WO2020135673A1 - 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途 - Google Patents

一种核酸、含有该核酸的组合物与缀合物及制备方法和用途 Download PDF

Info

Publication number
WO2020135673A1
WO2020135673A1 PCT/CN2019/129016 CN2019129016W WO2020135673A1 WO 2020135673 A1 WO2020135673 A1 WO 2020135673A1 CN 2019129016 W CN2019129016 W CN 2019129016W WO 2020135673 A1 WO2020135673 A1 WO 2020135673A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleotide
nucleotide sequence
seq
sirna
nucleotides
Prior art date
Application number
PCT/CN2019/129016
Other languages
English (en)
French (fr)
Inventor
张鸿雁
高山
康代武
Original Assignee
苏州瑞博生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞博生物技术有限公司 filed Critical 苏州瑞博生物技术有限公司
Priority to US17/418,946 priority Critical patent/US20220062427A1/en
Priority to KR1020217023004A priority patent/KR20210110839A/ko
Priority to JP2021537877A priority patent/JP2022515503A/ja
Priority to CN201980046892.XA priority patent/CN112423794A/zh
Priority to EP19902173.4A priority patent/EP3903830A4/en
Publication of WO2020135673A1 publication Critical patent/WO2020135673A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0033Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being non-polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/312Phosphonates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3222'-R Modification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3515Lipophilic moiety, e.g. cholesterol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised

Definitions

  • the present disclosure relates to a nucleic acid capable of inhibiting the expression of apolipoprotein C3 (APOC3) gene and compositions and conjugates containing the nucleic acid.
  • the present disclosure also relates to the preparation methods and uses of these nucleic acids, compositions and conjugates.
  • Dyslipidemia also known as hyperlipidemia, is a systemic disease in which fat metabolism or functioning abnormally causes plasma lipids to be higher than normal and is seriously threatening the health of patients worldwide.
  • Existing drugs for treating dyslipidemia mainly include statins, cholesterol absorption inhibitors, resins, probucol, fibrates, and niacin and their derivatives.
  • Apolipoprotein C3 plays an important role in lipid metabolism.
  • the expression level of APOC3 in the blood circulation of people with APOC3 mutant genes decreased by 46%, the plasma triglyceride level decreased by 39% compared with ordinary people, and the blood lipid level was lower.
  • Carriers of APOC3 mutant genes can reduce the risk of heart disease by 35.1% compared with non-carriers. Therefore, if it is possible to silence gene expression at the gene level and block the production of APOC3, it will undoubtedly be the most ideal treatment.
  • Small interfering RNA can be based on the mechanism of RNA interference (RNAi) to inhibit or block the expression of any gene of interest in a sequence-specific manner to achieve the purpose of treating diseases.
  • siRNA sequences and modifications and their delivery systems are two key technologies in the development of small RNA drugs.
  • the present disclosure provides an siRNA conjugate having the structure represented by formula (308):
  • n1 is an integer selected from 1-3
  • n3 is an integer selected from 0-4
  • m1, m2, and m3 are independently integers selected from 2-10
  • R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently H, or selected from the group consisting of C 1 -C 10 alkyl, C 1 -C 10 haloalkyl, and C 1 -C 10 alkoxy;
  • R 3 is a group represented by the formula A59:
  • E 1 is OH, SH or BH 2;
  • Nu is an siRNA, the siRNA contains a sense strand and an anti-sense strand, and each nucleotide in the siRNA is independently a modified or unmodified nucleotide, wherein the sense strand contains a nucleotide sequence I, the antisense strand contains a nucleotide sequence II, the nucleotide sequence I and the nucleotide sequence II are at least partially reverse complementary to form a double-stranded region, the nucleotide sequence I and the The nucleotide sequence II is selected from the group of i)-v) as follows:
  • nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 1 are equal in length, and no more than 3 nucleotide differences, and the nucleotide sequence II and SEQ ID NO: 2
  • the nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Z a1 is A, Z a2 of U, I
  • the nucleotide sequence comprises a position corresponding to nucleotide Z a1 Z a3, II contained the nucleotide sequence corresponding to positions Z a2 nucleosides Acid Za4 , where Za4 is the first nucleotide at the 5'end of the antisense strand; or,
  • nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 13 are equal in length and not more than 3 nucleotides different, and the nucleotide sequence II and SEQ ID NO: 14
  • the nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Z b1 is A and Z b2 is U;
  • nucleotide sequence I contains a nucleotide Z b3 corresponding to Z b1
  • nucleotide sequence II contains a nucleoside corresponding to Z b2 Acid Z b4 , the Z b4 is the first nucleotide at the 5′ end of the antisense strand; or,
  • nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 25 are equal in length, and no more than 3 nucleotide differences, and the nucleotide sequence II and SEQ ID NO: 26
  • the nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Z c1 is A
  • Z c2 is U
  • the nucleotide sequence I includes a nucleotide Z c3 corresponding to Z c1
  • the nucleotide sequence II includes a nucleoside corresponding to Z c2 Acid Z c4
  • the Z c4 is the first nucleotide at the 5′ end of the antisense strand
  • nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 37 are equal in length, and no more than 3 nucleotide differences, and the nucleotide sequence II and SEQ ID NO: 38 The nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Z d1 is A
  • Z d2 is U
  • the nucleotide sequence I contains a nucleotide Z d3 corresponding to Z d1
  • the nucleotide sequence II contains a nucleoside corresponding to Z d2 Acid Z d4
  • the Z d4 is the first nucleotide at the 5′ end of the antisense strand
  • nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 49 are equal in length and no more than 3 nucleotide differences, and the nucleotide sequence II and SEQ ID NO: 50 The nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Z e1 is A, Z e2 of U, I contains the nucleotide sequence corresponding to a position Z e1 nucleotide Z e3, the nucleotide position corresponding to nucleotide sequence of Z e2 II contains Acid Ze4 , the Ze4 is the first nucleotide at the 5'end of the antisense strand;
  • M 1 represents a targeting group.
  • the present disclosure provides an siRNA capable of inhibiting the expression of apolipoprotein C3 gene, the siRNA containing a sense strand and an anti-sense strand, each of the nucleotides in the sense strand and the anti-sense strand
  • the acid is independently a fluorinated modified nucleotide or a non-fluorinated modified nucleotide
  • the sense strand contains a nucleotide sequence I
  • the antisense strand contains a nucleotide sequence II
  • the nucleoside The acid sequence I and the nucleotide sequence II are at least partially reverse complementary to form a double-stranded region
  • the fluoro-modified nucleotides are located in nucleotide sequence I and nucleotide sequence II, and, according to 5' Direction from the end to the 3'end, in the sense strand, the nucleotides at positions 7, 8, and 9 of the nucleotide sequence I are fluoro-modified nucleot
  • nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 1 are equal in length, and no more than 3 nucleotide differences, and the nucleotide sequence II and SEQ ID NO: 2
  • the nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Z a1 is A, Z a2 of U, I
  • the nucleotide sequence comprises a position corresponding to nucleotide Z a1 Z a3, II contained the nucleotide sequence corresponding to positions Z a2 nucleosides Acid Za4 , where Za4 is the first nucleotide at the 5'end of the antisense strand; or,
  • nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 13 are equal in length and not more than 3 nucleotides different, and the nucleotide sequence II and SEQ ID NO: 14
  • the nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Z b1 is A and Z b2 is U;
  • nucleotide sequence I contains a nucleotide Z b3 corresponding to Z b1
  • nucleotide sequence II contains a nucleoside corresponding to Z b2 Acid Z b4 , the Z b4 is the first nucleotide at the 5′ end of the antisense strand; or,
  • nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 25 are equal in length, and no more than 3 nucleotide differences, and the nucleotide sequence II and SEQ ID NO: 26
  • the nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Z c1 is A
  • Z c2 is U
  • the nucleotide sequence I includes a nucleotide Z c3 corresponding to Z c1
  • the nucleotide sequence II includes a nucleoside corresponding to Z c2 Acid Z c4
  • the Z c4 is the first nucleotide at the 5′ end of the antisense strand
  • nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 37 are equal in length, and no more than 3 nucleotide differences, and the nucleotide sequence II and SEQ ID NO: 38 The nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Z d1 is A
  • Z d2 is U
  • the nucleotide sequence I contains a nucleotide Z d3 corresponding to Z d1
  • the nucleotide sequence II contains a nucleoside corresponding to Z d2 Acid Z d4
  • the Z d4 is the first nucleotide at the 5′ end of the antisense strand
  • nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 49 are equal in length and no more than 3 nucleotide differences, and the nucleotide sequence II and SEQ ID NO: 50 The nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Z e1 is A, Z e2 of U, I contains the nucleotide sequence corresponding to a position Z e1 nucleotide Z e3, the nucleotide position corresponding to nucleotide sequence of Z e2 II contains acid Z e4, the Z e4 is the antisense strand 5 'end of the first nucleotide.
  • each non-fluoro-modified nucleotide is independently selected from the group consisting of nucleotides or nucleotide analogs in which the hydroxyl group at the 2'position of the ribose group of the nucleotide is substituted with a non-fluoro group One kind.
  • the nucleotide formed at the 2'position of the ribose group of the nucleotide is substituted with a non-fluorine group to form a nucleotide selected from a 2'-alkoxy-modified nucleotide, a 2'-substituted alkoxy group Modified nucleotide, 2'-alkyl modified nucleotide, 2'-substituted alkyl modified nucleotide, 2'-amino modified nucleotide, 2'-substituted amino modified
  • nucleotides, 2'-deoxynucleotides; nucleotide analogs are selected from one of isonucleotides, LNA, ENA, cET, UNA and GNA.
  • each non-fluoro-modified nucleotide is a methoxy-modified nucleotide.
  • the present disclosure provides a pharmaceutical composition containing the siRNA of the present disclosure described above and a pharmaceutically acceptable carrier.
  • the present disclosure provides siRNA and/or pharmaceutical compositions and/or siRNA conjugates of the present disclosure are prepared for the treatment and/or prevention of dyslipidemia caused by abnormal expression of the apolipoprotein C3 gene Use in medicine.
  • the present disclosure provides a method of treating and/or preventing dyslipidemia, the method comprising administering an effective amount of the siRNA and/or pharmaceutical composition and/or siRNA conjugate of the present disclosure to dyslipidemia Subject.
  • the present disclosure provides a method of inhibiting the expression of apolipoprotein C3 gene in hepatocytes, the method comprising combining an effective amount of the siRNA and/or pharmaceutical composition and/or siRNA conjugate of the present disclosure with The liver cells are in contact.
  • the present disclosure provides a kit containing the siRNA and/or pharmaceutical composition and/or siRNA conjugate of the present disclosure.
  • the siRNA provided by the present disclosure the composition containing the siRNA and the siRNA conjugate have good stability, higher gene suppression activity, and/or can significantly reduce blood lipid levels.
  • the siRNA conjugates provided by the present disclosure exhibit excellent APOC3 mRNA inhibition properties: at a dose of 1 mg/kg, inhibit at least 82.0% of APOC3 mRNA expression in the liver of high-fat model mice.
  • siRNA conjugate provided by the present disclosure exhibits excellent lipid lowering ability compared to the conjugate formed by the conjugated molecules provided by the prior art; and, the siRNA conjugate provided by the present disclosure can In the case of drug dosage and low dosing frequency, it continued to show excellent blood lipid inhibition effect during the experimental period of up to 189 days.
  • the single dose of 3 mg/kg of 3 conjugates maintains the TG inhibition rate at 70-90% for up to 77 days, and inhibits CHO
  • the rate is basically maintained at 50% for the same time for up to 77 days, and the TG inhibition rate is maintained at about 50% for up to 147 days; when the dosage is 1 mg/kg, the three conjugates are in a single
  • the inhibition rate of TG was as high as about 80% on the 7th day after the second administration, and it continued to show a TG content reduction effect of not less than 50% for up to 49 days; and, 35 days after a single administration, 1 mg/
  • the 3 conjugates in the kg dose group still showed a CHO content reduction effect of at least about 50%.
  • conjugate 1 regardless of the 3 mg/kg dose group or the 1 mg/kg dose group, conjugate 1 was able to significantly reduce TG and CHO levels in transgenic mice for up to 112 days, and the reduction effect was obvious Better than comparative conjugate 2.
  • the inhibition rate of conjugate 1 on TG and CHO was more than 50%, and the inhibitory effect on TG was more obvious, up to 112
  • the TG levels under the two doses were maintained at around 50%.
  • conjugate 3 can significantly reduce TG and CHO levels in transgenic mice for up to 98 days, and 3 mg/kg of conjugate 3 inhibits TG on day 14 after a single dose It reached 93.6%, and the inhibition rate of CHO on the 7th day after a single dose reached 63.0%.
  • Conjugates 4, 6, and 7 had significant blood lipid lowering effects on human APOC3 transgenic mice at 2 doses.
  • the inhibition rate of TG in the 3 mg/kg administration group was always above 50% within 84 days after administration , CHO inhibition rate remained above 30%. It is worth noting that at 3 mg/kg and 1 mg/kg, the inhibitory effect of conjugates 4, 6 and 7 on TG is always stronger than that of comparative conjugate 2, and the same trend of CHO inhibition.
  • siRNA, pharmaceutical composition and siRNA conjugate provided by the present disclosure can inhibit the expression of apolipoprotein C3 gene, effectively treat and/or prevent dyslipidemia caused by overexpression of apolipoprotein C3 gene, and have a good Application prospects.
  • Figure 1 is a histogram of APOC3 mRNA expression levels in untransfected Huh7 cells and transfection of different conjugates to different final concentrations in Huh7 cells.
  • 2A-7D are graphs showing the changes of total cholesterol (CHO) levels and triglyceride (TG) levels in mouse serum over time after administration of human APOC3 transgenic mice with saline and different doses of each conjugate.
  • CHO total cholesterol
  • TG triglyceride
  • FIG. 8 is a scatter diagram of APOC3 mRNA expression in liver tissue of mice after administration of human APOC3 transgenic mice with saline and different doses of conjugate 4.
  • the sequence of APOC3 mRNA is the sequence shown in Genbank accession number NM_000040.1.
  • target gene used in this disclosure refers to a gene expressing the above-mentioned APOC3 mRNA
  • target mRNA refers to the above-mentioned APOC3 mRNA.
  • capital letters C, G, U, and A represent the base composition of nucleotides; lowercase letter m represents that the nucleotide adjacent to the left side of the letter m is methoxy Modified nucleotides; lowercase letter f means that one nucleotide adjacent to the left side of the letter f is a fluoro-modified nucleotide; lowercase letter s means between two nucleotides adjacent to the letter s It is a phosphorothioate group connection; P1 means that a nucleotide adjacent to the right side of the P1 is a 5'-phosphate nucleotide or a 5'-phosphate analog modified nucleotide.
  • P1 represents a specific modification as VP, Ps, or P, where the letter combination VP indicates that a nucleotide adjacent to the right side of the letter combination VP is vinyl phosphate (5'-(E)-vinylphosphonate , E-VP) modified nucleotides, the letter combination Ps means that a nucleotide adjacent to the right side of the letter combination Ps is a phosphorothioate modified nucleotide, and the capital letter P indicates that the letter P is adjacent to the right side A nucleotide is a 5'-phosphate nucleotide.
  • fluoro-modified nucleotide refers to a nucleotide in which the hydroxyl group at the 2'position of the ribose group of the nucleotide is replaced by fluorine
  • non-fluoro-modified nucleotide refers to A nucleotide or nucleotide analog formed by substitution of a hydroxyl group at the 2'position of a ribose group of a nucleotide with a non-fluorine group.
  • Nucleotide analog refers to a nucleic acid that can replace nucleotides but has a structure different from adenine ribonucleotides, guanine ribonucleotides, cytosine ribonucleotides, uracil ribonucleotides, or thymus A group of pyrimidine deoxyribonucleotides. Such as isonucleotide, bridged nucleotide (bridged nucleic acid, BNA for short) or acyclic nucleotide.
  • the "methoxy-modified nucleotide” refers to a nucleotide in which the 2'-hydroxyl group of the ribose group is substituted with a methoxy group.
  • the terms "complementary” or “reverse complement” can be used interchangeably and have the meaning well known to those skilled in the art, that is, in a double-stranded nucleic acid molecule, the bases of one strand are linked to the other The bases on the pair are paired in a complementary manner.
  • the purine base adenine (A) is always paired with the pyrimidine base thymine (T) (or uracil (U) in RNA);
  • the purine base guanine (C) is always matched with the pyrimidine base Cytosine (G) is paired.
  • Each base pair includes a purine and a pyrimidine.
  • adenine on one chain is always paired with thymine (or uracil) on the other chain, and guanine is always paired with cytosine
  • the two chains are considered to be complementary to each other and the sequence from their complementary chains
  • the sequence of the chain can be inferred.
  • mis means in the art that in double-stranded nucleic acids, the bases at corresponding positions are not paired in a complementary manner.
  • substantially reverse complementarity means that there are no more than 3 base mismatches between the two nucleotide sequences involved; “substantially reverse complementarity” ⁇ Means that there is no more than one base mismatch between the two nucleotide sequences; “fully reverse complementary” means that there is no base mismatch between the two nucleotide sequences.
  • nucleotide difference between one nucleotide sequence and another nucleotide sequence, which means that the base type of the nucleotide at the same position has changed in the former compared with the latter, For example, when one nucleotide base in the latter is A, and the corresponding nucleotide base at the same position of the former is U, C, G, or T, it is regarded as one of the two nucleotide sequences There is a nucleotide difference at this position. In some embodiments, when the nucleotide at the original position is replaced with an abasic nucleotide or its equivalent, it may also be considered that a nucleotide difference has occurred at that position.
  • nucleoside monomer refers to The types and sequence of nucleotides in siRNA or siRNA conjugates, modified or unmodified nucleoside phosphoramidite monomers used in solid-phase synthesis of phosphoramidite (unmodified or modified RNA, phosphoramidites, sometimes RNA is also known as Nucleoside phosphoramidites). Phosphoramidite solid-phase synthesis is a method used in RNA synthesis known to those skilled in the art. Nucleoside monomers used in this disclosure are commercially available.
  • conjugated means that two or more chemical moieties each having a specific function are connected to each other in a covalent manner; accordingly, “conjugate” is Refers to the compound formed by the covalent connection between the various chemical moieties.
  • siRNA conjugate means a compound formed by one or more chemical moieties with specific functions covalently attached to siRNA.
  • siRNA conjugate of the present disclosure is sometimes simply referred to as "conjugate”.
  • the siRNA conjugate should be understood as the general term of siRNA conjugate, the general term of siRNA conjugates of multiple specific chemical molecules, or each siRNA conjugate of multiple siRNA conjugates of specific chemical molecules.
  • a "conjugated molecule” should be understood as a class of compounds or specific compounds that can be conjugated to siRNA through a reaction and ultimately form the siRNA conjugate of the present disclosure.
  • a dash (“-”) that is not between two letters or between two symbols is used to indicate the position of the attachment point of the substituent.
  • “optional” or “optionally” means that the subsequently described event or condition may or may not occur, and the description includes the circumstances in which the event or condition occurs and the circumstances in which it does not occur.
  • “optionally substituted” "alkyl” includes “alkyl” and “substituted alkyl” as defined below. Those skilled in the art will understand that for any group containing one or more substituents, these groups are not intended to introduce any substitution or substitution pattern that is sterically impractical, synthetically unfeasible, and/or inherently unstable .
  • alkyl refers to straight and branched chains having a specified number of carbon atoms, the number is usually 1 to 20 carbon atoms, for example, 1 to 10 carbon atoms, such as 1 to 8 Or 1 to 6 carbon atoms.
  • C 1 -C 6 alkyl groups contain straight-chain and branched-chain alkyl groups of 1 to 6 carbon atoms.
  • alkyl residues with a certain number of carbons it is intended to cover all branched and linear forms with that number of carbons; therefore, for example, "butyl” means including n-butyl and sec-butyl Group, isobutyl and tert-butyl; “propyl” includes n-propyl and isopropyl.
  • Alkylene is a subset of alkyl, and refers to residues that are the same as alkyl but have two points of attachment.
  • alkenyl refers to an unsaturated branched or straight-chain alkyl group having at least one carbon-carbon double bond, which is derived from the adjacent carbon atom of the parent alkyl group Obtained by removing one molecule of hydrogen.
  • the group can be in the cis or trans configuration of the double bond.
  • alkenyl groups include, but are not limited to: vinyl; propenyl, such as prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl (allyl Group), prop-2-en-2-yl; butenyl, such as but-1-en-1-yl, but-1-en-2-yl, 2-methylprop-1-en-1- Group, but-2-en-1-yl, but-2-en-2-yl, but-1,3-dien-1-yl, but-1,3-dien-2-yl and the like.
  • the alkenyl group has 2 to 20 carbon atoms, while in other embodiments, it has 2 to 10, 2 to 8 or 2 to 6 carbon atoms.
  • Alkenylene is a subset of alkenyl and refers to residues that are the same as alkenyl but have two points of attachment.
  • alkynyl refers to an unsaturated branched or straight-chain alkyl group having at least one carbon-carbon triple bond, which is derived from the adjacent carbon atom of the parent alkyl group Obtained by removing two molecules of hydrogen.
  • Typical alkynyl groups include, but are not limited to: ethynyl; propynyl, such as prop-1-yn-1-yl, prop-2-yn-1-yl; butynyl, such as but-1-yn- 1-yl, but-1-yn-3-yl, but-3-yn-1-yl and the like.
  • an alkynyl group has 2 to 20 carbon atoms, while in other embodiments, it has 2 to 10, 2 to 8, or 2 to 6 carbon atoms.
  • Alkynylene is a subset of alkynyl and refers to residues that are the same as alkynyl but have two points of attachment.
  • alkoxy refers to an alkyl group of a specified number of carbon atoms connected through an oxygen bridge, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, Sec-butoxy, tert-butoxy, pentyloxy, 2-pentyloxy, isopentyloxy, neopentyloxy, hexyloxy, 2-hexyloxy, 3-hexyloxy, 3-methyl Pentoxy etc.
  • the alkoxy group usually has 1 to 10, 1 to 8, 1 to 6, or 1 to 4 carbon atoms connected by an oxygen bridge.
  • aryl refers to a group derived from an aromatic monocyclic or polycyclic hydrocarbon ring system by removing hydrogen atoms from ring carbon atoms.
  • the aromatic monocyclic or polycyclic hydrocarbon ring system contains only hydrogen and carbon of 6 to 18 carbon atoms, wherein at least one ring in the ring system is completely unsaturated, ie, contains a ring according to Hückel theory 3. Delocalized (4n+2) ⁇ -electron system.
  • Aryl groups include but are not limited to phenyl, fluorenyl and naphthyl groups.
  • Arylene is a subset of aryl and refers to residues that are the same as aryl but have two points of attachment.
  • cycloalkyl refers to a non-aromatic carbocyclic ring, usually having 3 to 7 cyclic carbon atoms. The ring may be saturated, or have one or more carbon-carbon double bonds.
  • cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl and cyclohexenyl, as well as bridged and cage-like cyclic groups such as norbornane.
  • halogen substituent or “halo” refers to fluoro, chloro, bromo, and iodo, and the term “halogen” includes fluorine, chlorine, bromine, and iodine.
  • haloalkyl refers to an alkyl group as defined above that has a specified number of carbon atoms replaced by one or more, up to the maximum allowable number of halogen atoms.
  • haloalkyl include, but are not limited to, trifluoromethyl, difluoromethyl, 2-fluoroethyl, and pentafluoroethyl.
  • Heterocyclyl refers to a stable 3- to 18-membered non-aromatic cyclic group containing 2-12 carbon atoms and 1-6 heteroatoms selected from nitrogen, oxygen, and sulfur. Unless otherwise stated in the specification, the heterocyclic group is a monocyclic, bicyclic, tricyclic or tetracyclic system, which may include a fused ring or a bridged ring system.
  • the heteroatom in the heterocyclic group may be optionally oxidized. One or more nitrogen atoms (if present) are optionally quaternized.
  • the heterocyclic group is partially saturated or fully saturated.
  • the heterocyclic group may be connected to the rest of the molecule through any ring atom.
  • heterocyclic groups include, but are not limited to: dioxanyl, thienyl [1,3] disulfonyl (thienyl [1,3] dithianyl), decahydroisoquinolinyl, imidazolinyl, imidazolidine Group, isothiazolidinyl, isoxazolidinyl, morpholinyl, octahydroindolyl, octahydroisoindolyl, 2-oxapiperazinyl, 2-oxapiperidinyl, 2-oxa Pyrrolidinyl, oxazolidinyl, piperidinyl, piperazinyl, 4-piperidinone, pyrrolidinyl, pyrazolidinyl, quinuclidinyl, thiazolidinyl, tetrahydrofuranyl, trithionyl (trithianyl ), tetrahydropyranyl, thiomorph
  • Heteroaryl refers to a group derived from a 3- to 18-membered aromatic ring radical, containing 2 to 17 carbon atoms and 1 to 6 heteroatoms selected from nitrogen, oxygen, and sulfur.
  • a heteroaryl group may be a monocyclic, bicyclic, tricyclic, or tetracyclic ring system, where at least one ring in the ring system is completely unsaturated, ie, contains a cyclic delocalization (4n according to Hückel theory +2) ⁇ -electronic system.
  • Heteroaryl groups include fused or bridged ring systems. The heteroatoms in the heteroaryl group are optionally oxidized.
  • heteroaryl group is attached to the rest of the molecule through any ring atom.
  • heteroaryl groups include, but are not limited to: azepanyl, acridinyl, benzimidazolyl, benzoindolyl, 1,3-benzodioxazolyl, benzofuranyl, benzene Oxazolyl, benzo[d]thiazolyl, benzothiadiazolyl, benzo[b][1,4]dioxepinyl (benzo[b][1,4]dioxepinyl), benzo[ b][1,4]oxazinyl (benzo[b][1,4]oxazinyl), 1,4-benzodioxanyl (1,4-benzodioxanyl), benzonaphthofuranyl, benzo Oxazolyl, benzodioxolyl, benzod
  • hydroxyl protecting groups can be used in this disclosure.
  • the protecting group makes the chemical functional group insensitive to specific reaction conditions, and can be added and removed on the functional group in the molecule without substantially damaging the rest of the molecule.
  • Representative hydroxy protecting groups are disclosed in Beaucage et al., Tetrahedron 1992, 48, 2223-2311, and Greeneand Wuts, Protective Groups in Organic Synthesis, Chapter 2, 2d, John Wiley & Sons, New York, 1991, cited by The above documents are incorporated into this article in their entirety.
  • the protecting group is stable under basic conditions, but can be removed under acidic conditions.
  • non-exclusive examples of hydroxy protecting groups useful herein include dimethoxytrityl (DMT), monomethoxytrityl, 9-phenylxanthene-9-yl (Pixyl) and 9-(p-methoxyphenyl) xanthene-9-yl (Mox).
  • non-exclusive examples of hydroxy protecting groups useful herein include Tr (trityl), MMTr (4-methoxytrityl), DMTr (4,4'-dimethoxy Trityl) and TMTr (4,4',4"-trimethoxytrityl).
  • subject refers to any animal, such as a mammal or marsupial.
  • Subjects of the present disclosure include but are not limited to humans, non-human primates (eg, rhesus monkeys or other types of rhesus monkeys), mice, pigs, horses, donkeys, cattle, sheep, rats, and any kind of poultry .
  • treatment means eradicating or improving the underlying obstacles to be treated.
  • therapeutic benefit is obtained by eradicating or ameliorating one or more physiological symptoms associated with the underlying disorder so that an improvement is observed in the subject, although the subject may still suffer from the underlying disorder.
  • prevention and “prevention” are used interchangeably. These terms refer to methods for obtaining beneficial or desired results, including but not limited to preventive benefits.
  • the conjugate or composition may be administered to subjects at risk of developing a specific disease, or to subjects who report one or more physiological symptoms of the disease, even if a diagnosis of the disease is possible Not yet made.
  • the siRNA of the present disclosure contains a nucleotide group as a basic structural unit, and it is well known to those skilled in the art that the nucleotide group contains a phosphate group, a ribose group and a base, which will not be repeated here.
  • the siRNA may be the first siRNA.
  • the first siRNA contains a sense strand and an anti-sense strand, and each nucleotide in the first siRNA is independently a modified or unmodified nucleotide, wherein the sense strand contains a nucleoside Acid sequence I, the antisense strand contains a nucleotide sequence II, the nucleotide sequence I and the nucleotide sequence II are at least partially reverse complementary to form a double-stranded region, for the first siRNA ,
  • the nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 1 are equal in length, and no more than 3 nucleotides are different, and the nucleotide sequence II and SEQ ID NO: 2 are The nucleotide sequences shown are of equal length and no more than 3 nucleotide differences:
  • Za1 is A
  • Za2 is U
  • nucleotide sequence I included in a position corresponding to nucleotide Z a1 Z a3, the nucleotide sequence corresponding to a position II, Z a2 contained in Z a4, the Z a4 is the inverse The first nucleotide at the 5'end of the sense strand.
  • position correspondence refers to the same position in the nucleotide sequence from the same end of the nucleotide sequence.
  • the first nucleotide at the 3′ end of the nucleotide sequence I is the nucleotide whose position corresponds to the first nucleotide at the 3′ end of SEQ ID NO:1.
  • the sense strand contains only nucleotide sequence I and the antisense strand contains only nucleotide sequence II.
  • nucleotide sequence I there is no more than 1 nucleotide difference between the nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 1, and/or the nucleotide sequence II and SEQ No more than 1 nucleotide difference between the nucleotide sequences shown in ID NO:2.
  • the nucleotide difference between the nucleotide sequence II and the nucleotide sequence shown in SEQ ID NO: 2 includes a difference at position Za4 , and Za4 is selected from A, C, or G.
  • the nucleotide difference as a difference at a position Z a4, Z a4 is selected from A, C or G.
  • Z a3 and Z a4 is complementary to nucleotides.
  • the nucleotide sequence I and the nucleotide sequence II are substantially reverse complementary, substantially reverse complementary, or completely reverse complementary; the substantially reverse complementary refers to two cores There are no more than 3 base mismatches between the nucleotide sequences; the substantially reverse complement refers to there are no more than 1 base mismatch between the two nucleotide sequences; complete reverse complement It means that there is no base mismatch between the two nucleotide sequences.
  • nucleotide sequence I is the nucleotide sequence shown in SEQ ID NO: 3
  • nucleotide sequence II is the nucleotide sequence shown in SEQ ID NO: 4:
  • Z a4 is an antisense strand 5 'end of the first nucleotide
  • Z a3 is selected from A, U, G or C
  • Z a4 and Z a3 is complementary to nucleotides; in some embodiments, In, Za3 is U, Za4 is A;
  • the length of the sense strand and the antisense strand are the same or different, the length of the sense strand is 19-23 nucleotides, and the length of the antisense strand is 20-26 nucleotides.
  • the sense strand further contains nucleotide sequence III
  • the antisense strand further contains nucleotide sequence IV
  • the length of nucleotide sequence III and nucleotide sequence IV are each independently 1-4 Nucleotides; the nucleotide sequence III is connected to the 5'end of the nucleotide sequence I, the nucleotide sequence IV is connected to the 3'end of the nucleotide sequence II, the nucleotide sequence III
  • the length of the nucleotide sequence IV is equal.
  • the length of the nucleotide sequence III and the nucleotide sequence IV are both 1 nucleotide, the base of the nucleotide sequence III is C, and the base of the nucleotide sequence IV is G ; At this time, the length ratio of the sense strand and the antisense strand is 20/20; or, the length of the nucleotide sequences III and IV are both 2 nucleotides, according to the direction from the 5'end to the 3'end, the nucleosides
  • the base composition of the acid sequence III is GC
  • the base composition of the nucleotide sequence IV is GC; in this case, the length ratio of the sense strand and the antisense strand is 21/21; or, the length of the nucleotide sequences III and IV All are 3 nucleotides.
  • the base composition of nucleotide sequence III is UGC, and the base composition of nucleotide sequence IV is GCA;
  • the length ratio of the sense strand is 22/22; alternatively, the lengths of the nucleotide sequences III and IV are each 4 nucleotides.
  • the base composition of the nucleotide sequence III is: UUGC, the base composition of the nucleotide sequence IV is GCAA; at this time, the length ratio of the sense strand and the antisense strand is 23/23.
  • the length of the nucleotide sequence III and the nucleotide sequence IV is 2 nucleotides
  • the base composition of the nucleotide sequence III is GC according to the direction from the 5′ end to the 3′ end ,
  • the base composition of the nucleotide sequence IV is GC; at this time, the length ratio of the sense strand and the antisense strand is 21/21.
  • nucleotide sequence III and nucleotide sequence IV are the same, and are completely reverse complementary, therefore, the bases of nucleotide sequence III are given, and the bases of nucleotide sequence IV are also It’s ok.
  • the siRNA may be the second siRNA.
  • the second siRNA contains a sense strand and an anti-sense strand, each nucleotide in the second siRNA is independently a modified or unmodified nucleotide, and the sense strand contains a nucleotide sequence I, the antisense strand contains a nucleotide sequence II, the nucleotide sequence I and the nucleotide sequence II are at least partially reverse complementary to form a double-stranded region, wherein the nucleotide sequence I
  • the length of the nucleotide sequence shown in SEQ ID NO: 13 is equal to and no more than 3 nucleotides different, and the length of the nucleotide sequence II is equal to the length of the nucleotide sequence shown in SEQ ID NO: 14 , And no more than 3 nucleotide differences:
  • Z b1 is A
  • Z b2 is U
  • the nucleotide sequence I includes a nucleotide Z b3 corresponding to a position Z b1
  • the nucleotide sequence II includes a nucleotide Z b4 corresponding to a position Z b2
  • the Z b4 is the reaction The first nucleotide at the 5'end of the sense strand.
  • the sense strand contains only nucleotide sequence I and the antisense strand contains only nucleotide sequence II.
  • nucleotide sequence I there is no more than 1 nucleotide difference between the nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 13, and/or the nucleotide sequence II and SEQ No more than 1 nucleotide difference between the nucleotide sequences shown in ID NO:14.
  • nucleotide sequence II and SEQ ID NO: nucleotide differences between the nucleotide sequence shown at 14 comprises a difference Z b4 position, and Z b4 is selected from A, C or G.
  • nucleotide difference as a difference at a position Z b4, Z b4 is selected from A, C or G.
  • Z b3 is a nucleotide complementary to Z b4 .
  • nucleotide sequence I and the nucleotide sequence II are substantially reverse complementary, substantially reverse complementary, or completely reverse complementary.
  • nucleotide sequence I is the nucleotide sequence shown in SEQ ID NO: 15
  • nucleotide sequence II is the nucleotide sequence shown in SEQ ID NO: 16:
  • Z b4 is the first nucleotide at the 5′ end of the antisense strand
  • Z b3 is selected from A, U, G or C
  • Z b4 is a nucleotide complementary to Z b3 ; in some embodiments In, Z b3 is U, Z b4 is A;
  • the length of the sense strand and the antisense strand are the same or different, the length of the sense strand is 19-23 nucleotides, and the length of the antisense strand is 20-26 nucleotides.
  • the sense strand further contains nucleotide sequence III
  • the antisense strand further contains nucleotide sequence IV
  • the length of nucleotide sequence III and nucleotide sequence IV are each independently 1-4 Nucleotides; the nucleotide sequence III is connected to the 5'end of the nucleotide sequence I, the nucleotide sequence IV is connected to the 3'end of the nucleotide sequence II, the nucleotide sequence III
  • the length of the nucleotide sequence IV is equal.
  • the length of the nucleotide sequence III and the nucleotide sequence IV are each 1 nucleotide, the base of the nucleotide sequence III is G, and the base of the nucleotide sequence IV is C ; At this time, the length ratio of the sense strand and the antisense strand is 20/20; or, the length of the nucleotide sequences III and IV are both 2 nucleotides, according to the direction from the 5'end to the 3'end, the nucleosides
  • the base composition of the acid sequence III is GG, and the base composition of the nucleotide sequence IV is CC; in this case, the length ratio of the sense strand and the antisense strand is 21/21; or, the length of the nucleotide sequences III and IV All are 3 nucleotides.
  • the base composition of nucleotide sequence III is GGG, and the base composition of nucleotide sequence IV is CCC;
  • the length ratio of the sense strand is 22/22; alternatively, the lengths of the nucleotide sequences III and IV are each 4 nucleotides.
  • the base composition of the nucleotide sequence III is: AGGG, the base composition of the nucleotide sequence IV is CCCU; at this time, the length ratio of the sense strand and the antisense strand is 23/23.
  • the length of the nucleotide sequence III and the nucleotide sequence IV is 2 nucleotides
  • the base composition of the nucleotide sequence III is GG according to the direction from the 5′ end to the 3′ end ,
  • the base composition of the nucleotide sequence IV is CC; at this time, the length ratio of the sense strand and the antisense strand is 21/21.
  • nucleotide sequence III and nucleotide sequence IV are the same, and are completely reverse complementary, therefore, the bases of nucleotide sequence III are given, and the bases of nucleotide sequence IV are also It’s ok.
  • the siRNA may be the third siRNA.
  • the third siRNA contains a sense strand and an antisense strand, each nucleotide in the third siRNA is independently a modified or unmodified nucleotide, and the sense strand contains a nucleotide sequence I, the antisense strand contains a nucleotide sequence II, the nucleotide sequence I and the nucleotide sequence II are at least partially reverse complementary to form a double-stranded region, wherein the nucleotide sequence I
  • the length of the nucleotide sequence shown in SEQ ID NO: 25 is equal to and no more than 3 nucleotides different, and the length of the nucleotide sequence II is equal to the length of the nucleotide sequence shown in SEQ ID NO: 26 , And no more than 3 nucleotide differences:
  • the nucleotide sequence I includes a nucleotide Z c3 corresponding to a position of Z c1
  • the nucleotide sequence II includes a nucleotide Z c4 corresponding to a position of Z c2
  • the Z c4 is the reaction The first nucleotide at the 5'end of the sense strand.
  • the sense strand contains only nucleotide sequence I and the antisense strand contains only nucleotide sequence II.
  • nucleotide sequence I there is no more than 1 nucleotide difference between the nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 25, and/or the nucleotide sequence II and SEQ No more than 1 nucleotide difference between the nucleotide sequences shown in ID NO:26.
  • the nucleotide difference between the nucleotide sequence II and the nucleotide sequence shown in SEQ ID NO: 26 includes a difference at the Z c4 position, and Z c4 is selected from A, C, or G. In some embodiments, the nucleotide difference as a difference at a position Z c4, Z c4 is selected from A, C or G. In some embodiments, Z c3 is a nucleotide complementary to Z c4 . These nucleotide differences do not significantly reduce the target gene suppression ability of the siRNA conjugate, and these siRNA conjugates containing nucleotide differences are also within the scope of protection of the present disclosure.
  • nucleotide sequence I and the nucleotide sequence II are substantially reverse complementary, substantially reverse complementary, or completely reverse complementary.
  • nucleotide sequence I is the nucleotide sequence shown in SEQ ID NO: 27
  • nucleotide sequence II is the nucleotide sequence shown in SEQ ID NO: 28:
  • Z c4 is the first nucleotide at the 5′ end of the antisense strand
  • Z c3 is selected from A, U, G, or C
  • Z c4 is a nucleotide complementary to Z c3 ; in some embodiments In, Z c3 is U, Z c4 is A;
  • the length of the sense strand and the antisense strand are the same or different, the length of the sense strand is 19-23 nucleotides, and the length of the antisense strand is 20-26 nucleotides.
  • the sense strand further contains nucleotide sequence III
  • the antisense strand further contains nucleotide sequence IV
  • the length of nucleotide sequence III and nucleotide sequence IV are each independently 1-4 Nucleotides; the nucleotide sequence III is connected to the 5'end of the nucleotide sequence I, the nucleotide sequence IV is connected to the 3'end of the nucleotide sequence II, the nucleotide sequence III
  • the length of the nucleotide sequence IV is equal.
  • the length of the nucleotide sequence III and the nucleotide sequence IV are each 1 nucleotide, the base of the nucleotide sequence III is G, and the base of the nucleotide sequence IV is C ; At this time, the length ratio of the sense strand and the antisense strand is 20/20; or, the length of the nucleotide sequences III and IV are both 2 nucleotides, according to the direction from the 5'end to the 3'end, the nucleosides
  • the base composition of the acid sequence III is AG, and the base composition of the nucleotide sequence IV is CU; in this case, the length ratio of the sense strand and the antisense strand is 21/21; or, the length of the nucleotide sequences III and IV All are 3 nucleotides.
  • the base composition of the nucleotide sequence III is CAG, and the base composition of the nucleotide sequence IV is CUG;
  • the length ratio of the sense strand is 22/22; alternatively, the lengths of the nucleotide sequences III and IV are each 4 nucleotides.
  • the base composition of the nucleotide sequence III is: ACAG, the base composition of the nucleotide sequence IV is CUGU; at this time, the length ratio of the sense strand and the antisense strand is 23/23.
  • the length of the nucleotide sequence III and the nucleotide sequence IV is 2 nucleotides
  • the base composition of the nucleotide sequence III is AG according to the direction from the 5′ end to the 3′ end
  • the base composition of the nucleotide sequence IV is CU; at this time, the length ratio of the sense strand and the antisense strand is 21/21.
  • the nucleotide sequence III and the nucleotide sequence IV have the same length and are completely complementary in reverse. Therefore, the base of the nucleotide sequence III is given, and the base of the nucleotide sequence IV is also It’s ok.
  • the siRNA may be the fourth siRNA.
  • the fourth siRNA contains a sense strand and an anti-sense strand, each nucleotide in the fourth siRNA is independently a modified or unmodified nucleotide, and the sense strand contains a nucleotide sequence I, the antisense strand contains a nucleotide sequence II, the nucleotide sequence I and the nucleotide sequence II are at least partially reverse complementary to form a double-stranded region, wherein the nucleotide sequence I
  • the length of the nucleotide sequence shown in SEQ ID NO: 37 is equal to and no more than 3 nucleotides different, and the length of the nucleotide sequence II is equal to the length of the nucleotide sequence shown in SEQ ID NO: 38 , And no more than 3 nucleotide differences:
  • Z d1 is A
  • Z d2 is U
  • the nucleotide sequence I includes a nucleotide Z d3 corresponding to a position Z d1
  • the nucleotide sequence II includes a nucleotide Z d4 corresponding to a position Z d2
  • the Z d4 is the reaction The first nucleotide at the 5'end of the sense strand.
  • the sense strand contains only nucleotide sequence I and the antisense strand contains only nucleotide sequence II.
  • nucleotide sequence I there is no more than 1 nucleotide difference between the nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 37, and/or the nucleotide sequence II and SEQ No more than 1 nucleotide difference between the nucleotide sequences shown in ID NO:38.
