所述 初始量子点溶液与有机羧酸和有机膦进行第一次序的混合并加热的步 骤, 在温度为 200~350°C的条件下进行; 和 /或 将所述第一量子点溶液与有机胺进行第二次序的混合并加热的步骤或 将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热 的步骤, 在温度为 80°C~200°C的条件下进行。
[权利要求 5] 根据权利要求 2所述的量子点的后处理方法, 其特征在于, 所述初始 量子点溶液中的量子点为 mA-vA纳米晶的单核量子点或者壳层为 mA -VA纳米晶的核壳量子点;
两个次序的混合并加热过程包括:
将所述初始量子点溶液与有机羧酸和有机膦进行第一次序的混合并加 热, 得到第一量子点溶液;
将所述第一量子点溶液与有机胺进行第二次序的混合并加热或将所述 第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到 第二量子点溶液。
[权利要求 6] 根据权利要求 5所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机羧酸和有机膦进行第一次序的混合并加热的步骤 , 在温度为 200~350°C的条件下进行; 和 /或
将所述第一量子点溶液与有机胺进行第二次序的混合并加热或将所述 第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热的步骤 , 在温度为 80°C~200°C的条件下进行。
[权利要求 7] 根据权利要求 2所述的量子点的后处理方法, 其特征在于, 所述初始 量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IV A- VIA纳米晶的核壳量子点。
[权利要求 8] 根据权利要求 7所述的量子点的后处理方法, 其特征在于,
将所述初始量子点溶液与第一化合物组合进行第一次序的混合并加热 , 得到第一量子点溶液; 和 /或
将所述第一量子点溶液与第二化合物组合进行第二次序的混合并加热 , 得到第二量子点溶液。
[权利要求 9] 根据权利要求 8所述的量子点的后处理方法, 其特征在于,
将所述初始量子点溶液与第一化合物组合进行第一次序的混合并在温 度为 80~150°C的条件加热, 得到第一量子点溶液; 和 /或 将所述第一量子点溶液与第二化合物组合进行第二次序的混合并在温 度为 80~150°C的条件加热, 得到第二量子点溶液。
[权利要求 10] 根据权利要求 2所述的量子点的后处理方法, 其特征在于, 所述初始 量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层为 ro-mA-viA纳米晶的核壳量子点;
两个次序的混合并加热过程包括:
将所述初始量子点溶液与有机胺和有机膦进行第一次序的混合并加热 或者将所述初始量子点溶液与有机胺进行第一次序的混合并加热, 得 到第一量子点溶液;
将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并加 热, 得到第二量子点溶液。
[权利要求 11] 根据权利要求 10所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机胺和有机膦进行第一次序的混合并加热的步骤, 在温度为 200~350°C的条件下进行; 和 /或
将所述第一量子点溶液与有机羧酸进行第二次序的混合并加热的步骤 或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热的步骤, 在温度为 200°C~350°C的条件下进行。
[权利要求 12] 根据权利要求 2所述的量子点的后处理方法, 其特征在于, 所述初始 量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点或者壳层 为 IA-IVA-VIIA纳米晶的核壳量子点;
两个次序的混合并加热过程包括:
将所述初始量子点溶液与有机胺进行第一次序的混合并加热或将所述 初始量子点溶液与有机胺和有机膦进行第一次序的混合并加热, 得到 第一量子点溶液;
将所述第一量子点溶液与有机羧酸进行第二次序的混合并加热或将所 述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第二量子点溶液。
[权利要求 13] 根据权利要求 12所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机胺行第一次序的混合并加热的步骤或将所述初始 量子点溶液与有机胺和有机膦进行第一次序的混合并加热的步骤, 在 温度为 80~250°C的条件下进行; 和 /或
将所述第一量子点溶液与有机羧酸进行第二次序的混合并加热的步骤 或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热的步骤, 在温度为 80°C~250°C的条件下进行。
[权利要求 14] 根据权利要求 1所述的量子点的后处理方法, 其特征在于, 还包括: 将所述第二量子点溶液与第三化合物或第三化合物组合进行第三次序 的混合并加热, 得到第三量子点溶液;