  • the nucleotide difference between the nucleotide sequence II and the nucleotide sequence shown in SEQ ID NO: 38 includes a difference at the Z d4 position, and Z d4 is selected from A, C, or G. In some embodiments, the nucleotide difference as a difference at a position Z d4, Z d4 is selected from A, C or G. In some embodiments, Z d3 is a nucleotide complementary to Z d4 . These nucleotide differences do not significantly reduce the target gene suppression ability of the siRNA conjugate, and these siRNA conjugates containing nucleotide differences are also within the scope of protection of the present disclosure.
  • nucleotide sequence I and the nucleotide sequence II are substantially reverse complementary, substantially reverse complementary, or completely reverse complementary.
  • nucleotide sequence I is the nucleotide sequence shown in SEQ ID NO: 39
  • nucleotide sequence II is the nucleotide sequence shown in SEQ ID NO: 40:
  • Z d4 is the first nucleotide at the 5′ end of the antisense strand
  • Z d3 is selected from A, U, G or C
  • Z d4 is a nucleotide complementary to Z d3 ; in some embodiments In, Z d3 is U, Z d4 is A;
  • the length of the sense strand and the antisense strand are the same or different, the length of the sense strand is 19-23 nucleotides, and the length of the antisense strand is 20-26 nucleotides.
  • the sense strand further contains nucleotide sequence III
  • the antisense strand further contains nucleotide sequence IV
  • the length of nucleotide sequence III and nucleotide sequence IV are each independently 1-4 Nucleotides; the nucleotide sequence III is connected to the 5'end of the nucleotide sequence I, the nucleotide sequence IV is connected to the 3'end of the nucleotide sequence II, the nucleotide sequence III
  • the length of the nucleotide sequence IV is equal.
  • the length of the nucleotide sequence III and the nucleotide sequence IV are both 1 nucleotide, the base of the nucleotide sequence III is C, and the base of the nucleotide sequence IV is G ; At this time, the length ratio of the sense strand and the antisense strand is 20/20; or, the length of the nucleotide sequences III and IV are both 2 nucleotides, according to the direction from the 5'end to the 3'end, the nucleosides
  • the base composition of the acid sequence III is AC, and the base composition of the nucleotide sequence IV is GU; at this time, the length ratio of the sense strand and the antisense strand is 21/21; or, the length of the nucleotide sequences III and IV All are 3 nucleotides.
  • the base composition of the nucleotide sequence III is GAC, and the base composition of the nucleotide sequence IV is GUC;
  • the length ratio of the sense strand is 22/22; alternatively, the lengths of the nucleotide sequences III and IV are each 4 nucleotides.
  • the base composition of the nucleotide sequence III is: GGAC, the base composition of the nucleotide sequence IV is GUCC; at this time, the length ratio of the sense strand and the antisense strand is 23/23.
  • the length of the nucleotide sequence III and the nucleotide sequence IV is 2 nucleotides
  • the base composition of the nucleotide sequence III is AC according to the direction from the 5′ end to the 3′ end ,
  • the base composition of the nucleotide sequence IV is GU; at this time, the length ratio of the sense strand and the antisense strand is 21/21.
  • nucleotide sequence III and nucleotide sequence IV are the same, and are completely reverse complementary, therefore, the bases of nucleotide sequence III are given, and the bases of nucleotide sequence IV are also It’s ok.
  • the siRNA may be the fifth siRNA.
  • the fifth siRNA siRNA contains a sense strand and an anti-sense strand, each nucleotide in the fifth siRNA is independently a modified or unmodified nucleotide, and the sense strand contains a nucleotide sequence I, the antisense strand contains a nucleotide sequence II, the nucleotide sequence I and the nucleotide sequence II are at least partially reverse complementary to form a double-stranded region, wherein the nucleotide sequence I
  • the length of the nucleotide sequence shown in SEQ ID NO: 49 is equal to and no more than 3 nucleotides different, and the length of the nucleotide sequence II is equal to the length of the nucleotide sequence shown in SEQ ID NO: 50 , And no more than 3 nucleotide differences:
  • Ze1 is A
  • Ze2 is U
  • I contains the nucleotide sequence corresponding to a position Z e1 nucleotide Z e3
  • II contained the nucleotide sequence corresponding to positions Z e2 nucleotide Z e4
  • Z e4 The first nucleotide at the 5'end of the sense strand.
  • the sense strand contains only nucleotide sequence I and the antisense strand contains only nucleotide sequence II.
  • nucleotide sequence I there is no more than 1 nucleotide difference between the nucleotide sequence I and the nucleotide sequence shown in SEQ ID NO: 49, and/or the nucleotide sequence II and SEQ No more than 1 nucleotide difference between the nucleotide sequences shown in ID NO:50.
  • the nucleotide difference between the nucleotide sequence II and the nucleotide sequence shown in SEQ ID NO: 50 includes a difference at the position of Ze4 , and Ze4 is selected from A, C, or G. In some embodiments, the nucleotide difference is the difference at Ze4 position, Ze4 is selected from A, C, or G. In some embodiments, Z e3 is complementary to nucleotides Z e4. These nucleotide differences do not significantly reduce the target gene suppression ability of the siRNA conjugate, and these siRNA conjugates containing nucleotide differences are also within the scope of protection of the present disclosure.
  • nucleotide sequence I and the nucleotide sequence II are substantially reverse complementary, substantially reverse complementary, or completely reverse complementary.
  • nucleotide sequence I is the nucleotide sequence shown in SEQ ID NO: 51
  • nucleotide sequence II is the nucleotide sequence shown in SEQ ID NO: 52:
  • Z e4 is an antisense strand 5 'end of the first nucleotide
  • Z e3 is selected from A, U, G or C
  • Z e4 and Z e3 is complementary to nucleotides; in some embodiments, In, Ze e3 is U, Ze e4 is A;
  • the length of the sense strand and the antisense strand are the same or different, the length of the sense strand is 19-23 nucleotides, and the length of the antisense strand is 20-26 nucleotides.
  • the sense strand further contains nucleotide sequence III
  • the antisense strand further contains nucleotide sequence IV
  • the length of nucleotide sequence III and nucleotide sequence IV are each independently 1-4 Nucleotides; the nucleotide sequence III is connected to the 5'end of the nucleotide sequence I, the nucleotide sequence IV is connected to the 3'end of the nucleotide sequence II, the nucleotide sequence III
  • the length of the nucleotide sequence IV is equal.
  • the length of the nucleotide sequence III and the nucleotide sequence IV are each 1 nucleotide, the base of the nucleotide sequence III is G, and the base of the nucleotide sequence IV is C ; At this time, the length ratio of the sense strand and the antisense strand is 20/20; or, the length of the nucleotide sequences III and IV are both 2 nucleotides, according to the direction from the 5'end to the 3'end, the nucleosides
  • the base composition of the acid sequence III is AG, and the base composition of the nucleotide sequence IV is CU; in this case, the length ratio of the sense strand and the antisense strand is 21/21; or, the length of the nucleotide sequences III and IV They are all 3 nucleotides.
  • the base composition of nucleotide sequence III is AAG, and the base composition of nucleotide sequence IV is CUU;
  • the length ratio of the sense strand is 22/22; alternatively, the lengths of the nucleotide sequences III and IV are each 4 nucleotides.
  • the base composition of the nucleotide sequence III is: AAAG, the base composition of the nucleotide sequence IV is CUUU; at this time, the length ratio of the sense strand to the antisense strand is 23/23.
  • the length of the nucleotide sequence III and the nucleotide sequence IV is 2 nucleotides
  • the base composition of the nucleotide sequence III is AG according to the direction from the 5′ end to the 3′ end
  • the base composition of the nucleotide sequence IV is CU; at this time, the length ratio of the sense strand and the antisense strand is 21/21.
  • nucleotide sequence III and nucleotide sequence IV are the same, and are completely reverse complementary, therefore, the bases of nucleotide sequence III are given, and the bases of nucleotide sequence IV are also It’s ok.
  • the description of the nucleotide sequence V, the nucleic acid sequence, the nucleotide modification in the siRNA, and the modified sequence is applicable to any one of the above-mentioned first siRNA to fifth siRNA. That is, if there is no specific instruction, the following description of siRNA should be regarded as describing the first siRNA, second siRNA, third siRNA, fourth siRNA, and fifth siRNA one by one. For example, if no specific siRNA is specified, "the siRNA also contains a nucleotide sequence V" means "first siRNA, second siRNA, third siRNA, fourth siRNA, or fifth siRNA Also contains the nucleotide sequence V
  • the siRNA further contains a nucleotide sequence V, which is 1 to 3 nucleotides in length, and is connected to the 3′ end of the antisense strand (ie, connected to a nucleoside The end of the acid sequence II or the nucleotide sequence IV) constitutes the 3'overhanging end of the antisense strand.
  • the length ratio of the siRNA sense strand and anti-sense strand can be 19/20, 19/21, 19/22, 20/21, 20/22, 20/23, 21/22, 21/23, 21 /24, 22/23, 22/24, 22/25, 23/24, 23/25 or 23/26.
  • the length of the nucleotide sequence V is 2 nucleotides, and thus, the length ratio of the sense strand and the anti-sense strand of the siRNA provided by the present disclosure may be 19/21, 21/23, or 23 /25.
  • Each nucleotide in the nucleotide sequence V may be any nucleotide.
  • the nucleotide sequence V is two consecutive thymine deoxyribonucleotides ( dTdT) or two consecutive uracil ribonucleotides (UU); or, in order to increase the affinity of the siRNA antisense strand to the target mRNA, the nucleotide sequence V is complementary to the nucleotide at the corresponding position of the target mRNA. Therefore, in some embodiments, the ratio of the length of the sense strand and antisense strand of the siRNA of the present disclosure is 19/21 or 21/23, and at this time, the siRNA of the present disclosure has better mRNA silencing activity.
  • the nucleotide at the corresponding position of the target mRNA refers to the nucleotide or nucleotide sequence adjacent to the 5'end of a nucleotide sequence of the target mRNA.
  • the nucleotide sequence of the target mRNA is the same as the nucleotide Sequence II is substantially reverse complementary or completely reverse complementary, or the nucleotide sequence composed of nucleotide sequence II and nucleotide sequence IV is substantially reverse complementary or completely reverse complementary.
  • the sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 5
  • the antisense strand of the siRNA contains the SEQ ID NO: 6
  • the sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 7
  • the anti-sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 8:
  • Z a4 is an antisense strand 5 'end of the first nucleotide
  • Z a3 is selected from A, U, G or C
  • Z a4 and Z a3 is complementary to nucleotides.
  • the sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 17, and the antisense strand of the siRNA contains the SEQ ID NO: 18
  • the sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 19
  • the anti-sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 20:
  • Z b4 is the first nucleotide at the 5′ end of the antisense strand
  • Z b3 is selected from A, U, G, or C
  • Z b4 is a nucleotide complementary to Z b3 .
  • the sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 29, and the antisense strand of the siRNA contains the SEQ ID NO: 30
  • the sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 31, and the anti-sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 32:
  • Z c4 is the first nucleotide at the 5′ end of the antisense strand
  • Z c3 is selected from A, U, G or C
  • Z c4 is a nucleotide complementary to Z c3 .
  • the sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 41, and the antisense strand of the siRNA contains the SEQ ID NO: 42
  • the sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 43
  • the anti-sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 44:
  • Z d4 is the first nucleotide at the 5′ end of the antisense strand
  • Z d3 is selected from A, U, G, or C
  • Z d4 is a nucleotide complementary to Z d3 .
  • the sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 53
  • the antisense strand of the siRNA contains the SEQ ID NO: 54
  • the sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 55
  • the anti-sense strand of the siRNA contains the nucleotide sequence shown in SEQ ID NO: 56:
  • Z e4 is an antisense strand 5 'end of the first nucleotide
  • Z e3 is selected from A, U, G or C
  • Z e4 and is complementary to a nucleotide Z e3.
  • the siRNA of the present disclosure is siAPa1, siAPa2, siAPb1, siAPb2, siAPc1, siAPc2, siAPd1, siAPd2, siAPe1, or siAPe2:
  • Antisense chain 5'-AGAAUACUGUCCCUUUUAAGC-3' (SEQ ID NO: 10)
  • Antisense chain 5'-AGAAUACUGUCCCUUUUAAGCAA-3' (SEQ ID NO: 12)
  • Antisense chain 5'-AGAGCACUGAGAAUACUGUCC-3' (SEQ ID NO: 22)
  • Antisense chain 5'-AGAGCACUGAGAAUACUGUCCCU-3' (SEQ ID NO: 24)
  • Antisense chain 5'-UAGGAGAGCACUGAGAAUACU-3' (SEQ ID NO: 34)
  • Antisense chain 5'-UAGGAGAGCACUGAGAAUACUGU-3' (SEQ ID NO: 36)
  • Antisense chain 5'-GGAGAGCACUGAGAAUACUGU-3' (SEQ ID NO: 46)
  • Antisense strand 5'-GGAGAGCACUGAGAAUACUGUCC-3' (SEQ ID NO: 48)
  • Antisense chain 5'-AGCACUGAGAAUACUGUCCCU-3' (SEQ ID NO: 58)
  • Antisense strand 5'-AGCACUGAGAAUACUGUCCCUUU-3' (SEQ ID NO: 60).
  • the siRNA has the nucleotide sequence (ie, nucleic acid base sequence) shown by siAPa1, siAPa2, siAPb1, siAPb2, siAPc1, siAPc2, siAPd1, siAPd2, siAPe1, or siAPe2.
  • the nucleotides in the siRNAs of the present disclosure are each independently modified or unmodified nucleotides.
  • the nucleotides in the siRNA of the present disclosure are unmodified nucleotides; in some embodiments, some or all of the nucleotides in the siRNA of the present disclosure are modified nucleotides, core
  • the siRNA of the present disclosure contains at least 1 modified nucleotide.
  • modified nucleotide is used to refer to a nucleotide or nucleotide analog formed by the substitution of the hydroxyl group at the 2'position of the ribose group of the nucleotide with another group, or a nucleoside
  • the base on the acid is the nucleotide of the modified base.
  • the modified nucleotide does not cause the function of siRNA to inhibit gene expression to be significantly impaired or lost.
  • the modified nucleotides disclosed in J.K. Watts, G.F. Deleavey, and M. J. Damha, Chemically modified siRNA: tools and applications. Drug DiscoToday, 2008, 13 (19-20): 842-55 can be selected.
  • At least one nucleotide in the sense strand or the antisense strand of the siRNA provided by the present disclosure is a modified nucleotide, and/or at least one phosphate group is a phosphate ester having a modification group
  • at least a part of the phosphate group and/or ribose group in the phosphate-sugar backbone of at least one single chain of the sense strand and the antisense strand is a phosphate group having a modifying group and/or Or a ribose group with a modifying group.
  • all nucleotides in the sense strand and/or the antisense strand are modified nucleotides.
  • each nucleotide in the sense strand and the antisense strand of the siRNA provided by the present disclosure is independently a fluoro-modified nucleotide or a non-fluoro-modified nucleotide.
  • the inventor of the present disclosure has surprisingly found that the siRNA described in the present disclosure achieves a high balance of plasma stability and gene silencing efficiency in animal experiments.
  • the fluoro-modified nucleotides are located in nucleotide sequence I and nucleotide sequence II, and, according to the direction from the 5′ end to the 3′ end, the nucleotide sequence I
  • the nucleotides at positions 7, 8, and 9 are fluoro-modified nucleotides; according to the direction from the 5'end to the 3'end, the nuclei at positions 2, 6, 14, and 16 of the nucleotide sequence II Glycosides are fluoro-modified nucleotides.
  • the fluoro-modified nucleotides are located in nucleotide sequence I and nucleotide sequence II, and there are no more than 5 fluoro-modified nucleotides in the nucleotide sequence I, In addition, according to the direction from the 5′ end to the 3′ end, the nucleotides at positions 7, 8, and 9 of the nucleotide sequence I are fluoro-modified nucleotides; the fluoride in the nucleotide sequence II There are no more than 7 generations of modified nucleotides, and the nucleotides at positions 2, 6, 14, and 16 of the nucleotide sequence II are fluoro-modified nucleotides.
  • the nucleus at position 7, 8, 9 or 5, 7, 8, 9 of the nucleotide sequence I Glycosides are fluoro-modified nucleotides, and the nucleotides in the rest of the sense strand are non-fluoro-modified nucleotides; in the direction from the 5'end to the 3'end, in the antisense strand ,
  • the nucleotides at positions 2, 6, 14, 16 or 2, 6, 8, 9, 14, 16 of the nucleotide sequence II are fluoro-modified nucleotides, and the antisense strand
  • the nucleotides in the remaining positions are non-fluorinated nucleotides.
  • fluoro-modified nucleotide refers to a nucleotide formed by substitution of the hydroxyl group at the 2'position of the ribose group of the nucleotide with fluorine, which has a structure represented by the following formula (7).
  • Non-fluorine-modified nucleotide refers to a nucleotide or a nucleotide analog formed by the substitution of the hydroxyl group at the 2'position of the ribose group of the nucleotide with a non-fluoro group.
  • each non-fluoro-modified nucleotide is independently selected from the group consisting of nucleotides or nucleotide analogs in which the hydroxyl group at the 2'position of the ribose group of the nucleotide is substituted with a non-fluoro group One kind.
  • nucleotides formed by the substitution of the hydroxyl group at the 2′ position of these ribose groups with non-fluorine groups are well known to those skilled in the art, and these nucleotides may be selected from 2′-alkoxy-modified nucleotides, 2′- Substituted alkoxy modified nucleotides, 2'-alkyl modified nucleotides, 2'-substituted alkyl modified nucleotides, 2'-amino modified nucleotides, 2'- One of substituted amino-modified nucleotides and 2'-deoxynucleotides.
  • the 2'-alkoxy modified nucleotide is a 2'-methoxy (2'-OMe) modified nucleotide, as shown in formula (8).
  • the 2'-substituted alkoxy-modified nucleotide may be, for example, a 2'-O-methoxyethyl (2'-MOE) modified nucleotide, such as formula (9 ) As shown.
  • the 2'-amino (2'-NH 2 ) modified nucleotide is represented by formula (10).
  • the 2'-deoxynucleotide (DNA) is represented by formula (11):
  • Nucleotide analog refers to the ability to replace nucleotides in nucleic acids, but the structure is different from adenine ribonucleotides, guanine ribonucleotides, cytosine ribonucleotides, uracil ribonucleotides or thymine deoxygenation A group of ribonucleotides.
  • the nucleotide analog may be an isonucleotide, bridged nucleotide, or acyclic nucleotide.
  • Bridged Nucleic Acid refers to restricted or inaccessible nucleotides.
  • the BNA may contain a five-membered ring, a six-membered ring, or a seven-membered ring with a "fixed" C3'-endosaccharide condensed bridge structure.
  • the bridge is usually incorporated into the 2'-, 4'-position of the ribose to provide a 2', 4'-BNA nucleotide.
  • the BNA may be LNA, ENA, cET BNA, etc., where LNA is shown in formula (12), ENA is shown in formula (13), and cET BNA is shown in formula (14):
  • Acyclic nucleotides are a type of nucleotide formed by the opening of the sugar ring of nucleotides.
  • the acyclic nucleotide may be an unlocked nucleic acid (UNA) or a glycerol nucleic acid (GNA), where UNA is represented by formula (15) and GNA is represented by formula (16):
  • R is selected from H, OH, or alkoxy (O-alkyl).
  • a heteronucleotide refers to a compound formed by changing the position of a base in a nucleotide on a ribose ring.
  • the isonucleotide may be a compound formed by moving a base from the 1'-position to the 2'-position or the 3'-position of the ribose ring, as shown in formula (17) or (18).
  • Base represents a nucleic acid base, such as A, U, G, C, or T; R is selected from H, OH, F, or a non-fluoro group as described above.
  • the nucleotide analog is selected from one of isonucleotide, LNA, ENA, cET, UNA, and GNA.
  • each non-fluoro-modified nucleotide is a methoxy-modified nucleotide.
  • the methoxy-modified nucleotide refers to the 2'of the ribosyl group -Nucleotides formed by substitution of hydroxyl groups with methoxy groups.
  • the siRNAs of the present disclosure are siRNAs with the following modifications: in the direction from the 5′ end to the 3′ end, in the sense strand, positions 7, 8, and 9 of the nucleotide sequence I Or the nucleotides at positions 5, 7, 8, and 9 are fluoro-modified nucleotides, and the nucleotides at the remaining positions in the sense strand are methoxy-modified nucleotides; in the antisense strand In the nucleotide sequence II, the nucleotides at positions 2, 6, 14, 16 or positions 2, 6, 8, 9, 14, 16 are fluoro-modified nucleotides, the antisense The nucleotides in the rest of the chain are methoxy-modified nucleotides.
  • the siRNAs of the present disclosure are siRNAs with the following modifications: according to the direction from the 5′ end to the 3′ end, positions 5, 7, 8 and 9 of nucleotide sequence I in the sense strand of the siRNA
  • the nucleotides are fluoro-modified nucleotides
  • the nucleotides at the remaining positions of the sense strand of siRNA are methoxy-modified nucleotides
  • the siRNA’s The nucleotides at positions 2, 6, 8, 9, 14, and 16 of nucleotide sequence II in the antisense strand are fluoro-modified nucleotides
  • the nucleotides in the remaining positions of the antisense strand of siRNA are methoxy Modified nucleotides;
  • the nucleotides at positions 5, 7, 8 and 9 of the nucleotide sequence I in the sense strand of the siRNA are fluoro-modified nucleotides, the sense of siRNA The nucleotides in the remaining positions of the strand are methoxy-modified nucleotides, and according to the direction from the 5′ end to the 3′ end, the second, sixth, and 14th nucleotide sequences of the nucleotide sequence II of the siRNA The nucleotides at and 16 are fluoro-modified nucleotides, and the nucleotides at the rest of the antisense strand of siRNA are methoxy-modified nucleotides;
  • the nucleotides at positions 7, 8 and 9 of the nucleotide sequence I in the sense strand of the siRNA are fluoro-modified nucleotides
  • the sense strand of the siRNA The nucleotides at the rest of the positions are methoxy-modified nucleotides
  • the second, sixth, fourth and fourth The nucleotide at position 16 is a fluoro-modified nucleotide
  • the nucleotides at the rest of the antisense strand of the siRNA are methoxy-modified nucleotides.
  • the siRNA provided by the present disclosure is siAPa1-M1, siAPa2-M1, siAPa1-M2, siAPa2-M2, siAPa1-M3, siAPa2-M3, siAPb1-M1, siAPb2-M1, siAPb1-M2, siAPb2- M2, siAPb1-M3, siAPb2-M3, siAPc1-M1, siAPc2-M1, siAPc1-M2, siAPc2-M2, siAPc1-M3, siAPc2-M3, siAPd1-M1, siAPd2-M1, siAPd1-M2, siAPd2-M2, Any one of siAPd1-M3, siAPd2-M3, siAPe1-M1, siAPe2-M1, siAPe1-M2, siAPe2-M2, siAPe1-M3, siAPe2-M3:
  • Antisense strand 5'-AmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCm-3' (SEQ ID NO: 62)
  • Antisense chain 5'-AmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmAmAmAm-3' (SEQ ID NO: 64)
  • Antisense strand 5'-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3' (SEQ ID NO: 66)
  • Antisense strand 5'-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3' (SEQ ID NO: 68)
  • Antisense strand 5'-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3' (SEQ ID NO: 70)
  • Antisense strand 5'-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3' (SEQ ID NO: 72).
  • Antisense strand 5'-AmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCm-3' (SEQ ID NO: 74)
  • Antisense strand 5'-AmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmUm-3' (SEQ ID NO: 76)
  • Antisense strand 5'-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCm-3' (SEQ ID NO: 78)
  • Antisense strand 5'-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmUm-3' (SEQ ID NO: 80)
  • Antisense strand 5'-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCm-3' (SEQ ID NO: 82)
  • Antisense strand 5'-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmUm-3' (SEQ ID NO: 84).
  • Antisense strand 5'-UmAfGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUm-3' (SEQ ID NO: 86)
  • Antisense strand 5'-UmAfGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3' (SEQ ID NO: 88)
  • Antisense strand 5'-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUm-3' (SEQ ID NO: 90)
  • Antisense strand 5'-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3' (SEQ ID NO: 92)
  • Antisense strand 5'-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUm-3' (SEQ ID NO: 94)
  • Antisense strand 5'-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3' (SEQ ID NO: 96).
  • Antisense strand 5'-GmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUm-3' (SEQ ID NO: 98);
  • Antisense strand 5'-GmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3' (SEQ ID NO: 100);
  • Antisense strand 5'-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3' (SEQ ID NO: 102);
  • Antisense strand 5'-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3' (SEQ ID NO: 104);
  • Antisense strand 5'-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3' (SEQ ID NO: 106);
  • Antisense strand 5'-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3' (SEQ ID NO: 108).
  • Antisense strand 5'-AmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUm-3' (SEQ ID NO: 110);
  • Antisense strand 5'-AmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3' (SEQ ID NO: 112);
  • Antisense strand 5'-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmUm-3' (SEQ ID NO: 114);
  • Antisense chain 5'-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmUmUmUm-3' (SEQ ID NO: 116);
  • Antisense strand 5'-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmUm-3' (SEQ ID NO: 118);
  • Antisense strand 5'-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3' (SEQ ID NO: 120).
  • the siRNA with the above modification is not only low in cost, but also makes it difficult for the ribonuclease in the blood to cleave the nucleic acid, thereby increasing the stability of the nucleic acid and making the nucleic acid more resistant to nuclease hydrolysis.
  • the phosphate groups in the phosphate-sugar backbone of at least one single strand of the sense and antisense strands of the siRNA provided by the present disclosure are phosphate groups having a modifying group.
  • the phosphate group having a modifying group is a phosphorothioate group formed by substitution of at least one oxygen atom in the phosphate diester bond of the phosphate group with a sulfur atom; in some embodiments, the The phosphate group having a modification group is a phosphorothioate group having the structure shown in formula (1):
  • This modification can stabilize the double-stranded structure of siRNA and maintain the high specificity and high affinity of base pairing.
  • the phosphorothioate group is linked to at least one of the group consisting of the first and second cores at either end of the sense strand or anti-sense strand Between nucleotides; between the second and third nucleotides at either end of the sense strand or antisense strand; or any combination of the above.
  • the phosphorothioate group linkage is present at all of the above positions except the 5'end of the sense strand.
  • the phosphorothioate group linkage is present at all of the above positions except for the 3'end of the sense strand.
  • the phosphorothioate group linkage is present in at least one of the following positions:
  • the siRNA provided by the present disclosure is siAPa1-M1S, siAPa2-M1S, siAPa1-M2S, siAPa2-M2S, siAPa1-M3S, siAPa2-M3S, siAPb1-M1S, siAPb2-M1S, siAPb1-M2S, siAPb2- M2S, siAPb1-M3S, siAPb2-M3S, siAPc1-M1S, siAPc2-M1S, siAPc1-M2S, siAPc2-M2S, siAPc1-M3S, siAPc2-M3S, siAPd1-M1S, siAPd2-M1S, siAPd1-M2S, siAPd2-M2S Any one of siAPd1-M3S, siAPd2-M3S, siAPe1-M1S, siAPe2-M1S, siAPe1-M2S, siAPe2-M2S, siAPe2-M
  • Antisense chain 5'-AmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmsGmsCm-3' (SEQ ID NO: 122)
  • Antisense chain 5'-AmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3' (SEQ ID NO: 124)
  • Antisense chain 5'-AmsGfsAmAmUmAfCmUmGmUmCmCmUfUmUfUmAmAmsGmsCm-3' (SEQ ID NO: 126)
  • Antisense chain 5'-AmsGfsAmAmUmAfCmUmGmUmCmCmUfUmUfUmAmAmGmCmsAmsAm-3' (SEQ ID NO: 128)
  • Antisense chain 5'-AmsGfsAmAmUmAfCmUmGmUmCmCmUfUmUfUmAmAmsGmsCm-3' (SEQ ID NO: 130)
  • Antisense strand 5'-AmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3' (SEQ ID NO: 132).
  • Antisense chain 5'-AmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmsCmsCm-3' (SEQ ID NO:134)
  • Antisense chain 5'-AmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3' (SEQ ID NO: 136)
  • Antisense chain 5'-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3' (SEQ ID NO: 138)
  • Antisense chain 5'-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3' (SEQ ID NO: 140)
  • Antisense chain 5'-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3' (SEQ ID NO: 142)
  • Antisense strand 5'-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3' (SEQ ID NO: 144).
  • Antisense chain 5'-UmsAfsGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmsCmsUm-3' (SEQ ID NO: 146)
  • Antisense chain 5'-UmsAfsGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3' (SEQ ID NO: 148)
  • Antisense chain 5'-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmsCmsUm-3' (SEQ ID NO: 150)
  • Antisense chain 5'-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3' (SEQ ID NO: 152)
  • Antisense chain 5'-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmsCmsUm-3' (SEQ ID NO: 154)
  • Antisense strand 5'-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3' (SEQ ID NO: 156).
  • Antisense chain 5'-GmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmsGmsUm-3' (SEQ ID NO:158);
  • Antisense chain 5'-GmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3' (SEQ ID NO: 160);
  • Antisense chain 5'-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3' (SEQ ID NO: 162);
  • Antisense chain 5'-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3' (SEQ ID NO: 164);
  • Antisense chain 5'-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3' (SEQ ID NO: 166);
  • Antisense strand 5'-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3' (SEQ ID NO: 168).
  • Antisense chain 5'-AmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmsCmsUm-3' (SEQ ID NO: 170);
  • Antisense chain 5'-AmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUmsUm-3' (SEQ ID NO: 172);
  • Antisense chain 5'-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3' (SEQ ID NO: 174);
  • Antisense chain 5'-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmsUm-3' (SEQ ID NO: 176);
  • Antisense chain 5'-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3' (SEQ ID NO: 178);
  • Antisense strand 5'-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmsUmsUm-3' (SEQ ID NO: 180).
  • the 5'terminal nucleotide of the antisense strand of the siRNA is a 5'-phosphate nucleotide or a 5'-phosphate analog modified nucleotide.
  • 5'-phosphate nucleotides may have the following structure:
  • R is selected from H, OH, methoxy, and fluorine
  • Base represents a nucleic acid base, selected from A, U, C, G, or T.
  • the 5'-phosphate nucleotide is a nucleotide containing a 5'-phosphate modification represented by formula (2), and the nucleotide modified with a 5'-phosphate analog is a vinyl phosphate-containing modification
  • the nucleotides shown in formula (3) or phosphorothioate modified nucleotides are shown in formula (5).
  • the siRNA provided by the present disclosure is siAPa1-M1P1, siAPa2-M1P1, siAPa1-M2P1, siAPa2-M2P1, siAPa1-M3P1, siAPa2-M3P1, siAPa1-M1SP1, siAPa2-M1SP1, siAPa1-M2SP1, siAPa2- M2SP1, siAPa1-M3SP1, siAPa2-M3SP1, siAPa1U-M1P1, siAPa2U-M1P1, siAPa1U-M2P1, siAPa2U-M2P1, siAPa1U-M3P1, siAPa2U-M3P1, siAPa1U-M3P1, siAPa2U-M3P1, siAPa1U-M1SP1, siAPa2U1, siAPa2U1 siAPa1U-M3SP1, siAPa2U-M3SP1, siAPa1U-M1SP1, siAPa2U1, siAPa2U
  • Antisense strand 5'-P1-AmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCm-3' (SEQ ID NO: 182)
  • Antisense strand 5'-P1-AmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3' (SEQ ID NO: 184)
  • Antisense strand 5'-P1-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3' (SEQ ID NO: 186)
  • Antisense strand 5'-P1-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3' (SEQ ID NO: 188)
  • Antisense strand 5'-P1-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3' (SEQ ID NO: 190)
  • Antisense strand 5'-P1-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3' (SEQ ID NO: 192)
  • Antisense chain 5'-P1-AmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmsGmsCm-3' (SEQ ID NO: 194)
  • Antisense strand 5'-P1-AmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3' (SEQ ID NO: 196)
  • Antisense chain 5'-P1-AmsGfsAmAmUmAfCmUmGmUmCmCmUfUmUfUmAmAmsGmsCm-3' (SEQ ID NO: 198)
  • Antisense chain 5'-P1-AmsGfsAmAmUmAfCmUmGmUmCmCmUfUmUfUmAmAmGmCmsAmsAm-3' (SEQ ID NO: 200)
  • Antisense chain 5'-P1-AmsGfsAmAmUmAfCmUmGmUmCmCmUfUmUfUmAmAmsGmsCm-3' (SEQ ID NO: 202)
  • Antisense chain 5'-P1-AmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3' (SEQ ID NO: 204);
  • Antisense chain 5'-P1-UmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCm-3' (SEQ ID NO:328)
  • Antisense chain 5'-P1-UmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmAmAmAm-3' (SEQ ID NO: 330)
  • Antisense strand 5'-P1-UmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3' (SEQ ID NO: 332)
  • Antisense strand 5'-P1-UmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3' (SEQ ID NO:334)
  • Antisense strand 5'-P1-UmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3' (SEQ ID NO: 336)
  • Antisense chain 5'-P1-UmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm -3' (SEQ ID NO: 338)
  • Antisense chain 5'-P1-UmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmsGmsCm-3' (SEQ ID NO:340)
  • Antisense chain 5'-P1-UmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3' (SEQ ID NO: 342)
  • Antisense chain 5'-P1-UmsGfsAmAmUmAfCmUmGmUmCmCmUfUmUfUmAmAmsGmsCm-3' (SEQ ID NO: 344)
  • Antisense chain 5'-P1-UmsGfsAmAmUmAfCmUmGmUmCmCmUfUmUfUmAmAmGmCmsAmsAm-3' (SEQ ID NO:346)
  • Antisense chain 5'-P1-UmsGfsAmAmUmAfCmUmGmUmCmCmUfUmUfUmAmAmsGmsCm-3' (SEQ ID NO:348)
  • Antisense strand 5'-P1-UmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3' (SEQ ID NO: 350).
  • Antisense strand 5'-P1-AmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCm-3' (SEQ ID NO: 206)
  • Antisense strand 5'-P1-AmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmCmUm-3' (SEQ ID NO: 208)
  • Antisense strand 5'-P1-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCm-3' (SEQ ID NO: 210)
  • Antisense strand 5'-P1-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmUm-3' (SEQ ID NO: 212)
  • Antisense strand 5'-P1-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCm-3' (SEQ ID NO: 214)
  • Antisense strand 5'-P1-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmUm-3' (SEQ ID NO: 216)
  • Antisense chain 5'-P1-AmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmsCmsCm-3' (SEQ ID NO: 218)
  • Antisense chain 5'-P1-AmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3' (SEQ ID NO: 220)
  • Antisense chain 5'-P1-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3' (SEQ ID NO: 222)
  • Antisense chain 5'-P1-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3' (SEQ ID NO: 224)
  • Antisense chain 5'-P1-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3' (SEQ ID NO: 226)
  • Antisense chain 5'-P1-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3' (SEQ ID NO: 228)
  • Antisense strand 5'-P1-UmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCm-3' (SEQ ID NO: 352)
  • Antisense strand 5'-P1-UmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmUm-3' (SEQ ID NO: 354)
  • Antisense strand 5'-P1-UmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCm-3' (SEQ ID NO: 356)
  • Antisense strand 5'-P1-UmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmUm-3' (SEQ ID NO:358)
  • Antisense strand 5'-P1-UmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCm-3' (SEQ ID NO: 360)
  • Antisense strand 5'-P1-UmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmUm-3' (SEQ ID NO: 362)
  • Antisense chain 5'-P1-UmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmsCmsCm-3' (SEQ ID NO: 364)
  • Antisense chain 5'-P1-UmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3' (SEQ ID NO: 366)
  • Antisense chain 5'-P1-UmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3' (SEQ ID NO: 368)
  • Antisense chain 5'-P1-UmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3' (SEQ ID NO: 370)
  • Antisense chain 5'-P1-UmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3' (SEQ ID NO:372)
  • Antisense chain 5'-P1-UmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3' (SEQ ID NO: 374);
  • Antisense strand 5'-P1-UmAfGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUm-3' (SEQ ID NO: 230)
  • Antisense strand 5'-P1-UmAfGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3' (SEQ ID NO: 232)
  • Antisense strand 5'-P1-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUm-3' (SEQ ID NO: 234)
  • Antisense strand 5'-P1-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3' (SEQ ID NO: 236)
  • Antisense strand 5'-P1-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUm-3' (SEQ ID NO: 238)
  • Antisense strand 5'-P1-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3' (SEQ ID NO: 240)
  • Antisense chain 5'-P1-UmsAfsGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmsCmsUm-3' (SEQ ID NO: 242)
  • Antisense chain 5'-P1-UmsAfsGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3' (SEQ ID NO: 244)
  • Antisense chain 5'-P1-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmsCmsUm-3' (SEQ ID NO: 246)
  • Antisense chain 5'-P1-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3' (SEQ ID NO:248)
  • Antisense chain 5'-P1-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmsCmsUm-3' (SEQ ID NO: 250)
  • Antisense chain 5'-P1-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3' (SEQ ID NO:252)
  • Antisense strand 5'-P1-GmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUm-3' (SEQ ID NO: 254);
  • Antisense strand 5'-P1-GmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3' (SEQ ID NO: 256);
  • Antisense strand 5'-P1-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3' (SEQ ID NO:258);
  • Antisense strand 5'-P1-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3' (SEQ ID NO: 260);
  • Antisense strand 5'-P1-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3' (SEQ ID NO: 262);
  • Antisense strand 5'-P1-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3' (SEQ ID NO: 264);
  • Antisense chain 5'-P1-GmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmsGmsUm-3' (SEQ ID NO: 266);
  • Antisense chain 5'-P1-GmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3' (SEQ ID NO: 268);
  • Antisense chain 5'-P1-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3' (SEQ ID NO: 270);
  • Antisense chain 5'-P1-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3' (SEQ ID NO: 272);
  • Antisense chain 5'-P1-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3' (SEQ ID NO:274);
  • Antisense chain 5'-P1-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3' (SEQ ID NO:276);
  • Antisense strand 5'-P1-UmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUm-3' (SEQ ID NO: 376);
  • Antisense strand 5'-P1-UmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3' (SEQ ID NO:378);
  • Antisense strand 5'-P1-UmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3' (SEQ ID NO: 380);
  • Antisense strand 5'-P1-UmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3' (SEQ ID NO: 382);
  • Antisense strand 5'-P1-UmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3' (SEQ ID NO: 384);
  • Antisense strand 5'-P1-UmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3' (SEQ ID NO:386);
  • Antisense chain 5'-P1-UmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmsGmsUm-3' (SEQ ID NO:388);
  • Antisense chain 5'-P1-UmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3' (SEQ ID NO: 390);
  • Antisense chain 5'-P1-UmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3' (SEQ ID NO:392);
  • Antisense chain 5'-P1-UmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3' (SEQ ID NO:394);
  • Antisense chain 5'-P1-UmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3' (SEQ ID NO:396);
  • Antisense chain 5'-P1-UmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3' (SEQ ID NO:398);
  • Antisense strand 5'-P1-AmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUm-3' (SEQ ID NO: 278);
  • Antisense strand 5'-P1-AmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3' (SEQ ID NO:280);
  • Antisense strand 5'-P1-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUm-3' (SEQ ID NO: 282);
  • Antisense chain 5'-P1-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3' (SEQ ID NO:284);
  • Antisense strand 5'-P1-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUm-3' (SEQ ID NO: 286);
  • Antisense chain 5'-P1-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3' (SEQ ID NO: 288);
  • Antisense chain 5'-P1-AmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmsCmsUm-3' (SEQ ID NO: 290);
  • Antisense chain 5'-P1-AmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmUmsUmsUm-3' (SEQ ID NO:292);
  • Antisense chain 5'-P1-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3' (SEQ ID NO:294);
  • Antisense chain 5'-P1-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmUmsUm-3' (SEQ ID NO:296);
  • Antisense chain 5'-P1-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3' (SEQ ID NO: 298);
  • Antisense chain 5'-P1-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmUmsUmsUm-3' (SEQ ID NO: 300);
  • Antisense chain 5'-P1-UmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmUm-3' (SEQ ID NO: 400);
  • Antisense chain 5'-P1-UmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmUmUmUm-3' (SEQ ID NO: 402);
  • Antisense chain 5'-P1-UmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmUm-3' (SEQ ID NO: 404);
  • Antisense chain 5'-P1-UmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3' (SEQ ID NO:406);
  • Antisense chain 5'-P1-UmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmUm-3' (SEQ ID NO:408);
  • Antisense chain 5'-P1-UmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmUmUmUm-3' (SEQ ID NO:410);
  • Antisense chain 5'-P1-UmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmsCmsUm-3' (SEQ ID NO: 412);
  • Antisense chain 5'-P1-UmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmUmsUmsUm-3' (SEQ ID NO: 414);
  • Antisense chain 5'-P1-UmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3' (SEQ ID NO:416);
  • Antisense chain 5'-P1-UmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmUmsUmsUm-3' (SEQ ID NO:418);
  • Antisense chain 5'-P1-UmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3' (SEQ ID NO:420);
  • Antisense chain 5'-P1-UmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmUmsUmsUm-3' (SEQ ID NO: 422).
  • the siRNA is selected from one of siAPa1UM3SVP, siAPe1UM3SVP, siAPb1UM3SVP, siAPd1UM3SVP, siAPc1M3SVP, siAPd1UM3SP, siAPd1UM3SPs, siAPa1M3SP, siAPe1M3SP, siAPb1M3SP, and siAP1.
  • the above siRNA is shown in Table 7.
  • the capital letters C, G, U, and A represent the base composition of nucleotides;
  • the lower case letter m represents that one nucleotide adjacent to the left side of the letter m is a methoxy-modified nucleoside Acid;
  • the lowercase letter f indicates that the nucleotide adjacent to the left side of the letter f is a fluoro-modified nucleotide;
  • the lowercase letter s indicates that the two nucleotides on the left and right of the letter are connected by a phosphorothioate group;
  • the letter The number combination P1 indicates that one nucleotide adjacent to the right side of the letter is a 5'-phosphate nucleotide or a 5'-phosphate analog modified nucleotide.
  • P1 represents a specific modification as VP, Ps, or P, where the letter combination VP indicates that a nucleotide adjacent to the right side of the letter combination VP is vinyl phosphate (5'-(E)-vinylphosphonate , E-VP) modified nucleotides, the letter combination Ps means that a nucleotide adjacent to the right side of the letter combination Ps is a phosphorothioate modified nucleotide, and the capital letter P indicates that the letter P is adjacent to the right side A nucleotide is a 5'-phosphate nucleotide.
  • the inventors of the present disclosure have unexpectedly discovered that the siRNA provided by the present disclosure not only has significantly enhanced plasma and lysosomal stability, but also retains very high gene suppression activity.