其中, 所述第一化合物选自有机羧酸、 有机胺或有机膦, 所述第一化 合物组合选自有机羧酸和有机膦或有机胺和有机膦; 所述第二化合物 选自有机羧酸、 有机胺或有机膦, 所述第二化合物组合选自有机羧酸 和有机膦或有机胺和有机膦; 所述第三化合物选自有机羧酸、 有机胺 或有机膦, 所述第三化合物组合选自有机羧酸和有机膦或有机胺和有 机膦;
且仅有一个次序的混合并加热过程中采用的化合物为有机羧酸或采用 的化合物组合中含有有机羧酸, 且仅有一个次序的混合并加热过程中 采用的化合物为有机胺或采用的化合物组合中含有有机胺。
[权利要求 15] 根据权利要求 14所述的量子点的后处理方法, 其特征在于, 所述有机 胺选自碳原子的个数为 8~ 18的有机胺中的一种或多种; 和 /或, 所述有机羧酸选自碳原子的个数为 8~ 18的有机羧酸中的一种或多种; 和 /或,
所述有机膦选自三辛基膦和 /或三丁基膦。
[权利要求 16] 根据权利要求 14所述的量子点的后处理方法, 其特征在于, 所述初始 量子点溶液中的量子点为 IVA- VIA纳米晶的单核量子点或者壳层为 IV A- VIA纳米晶的核壳量子点; 将所述初始量子点溶液与有机膦进行第 一次序的混合并加热, 得到第一量子点溶液。
[权利要求 17] 根据权利要求 16所述的量子点的后处理方法, 其特征在于, 将所述第 一量子点溶液与有机羧酸进行第二次序的混合并加热或将所述第一量 子点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第二 量子点溶液; 将所述第二量子点溶液与有机胺进行第三次序的混合并 加热或将所述初始量子点溶液与有机胺和有机膦进行第三次序的混合 并加热, 得到第三量子点溶液。
[权利要求 18] 根据权利要求 16所述的量子点的后处理方法, 其特征在于, 将所述第 一量子点溶液与有机胺进行第二次序的混合并加热或将所述第一量子 点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到第二量子 点溶液; 将所述第二量子点溶液与有机羧酸进行第三次序的混合并加 热或将所述初始量子点溶液与有机羧酸和有机膦进行第三次序的混合 并加热, 得到第三量子点溶液。
[权利要求 19] 根据权利要求 16至 18任一项所述的量子点的后处理方法, 其特征在于 , 将所述初始量子点溶液与有机膦进行第一次序的混合并加热的步骤 在温度为 200~350°C的条件下进行; 和 /或
所述第二次序的混合并加热的步骤在温度为 80°C~200°C的条件下进行 ; 和 /或
所述第三次序的混合并加热的步骤在温度为 80°C~350°C的条件下进行
[权利要求 20] 根据权利要求 14所述的量子点的后处理方法, 其特征在于, 所述初始 量子点溶液中的量子点为 IB-mA- VIA纳米晶的单核量子点或者壳层为 IB-mA-VIA纳米晶的核壳量子点; 将所述第二量子点溶液与有机胺或 将所述第二量子点溶液与有机胺和有机膦进行第三次序的混合并加热 , 得到第三量子点溶液。
[权利要求 21] 根据权利要求 20所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机羧酸进行第一次序的混合并加热或将所述初始量 子点溶液与有机羧酸和有机膦进行第一次序的混合并加热, 得到第一 量子点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合并 加热, 得到第二量子点溶液。
[权利要求 22] 根据权利要求 20所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机膦进行第一次序的混合并加热, 得到第一量子点 溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混合并加热 或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并 加热, 得到第二量子点溶液。
[权利要求 23] 根据权利要求 20至 22任一项所述的量子点的后处理方法, 其特征在于 , 所述第一次序的混合并加热的步骤在温度为 250~350°C的条件下进 行; 和 /或
所述第二次序的混合并加热的步骤在温度为 150°C~250°C的条件下进 行; 和 /或
将所述第二量子点溶液与有机胺或将所述第二量子点溶液与有机胺和 有机膦进行第三次序的混合并加热的步骤在温度为 80°C~350°C的条件 下进行。
[权利要求 24] 根据权利要求 14所述的量子点的后处理方法, 其特征在于, 三个次序 的混合并加热过程中, 包括将所述次序的量子点溶液与有机胺或有机 胺和有机膦进行混合并加热的 A次序, 以及将所述次序的量子点溶液 与有机羧酸或有机羧酸和有机膦进行混合并加热的 B次序; 且所述 B 次序在所述 A次序之前;
所述初始量子点溶液中的量子点为 nB-VIA纳米晶的单核量子点或者 壳层为 nB-VIA纳米晶的核壳量子点。
[权利要求 25] 根据权利要求 24所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机羧酸进行第一次序的混合并加热, 得到第一量子 点溶液;