  • the siRNA provided by the present disclosure can be obtained by conventional siRNA preparation methods in the art (for example, solid phase synthesis and liquid phase synthesis methods). Among them, solid-phase synthesis already has commercial customized services.
  • a modified nucleotide group can be introduced into the siRNA described in this disclosure by using a nucleoside monomer with a corresponding modification, a method of preparing a nucleoside monomer with a corresponding modification, and introducing a modified nucleotide group The method of siRNA is also well known to those skilled in the art.
  • the present disclosure provides a pharmaceutical composition containing the siRNA as described above as an active ingredient and a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier may be a carrier conventionally used in the field of siRNA administration, such as but not limited to magnetic nanoparticles (such as nanoparticles based on Fe 3 O 4 or Fe 2 O 3 ), carbon nanotubes ( carbon nanotubes), mesoporous silicon, calcium phosphate nanoparticles, polyethylenimine (PEI), polyamidoamine (PAMAM) dendrimer, polylysine Acid (poly(L-lysine), PLL), chitosan, chitosan, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), poly D Type or L type lactic acid/glycolic acid copolymer (poly(D&L-lactic/glycolic acid) copolymer (PLGA), poly(aminoethyl ethylene phosphate) (poly(2-aminoethyl ethylene phosphate), PPEEA) and poly( One or more of poly(2-dimethyla
  • the weight ratio of siRNA to pharmaceutically acceptable carrier may be 1:( 1-500), in some embodiments, the above weight ratio is 1: (1-50).
  • the pharmaceutical composition may further include other pharmaceutically acceptable auxiliary materials, and the auxiliary materials may be one or more of various preparations or compounds conventionally used in the art.
  • the other pharmaceutically acceptable auxiliary materials may include at least one of a pH buffer, a protective agent, and an osmotic pressure adjusting agent.
  • the pH buffer may be a trimethylolaminomethane hydrochloride buffer with a pH of 7.5-8.5 and/or a phosphate buffer with a pH of 5.5-8.5, for example, a phosphate with a pH of 5.5-8.5 Buffer.
  • the protective agent may be at least one of inositol, sorbitol, sucrose, trehalose, mannose, maltose, lactose, and glucose. Based on the total weight of the pharmaceutical composition, the content of the protective agent may be 0.01-30% by weight.
  • the osmotic pressure regulator may be sodium chloride and/or potassium chloride.
  • the content of the osmotic pressure adjusting agent makes the osmotic pressure of the pharmaceutical composition 200-700 milli-osmoles/kg (mOsm/kg). According to the required osmotic pressure, those skilled in the art can easily determine the content of the osmotic pressure regulator.
  • the pharmaceutical composition may be a liquid preparation, such as an injection solution; it may also be a lyophilized powder injection, which is mixed with a liquid adjuvant when administered to prepare a liquid preparation.
  • the liquid preparation may be, but not limited to, for subcutaneous, intramuscular, or intravenous administration, but may also be, but not limited to, administration to the lungs by spraying, or administration to other organs (eg, liver) by spraying through the lungs.
  • the pharmaceutical composition is for intravenous administration.
  • the pharmaceutical composition may be in the form of a liposome preparation.
  • the pharmaceutically acceptable carrier used in the liposome formulation includes an amine-containing transfection compound (hereinafter may also be referred to as an organic amine), auxiliary lipids, and/or pegylation Lipid.
  • the organic amine, auxiliary lipid and pegylated lipid can be selected from the amine-containing transfection compounds described in CN103380113A (the entirety of which is incorporated herein by reference) or their pharmaceutically acceptable One or more of the accepted salts or derivatives, auxiliary lipids, and pegylated lipids.
  • the organic amine may be a compound represented by formula (201) described in CN103380113A or a pharmaceutically acceptable salt thereof:
  • X 101 and X 102 are each independently O, S, NA or CA, where A is hydrogen or a C 1 -C 20 hydrocarbon chain;
  • R 101 , R 102 , R 103 , R 104 , R 105 , R 106 and R 107 are each independently hydrogen, cyclic or acyclic, substituted or unsubstituted, branched or linear aliphatic group Group, cyclic or acyclic, substituted or unsubstituted, branched or linear heteroaliphatic group, substituted or unsubstituted, branched or linear acyl group, substituted or unsubstituted Substituted, branched or straight-chain aryl, substituted or unsubstituted, branched or straight-chain heteroaryl;
  • x is an integer from 1-10;
  • R 103 and the nitrogen in formula (201) form a structure as shown in formula (202) or formula (203):
  • g, e and f are each independently an integer of 1-6, "HCC” represents a hydrocarbon chain, and each *N represents a nitrogen atom in formula (201).
  • R 103 is a polyamine. In other embodiments, R 103 is a ketal. In some embodiments, each of R 101 and R 102 in formula (201) is independently any substituted or unsubstituted, branched or straight chain alkyl or alkenyl, the alkane The group or alkenyl group has 3 to about 20 carbon atoms, such as 8 to about 18 carbon atoms, and 0 to 4 double bonds, such as 0 to 2 double bonds.
  • R 103 may be any of the following formula (204)-formula (213):
  • each "HCC” represents a hydrocarbon chain
  • each * shows R 103 and in formula (201) A possible connection point for the nitrogen atom in, where each H at any * position can be replaced to achieve a connection with the nitrogen atom in formula (201).
  • the compound represented by formula (201) can be prepared according to the description in CN103380113A.
  • the organic amine is an organic amine represented by formula (214) and/or an organic amine represented by formula (215):
  • the auxiliary lipid is cholesterol, an analogue of cholesterol and/or a derivative of cholesterol;
  • the pegylated lipid is 1,2-dipalmitamide-sn-glycerol-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)]-2000.
  • the molar ratio between the organic amine, the auxiliary lipid, and the pegylated lipid is (19.7-80): (19.7-80 ): (0.3-50), for example, (50-70): (20-40): (3-20).
  • the particles of the pharmaceutical composition formed from the siRNA of the present disclosure and the above-described amine-containing transfection reagent have an average diameter of about 30 nm to about 200 nm, usually about 40 nm to about 135 nm, and more generally, the liposome
  • the average diameter of the particles is about 50 nm to about 120 nm, about 50 nm to about 100 nm, about 60 nm to about 90 nm, or about 70 nm to about 90 nm, for example, the average diameter of the liposome particles is about 30, 40, 50, 60, 70 , 75, 80, 85, 90, 100, 110, 120, 130, 140, 150 or 160nm.
  • the weight of the siRNA and all lipids is from about 1:1 to about 1:50, from about 1:1 to about 1:30, from about 1:3 to about 1:20, from about 1:4 to about 1: 18.
  • each component of the pharmaceutical composition may be present independently when sold, and may be present in the form of a liquid preparation when used.
  • the pharmaceutical composition formed by the siRNA provided by the present disclosure and the above pharmaceutically acceptable carrier can be prepared according to various known methods, except that the siRNA provided by the present disclosure can replace the existing siRNA; In an embodiment, it can be prepared as follows:
  • Organic amine, auxiliary lipid and pegylated lipid are suspended in alcohol according to the above molar ratio and mixed to obtain a lipid solution; the amount of alcohol is such that the total mass concentration of the resulting lipid solution is 2-25 mg/mL, For example, it can be 8-18 mg/mL.
  • the alcohol is selected from pharmaceutically acceptable alcohols, such as alcohols that are liquid near room temperature, for example, ethanol, propylene glycol, benzyl alcohol, glycerin, polyethylene glycol 200, polyethylene glycol 300, polyethylene glycol 400 One or more of, for example, ethanol.
  • the siRNA provided by the present disclosure is dissolved in a buffered saline solution to obtain an siRNA aqueous solution.
  • the concentration of the buffered salt solution is 0.05-0.5M, for example, it can be 0.1-0.2M, adjust the pH of the buffered salt solution to 4.0-5.5, for example, it can be 5.0-5.2, the amount of the buffered salt solution is such that the concentration of siRNA does not exceed 0.6mg /mL, for example, 0.2-0.4 mg/mL.
  • the buffer salt is selected from one or more of soluble acetate and soluble citrate, for example, sodium acetate and/or potassium acetate.
  • the lipid solution and the siRNA aqueous solution are mixed, and the mixed product is incubated at 40-60°C for at least 2 minutes, for example, 5-30 minutes, to obtain the liposome preparation after incubation.
  • the volume ratio of lipid solution and siRNA aqueous solution is 1: (2-5).
  • encapsulation rate is not less than 80%
  • particle size is 40-200nm
  • polydispersity index is not higher than 0.30
  • osmotic pressure is 250-400mOsm/kg
  • physical and chemical parameters can be pH value 7.2-7.6
  • encapsulation rate is not less than 90%
  • particle size is 60-100nm
  • more The dispersion index is not higher than 0.20
  • the osmotic pressure is 300-400mOsm/kg.
  • concentration or dilution may be performed before, after, or simultaneously with the removal of impurities.
  • Various methods can be used to remove impurities.
  • a phase-cut flow system a hollow fiber column can be used, and ultrafiltration is performed at 100K Da.
  • the ultrafiltration exchange solution is phosphate buffered saline (PBS) with a pH of 7.4.
  • PBS phosphate buffered saline
  • Various methods can be used for the sterilization method. For example, sterilization can be performed by filtering on a 0.22 ⁇ m filter.
  • the present disclosure provides an siRNA conjugate containing the above siRNA and a conjugate group conjugated to the siRNA.
  • the conjugation group includes at least one pharmaceutically acceptable targeting group and an optional linker, and the siRNA, the linker, and the targeting group are sequentially connected.
  • the targeting group is 1-6.
  • the targeting groups are 2-4.
  • the siRNA molecule may be non-covalently or covalently conjugated to the conjugation group, for example, may be covalently conjugated to the conjugation group.
  • the conjugation site of the siRNA and the conjugation group may be at the 3'end or 5'end of the sense strand of the siRNA, or at the 5'end of the antisense strand, or in the internal sequence of the siRNA. In some embodiments, the conjugation site of the siRNA and conjugation group is at the 3'end of the sense strand of the siRNA.
  • the conjugation group can be attached to a phosphate group, a 2'-position hydroxyl group, or a base of a nucleotide. In some embodiments, the conjugation group can also be attached to the 3'-position hydroxyl group, in which case a 2'-5' phosphodiester bond is used to connect the nucleotides.
  • the conjugation group is usually connected to the phosphate group of the nucleotide; when the conjugation group is connected to the internal sequence of the siRNA, the conjugation group Usually attached to the ribose ring or base.
  • connection methods can be referred to: Muthiah, Manoharan, et.al.
  • the siRNA and the conjugation group can be connected by acid-labile or reducible chemical bonds, which can be degraded under the acidic environment of the cell endosome, thereby making the siRNA into a free state.
  • the conjugation group can be attached to the sense strand of siRNA, thereby minimizing the impact of conjugation on siRNA activity.
  • the pharmaceutically acceptable targeting group may be a ligand conventionally used in the field of siRNA administration, such as various ligands described in WO2009082607A2, the entire disclosure of which is incorporated by reference This article.
  • the pharmaceutically acceptable targeting group may be selected from one or more of the following ligands formed by targeting molecules or derivatives thereof: lipophilic molecules, such as cholesterol, bile acids, Vitamins (such as vitamin E), lipid molecules of different chain lengths; polymers, such as polyethylene glycol; polypeptides, such as transmembrane peptides; aptamers; antibodies; quantum dots; sugars, such as lactose, polylactose, mannose Sugar, galactose, N-acetylgalactosamine (GalNAc); folic acid (folate); receptor ligands expressed by liver parenchymal cells, such as asialoglycoproteins, asialoglycosan residues, lipoproteins (such as high density Lipoprotein, low density lipoprotein, etc.), glucagon, neurotransmitters (such as epinephrine), growth factors, transferrin, etc.
  • lipophilic molecules such as cholesterol, bile acids, Vitamins (such as
  • each ligand described is independently selected from a ligand capable of binding to a cell surface receptor.
  • at least one ligand is a ligand capable of binding to a hepatocyte surface receptor.
  • at least one ligand is a ligand capable of binding to a mammalian cell surface receptor.
  • at least one ligand is a ligand capable of binding to a receptor on the surface of human hepatocytes.
  • at least one ligand is a ligand capable of binding to asialoglycoprotein receptor (ASGPR) on the liver surface.
  • ASGPR asialoglycoprotein receptor
  • the pharmaceutically acceptable targeting group may be any ligand that binds to the asialoglycoprotein receptor on the surface of mammalian hepatocytes.
  • each ligand is independently a asialoglycoprotein, such as asialorosomucoid (ASOR) or asialofetuin (ASF).
  • the ligand is a sugar or a derivative of sugar.
  • At least one ligand is a sugar. In some embodiments, each ligand is a sugar. In some embodiments, at least one ligand is a monosaccharide, polysaccharide, modified monosaccharide, modified polysaccharide, or sugar derivative. In some embodiments, at least one of the ligands may be a monosaccharide, disaccharide, or trisaccharide. In some embodiments, at least one ligand is a modified sugar. In some embodiments, each ligand is a modified sugar.
  • each ligand is independently selected from polysaccharides, modified polysaccharides, monosaccharides, modified monosaccharides, polysaccharide derivatives, or monosaccharide derivatives.
  • each or at least one ligand is selected from the group consisting of glucose and its derivatives, mannan and its derivatives, galactose and its derivatives, xylose and its derivatives, Ribose and its derivatives, fucose and its derivatives, lactose and its derivatives, maltose and its derivatives, arabinose and its derivatives, fructose and its derivatives and sialic acid.
  • each of the ligands may be independently selected from D-mannose, L-mannose, D-arabinose, D-xylofuranose, L-xylulose, D- Glucose, L-glucose, D-galactose, L-galactose, ⁇ -D-furan mannose, ⁇ -D-furan mannose, ⁇ -D-furan mannose, ⁇ -D-mannose, ⁇ -D-glucopyranose, ⁇ -D-glucopyranose, ⁇ -D-glucopyranose, ⁇ -D-glucopyranose, ⁇ -D-glucopyranose, ⁇ -D-glucopyranose, ⁇ -D-pyranose Galactopyranose, ⁇ -D-galactopyranose, ⁇ -D-galactopyranofuran, ⁇ -D-galactopyranofuran, glucosamine, sialic acid, galactosamine, sia
  • the pharmaceutically acceptable targeting group in the siRNA conjugate may be galactose or N-acetylgalactosamine, wherein the galactose or N-acetylgalactosamine molecule may be monovalent , Second price, third price, fourth price.
  • the monovalent, bivalent, trivalent, and tetravalent described herein refer to siRNA molecules and conjugation groups containing galactose or N-acetylgalactosamine molecules as targeting groups to form siRNA conjugates.
  • the molar ratio of siRNA molecules to galactose or N-acetylgalactosamine molecules in the siRNA conjugate is 1:1, 1:2, 1:3 or 1:4.
  • the pharmaceutically acceptable targeting group is N-acetylgalactosamine.
  • the siRNA described in this disclosure when the siRNA described in this disclosure is conjugated to a conjugating group containing N-acetylgalactosamine, the N-acetylgalactosamine molecule is trivalent or tetravalent. In some embodiments, when the siRNA described in this disclosure is conjugated to a conjugating group containing N-acetylgalactosamine, the N-acetylgalactosamine molecule is trivalent.
  • the targeting group can be connected to the siRNA molecule via a suitable linker, and those skilled in the art can select a suitable linker according to the specific type of the targeting group.
  • a suitable linker for the types of these linkers, targeting groups, and the connection method with siRNA, please refer to the disclosure of WO2015006740A2, the entire contents of which are incorporated herein by reference.
  • a suitable linker may be a structure as shown in formula (301):
  • k is an integer of 1-3;
  • L A is a chain-like portion containing an amide bond having the structure shown in formula (302), and each of the L A is connected to one of the targeting group and the L C portion through ether bonds at both ends thereof. connection:
  • L B having the formula (303) comprises a pyrrolidine N- acyl chain portion shown structure, the linear portion having a carbonyl group at one end thereof and connected with the L C moiety through an amide bond, at the other end It has an oxygen group and is connected to the siRNA through a phosphate bond:
  • L C is a 2-4 valent linking group based on hydroxymethylaminomethane, dimethylolaminomethane or trishydroxymethylaminomethane.
  • the L C is connected to each of the L A moieties via an ether bond via an oxygen atom. connection, and connected by an amide bond via a nitrogen atom and L B of the portion.
  • L C is a tetravalent methylaminomethane-based tetravalent linking group, connected by -(L A ) 3 trimethylolaminomethane-L B -as a linker
  • the siRNA conjugate formed by N-acetylgalactosamine molecules and siRNA molecules has the structure shown in the following formula (304):
  • the double helix structure represents siRNA.
  • the conjugation site of the siRNA and the conjugation group can be at the 3'end or 5'end of the sense strand of the siRNA, or at the 5'end of the antisense strand, or in the internal sequence of the siRNA.
  • siRNA sense strand 3 'end by the linker - (L A) 3 Tris -L B - and N- acetylgalactosamine three covalently conjugated molecule An siRNA conjugate with a molar ratio of siRNA molecules to GalNAc molecules of 1:3 is obtained, which may also be referred to as (GalNAc) 3 -siRNA in the following, and its structure is shown in the following formula (305):
  • the double helix structure represents the siRNA, and the linker is connected to the 3'end of the sense strand of the siRNA.
  • a suitable linker may be a structure represented by formula (306):
  • l is an integer of 0-3;
  • # Indicates the site on the linker connected to the siRNA through a phosphate bond.
  • the siRNA conjugate has the structure shown in formula (307):
  • the double helix structure represents the siRNA, and the linker is connected to the 3'end of the sense strand of the siRNA.
  • WO2015006740A2 describes in detail the preparation methods of various conjugates.
  • the siRNA conjugate of the present disclosure is obtained in a manner well known to those skilled in the art.
  • WO2014025805A1 the preparation method of the structure represented by formula (305) is described, and Rajeev et al. describe the preparation method of the structure represented by formula (307) in ChemBioChem 2015, 16,903-908.
  • the siRNA conjugate has the structure shown in formula (308):
  • n1 is an integer selected from 1-3, n3 is an integer selected from 0-4;
  • n1, m2 and m3 are independently integers selected from 2-10;
  • R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently H or selected from the group consisting of C 1 -C 10 alkyl, C 1 -C 10 haloalkane Group and C 1 -C 10 alkoxy;
  • R 3 is a group represented by the formula A59:
  • E 1 is OH, SH or BH 2
  • Nu is siRNA of the present disclosure
  • L 1 may be selected from the group consisting of A1-A26 groups or any combination thereof, wherein the structure and definition of A1-A26 are as follows:
  • R' is C 1 -C 10 alkyl
  • Ra is selected from the group consisting of groups of formula A27-A45 or any combination thereof:
  • Rb is C 1 -C 10 alkyl
  • L 1 is defined as a linear alkylene group for convenience, it may not be a linear group or have a different name, such as an amine or alkenyl group resulting from the above substitutions and/or substitutions.
  • the length of L 1 is the number of atoms in the chain connecting two connection points.
  • a ring obtained by replacing the carbon atom of the linear alkylene group (such as a heterocyclylene group or a heteroarylene group) is counted as one atom.
  • each M 1 represents a targeting group, and its definition and selectable range are the same as the above targeting group.
  • each M 1 is independently selected from one of the ligands that has an affinity for asialoglycoprotein receptors on the surface of mammalian liver cells.
  • n1 may be an integer of 1-3 and n3 may be an integer of 0-4 , To ensure that the number of M 1 targeting groups in the conjugate is at least 2; in some embodiments, n1+n3 ⁇ 2, so that the number of M 1 targeting groups is at least 3, thereby This makes it easier for the M 1 targeting group to bind to the asialoglycoprotein receptor on the liver surface, thereby promoting the entry of the conjugate into the cell through endocytosis.
  • n1 is an integer of 1-2
  • n3 is an integer of 0-1
  • n1+n3 2-3.
  • the spatial position between the multiple M 1 targeting groups can be adapted to the M 1 targeting group and the liver surface asialo
  • m1, m2, and m3 are each independently an integer of 2-5
  • R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently selected from H, C 1 -C 10 alkyl, C 1 -C 10 haloalkyl, and C
  • R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are each independently selected from H, methyl and ethyl.
  • R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are all H.
  • R 3 is a group of the structure represented by Formula A59, wherein E 1 is OH, SH, or BH 2. Based on the availability of raw materials for preparation, in some embodiments, E 1 is OH or SH.
  • R 2 is to realize the connection between N and A59 on the nitrogen-containing framework.
  • nitrogen-containing skeleton refers to a chain-like structure in which carbon atoms to which R 10 , R 11 , R 12 , R 13 , R 14 and R 15 are connected, and N are interconnected. Therefore, R 2 may be any linking group capable of linking the A59 group to N on the nitrogen-containing skeleton in an appropriate manner.
  • the siRNA conjugate represented by formula (308) is prepared by the process of solid phase synthesis, the R 2 group needs to contain both a linking site and N attached to the nitrogen-containing backbone and P and R 3 is connected to attachment sites.
  • R 2 may be B5, B6, B5' or B6':
  • the value range of q 2 may be an integer of 1-10. In some embodiments, q 2 is an integer of 1-5.
  • L 1 The role of L 1 is to connect the M 1 targeting group to the N on the nitrogen-containing backbone to provide liver targeting for the siRNA conjugate represented by formula (308).
  • L 1 is selected from one or more linking combinations of groups of Formulae A1-A26.
  • L 1 is selected from one or more connection combinations of A1, A4, A5, A6, A8, A10, A11, and A13.
  • L 1 is selected from a combination of at least 2 of A1, A4, A8, A10, and A11.
  • L 1 is selected from a combination of at least 2 of A1, A8, and A10.
  • L 1 may be 3-25 atoms in length, 3-20 atoms, 4-15 atoms, or 5-12 atoms in length. In some embodiments, the length of L 1 is 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60 atom.
  • j1 is an integer of 2-10, and in some embodiments, j1 is an integer of 3-5. In some embodiments, j2 is an integer of 2-10, in some embodiments, j2 is an integer of 3-5.
  • R ' is C 1 -C 4 alkyl group, in some embodiments, R' is a methyl, ethyl and isopropyl group of one.
  • Ra is one of A27, A28, A29, A30, and A31. In some embodiments, Ra is A27 or A28.
  • Rb is a C 1 -C 5 alkyl group, and in some embodiments, Rb is one of methyl, ethyl, isopropyl, and butyl.
  • each of j1, j2, R′, Ra, Rb is selected in formulas A1-A26 to achieve the connection of the M 1 targeting group to the N on the nitrogen-containing backbone and to target M 1
  • the spatial position between the groups is more suitable for the M 1 targeting group to bind to the asialoglycoprotein receptor on the liver surface.
  • the conjugate has formulas (403), (404), (405), (406), (407), (408), (409), (410), (411), (412) ), (413), (414), (415), (416), (417), (418), (419), (420), (421) or (422)
  • P in Formula A59 can be linked to any possible position in the siRNA sequence, for example, P in Formula A59 can be linked to any nucleotide of the sense or antisense strand of siRNA; in some implementations In the scheme, P in Formula A59 is attached to any nucleotide of the sense strand of siRNA. In some embodiments, P in Formula A59 is attached to the end of the sense or antisense strand of siRNA; in some embodiments, P in Formula A59 is attached to the end of the sense strand of siRNA. The terminus refers to the first 4 nucleotides from the one end of the sense strand or the antisense strand.
  • P in Formula A59 is attached to the ends of the sense or antisense strand of siRNA; in some embodiments, P in Formula A59 is attached to the 3'end of the sense strand of siRNA.
  • a separate siRNA antisense strand can be released to block APOC3 mRNA translation The protein process inhibits the expression of angiopoietin-like protein 3 gene.
  • P in Formula A59 can be linked to any possible position on the nucleotide in the siRNA, for example, 5'position of nucleotide, 2'position of nucleotide, 3'position of nucleotide Position or nucleotide base. In some embodiments, P in Formula A59 may be linked to the 2′ position, 3′ position, or 5′ position of the nucleotide in the siRNA by forming a phosphodiester bond.
  • P in formula A59 is attached to the oxygen atom formed after the 3'hydroxyl of the 3'terminal nucleotide of the siRNA sense strand is dehydrogenated (in this case, P in A59 can also be regarded as contained in the siRNA Of P in the phosphate group of P, or P in formula A59 is connected to the nucleotide by replacing the hydrogen in the 2'-hydroxyl group of one nucleotide in the sense strand of siRNA, or P in formula A59 is substituted by siRNA The hydrogen in the 5'hydroxyl group of the 5'terminal nucleotide of the chain is connected to the nucleotide.
  • the inventors of the present disclosure have unexpectedly discovered that the siRNA conjugate of the present disclosure has significantly improved plasma stability and low off-target effects, while also exhibiting APOC3 mRNA silencing activity that is not significantly reduced, and also has a higher Lipid inhibition. Therefore, in some embodiments, the siRNAs in the siRNA conjugates of the present disclosure are shown in Table 1, Table 2, Table 3, Table 4, and Table 5.
  • Table 1 The first siRNA sequence in the conjugate of the present disclosure
  • Table 3 The third siRNA sequence in the conjugate of the present disclosure
  • each adjacent nucleotide is connected by a phosphodiester bond or a phosphorothioate diester bond, and the non-bridging of the phosphodiester bond or the phosphorothioate diester bond
  • the oxygen atom or sulfur atom has a negative charge, and it may exist in the form of a hydroxyl group or a mercapto group, and the hydrogen ion in the hydroxyl group or the mercapto group may be partially or completely replaced by a cation.
  • the cation may be any cation, such as one of a metal cation, an ammonium ion NH 4 + , and an organic ammonium cation.
  • the cation is selected from one or more of alkali metal ions, ammonium cations formed by tertiary amines, and quaternary ammonium cations.
  • the alkali metal ion may be K + and/or Na +
  • the cation formed by the tertiary amine may be ammonium ion formed by triethylamine and/or ammonium ion formed by N,N-diisopropylethylamine. Therefore, the siRNA or siRNA conjugates of the present disclosure may exist at least partially in salt form.
  • the non-bridged oxygen atom or sulfur atom in the phosphodiester bond or phosphorothioate diester bond is at least partially bound to the sodium ion, and the siRNA or siRNA conjugate of the present disclosure uses a sodium salt or a partial sodium salt Form exists.
  • modified nucleotide groups can be introduced into the siRNAs described in this disclosure by using nucleoside monomers with corresponding modifications. Methods for preparing nucleoside monomers with corresponding modifications and methods for introducing modified nucleotide groups into siRNA are also well known to those skilled in the art. All modified nucleoside monomers are commercially available or prepared by known methods.
  • the siRNA conjugate represented by formula (308) can be prepared by any reasonable synthetic route.
  • the siRNA conjugate represented by formula (308) can be prepared by a method including the nucleotides of the sense strand and anti-sense strand of the siRNA under the conditions of solid-phase synthesis of phosphoramiditekinds and order, connect the nucleoside monomers in sequence according to the 3'to 5'direction.
  • the connection of each nucleoside monomer includes four steps of deprotection, coupling, capping, oxidation or sulfuration; the sense strand of siRNA is isolated And the antisense strand, annealed, wherein the siRNA is the siRNA of the present disclosure described above;
  • the method further includes contacting the compound represented by formula (321) with a nucleoside monomer or a nucleotide sequence attached to a solid support in the presence of a coupling reaction condition and a coupling reagent to make the formula (321) ) Is connected to the nucleotide sequence via a coupling reaction.
  • the compound represented by formula (321) is also referred to as a conjugated molecule.
  • R 4 is a group capable of binding to siRNA represented by Nu in the compound represented by formula (308). In some embodiments, R 4 is a group capable of covalently binding to the siRNA represented by Nu. In some embodiments, R 4 is a group capable of being conjugated to any functional group of siRNA represented by Nu through phosphodiester bond through reaction;
  • Each S 1 is independently a group formed by replacing all active hydroxyl groups in M 1 with YCOO- groups, wherein each Y is independently selected from methyl, trifluoromethyl, difluoromethyl, and monofluoromethyl
  • Y is independently selected from methyl, trifluoromethyl, difluoromethyl, and monofluoromethyl
  • n1, n3, m1, m2, m3, R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , L 1 and M 1 are as described above.
  • R 4 is to achieve the connection with N on the nitrogen-containing backbone and to provide a suitable reaction site for the siRNA conjugate represented by the synthetic formula (308).
  • R 4 includes an R 2 linking group or a protected R 2 linking group, and a functional group that can react with siRNA to form the structure shown in A59.
  • R 4 includes a first functional group that can form a phosphite with a group on the siRNA or nucleoside monomer represented by Nu, and a second functional group that can react with a hydroxyl group or an amino group to form a covalent bond or contains The solid carrier supported by the covalent bond.
  • the first functional group is phosphoramidite, hydroxyl, or protected hydroxyl.
  • the second functional group is phosphoramidite, carboxyl, or carboxylate.
  • the second functional group is a solid-phase carrier connected to other parts of the molecule via a covalent bond, the covalent bond being formed by a hydroxyl group or an amino group.
  • the solid phase carrier is connected via a phosphate bond, a carboxylate bond, or an amide bond.
  • the solid support is a resin.
  • the first functional group contains a hydroxyl group, -OR k, or a group represented by formula (C3);
  • the second functional group contains formulas (C1), (C2), (C3), (C1' ) Or (C3'):
  • q 1 is an integer of 1-4
  • X is O or NH
  • M + is a cation
  • R k is a hydroxy protecting group
  • SPS represents a solid phase support
  • the first functional group contains a phosphoramidite group, as shown in formula (C3)
  • the phosphoramidite group can be linked to a hydroxyl group at any position on the nucleotide, such as a hydroxyl group at the 2′ position or
  • the 3'hydroxyl group undergoes a coupling reaction to form a phosphite, and is oxidized or vulcanized to form a phosphodiester bond or a phosphorothioate bond represented by Formula A59, and the conjugate molecule is conjugated to the siRNA.
  • the compound of formula (321) can be conjugated to the nucleotide, without affecting the acquisition of the siRNA conjugate represented by formula (308).
  • the compound of formula (321) is reacted with the hydroxyl group on the terminal nucleotide in the nucleotide sequence, and the subsequent During the oxidation or sulfidation process, phosphodiester bond linkages or phosphorothioate linkages are formed, conjugating the compound of formula (321) to siRNA.
  • the first functional group contains a protected hydroxyl group.
  • the second functional group includes a group that can react with a solid support, and the reaction provides a conjugated molecule that includes the solid support.
  • the second functional group contains a carboxyl group, carboxylate or phosphoramidite, as shown in formula (C1), (C2) or (C3), when the second functional group contains a carboxyl group or carboxylate.
  • the compound of formula (321) undergoes an esterification reaction or an amidation reaction with a solid phase carrier, such as a hydroxyl group or an amino group on a resin, to form a conjugated molecule containing the solid phase carrier connected by a carboxylate bond.