将所述第一量子点溶液与有机胺进行第二次序的混合并加热或将所述 第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到 第二量子点溶液;
将所述第二量子点溶液与有机膦进行第三次序的混合并加热, 得到第 三量子点溶液。
[权利要求 26] 根据权利要求 24所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机羧酸进行第一次序的混合并加热, 得到第一量子 点溶液;
将所述第一量子点溶液与有机膦进行第二次序的混合并加热, 得到第 二量子点溶液;
将所述第二量子点溶液与有机胺进行第三次序的混合并加热或将所述 第二量子点溶液与有机胺和有机膦进行第三次序的混合并加热, 得到 第三量子点溶液。
[权利要求 27] 根据权利要求 24所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机羧酸和有机膦进行第一次序的混合并加热, 得到 第一量子点溶液;
将所述第一量子点溶液与有机胺进行第二次序的混合并加热或将所述 第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热, 得到 第二量子点溶液;
将所述第二量子点溶液与有机膦进行第三次序的混合并加热, 得到第 三量子点溶液。
[权利要求 28] 根据权利要求 24所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机羧酸和有机膦进行第一次序的混合并加热, 得到 第一量子点溶液;
将所述第一量子点溶液与有机膦进行第二次序的混合并加热, 得到第 二量子点溶液;
将所述第二量子点溶液与有机胺进行第三次序的混合并加热或将所述 第二量子点溶液与有机胺和有机膦进行第三次序的混合并加热, 得到 第三量子点溶液。
[权利要求 29] 根据权利要求 24所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机膦进行第一次序的混合并加热, 得到第一量子点 溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混合并加热或将所 述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第二量子点溶液;
将所述第二量子点溶液与有机胺进行第三次序的混合并加热或将所述 第二量子点溶液与有机胺和有机膦进行第三次序的混合并加热, 得到 第三量子点溶液。
[权利要求 30] 根据权利要求 24至 29任一项所述的量子点的后处理方法, 其特征在于 , 将所述次序的量子点溶液与有机羧酸进行混合并加热的步骤或将所 述次序的量子点溶液与有机羧酸和有机膦进行混合并加热的步骤, 在 温度为 200~350°C的条件下进行; 和 /或,
将所述次序的量子点溶液与有机胺进行混合并加热的步骤或将所述次 序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~200°C的条件下进行; 和 /或,
将所述次序的量子点溶液与有机膦进行混合并加热的步骤, 在温度为 80°C~350°C的条件下进行。
[权利要求 31] 根据权利要求 24至 29任一项所述的量子点的后处理方法, 其特征在于 , 所述有机胺为含有单个氨基的直链有机胺, 且所述有机胺中的碳原 子的个数为 8~18 ; 和 /或,
所述有机羧酸为含有单个羧基的直链有机羧酸, 且所述有机羧酸中的 碳原子的个数为 8~18 ; 和 /或,
所述有机膦选自三辛基膦和三丁基膦中的一种或两种。
[权利要求 32] 根据权利要求 24至 29任一项所述的量子点的后处理方法, 其特征在于 , 所述有机胺、 有机羧酸和有机膦分子在室温下为液态。
[权利要求 33] 根据权利要求 24至 29任一项所述的量子点的后处理方法, 其特征在于 , 将所述次序的量子点溶液与有机羧酸和有机膦的化合物组合进行合 并加热, 所述有机羧酸与所述有机膦的摩尔比为 (3~7) : (7~3) ; 和 /或,
将所述次序的量子点溶液与有机胺和有机膦的化合物组合时, 所述有 机胺与所述有机膦的摩尔比为 (3~7) : (7~3) 。
[权利要求 34] 根据权利要求 24至 29任一项所述的量子点的后处理方法, 其特征在于 , 按所述第一化合物或所述第一化合物组合与所述初始量子点溶液中 量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg , 将所述初始量 子点溶液与第一化合物或第一化合物组合进行第一次序的混合并加热 , 得到第一量子点溶液; 和 /或,
按所述第二化合物或所述第二化合物组合与所述第一量子点溶液中量 子点摩尔与质量比为的 (0.5~10mmol) : 100 mg , 将所述第一量子 点溶液与第二化合物或第二化合物组合进行第二次序的混合并加热, 得到第二量子点溶液; 和 /或,
按所述第三化合物或所述第三化合物组合与所述第二量子点溶液中量 子点摩尔与质量比为的 (0.5~10mmol) : 100 mg , 将所述第二量子 点溶液与第三化合物或第三化合物组合进行第三次序的混合并加热, 得到第三量子点溶液。