Abstract

本公开提供了一种抑制载脂蛋白C3基因表达的siRNA,含有该siRNA的药物组合物和缀合物。所述siRNA中的每个核苷酸各自独立地为修饰或未修饰的核苷酸,该siRNA含有正义链和反义链,所述正义链含有核苷酸序列I,所述核苷酸序列I与SEQ ID NO:1所示的核苷酸序列长度相等,且不多于3个核苷酸差异,所述反义链含有核苷酸序列II,所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列长度相等,且不多于3个核苷酸差异。本公开提供的siRNA及其药物组合物和缀合物,可以有效治疗和/或预防血脂异常。

Description

一种核酸、含有该核酸的组合物与缀合物及制备方法和用途 技术领域
本公开涉及一种能够抑制载脂蛋白C3(APOC3)基因表达的核酸和含有该核酸的组合物与缀合物。本公开还涉及这些核酸、组合物与缀合物的制备方法和用途。
背景技术
血脂异常,又名高脂血症,是脂肪代谢或运转异常,使血浆脂质高于正常值的一种全身性疾病,正严重威胁着全球患者的健康。现有的治疗血脂异常的药物主要有他汀类、胆固醇吸收抑制剂、树脂类、普罗步考、贝特类和烟酸及其衍生物。
载脂蛋白C3在脂质代谢中具有重要作用,携带有APOC3突变基因的人血液循环中APOC3的表达量下降46%,血浆内甘油三酯水平较普通人下降39%,同时较低的血脂水平可使APOC3突变基因携带者患心脏病的风险比非携带者降低35.1%。因此,若能从基因水平沉默基因表达,阻断APOC3的生成,无疑将是最为理想的治疗手段。小干扰RNA(small interfering RNA,siRNA)可基于RNA干扰(RNA interference,RNAi)这一机制,以序列特异性的方式抑制或阻断任何感兴趣的目的基因的表达,从而达到治疗疾病的目的。
合适的siRNA序列和修饰及其递送系统是小RNA药物开发中的两个关键技术。
发明内容
在一些实施方案中,本公开提供了一种siRNA缀合物,所述缀合物具有式(308)所示的结构:
Figure PCTCN2019129016-appb-000001
其中,n1为选自1-3的整数,n3为选自0-4的整数;m1、m2和m3独立地为选自2-10的整数;R 10、R 11、R 12、R 13、R 14和R 15各自独立地为H,或选自于由以下基团所组成的组:C 1-C 10烷基、C 1-C 10卤代烷基以及C 1-C 10烷氧基;
R 3为式A59所示结构的基团:
Figure PCTCN2019129016-appb-000002
其中,E 1为OH、SH或BH 2;
Nu为siRNA,所述siRNA含有正义链和反义链,所述siRNA中的每个核苷酸各自独立地为修饰或未修饰的核苷酸,其中,所述正义链含有一段核苷酸序列I,所述反义链含有一段核苷酸序列II,所述核苷酸序列I和所述核苷酸序列II至少部分地反向互补形成双链区,所述核苷酸序列I和所述核苷酸序列II选自如下i)-v)中的一组:
i)所述核苷酸序列I与SEQ ID NO:1所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-UUAAAAGGGACAGUAUUCZ a1-3'(SEQ ID NO:1);
5'-Z a2GAAUACUGUCCCUUUUAA-3'(SEQ ID NO:2),
其中,Z a1为A,Z a2为U,所述核苷酸序列I中包含位置对应于Z a1的核苷酸Z a3,所述核苷酸序列II中包含位置对应于Z a2的核苷酸Z a4,所述Z a4是所述反义链5'末端的第一个核苷酸;或者,
ii)所述核苷酸序列I与SEQ ID NO:13所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列长度相等,且不多于3个核苷酸 差异:
5'-ACAGUAUUCUCAGUGCUCZ b1-3'(SEQ ID NO:13);
5'-Z b2GAGCACUGAGAAUACUGU-3'(SEQ ID NO:14),
其中,Z b1为A,Z b2为U;所述核苷酸序列I中包含位置对应于Z b1的核苷酸Z b3,所述核苷酸序列II中包含位置对应于Z b2的核苷酸Z b4,所述Z b4是所述反义链5'末端的第一个核苷酸;或者,
iii)所述核苷酸序列I与SEQ ID NO:25所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-UAUUCUCAGUGCUCUCCUZ c1-3'(SEQ ID NO:25);
5'-Z c2AGGAGAGCACUGAGAAUA-3'(SEQ ID NO:26),
其中,Z c1为A,Z c2为U,所述核苷酸序列I中包含位置对应于Z c1的核苷酸Z c3,所述核苷酸序列II中包含位置对应于Z c2的核苷酸Z c4,所述Z c4是所述反义链5'末端的第一个核苷酸;或者,
iv)所述核苷酸序列I与SEQ ID NO:37所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-AGUAUUCUCAGUGCUCUCZ d1-3'(SEQ ID NO:37);
5'-Z d2GAGAGCACUGAGAAUACU-3'(SEQ ID NO:38),
其中,Z d1为A,Z d2为U,所述核苷酸序列I中包含位置对应于Z d1的核苷酸Z d3,所述核苷酸序列II中包含位置对应于Z d2的核苷酸Z d4,所述Z d4是所述反义链5'末端的第一个核苷酸;或者,
v)所述核苷酸序列I与SEQ ID NO:49所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-GGACAGUAUUCUCAGUGCZ e1-3'(SEQ ID NO:49);
5'-Z e2GCACUGAGAAUACUGUCC-3'(SEQ ID NO:50),
其中,Z e1为A,Z e2为U,所述核苷酸序列I中包含位置对应于Z e1的核苷酸Z e3,所述核苷酸序列II中包含位置对应于Z e2的核苷酸Z e4,所述Z e4是所述反义链5'末端的第一个核苷酸;
R 2是长度为1-20个碳原子的直链亚烷基,其中一个或多个碳原子任选地被选自于以下基团所组成的组中的一个或多个所替换:C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基;并且其中R 2可任选地具有由以下基团所组成的组中的任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、-N(C 1-C 10烷基)(C 1-C 10烷基苯基)、-NH(C 1-C 10烷基苯基)、氰基、硝基、-CO 2H、-C(O)O(C 1-C 10烷基)、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH 2、-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、-C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基);
每个L 1是长度为1-70个碳原子的直链亚烷基,其中一个或多个碳原子任选地被选自于以下基团所组成的组中的一个或多个所替换:C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基;并且其中,L 1可任选地具有由以下基团所组成的组中的任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、-N(C 1-C 10烷基)(C 1-C 10烷基苯基)、-NH(C 1-C 10烷基苯基)、氰基、硝基、-CO 2H、-C(O)O(C 1-C 10烷基)、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH 2,-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、 -C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基);
Figure PCTCN2019129016-appb-000003
表示基团连接至分子其余部分的位点;
M 1表示靶向基团。
在一些实施方案中,本公开提供了一种能够抑制载脂蛋白C3基因表达的siRNA,所述siRNA含有正义链和反义链,所述正义链和所述反义链中的每一个核苷酸独立地为氟代修饰的核苷酸或非氟代修饰的核苷酸;所述正义链含有一段核苷酸序列I,所述反义链含有一段核苷酸序列II,所述核苷酸序列I和所述核苷酸序列II至少部分地反向互补形成双链区,所述氟代修饰的核苷酸位于核苷酸序列I和核苷酸序列II中,并且,按照5'末端到3'末端的方向,在所述正义链中,所述核苷酸序列I的第7、8、9位的核苷酸为氟代修饰的核苷酸,所述正义链中其余位置的核苷酸为非氟代修饰的核苷酸;按照5'末端到3'末端的方向,在所述反义链中,所述核苷酸序列II的第2、6、14、16位的核苷酸为氟代修饰的核苷酸,所述反义链中其余位置的核苷酸为非氟代修饰的核苷酸,并且,所述核苷酸序列I和所述核苷酸序列II选自如下i)-v)中的一组:
i)所述核苷酸序列I与SEQ ID NO:1所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-UUAAAAGGGACAGUAUUCZ a1-3'(SEQ ID NO:1);
5'-Z a2GAAUACUGUCCCUUUUAA-3'(SEQ ID NO:2),
其中,Z a1为A,Z a2为U,所述核苷酸序列I中包含位置对应于Z a1的核苷酸Z a3,所述核苷酸序列II中包含位置对应于Z a2的核苷酸Z a4,所述Z a4是所述反义链5'末端的第一个核苷酸;或者,
ii)所述核苷酸序列I与SEQ ID NO:13所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-ACAGUAUUCUCAGUGCUCZ b1-3'(SEQ ID NO:13);
5'-Z b2GAGCACUGAGAAUACUGU-3'(SEQ ID NO:14),
其中,Z b1为A,Z b2为U;所述核苷酸序列I中包含位置对应于Z b1的核苷酸Z b3,所述核苷酸序列II中包含位置对应于Z b2的核苷酸Z b4,所述Z b4是所述反义链5'末端的第一个核苷酸;或者,
iii)所述核苷酸序列I与SEQ ID NO:25所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-UAUUCUCAGUGCUCUCCUZ c1-3'(SEQ ID NO:25);
5'-Z c2AGGAGAGCACUGAGAAUA-3'(SEQ ID NO:26),
其中,Z c1为A,Z c2为U,所述核苷酸序列I中包含位置对应于Z c1的核苷酸Z c3,所述核苷酸序列II中包含位置对应于Z c2的核苷酸Z c4,所述Z c4是所述反义链5'末端的第一个核苷酸;或者,
iv)所述核苷酸序列I与SEQ ID NO:37所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-AGUAUUCUCAGUGCUCUCZ d1-3'(SEQ ID NO:37);
5'-Z d2GAGAGCACUGAGAAUACU-3'(SEQ ID NO:38),
其中,Z d1为A,Z d2为U,所述核苷酸序列I中包含位置对应于Z d1的核苷酸Z d3,所述核苷酸序列II中包含位置对应于Z d2的核苷酸Z d4,所述Z d4是所述反义链5'末端的第一个核苷酸;或者,
v)所述核苷酸序列I与SEQ ID NO:49所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-GGACAGUAUUCUCAGUGCZ e1-3'(SEQ ID NO:49);
5'-Z e2GCACUGAGAAUACUGUCC-3'(SEQ ID NO:50),
其中,Z e1为A,Z e2为U,所述核苷酸序列I中包含位置对应于Z e1的核苷酸Z e3,所述核苷 酸序列II中包含位置对应于Z e2的核苷酸Z e4,所述Z e4是所述反义链5'末端的第一个核苷酸。
在一些实施方案中,每一个非氟代修饰的核苷酸独立地选自核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物中的一种。
在一些实施方案中,核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸选自2'-烷氧基修饰的核苷酸、2'-经取代的烷氧基修饰的核苷酸、2'-烷基修饰的核苷酸、2'-经取代的烷基修饰的核苷酸、2'-氨基修饰的核苷酸、2'-经取代的氨基修饰的核苷酸、2'-脱氧核苷酸中的一种;核苷酸类似物选自异核苷酸、LNA、ENA、cET、UNA和GNA中的一种。
在一些实施方案中,每一个非氟代修饰的核苷酸均为甲氧基修饰的核苷酸。
在一些实施方案中,本公开提供了一种药物组合物,所述药物组合物含有上述本公开的siRNA和药学上可接受的载体。
在一些实施方案中,本公开提供了本公开的siRNA和/或药物组合物和/或siRNA缀合物在制备用于治疗和/或预防由所述载脂蛋白C3基因异常表达引起的血脂异常的药物中的用途。
在一些实施方案中,本公开提供了一种治疗和/或预防血脂异常的方法,所述方法包括将有效量的本公开的siRNA和/或药物组合物和/或siRNA缀合物给予血脂异常的受试者。
在一些实施方案中,本公开提供了一种抑制肝细胞中载脂蛋白C3基因表达的方法,该方法包括将有效量的本公开的siRNA和/或药物组合物和/或siRNA缀合物与所述肝细胞接触。
在一些实施方案中,本公开提供了一种试剂盒,所述试剂盒含有本公开的siRNA和/或药物组合物和/或siRNA缀合物。
有益效果
本公开提供的siRNA、含该siRNA的组合物和siRNA缀合物具有良好的稳定性,较高的基因抑制活性,和/或能显著降低血脂水平。
在一些实施方案中,本公开提供的siRNA缀合物表现出优异的抑制APOC3 mRNA的特性:在1mg/kg的剂量下抑制高脂模型小鼠肝脏中至少82.0%的APOC3 mRNA的表达。
实验显示,与现有技术提供的缀合分子形成的缀合物相比,本公开提供的siRNA缀合物显示出优异的降血脂能力;并且,本公开提供的siRNA缀合物能够在低给药剂量、低给药频率的情况下,在长达189天的实验时间内持续显示出优异的血脂抑制作用。
例如,对于缀合物2、4和5,77天内,单次给药3mg/kg的3个缀合物对TG的抑制率维持在70-90%的时间长达77天,对CHO的抑制率基本始终维持在50%的时间同样长达77天,并且对TG的抑制率维持在约50%以上的时间长达147天;给药剂量为1mg/kg时,3个缀合物在单次给药后第7天时对TG的抑制率均高达约80%,持续显示出不低于50%的TG含量降低效果的时间长达49天;并且,单次给药后35天时,1mg/kg剂量组的3个缀合物仍显示出至少约50%的CHO含量降低效果。对于缀合物1,无论3mg/kg剂量组还是1mg/kg剂量组,缀合物1都能够在长达112天的时间内显著降低转基因小鼠中的TG和CHO水平,并且该降低效果明显优于对比缀合物2。单次给药56天内,无论3mg/kg剂量组还是1mg/kg剂量组,缀合物1对TG和CHO的抑制率均在50%以上,且对TG的抑制作用更加明显,在长达112天内,2个剂量作用下的TG水平都始终维持在50%上下。
再例如,缀合物3能够在长达98天的时间内显著降低转基因小鼠中的TG和CHO水平,3mg/kg的缀合物3在单次给药后第14天对TG的抑制率达93.6%,单次给药后第7天对CHO的抑制率达63.0%。缀合物4、6、7在2个剂量下对人APOC3转基因小鼠均有显著的血脂降低作用,3mg/kg给药组在给药后84天内对TG的抑制率始终保持在50%以上,对CHO的抑制率保持在30%以上。值得关注的是,在3mg/kg和1mg/kg下,缀合物4、6和7对TG的抑制作用始终强于对比缀合物2,对CHO的抑制也有相同的趋势。
对于缀合物8和9,测试了其在不同时间点下对TG抑制的ED 50值。可以预见,对于人APOC3转基因小鼠,只需单次皮下注射0.16mg/kg的缀合物8或0.11mg/kg的缀合物9,就能实现给药后半个月时仍能降低一半血清TG含量的疗效;只需单次皮下注射不足1mg/kg的本公开的缀合物,就能达到给药后一个月时仍能够降低一半血清TG含量的效果。
由此说明,本公开提供的siRNA、药物组合物以及siRNA缀合物能够抑制载脂蛋白C3基因的表达,有效治疗和/或预防由载脂蛋白C3基因过量表达引起的血脂异常,具有良好的应用前景。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
为了更清楚地说明本发明实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例。
图1为未经转染的Huh7细胞和在Huh7细胞中转染不同缀合物至不同的终浓度时APOC3 mRNA表达量的柱状图。
图2A-7D是给予人APOC3转基因小鼠生理盐水和不同剂量的各缀合物后,小鼠血清中总胆固醇(CHO)水平和甘油三酯(TG)水平随时间的变化图。
图8是给予人APOC3转基因小鼠生理盐水和不同剂量的缀合物4后,小鼠体内肝脏组织中APOC3 mRNA表达量散点图。
具体实施方式
以下对本公开的具体实施方案进行详细说明。应当理解的是,此处所描述的具体实施方案仅用于说明和解释本公开,并不用于限制本公开。
在本公开中,APOC3 mRNA的序列是如Genbank注册号NM_000040.1所示的序列。进一步地,若无其它说明,本公开中所使用的术语“靶基因”是指表达上述APOC3 mRNA的基因,术语“靶mRNA”是指上述APOC3 mRNA。
定义
在上文及下文中,如无特别说明,大写字母C、G、U、A表示核苷酸的碱基组成;小写字母m表示该字母m左侧相邻的一个核苷酸为甲氧基修饰的核苷酸;小写字母f表示该字母f左侧相邻的一个核苷酸为氟代修饰的核苷酸;小写字母s表示与该字母s左右相邻的两个核苷酸之间为硫代磷酸酯基连接;P1表示该P1右侧相邻的一个核苷酸为5'-磷酸核苷酸或5'-磷酸类似物修饰的核苷酸。在一些实施方案中,P1表示具体修饰为VP、Ps或P,其中,字母组合VP表示该字母组合VP右侧相邻的一个核苷酸为乙烯基磷酸酯(5'-(E)-vinylphosphonate,E-VP)修饰的核苷酸,字母组合Ps表示该字母组合Ps右侧相邻的一个核苷酸为硫代磷酸酯修饰的核苷酸,大写字母P表示该字母P右侧相邻的一个核苷酸为5'-磷酸核苷酸。
在上文及下文中,所述―氟代修饰的核苷酸‖指核苷酸的核糖基2'位的羟基被氟取代形成的核苷酸,―非氟代修饰的核苷酸‖指核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物。―核苷酸类似物‖指能够在核酸中代替核苷酸,但结构不同于腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸或胸腺嘧啶脱氧核糖核苷酸的基团。如异核苷酸、桥联的核苷酸(bridged nucleic acid,简称BNA)或无环核苷酸。所述―甲氧基修饰的核苷酸‖指核糖基的2'-羟基被甲氧基取代而形成的核苷酸。
在本文的上下文中,―互补‖或―反向互补‖一词可互相替代使用,并具有本领域技术人员周知的含义,即,在双链核酸分子中,一条链的碱基与另一条链上的碱基以互补的方式相配对。在DNA中,嘌呤碱基腺嘌呤(A)始终与嘧啶碱基胸腺嘧啶(T)(或者在RNA中为尿嘧啶(U))相配对;嘌呤碱基鸟嘌呤(C)始终与嘧啶碱基胞嘧啶(G)相配对。每个碱基对都包括一个嘌呤和一个嘧啶。当一条链上的腺嘌呤始终与另一条链上的胸腺嘧啶(或尿嘧啶)配对,以及鸟嘌呤始终与胞嘧啶配对时,两条链被认为是彼此互补的,以及从其互补链的序列中可以推断出该链的序列。与此相应地,―错配‖在本领域中意指在双链核酸中,对应位置上的碱基并未以互补的形式配对存在。
在上文及下文中,如无特别说明,―基本上反向互补‖是指所涉及的两段核苷酸序列之间存在不多于3个的碱基错配;―实质上反向互补‖是指两段核苷酸序列之间存在不多于1个的碱基错配;―完全反向互补‖是指两段核苷酸序列之间不存在碱基错配。
在上文及下文中,一个核苷酸序列与另外一个核苷酸序列存在―核苷酸差异‖,是指前者与后者相比,相同位置的核苷酸的碱基种类发生了改变,例如,在后者中一个核苷酸碱基为A时,在前者的相同位置处的对应核苷酸碱基为U、C、G或者T的情况下,认定为两个核苷酸序列之间在该位置处存在核苷酸差异。在一些实施方案中,以无碱基核苷酸或其等同物代替原位置的核苷酸时,也可认为在该位置处产生了核苷酸差异。
在上文及下文中,特别是在描述本公开的siRNA、含siRNA的组合物或siRNA缀合物的制备方法时,除非特别说明,所述核苷单体(nucleoside monomer)指,根据欲制备的siRNA或siRNA缀合物中核苷酸的种类和顺序,亚磷酰胺固相合成中使用的修饰或未修饰的核苷亚磷酰胺单体(unmodified or modified RNA phosphoramidites,有时RNA phosphoramidites也称为Nucleoside phosphoramidites)。亚磷酰胺固相合成为本领域技术人员所公知的RNA合成中所用的方法。本 公开所用的核苷单体均可商购得到。
在本公开的上下文中,除非另有说明,―缀合‖是指两个或多个各自具有特定功能的化学部分之间以共价连接的方式彼此连接;相应地,―缀合物‖是指该各个化学部分之间通过共价连接而形成的化合物。进一步地,―siRNA缀合物‖表示一个或多个具有特定功能的化学部分共价连接至siRNA上而形成的化合物。在下文中,有时也将本公开的siRNA缀合物简称为―缀合物‖。siRNA缀合物应根据上下文,理解为siRNA缀合物的总称、多个具体特定化学分子的siRNA缀合物总称,或者多个具体特定化学分子的siRNA缀合物的每一个siRNA缀合物。在本公开的上下文中,―缀合分子‖应当理解为可通过反应缀合至siRNA,最终形成本公开的siRNA缀合物的一类化合物或特定化合物。
如本文所使用的,不介于两个字母之间或两个符号之间的短横(―-‖)是用于指示取代基连接点的位置。例如:结构式“-C 1-C 10烷基-NH 2”中最左侧的短横是指通过C 1-C 10烷基而连接。
如本文所使用的,―任选的‖或―任选地‖是指其后描述的事件或状况可以发生或不发生,并且所述描述包括事件或状况发生的情况和其中不发生的情况。例如,―任选地取代‖的―烷基‖包括下文定义的―烷基‖和―取代烷基‖。本领域技术人员将理解的是,对于包含一个或多个取代基的任何基团,这些基团不打算引入空间上不切实际、合成上不可行和/或本身不稳定的任何取代或取代型式。
如本文所使用的,―烷基‖是指具有指定数量的碳原子的直链和支链,所述数量通常为1到20个碳原子,例如1至10个碳原子,如1至8个或1至6个碳原子。例如,C 1-C 6烷基包含1至6个碳原子的直链和支链烷基。当对具有特定数量的碳的烷基残基进行命名时,旨在涵盖所有具有该数量的碳的支链和直链形式;因此,例如,―丁基‖意味着包括正丁基、仲丁基、异丁基和叔丁基;―丙基‖包括正丙基和异丙基。亚烷基是烷基的子集,指与烷基相同、但具有两个连接点的残基。
如本文所使用的,―烯基‖是指具有至少一个碳-碳双键的不饱和支链或直链烷基,所述碳-碳双键是通过从母体烷基的相邻碳原子中除去一分子氢而获得的。该基团可以处于双键的顺式或反式构型。典型的烯基基团包括但不限于:乙烯基;丙烯基,如丙-1-烯-1-基、丙-1-烯-2-基、丙-2-烯-1-基(烯丙基)、丙-2-烯-2-基;丁烯基,例如丁-1-烯-1-基、丁-1-烯-2-基、2-甲基丙-1-烯-1-基、丁-2-烯-1-基、丁-2-烯-2-基、丁-1,3-二烯-1-基、丁-1,3-二烯-2-基等等。在某些实施方案中,烯基基团具有2到20个碳原子,而在其他实施方案中,具有2至10个、2至8个或2至6个碳原子。亚烯基是烯基的一个子集,指与烯基相同、但具有两个连接点的残基。
如本文所使用的,―炔基‖是指具有至少一个碳-碳三键的不饱和支链或直链烷基,所述碳-碳三键是通过从母体烷基的相邻碳原子中除去两分子氢而获得的。典型的炔基基团包括但不限于:乙炔基;丙炔基,如丙-1-炔-1-基,丙-2-炔-1-基;丁炔基,例如丁-1-炔-1-基,丁-1-炔-3-基,丁-3-炔-1-基等。在某些实施方案中,炔基具有2到20个碳原子,而在其他实施方案中,具有2至10、2至8或2至6个碳原子。亚炔基是炔基的一个子集,指的是与炔基相同、但有两个连接点的残基。
如本文所使用的,―烷氧基‖是指通过氧桥连接的指定数量碳原子的烷基,例如,甲氧基、乙氧基、丙氧基、异丙氧基、正丁氧基、仲丁氧基、叔丁氧基、戊氧基、2-戊氧基、异戊氧基、新戊氧基、己氧基、2-己氧基、3-己氧基、3-甲基戊氧基等。烷氧基通常具有1至10个、1至8个、1至6个,或1至4个通过氧桥连接的碳原子。
如本文所使用的,―芳基‖是指通过从环碳原子上除去氢原子而衍生自芳香族单环或多环烃环系统形成的基团。所述芳香族单环或多环烃环系统仅含有氢和6至18个碳原子的碳,其中所述环系统中的至少一个环是完全不饱和的,即,包含根据Hückel理论的环状、离域的(4n+2)π-电子体系。芳基包括但不限于苯基、芴基和萘基等基团。亚芳基是芳基的子集,指与芳基相同、但具有两个连接点的残基。
如本文所使用的,―环烷基‖是指非芳香族碳环,通常具有3至7个环状碳原子。环可以是饱和的,或具有一个或多个碳-碳双键。环烷基的实例包括环丙基、环丁基、环戊基、环戊烯基、环己基和环己烯基,以及桥联和笼状环基团,如降冰片烷(norbornane)。
如本文所使用的,―卤素取代基‖或―卤代‖指氟代、氯代、溴代和碘代,术语―卤素‖包括氟、氯、溴和碘。
如本文所使用的,―卤代烷基‖是指指定数量的碳原子被一个或多个、直至最大允许数量的卤素原子取代的如上述所定义的烷基。卤代烷基的实例包括但不限于三氟甲基、二氟甲基、2-氟乙基和五氟乙基。
“杂环基”是指稳定的3-至18-元非芳香族环基,包含2-12个碳原子和1-6个杂原子,所述杂原子选自氮、氧和硫。除非说明书中另有说明,杂环基是单环、双环、三环或四环系统,可包括稠环或桥环系统。杂环基中的杂原子可以任选地被氧化。一个或多个氮原子(如果存在的话)任选地被季铵化。杂环基是部分饱和或完全饱和的。杂环基可以通过任何环原子连接至分子的其余部分。此类杂环基的实例包括但不限于:二噁烷基、噻吩基[1,3]二硫酰基(thienyl[1,3]dithianyl)、十氢异喹啉基、咪唑啉基、咪唑烷基、异噻唑烷基、异噁唑烷基、吗啉基、八氢吲哚基、八氢异吲哚基、2-氧杂哌嗪基、2-氧杂哌啶基、2-氧杂吡咯烷基、噁唑烷基、哌啶基、哌嗪基、4-哌啶酮基、吡咯烷基、吡唑烷基、奎宁环基、噻唑烷基、四氢呋喃基、三硫酰基(trithianyl)、四氢吡喃基、硫代吗啉基(thiomorpholinyl)、硫杂吗啉基(thiamorpholinyl)、1-氧代硫吗啉基(1-oxo-thiomorpholinyl)和1,1-二氧代硫吗啉基(1,1-dioxo-thiomorpholinyl)。
“杂芳基”指由3-至18-元芳香环自由基衍生而成的基团,包含2个至17个碳原子和选自氮、氧和硫的1至6个杂原子。如本文所使用的,杂芳基可以是单环、双环、三环或四环系统,其中环系统中的至少一个环是完全不饱和的,即,包含根据Hückel理论的环状离域(4n+2)π-电子体系。杂芳基包括稠环或桥环系统。杂芳基中的杂原子被任选地氧化。一个或多个氮原子(如果存在的话)任选地被季铵化。杂芳基通过任何环原子附着至分子的其余部分。杂芳基的实例包括但不限于:氮杂环庚三烯基、吖啶基、苯并咪唑基、苯并吲哚基、1,3-苯并二噁唑基、苯并呋喃基、苯并噁唑基、苯并[d]噻唑基、苯并噻二唑基、苯并[b][1,4]二噁庚英基(benzo[b][1,4]dioxepinyl)、苯并[b][1,4]噁嗪基(benzo[b][1,4]oxazinyl)、1,4-苯并二噁烷基(1,4-benzodioxanyl)、苯并萘并呋喃基、苯并噁唑基、苯并间二氧杂环戊烯基(benzodioxolyl)、苯并二噁英基(benzodioxinyl)、苯并吡喃基、苯并吡喃酮基、苯并呋喃基、苯并呋喃酮基、苯并噻吩基、苯并噻吩并[3,2-d]嘧啶基、苯并三唑基、苯并[4,6]咪唑并[1,2-a]吡啶基、咔唑基、噌啉基(cinnolinyl)、环戊烷并[d]嘧啶基、6,7-二氢-5H-环戊烷并[4,5]噻吩并[2,3-d]嘧啶基、5,6-二氢苯并[h]喹唑啉基(5,6-dihydrobenzo[h]quinazolinyl)、5,6-二氢苯并[h]噌啉基(5,6 dihydrobenzo[h]cinnolinyl)、6,7-二氢-5H-苯并[6,7]环庚烷并[1,2-c]哒嗪基、二苯并呋喃基、二苯并噻吩基、呋喃基、呋喃酮基、呋喃并[3,2-c]吡啶基、5,6,7,8,9,10-六氢环辛烷并[d]嘧啶基、5,6,7,8,9,10-六氢环辛烷并[d]哒嗪基、5,6,7,8,9,10-六氢环辛烷并[d]吡啶基、异噻唑基、咪唑基、吲唑基(indazolyl)、吲哚基、异吲哚基、二氢吲哚基、异二氢吲哚基、异喹啉基、吲哚嗪基(indolizinyl)、异噁唑基、5,8-甲醇-5,6,7,8-四氢喹唑啉基(5,8-methano-5,6,7,8-tetrahydroquinazolinyl)、萘啶基(naphthyridinyl)、1,6-萘啶酮基(1,6-naphthyridinonyl)、噁二唑基、2-氧杂吖庚因基(2-oxoazepinyl)、噁唑基、氧杂环丙烷基(oxiranyl)、5,6,6a,7,8,9,10,10a-八氢苯并[H]喹唑啉基、1-苯基-1H-吡咯基、吩嗪基、吩噻嗪基、吩噁嗪基、酞嗪基(phthalazinyl)、蝶啶基(pteridinyl)、嘌呤基、吡咯基、吡唑基、吡唑并[3,4-d]嘧啶基、吡啶基、吡啶并[3,2-d]嘧啶基、吡啶并[3,4-d]嘧啶基、吡嗪基、嘧啶基、哒嗪基、吡咯基、喹唑啉基、喹喔啉基(quinoxalinyl)、喹啉基、四氢喹啉基、5,6,7,8-四氢喹唑啉基、5,6,7,8-四氢苯并[4,5]噻吩并[2,3-d]嘧啶基、6,7,8,9-四氢-5H-环庚烷并[4,5]噻吩并[2,3-d]嘧啶基、5,6,7,8-四氢吡啶并[4,5-c]哒嗪基、噻唑基、噻二唑基、三唑基、四唑基、三嗪基、噻吩并[2,3-d]嘧啶基、噻吩并[3,2-d]嘧啶基、噻吩并[2,3-c]吡啶基(thieno[2,3-c]pridinyl)和噻吩基(thiophenyl/thienyl)。
在本公开中可以使用各种羟基保护基团。一般来说,保护基团使化学官能团对特定的反应条件不敏感,并且可以在分子中的该官能团上添加以及去除,而不实质上损害分子的其余部分。代表性的羟基保护基团公开于Beaucage等人,Tetrahedron 1992,48,2223-2311,以及Greeneand Wuts,Protective Groups in Organic Synthesis,Chapter 2,2d ed,John Wiley&Sons,New York,1991中,以引用的方式将上述文献整体并入本文。在一些实施方案中,保护基团在碱性条件下稳定,但可以在酸性条件下脱除。在一些实施方案中,本文可使用的羟基保护基的非排他性实例包括二甲氧基三苯甲基(DMT)、单甲氧基三苯甲基、9-苯基氧杂蒽-9-基(Pixyl)和9-(对甲氧基苯基)氧杂蒽-9-基(Mox)。在一些实施方案中,本文可使用的羟基保护基的非排他性实例包括Tr(三苯甲基)、MMTr(4-甲氧基三苯甲基)、DMTr(4,4'-二甲氧基三苯甲基)和TMTr(4,4',4”-三甲氧基三苯甲基)。
―受试者‖一词,如本文所使用的,指任何动物,例如哺乳动物或有袋动物。本公开的受试者包括但不限于人类、非人灵长类(例如,恒河猴或其他类型的猕猴)、小鼠、猪、马、驴、牛、绵羊、大鼠和任何种类的家禽。
如本文所使用的,―治疗‖、―减轻‖或―改善‖可在此处互换使用。这些术语指的是获得有益的或期望的结果的方法,包括但不限于治疗益处。―治疗益处‖意味着根除或改善被治疗的潜在障碍。 此外,治疗益处通过根除或改善与潜在障碍相关的一个或多个生理症状,从而在受试者中观察到改善而获得,尽管受试者可能仍然受到潜在障碍的折磨。
如本文所使用的,―防止‖和―预防‖可互换使用。这些术语指获得有益或期望的结果的方法,包括但不限于预防性益处。为了获得―预防性益处‖,可将缀合物或组合物给予有罹患特定疾病风险的受试者,或给予报告疾病的一种或多种生理症状的受试者,即便可能该疾病的诊断尚未作出。
本公开的siRNA含有核苷酸基团作为基本结构单元,本领域技术人员公知,所述核苷酸基团含有磷酸基团、核糖基团和碱基,在此不再赘述。
第一种siRNA
按照本公开,所述siRNA可以是第一种siRNA。
所述第一种siRNA含有正义链和反义链,所述第一种siRNA中的每个核苷酸各自独立地为修饰或未修饰的核苷酸,其中,所述正义链含有一段核苷酸序列I,所述反义链含有一段核苷酸序列II,所述核苷酸序列I和所述核苷酸序列II至少部分地反向互补形成双链区,对于所述第一种siRNA,所述核苷酸序列I与SEQ ID NO:1所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-UUAAAAGGGACAGUAUUCZ a1-3'(SEQ ID NO:1);
5'-Z a2GAAUACUGUCCCUUUUAA-3'(SEQ ID NO:2),
其中,Z a1为A,Z a2为U,
所述核苷酸序列I中包含位置对应于Z a1的核苷酸Z a3,所述核苷酸序列II中包含位置对应于Z a2的核苷酸Z a4,所述Z a4是所述反义链5'末端的第一个核苷酸。
在上文与下文中,―位置对应‖是指从核苷酸序列相同端起算,处于核苷酸序列中相同的位置。例如,对于所述第一种siRNA,核苷酸序列I的3'端第1个核苷酸是位置对应于SEQ ID NO:1的3'端第1个核苷酸的核苷酸。
在一些实施方案中,所述正义链仅包含核苷酸序列I,所述反义链仅包含核苷酸序列II。
在一些实施方案中,所述核苷酸序列I与SEQ ID NO:1所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列之间不多于1个核苷酸差异。
在一些实施方案中,所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列之间的核苷酸差异包括Z a4位置处的差异,且Z a4选自A、C或G。在一些实施方案中,所述核苷酸差异为Z a4位置处的差异,Z a4选自A、C或G。在一些实施方案中,Z a3是与Z a4互补的核苷酸。这些核苷酸差异并不会显著降低siRNA缀合物的靶基因抑制能力,而这些包含核苷酸差异的siRNA缀合物也在本公开的保护范围之内。
在一些实施方案中,所述核苷酸序列I和所述核苷酸序列II基本上反向互补、实质上反向互补或完全反向互补;所述基本上反向互补是指两个核苷酸序列之间存在不多于3个的碱基错配;所述实质上反向互补是指两个核苷酸序列之间存在不多于1个的碱基错配;完全反向互补是指两个核苷酸序列之间没有碱基错配。
在一些实施方案中,核苷酸序列I是SEQ ID NO:3所示的核苷酸序列,核苷酸序列II是SEQ ID NO:4所示的核苷酸序列:
5'-UUAAAAGGGACAGUAUUCZ a3-3'(SEQ ID NO:3);
5'-Z a4GAAUACUGUCCCUUUUAA-3'(SEQ ID NO:4),
其中,所述Z a4是反义链5'末端的第一个核苷酸,Z a3选自A、U、G或C,并且Z a4是与Z a3互补的核苷酸;在一些实施方案中,Z a3为U,Z a4为A;
并且,所述正义链和反义链长度相同或不同,所述正义链的长度为19-23个核苷酸,反义链的长度为20-26个核苷酸。
在一些实施方案中,所述正义链还含有核苷酸序列III,所述反义链还含有核苷酸序列IV,核苷酸序列III和核苷酸序列IV长度各自独立地为1-4个核苷酸;所述核苷酸序列III连接在核苷酸序列I的5'末端,所述核苷酸序列IV连接在核苷酸序列II的3'末端,所述核苷酸序列III和所述核苷酸序列IV长度相等。
在一些实施方案中,所述核苷酸序列III和核苷酸序列IV的长度均为1个核苷酸,核苷酸序列III的碱基为C,核苷酸序列IV的碱基为G;此时,正义链和反义链的长度比为20/20;或者,核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GC,核苷酸序列IV的碱基组成为GC;此时,正义链和反义链的长度比为21/21;或 者,核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为UGC,核苷酸序列IV的碱基组成为GCA;此时,正义链和反义链的长度比为22/22;或者,核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为UUGC,核苷酸序列IV的碱基组成为GCAA;此时,正义链和反义链的长度比为23/23。在一些实施方案中,所述核苷酸序列III和核苷酸序列IV的长度为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GC,核苷酸序列IV的碱基组成为GC;此时,正义链和反义链的长度比为21/21。
在一些实施方案中,核苷酸序列III和核苷酸序列IV的长度相同,并且完全反向互补,因此,给出了核苷酸序列III的碱基,核苷酸序列IV的碱基也就确定了。
第二种siRNA
按照本公开,所述siRNA可以是第二种siRNA。
所述第二种siRNA含有正义链和反义链,所述第二种siRNA中的每个核苷酸各自独立地为修饰或未修饰的核苷酸,所述正义链含有一段核苷酸序列I,所述反义链含有一段核苷酸序列II,所述核苷酸序列I和所述核苷酸序列II至少部分地反向互补形成双链区,其中,所述核苷酸序列I与SEQ ID NO:13所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-ACAGUAUUCUCAGUGCUCZ b1-3'(SEQ ID NO:13);
5'-Z b2GAGCACUGAGAAUACUGU-3'(SEQ ID NO:14),
其中,Z b1为A,Z b2为U;
所述核苷酸序列I中包含位置对应于Z b1的核苷酸Z b3,所述核苷酸序列II中包含位置对应于Z b2的核苷酸Z b4,所述Z b4是所述反义链5'末端的第一个核苷酸。
在一些实施方案中,所述正义链仅包含核苷酸序列I,所述反义链仅包含核苷酸序列II。
在一些实施方案中,所述核苷酸序列I与SEQ ID NO:13所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列之间不多于1个核苷酸差异。
在一些实施方案中,所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列之间的核苷酸差异包括Z b4位置处的差异,且Z b4选自A、C或G。在一些实施方案中,所述核苷酸差异为Z b4位置处的差异,Z b4选自A、C或G。在一些实施方案中,Z b3是与Z b4互补的核苷酸。这些核苷酸差异并不会显著降低siRNA缀合物的靶基因抑制能力,而这些包含核苷酸差异的siRNA缀合物也在本公开的保护范围之内。
在一些实施方案中,所述核苷酸序列I和所述核苷酸序列II基本上反向互补、实质上反向互补或完全反向互补。
在一些实施方案中,核苷酸序列I是SEQ ID NO:15所示的核苷酸序列,核苷酸序列II是SEQ ID NO:16所示的核苷酸序列:
5'-ACAGUAUUCUCAGUGCUCZ b3-3'(SEQ ID NO:15);
5'-Z b4GAGCACUGAGAAUACUGU-3'(SEQ ID NO:16),
其中,所述Z b4是反义链5'末端的第一个核苷酸,Z b3选自A、U、G或C,并且Z b4是与Z b3互补的核苷酸;在一些实施方案中,Z b3为U,Z b4为A;
并且,所述正义链和反义链长度相同或不同,所述正义链的长度为19-23个核苷酸,反义链的长度为20-26个核苷酸。
在一些实施方案中,所述正义链还含有核苷酸序列III,所述反义链还含有核苷酸序列IV,核苷酸序列III和核苷酸序列IV长度各自独立地为1-4个核苷酸;所述核苷酸序列III连接在核苷酸序列I的5'末端,所述核苷酸序列IV连接在核苷酸序列II的3'末端,所述核苷酸序列III和所述核苷酸序列IV长度相等。
在一些实施方案中,所述核苷酸序列III和核苷酸序列IV的长度均为1个核苷酸,核苷酸序列III的碱基为G,核苷酸序列IV的碱基为C;此时,正义链和反义链的长度比为20/20;或者,核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GG,核苷酸序列IV的碱基组成为CC;此时,正义链和反义链的长度比为21/21;或者,核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GGG,核苷酸序列IV的碱基组成为CCC;此时,正义链和反义链的长度比为22/22;或者,核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AGGG,核苷酸序列IV的碱基组成为CCCU;此时,正义链和反义链的长度比 为23/23。在一些实施方案中,所述核苷酸序列III和核苷酸序列IV的长度为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GG,核苷酸序列IV的碱基组成为CC;此时,正义链和反义链的长度比为21/21。
在一些实施方案中,核苷酸序列III和核苷酸序列IV的长度相同,并且完全反向互补,因此,给出了核苷酸序列III的碱基,核苷酸序列IV的碱基也就确定了。
第三种siRNA
按照本公开,所述siRNA可以是第三种siRNA。
所述第三种siRNA含有正义链和反义链,所述第三种siRNA中的每个核苷酸各自独立地为修饰或未修饰的核苷酸,所述正义链含有一段核苷酸序列I,所述反义链含有一段核苷酸序列II,所述核苷酸序列I和所述核苷酸序列II至少部分地反向互补形成双链区,其中,所述核苷酸序列I与SEQ ID NO:25所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-UAUUCUCAGUGCUCUCCUZ c1-3'(SEQ ID NO:25);
5'-Z c2AGGAGAGCACUGAGAAUA-3'(SEQ ID NO:26),
其中,Z c1为A,Z c2为U,
所述核苷酸序列I中包含位置对应于Z c1的核苷酸Z c3,所述核苷酸序列II中包含位置对应于Z c2的核苷酸Z c4,所述Z c4是所述反义链5'末端的第一个核苷酸。
在一些实施方案中,所述正义链仅包含核苷酸序列I,所述反义链仅包含核苷酸序列II。
在一些实施方案中,所述核苷酸序列I与SEQ ID NO:25所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列之间不多于1个核苷酸差异。
在一些实施方案中,所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列之间的核苷酸差异包括Z c4位置处的差异,且Z c4选自A、C或G。在一些实施方案中,所述核苷酸差异为Z c4位置处的差异,Z c4选自A、C或G。在一些实施方案中,Z c3是与Z c4互补的核苷酸。这些核苷酸差异并不会显著降低siRNA缀合物的靶基因抑制能力,而这些包含核苷酸差异的siRNA缀合物也在本公开的保护范围之内。
在一些实施方案中,所述核苷酸序列I和所述核苷酸序列II基本上反向互补、实质上反向互补或完全反向互补。
在一些实施方案中,核苷酸序列I是SEQ ID NO:27所示的核苷酸序列,核苷酸序列II是SEQ ID NO:28所示的核苷酸序列:
5'-UAUUCUCAGUGCUCUCCUZ c3-3'(SEQ ID NO:27);
5'-Z c4AGGAGAGCACUGAGAAUA-3'(SEQ ID NO:28),
其中,所述Z c4是反义链5'末端的第一个核苷酸,Z c3选自A、U、G或C,并且Z c4是与Z c3互补的核苷酸;在一些实施方案中,Z c3为U,Z c4为A;
并且,所述正义链和反义链长度相同或不同,所述正义链的长度为19-23个核苷酸,反义链的长度为20-26个核苷酸。
在一些实施方案中,所述正义链还含有核苷酸序列III,所述反义链还含有核苷酸序列IV,核苷酸序列III和核苷酸序列IV长度各自独立地为1-4个核苷酸;所述核苷酸序列III连接在核苷酸序列I的5'末端,所述核苷酸序列IV连接在核苷酸序列II的3'末端,所述核苷酸序列III和所述核苷酸序列IV长度相等。
在一些实施方案中,所述核苷酸序列III和核苷酸序列IV的长度均为1个核苷酸,核苷酸序列III的碱基为G,核苷酸序列IV的碱基为C;此时,正义链和反义链的长度比为20/20;或者,核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AG,核苷酸序列IV的碱基组成为CU;此时,正义链和反义链的长度比为21/21;或者,核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为CAG,核苷酸序列IV的碱基组成为CUG;此时,正义链和反义链的长度比为22/22;或者,核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为ACAG,核苷酸序列IV的碱基组成为CUGU;此时,正义链和反义链的长度比为23/23。在一些实施方案中,所述核苷酸序列III和核苷酸序列IV的长度为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AG,核苷酸序列IV的碱基组成为CU;此时,正义链和反义链的长度比为21/21。
在一些实施方案中,核苷酸序列III和核苷酸序列IV的长度相同,并且完全反向互补,因此, 给出了核苷酸序列III的碱基,核苷酸序列IV的碱基也就确定了。
第四种siRNA
按照本公开,所述siRNA可以是第四种siRNA。
所述第四种siRNA含有正义链和反义链,所述第四种siRNA中的每个核苷酸各自独立地为修饰或未修饰的核苷酸,所述正义链含有一段核苷酸序列I,所述反义链含有一段核苷酸序列II,所述核苷酸序列I和所述核苷酸序列II至少部分地反向互补形成双链区,其中,所述核苷酸序列I与SEQ ID NO:37所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-AGUAUUCUCAGUGCUCUCZ d1-3'(SEQ ID NO:37);
5'-Z d2GAGAGCACUGAGAAUACU-3'(SEQ ID NO:38),
其中,Z d1为A,Z d2为U,
所述核苷酸序列I中包含位置对应于Z d1的核苷酸Z d3,所述核苷酸序列II中包含位置对应于Z d2的核苷酸Z d4,所述Z d4是所述反义链5'末端的第一个核苷酸。
在一些实施方案中,所述正义链仅包含核苷酸序列I,所述反义链仅包含核苷酸序列II。
在一些实施方案中,所述核苷酸序列I与SEQ ID NO:37所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列之间不多于1个核苷酸差异。
在一些实施方案中,所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列之间的核苷酸差异包括Z d4位置处的差异,且Z d4选自A、C或G。在一些实施方案中,所述核苷酸差异为Z d4位置处的差异,Z d4选自A、C或G。在一些实施方案中,Z d3是与Z d4互补的核苷酸。这些核苷酸差异并不会显著降低siRNA缀合物的靶基因抑制能力,而这些包含核苷酸差异的siRNA缀合物也在本公开的保护范围之内。
在一些实施方案中,所述核苷酸序列I和所述核苷酸序列II基本上反向互补、实质上反向互补或完全反向互补。
在一些实施方案中,核苷酸序列I是SEQ ID NO:39所示的核苷酸序列,核苷酸序列II是SEQ ID NO:40所示的核苷酸序列:
5'-AGUAUUCUCAGUGCUCUCZ d3-3'(SEQ ID NO:39);
5'-Z d4GAGAGCACUGAGAAUACU-3'(SEQ ID NO:40),
其中,所述Z d4是反义链5'末端的第一个核苷酸,Z d3选自A、U、G或C,并且Z d4是与Z d3互补的核苷酸;在一些实施方案中,Z d3为U,Z d4为A;
并且,所述正义链和反义链长度相同或不同,所述正义链的长度为19-23个核苷酸,反义链的长度为20-26个核苷酸。
在一些实施方案中,所述正义链还含有核苷酸序列III,所述反义链还含有核苷酸序列IV,核苷酸序列III和核苷酸序列IV长度各自独立地为1-4个核苷酸;所述核苷酸序列III连接在核苷酸序列I的5'末端,所述核苷酸序列IV连接在核苷酸序列II的3'末端,所述核苷酸序列III和所述核苷酸序列IV长度相等。
在一些实施方案中,所述核苷酸序列III和核苷酸序列IV的长度均为1个核苷酸,核苷酸序列III的碱基为C,核苷酸序列IV的碱基为G;此时,正义链和反义链的长度比为20/20;或者,核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AC,核苷酸序列IV的碱基组成为GU;此时,正义链和反义链的长度比为21/21;或者,核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GAC,核苷酸序列IV的碱基组成为GUC;此时,正义链和反义链的长度比为22/22;或者,核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GGAC,核苷酸序列IV的碱基组成为GUCC;此时,正义链和反义链的长度比为23/23。在一些实施方案中,所述核苷酸序列III和核苷酸序列IV的长度为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AC,核苷酸序列IV的碱基组成为GU;此时,正义链和反义链的长度比为21/21。
在一些实施方案中,核苷酸序列III和核苷酸序列IV的长度相同,并且完全反向互补,因此,给出了核苷酸序列III的碱基,核苷酸序列IV的碱基也就确定了。
第五种siRNA
按照本公开,所述siRNA可以是第五种siRNA。
所述第五种siRNAsiRNA含有正义链和反义链,所述第五种siRNA中的每个核苷酸各自独立 地为修饰或未修饰的核苷酸,所述正义链含有一段核苷酸序列I,所述反义链含有一段核苷酸序列II,所述核苷酸序列I和所述核苷酸序列II至少部分地反向互补形成双链区,其中,所述核苷酸序列I与SEQ ID NO:49所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列长度相等,且不多于3个核苷酸差异:
5'-GGACAGUAUUCUCAGUGCZ e1-3'(SEQ ID NO:49);
5'-Z e2GCACUGAGAAUACUGUCC-3'(SEQ ID NO:50),
其中,Z e1为A,Z e2为U,
所述核苷酸序列I中包含位置对应于Z e1的核苷酸Z e3,所述核苷酸序列II中包含位置对应于Z e2的核苷酸Z e4,所述Z e4是所述反义链5'末端的第一个核苷酸。
在一些实施方案中,所述正义链仅包含核苷酸序列I,所述反义链仅包含核苷酸序列II。
在一些实施方案中,所述核苷酸序列I与SEQ ID NO:49所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列之间不多于1个核苷酸差异。
在一些实施方案中,所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列之间的核苷酸差异包括Z e4位置处的差异,且Z e4选自A、C或G。在一些实施方案中,所述核苷酸差异为Z e4位置处的差异,Z e4选自A、C或G。在一些实施方案中,Z e3是与Z e4互补的核苷酸。这些核苷酸差异并不会显著降低siRNA缀合物的靶基因抑制能力,而这些包含核苷酸差异的siRNA缀合物也在本公开的保护范围之内。
在一些实施方案中,所述核苷酸序列I和所述核苷酸序列II基本上反向互补、实质上反向互补或完全反向互补。
在一些实施方案中,核苷酸序列I是SEQ ID NO:51所示的核苷酸序列,核苷酸序列II是SEQ ID NO:52所示的核苷酸序列:
5'-GGACAGUAUUCUCAGUGCZ e3-3'(SEQ ID NO:51);
5'-Z e4GCACUGAGAAUACUGUCC-3'(SEQ ID NO:52),
其中,所述Z e4是反义链5'末端的第一个核苷酸,Z e3选自A、U、G或C,并且Z e4是与Z e3互补的核苷酸;在一些实施方案中,Z e3为U,Z e4为A;
并且,所述正义链和反义链长度相同或不同,所述正义链的长度为19-23个核苷酸,反义链的长度为20-26个核苷酸。
在一些实施方案中,所述正义链还含有核苷酸序列III,所述反义链还含有核苷酸序列IV,核苷酸序列III和核苷酸序列IV长度各自独立地为1-4个核苷酸;所述核苷酸序列III连接在核苷酸序列I的5'末端,所述核苷酸序列IV连接在核苷酸序列II的3'末端,所述核苷酸序列III和所述核苷酸序列IV长度相等。
在一些实施方案中,所述核苷酸序列III和核苷酸序列IV的长度均为1个核苷酸,核苷酸序列III的碱基为G,核苷酸序列IV的碱基为C;此时,正义链和反义链的长度比为20/20;或者,核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AG,核苷酸序列IV的碱基组成为CU;此时,正义链和反义链的长度比为21/21;或者,核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AAG,核苷酸序列IV的碱基组成为CUU;此时,正义链和反义链的长度比为22/22;或者,核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AAAG,核苷酸序列IV的碱基组成为CUUU;此时,正义链和反义链的长度比为23/23。在一些实施方案中,所述核苷酸序列III和核苷酸序列IV的长度为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AG,核苷酸序列IV的碱基组成为CU;此时,正义链和反义链的长度比为21/21。
在一些实施方案中,核苷酸序列III和核苷酸序列IV的长度相同,并且完全反向互补,因此,给出了核苷酸序列III的碱基,核苷酸序列IV的碱基也就确定了。
siRNA的悬垂末端和修饰
以下,对核苷酸序列V、核酸序列、siRNA中的核苷酸修饰以及修饰序列的描述适用于上述第一种siRNA至第五种siRNA中的任意一种。即如果没有特指,下面对siRNA的描述应视为是对第一种siRNA、第二种siRNA、第三种siRNA、第四种siRNA和第五种siRNA逐一进行了描述。例如,如不特别指明具体的siRNA,―所述siRNA还含有核苷酸序列V‖的意思是“第一种siRNA、第二种siRNA、第三种siRNA、第四种siRNA或第五种siRNA还含有核苷酸序列V‖。
在一些实施方案中,所述siRNA还含有核苷酸序列V,核苷酸序列V的长度为1至3个核苷 酸,连接在所述反义链的3'末端(即连接在核苷酸序列II或核苷酸序列IV的末端),构成反义链的3'悬垂末端。由此,所述siRNA正义链和反义链的长度比可以是19/20、19/21、19/22、20/21、20/22、20/23、21/22、21/23、21/24、22/23、22/24、22/25、23/24、23/25或23/26。在一些实施方案中,所述核苷酸序列V的长度为2个核苷酸,由此,本公开提供的siRNA正义链和反义链的长度比可以是19/21、21/23或23/25。
所述核苷酸序列V中的每一个核苷酸可以是任意的核苷酸,为了便于合成并节约合成成本,所述核苷酸序列V为连续的2个胸腺嘧啶脱氧核糖核苷酸(dTdT)或连续的2个尿嘧啶核糖核苷酸(UU);或者,为了提高siRNA反义链与靶mRNA的亲和力,核苷酸序列V与靶mRNA的相应位置的核苷酸互补。因此,在一些实施方案中,本公开的siRNA的正义链和反义链的长度之比为19/21或21/23,此时,本公开的siRNA具有更好的mRNA沉默活性。
靶mRNA的相应位置的核苷酸是指与靶mRNA的一段核苷酸序列在5'末端相邻的核苷酸或核苷酸序列,该段靶mRNA的核苷酸序列是与核苷酸序列II实质上反向互补或完全反向互补,或者与核苷酸序列II和核苷酸序列IV构成的核苷酸序列实质上反向互补或完全反向互补的那段核苷酸序列。
在一些实施方案中,对于所述第一种siRNA,所述siRNA的正义链含有如SEQ ID NO:5所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:6所示的核苷酸序列:
5'-UUAAAAGGGACAGUAUUCZ a3-3'(SEQ ID NO:5);
5'-Z a4GAAUACUGUCCCUUUUAAGC-3'(SEQ ID NO:6);
或者,所述siRNA的正义链含有如SEQ ID NO:7所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:8所示的核苷酸序列:
5'-GCUUAAAAGGGACAGUAUUCZ a3-3'(SEQ ID NO:7);
5'-Z a4GAAUACUGUCCCUUUUAAGCAA-3'(SEQ ID NO:8);
其中,所述Z a4是反义链5'末端的第一个核苷酸,Z a3选自A、U、G或C,并且Z a4是与Z a3互补的核苷酸。
在一些实施方案中,对于所述第二种siRNA,所述siRNA的正义链含有如SEQ ID NO:17所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:18所示的核苷酸序列:
5'-ACAGUAUUCUCAGUGCUCZ b3-3'(SEQ ID NO:17);