[权利要求 35] 根据权利要求 14所述的量子点的后处理方法, 三个次序的混合并加热 过程中, 包括将所述次序的量子点溶液与有机胺或有机胺和有机膦进 行混合并加热的 A次序, 以及将所述次序的量子点溶液与有机羧酸或 有机羧酸和有机膦进行混合并加热的 B次序; 且所述 B次序在所述 A次 序之后;
所述初始量子点溶液中的量子点为 IA-IVA-VIIA纳米晶的单核量子点 或者壳层为 IA-IVA-VIIA纳米晶的核壳量子点。
[权利要求 36] 根据权利要求 35所述的量子点的后处理方法, 其特征在于, 所述 IA- IVA-VnA纳米晶选自 CsPbCl 3、 CsPbBr ^RCsPbl 3中的一种或多种。
[权利要求 37] 根据权利要求 35所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机胺进行第一次序的混合并加热或将所述初始量子 点溶液与有机胺和有机膦进行第一次序的混合并加热, 得到第一量子 点溶液; 将所述第一量子点溶液与有机羧酸进行第二次序的混合并加 热或将所述第一量子点溶液与有机羧酸和有机膦进行第二次序的混合 并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机膦进行 第三次序的混合并加热, 得到第三量子点溶液。
[权利要求 38] 根据权利要求 35所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机胺进行第一次序的混合并加热或将所述初始量子 点溶液与有机胺和有机膦进行第一次序的混合并加热, 得到第一量子 点溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合并加热 , 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三 次序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行 第三次序的混合并加热, 得到第三量子点溶液。
[权利要求 39] 根据权利要求 35所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机膦进行第一次序的混合并加热, 得到第一量子点 溶液; 将所述第一量子点溶液与有机胺进行第二次序的混合并加热或 将所述第一量子点溶液与有机胺和有机膦进行第二次序的混合并加热 , 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三 次序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行 第三次序的混合并加热, 得到第三量子点溶液。
[权利要求 40] 根据权利要求 35至 39任一项所述的量子点的后处理方法, 其特征在于 , 将所述次序的量子点溶液与有机羧酸进行混合并加热的步骤或将所 述次序的量子点溶液与有机羧酸和有机膦进行混合并加热的步骤, 在 温度为 200~250°C的条件下进行; 和 /或,
将所述次序的量子点溶液与有机胺进行混合并加热的步骤或将所述次 序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~250°C的条件下进行; 和 /或,
将所述次序的量子点溶液与有机膦进行混合并加热的步骤, 在温度为 80°C~250°C的条件下进行。
[权利要求 41] 根据权利要求 35至 39任一项所述的量子点的后处理方法, 其特征在于 , 所述有机胺为含有单个氨基的直链有机胺, 且所述有机胺中的碳原 子的个数为 8~18 ; 和 /或, 所述有机羧酸为含有单个羧基的直链有机羧酸, 且所述有机羧酸中的 碳原子的个数为 8~18 ; 和 /或,
所述有机膦选自三辛基膦和三丁基膦中的一种或两种。
[权利要求 42] 根据权利要求 35至 39任一项所述的量子点的后处理方法, 其特征在于 , 所述有机胺、 有机羧酸和有机膦分子在室温下为液态。
[权利要求 43] 根据权利要求 35至 39任一项所述的量子点的后处理方法, 其特征在于 , 将所述次序的量子点溶液与有机羧酸和有机膦的化合物组合进行合 并加热, 所述有机羧酸与所述有机膦的摩尔比为 (3~7) : (7~3) ; 和 /或,
将所述次序的量子点溶液与有机胺和有机膦的化合物组合时, 所述有 机胺与所述有机膦的摩尔比为 (3~7) : (7~3) 。
[权利要求 44] 根据权利要求 35至 39任一项所述的量子点的后处理方法, 其特征在于 , 按所述第一化合物或所述第一化合物组合与所述初始量子点溶液中 量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述初始量 子点溶液与第一化合物或第一化合物组合进行第一次序的混合并加热 , 得到第一量子点溶液; 和 /或,
按所述第二化合物或所述第二化合物组合与所述第一量子点溶液中量 子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第一量子 点溶液与第二化合物或第二化合物组合进行第二次序的混合并加热, 得到第二量子点溶液; 和 /或,
按所述第三化合物或所述第三化合物组合与所述第二量子点溶液中量 子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第二量子 点溶液与第三化合物或第三化合物组合进行第三次序的混合并加热, 得到第三量子点溶液。