5'-Z b4GAGCACUGAGAAUACUGUCC-3'(SEQ ID NO:18);
或者,所述siRNA的正义链含有如SEQ ID NO:19所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:20所示的核苷酸序列:
5'-GGACAGUAUUCUCAGUGCUCZ b3-3'(SEQ ID NO:19);
5'-Z b4GAGCACUGAGAAUACUGUCCCU-3'(SEQ ID NO:20);
其中,所述Z b4是反义链5'末端的第一个核苷酸,Z b3选自A、U、G或C,并且Z b4是与Z b3互补的核苷酸。
在一些实施方案中,对于所述第三种siRNA,所述siRNA的正义链含有如SEQ ID NO:29所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:30所示的核苷酸序列:
5'-UAUUCUCAGUGCUCUCCUZ c3-3'(SEQ ID NO:29);
5'-Z c4AGGAGAGCACUGAGAAUACU-3'(SEQ ID NO:30);
或者,所述siRNA的正义链含有如SEQ ID NO:31所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:32所示的核苷酸序列:
5'-AGUAUUCUCAGUGCUCUCCUZ c3-3'(SEQ ID NO:31);
5'-Z c4AGGAGAGCACUGAGAAUACUGU-3'(SEQ ID NO:32);
其中,所述Z c4是反义链5'末端的第一个核苷酸,Z c3选自A、U、G或C,并且Z c4是与Z c3互补的核苷酸。
在一些实施方案中,对于所述第四种siRNA,所述siRNA的正义链含有如SEQ ID NO:41所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:42所示的核苷酸序列:
5'-AGUAUUCUCAGUGCUCUCZ d3-3'(SEQ ID NO:41);
5'-Z d4GAGAGCACUGAGAAUACUGU-3'(SEQ ID NO:42);
或者,所述siRNA的正义链含有如SEQ ID NO:43所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:44所示的核苷酸序列:
5'-ACAGUAUUCUCAGUGCUCUCZ d3-3'(SEQ ID NO:43);
5'-Z d4GAGAGCACUGAGAAUACUGUCC-3'(SEQ ID NO:44);
其中,所述Z d4是反义链5'末端的第一个核苷酸,Z d3选自A、U、G或C,并且Z d4是与Z d3互补的核苷酸。
在一些实施方案中,对于所述第五种siRNA,所述siRNA的正义链含有如SEQ ID NO:53所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:54所示的核苷酸序列:
5'-GGACAGUAUUCUCAGUGCZ e3-3'(SEQ ID NO:53);
5'-Z e4GCACUGAGAAUACUGUCCCU-3'(SEQ ID NO:54);
或者,所述siRNA的正义链含有如SEQ ID NO:55所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:56所示的核苷酸序列:
5'-AGGGACAGUAUUCUCAGUGCZ e3-3'(SEQ ID NO:55);
5'-Z e4GCACUGAGAAUACUGUCCCUUU-3'(SEQ ID NO:56);
其中,所述Z e4是反义链5'末端的第一个核苷酸,Z e3选自A、U、G或C,并且Z e4是与Z e3互补的核苷酸。
在一些实施方案中,本公开所述siRNA为siAPa1、siAPa2、siAPb1、siAPb2、siAPc1、siAPc2、siAPd1、siAPd2、siAPe1或siAPe2:
siAPa1
正义链:5'-UUAAAAGGGACAGUAUUCU-3'(SEQ ID NO:9)
反义链:5'-AGAAUACUGUCCCUUUUAAGC-3'(SEQ ID NO:10)
siAPa2
正义链:5'-GCUUAAAAGGGACAGUAUUCU-3'(SEQ ID NO:11)
反义链:5'-AGAAUACUGUCCCUUUUAAGCAA-3'(SEQ ID NO:12)
siAPb1
正义链:5'-ACAGUAUUCUCAGUGCUCU-3'(SEQ ID NO:21)
反义链:5'-AGAGCACUGAGAAUACUGUCC-3'(SEQ ID NO:22)
siAPb2
正义链:5'-GGACAGUAUUCUCAGUGCUCU-3'(SEQ ID NO:23)
反义链:5'-AGAGCACUGAGAAUACUGUCCCU-3'(SEQ ID NO:24)
siAPc1
正义链:5'-UAUUCUCAGUGCUCUCCUA-3'(SEQ ID NO:33)
反义链:5'-UAGGAGAGCACUGAGAAUACU-3'(SEQ ID NO:34)
siAPc2
正义链:5'-AGUAUUCUCAGUGCUCUCCUA-3'(SEQ ID NO:35)
反义链:5'-UAGGAGAGCACUGAGAAUACUGU-3'(SEQ ID NO:36)
siAPd1
正义链:5'-AGUAUUCUCAGUGCUCUCC-3'(SEQ ID NO:45)
反义链:5'-GGAGAGCACUGAGAAUACUGU-3'(SEQ ID NO:46)
siAPd2
正义链:5'-ACAGUAUUCUCAGUGCUCUCC-3'(SEQ ID NO:47)
反义链:5'-GGAGAGCACUGAGAAUACUGUCC-3'(SEQ ID NO:48)
siAPe1
正义链:5'-GGACAGUAUUCUCAGUGCU-3'(SEQ ID NO:57)
反义链:5'-AGCACUGAGAAUACUGUCCCU-3'(SEQ ID NO:58)
siAPe2
正义链:5'-AGGGACAGUAUUCUCAGUGCU-3'(SEQ ID NO:59)
反义链:5'-AGCACUGAGAAUACUGUCCCUUU-3'(SEQ ID NO:60)。
在一些实施方案中,所述siRNA具有siAPa1、siAPa2、siAPb1、siAPb2、siAPc1、siAPc2、siAPd1、siAPd2、siAPe1或siAPe2所示的核苷酸序列(即,核酸碱基序列)。
如前所述,本公开的siRNA中的核苷酸各自独立地为修饰或未修饰的核苷酸。在一些实施方案中,本公开的siRNA中的核苷酸为未经修饰的核苷酸;在一些实施方案中,本公开的siRNA中的部分或全部核苷酸为修饰的核苷酸,核苷酸基团上的这些修饰不会导致本公开的siRNA缀合物抑制APOC3基因表达的功能明显削弱或丧失。
在一些实施方案中,本公开的siRNA至少含有1个修饰的核苷酸。在本公开的上下文中,所使用的术语―修饰的核苷酸‖是指核苷酸的核糖基2'位羟基被其他基团取代形成的核苷酸或核苷酸类似物,或者核苷酸上的碱基是经修饰的碱基的核苷酸。所述修饰的核苷酸不会导致siRNA抑制 基因表达的功能明显削弱或丧失。例如,可以选择J.K.Watts,G.F.Deleavey,and M.J.Damha,Chemically modified siRNA:tools and applications.Drug Discov Today,2008,13(19-20):842-55中公开的修饰的核苷酸。
在一些实施方案中,本公开提供的siRNA的正义链或所述反义链中的至少一个核苷酸为修饰的核苷酸,和/或至少一个磷酸酯基为具有修饰基团的磷酸酯基;换句话说,所述正义链和所述反义链中至少一条单链的磷酸-糖骨架中的磷酸酯基和/或核糖基的至少一部分为具有修饰基团的磷酸酯基和/或具有修饰基团的核糖基。
在一些实施方案中,所述正义链和/或所述反义链中的全部核苷酸均为修饰的核苷酸。在一些实施方案中,本公开提供的siRNA的正义链和所述反义链中的每一个核苷酸独立地为氟代修饰的核苷酸或非氟代修饰的核苷酸。
本公开的发明人惊奇地发现,本公开所述的siRNA在动物实验中获得了血浆中稳定性和基因沉默效率的高度平衡。
在一些实施方案中,所述氟代修饰的核苷酸位于核苷酸序列I和核苷酸序列II中,并且,按照5'末端到3'末端的方向,所述核苷酸序列I的第7、8、9位的核苷酸为氟代修饰的核苷酸;按照5'末端到3'末端的方向,所述核苷酸序列II的第2、6、14、16位的核苷酸为氟代修饰的核苷酸。
在一些实施方案中,所述氟代修饰的核苷酸位于核苷酸序列I和核苷酸序列II中,所述核苷酸序列I中氟代修饰的核苷酸不多于5个,并且,按照5'末端到3'末端的方向,所述核苷酸序列I的第7、8、9位的核苷酸为氟代修饰的核苷酸;所述核苷酸序列II中氟代修饰的核苷酸不多于7个,并且,所述核苷酸序列II的第2、6、14、16位的核苷酸为氟代修饰的核苷酸。
在一些实施方案中,按照5'末端到3'末端的方向,在所述正义链中,所述核苷酸序列I的第7、8、9位或者5、7、8、9位的核苷酸为氟代修饰的核苷酸,所述正义链中其余位置的核苷酸为非氟代修饰的核苷酸;按照5'末端到3'末端的方向,在所述反义链中,所述核苷酸序列II的第2、6、14、16位或者2、6、8、9、14、16位的核苷酸为氟代修饰的核苷酸,所述反义链中其余位置的核苷酸为非氟代修饰的核苷酸。
在本公开的上下文中,―氟代修饰的核苷酸‖指核苷酸的核糖基2'位的羟基被氟取代形成的核苷酸,其具有以下式(7)所示的结构。―非氟代修饰的核苷酸‖指核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸、或核苷酸类似物。在一些实施方案中,每一个非氟代修饰的核苷酸独立地选自核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物中的一种。
这些核糖基2'位的羟基被非氟基团取代形成的核苷酸是本领域技术人员所公知的,这些核苷酸可以选自2'-烷氧基修饰的核苷酸、2'-经取代的烷氧基修饰的核苷酸、2'-烷基修饰的核苷酸、2'-经取代的烷基修饰的核苷酸、2'-氨基修饰的核苷酸、2'-经取代的氨基修饰的核苷酸、2'-脱氧核苷酸中的一种。
在一些实施方案中,2'-烷氧基修饰的核苷酸为2'-甲氧基(2'-OMe)修饰的核苷酸,如式(8)所示。在一些实施方案中,2'-经取代的烷氧基修饰的核苷酸,例如可以是2'-O-甲氧基乙基(2'-MOE)修饰的核苷酸,如式(9)所示。在一些实施方案中,2'-氨基(2'-NH 2)修饰的核苷酸如式(10)所示。在一些实施方案中,2'-脱氧核苷酸(DNA)如式(11)所示:
Figure PCTCN2019129016-appb-000004
核苷酸类似物指能够在核酸中代替核苷酸,但结构不同于腺嘌呤核糖核苷酸、鸟嘌呤核糖核苷酸、胞嘧啶核糖核苷酸、尿嘧啶核糖核苷酸或胸腺嘧啶脱氧核糖核苷酸的基团。在一些实施方案中,核苷酸类似物可以是异核苷酸、桥联的核苷酸或无环核苷酸。
桥联的核苷酸(Bridged Nucleic Acid,简称BNA)是指受约束的或不能接近的核苷酸。BNA可以含有五元环、六元环、或七元环的具有―固定的‖C3'-内切糖缩拢的桥联结构。通常将该桥掺入到该核糖的2'-、4'-位处以提供一个2',4'-BNA核苷酸。在一些实施方案中,BNA可以是LNA、ENA、cET BNA等,其中,LNA如式(12)所示,ENA如式(13)所示,cET BNA如式(14)所示:
Figure PCTCN2019129016-appb-000005
无环核苷酸是核苷酸的糖环被打开形成的一类核苷酸。在一些实施方案中,无环核苷酸可以是解锁核酸(UNA)或甘油核酸(GNA),其中,UNA如式(15)所示,GNA如式(16)所示:
Figure PCTCN2019129016-appb-000006
上述式(15)和式(16)中,R选自H、OH或烷氧基(O-烷基)。
异核苷酸是指核苷酸中碱基在核糖环上的位置发生改变而形成的化合物。在一些实施方案中,异核苷酸可以是碱基从核糖环的1'-位移动至2'-位或3'-位而形成的化合物,如式(17)或(18)所示。
Figure PCTCN2019129016-appb-000007
上述式(17)-式(18)化合物中,Base表示核酸碱基,例如A、U、G、C或T;R选自H、OH、F或者如上所述的非氟基团。
在一些实施方案中,核苷酸类似物选自异核苷酸、LNA、ENA、cET、UNA和GNA中的一种。在一些实施方案中,每一个非氟代修饰的核苷酸均为甲氧基修饰的核苷酸,在上文和下文中,所述甲氧基修饰的核苷酸指核糖基的2'-羟基被甲氧基取代而形成的核苷酸。
在上文及下文中,―氟代修饰的核苷酸‖、―2'-氟修饰的核苷酸‖、―核糖基团的2'-羟基被氟取代的核苷酸‖和―具有2'-氟代核糖基的核苷酸‖意义相同,均指核苷酸的2'-羟基被氟取代,而形成的具有如式(7)所示结构的化合物;―甲氧基修饰的核苷酸‖、―2'-甲氧基修饰的核苷酸‖、―核糖基团的2'-羟基被甲氧基取代的核苷酸‖和―具有2'-甲氧基核糖基的核苷酸‖意义相同,均指核苷酸核糖基团的2'-羟基被甲氧基取代而形成的具有如式(8)所示结构的化合物。
在一些实施方案中,本公开的siRNA是具有以下修饰的siRNA:按照5'末端到3'末端的方向,在所述正义链中,所述核苷酸序列I的第7、8、9位或者第5、7、8、9位的核苷酸为氟代修饰的核苷酸,所述正义链中其余位置的核苷酸为甲氧基修饰的核苷酸;在所述反义链中,所述核苷酸序列II的第2、6、14、16位或者第2、6、8、9、14、16位的核苷酸为氟代修饰的核苷酸,所述反义链中其余位置的核苷酸为甲氧基修饰的核苷酸。
在一些实施方案中,本公开的siRNA是具有以下修饰的siRNA:按照5'末端到3'末端的方向,所述siRNA的正义链中核苷酸序列I的第5、7、8和9位的核苷酸为氟代修饰的核苷酸,siRNA的正义链的其余位置的核苷酸为甲氧基修饰的核苷酸,并且,按照5'末端到3'末端的方向,所述siRNA的反义链中核苷酸序列II的第2、6、8、9、14和16位的核苷酸为氟代修饰的核苷酸,siRNA的反义链其余位置的核苷酸为甲氧基修饰的核苷酸;
或者,按照5'末端到3'末端的方向,所述siRNA的正义链中核苷酸序列I的第5、7、8和9位的核苷酸为氟代修饰的核苷酸,siRNA的正义链的其余位置的核苷酸为甲氧基修饰的核苷酸,并且,按照5'末端到3'末端的方向,所述siRNA的反义链中核苷酸序列II的第2、6、14和16位的核苷酸为氟代修饰的核苷酸,siRNA的反义链其余位置的核苷酸为甲氧基修饰的核苷酸;
或者,按照5'末端到3'末端的方向,所述siRNA的正义链中核苷酸序列I的第7、8和9位的核苷酸为-氟代修饰的核苷酸,siRNA的正义链的其余位置的核苷酸为甲氧基修饰的核苷酸,并 且,按照5'末端到3'末端的方向,所述siRNA的反义链中核苷酸序列II的第2、6、14和16位的核苷酸为氟代修饰的核苷酸,siRNA的反义链其余位置的核苷酸为甲氧基修饰的核苷酸。
在一些实施方案中,本公开提供的siRNA为siAPa1-M1、siAPa2-M1、siAPa1-M2、siAPa2-M2、siAPa1-M3、siAPa2-M3、siAPb1-M1、siAPb2-M1、siAPb1-M2、siAPb2-M2、siAPb1-M3、siAPb2-M3、siAPc1-M1、siAPc2-M1、siAPc1-M2、siAPc2-M2、siAPc1-M3、siAPc2-M3、siAPd1-M1、siAPd2-M1、siAPd1-M2、siAPd2-M2、siAPd1-M3、siAPd2-M3、siAPe1-M1、siAPe2-M1、siAPe1-M2、siAPe2-M2、siAPe1-M3、siAPe2-M3中的任意一种:
siAPa1-M1
正义链:5'-UmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:61)
反义链:5'-AmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCm-3'(SEQ ID NO:62)
siAPa2-M1
正义链:5'-GmCmUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:63)
反义链:5'-AmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3'(SEQ ID NO:64)
siAPa1-M2
正义链:5'-UmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:65)
反义链:5'-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3'(SEQ ID NO:66)
siAPa2-M2
正义链:5'-GmCmUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:67)
反义链:5'-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3'(SEQ ID NO:68)
siAPa1-M3
正义链:5'-UmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:69)
反义链:5'-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3'(SEQ ID NO:70)
siAPa2-M3
正义链:5'-GmCmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:71)
反义链:5'-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3'(SEQ ID NO:72)。
siAPb1-M1
正义链:5'-AmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:73)
反义链:5'-AmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCm-3'(SEQ ID NO:74)
siAPb2-M1
正义链:5'-GmGmAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:75)
反义链:5'-AmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmCmUm-3'(SEQ ID NO:76)
siAPb1-M2
正义链:5'-AmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:77)
反义链:5'-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCm-3'(SEQ ID NO:78)
siAPb2-M2
正义链:5'-GmGmAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:79)
反义链:5'-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmCmUm-3'(SEQ ID NO:80)
siAPb1-M3
正义链:5'-AmCmAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:81)
反义链:5'-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCm-3'(SEQ ID NO:82)
siAPb2-M3
正义链:5'-GmGmAmCmAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:83)
反义链:5'-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmCmUm-3'(SEQ ID NO:84)。
siAPc1-M1
正义链:5'-UmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:85)
反义链:5'-UmAfGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUm-3'(SEQ ID NO:86)
siAPc2-M1
正义链:5'-AmGmUmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:87)
反义链:5'-UmAfGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3'(SEQ ID NO:88)
siAPc1-M2
正义链:5'-UmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:89)
反义链:5'-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUm-3'(SEQ ID NO:90)
siAPc2-M2
正义链:5'-AmGmUmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:91)
反义链:5'-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3'(SEQ ID NO:92)
siAPc1-M3
正义链:5'-UmAmUmUmCmUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:93)
反义链:5'-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUm-3'(SEQ ID NO:94)
siAPc2-M3
正义链:5'-AmGmUmAmUmUmCmUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:95)
反义链:5'-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3'(SEQ ID NO:96)。
siAPd1-M1
正义链:5'-AmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:97);
反义链:5'-GmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUm-3'(SEQ ID NO:98);
siAPd2-M1
正义链:5'-AmCmAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:99);
反义链:5'-GmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3' (SEQ ID NO:100);
siAPd1-M2
正义链:5'-AmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:101);
反义链:5'-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3'(SEQ ID NO:102);
siAPd2-M2
正义链:5'-AmCmAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:103);
反义链:5'-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3'(SEQ ID NO:104);
siAPd1-M3
正义链:5'-AmGmUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:105);
反义链:5'-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3'(SEQ ID NO:106);
siAPd2-M3
正义链:5'-AmCmAmGmUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:107);
反义链:5'-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3'(SEQ ID NO:108)。
siAPe1-M1
正义链:5'-GmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:109);
反义链:5'-AmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUm-3'(SEQ ID NO:110);
siAPe2-M1
正义链:5'-AmGmGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:111);
反义链:5'-AmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3'(SEQ ID NO:112);
siAPe1-M2
正义链:5'-GmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:113);
反义链:5'-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUm-3'(SEQ ID NO:114);
siAPe2-M2
正义链:5'-AmGmGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:115);
反义链:5'-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3'(SEQ ID NO:116);
siAPe1-M3
正义链:5'-GmGmAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:117);
反义链:5'-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUm-3'(SEQ ID NO:118);
siAPe2-M3
正义链:5'-AmGmGmGmAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:119);
反义链:5'-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3'(SEQ ID NO:120)。
具有上述修饰的siRNA不仅成本低,而且可使血液中的核糖核酸酶不易切割核酸,由此增加核酸的稳定性,使核酸具有更强的抵抗核酸酶水解的性能。
在一些实施方案中,本公开提供的siRNA的正义链和反义链中至少一条单链的磷酸-糖骨架中的磷酸酯基中的至少一部分为具有修饰基团的磷酸酯基。在一些实施方案中,具有修饰基团的磷酸酯基为磷酸酯基中的磷酸二酯键中的至少一个氧原子被硫原子取代而形成的硫代磷酸酯基;在一些实施方案中,所述具有修饰基团的磷酸酯基为具有如式(1)所示结构的硫代磷酸酯基:
Figure PCTCN2019129016-appb-000008
这种修饰能稳定siRNA的双链结构,保持碱基配对的高特异性和高亲和力。
在一些实施方案中,本公开提供的siRNA中,硫代磷酸酯基连接存在于由以下位置组成的组中的至少一处:正义链或反义链任意一端的第一个和第二个核苷酸之间;正义链或反义链任意一端的第二个和第三个核苷酸之间;或上述的任意组合。在一些实施方案中,硫代磷酸酯基连接存在于除正义链5'末端以外的全部上述位置处。在一些实施方案中,硫代磷酸酯基连接存在于除正义链3'末端以外的全部上述位置处。在一些实施方案中,硫代磷酸酯基连接存在于以下位置中的至少一处:
所述正义链的5'末端第1个核苷酸和第2个核苷酸之间;
所述正义链的5'末端第2个核苷酸和第3个核苷酸之间;
所述正义链的3'末端第1个核苷酸和第2个核苷酸之间;
所述正义链的3'末端第2个核苷酸和第3个核苷酸之间;
所述反义链的5'末端第1个核苷酸和第2个核苷酸之间;
所述反义链的5'末端第2个核苷酸和第3个核苷酸之间;
所述反义链的3'末端第1个核苷酸和第2个核苷酸之间;以及
所述反义链的3'末端第2个核苷酸和第3个核苷酸之间。
在一些实施方案中,本公开提供的siRNA为siAPa1-M1S、siAPa2-M1S、siAPa1-M2S、siAPa2-M2S、siAPa1-M3S、siAPa2-M3S、siAPb1-M1S、siAPb2-M1S、siAPb1-M2S、siAPb2-M2S、siAPb1-M3S、siAPb2-M3S、siAPc1-M1S、siAPc2-M1S、siAPc1-M2S、siAPc2-M2S、siAPc1-M3S、siAPc2-M3S、siAPd1-M1S、siAPd2-M1S、siAPd1-M2S、siAPd2-M2S、siAPd1-M3S、siAPd2-M3S、siAPe1-M1S、siAPe2-M1S、siAPe1-M2S、siAPe2-M2S、siAPe1-M3S、siAPe2-M3S中的任意一种:
siAPa1-M1S
正义链:5'-UmsUmsAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:121)
反义链:5'-AmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmsGmsCm-3'(SEQ ID NO:122)
siAPa2-M1S
正义链:5'-GmsCmsUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:123)
反义链:5'-AmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3'(SEQ ID NO:124)
siAPa1-M2S
正义链:5'-UmsUmsAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:125)
反义链:5'-AmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmsGmsCm-3'(SEQ ID NO:126)
siAPa2-M2S
正义链:5'-GmsCmsUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:127)
反义链:5'-AmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3'(SEQ ID NO:128)
siAPa1-M3S
正义链:5'-UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:129)
反义链:5'-AmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmsGmsCm-3'(SEQ ID NO:130)
siAPa2-M3S
正义链:5'-GmsCmsUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:131)
反义链:5'-AmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3'(SEQ ID NO:132)。
siAPb1-M1S
正义链:5'-AmsCmsAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:133)
反义链:5'-AmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmsCmsCm-3'(SEQ ID NO:134)
siAPb2-M1S
正义链:5'-GmsGmsAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:135)
反义链:5'-AmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3'(SEQ ID NO:136)
siAPb1-M2S
正义链:5'-AmsCmsAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:137)
反义链:5'-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3'(SEQ ID NO:138)
siAPb2-M2S
正义链:5'-GmsGmsAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:139)
反义链:5'-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3'(SEQ ID NO:140)
siAPb1-M3S
正义链:5'-AmsCmsAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:141)
反义链:5'-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3'(SEQ ID NO:142)
siAPb2-M3S
正义链:5'-GmsGmsAmCmAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:143)
反义链:5'-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3'(SEQ ID NO:144)。
siAPc1-M1S
正义链:5'-UmsAmsUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:145)
反义链:5'-UmsAfsGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmsCmsUm-3'(SEQ ID NO:146)
siAPc2-M1S
正义链:5'-AmsGmsUmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'
(SEQ ID NO:147)
反义链:5'-UmsAfsGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3'(SEQ ID NO:148)
siAPc1-M2S
正义链:5'-UmsAmsUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:149)
反义链:5'-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmsCmsUm-3' (SEQ ID NO:150)
siAPc2-M2S
正义链:5'-AmsGmsUmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'
(SEQ ID NO:151)
反义链:5'-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3'(SEQ ID NO:152)
siAPc1-M3S
正义链:5'-UmsAmsUmUmCmUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:153)
反义链:5'-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmsCmsUm-3'(SEQ ID NO:154)
siAPc2-M3S
正义链:5'-AmsGmsUmAmUmUmCmUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:155)
反义链:5'-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3'(SEQ ID NO:156)。
siAPd1-M1S
正义链:5'-AmsGmsUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:157);
反义链:5'-GmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmsGmsUm-3'(SEQ ID NO:158);
siAPd2-M1S
正义链:5'-AmsCmsAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:159);
反义链:5'-GmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3'(SEQ ID NO:160);
siAPd1-M2S
正义链:5'-AmsGmsUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:161);
反义链:5'-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3'(SEQ ID NO:162);
siAPd2-M2S
正义链:5'-AmsCmsAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:163);
反义链:5'-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3'(SEQ ID NO:164);
siAPd1-M3S
正义链:5'-AmsGmsUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:165);
反义链:5'-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3'(SEQ ID NO:166);
siAPd2-M3S
正义链:5'-AmsCmsAmGmUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:167);
反义链:5'-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3'(SEQ ID NO:168)。
siAPe1-M1S
正义链:5'-GmsGmsAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:169);
反义链:5'-AmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmsCmsUm-3'(SEQ ID NO:170);
siAPe2-M1S
正义链:5'-AmsGmsGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ  ID NO:171);
反义链:5'-AmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUmsUmsUm-3'(SEQ ID NO:172);
siAPe1-M2S
正义链:5'-GmsGmsAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:173);
反义链:5'-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3'(SEQ ID NO:174);
siAPe2-M2S
正义链:5'-AmsGmsGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:175);
反义链:5'-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmsUmsUm-3'(SEQ ID NO:176);
siAPe1-M3S
正义链:5'-GmsGmsAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:177);
反义链:5'-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3'(SEQ ID NO:178);
siAPe2-M3S
正义链:5'-AmsGmsGmGmAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:179);
反义链:5'-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmsUmsUm-3'(SEQ ID NO:180)。
在一些实施方案中,所述siRNA反义链的5'末端核苷酸为5'-磷酸核苷酸或5'-磷酸类似物修饰的核苷酸。
常用的所述5'-磷酸核苷酸或5'-磷酸类似物修饰的核苷酸是本领域技术人员所公知的,如5'-磷酸核苷酸可具有如下结构:
Figure PCTCN2019129016-appb-000009
再如,Anastasia Khvorova and Jonathan K.Watts,The chemical evolution of oligonucleotide therapies of clinical utility.Nature Biotechnology,2017,35(3):238-48中公开了如下4种5'-磷酸类似物修饰的核苷酸:
Figure PCTCN2019129016-appb-000010
其中,R选自H、OH、甲氧基、氟;Base表示核酸碱基,选自A、U、C、G或T。
在一些实施方案中,5'-磷酸核苷酸为式(2)所示的含有5'-磷酸修饰的核苷酸,5'-磷酸类似物修饰的核苷酸为含有乙烯基磷酸酯修饰的核苷酸,如式(3)所示,或者为硫代磷酸酯修饰的核苷酸,如式(5)所示。
在一些实施方案中,本公开提供的siRNA为siAPa1-M1P1、siAPa2-M1P1、siAPa1-M2P1、siAPa2-M2P1、siAPa1-M3P1、siAPa2-M3P1、siAPa1-M1SP1、siAPa2-M1SP1、siAPa1-M2SP1、siAPa2-M2SP1、siAPa1-M3SP1、siAPa2-M3SP1、siAPa1U-M1P1、siAPa2U-M1P1、siAPa1U-M2P1、siAPa2U-M2P1、siAPa1U-M3P1、siAPa2U-M3P1、siAPa1U-M1SP1、siAPa2U-M1SP1、siAPa1U-M2SP1、siAPa2U-M2SP1、siAPa1U-M3SP1、siAPa2U-M3SP1、siAPb1-M1P1、 siAPb2-M1P1、siAPb1-M2P1、siAPb2-M2P1、siAPb1-M3P1、siAPb2-M3P1、siAPb1-M1SP1、siAPb2-M1SP1、siAPb1-M2SP1、siAPb2-M2SP1、siAPb1-M3SP1、siAPb2-M3SP1、siAPb1U-M1P1、siAPb2U-M1P1、siAPb1U-M2P1、siAPb2U-M2P1、siAPb1U-M3P1、siAPb2U-M3P1、siAPb1U-M1SP1、siAPb2U-M1SP1、siAPb1U-M2SP1、siAPb2U-M2SP1、siAPb1U-M3SP1、siAPb2U-M3SP1、siAPc1-M1P1、siAPc2-M1P1、siAPc1-M2P1、siAPc2-M2P1、siAPc1-M3P1、siAPc2-M3P1、siAPc1-M1SP1、siAPc2-M1SP1、siAPc1-M2SP1、siAPc2-M2SP1、siAPc1-M3SP1、siAPc2-M3SP1、siAPd1-M1P1、siAPd2-M1P1、siAPd1-M2P1、siAPd2-M2P1、siAPd1-M3P1、siAPd2-M3P1、siAPd1-M1SP1、siAPd2-M1SP1、siAPd1-M2SP1、siAPd2-M2SP1、siAPd1-M3SP1、siAPd2-M3SP1、siAPd1U-M1P1、siAPd2U-M1P1、siAPd1U-M2P1、siAPd2U-M2P1、siAPd1U-M3P1、siAPd2U-M3P1、siAPd1U-M1SP1、siAPd2U-M1SP1、siAPd1U-M2SP1、siAPd2U-M2SP1、siAPd1U-M3SP1、siAPd2U-M3SP1、siAPe1-M1P1、siAPe2-M1P1、siAPe1-M2P1、siAPe2-M2P1、siAPe1-M3P1、siAPe2-M3P1、siAPe1-M1SP1、siAPe2-M1SP1、siAPe1-M2SP1、siAPe2-M2SP1、siAPe1-M3SP1、siAPe2-M3SP1、siAPe1U-M1P1、siAPe2U-M1P1、siAPe1U-M2P1、siAPe2U-M2P1、siAPe1U-M3P1、siAPe2U-M3P1、siAPe1U-M1SP1、siAPe2U-M1SP1、siAPe1U-M2SP1、siAPe2U-M2SP1、siAPe1U-M3SP1、siAPe2U-M3SP1中的任意一种:
siAPa1-M1P1
正义链:5'-UmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:181)
反义链:5'-P1-AmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCm-3'(SEQ ID NO:182)
siAPa2-M1P1
正义链:5'-GmCmUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:183)
反义链:5'-P1-AmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3'(SEQ ID NO:184)
siAPa1-M2P1
正义链:5'-UmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:185)
反义链:5'-P1-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3'(SEQ ID NO:186)
siAPa2-M2P1
正义链:5'-GmCmUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:187)
反义链:5'-P1-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3'(SEQ ID NO:188)
siAPa1-M3P1
正义链:5'-UmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:189)
反义链:5'-P1-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3'(SEQ ID NO:190)
siAPa2-M3P1
正义链:5'-GmCmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:191)
反义链:5'-P1-AmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3'(SEQ ID NO:192)
siAPa1-M1SP1
正义链:5'-UmsUmsAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:193)
反义链:5'-P1-AmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmsGmsCm-3'(SEQ ID NO:194)
siAPa2-M1SP1
正义链:5'-GmsCmsUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:195)
反义链:5'-P1-AmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3'(SEQ ID NO:196)
siAPa1-M2SP1
正义链:5'-UmsUmsAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:197)
反义链:5'-P1-AmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmsGmsCm-3'(SEQ ID NO:198)
siAPa2-M2SP1
正义链:5'-GmsCmsUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:199)
反义链:5'-P1-AmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3'(SEQ ID NO:200)
siAPa1-M3SP1
正义链:5'-UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:201)
反义链:5'-P1-AmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmsGmsCm-3'(SEQ ID NO:202)
siAPa2-M3SP1
正义链:5'-GmsCmsUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmUm-3'(SEQ ID NO:203)
反义链:5'-P1-AmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3'(SEQ ID NO:204);
siAPa1U-M1P1
正义链:5'-UmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:327)
反义链:5'-P1-UmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCm-3'(SEQ ID NO:328)
siAPa2U-M1P1
正义链:5'-GmCmUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:329)
反义链:5'-P1-UmGfAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3'(SEQ ID NO:330)
siAPa1U-M2P1
正义链:5'-UmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:331)
反义链:5'-P1-UmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3'(SEQ ID NO:332)
siAPa2U-M2P1
正义链:5'-GmCmUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:333)
反义链:5'-P1-UmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm-3'(SEQ ID NO:334)
siAPa1U-M3P1
正义链:5'-UmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:335)
反义链:5'-P1-UmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCm-3'(SEQ ID NO:336)
siAPa2U-M3P1
正义链:5'-GmCmUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:337)
反义链:5'-P1-UmGfAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmAmAm -3'(SEQ ID NO:338)
siAPa1U-M1SP1
正义链:5'-UmsUmsAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:339)
反义链:5'-P1-UmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmsGmsCm-3'(SEQ ID NO:340)
siAPa2U-M1SP1
正义链:5'-GmsCmsUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:341)
反义链:5'-P1-UmsGfsAmAmUmAfCmUfGfUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3'(SEQ ID NO:342)
siAPa1U-M2SP1
正义链:5'-UmsUmsAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:343)
反义链:5'-P1-UmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmsGmsCm-3'(SEQ ID NO:344)
siAPa2U-M2SP1
正义链:5'-GmsCmsUmUmAmAmAfAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:345)
反义链:5'-P1-UmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3'(SEQ ID NO:346)
siAPa1U-M3SP1
正义链:5'-UmsUmsAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:347)
反义链:5'-P1-UmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmsGmsCm-3'(SEQ ID NO:348)
siAPa2U-M3SP1
正义链:5'-GmsCmsUmUmAmAmAmAmGfGfGfAmCmAmGmUmAmUmUmCmAm-3'(SEQ ID NO:349)
反义链:5'-P1-UmsGfsAmAmUmAfCmUmGmUmCmCmCmUfUmUfUmAmAmGmCmsAmsAm-3'(SEQ ID NO:350)。
siAPb1-M1P1
正义链:5'-AmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:205)
反义链:5'-P1-AmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCm-3'(SEQ ID NO:206)
siAPb2-M1P1
正义链:5'-GmGmAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:207)
反义链:5'-P1-AmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmCmUm-3'(SEQ ID NO:208)
siAPb1-M2P1
正义链:5'-AmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:209)
反义链:5'-P1-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCm-3'(SEQ ID NO:210)
siAPb2-M2P1
正义链:5'-GmGmAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:211)
反义链:5'-P1-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmCmUm-3'(SEQ ID NO:212)
siAPb1-M3P1
正义链:5'-AmCmAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:213)
反义链:5'-P1-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCm-3'(SEQ ID NO:214)
siAPb2-M3P1
正义链:5'-GmGmAmCmAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:215)
反义链:5'-P1-AmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmCmUm-3'(SEQ ID NO:216)
siAPb1-M1SP1
正义链:5'-AmsCmsAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:217)
反义链:5'-P1-AmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmsCmsCm-3'(SEQ ID NO:218)
siAPb2-M1SP1
正义链:5'-GmsGmsAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:219)
反义链:5'-P1-AmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3'(SEQ ID NO:220)