[权利要求 45] 根据权利要求 14所述的量子点的后处理方法, 其特征在于, 所述第一 化合物选自有机胺, 所述第一化合物组合选自有机胺和有机膦; 所述 第二化合物选自有机羧酸或有机膦, 所述第二化合物组合选自有机羧 酸和有机膦; 所述第三化合物选自有机羧酸或有机膦, 所述第三化合 物组合选自有机羧酸和有机膦。
[权利要求 46] 根据权利要求 45所述的量子点的后处理方法, 其特征在于, 所述初始 量子点溶液中的量子点为 mA-vA纳米晶的单核量子点或者壳层为 mA -VA纳米晶的核壳量子点。
[权利要求 47] 根据权利要求 46所述的量子点的后处理方法, 其特征在于, 所述 mA-
VA纳米晶选自 InP、 InN、 InAs、 InSb、 GaAs、 GaSb、 GaP、 GaN或 I nGaP。
[权利要求 48] 根据权利要求 47所述的量子点的后处理方法, 其特征在于, 将所述第 一量子点溶液与有机羧酸进行第二次序的混合并加热或将所述第一量 子点溶液与有机羧酸和有机膦进行第二次序的混合并加热, 得到第二 量子点溶液; 将所述第二量子点溶液与有机膦进行第三次序的混合并 加热, 得到第三量子点溶液。
[权利要求 49] 根据权利要求 46所述的量子点的后处理方法, 其特征在于, 将所述初 始量子点溶液与有机胺进行第一次序的混合并加热, 得到第一量子点 溶液; 将所述第一量子点溶液与有机膦进行第二次序的混合并加热, 得到第二量子点溶液; 将所述第二量子点溶液与有机羧酸进行第三次 序的混合并加热或将所述第二量子点溶液与有机羧酸和有机膦进行第 三次序的混合并加热, 得到第三量子点溶液。
[权利要求 50] 根据权利要求 45至 49任一项所述的量子点的后处理方法, 其特征在于 , 将所述次序的量子点溶液与有机羧酸进行混合并加热的步骤或将所 述次序的量子点溶液与有机羧酸和有机膦进行混合并加热的步骤, 在 温度为 150~350°C的条件下进行; 和 /或,
将所述次序的量子点溶液与有机胺进行混合并加热的步骤或将所述次 序的量子点溶液与有机胺和有机膦进行混合并加热的步骤, 在温度为 80°C~150°C的条件下进行; 和 /或,
将所述次序的量子点溶液与有机膦进行混合并加热的步骤, 在温度为 80°C~350°C的条件下进行。
[权利要求 51] 根据权利要求 45至 49任一项所述的量子点的后处理方法, 其特征在于 , 所述有机胺为含有单个氨基的直链有机胺, 且所述有机胺中的碳原 子的个数为 8~18 ; 和 /或,
所述有机羧酸为含有单个羧基的直链有机羧酸, 且所述有机羧酸中的 碳原子的个数为 8~18 ; 和 /或,
所述有机膦选自三辛基膦和三丁基膦中的一种或两种。
[权利要求 52] 根据权利要求 45至 49任一项所述的量子点的后处理方法, 其特征在于
, 所述有机胺、 有机羧酸和有机膦分子在室温下为液态。
[权利要求 53] 根据权利要求 45至 49任一项所述的量子点的后处理方法, 其特征在于
, 将所述次序的量子点溶液与有机羧酸和有机膦的化合物组合进行合 并加热, 所述有机羧酸与所述有机膦的摩尔比为 (3~7) : (7~3) ; 和 /或,
将所述次序的量子点溶液与有机胺和有机膦的化合物组合时, 所述有 机胺与所述有机膦的摩尔比为 (3~7) : (7~3) 。
[权利要求 54] 根据权利要求 45至 49任一项所述的量子点的后处理方法, 其特征在于
, 按所述第一化合物或所述第一化合物组合与所述初始量子点溶液中 量子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述初始量 子点溶液与第一化合物或第一化合物组合进行第一次序的混合并加热 , 得到第一量子点溶液; 和 /或,
按所述第二化合物或所述第二化合物组合与所述第一量子点溶液中量 子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第一量子 点溶液与第二化合物或第二化合物组合进行第二次序的混合并加热, 得到第二量子点溶液; 和 /或,
按所述第三化合物或所述第三化合物组合与所述第二量子点溶液中量 子点摩尔与质量比为的 (0.5~10mmol) : 100 mg, 将所述第二量子 点溶液与第三化合物或第三化合物组合进行第三次序的混合并加热, 得到第三量子点溶液。
PCT/CN2019/129309 2018-12-27 2019-12-27 量子点的后处理方法 WO2020135752A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201811612473.1A CN111378427B (zh) 2018-12-27 2018-12-27 量子点的后处理方法
CN201811612495.8 2018-12-27
CN201811612495.8A CN111378449B (zh) 2018-12-27 2018-12-27 量子点的后处理方法
CN201811612473.1 2018-12-27
CN201811610993.9 2018-12-27
CN201811611004.8 2018-12-27
CN201811611010.3 2018-12-27