siAPb1-M2SP1
正义链:5'-AmsCmsAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:221)
反义链:5'-P1-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3'(SEQ ID NO:222)
siAPb2-M2SP1
正义链:5'-GmsGmsAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:223)
反义链:5'-P1-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3'(SEQ ID NO:224)
siAPb1-M3SP1
正义链:5'-AmsCmsAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:225)
反义链:5'-P1-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3'(SEQ ID NO:226)
siAPb2-M3SP1
正义链:5'-GmsGmsAmCmAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmUm-3'(SEQ ID NO:227)
反义链:5'-P1-AmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3'(SEQ ID NO:228)
siAPb1U-M1P1
正义链:5'-AmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:351)
反义链:5'-P1-UmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCm-3'(SEQ ID NO:352)
siAPb2U-M1P1
正义链:5'-GmGmAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:353)
反义链:5'-P1-UmGfAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmCmUm-3'(SEQ ID NO:354)
siAPb1U-M2P1
正义链:5'-AmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:355)
反义链:5'-P1-UmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCm-3'(SEQ ID NO:356)
siAPb2U-M2P1
正义链:5'-GmGmAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:357)
反义链:5'-P1-UmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmCmUm-3'(SEQ ID NO:358)
siAPb1U-M3P1
正义链:5'-AmCmAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:359)
反义链:5'-P1-UmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCm-3'(SEQ ID NO:360)
siAPb2U-M3P1
正义链:5'-GmGmAmCmAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:361)
反义链:5'-P1-UmGfAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmCmUm-3'(SEQ ID NO:362)
siAPb1U-M1SP1
正义链:5'-AmsCmsAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:363)
反义链:5'-P1-UmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmsCmsCm-3'(SEQ ID NO:364)
siAPb2U-M1SP1
正义链:5'-GmsGmsAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:365)
反义链:5'-P1-UmsGfsAmGmCmAfCmUfGfAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3'(SEQ ID NO:366)
siAPb1U-M2SP1
正义链:5'-AmsCmsAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:367)
反义链:5'-P1-UmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3'(SEQ ID NO:368)
siAPb2U-M2SP1
正义链:5'-GmsGmsAmCmAmGmUfAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:369)
反义链:5'-P1-UmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3'(SEQ ID NO:370)
siAPb1U-M3SP1
正义链:5'-AmsCmsAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:371)
反义链:5'-P1-UmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmsCmsCm-3'(SEQ ID NO:372)
siAPb2U-M3SP1
正义链:5'-GmsGmsAmCmAmGmUmAmUfUfCfUmCmAmGmUmGmCmUmCmAm-3'(SEQ ID NO:373)
反义链:5'-P1-UmsGfsAmGmCmAfCmUmGmAmGmAmAmUfAmCfUmGmUmCmCmsCmsUm-3'(SEQ ID NO:374);
siAPc1-M1P1
正义链:5'-UmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:229)
反义链:5'-P1-UmAfGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUm-3'(SEQ ID NO:230)
siAPc2-M1P1
正义链:5'-AmGmUmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:231)
反义链:5'-P1-UmAfGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3'(SEQ ID NO:232)
siAPc1-M2P1
正义链:5'-UmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:233)
反义链:5'-P1-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUm-3'(SEQ ID NO:234)
siAPc2-M2P1
正义链:5'-AmGmUmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:235)
反义链:5'-P1-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3'(SEQ ID NO:236)
siAPc1-M3P1
正义链:5'-UmAmUmUmCmUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:237)
反义链:5'-P1-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUm-3'(SEQ ID NO:238)
siAPc2-M3P1
正义链:5'-AmGmUmAmUmUmCmUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:239)
反义链:5'-P1-UmAfGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmGmUm-3'(SEQ ID NO:240)
siAPc1-M1SP1
正义链:5'-UmsAmsUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:241)
反义链:5'-P1-UmsAfsGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmsCmsUm-3'(SEQ ID NO:242)
siAPc2-M1SP1
正义链:5'-AmsGmsUmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:243)
反义链:5'-P1-UmsAfsGmGmAmGfAmGfCfAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3'(SEQ ID NO:244)
siAPc1-M2SP1
正义链:5'-UmsAmsUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:245)
反义链:5'-P1-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmsCmsUm-3'(SEQ ID NO:246)
siAPc2-M2SP1
正义链:5'-AmsGmsUmAmUmUmCfUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:247)
反义链:5'-P1-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3'(SEQ ID NO:248)
siAPc1-M3SP1
正义链:5'-UmsAmsUmUmCmUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:249)
反义链:5'-P1-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmsCmsUm-3'(SEQ ID NO:250)
siAPc2-M3SP1
正义链:5'-AmsGmsUmAmUmUmCmUmCfAfGfUmGmCmUmCmUmCmCmUmAm-3'(SEQ ID NO:251)
反义链:5'-P1-UmsAfsGmGmAmGfAmGmCmAmCmUmGmAfGmAfAmUmAmCmUmsGmsUm-3'(SEQ ID NO:252)
siAPd1-M1P1
正义链:5'-AmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:253);
反义链:5'-P1-GmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUm-3'(SEQ ID NO:254);
siAPd2-M1P1
正义链:5'-AmCmAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:255);
反义链:5'-P1-GmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3'(SEQ ID NO:256);
siAPd1-M2P1
正义链:5'-AmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:257);
反义链:5'-P1-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3'(SEQ ID NO:258);
siAPd2-M2P1
正义链:5'-AmCmAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:259);
反义链:5'-P1-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3'(SEQ ID NO:260);
siAPd1-M3P1
正义链:5'-AmGmUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:261);
反义链:5'-P1-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3'(SEQ ID NO:262);
siAPd2-M3P1
正义链:5'-AmCmAmGmUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:263);
反义链:5'-P1-GmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3'(SEQ ID NO:264);
siAPd1-M1SP1
正义链:5'-AmsGmsUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:265);
反义链:5'-P1-GmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmsGmsUm-3'(SEQ ID NO:266);
siAPd2-M1SP1
正义链:5'-AmsCmsAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:267);
反义链:5'-P1-GmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3'(SEQ ID NO:268);
siAPd1-M2SP1
正义链:5'-AmsGmsUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO: 269);
反义链:5'-P1-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3'(SEQ ID NO:270);
siAPd2-M2SP1
正义链:5'-AmsCmsAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmsCmsCm-3'(SEQ ID NO:271);
反义链:5'-P1-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3'(SEQ ID NO:272);
siAPd1-M3SP1
正义链:5'-AmsCmsAmGmUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:273);
反义链:5'-P1-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3'(SEQ ID NO:274);
siAPd2-M3SP1
正义链:5'-AmsCmsAmGmUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmCm-3'(SEQ ID NO:275);
反义链:5'-P1-GmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3'(SEQ ID NO:276);
siAPd1U-M1P1
正义链:5'-AmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:375);
反义链:5'-P1-UmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUm-3'(SEQ ID NO:376);
siAPd2U-M1P1
正义链:5'-AmCmAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:377);
反义链:5'-P1-UmGfAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3'(SEQ ID NO:378);
siAPd1U-M2P1
正义链:5'-AmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:379);
反义链:5'-P1-UmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3'(SEQ ID NO:380);
siAPd2U-M2P1
正义链:5'-AmCmAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:381);
反义链:5'-P1-UmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3'(SEQ ID NO:382);
siAPd1U-M3P1
正义链:5'-AmGmUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:383);
反义链:5'-P1-UmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUm-3'(SEQ ID NO:384);
siAPd2U-M3P1
正义链:5'-AmCmAmGmUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:385);
反义链:5'-P1-UmGfAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmCmCm-3'(SEQ ID NO:386);
siAPd1U-M1SP1
正义链:5'-AmsGmsUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:387);
反义链:5'-P1-UmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmsGmsUm-3'(SEQ ID NO:388);
siAPd2U-M1SP1
正义链:5'-AmsCmsAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:389);
反义链:5'-P1-UmsGfsAmGmAmGfCmAfCfUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3'(SEQ ID NO:390);
siAPd1U-M2SP1
正义链:5'-AmsGmsUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:391);
反义链:5'-P1-UmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3'(SEQ ID NO:392);
siAPd2U-M2SP1
正义链:5'-AmsCmsAmGmUmAmUfUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:393);
反义链:5'-P1-UmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3'(SEQ ID NO:394);
siAPd1U-M3SP1
正义链:5'-AmsGmsUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:395);
反义链:5'-P1-UmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmsGmsUm-3'(SEQ ID NO:396);
siAPd2U-M3SP1
正义链:5'-AmsCmsAmGmUmAmUmUmCfUfCfAmGmUmGmCmUmCmUmCmAm-3'(SEQ ID NO:397);
反义链:5'-P1-UmsGfsAmGmAmGfCmAmCmUmGmAmGmAfAmUfAmCmUmGmUmsCmsCm-3'(SEQ ID NO:398);
siAPe1-M1P1
正义链:5'-GmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:277);
反义链:5'-P1-AmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUm-3'(SEQ ID NO:278);
siAPe2-M1P1
正义链:5'-AmGmGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:279);
反义链:5'-P1-AmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3'(SEQ ID NO:280);
siAPe1-M2P1
正义链:5'-GmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:281);
反义链:5'-P1-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUm-3'(SEQ ID NO:282);
siAPe2-M2P1
正义链:5'-AmGmGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:283);
反义链:5'-P1-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3'(SEQ ID NO:284);
siAPe1-M3P1
正义链:5'-GmGmAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:285);
反义链:5'-P1-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUm-3'(SEQ ID NO:286);
siAPe2-M3P1
正义链:5'-AmGmGmGmAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:287);
反义链:5'-P1-AmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3'(SEQ ID NO:288);
siAPe1-M1SP1
正义链:5'-GmsGmsAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:289);
反义链:5'-P1-AmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmsCmsUm-3'(SEQ ID NO:290);
siAPe2-M1SP1
正义链:5'-AmsGmsGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:291);
反义链:5'-P1-AmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUmsUmsUm-3'(SEQ ID NO:292);
siAPe1-M2SP1
正义链:5'-GmsGmsAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:293);
反义链:5'-P1-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3'(SEQ ID NO:294);
siAPe2-M2SP1
正义链:5'-AmsGmsGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:295);
反义链:5'-P1-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmsUmsUm-3'(SEQ ID NO:296);
siAPe1-M3SP1
正义链:5'-GmsGmsAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:297);
反义链:5'-P1-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3'(SEQ ID NO:298);
siAPe2-M3SP1
正义链:5'-AmsGmsGmGmAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmUm-3'(SEQ ID NO:299);
反义链:5'-P1-AmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmsUmsUm-3'(SEQ ID NO:300);
siAPe1U-M1P1
正义链:5'-GmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:399);
反义链:5'-P1-UmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUm-3'(SEQ ID NO:400);
siAPe2U-M1P1
正义链:5'-AmGmGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:401);
反义链:5'-P1-UmGfCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3'(SEQ ID NO:402);
siAPe1U-M2P1
正义链:5'-GmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:403);
反义链:5'-P1-UmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUm-3' (SEQ ID NO:404);
siAPe2U-M2P1
正义链:5'-AmGmGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:405);
反义链:5'-P1-UmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3'(SEQ ID NO:406);
siAPe1U-M3P1
正义链:5'-GmGmAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:407);
反义链:5'-P1-UmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUm-3'(SEQ ID NO:408);
siAPe2U-M3P1
正义链:5'-AmGmGmGmAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:409);
反义链:5'-P1-UmGfCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmUmUm-3'(SEQ ID NO:410);
siAPe1U-M1SP1
正义链:5'-GmsGmsAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:411);
反义链:5'-P1-UmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmsCmsUm-3'(SEQ ID NO:412);
siAPe2U-M1SP1
正义链:5'-AmsGmsGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:413);
反义链:5'-P1-UmsGfsCmAmCmUfGmAfGfAmAmUmAmCfUmGfUmCmCmCmUmsUmsUm-3'(SEQ ID NO:414);
siAPe1U-M2SP1
正义链:5'-GmsGmsAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:415);
反义链:5'-P1-UmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3'(SEQ ID NO:416);
siAPe2U-M2SP1
正义链:5'-AmsGmsGmGmAmCmAfGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:417);
反义链:5'-P1-UmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmsUmsUm-3'(SEQ ID NO:418);
siAPe1U-M3SP1
正义链:5'-GmsGmsAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:419);
反义链:5'-P1-UmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmsCmsUm-3'(SEQ ID NO:420);
siAPe2U-M3SP1
正义链:5'-AmsGmsGmGmAmCmAmGmUfAfUfUmCmUmCmAmGmUmGmCmAm-3'(SEQ ID NO:421);
反义链:5'-P1-UmsGfsCmAmCmUfGmAmGmAmAmUmAmCfUmGfUmCmCmCmUmsUmsUm-3'(SEQ ID NO:422)。
在一些实施方案中,所述siRNA选自siAPa1UM3SVP、siAPe1UM3SVP、siAPb1UM3SVP、siAPd1UM3SVP、siAPc1M3SVP、siAPd1UM3SP、siAPd1UM3SPs、siAPa1M3SP、siAPe1M3SP、siAPb1M3SP和siAPc1M3SP中的一种。上述siRNA示于表7中。
在上述本公开的siRNA中,大写字母C、G、U、A表示核苷酸的碱基组成;小写字母m表 示该字母m左侧相邻的一个核苷酸为甲氧基修饰的核苷酸;小写字母f表示该字母f左侧相邻的一个核苷酸为氟代修饰的核苷酸;小写字母s表示该字母左右两个核苷酸之间为硫代磷酸酯基连接;字母数字组合P1表示该字母右侧相邻的一个核苷酸为5'-磷酸核苷酸或5'-磷酸类似物修饰的核苷酸。在一些实施方案中,P1表示具体修饰为VP、Ps或P,其中,字母组合VP表示该字母组合VP右侧相邻的一个核苷酸为乙烯基磷酸酯(5'-(E)-vinylphosphonate,E-VP)修饰的核苷酸,字母组合Ps表示该字母组合Ps右侧相邻的一个核苷酸为硫代磷酸酯修饰的核苷酸,大写字母P表示该字母P右侧相邻的一个核苷酸为5'-磷酸核苷酸。
本公开的发明人意外发现,本公开提供的siRNA不仅具有显著增强的血浆和溶酶体稳定性,还保留很高的基因抑制活性。
本公开提供的siRNA可以通过本领域常规的siRNA制备方法(例如固相合成和液相合成的方法)得到。其中,固相合成已经有商业化订制服务。可以通过使用具有相应修饰的核苷单体来将修饰的核苷酸基团引入本公开所述的siRNA中,制备具有相应修饰的核苷单体的方法及将修饰的核苷酸基团引入siRNA的方法也是本领域技术人员所熟知的。
药物组合物
本公开提供了一种药物组合物,所述药物组合物含有如上所述的siRNA作为活性成分和药学上可接受的载体。
所述药学上可接受的载体可以是siRNA给药领域常规使用的载体,例如但不限于磁性纳米粒(magnetic nanoparticles,如基于Fe 3O 4或Fe 2O 3的纳米粒)、碳纳米管(carbon nanotubes)、介孔硅(mesoporous silicon)、磷酸钙纳米粒(calcium phosphate nanoparticles)、聚乙烯亚胺(polyethylenimine,PEI)、聚酰胺型树形高分子(polyamidoamine(PAMAM)dendrimer)、聚赖氨酸(poly(L-lysine),PLL)、壳聚糖(chitosan)、1,2-二油酰基-3-三甲铵丙烷(1,2-dioleoyl-3-trimethylammonium-propane,DOTAP)、聚D型或L型乳酸/羟基乙酸共聚物(poly(D&L-lactic/glycolic acid)copolymer,PLGA)、聚(氨乙基乙撑磷酸酯)(poly(2-aminoethyl ethylene phosphate),PPEEA)和聚(甲基丙烯酸-N,N-二甲氨基乙酯)(poly(2-dimethylaminoethyl methacrylate),PDMAEMA)以及它们的衍生物中的一种或多种。
在一些实施方案中,所述药物组合物中,对siRNA和药学上可接受的载体的含量没有特别要求,在一些实施方案中,siRNA与药学上可接受的载体的重量比可以为1:(1-500),在一些的实施方案中,上述重量比为1:(1-50)。
在一些实施方案中,所述药物组合物中,还可以包含药学上可接受的其它辅料,该辅料可以为本领域常规采用的各种制剂或化合物的一种或多种。例如,所述药学上可接受的其它辅料可以包括pH缓冲液、保护剂和渗透压调节剂中的至少一种。
所述pH缓冲液可以为pH值7.5-8.5的三羟甲基胺基甲烷盐酸盐缓冲液和/或pH值5.5-8.5的磷酸盐缓冲液,例如可以为pH值5.5-8.5的磷酸盐缓冲液。
所述保护剂可以为肌醇、山梨醇、蔗糖、海藻糖、甘露糖、麦芽糖、乳糖和葡萄糖中的至少一种。以所述药物组合物的总重量为基准,所述保护剂的含量可以为0.01-30重量%。
所述渗透压调节剂可以为氯化钠和/或氯化钾。所述渗透压调节剂的含量使所述药物组合物的渗透压为200-700毫渗摩尔/千克(mOsm/kg)。根据所需渗透压,本领域技术人员可以容易地确定所述渗透压调节剂的含量。
在一些实施方案中,所述药物组合物可以为液体制剂,例如注射液;也可以为冻干粉针剂,实施给药时与液体辅料混合,配制成液体制剂。所述液体制剂可以但不限于用于皮下、肌肉或静脉注射给药,也可以但不限于通过喷雾给药到肺脏、或通过喷雾经肺脏给药到其它脏器组织(如肝脏)。在一些实施方案中,所述药物组合物用于静脉注射给药。
在一些实施方案中,所述药物组合物可以为脂质体制剂的形式。在一些实施方案中,所述脂质体制剂中使用的药学上可接受的载体包含含胺的转染化合物(下文也可将其称为有机胺)、辅助脂质和/或聚乙二醇化脂质。其中,所述有机胺、辅助脂质和聚乙二醇化脂质可分别选自于CN103380113A(通过引用的方式将其整体并入本文)中所描述的含胺的转染化合物或其药学上可接受的盐或衍生物、辅助脂质和聚乙二醇化脂质中的一种或多种。
在一些实施方案中,所述有机胺可为CN103380113A中描述的如式(201)所示的化合物或其药学上可接受的盐:
Figure PCTCN2019129016-appb-000011
其中:
X 101和X 102各自独立地是O、S、N-A或C-A,其中A是氢或C 1-C 20烃链;
Y 101和Z 101各自独立地是C=O、C=S、S=O、CH-OH或SO 2
R 101、R 102、R 103、R 104、R 105、R 106和R 107各自独立地是氢,环状或无环的、被取代的或未被取代的、支链或直链脂族基团,环状或无环的、被取代的或未被取代的、支链或直链杂脂族基团,被取代的或未被取代的、支链或直链酰基,被取代的或未被取代的、支链或直链芳基,被取代的或未被取代的、支链或直链杂芳基;
x是1-10的整数;
n是1-3的整数,m是0-20的整数,p是0或1;其中,如果m=p=0,则R 102是氢;
并且,如果n或m中的至少一个是2,那么R 103和在式(201)中的氮形成如式(202)或式(203)所示的结构:
Figure PCTCN2019129016-appb-000012
其中,g、e和f各自独立地是1-6的整数,―HCC‖代表烃链,且每个*N代表式(201)中的氮原子。
在一些实施方案中,R 103是多胺。在其它实施方案中,R 103是缩酮。在一些实施方案中,在式(201)中的R 101和R 102中的每一个独立地是任意的被取代的或未被取代的、支链或直链烷基或烯基,所述烷基或烯基具有3至约20个碳原子,诸如8至约18个碳原子,和0至4个双键,诸如0至2个双键。
在一些实施方案中,如果n和m中的每一个独立地具有1或3的值,那么R 103可以是下述式(204)-式(213)中的任一个:
Figure PCTCN2019129016-appb-000013
Figure PCTCN2019129016-appb-000014
其中,式(204)-式(213)中,g、e和f各自独立地是1-6的整数,每个―HCC‖代表烃链,且每个*显示R 103与在式(201)中的氮原子的可能连接点,其中在任意*位置上的每个H可以被替换以实现与在式(201)中的氮原子的连接。
其中,式(201)所示化合物可以根据CN103380113A中的描述制备。
在一些实施方案中,所述有机胺为如式(214)所示的有机胺和/或如式(215)所示的有机胺:
Figure PCTCN2019129016-appb-000015
所述辅助脂质为胆固醇、胆固醇的类似物和/或胆固醇的衍生物;
所述聚乙二醇化脂质为1,2-二棕榈酰胺-sn-甘油-3-磷脂酰乙醇胺-N-[甲氧基(聚乙二醇)]-2000。
在一些实施方案中,所述药物组合物中,所述有机胺、所述辅助脂质和所述聚乙二醇化脂质三者之间的摩尔比为(19.7-80):(19.7-80):(0.3-50),例如可以为(50-70):(20-40):(3-20)。
在一些实施方案中,由本公开的siRNA与上述含胺的转染试剂形成的药物组合物颗粒具有约30nm至约200nm的平均直径,通常为约40nm至约135nm,更通常地,该脂质体颗粒的平均直径是约50nm至约120nm、约50nm至约100nm、约60nm至约90nm或约70nm至约90nm,例如,该脂质体颗粒的平均直径是约30、40、50、60、70、75、80、85、90、100、110、120、130、140、150或160nm。
在一些实施方案中,由本公开的siRNA与上述含胺的转染试剂形成的药物组合物中,siRNA与全部脂质(例如有机胺、辅助脂质和/或聚乙二醇化脂质)的重量比(重量/重量比)在从约1:1至约1:50、从约1:1至约1:30、从约1:3至约1:20、从约1:4至约1:18、从约1:5至约1:17、从约1:5至约1:15、从约1:5至约1:12、从约1:6至约1:12或从约1:6至约1:10的范围内,例如,本公开的siRNA与全部脂质的重量比为约1:5、1:6、1:7、1:8、1:9、1:10、1:11、1:12、1:13、1:14、1:15、1:16、1:17或1:18。
在一些实施方案中,所述药物组合物在销售时各组分可以独立存在,在使用时可以液体制剂的形式存在。在一些实施方案中,本公开提供的siRNA与上述药学上可接受的载体形成的药物组合物可以按照已知的各种方法制备,只是用本公开提供的siRNA替代现有siRNA即可;在一些实施方案中,可以按照如下方法制备:
将有机胺、辅助脂质和聚乙二醇化脂质按照上述摩尔比悬浮于醇中并混匀得到脂质溶液;醇的用量使得到的脂质溶液的总质量浓度为2-25mg/mL,例如可以为8-18mg/mL。所述醇选自药学上可接受的醇,诸如在室温附近为液体的醇,例如,乙醇、丙二醇、苯甲醇、甘油、聚乙二醇200,聚乙二醇300,聚乙二醇400中的一种或多种,例如可以为乙醇。
将本公开提供的siRNA溶解于缓冲盐溶液中,得到siRNA水溶液。缓冲盐溶液的浓度为0.05-0.5M,例如可以为0.1-0.2M,调节缓冲盐溶液的pH至4.0-5.5,例如可以为5.0-5.2,缓冲盐溶液的用量使siRNA的浓度不超过0.6mg/mL,例如可以为0.2-0.4mg/mL。所述缓冲盐选自可溶性醋酸盐、可溶性柠檬酸盐中的一种或多种,例如可以为醋酸钠和/或醋酸钾。
将脂质溶液和siRNA水溶液混合,将混合后得到的产物在40-60℃孵育至少2分钟,例如可以为5-30分钟,得到孵育后的脂质体制剂。脂质溶液和siRNA水溶液的体积比为1:(2-5)。
将孵育后的脂质体制剂浓缩或稀释,去除杂质,除菌,得到本公开提供的药物组合物,其理化参数为pH值为6.5-8,包封率不低于80%,粒径为40-200nm,多分散指数不高于0.30,渗透压为250-400mOsm/kg;例如理化参数可以为pH值为7.2-7.6,包封率不低于90%,粒径为60-100nm,多分散指数不高于0.20,渗透压为300-400mOsm/kg。
其中,浓缩或稀释可以在去除杂质之前、之后或同时进行。去除杂质的方法可以采用现有各种方法,例如可以使用切相流系统、中空纤维柱,在100K Da条件下超滤,超滤交换溶液为pH7.4的磷酸盐缓冲液(PBS)。除菌的方法可以采用现有各种方法,例如可以在0.22μm滤器上过滤除菌。
siRNA缀合物
本公开提供了一种siRNA缀合物,所述siRNA缀合物含有上述siRNA以及缀合连接至该siRNA的缀合基团。
一般来说,所述缀合基团包含药学上可接受的至少一个靶向基团和任选的接头(linker),并且,所述siRNA、所述接头和所述靶向基团依次连接。在一些实施方案中,所述靶向基团为1-6个。在一些实施方案中,所述靶向基团为2-4个。所述siRNA分子可以非共价或共价缀合至所述缀合基团,例如可以共价缀合至所述缀合基团。siRNA与缀合基团的缀合位点可以在siRNA正义链的3'端或5'端,也可在反义链的5'端,还可以在siRNA的内部序列中。在一些实施方案中,所述siRNA与缀合基团的缀合位点在siRNA正义链的3'末端。
在一些实施方案中,所述缀合基团可以连接在核苷酸的磷酸基团、2'-位羟基或者碱基上。在一些实施方案中,所述缀合基团还可以连接在3'-位羟基上,此时核苷酸之间采用2'-5'磷酸二酯键连接。当缀合基团连接在siRNA链的末端时,所述缀合基团通常连接在核苷酸的磷酸基团上;当缀合基团连接在siRNA的内部序列时,所述缀合基团通常连接在核糖糖环或者碱基上。各种连接方式可以参考文献:Muthiah Manoharan et.al.siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes.ACS Chemical biology,2015,10(5):1181-7.
在一些实施方案中,所述siRNA与缀合基团间可以通过酸不稳定的、或可还原的化学键相连,在细胞内涵体的酸性环境下,这些化学键可降解,从而使siRNA成为自由状态。对于不可降解的缀合方式,缀合基团可连接在siRNA的正义链,从而尽量降低缀合对siRNA活性的影响。
在一些实施方案中,所述药学上可接受的靶向基团可以是siRNA给药领域常规使用的配体,例如WO2009082607A2中描述的各种配体,以引用的方式将其全部公开内容并入本文。
在一些实施方案中,所述药学上可接受的靶向基团可以选自以下靶向分子或其衍生物形成的配体中的一种或多种:亲脂分子,例如胆固醇、胆汁酸、维生素(例如维生素E)、不同链长的脂质分子;聚合物,例如聚乙二醇;多肽,例如透膜肽;适配体;抗体;量子点;糖类,例如乳糖、聚乳糖、甘露糖、半乳糖、N-乙酰半乳糖胺(GalNAc);叶酸(folate);肝实质细胞表达的受体配体,例如去唾液酸糖蛋白、去唾液酸糖残基、脂蛋白(如高密度脂蛋白、低密度脂蛋白等)、胰高血糖素、神经递质(如肾上腺素)、生长因子、转铁蛋白等。
在一些实施方案中,所述的每个配体独立地选自一个能够与细胞表面受体结合的配体。在一些实施方案中,至少一个配体是能够与肝细胞表面受体结合的配体。在一些实施方案中,至少一个配体是能够与哺乳动物细胞表面受体结合的配体。在一些实施方案中,至少一个配体是能够与人肝细胞表面受体结合的配体。在一些实施方案中,至少一个配体是能够与肝表面去唾液酸糖蛋白受体(ASGPR)结合的配体。这些配体的种类为本领域技术人员所公知,其作用一般是与靶细胞表面的特异性受体相结合,介导与配体连接的siRNA递送至靶细胞。
在一些实施方案中,所述药学上可接受的靶向基团可以是与哺乳动物肝细胞表面上的去唾液酸糖蛋白受体结合的任意一种配体。在一些实施方案中,每个配体独立地为去唾液酸糖蛋白,例如去唾液酸血清类粘蛋白(asialoorosomucoid,ASOR)或去唾液酸胎球蛋白(asialofetuin,ASF)。在一些实施方案中,所述配体为糖或糖的衍生物。
在一些实施方案中,至少一个配体是糖。在一些实施方案中,每个配体均是糖。在一些实施方案中,至少一个配体是单糖、多糖、修饰的单糖、修饰的多糖或糖衍生物。在一些实施方案中,至少一个所述配体可以是单糖,双糖或三糖。在一些实施方案中,至少有一个配体是修饰的糖。在一些实施方案中,每一个配体均为修饰的糖。在一些实施方案中,每个配体均独立地选自多糖、修饰的多糖、单糖、修饰的单糖、多糖衍生物或单糖衍生物。在一些实施方案中,每一个或至少一个配体选自由以下糖所组成的组:葡萄糖及其衍生物、甘露聚糖及其衍生物、半乳糖及其衍生物、木糖及其衍生物、核糖及其衍生物、岩藻糖及其衍生物、乳糖及其衍生物、麦芽糖及其衍生物,阿拉伯糖及其衍生物、果糖及其衍生物和唾液酸。
在一些实施方案中,每个所述配体可独立地选自D-吡喃甘露糖、L-吡喃甘露糖、D-阿拉伯糖、D-呋喃木糖、L-呋喃木糖、D-葡萄糖、L-葡萄糖、D-半乳糖、L-半乳糖、α-D-呋喃甘露糖、β-D-呋喃甘露糖、α-D-吡喃甘露糖、β-D-吡喃甘露糖、α-D-吡喃葡萄糖、β-D-吡喃葡萄糖、α-D-呋喃葡萄糖、β-D-呋喃葡萄糖、α-D-呋喃果糖、α-D-吡喃果糖、α-D-吡喃半乳糖、β-D-吡喃半乳糖、α-D-呋喃半乳糖、β-D-呋喃半乳糖、葡糖胺、唾液酸、半乳糖胺、N-乙酰半乳糖胺、N-三氟乙酰半乳糖胺、N-丙酰半乳糖胺、N-正丁酰半乳糖胺、N-异丁酰半乳糖胺、2-氨基-3-O-[(R)-1-羧乙基]-2-脱氧-β-D-吡喃葡萄糖、2-脱氧-2-甲基氨基-L-吡喃葡萄糖、4,6-二脱氧-4-甲酰胺基-2,3-二-O-甲基-D-吡喃甘露糖、2-脱氧-2-磺氨基-D-吡喃葡萄糖、N-乙醇酰基-α-神经氨酸、5-硫代-β-D-吡喃葡萄糖、2,3,4-三-O-乙酰基-1-硫代-6-O-三苯甲基-α-D-吡喃葡萄糖苷甲酯、4-硫代-β-D-吡喃半乳糖、3,4,6,7-四-O-乙酰基-2-脱氧-1,5-二硫代-α-D-吡喃葡庚糖苷乙酯、2,5-脱水-D-阿洛糖腈、核糖、D-核糖、D-4-硫代核糖、L-核糖或L-4-硫代核糖。所述配体的其它选择可参见例如CN105378082A的记载,以引用的方式将其全部公开内容并入本文。
在一些实施方案中,所述siRNA缀合物中药学上可接受的靶向基团可以是半乳糖或N-乙酰半乳糖胺,其中,半乳糖或N-乙酰半乳糖胺分子可以是一价、二价、三价、四价。应当理解的是,这里所述的一价、二价、三价、四价分别指siRNA分子与含有作为靶向基团的半乳糖或N-乙酰半乳糖胺分子的缀合基团形成siRNA缀合物后,该siRNA缀合物中siRNA分子与半乳糖或N-乙酰半乳糖胺分子的摩尔比为1:1、1:2、1:3或1:4。在一些实施方案中,所述药学上可接受的靶向基团是N-乙酰半乳糖胺。在一些实施方案中,当本公开所述的siRNA与含有N-乙酰半乳糖胺的缀合基团缀合时,N-乙酰半乳糖胺分子是三价或四价。在一些实施方案中,当本公开所述的siRNA与含有N-乙酰半乳糖胺的缀合基团缀合时,N-乙酰半乳糖胺分子是三价。
靶向基团可经由合适的接头与siRNA分子相连,本领域技术人员可以根据靶向基团的具体类型选择合适的接头。这些接头、靶向基团的种类以及与siRNA的连接方式,可参见WO2015006740A2的公开内容,通过引用的方式将其整体内容并入本文。
在一些实施方案中,当所述靶向基团为N-乙酰半乳糖胺时,合适的接头可以为如式(301)所示的结构:
Figure PCTCN2019129016-appb-000016
其中,
k为1-3的整数;
L A为具有如式(302)所示结构的包含酰胺键的链状部分,每个所述L A在其两端分别与一个所述靶向基团和所述L C部分通过醚键相连接:
Figure PCTCN2019129016-appb-000017
L B为具有如式(303)所示结构的包含N-酰基吡咯烷的链状部分,所述链状部分在其一端具有羰基并与所述L C部分通过酰胺键相连接,在另一端具有氧基并与所述siRNA通过磷酸酯键相连接:
Figure PCTCN2019129016-appb-000018
L C为基于羟甲基氨基甲烷、二羟甲基氨基甲烷或三羟甲基氨基甲烷的2-4价连接基团,所述L C经由氧原子与各个所述L A部分通过醚键相连接,并且经由氮原子与所述L B部分通过酰胺键相连接。
在一些实施方案中,当n=3,L C为基于三羟甲基氨基甲烷的4价连接基团时,由作为接头的-(L A) 3三羟甲基氨基甲烷-L B-连接N-乙酰半乳糖胺分子和siRNA分子所形成的siRNA缀合物,其结构如下式(304)所示:
Figure PCTCN2019129016-appb-000019
式中,双螺旋结构表示siRNA。
同样,siRNA与缀合基团的缀合位点可以在siRNA正义链的3'端或5'端,也可在反义链的5'端,还可以在siRNA的内部序列中。
在一些实施方案中,本公开所述siRNA的正义链3'末端通过接头-(L A) 3三羟甲基氨基甲烷-L B-与三个N-乙酰半乳糖胺分子共价缀合,得到siRNA分子与GalNAc分子的摩尔比为1:3的siRNA缀合物,下文也可将其称为(GalNAc) 3-siRNA,其结构如下式(305)所示:
Figure PCTCN2019129016-appb-000020
其中,双螺旋结构表示所述siRNA,并且所述接头连接至所述siRNA的正义链3'末端。
在一些实施方案中,当所述靶向基团为N-乙酰半乳糖胺时,合适的接头可以为如式(306)所示的结构:
Figure PCTCN2019129016-appb-000021
其中,
l为0-3的整数;
*表示接头上通过醚键与靶向基团连接的位点;
#表示接头上通过磷酸酯键与siRNA连接的位点。
在一些实施方案中,当l=2时,所述siRNA缀合物具有如式(307)所示的结构:
Figure PCTCN2019129016-appb-000022
其中,双螺旋结构表示所述siRNA,并且所述接头连接至所述siRNA的正义链3'末端。
上述缀合物可以通过现有技术中已经详细描述的方法进行合成。例如,WO2015006740A2中详细描述了多种缀合物的制备方法。通过本领域技术人员熟知的方式,获得本公开的siRNA缀合 物。如WO2014025805A1中记载了式(305)所示结构的制备方法,Rajeev等人在ChemBioChem2015,16,903-908中描述了式(307)所示结构的制备方法。
在一些实施方案中,所述siRNA缀合物具有如式(308)所示的结构:
Figure PCTCN2019129016-appb-000023
式(308),
其中:
n1为选自1-3的整数,n3为选自0-4的整数;
m1、m2和m3独立地为选自2-10的整数;
R 10、R 11、R 12、R 13、R 14和R 15各自独立地为H,或选自于由以下基团所组成的组:C 1-C 10烷基、C 1-C 10卤代烷基以及C 1-C 10烷氧基;
R 3为式A59所示结构的基团:
Figure PCTCN2019129016-appb-000024
其中,E 1为OH、SH或BH 2,Nu为本公开的siRNA;
R 2是长度为1-20个碳原子的直链亚烷基,其中一个或多个碳原子任选地被选自于以下基团所组成的组中的任何一个或多个所替换:C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基;并且其中,R 2可任选地具有由以下基团所组成的组中的任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、-NH(C 1-C 10烷基苯基)、-N(C 1-C 10烷基)(C 1-C 10烷基苯基)、氰基、硝基、-CO 2H、-C(O)O(C 1-C 10烷基)、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH 2,-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、-C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基);
每个L 1是长度为1-70个碳原子的直链亚烷基,其中一个或多个碳原子任选地被选自于以下基团所组成的组中的任何一个或多个所替换:C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基;并且其中,L 1可任选地具有由以下基团所组成的组中的任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、-NH(C 1-C 10烷基苯基)、-N(C 1-C 10烷基)(C 1-C 10烷基苯基)、氰基、硝基、-CO 2H、-C(O)O(C 1-C 10烷基)、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH 2,-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、-C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基)。
在一些实施方案中,L 1可选自于由A1-A26基团或其任意组合所组成的组,其中A1-A26的结构和定义如下所示:
Figure PCTCN2019129016-appb-000025
其中,j1为1-20的整数;j2为1-20的整数;
R'为C 1-C 10的烷基;
Ra选自式A27-A45基团或其任意组合所组成的组:
Figure PCTCN2019129016-appb-000026
Rb为C 1-C 10的烷基;
Figure PCTCN2019129016-appb-000027
表示基团连接至分子其余部分的位点。
技术人员会理解的是,尽管为了方便起见,L 1被定义为线性亚烷基,但是它可能不是线性基团或者名称不同,例如由于上述替换和/或置换而产生的胺或烯基。为了本公开内容的目的,L 1的长度是连接两个连接点的链中的原子数。为此目的,将替换所述直链亚烷基的碳原子而得到的环(如亚杂环基或亚杂芳基)计为一个原子。
M 1表示靶向基团,其定义和可选择的范围与上述靶向基团相同。在一些实施方案中,每个M 1独立地选自对哺乳动物肝脏细胞表面上的去唾液酸糖蛋白受体具有亲合力的配体中的一种。
当M 1为对哺乳动物肝脏细胞表面上的去唾液酸糖蛋白受体具有亲合力的配体时,在一些实施方案中,n1可以是1-3的整数,n3可以是0-4的整数,保证所述缀合物中M 1靶向基团的个数至少为2;在一些实施方案中,n1+n3≥2,这样可以使得M 1靶向基团的个数至少为3,从而使得M 1靶向基团与肝表面去唾液酸糖蛋白受体更容易结合,进而促进所述缀合物通过内吞作用进入细胞。实验表明,当M 1靶向基团的个数大于3个时,M 1靶向基团与肝表面去唾液酸糖蛋白受体结合的容易程度增加并不明显,因此,从合成容易程度、结构/工艺成本和递送效率等多方面综合考虑,在一些实施方案中,n1为1-2的整数,n3为0-1的整数,且n1+n3=2-3。
在一些实施方案中,m1、m2和m3独立地选自2-10的整数时,可以使多个M 1靶向基团之间的空间位置适合M 1靶向基团与肝表面去唾液酸糖蛋白受体的结合,为了使本公开提供的缀合物更为简单,更容易合成和/或降低成本,在一些实施方案中,m1、m2和m3各自独立地为2-5的整数,在一些实施方案中,m1=m2=m3。
本领域技术人员可以理解,当R 10、R 11、R 12、R 13、R 14和R 15各自独立地选自H、C 1-C 10烷基、C 1-C 10卤代烷基、以及C 1-C 10烷氧基中的一种时,不会改变本公开的缀合物的性质,均可以实现本公开的目的。在一些实施方案中,R 10、R 11、R 12、R 13、R 14和R 15各自独立地选自H、甲基和乙基。在一些实施方案中,R 10、R 11、R 12、R 13、R 14和R 15均为H。
R 3为式A59所示结构的基团,其中,E 1为OH、SH或BH 2,基于制备原料易获取性的考虑,在一些实施方案中,E 1为OH或SH。
R 2的选择是为了实现与含氮骨架上的N与A59的连接。在本公开的上下文中,―含氮骨架‖是指连接有R 10、R 11、R 12、R 13、R 14和R 15的碳原子与N互相连接的链状结构。因此,R 2可以是任何能够以适当方式将A59基团连接至含氮骨架上的N的连接基团。在一些实施方案中,在通过固相合成的工艺制备式(308)所示的siRNA缀合物的情况下,R 2基团中需要同时含有与含氮骨架上的N连接的连接位点和与R 3中的P相连接的连接位点。在一些实施方案中,R 2中所述与含氮骨架上的N连接的位点与N形成酰胺键,所述与R 3上的P连接的位点与P形成磷酸酯键;在一些实施方案中,R 2可以是B5、B6、B5'或B6':
Figure PCTCN2019129016-appb-000028
其中,
Figure PCTCN2019129016-appb-000029
表示基团共价键连接的位点。
q 2的取值范围可以是1-10的整数,在一些实施方案中,q 2为1-5的整数。
L 1的作用是将M 1靶向基团与含氮骨架上的N连接,为式(308)所示的siRNA缀合物提供肝靶向功能。在一些实施方案中,L 1选自式A1-A26基团中的一种或多种的连接组合。在一些实施方案中,L 1选自A1、A4、A5、A6、A8、A10、A11和A13中的一种或多种的连接组合。在一些实施方案中,L 1选自A1、A4、A8、A10和A11中至少2个的连接组合。在一些实施方案中,L 1选自A1、A8、A10中至少2个的连接组合。
在一些实施方案中,L 1的长度可以为3-25个原子,3-20个原子、4-15个原子或5-12个原子。 在一些实施方案中,L 1的长度为3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个、21个、22个、23个、24个、25个、30个、35个、40个、45个、50个、55个、60个原子。
在一些实施方案中,j1为2-10的整数,在一些实施方案中,j1为3-5的整数。在一些实施方案中,j2为2-10的整数,在一些实施方案中,j2为3-5的整数。R'为C 1-C 4的烷基,在一些实施方案中,R'为甲基、乙基和异丙基中的一种。Ra为A27、A28、A29、A30和A31中的一种,在一些实施方案中,Ra为A27或A28。Rb为C 1-C 5的烷基,在一些实施方案中,Rb为甲基、乙基、异丙基和丁基中的一种。在一些实施方案中,在式A1-A26中各自对j1、j2、R'、Ra、Rb进行选择,以实现M 1靶向基团与含氮骨架上的N连接,并使M 1靶向基团之间的空间位置更适合M 1靶向基团与肝表面去唾液酸糖蛋白受体结合。
在一些实施方案中,该缀合物具有式(403)、(404)、(405)、(406)、(407)、(408)、(409)、(410)、(411)、(412)、(413)、(414)、(415)、(416)、(417)、(418)、(419)、(420)、(421)或(422)所示的结构:
Figure PCTCN2019129016-appb-000030
Figure PCTCN2019129016-appb-000031
Figure PCTCN2019129016-appb-000032
Figure PCTCN2019129016-appb-000033
Figure PCTCN2019129016-appb-000034
Figure PCTCN2019129016-appb-000035
Figure PCTCN2019129016-appb-000036
在一些实施方案中,式A59中的P可以连接到siRNA序列中任何可能的位置,例如,式A59中的P可以连接到siRNA正义链或反义链的任何一个核苷酸上;在一些实施方案中,式A59中的P连接到siRNA正义链的任何一个核苷酸上。在一些实施方案中,式A59中的P连接到siRNA正义链或反义链的端部;在一些实施方案中,式A59中的P连接到siRNA正义链的端部。所述端部指所述正义链或所述反义链中从其一端起算的前4个核苷酸。在一些实施方案中,式A59中的P连接到siRNA正义链或反义链的末端;在一些实施方案中,式A59中的P连接到siRNA正 义链的3'末端。在连接至siRNA的正义链的上述位置的情况下,式(308)所示的siRNA缀合物进入细胞后,在解旋时,可以释放出单独的siRNA反义链,以阻断APOC3 mRNA翻译蛋白质的过程,抑制血管生成素样蛋白3基因表达。
在一些实施方案中,式A59中的P可以连接到siRNA中的核苷酸上任何可能的位置,例如,核苷酸的5'位、核苷酸的2'位、核苷酸的3'位或核苷酸的碱基上。在一些实施方案中,式A59中的P可通过形成磷酸二酯键连接至所述siRNA中的核苷酸的2'位、3'位或5'位。在一些实施方案中,式A59中的P连接在siRNA正义链3'末端核苷酸的3'羟基脱氢后形成的氧原子上(此时,A59中的P也可以看作是siRNA中含有的磷酸基团中的P),或者式A59中的P通过取代siRNA正义链中的一个核苷酸的2'-羟基中的氢与核苷酸连接,或者式A59中的P通过取代siRNA正义链5'末端核苷酸的5'羟基中的氢与核苷酸连接。
本公开的发明人意外发现,本公开的siRNA缀合物在具有显著提高的血浆中稳定性、低脱靶效应的同时,还表现出并未明显降低的APOC3 mRNA沉默活性,而且还具有较高的血脂抑制作用。因此,在一些实施方案中,本公开的siRNA缀合物中的siRNA如表1、表2、表3、表4、表5示出。
表1:本公开缀合物中的第一种siRNA序列
Figure PCTCN2019129016-appb-000037
Figure PCTCN2019129016-appb-000038
Figure PCTCN2019129016-appb-000039
表2:本公开缀合物中的第二种siRNA序列
Figure PCTCN2019129016-appb-000040
Figure PCTCN2019129016-appb-000041
Figure PCTCN2019129016-appb-000042
表3:本公开缀合物中的第三种siRNA序列
Figure PCTCN2019129016-appb-000043
Figure PCTCN2019129016-appb-000044
表4:本公开缀合物中的第四种siRNA序列
Figure PCTCN2019129016-appb-000045
Figure PCTCN2019129016-appb-000046
Figure PCTCN2019129016-appb-000047
表5:本公开缀合物中的第五种siRNA序列
Figure PCTCN2019129016-appb-000048
Figure PCTCN2019129016-appb-000049
Figure PCTCN2019129016-appb-000050
本公开所述siRNA或siRNA缀合物中,每个相邻核苷酸之间由磷酸二酯键或硫代磷酸二酯键连接,磷酸二酯键或硫代磷酸二酯键中的非桥接氧原子或硫原子带有负电荷,它可以以羟基或巯基的形式存在,羟基或巯基中的氢离子也可以部分或全部被阳离子取代。所述阳离子可以是任意的阳离子,如金属阳离子,铵离子NH 4 +,有机铵阳离子中的一种。出于提高溶解性考虑,在一种实施方案中,所述阳离子选自碱金属离子、三级胺形成的铵阳离子和季铵阳离子中的一种或多种。碱金属离子可以是K +和/或Na +,三级胺形成的阳离子可以是三乙胺形成的铵离子和/或N,N-二异丙基乙胺形成的铵离子。因此,本公开所述siRNA或siRNA缀合物可以至少部分以盐的形式存在。在一种方式中,磷酸二酯键或硫代磷酸二酯键中的非桥接氧原子或硫原子至少部分与钠离子结合,本公开所述siRNA或siRNA缀合物以钠盐或部分钠盐的形式存在。
本领域技术人员清楚知晓的是,可以通过使用具有相应修饰的核苷单体来将修饰的核苷酸基团引入本公开所述的siRNA中。制备具有相应修饰的核苷单体的方法及将修饰的核苷酸基团引入siRNA的方法也是本领域技术人员所熟知的。所有修饰的核苷单体均可以商购得到或者采用已知方法制备得到。
式(308)所示的siRNA缀合物的制备
可以采用任意合理的合成路线制备式(308)所示的siRNA缀合物。
在一些实施方案中,式(308)所示的siRNA缀合物可以采用如下方法制备,该方法包括在亚磷酰胺固相合成的条件下,分别按照siRNA正义链和反义链的核苷酸种类和顺序,按照3'到5'的方向将核苷单体依次连接,每个核苷单体的连接包括脱保护、偶联、盖帽、氧化或硫化四步反应;分离出siRNA的正义链和反义链,退火,其中,所述siRNA为上述本公开的siRNA;
并且,该方法还包括在偶联反应条件和偶联试剂存在下,将式(321)所示的化合物与核苷单体或连接在固相载体上的核苷酸序列接触,使式(321)所示的化合物经偶联反应连接至核苷酸序列。下文中,式(321)所示的化合物也称作缀合分子。
Figure PCTCN2019129016-appb-000051
其中:
R 4为能够结合至式(308)所示化合物中Nu代表的siRNA的基团。在一些实施方案中,R 4为能够通过共价键结合至Nu代表的siRNA的基团。在一些实施方案中,R 4为能够经反应而通过磷酸二酯键缀合至Nu代表的siRNA的任意官能团的基团;
每个S 1独立地是M 1中全部活性羟基被YCOO-基团取代而形成的基团,其中,每个Y独立地选自甲基、三氟甲基、二氟甲基、一氟甲基、三氯甲基、二氯甲基、一氯甲基、乙基、正丙基、异丙基、苯基、卤代苯基以及烷基苯基中的一种;在一些实施方案中,Y为甲基。
n1、n3、m1、m2、m3、R 10、R 11、R 12、R 13、R 14、R 15、L 1、M 1各自的定义和可选择的范围如前所述。
R 4的选择是为了实现与含氮骨架上的N的连接,并且为合成式(308)所示的siRNA缀合物提供合适的反应位点。在一些实施方案中,R 4中包括R 2连接基团或经保护的R 2连接基团,以及可通过反应与siRNA形成A59所示结构的官能团。
在一些实施方案中,R 4包含可与Nu代表的siRNA或核苷单体上的基团形成亚磷酸酯的第1官能团以及可与羟基或氨基反应形成共价键的第2官能团或者含有由所述共价键连接的固相载体。在一些实施方案中,所述第1官能团为亚磷酰胺、羟基或被保护的羟基。在一些实施方案中,所述第2官能团为亚磷酰胺、羧基或羧酸盐。在一些实施方案中,所述第2官能团为经由共价键连接至分子其他部分的固相载体,所述共价键由羟基或氨基形成。在一些实施方案中,所述固相载体经由磷酸酯键、羧酸酯键或酰胺键连接。在一些实施方案中,所述固相载体为树脂。
在一些实施方案中,所述第1官能团含有羟基、-OR k或式(C3)所示的基团;所述第2官能团含有式(C1)、(C2)、(C3)、(C1')或(C3')所示的结构:
Figure PCTCN2019129016-appb-000052
式中,q 1为1-4的整数,X为O或NH,M +为阳离子,R k为羟基保护基团,SPS表示固相载体,
Figure PCTCN2019129016-appb-000053
表示基团连接至分子其余部分的位点。
在一些实施方案中,所述第1官能团含有亚磷酰胺基团,如式(C3)所示,该亚磷酰胺基团可以与核苷酸上的任意位置的羟基,如2'位羟基或3'位羟基发生偶联反应形成亚磷酸酯,并经氧化 或硫化形成式A59所示的磷酸二酯键或硫代磷酸酯键,将缀合分子缀合至siRNA。此时,即使所述第2官能团并不存在,式(321)化合物也能够缀合至核苷酸,不影响式(308)所示的siRNA缀合物的获得。在此情况下,在经由亚磷酰胺固相合成等方法获得siRNA的正义链或反义链后,使式(321)化合物与核苷酸序列中末端核苷酸上的羟基反应,并在后续的氧化或硫化过程中形成磷酸二酯键连接或硫代磷酸酯连接,将式(321)化合物缀合至siRNA。
在一些实施方案中,所述第1官能团含有被保护的羟基。在一些实施方案中,所述第2官能团包含可与固相载体反应的基团,所述反应提供包含固相载体的缀合分子。在一些实施方案中,所述第2官能团含有羧基、羧酸盐或亚磷酰胺,如式(C1)、(C2)或(C3)所示,当所述第2官能团包含羧基或羧酸盐时,式(321)化合物与固相载体,例如树脂上的羟基或氨基进行酯化反应或酰胺化反应,形成经羧酸酯键连接的包含固相载体的缀合分子。当所述第2官能团包含亚磷酰胺官能团时,式(321)化合物与通用固相载体,例如树脂上的羟基发生偶联反应,并经氧化形成经磷酸二酯键连接的包含固相载体的缀合分子。随后,以上述连接固相载体后的产物作为起始,按照亚磷酰胺固相合成方法依次连接核苷单体,获得连接有缀合基团的siRNA的正义链或反义链。在亚磷酰胺固相合成过程中,所述第1官能团发生脱保护,随后在偶联反应条件下与核苷单体上的亚磷酰胺基团发生偶联。
在一些实施方案中,所述第1官能团含有羟基或被保护的羟基;所述第2官能团含有经羧酸酯键连接的固相载体或经酰胺键连接的固相载体、或者经磷酸酯键连接的固相载体,如式(C1')或(C3')所示。此时,由式(321)化合物代替固相载体作为起始,按照亚磷酰胺固相合成方法依次连接核苷单体,获得连接有缀合基团的siRNA的正义链或反义链。
在一些实施方案中,羧酸盐可以表示为-COO -M +,其中,M +是阳离子,例如选自金属阳离子,铵阳离子NH 4 +,有机铵阳离子中的一种。在一种实施方案中,所述金属离子选自碱金属离子中的一种,如K +或Na +。出于提高溶解性、使反应顺利进行的考虑,在一些实施方案中,有机铵离子为三级胺形成的铵阳离子或季铵阳离子,如,三乙胺形成的铵离子或N,N-二异丙基乙胺形成的铵离子。在一些实施方案中,羧酸盐是三乙胺羧酸盐或N,N-二异丙基乙胺羧酸盐。
在一些实施方案中,R 4含有式(B9)、(B10)、(B9')、(B10')、(B11)、(B12)、(B11')或(B12')所示的结构:
Figure PCTCN2019129016-appb-000054
Figure PCTCN2019129016-appb-000055
其中,q 1为1-4的整数,q 2为1-10的整数,X为O或NH,M +为阳离子,R k为羟基保护基团,SPS表示固相载体,
Figure PCTCN2019129016-appb-000056
表示基团连接至分子其余部分的位点。在一些实施方案中,q 1为1或2。在一些实施方案中,q 2为1-5的整数。在一些实施方案中,R 4含有式(B9)或(B10)所示的结构。在一些实施方案中,R 4含有式(B11)或(B12)所示的结构。
在一些实施方案中,R k是Tr(三苯甲基)、MMTr(4-甲氧基三苯甲基)、DMTr(4,4'-双甲氧基三苯甲基)、TMTr(4,4',4'-三甲氧基三苯甲基)中的一种或多种。在一些实施方案中,R k可以是DMTr,即4,4'-双甲氧基三苯甲基(4,4'-dimethoxytrityl)。
L 1的定义如前所述。
在一些实施方案中,L 1被用于将M 1靶向基团连接至含氮骨架上的N原子,从而为式(308)所示的siRNA缀合物提供肝靶向功能。在一些实施方案中,L 1包含A1-A26中的任一个或其组合。
根据上述描述,本领域技术人员容易理解的是,相较于本领域公知的亚磷酰胺固相合成方法而言,可通过上述第1官能团以及任选的第2官能团,获得将缀合分子连接至核苷酸序列的任意可能的位置的式(308)所示的siRNA缀合物,例如,缀合分子连接至核苷酸序列的端部,缀合分子连接至核苷酸序列的末端。相应地,除非另有说明,以下涉及缀合物和/或缀合分子的制备的描述中,当提及―脱保护‖、―偶联‖、―盖帽‖、―氧化‖、―硫化‖等反应时,应当理解为本领域公知的亚磷酰胺核酸固相合成方法中所涉及的反应条件和试剂也同样适用于这些反应。示例性的反应条件和试剂将在后文详细描述。
在一些实施方案中,每个S 1独立地是M 1。在一些实施方案中,每个S 1独立地是M 1中至少一个活性羟基被羟基保护基团保护而形成的基团。在一些实施方案中,每个S 1独立地是M 1中任何存在的活性羟基全部被羟基保护基团保护而形成的基团。在一些实施方案中,任何本领域技术人员已知的羟基保护基团均可被用于保护M 1中的活性羟基。在一些实施方案中,被保护的羟基可以式YCOO-表示,其中,每个Y独立地选自于由C 1-C 10烷基和C 6-C 10芳基所组成的组,所述C 1-C 10烷基和C 6-C 10芳基任选地被一个或多个取代基取代,所述取代基选自于由卤素和C 1-C6烷基所组成的组。在一些实施方案中,每个Y独立地选自于由以下基团所组成的组:甲基、三氟甲基、二氟甲基、单氟甲基、三氯甲基、二氯甲基、一氯甲基、乙基、正丙基、异丙基、苯基、卤苯基,以及C 1-C 6烷基苯基。
在一些实施方案中,每个S 1各自独立地选自于由式A46-A54所组成的组:
Figure PCTCN2019129016-appb-000057
Figure PCTCN2019129016-appb-000058
在一些实施方案中,S 1为式A49或A50。
在一些实施方案中,每个Y独立地选自甲基、三氟甲基、二氟甲基、一氟甲基、三氯甲基、二氯甲基、一氯甲基、乙基、正丙基、异丙基、苯基、卤代苯基以及烷基苯基中的一种;在一些实施方案中,Y为甲基。
如前所述,式(308)所示的siRNA缀合物的制备方法还包括以下步骤:合成siRNA的另一链(例如,当上述步骤合成了连接有缀合分子的siRNA正义链时,还包括按照固相合成方法合成siRNA的反义链,反之亦然),分离正义链和反义链,以及退火。具体地,在分离步骤中,连接至核苷酸序列和/或缀合分子的固相载体被切割下来,同时必要的保护基团被脱除(此时,式(321)化合物中的各S 1基团转化为对应的M 1靶向基团),获得连接有缀合分子的siRNA正义链(或反义链)以及对应的反义链(或正义链),正义链与反义链退火形成双链RNA结构,获得式(308)所示的siRNA缀合物。
在一些实施方案中,式(308)所示的siRNA缀合物的制备方法包含以下步骤:在偶联反应条件和偶联试剂存在下,将式(321)所示的化合物与正义链或反义链的3'端的第一个核苷单体接触,使式(321)所示的化合物连接上序列中第一个核苷酸,在亚磷酰胺固相合成的条件下,按照期望的正义链或反义链核苷酸种类和顺序,按照3'到5'的方向将核苷单体依次连接,合成siRNA的正义链或反义链;其中,式(321)化合物为R 4中含有第1官能团和第2官能团,第1官能团含有被保护的羟基,第2官能团具有如式(C1')或(C3')所示结构的式(321)所示的化合物,与第一个核苷单体连接前,式(321)化合物经过脱保护;每个核苷单体的连接包括脱保护、偶联、盖帽、氧化或硫化四步反应;得到连接有缀合基团的核酸的正义链或反义链;在亚磷酰胺固相合成的条件下,按照反义链或正义链核苷酸种类和顺序,按照3'到5'的方向将核苷单体依次连接,合成核酸的反义链或正义链;每个核苷单体的连接包括脱保护、偶联、盖帽、氧化或硫化四步反应;脱除保护基并与固相载体切割,分离纯化获得核酸的正义链和反义链,退火。
在一些实施方案中,式(308)所示的siRNA缀合物的制备方法包含以下步骤:按照该双链siRNA中正义链或反义链的核苷酸种类和顺序,按照3'到5'的方向将核苷单体依次连接,合成正义链和反义链,每个核苷单体的连接包括脱保护、偶联、盖帽、氧化或硫化四步反应,得到连接在固相载体上的正义链和连接在固相载体上的反义链;在偶联反应条件和偶联试剂存在下,将式(321)所示的化合物与连接在固相载体上的正义链或连接在固相载体上的反义链接触,将式(321)化合物连接至正义链或反义链,其中,式(321)化合物是R 4中含有第1官能团,第1官能团为亚磷酰胺基团的式(321)化合物;脱除保护基并与固相载体切割,分别分离纯化,获得siRNA的正义链或反义链,退火,其中,所述siRNA的正义链或反义链上连接有缀合基团。
在一些实施方案中,式A59中的P连接至siRNA中的正义链的3'末端,式(308)所示的siRNA缀合物的制备方法包括:
(1)脱除式(321)化合物(其中,式(321)化合物为R 4中含有第1官能团和第2官能团,第1官能团含有被保护的羟基OR k,第2官能团具有如式(C1')或(C3')所示结构的化合物)中的羟基保护基团R k;在偶联反应条件和偶联试剂存在下,将脱保护得到的产物与核苷单体接触,得到通过缀合分子连接至固相载体的核苷单体;
(2)以该通过缀合分子连接至固相载体的核苷单体起始,按照3'-5'的方向通过亚磷酰胺固相合成方法合成siRNA的正义链;
(3)通过亚磷酰胺固相合成方法,合成siRNA的反义链;
(4)分离出siRNA的正义链和反义链并退火,获得式(308)所示的siRNA缀合物。
其中,在步骤(1)中,脱除式(321)化合物中的保护基团R k的方法包括在脱保护条件下,将式(321)化合物与脱保护试剂接触。脱保护条件包括温度为0-50℃,在一些实施方案中为15-35℃,反应时间为30-300秒,在一些实施方案中为50-150秒,脱保护试剂可以选自三氟乙酸、三氯乙 酸、二氯乙酸、一氯乙酸中的一种或多种,在一些实施方案中为二氯乙酸。脱保护试剂与式(321)化合物的摩尔比为10:1-1000:1,在一些实施方案中为50:1-500:1。
所述偶联反应条件和偶联试剂可使用任何适合于上述偶联反应的条件和试剂。在一些实施方案中,可使用与所采用的固相合成方法中的偶联反应相同的条件与试剂。
在一些实施方案中,所述偶联反应的条件包括反应温度为0-50℃,在一些实施方案中为15-35℃。式(321)化合物与核苷单体的摩尔比为1:1-1:50,在一些实施方案中为1:2-1:5;式(321)化合物和偶联试剂的摩尔比可以为1:1-1:50,在一些实施方案中为1:3-1:10,反应时间为200-3000秒,在一些实施方案中为500-1500秒。偶联试剂选自1H-四氮唑、5-乙硫基1H-四氮唑、5-苄硫基1H-四氮唑中的一种或多种,在一些实施方案中为5-乙硫基1H-四氮唑。所述偶联反应可在有机溶剂中进行,所述有机溶剂选自无水乙腈、无水DMF、无水二氯甲烷中的一种或多种,在一些实施方案中为无水乙腈。相对于式(321)化合物,所述有机溶剂的用量为3-50L/mol,在一些实施方案中为5-20L/mol。
在步骤(2)中,通过亚磷酰胺核酸固相合成的方法,利用上述步骤制备的通过缀合分子连接至固相载体的核苷单体起始,按照3'-5'的方向合成第二种siRNA缀合物的正义链S。此时,缀合基团连接至所得到的正义链的3'末端。
步骤(2)和(3)中所述固相合成的其它条件,包括核苷单体脱保护条件,脱保护试剂种类和用量,偶联反应条件,偶联试剂的种类和用量,盖帽反应的条件,盖帽试剂的种类和用量,氧化反应条件,氧化试剂种类和用量,硫化反应条件,硫化试剂种类和用量采用本领域中常规使用的各种试剂、用量和条件。
例如,在一些实施方案中,步骤(2)和(3)中所述固相合成可使用如下条件:
核苷单体脱保护条件包括温度为0-50℃,在一些实施方案中为15-35℃,反应时间为30-300秒,在一些实施方案中为50-150秒,脱保护试剂可以选自三氟乙酸、三氯乙酸、二氯乙酸、一氯乙酸、中的一种或多种,在一些实施方案中为二氯乙酸。脱保护试剂与固相载体上4,4'-二甲氧基三苯甲基保护基的的摩尔比可以为2:1-100:1,在一些实施方案中为3:1-50:1。
偶联反应条件包括温度为0-50℃,在一些实施方案中为15-35℃,固相载体上连接的核酸序列与核苷单体的摩尔比可以为1:1-1:50,在一些实施方案中为1:5-1:15;固相载体上连接的核酸序列和偶联试剂的摩尔比为1:1-1:100,在一些实施方案中为1:50-1:80,反应时间和偶联试剂的选择与前述相同。
盖帽反应条件包括温度为0-50℃,在一些实施方案中为15-35℃,反应时间为5-500秒,在一些实施方案中为10-100秒,盖帽试剂的选择与前述相同。盖帽试剂的总量与固相载体上连接的核酸序列的摩尔比为1:100-100:1,在一些实施方案中为1:10-10:1。在盖帽试剂使用等摩尔量的乙酸酐与N-甲基咪唑的情况下,乙酸酐、N-甲基咪唑以及固相载体上连接的核酸序列的摩尔比为1:1:10-10:10:1,在一些实施方案中为1:1:2-2:2:1。
氧化反应条件包括温度为0-50℃,在一些实施方案中为15-35℃,反应时间为1-100秒,在一些实施方案中为5-50秒,氧化试剂在一些实施方案中为碘(在一些实施方案中,以碘水的形式提供)。氧化试剂与偶联步骤中固相载体上连接的核酸序列的摩尔比可以为1:1-100:1,在一些实施方案中为5:1-50:1。在一些实施方案中,所述氧化反应在四氢呋喃:水:吡啶=3:1:1-1:1:3的混合溶剂中进行。硫化反应条件包括温度为0-50℃,在一些实施方案中为15-35℃,反应时间为50-2000秒,在一些实施方案中为100-1000秒,硫化试剂在一些实施方案中为氢化黄原素。硫化试剂与偶联步骤中固相载体上连接的核酸序列的摩尔比为10:1-1000:1,在一些实施方案中为10:1-500:1。在一些实施方案中,所述硫化反应在乙腈:吡啶=1:3-3:1的混合溶剂中进行。
在将所有核苷单体连接之后,退火之前,该方法还包括分离出siRNA的正义链和反义链。分离的方法为本领域技术人员所公知,一般包括将合成得到的核苷酸序列从固相载体上切割下来,脱除碱基上、磷酸基上和配体上的保护基团,纯化和脱盐。
将合成得到的核苷酸序列从固相载体上切割下来,并脱除碱基上、磷酸基上和配体上的保护基团可按照siRNA合成中常规的切割和脱保护方法进行。例如,将得到的连接有固相载体的核苷酸序列与浓氨水接触;在脱保护的过程中,A46-A54基团的保护基团YCOO-转化为羟基,S 1基团转化为相应的M 1基团,生成式(308)所示的缀合物。其中,所述浓氨水可以是25-30重量%的氨水,浓氨水的用量与目标siRNA序列相比可以为0.2ml/μmol-0.8ml/μmol。
在所合成的核苷酸序列上存在至少一个2'-TBDMS保护时,所述方法还包括将脱除了固相载体的核苷酸序列与三乙胺三氢氟酸盐接触,以脱除该2'-TBDMS保护。此时,所得到的目标siRNA序列中具有游离的2'-羟基的相应核苷。三乙胺三氢氟酸盐纯品的用量与目标siRNA序列相比可 以为0.4ml/μmol-1.0ml/μmol。这样即可得到式(308)所示的siRNA缀合物。
纯化和脱盐的方法是本领域技术人员熟知的。例如,可利用制备型离子色谱纯化柱,通过NaBr或NaCl的梯度洗脱,完成核酸的纯化;产品收集合并后,可采用反相色谱纯化柱进行脱盐。
这样得到的式(308)所示的siRNA缀合物中,核苷酸之间的磷酸二酯键或硫代磷酸二酯键中的非桥接氧原子或硫原子基本与钠离子结合,式(308)所示的siRNA缀合物基本以钠盐形式存在。可以采用熟知的离子交换方法,用氢离子和/或其他阳离子取代所述钠离子,得到其他形式的式(308)所示的siRNA缀合物。所述阳离子如前所述。
在合成过程中,可随时对核酸序列的纯度和分子量进行检测,更好地把控合成质量,此类检测的方法为本领域技术人员所公知。例如,可通过离子交换色谱检测核酸纯度,并通过液质联用色谱测定分子量。
退火的方法也是本领域技术人员熟知的。例如,可简单地将所合成的正义链(S链)与反义链(AS链)以等摩尔比混合在注射用水中加热至70-95℃,随后室温冷却,使其通过氢键形成双链结构。这样即可得到式(308)所示的siRNA缀合物。
在获得所述缀合物后,在一些实施方案中,还可利用例如液质联用色谱等方法,通过分子量检测等方式对所合成的式(308)所示的siRNA缀合物进行表征,确定所合成的siRNA缀合物为目标设计的式(308)所示的siRNA缀合物,且所合成的siRNA的序列为期望的siRNA的序列,例如为表1-表5中所列的序列之一。
式(321)所示化合物可以通过以下制备方法得到:该方法包括在有机溶剂中,在酯化反应条件下,以及在碱和酯化催化剂存在下,将式(313)所示化合物与环状酸酐接触,离子交换,分离得到式(321)所示化合物:
Figure PCTCN2019129016-appb-000059
其中,n1、n3、m1、m2、m3、R 10、R 11、R 12、R 13、R 14、R 15、L 1、S 1各自的定义和可选择的范围如前所述;
R 6为提供式(321)中R 4的基团;在一些实施方案中,R 6具有式(A61)所示的结构:
Figure PCTCN2019129016-appb-000060
其中,R i为能够实现与含氮骨架上的N连接、与R kO连接并且连接有一个游离羟基的任意基团,R k为羟基保护基团。此时,所获得的是R 4中含有作为羟基保护基团的第1官能团和第2官能团,所述第2官能团含有如式(C1)或(C2)所示结构的式(321)化合物。
所述酯化反应条件包括反应温度为0-100℃,反应时间为8-48小时,在一些实施方案中,所述酯化反应条件为反应温度为10-40℃,反应时间为20-30小时。
在一些实施方案中,所述有机溶剂包含环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。在一些实施方案中,所述环氧类溶剂为二氧六环和/或四氢呋喃,所述醚类溶剂为乙醚和/或甲基叔丁基醚,所述卤代烷类溶剂为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种。在一些实施方案中,所述有机溶剂为二氯甲烷。相对于所述式(313)所示化合物,所述有机溶剂的用量为3-50L/mol,在一些实施方案中为5-20L/mol。
在一些实施方案中,所述环状酸酐为丁二酸酐、戊二酸酐、己二酸酐或庚二酸酐中的一种,在一些实施方案中为丁二酸酐。所述环状酸酐与所述式(313)所示化合物的摩尔比为1:1-10:1,在一些实施方案中为2:1-5:1。
所述酯化催化剂可以是任何对该酯化反应起到催化作用的催化剂,例如该催化剂可以是4-二甲氨基吡啶。所述催化剂与式(313)所示化合物的摩尔比为1:1-10:1,在一些实施方案中为2:1-5:1。
在一些实施方案中,所述碱可以是任意的无机碱,有机碱或者它们的结合。考虑溶解性和产物稳定性,所述碱可以是例如三级胺类有机碱。在一些实施方案中,所述三级胺类有机碱为三乙胺或N,N-二异丙基乙胺。所述三级胺类有机碱与式(313)所示化合物的摩尔比为1:1-20:1,在一些实施方案中为3:1-10:1。
所述离子交换作用是将式(321)化合物转化为期望的羧酸或羧酸盐的形式,离子交换的方法为本领域技术人员所公知,可以使用合适的离子交换溶液和交换条件,得到前述阳离子为M +的缀合分子,在此不做详述。在一些实施方案中,所述离子交换反应使用三乙胺磷酸盐溶液进行,所述三乙胺磷酸盐溶液的浓度为0.2-0.8M,在一些实施方案中,所述三乙胺磷酸盐溶液的浓度为0.4-0.6M,相对于式(313)化合物,所述三乙胺磷酸盐溶液的用量为3-6L/mol,在进一步的实施方案中为4-5L/mol。
可使用任何合适的分离方法从反应混合物中分离式(321)化合物。在一些实施方案中,可通过蒸发除去溶剂、随后通过色谱方法分离式(321)化合物,例如,可使用如下两种色谱条件进行分离:(1)正相纯化硅胶:200-300目硅胶填料,使用含1wt‰三乙胺的二氯甲烷:甲醇=100:18-100:20梯度洗脱;或者(2)反相纯化:C18、C8反相填料,使用甲醇:乙腈=0.1:1-1:0.1梯度洗脱。在一些实施方案中,可以直接除去溶剂得到式(321)化合物粗产品,该粗产品可以直接用于后续反应。
在一些实施方案中,式(321)化合物的制备方法还进一步包括在缩合反应条件下,在有机溶剂中,在缩合剂和三级胺类有机碱的存在下,将上述离子交换反应得到的产物进一步与含有氨基或羟基的固相载体进行接触。此时,所获得的是R 4中含有第1官能团和第2官能团,第1官能团含有羟基保护基团,第2官能团含有如式(C1')所示结构的式(321)化合物。
所述固相载体为固相合成siRNA中所用的载体中的一种,其中的一些为本领域技术人员所公知。例如,所述固相载体可以选自含有活性羟基或氨基官能团的固相载体,在一些实施方案中,所述固相载体为氨基树脂或羟基树脂。在一些实施方案中,所述氨基或羟基树脂具有如下参数:粒径100-400目(mesh),表面氨基或羟基载量为0.2-0.5mmol/g。所述式(321)所示化合物与固相载体的用量比为10-400μmol化合物/每克固相载体(μmol/g)。在一些实施方案中,所述式(321)所示化合物与固相载体的用量比为50-200μmol/g。
所述有机溶剂可以是本领域技术人员已知的任何合适的溶剂或混合溶剂。在一些实施方案中,所述有机溶剂为乙腈、环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。在一些实施方案中,所述环氧类溶剂为二氧六环和/或四氢呋喃,所述醚类溶剂为乙醚和/或甲基叔丁基醚,所述卤代烷类溶剂为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种。在一些实施方案中,所述有机溶剂为乙腈。相对于式(321)化合物,所述有机溶剂的用量为20-200L/mol,在一些实施方案中为50-100L/mol。
在一些实施方案中,所述缩合剂可以是苯并三唑-1-基-氧基三吡咯烷基鏻六氟磷酸盐/酯(benzotriazol-1-yl-oxytripyrrolidino phosphonium hexafluorophosphate,PyBop)、3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮和/或O-苯并三唑-四甲基脲六氟磷酸盐/酯,在一些实施方案中,所述缩合剂为O-苯并三唑-四甲基脲六氟磷酸盐/酯。所述缩合剂与式(321)所示化合物的摩尔比为1:1-20:1,在进一步的实施方案中为1:1-5:1。
在一些实施方案中,所述三级胺类有机碱为三乙胺和/或N,N-二异丙基乙胺,在一些实施方案中为N,N-二异丙基乙胺;所述三级胺类有机碱与式(321)所示化合物的摩尔比为1:1-20:1,在一些实施方案中为1:1-5:1。
在一些实施方案中,式(321)化合物的制备方法还可以包括在盖帽反应条件下,在有机溶剂中,将得到的缩合产物与盖帽试剂和酰化催化剂接触,分离得到式(321)所示化合物。所述盖帽反应的作用在于除去任何尚未反应完全的活性反应官能团,以避免在后续反应中产生不必要的副产物。所述盖帽反应的条件包括反应温度为0-50℃,在一些实施方案中为15-35℃,反应的时间为1-10h,在一些实施方案中为3-6h。盖帽试剂可以使用siRNA固相合成中所使用的盖帽试剂,siRNA固相合成中所使用的盖帽试剂为本领域技术人员所公知。
在一些实施方案中,所述盖帽试剂由盖帽试剂1(cap1)和盖帽试剂2(cap2)组成,其中,盖帽试剂1为N-基甲基咪唑,在一些实施方案中以N-甲基咪唑的吡啶/乙腈混合溶液形式提供,其中,吡啶与乙腈的体积比为1:10-1:1,在一些实施方案中为1:3-1:1,吡啶与乙腈的总体积与N-甲基咪唑的体积为1:1-10:1,在一些实施方案中为3:1-7:1。所述盖帽试剂2为乙酸酐。在一些实施方案中,所述盖帽试剂2以乙酸酐的乙腈溶液形式提供,其中,乙酸酐和乙腈的体积为1:1-1:10,在进一步的实施方案中为1:2-1:6。
在一些实施方案中,所述N-甲基咪唑的吡啶/乙腈混合溶液的体积与式(321)化合物的质量之 比为5ml/g-50ml/g,在一些实施方案中为15ml/g-30ml/g。所述乙酸酐的乙腈溶液的体积与式(321)化合物的质量之比为0.5ml/g-10ml/g,在一些实施方案中为1ml/g-5ml/g。
在一些实施方案中,盖帽试剂使用等摩尔量的乙酸酐与N-甲基咪唑。在一些实施方案中,所述有机溶剂为乙腈、环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。在一些实施方案中,所述有机溶剂为乙腈。相对于式(321)化合物,所述有机溶剂的用量为10-50L/mol,在一些实施方案中为5-30L/mol。
在一些实施方案中,所述酰化催化剂可以选自任何可用于酯化缩合或酰胺化缩合的催化剂,例如碱性杂环化合物。在一些实施方案中,所述酰化催化剂为4-二甲氨基吡啶。所述催化剂与式(321)所示化合物的质量之比为0.001:1-1:1,在一些实施方案中为0.01:1-0.1:1。
在一些实施方案中,可使用任何合适的分离方法从反应混合物中分离式(321)化合物。在一些实施方案中,可通过以有机溶剂充分洗涤,并过滤,去除未反应的反应物、过量的盖帽试剂及其它杂质,得到式(321)化合物,所述有机溶剂选自乙腈、二氯甲烷、甲醇,在一些实施方案中为乙腈。
在一些实施方案中,式(321)所示缀合分子的制备方法包括在有机溶剂中,在偶联反应条件下,以及在偶联试剂存在下,将式(313)所示化合物与亚磷酰二胺接触,分离得到式(321)所示化合物。此时,所获得的是R 4中含有第1官能团和第2官能团,第1官能团含有羟基保护基团,第2官能团含有如式(C3)所示结构的式(321)化合物。
在一些实施方案中,偶联反应条件包括温度可以为0-50℃,例如为15-35℃,式(313)化合物与亚磷酰二胺的摩尔比可以为1:1-1:50,例如为1:5-1:15;式(313)化合物和偶联试剂的摩尔比可以为1:1-1:100,例如为1:50-1:80;反应时间可以为200-3000秒,例如为500-1500秒。所述亚磷酰二胺例如可使用双(二异丙基氨基)(2-氰基乙氧基)膦,其可商购获得或按照本领域中公知的方法合成获得。偶联试剂选自1H-四氮唑、5-乙硫基1H-四氮唑、5-苄硫基1H-四氮唑中的一种或多种,例如为5-乙硫基1H-四氮唑。所述偶联反应可在有机溶剂中进行,所述有机溶剂选自无水乙腈、无水DMF、无水二氯甲烷中的一种或多种,例如为无水乙腈。在一些实施方案中,相对于式(313)化合物,所述有机溶剂的用量为3-50L/mol,例如可以为5-20L/mol。通过进行该偶联反应,式(313)化合物中的羟基与亚磷酰二胺反应形成亚磷酰胺基团。在一些实施方案中,可以直接除去溶剂得到式(321)化合物粗产品,该粗产品可以直接用于后续反应。
在一些实施方案中,式(321)化合物的制备方法还进一步包括以下步骤:在偶联反应条件下,在有机溶剂中,以及在偶联试剂存在下,将分离得到的产物进一步与含有羟基的固相载体进行接触。随后,经盖帽反应、氧化反应,分离得到式(321)化合物。此时,所获得的是R 4中含有第1官能团和第2官能团,第1官能团含有羟基保护基团,第2官能团具有如式(C3')所示结构的式(321)化合物。
在一些实施方案中,所述固相载体为本领域中公知的可用于核酸固相合成的固相载体,例如,可以是经脱保护反应后的市售的通用固相载体(
Figure PCTCN2019129016-appb-000061
UnyLinker TM 300 Oligonucleotide Synthesis Support,Kinovate Life Sciences公司,结构如式B80所示):
Figure PCTCN2019129016-appb-000062
脱保护反应为本领域技术人员所公知。在一些实施方案中,脱保护条件包括温度为0-50℃,例如为15-35℃;反应时间为30-300秒,例如为50-150秒。脱保护试剂可以选自三氟乙酸、三氯乙酸、二氯乙酸、一氯乙酸中的一种或多种,在一些实施方案中,脱保护试剂为二氯乙酸。脱保护试剂与固定相上的-DMTr(4,4'-二甲氧基三苯甲基)保护基的摩尔比为2:1-100:1,例如为3:1-50:1。通过进行所述脱保护,在所述固相载体表面上获得具有反应活性的游离羟基,便于进行下一步的偶联反应。
偶联反应条件以及偶联试剂的选择可如上所述。通过进行该偶联反应,脱保护反应中形成的游离羟基与亚磷酰胺基团反应形成亚磷酸酯连接。
在一些实施方案中,盖帽反应条件包括温度为0-50℃,例如为15-35℃,反应时间为5-500秒,例如为10-100秒,所述盖帽反应在盖帽试剂存在下进行。盖帽试剂的选择和用量可如上所述。
氧化反应条件包括温度为0-50℃,例如可以为15-35℃,反应时间为1-100秒,例如可以为5-50秒,氧化试剂例如可以为碘(在一些实施方案中,以碘水的形式提供)。在一些实施方案中,氧化试剂与连接至固相载体的核酸序列的摩尔比为1:1-100:1,例如可以为5:1-50:1。在一些实施方案中,所述氧化反应在四氢呋喃:水:吡啶=3:1:1-1:1:3的混合溶剂中进行。
在一些实施方案中,R 6为式B7或B8基团中的一种,
Figure PCTCN2019129016-appb-000063
其中q 2的定义如前所述,
此时,式(313)所示化合物可以通过以下制备方法得到:在有机溶剂中,在酰胺化反应条件下,以及在酰胺化反应缩合剂和三级胺类有机碱存在下,将式(314)所示化合物与式(A-1)所示化合物或式(A-2)化合物接触,随后进行分离:
Figure PCTCN2019129016-appb-000064
其中,n1、n3、m1、m2、m3、R 10、R 11、R 12、R 13、R 14、R 15、L 1、S 1、q 2和R k各自的定义和可选择的范围如前所述。
所述酰胺化反应条件可包括反应温度为0-100℃,反应时间为1-48小时,在一些实施方案中,所述酰胺化反应条件为反应温度为10-40℃,反应时间为2-16小时。
在一些实施方案中,所述有机溶剂为醇类溶剂、环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种。所述醇类溶剂在一些实施方案中为甲醇、乙醇、丙醇中的一种或多种,在一些实施方案中为乙醇。所述环氧类溶剂在一些实施方案中为为二氧六环和/或四氢呋喃。所述醚类溶剂在一些实施方案中为为乙醚和/或甲基叔丁基醚。所述卤代烷类溶剂在一些实施方案中为为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种。在一些实施方案中,所述有机溶剂为二氯甲烷。相对于式(314)化合物,有机溶剂用量为3-50L/mol,在进一步的实施方案中为3-20L/mol。
在一些实施方案中,所述酰胺化反应缩合剂为苯并三唑-1-基-氧基三吡咯烷基鏻六氟磷酸盐/酯、3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮、4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐、2-乙氧基-1-乙氧碳酰基-1,2-二氢喹啉(EEDQ)或O-苯并三唑-四甲基脲六氟磷酸盐/酯,在进一步的实施方案中为3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮。所述酰胺化反应缩合剂与式(314)所示化合物的摩尔比可以为1:1-10:1,在一些实施方案中为2.5:1-5:1。
在一些实施方案中,所述三级胺类有机碱为三乙胺或N,N-二异丙基乙胺,在进一步的实施方案中为N,N-二异丙基乙胺。所述三级胺类有机碱与式(314)所示化合物的摩尔比为3:1-20:1,在一些实施方案中为5:1-10:1。
在一些实施方案中,式(A-1)和式(A-2)化合物可通过任何适当的方式制备。例如,当R k为DMTr基团时,可通过甘油酸钙与DMTrCl反应制备式(A-1)化合物;类似地,可先将3-氨基-1,2-丙二醇与环状酸酐接触,随后再与DMTrCl反应制备式(A-2)化合物,所述环状酸酐可以是碳原子数为4-13、在一些实施方案中为4-8的环状酸酐。本领域技术人员容易理解的是,所述环状酸酐的选择对应于(A-2)化合物中q 2的不同值,例如,当所述环状酸酐为丁二酸酐时,q 2=1,当所述环状酸酐为戊二酸酐时,q 2=2,以此类推。
在一些变型中,也可通过使式(314)所示化合物依次与所述环状酸酐、3-氨基-1,2-丙二醇和DMTrCl反应,制备式(313)化合物。本领域技术人员容易理解的是,这些变型不会影响式(313)化合物的结构与功能,并且这些变型是本领域技术人员在上述方法的基础上容易实现的。
与上述类似地,可使用任何合适的分离方法从反应混合物中分离式(313)化合物。在一些实施方案中,可通过蒸发除去溶剂、随后通过色谱方法分离式(313)化合物,例如,可使用如下两种色谱条件进行分离:(1)正相纯化硅胶:200-300目硅胶填料,使用石油醚:乙酸乙酯:二氯甲烷:N,N-二甲基甲酰胺=1:1:1:0.5-1:1:1:0.6梯度洗脱;以及(2)反相纯化:C18、C8反相填料,使用甲醇:乙腈=0.1:1-1:0.1梯度洗脱。在一些实施方案中,可以直接除去溶剂得到式(313)化合物粗产品,该粗产品可以直接用于后续反应。
在一些实施方案中,式(314)所示化合物可以通过以下制备方法得到:该方法包括在有机溶剂中,在酰胺化反应缩合剂和三级胺类有机碱存在下,在缩合反应条件下,将式(320)所示化合物与式(316)所示化合物接触,随后进行分离:
S 1-L 1-OH
式(316)
Figure PCTCN2019129016-appb-000065
其中,n1、n3、m1、m2、m3、R 10、R 11、R 12、R 13、R 14、R 15各自的定义和可选择的范围如前所述。
式(316)化合物可使用例如J.Am.Chem.Soc.2014,136,16958-16961中所公开的化合物,或者,式(316)化合物可由本领域技术人员通过各种方法制备,例如,可参照美国专利US 8,106,022B2实施例1中所公开的方法制备某些式(316)化合物,以引用的方式将以上文献的全部内容整体并入本文。
在一些实施方案中,所述缩合反应条件包括反应温度为0-100℃,反应时间为0.1-24小时,在一些实施方案中为反应温度为10-40℃,反应时间为0.5-16小时。
考虑到期望产物式(314)化合物的结构,所述式(316)所示化合物与所述式(320)所示化合物的摩尔比应当基于与式(320)中n1与n3的和而确定。在一些实施方案中,例如,当n1+n3=3时,为了保证反应完全而不过度,式(316)所示化合物与所述式(320)所示化合物的摩尔比可以为3:1-3.5:1,在一些实施方案中为3.01:1-3.15:1。
在一些实施方案中,所述有机溶剂为乙腈、环氧类溶剂、醚类溶剂、卤代烷类溶剂、二甲基亚砜、N,N-二甲基甲酰胺和N,N-二异丙基乙胺中的一种或多种,所述环氧类溶剂在一些实施方案中为二氧六环和/或四氢呋喃,所述醚类溶剂在一些实施方案中为乙醚和/或甲基叔丁基醚,所述卤代烷类溶剂在一些实施方案中为二氯甲烷、三氯甲烷和1,2-二氯乙烷中的一种或多种,在一些实施方案中,所述有机溶剂为二氯甲烷。相对于式(320)化合物,所述有机溶剂的用量为3-50L/mol,在一些实施方案中为5-20L/mol。
在一些实施方案中,所述酰胺化反应缩合剂为苯并三唑-1-基-氧基三吡咯烷基鏻六氟磷酸盐/酯、3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮(DEPBT)、O-苯并三唑-四甲基脲六氟磷酸盐/酯、4-(4,6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐或1-羟基苯并三唑中的一种或多种,在进一步的实施方案中为苯并三唑-1-基-氧基三吡咯烷基鏻六氟磷酸盐/酯和1-羟基苯并三唑的混合物,其中苯并三唑-1-基-氧基三吡咯烷基鏻六氟磷酸盐/酯和1-羟基苯并三唑为等摩尔用量。所述总的酰胺化反应缩合剂与式(316)所示化合物的摩尔比可以为1:1-3:1,在一些实施方案中为1.05:1-1.5:1。
所述三级胺类有机碱可以为N-甲基吗啉、三乙胺或N,N-二异丙基乙胺,在一些实施方案中为N-甲基吗啉;所述三级胺类有机碱与式(316)所示化合物的摩尔比可以为2:1-10:1,在一些实施方案中为2:1-5:1。
与上述类似地,可使用任何合适的分离方法从反应混合物中分离式(314)化合物。在一些实施方案中,可通过蒸发除去溶剂、随后通过色谱方法分离式(314)化合物例如,可使用如下两种色谱条件进行分离:(1)正相纯化硅胶:200-300目硅胶填料,使用二氯甲烷:甲醇=100:5-100:7梯度洗脱;以及(2)反相纯化:C18、C8反相填料,使用甲醇:乙腈=0.1:1-1:0.1梯度洗脱。在一些实施方案中,可以直接除去溶剂得到式(314)化合物粗产品,该粗产品可以直接用于后续反应。
式(320)化合物可商购获得,或者由本领域技术人员使用已知的方法获得。例如,当m1=m2=m3=3,n1=1,n3=2,且R 10、R 11、R 12、R 13、R 14、R 15均为H时,式(320)化合物可自阿法埃莎公司商购获得。
本公开的siRNA缀合物也可以与药学上可接受的其它辅料联用,该辅料可以为本领域常规采用的各种制剂或化合物的一种或多种,详情可参见上文关于本公开的药物组合物的描述。
本公开的siRNA、含该siRNA的药物组合物及缀合物的应用
在一些实施方案中,本公开提供了本公开的siRNA和/或药物组合物和/或siRNA缀合物在制备用于治疗和/或预防血脂异常的药物中的用途。
在一些实施方案中,本公开提供了一种预防和/或治疗血脂异常的方法,该方法包括将有效量的本公开的siRNA和/或药物组合物和/或siRNA缀合物给予有需要的受试者。
通过将本公开的siRNA活性成分给予有需要的受试者,可以通过RNA干扰的机制达到预防和/或治疗血脂异常的目的。因此,本公开的siRNA和/或药物组合物和/或siRNA缀合物可用于预防和/或治疗血脂异常,或用于制备用于预防和/或治疗血脂异常的药物。
所述血脂异常指肝细胞中APOC3基因过度表达引起的血脂异常,通常表现为血液中甘油三酯、胆固醇等脂质和/或脂蛋白中的任一种或全部的水平提高,高水平的血脂与高血压、心血管疾病、糖尿病以及其他病理学病症高度相关。高甘油三酯血症与动脉粥样硬化相关,还会导致胰腺炎。本公开所述的血脂异常包括但不限于高胆固醇血症、高甘油三酯血症或动脉粥样硬化。
本文所使用的术语―给药/给予‖是指通过使得至少部分地将本公开的siRNA、药物组合物和/或siRNA缀合物定位于期望的位点以产生期望效果的方法或途径,将本公开的siRNA、药物组合物和/或siRNA缀合物放置入受试者体内。适于本公开方法的给药途径包括局部给药和全身给药。一般而言,局部给药导致与受试者整个身体相比将更多siRNA缀合物递送至特定位点;而全身给药导致将本公开的siRNA、药物组合物和/或siRNA缀合物递送至受试者的基本整个身体。考虑到本公开旨在提供预防和/或治疗血脂异常的手段,在一些实施方案中为能够将药物递送至肝脏的给药方式。
可通过本领域已知的任何合适途径向受试者给药,所述途径包括但不仅限于:口服或胃肠外途径,如静脉内给药、肌肉内给药、皮下给药、经皮给药、气道给药(气雾剂)、肺部给药、鼻部给药、直肠给药和局部给药(包括口腔含化给药和舌下给药)。给药频率可以是每天、每周、每两周、每三周、每个月、每两个月、每季度、每半年或每年1次或多次。
本公开所述的siRNA、药物组合物或siRNA缀合物的使用剂量可为本领域常规的剂量,所述剂量可以根据各种参数、尤其是受试者的年龄、体重和性别来确定。可在细胞培养或实验动物中通过标准药学程序测定毒性和疗效,例如测定LD 50(使50%的群体致死的剂量)和ED 50(在量反应中指能引起50%最大反应强度的剂量,在质反应中指引起50%实验对象出现阳性反应时的剂量)。可基于由细胞培养分析和动物研究得到的数据得出人用剂量的范围。
在给予本公开所述的siRNA、药物组合物、和/或siRNA缀合物时,例如,对于雄性或雌性、6-12周龄、体重18-25g的C57BL/6J或30-45g的ob/ob小鼠,以siRNA的量计:(i)对于siRNA缀合物,其siRNA用量可以为0.001-100mg/kg体重,在进一步的实施方案中为0.01-50mg/kg体重,在更进一步的实施方案中为0.05-20mg/kg体重,在一些实施方案中为0.1-15mg/kg体重,另一些实施方案中为0.1-10mg/kg体重;(ii)对于siRNA与药学上可接受的载体形成的药物组合物,其siRNA用量可以为0.001-50mg/kg体重,在进一步的实施方案中为0.01-10mg/kg体重,在更进一步的实施方案中为0.05-5mg/kg体重,在又进一步的实施方案中为0.1-3mg/kg体重。
在一些实施方案中,本公开提供了一种抑制肝细胞中APOC3基因表达的方法,该方法包括将有效量的本公开的siRNA和/或药物组合物和/或siRNA缀合物与所述肝细胞接触,将本公开的siRNA和/或药物组合物和/或siRNA缀合物导入所述肝细胞,通过RNA干扰的机制达到抑制肝细胞中APOC3基因表达的目的。所述肝细胞可以选自Hep3B、HepG2、Huh7等肝癌细胞系或分离的肝原代细胞。在一些实施方案中,所述细胞为Huh7肝癌细胞。
采用本公开提供的方法抑制APOC3基因在细胞中表达,所提供的修饰的siRNA、药物组合物和/或siRNA缀合物中的siRNA用量一般是这样的量:其足以减少靶基因的表达,并导致在靶细胞表面处1pM至1μM、或0.01nM至100nM、或0.05nM至50nM或0.05nM至约5nM的细胞外浓度。达到该局部浓度所需的量将随各种因素而变化,所述因素包括递送方法、递送部位、在递送部位和靶细胞或组织之间的细胞层的数目、递送是局部还是全身等。在递送部位处的浓度可以显著高于在靶细胞或组织的表面处的浓度。
试剂盒
本公开提供了一种试剂盒,所述试剂盒包含有效量的本公开的修饰的siRNA、药物组合物和siRNA缀合物的至少一种。
在一些实施方案中,本文所述的试剂盒可在一个容器中提供修饰的siRNA。在一些实施方案中,本文所述的试剂盒可包含一个提供药学上可接受的赋形剂的容器。在一些实施方案中,所述试剂盒中还可包含其它成分,如稳定剂或防腐剂等。在一些实施方案中,本文所述的试剂盒可在不同于提供本文所述修饰的siRNA的容器以外的其它容器中包含至少一种其它治疗剂。在一些实施方案中,所述试剂盒可包含用于将修饰的siRNA与药学上可接受的载体和/或辅料或其它成分(若有的话)进行混合的说明书。
在本公开的试剂盒中,所述修饰的siRNA和药学上可接受的载体和/或辅料以及所述修饰的siRNA、药物组合物和/或siRNA缀合物和/或缀合物,和/或药学上可接受的辅料可以任何形式提供,例如液体形式、干燥形式或冻干形式。在一些实施方案中,所述修饰的siRNA和药学上可接受的载体和/或辅料以及所述药物组合物和/或缀合物和任选的药学上可接受的辅料基本上纯净和/或无菌。在一些实施方案中,可在本公开的试剂盒中提供无菌水。
下面将通过实施例来进一步说明本公开,但是本公开并不因此而受到任何限制。
实施例
除非特别说明,以下实施例中所用到的试剂、培养基均为市售商品,所用到的核酸电泳、real-time PCR等操作均参照Molecular Cloning(Cold Spring Harbor Laboratory Press(1989))所记载的方法进行。
Huh7细胞购自中国科学院干细胞库,用含有10%的胎牛血清(FBS,Hyclone公司)、1%非必须氨基酸(NEAA,Corning公司)的DMEM完全培养基(Hyclone公司)培养细胞,于37℃在含5%CO 2/95%空气的培养箱中培养。
本公开合成的针对APOC3基因的siRNA、siRNA缀合物或作为阴性对照的siRNA、siRNA缀合物转染细胞时,使用Lipofectamine TM2000(Invitrogen)作为转染试剂,具体操作参照制造商提供的说明书。
若无其它说明,以下提供的试剂比例均按体积比(v/v)计算。
所使用的动物模型如下:
人APOC3转基因小鼠:B6;CBA-Tg(APOC3)3707Bres/J,购于美国Jackson实验室;
实验数据均以
Figure PCTCN2019129016-appb-000066
表示,数据分析采用Graphpad prism5.0统计分析软件。
制备例1:缀合物1-11的制备
本制备例合成了缀合物1-11,这些缀合物为L-9缀合分子分别与表7中所示的siRNA缀合后形成的缀合物。
(1-1)L-10化合物的合成
按照以下方法,合成了L-10化合物:
Figure PCTCN2019129016-appb-000067
(1-1-1)缀合末端段GAL-5的合成
Figure PCTCN2019129016-appb-000068
(1-1-1a)GAL-2的合成
将100.0g GAL-1(N-乙酰-D-半乳糖胺盐酸盐,CAS号:1772-03-8,购自宁波弘翔生化公司,463.8mmol)溶于1000ml无水吡啶,冰水浴下加入540ml乙酸酐(购自Enox公司,5565.6mmol),室温搅拌反应1.5小时。将反应液倒入10L冰水中,减压抽滤,滤饼用2L冰水洗涤后,加乙腈/甲苯混合溶剂(体积比乙腈:甲苯=1:1)至完全溶解,蒸干溶剂,得到白色固体产品GAL-2 130.0g。
(1-1-1b)GAL-3的合成
将步骤(1-1-1a)中获得的GAL-2(35.1g,90.0mmol)溶解于213ml无水1,2-二氯乙烷中,在冰水浴且氮气保护条件下,加入24.0g TMSOTf(CAS号:27607-77-8,购自麦克林公司,108.0mmol),室温反应过夜。
在反应液中加入400ml二氯甲烷稀释,以硅藻土过滤,再加入1L饱和碳酸氢钠水溶液,搅拌均匀,分出有机相,水相用二氯乙烷萃取两次,每次300ml,合并有机相,分别用300ml饱和碳酸氢钠水溶液和300ml饱和食盐水洗涤,分出有机相,无水硫酸钠干燥,减压蒸干溶剂,得到浅黄色粘稠糖稀状产品GAL-3 26.9g。
(1-1-1c)GAL-4的合成
将步骤(1-1-1b)中获得的GAL-3(26.9g,81.7mmol)溶于136ml无水1,2-二氯乙烷中,加入干燥的
Figure PCTCN2019129016-appb-000069
分子筛粉末30g,再加入9.0g 5-己烯-1-醇(CAS号:821-41-0,购自Adamas-beta公司,89.9mmol),室温下搅拌30分钟,冰浴和氮气保护下加入9.08g TMSOTf(40.9mmol),室温下搅拌反应过夜。过滤除去
Figure PCTCN2019129016-appb-000070
分子筛粉末,滤液中加入300ml二氯甲烷稀释,以硅藻土过滤,再加入500ml饱和碳酸氢钠水溶液搅拌10分钟洗涤,分出有机相,水相用300ml二氯乙烷萃取一次,合并有机相并分别用300ml饱和碳酸氢钠水溶液和300ml饱和食盐水洗涤,分出有机相,无水硫酸钠干燥,减压蒸干溶剂,得到黄色糖稀状产品GAL-4 41.3g,不进行纯化直接进行下一步氧化反应。
(1-1-1d)GAL-5的合成
将按照步骤(1-1-1c)中描述的方法得到的GAL-4(14.9g,34.7mmol,)溶于77ml二氯甲烷和77ml乙腈的混合溶剂中,分别加入103ml去离子水和29.7g高碘酸钠(CAS号:7790-28-5,购自阿拉丁公司,138.8mmol),冰水浴下搅拌10分钟,加入三氯化钌(CAS号:14898-67-0,购自安耐吉公司,238mg,1.145mmol),室温反应过夜。反应液加入300ml水稀释搅拌,加饱和碳酸氢钠调pH约为7.5,分出并弃去有机相,水相用二氯甲烷萃取三次,每次200ml,弃去有机相。水相用柠檬酸固体调节pH约为3,用二氯甲烷萃取三次,每次200ml,合并有机相,无水硫酸钠干燥,减压蒸干溶剂,得到白色泡沫状固体产品GAL-5 6.85g。 1H NMR(400MHz,DMSO)δ12.01(br,1H),7.83(d,J=9.2Hz,1H),5.21(d,J=3.2Hz,1H),4.96(dd,J=11.2,3.2Hz,1H),4.49(d,J=8.4Hz,1H),4.07–3.95(m,3H),3.92–3.85(m,1H),3.74–3.67(m,1H),3.48–3.39(m,1H),2.20(t,J=6.8Hz,2H),2.11(s,3H),2.00(s,3H),1.90(s,3H),1.77(s,3H),1.55–1.45(m,4H).