CN201811611010.3A CN111378448B (zh) 2018-12-27 2018-12-27 量子点的后处理方法
CN201811611004.8A CN111378447B (zh) 2018-12-27 2018-12-27 量子点的后处理方法
CN201811610993.9A CN111378426B (zh) 2018-12-27 2018-12-27 量子点的后处理方法

Publications (1)

Publication Number Publication Date
WO2020135752A1 true WO2020135752A1 (zh) 2020-07-02

Family

ID=71128789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129309 WO2020135752A1 (zh) 2018-12-27 2019-12-27 量子点的后处理方法

Country Status (1)

Country Link
WO (1) WO2020135752A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106753330A (zh) * 2016-11-30 2017-05-31 Tcl集团股份有限公司 一种量子点的后处理方法
CN108315008A (zh) * 2017-01-16 2018-07-24 Tcl集团股份有限公司 油溶性量子点转化为水溶性量子点的方法与提纯方法
CN108355655A (zh) * 2018-03-06 2018-08-03 苏州宝澜环保科技有限公司 一种CuO基复合材料及其制备方法
CN108380196A (zh) * 2018-03-07 2018-08-10 苏州宝澜环保科技有限公司 一种ZnO基光催化复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106753330A (zh) * 2016-11-30 2017-05-31 Tcl集团股份有限公司 一种量子点的后处理方法
CN108315008A (zh) * 2017-01-16 2018-07-24 Tcl集团股份有限公司 油溶性量子点转化为水溶性量子点的方法与提纯方法
CN108355655A (zh) * 2018-03-06 2018-08-03 苏州宝澜环保科技有限公司 一种CuO基复合材料及其制备方法
CN108380196A (zh) * 2018-03-07 2018-08-10 苏州宝澜环保科技有限公司 一种ZnO基光催化复合材料及其制备方法

Similar Documents

Publication Publication Date Title
US10377946B2 (en) Self-passivating quantum dot and preparation method thereof
CN110951477A (zh) 一种核壳量子点及其制备方法
US20210024356A1 (en) Method for preparing nanocrystal with core-shell structure
CN113809272A (zh) 氧化锌纳米材料及制备方法、电子传输薄膜、发光二极管
JP7104170B2 (ja) 量子ドットの製造方法
CN111378448B (zh) 量子点的后处理方法
WO2020135752A1 (zh) 量子点的后处理方法
CN111378427B (zh) 量子点的后处理方法
Zhiwei et al. Highly efficient full color light-emitting diodes based on quantum dots surface passivation engineering
CN111378426B (zh) 量子点的后处理方法
CN111378449B (zh) 量子点的后处理方法
CN111378447B (zh) 量子点的后处理方法
CN110041910B (zh) 一种核壳量子点及其制备方法、量子点光电器件
CN111019628A (zh) 核壳结构纳米晶的制备方法
CN111019631A (zh) 核壳结构纳米晶的制备方法
CN111019637A (zh) 核壳结构纳米晶的制备方法
CN111019633A (zh) 量子点的制备方法
TWI838322B (zh) 表面修飾的銫鉛溴鈣鈦礦量子點的製造方法與其應用
CN111019630A (zh) 核壳结构纳米晶的制备方法
CN111019629A (zh) 核壳结构纳米晶的制备方法
CN111019658A (zh) 核壳结构纳米晶的制备方法
CN111019635A (zh) 核壳结构纳米晶的制备方法
CN111019636A (zh) 核壳结构纳米晶的制备方法
CN111019638A (zh) 核壳结构纳米晶的制备方法
CN111019656A (zh) 量子点的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905838

Country of ref document: EP

Kind code of ref document: A1