(1-1-2)L-8的合成:
Figure PCTCN2019129016-appb-000071
将J-0(9.886g,52.5mmol,商购自阿法埃沙公司),和步骤(1-1-1)中得到的GAL-5(72.819g,162.75mmol,由多批次产物合并而得)溶于525ml二氯甲烷,加入二异丙基乙胺(DIEA,44.782g,346.50mmol)、苯并三唑-1-基-氧基三吡咯烷基鏻六氟磷酸盐/酯(PyBOP,90.158g,173.25mmol)和羟基苯并三唑(HOBt,23.410g,173.25mmol),室温下反应4h,加入20ml饱和碳酸氢钠和200ml饱和食盐水进行洗涤,水相用二氯甲烷萃取2次,每次100ml,合并有机相,用无水硫酸钠干燥,过滤后减压蒸干溶剂得粗品。纯化使用200-300目正相硅胶,以10wt%三乙胺中和硅胶酸性,1wt‰三乙胺平衡柱子,以二氯甲烷:甲醇=100:25-100:40梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品L-8 38.8g。 1H NMR(400MHz,DMSO)δ7.84(d,J=9.0Hz,3H),7.27–7.23(m,1H),7.13–7.18(m,1H),5.22(d,J=3.1Hz,3H),4.97(dd,J=11.3,3.1Hz,3H),4.48(d,J=8.4Hz,3H),4.09–3.98(m,9H),3.88(dd,J=19.3,9.3Hz,3H),3.75–3.66(m,3H),3.44–3.38(m,3H),3.17–3.30(m,4H),3.10–2.97(m,4H),2.35–2.20(m,6H),2.15–2.08(m,9H),2.07–1.98(m,13H),1.94–1.87(m,9H),1.81–1.74(m,9H),1.65–1.42(m,18H).MS m/z:C 85H 119N 7O 30,[M+H] +,理论:1477.59,实测:1477.23。
(1-1-3)
(1-1-3a)A-1的合成
Figure PCTCN2019129016-appb-000072
将DMTrCl(4,4'-双甲氧基三苯甲基氯,101.65g,300mmol)溶于1000ml无水吡啶中,加入DL-甘油酸钙水合物(28.63g,100mmol),在45℃反应20h,将反应液过滤,滤饼用200ml DCM淋洗,滤液减压浓缩至干,剩余物用500ml二氯甲烷重新溶解,0.5M三乙胺磷酸盐(pH=7-8)洗涤2次,每次200ml,水相以二氯甲烷萃取2次,每次200ml,合并有机相,用无水硫酸钠干燥,过滤,减压蒸干溶剂,200-300目正相硅胶柱纯化,以石油醚:乙酸乙酯:二氯甲烷:甲醇=1:1:1:0.35-1:1:1:0.55梯度洗脱,收集产物洗脱液,减压蒸干溶剂,600ml二氯甲烷重新溶解,以200ml 0.5M三乙胺磷酸盐洗涤1次,水相用200ml二氯甲烷萃取1次,合并有机相,无水硫酸钠干燥,过滤,减压蒸干溶剂,真空油泵减压下过夜,得到白色固体产品A-1 50.7g。 1H NMR(400MHz,DMSO-d6)δ7.46(ddd,J=6.5,2.3,1.1Hz,1H),7.40–7.28(m,7H),6.89–6.81(m,4H),4.84(d,J=5.0Hz,1H),4.36–4.24(m,1H),4.29(s,6H),3.92(dd,J=12.4,7.0Hz,1H),3.67(dd,J=12.3,7.0Hz,1H),2.52(q,J=6.3Hz,6H),1.03(t,J=6.3Hz,9H).MS m/z:C 24H 23O 6,[M-H] -,理论:407.15,实测:406.92。
(1-1-3b)L-7的合成:
Figure PCTCN2019129016-appb-000073
将步骤(1-1-2)中获得的L-8(40g,27.09mmol,由多批次产物合并而得)和步骤(1-1-3a)中获得的A-1(41.418g,81.27mmol)混合,溶于271ml二氯甲烷,加入3-二乙氧基磷酰基-1,2,3-苯唑4(3H)-酮(DEPBT)(24.318g,81.37mmol),再加入二异丙基乙胺(21.007g,162.54mmol),25℃下搅拌反应1.5h,用800ml饱和碳酸氢钠洗涤有机相,水相以二氯甲烷萃取3次,每次50ml,以150ml饱和食盐水洗涤有机相,水相以50ml二氯甲烷萃取1次,合并有机相并以无水硫酸钠干燥,过滤后减压蒸干溶剂,真空油泵发泡干燥过夜,得到粗品。柱纯化使用2kg 200-300目正相硅胶,以200ml三乙胺中和硅胶酸性,以含1wt%三乙胺的石油醚平衡柱子,以石油醚:乙酸乙酯:二氯甲烷:N,N-二甲基甲酰胺=1:1:1:0.5-1:1:1:0.6梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品L-7 40.4g。 1H NMR(400MHz,DMSO)δ7.90–7.78(m,4H),7.75–7.64(m,1H),7.38–7.18(m,9H),6.91–6.83(m,4H),5.25–5.10(m,4H),4.97(dd,J=11.2,3.2Hz,3H),4.48–4.30(m,4H),4.02(s,9H),3.93–3.84(m,3H),3.76–3.66(m,9H),3.45–3.35(m,3H),3.24–2.98(m,10H),2.30–2.20(m,2H),2.11–1.88(m,31H),1.80–1.40(m,28H).MS m/z:C 90H 128N 7O 35,[M-DMTr] +,理论:1564.65,实测:1564.88。
(1-1-4)L-9的合成:
Figure PCTCN2019129016-appb-000074
将步骤(1-1-3b)中获得的L-7(40g,21.4247mmol)、丁二酸酐(4.288g,42.8494mmol)和4-二甲氨基吡啶(DMAP,5.235g,42.8494mmol)混合溶于215ml二氯甲烷,再加入二异丙基乙胺(DIEA,13.845g,107.1235mmol),25℃下搅拌24h,800ml 0.5M三乙胺磷酸盐洗涤反应液,水相以二氯甲烷萃取3次,每次5ml,合并有机相减压蒸干得到粗品。柱纯化使用1kg 200-300目正相硅胶,以1wt%三乙胺中和硅胶酸性,以二氯甲烷平衡柱子,以含1wt‰三乙胺的二氯甲烷:甲醇=100:18-100:20梯度洗脱,收集产物洗脱液,减压蒸干溶剂得到纯品L-9缀合分子31.0g。 1H NMR(400MHz,DMSO)δ8.58(d,J=4.2Hz,1H),7.94–7.82(m,3H),7.41–7.29(m,5H),7.22(d,J=8.1Hz,5H),6.89(d,J=8.3Hz,4H),5.49–5.37(m,1H),5.21(d,J=3.0Hz,3H),4.97(d,J=11.1Hz,3H),4.49(d,J=8.2Hz,3H),4.02(s,9H),3.88(dd,J=19.4,9.4Hz,3H),3.77–3.65(m,9H),3.50–3.39(m,6H),3.11–2.90(m,5H),2.61–2.54(m,4H),2.47–2.41(m,2H),2.26–2.17(m,2H),2.15–1.95(m,22H),1.92–1.84(m,9H),1.80–1.70(m,10H),1.65–1.35(m,17H),1.31–1.19(m,4H),0.96(t,J=7.1Hz,9H).MS m/z:C 94H 132N 7O 38,[M-DMTr] +,理论:1664.72,实测:1665.03。
(1-1-5)L-10化合物的合成:
Figure PCTCN2019129016-appb-000075
此步骤中,通过将L-9缀合分子连接至固相载体,制备了L-10化合物。
将步骤(1-1-4)中获得的L-9缀合分子(22.751g,11mmol)、O-苯并三唑-四甲基脲六氟磷酸盐/酯(HBTU,6.257g,16.5mmol)和二异丙基乙胺(DIEA,2.843g,22mmol)混合,溶于900ml乙腈,室温搅拌5分钟,向反应液中加入氨甲基树脂(88g,100-200目,氨基载量400μmol/g,购自南开和成公司),25℃下进行摇床反应,转速150转/分钟,反应18h后过滤,滤饼以DCM淋洗2次,每次300ml,乙腈淋洗3次,每次300ml,真空油泵干燥18h,随后再按照表6中示出的投料配比加入原料(CapA、CapB、4-二甲氨基吡啶(DMAP)和乙腈)进行盖帽反应。25℃下置于摇床上,转速150转/分钟,反应5h,反应液过滤,滤饼用乙腈淋洗3次,每次300ml,减压蒸发溶剂至干,真空油泵减压下干燥过夜,得到L-10化合物(即,连接固相载体的L-9缀合分子)102g,载量90.8μmol/g。
表6:盖帽反应投料配比
原料 用量 规格 批号 生产厂家
CapA 1980ml —— —— ——
CapB 220ml —— —— ——
DMAP 1.100g 分析纯 I1422139 Aladdin
乙腈 220ml 光谱纯 O15161001 上海星可
其中,CapA和CapB为盖帽试剂溶液,CapA为20体积%N-甲基咪唑的吡啶/乙腈混合溶液,吡啶与乙腈的体积比为3:5;CapB为20体积%乙酸酐的乙腈溶液。
(1-2)合成缀合物1-11的正义链
通过固相亚磷酰胺法,利用上述步骤制备的L-10化合物起始循环,分别按照缀合物1-11的正义链核苷酸排布顺序自3'-5'方向逐一连接核苷单体。每连接一个核苷单体都包括脱保护、偶联、盖帽、氧化或硫化四步反应。其中,两个核苷酸之间采用磷酸酯连接时,连接后一个核苷单体时,包括脱保护、偶联、盖帽、氧化四步反应。两个核苷酸之间采用硫代磷酸酯连接时,连接后一个核苷单体时,包括保护、偶联、盖帽、硫化四步反应。合成条件给定如下:
核苷单体以0.1M浓度的乙腈溶液提供,每一步的脱保护反应的条件相同,即温度为25℃,反应时间为70秒,脱保护试剂为二氯乙酸的二氯甲烷溶液(3%v/v),二氯乙酸与固相载体上4,4'-二甲氧基三苯甲基保护基的摩尔比为5:1。
每一步偶联反应条件均相同,包括温度为25℃,固相载体上连接的核酸序列与核苷单体的摩尔比为1:10,固相载体上连接的核酸序列和偶联试剂的摩尔比为1:65,反应时间为600秒,偶联试剂为5-乙硫基-1H-四氮唑(5-(Ethylthio)-1H-tetrazole,ETT)的0.5M乙腈溶液。
每一步盖帽条件均相同,包括温度为25℃,反应时间为15秒。盖帽试剂溶液为摩尔比为1:1的CapA和CapB的混合溶液,盖帽试剂与固相载体上连接的核酸序列的摩尔比为乙酸酐:N-甲基咪唑:固相载体上连接的核酸序列=1:1:1。
每一步氧化反应条件相同,包括温度为25℃,反应时间为15秒,氧化试剂为浓度为0.05M的碘水。碘与偶联步骤中固相载体上连接的核酸序列的摩尔比为30:1。反应在四氢呋喃:水:吡啶=3:1:1的混合溶剂中进行。
每一步硫化反应的条件相同,包括温度为25℃,反应时间为300秒,硫化试剂为氢化黄原素。硫化试剂与偶联步骤中固相载体上连接的核酸序列的摩尔比为120:1。反应在乙腈:吡啶=1:1的混合溶剂中进行。
切割和脱保护条件如下:将合成的连接有载体的核苷酸序列加入浓度为25wt%的氨水中,氨水用量为0.5ml/μmol,在55℃反应16h,除去液体,将残余物真空浓缩至干。
纯化与脱盐:利用制备型离子色谱纯化柱(Source 15Q),通过NaCl的梯度洗脱,实现核酸的纯化。具体而言为:洗脱剂A:20mM磷酸钠(pH 8.1),溶剂为水/乙腈=9:1(体积比);洗脱剂B:1.5M氯化钠,20mM磷酸钠(pH 8.1),溶剂为水/乙腈=9:1(体积比);洗脱梯度:洗脱剂A:洗脱剂B=100:0-50:50梯度洗脱。收集产品洗脱液后合并,采用反相色谱纯化柱进行脱盐,具体条件包括采用葡聚糖凝胶柱进行脱盐,填料为葡聚糖凝胶G25(Sephadex G25),以去离子水洗脱。
检测:使用离子交换色谱(IEX-HPLC)检测纯度,使用液质联用(LC-MS)分别分析得到的产物的分子量。实测值与理论值相符,表明所合成的是3'末端缀合了L-9缀合分子的缀合物1-11的正义链S。
(1-3)合成反义链
(1-3A)缀合物1-5反义链的制备
通过固相亚磷酰胺法,利用通用固相载体(UnyLinker TM loaded
Figure PCTCN2019129016-appb-000076
Solid Supports,Kinovate Life Sciences公司)起始循环,按照缀合物1-5的反义链核苷酸排布顺序自3'-5'方向逐一连接核苷单体,分别合成缀合物1-5的反义链AS。固相合成方法中的脱保护、偶联、盖帽、氧化或硫化反应条件,切割和脱保护,纯化与脱盐条件与合成正义链相同。
检测:纯度采用离子交换色谱(IEX-HPLC)进行检测;分子量采用液质联用(LC-MS)进行分析。实测值与理论值相符,表明所合成的是具有目标序列的反义链AS。
其中,乙烯基磷酸酯修饰的2'-甲氧基修饰尿嘧啶核苷单体(VP-Um)按照以下方法合成:
Figure PCTCN2019129016-appb-000077
(1-3-1)VP-U-2的合成
按照以下方法,合成了VP-U-2分子:
Figure PCTCN2019129016-appb-000078
将2'-甲氧基修饰的尿嘧啶核苷(2'-OMe-U,51.30g,91.6mmol),叔丁基二苯基氯硅烷(TBDPSCl,50.35g,183.2mmol),咪唑(12.47g,183.2mmol)混合溶于450ml N,N-二甲基甲酰胺(DMF),室温下搅拌反应20h。蒸除DMF,用600ml二氯甲烷溶解后加300ml饱和碳酸氢钠洗涤,水相再用二氯甲烷(DCM)萃取3次,每次300ml,合并有机相,用5%草酸洗涤至水相pH<5,蒸发溶剂至干后获得VP-U-1粗品直接用于随后VP-U-2的合成。
将VP-U-1粗品用100ml二氯甲烷溶解后,外加冰浴搅拌10分钟,再加入预先在4℃冰箱冷藏好的450ml 2%对甲苯磺酸溶液(溶剂为体积比3:7的甲醇-二氯甲烷混合溶剂),反应10分钟。再加入200ml饱和碳酸氢钠淬灭反应,有机相加入饱和碳酸氢钠水溶液洗涤至pH=8。合并水相,用二氯甲烷萃取2次,每次200ml,合并有机相,再用200ml饱和食盐水洗涤一次,蒸发溶剂至 干。200-300目正相硅胶柱纯化,石油醚装柱,以石油醚:乙酸乙酯:二氯甲烷:甲醇=1:1:1:0.05-1:1:1:0.25梯度洗脱,收集产物洗脱液,减压蒸干溶剂,真空油泵发泡干燥得到纯品VP-U-2共40.00g。 1H NMR(400MHz,DMSO-d6)δ7.96(d,J=7.8Hz,1H),7.64(dtd,J=5.1,4.0,2.2Hz,4H),7.41–7.30(m,6H),6.79(d,J=4.7Hz,1H),5.73(d,J=7.6Hz,1H),4.94(t,J=7.0Hz,1H),4.12(td,J=4.6,3.9Hz,1H),4.05(dd,J=4.8,4.0Hz,1H),3.96(t,J=4.7Hz,1H),3.68(ddd,J=11.8,7.0,4.6Hz,1H),3.57–3.46(m,1H),3.39(s,3H),1.05(s,8H).MS m/z:C 26H 33N 2O 6Si,[M+H] +,理论:497.21,实测:497.45。
(1-3-2)VP-U-4的合成:
Figure PCTCN2019129016-appb-000079
将VP-U-2(19.84g,40.0mmol),二环己基碳二亚胺(DCC,16.48g,80.0mmol),吡啶(4.20g,53.2mmol),三氟乙酸(6.61g,53.2mmol)混合溶于200ml二甲基亚砜(DMSO),室温下搅拌反应20h。另取亚甲基二磷酸四乙酯(21.44g,74.4mmol)溶于120ml THF,冰浴降温,在冰浴温度下加入t-BuOK(11.36g,101.2mmol),先在冰浴温度下反应10min,再升至室温反应0.5h,然后加入至前述反应液中,约1h加完,冰浴温度下反应1h,再升至室温反应18h。加水淬灭反应,水相以二氯甲烷提取3次,每次200ml。合并有机相,用200ml饱和食盐水水洗一次后蒸发溶剂至干。用200-300目正相硅胶柱纯化,石油醚装柱,以石油醚:乙酸乙酯=1:1-1:4梯度洗脱,收集产物洗脱液,减压蒸干溶剂,真空油泵发泡干燥得到纯品VP-U-4共14.00g。 1H NMR(400MHz,DMSO-d6)δ7.96(d,J=7.8Hz,1H),7.64(dtd,J=5.1,4.0,2.2Hz,4H),7.41–7.30(m,6H),6.82–6.71(m,2H),5.90(ddd,J=25.9,15.0,1.0Hz,1H),5.73(d,J=7.6Hz,1H),4.36–4.21(m,3H),4.18(t,J=4.9Hz,1H),4.05(ddq,J=9.7,8.5,6.9Hz,2H),3.87(t,J=4.8Hz,1H),3.39(s,3H),1.32(td,J=6.9,0.7Hz,6H),1.05(s,8H).MS m/z:C 31H 42N 2O 8PSi,[M+H] +,理论:629.24,实测:629.51。
(1-3-3)VP-U-5的合成:
Figure PCTCN2019129016-appb-000080
将VP-U-4(14.00g,22.29mmol)溶于100ml四氢呋喃,加入三乙胺三氢氟酸(17.96g,111.45mmol),室温搅拌20h反应完全。直接蒸发溶剂至干,再用二氯甲烷溶解随后蒸干2次,每次使用50ml二氯甲烷,得到粗品。用200-300目正相硅胶柱纯化,石油醚装柱,以石油醚:乙酸乙酯:二氯甲烷:甲醇=1:1:1:0.05-1:1:1:0.25梯度洗脱,收集产物洗脱液,减压蒸干溶剂,真空油泵发泡干燥得到纯品VP-U-5共6.70g。 1H NMR(400MHz,DMSO-d6)δ7.96(d,J=7.8Hz,1H),6.77(dd,J=15.0,6.2Hz,1H),5.99–5.82(m,2H),5.73(d,J=7.6Hz,1H),5.27(d,J=5.1Hz,1H),5.10(dd,J=5.3,4.7Hz,1H),4.29(ddq,J=9.8,8.6,7.0Hz,2H),4.17(ddd,J=6.2,5.2,1.0Hz,1H),4.12–3.98(m,3H),3.39(s,2H),1.32(td,J=6.9,0.6Hz,6H).MS m/z:C 15H 24N 2O 8P,[M+H] +,理论:391.13,实测:391.38。
(1-3-4)VP-U-6的合成:
Figure PCTCN2019129016-appb-000081
在氩气保护条件下向10ml无水二氯甲烷中加入VP-U-5(391mg,1.0mmol)、三氟乙酸吡啶盐(0.232g,1.2mmol)、N-甲基咪唑(0.099g,1.2mmol),双(二异丙基氨基)(2-氰基乙氧基)膦(0.452g,1.5mmol),室温搅拌反应5小时。蒸除溶剂至干,柱层析纯化(200-300目正相硅胶,二氯甲烷:乙腈(含0.5wt%三乙胺)=3:1-1:3梯度洗脱),收集产物洗脱液,浓缩除去溶剂,得到目标产物VP-U-6共508mg。 31P NMR(161MHz,DMSO-d6)δ150.34,150.29,17.07,15.50.MS m/z:C 24H 41N 4O 9P 2,[M+H] +,理论:591.23,实测:591.55。表明VP-U-6是目标产物VP-Um,作为核苷单体参与RNA链合成。
(1-3B)缀合物6、8-11反义链的制备
除各自按照如表7所示的核酸序列逐一连接相应的核苷单体之外,缀合物6及8-11的反义链与缀合物4的反义链的合成方法的区别仅在于5'-末端第一个核苷酸修饰不同。按照固相亚磷酰胺法制备反义链时,最后连接的核苷单体为2'-甲氧基修饰鸟嘌呤核苷单体(Gm),再经脱保护、偶联、盖帽、氧化四步反应将CPR-I单体(苏州吉玛,货号Cat#13-2601-XX)连接至反义链5'末端,形成5'-磷酸酯修饰。
Figure PCTCN2019129016-appb-000082
合成中,使用的通用固相载体,脱保护、偶联、盖帽、氧化或硫化反应条件,切割和脱保护,纯化与脱盐条件与合成正义链相同。
采用离子交换色谱(IEX-HPLC)检测纯度;采用液质联用(LC-MS)分析分子量。实测值与理论值相符,表明所合成的是具有目标序列的反义链AS。
(1-3C)缀合物7反义链的制备
采用与(1-3B)相同的合成方法,区别在于连接CPR-I单体时,以硫化反应条件代替上述氧化反应条件,制得具有5'-硫代磷酸酯修饰的缀合物7反义链。
采用离子交换色谱(IEX-HPLC)检测纯度;采用液质联用(LC-MS)分析分子量。实测值与理论值相符,表明所合成的是具有目标序列的反义链AS。
(1-4)合成缀合物1-11
对于缀合物1,将S链与AS链分别溶于注射用水中,得到40mg/mL的溶液,以等摩尔比混合,50℃加热15min,室温冷却后,得到退火后的产品,冻干,得到冻干粉。使用超纯水(Milli-Q超纯水仪自制,电阻率18.2MΩ*cm(25℃))将缀合物稀释至浓度为0.2mg/mL后,利用液质联用仪(LC-MS,Liquid Chromatography-Mass Spectrometry,购于Waters公司,型号:LCT Premier)进行分子量检测。实测值与理论值一致,说明所合成的缀合物1是目标设计的带有L-9缀合分子的双链核酸序列。
采用相同的方法制备缀合物2-11,不同的是分别用上述制备的缀合物2-11的正义链替代缀合物1的正义链,分别用上述制备的缀合物2-11的反义链替代缀合物1的反义链,分别检测得到的缀合物2-11的分子量,实测值与理论值一致,说明所合成的缀合物是目标设计的带有L-9缀合分子的双链核酸序列。缀合物1-11的结构如式(403)所示。
表7:siRNA缀合物
Figure PCTCN2019129016-appb-000083
制备例2:对比缀合物1和对比缀合物2的制备
本制备例合成了对比缀合物1和对比缀合物2,该缀合物中所缀合的siRNA的序列如表7所示,所缀合的缀合分子是以下(2-1)合成的(GalNAc) 3缀合分子。所述缀合物分别与WO2016081444A1中化合物AD-65704和AD-69535的结构相同。
(2-1)(GalNAc) 3缀合分子的合成
按照WO2014025805A1实施例17所述的方法合成化合物30,即,含有如上文所述的接头-(L A) 3三羟甲基氨基甲烷-L B-以及作为靶向基团的N-乙酰半乳糖胺分子(其中,每个L A可连接一个N-乙酰半乳糖胺分子,因而一个接头可连接三个N-乙酰半乳糖胺分子)的缀合分子,记为(GalNAc) 3缀合分子,合成的化学反应式和(GalNAc) 3缀合分子的结构如下式所示:
Figure PCTCN2019129016-appb-000084
(2-2)连接固相载体的(GalNAc) 3缀合分子的制备
按照与制备例1中步骤(1-1-5)相同的方法,制备连接固相载体的缀合分子,不同的是,用(GalNAc) 3缀合分子代替L-9缀合分子,得到连接固相载体的(GalNAc) 3缀合分子。
(2-3)对比缀合物1和对比缀合物2的合成
通过与制备例1中步骤(1-2)、(1-3A)、(1-4)相同的方法,制备对比缀合物1和对比缀合物2,不同的是:1)以步骤(2-2)得到的化合物起始正义链合成;2)按照固相亚磷酰胺法制备反义链时,最后连接的核苷单体为2'-甲氧基修饰尿嘧啶核苷单体(Um);3)缀合的siRNA分别具有表7中编号为(GalNAc) 3-65704和(GalNAc) 3-69535所示的序列。
利用液质联用仪(LC-MS,Liquid Chromatography-Mass Spectrometry,购于Waters公司,型号:LCT Premier)进行分子量检测。实测值与理论值相符,确定所合成的缀合物是目标设计的化合物,其结构如式(305)所示。
实验例1:siRNA缀合物在体外细胞系中的抑制活性检测
实验例1-1:siRNA缀合物在Huh7细胞系中对APOC3 mRNA表达量的抑制作用。
本实验例考察了缀合物1-5在体外Huh7细胞中对APOC3 mRNA表达量的抑制效率。
使用Lipofectamine TM 2000将缀合物1-5转染至人类肝癌细胞株Huh7中,siRNA缀合物终浓度(以siRNA的量计)分别为0.5nM、0.125nM和0.03125nM。所述siRNA缀合物以溶液的形式提供,具体地,在实验前,用DEPC化水将siRNA缀合物溶解成所需浓度的溶液。以未转染siRNA缀合物的细胞作为空白对照。每个浓度2个复孔。
通过实时荧光定量PCR(Quantitative Real-Time PCR)分别检测转染了各浓度的缀合物1-5的 Huh7细胞中APOC3 mRNA的表达量。具体步骤为:培养转染的细胞24小时后,使用Trizol(Thermo Fisher公司)根据总RNA提取的标准操作步骤提取细胞中的总RNA;分别取1μg总RNA,使用反转录试剂盒(Promega公司,货号A3500)按其说明书的操作方法反转录得到cDNA。使用2×Ultra SYBR Mixture(with ROX)(北京康为世纪生物科技有限公司,货号CW0956)试剂盒,以cDNA为模板按照说明书的步骤进行APOC3 mRNA表达量的检测。其中,用于扩增APOC3和作为内参基因的GAPDH的PCR引物如表8所示。
表8:检测引物的序列
Figure PCTCN2019129016-appb-000085
APOC3 mRNA表达量按如下等式计算:APOC3 mRNA表达量=[(测试组APOC3 mRNA的表达量/测试组GAPDH mRNA的表达量)/(对照组APOC3 mRNA的表达量/对照组GAPDH mRNA的表达量)]×100%。
缀合物对APOC3 mRNA表达量的抑制率按如下等式计算:抑制率=(1-APOC3 mRNA表达量)×100%。其中,各测试组为分别经各浓度缀合物1-5处理的Huh7细胞,对照组为未经缀合物处理的Huh7细胞。
图1示出了未经转染的Huh7和在Huh7细胞中转染不同缀合物至不同的终浓度时APOC3mRNA表达量(表达量以人GAPDH作参比,以空白对照作标准化)的柱状图。
由图1可见,本公开提供的siRNA缀合物在Huh7细胞系中有较高的抑制活性,0.5nM的缀合物对APOC3 mRNA表达量的抑制率均高于60%。本公开提供的各siRNA缀合物在各个浓度下的抑制活性均高于对比缀合物1。
实验例1-2:siRNA缀合物在Huh7细胞系中对APOC3 mRNA的IC 50测定。
本实验例测定了缀合物6、8-11在Huh7细胞系中对APOC3 mRNA的IC 50值。
采用实验例1-1相同的方法转染缀合物6和8-11,并检测各组APOC3 mRNA表达量。不同之处在于,缀合物的终浓度(以siRNA的浓度计算)自3nM起始,3倍稀释7个浓度,至0.004nM。根据采用不同浓度的缀合物所测得的APOC3 mRNA表达量,利用Graphpad 5.0软件log(inhibitor)vs.response—Variable slope功能来拟合剂量-效应曲线,根据剂量-效应曲线计算各缀合物的IC 50值。
Figure PCTCN2019129016-appb-000086
式中:
Y是残留mRNA的表达水平,
X为转染缀合物浓度的对数值,
Bot是稳态期底部的Y值,
Top是稳态期顶部的Y值,
LogIC 50是当Y在底部到顶部之间一半时的X值,而HillSlope则是曲线的斜率。
测得缀合物6和8-11在体外Huh7细胞中的IC 50分别为0.01002nM、0.008159nM、0.05375nM、0.01933nM和0.01949nM,说明本公开的siRNA缀合物在体外具有较高靶mRNA表达量抑制活性。
实验例2:本实验考察本公开的siRNA缀合物在体内(in vivo)对降低血脂含量的作用
实验例2-1:本实验例考察缀合物2、4和5在人APOC3转基因小鼠体内对降低血清中总胆固醇(CHO)和甘油三酯(TG)含量的作用。
将血清TG含量>2mmol/L的人APOC3转基因小鼠(B6;CBA-Tg(APOC3)3707Bres/J)进行随机分组,每组7只,分组如下:(1)生理盐水对照组;(2)缀合物2 3mg/kg组;(3)缀合物2 1mg/kg组;(4)缀合物4 3mg/kg组;(5)缀合物4 1mg/kg组;(6)缀合物5 3mg/kg组;(7)缀合物5 1mg/kg组。所有动物根据体重计算给药剂量,采用皮下注射方式单次给药,siRNA缀合物分别以0.6mg/ml和0.2mg/ml浓度的0.9%氯化钠水溶液提供,具体地,在实验前,用0.9%氯化钠水溶液将siRNA缀合物溶解成所需浓度的溶液;生理盐水和siRNA缀合物的给药体积均为5mL/kg。
分别于给药前(记为第0天),及给药后第7、14、21、28、35、42、49、63、77、91、112、133、147、161、175、189天对小鼠眼眶静脉丛取血,在各时间点检测血清CHO和TG含量。
眼眶取血每次约100μL,离心后血清不少于20μL,进一步使用PM1P000/3全自动血清生化仪(SABA)检测血清中总胆固醇(CHO)和甘油三酯(TG)的含量。
标准化的血脂水平=(给药后测试组血脂含量/给药前测试组血脂含量)×100%。
血脂水平的抑制率=(1-给药后测试组血脂含量/给药前测试组血脂含量)×100%。血脂指总胆固醇或甘油三酯。
图2A-2D示出了给予人APOC3转基因小鼠生理盐水和不同剂量的缀合物2、4和5后,小鼠血清中总胆固醇(CHO)水平和甘油三酯(TG)水平随时间的变化图。其中,给药前测试组记为第0天(D0),各血清CHO水平和TG水平相对于D0天的数值进行标准化。
从图2A可以看出,单次给药3mg/kg剂量组的3个缀合物对TG的抑制率维持在70-90%的时间长达77天,并且对TG的抑制率维持在约50%以下的时间长达147天。
从图2B可以看出,单次给药后第7天,1mg/kg剂量组的3个缀合物对TG的抑制率均高达约80%,并且持续显示出不低于50%的TG含量降低效果的时间长达49天。
从图2C可以看出,单次给药3mg/kg剂量组的3个缀合物对CHO的抑制率基本始终维持在50%左右的时间长达77天。
从图2D可以看出,单次给药后35天时,1mg/kg剂量组的3个缀合物仍显示出至少约50%的CHO含量降低效果。
图2A-2D结果表明,在给药后不同时间点,缀合物2、4和5显示出明显的降低小鼠血清中TG和CHO的效果。表明本公开的siRNA缀合物能够在长时间内稳定高效地降低血脂水平。
实验例2-2:本实验例考察了缀合物1在人APOC3转基因小鼠体内对降低血清中总胆固醇(CHO)和甘油三酯(TG)含量的作用。
按照与实验例2-1相同的方法进行检测,区别在于,每个测试组包括6只小鼠,所给予的缀合物为缀合物1和对比缀合物2;测试持续至给药后第112天。
图3A-3B示出了给予人APOC3转基因小鼠生理盐水和不同剂量的缀合物1和对比缀合物2后,小鼠血清中总胆固醇(CHO)水平和甘油三酯(TG)水平随时间的变化图。其中,给药前测试组记为第0天(D0),各血清CHO水平和TG水平相对于D0天的数值进行标准化。
由图3A和3B的结果可知,无论3mg/kg剂量组还是1mg/kg剂量组,缀合物1都能够在长达112天的时间内显著降低转基因小鼠中的TG和CHO水平,并且该降低效果明显优于对比缀合物2。单次给药56天内,无论3mg/kg剂量组还是1mg/kg剂量组,缀合物1对TG和CHO的抑制率均在50%以上,且对TG的抑制作用更加明显,在长达112天内,2个剂量作用下的TG水平都始终维持在50%上下。
实验例2-3:本实验例考察了缀合物3在人APOC3转基因小鼠体内对降低血清中总胆固醇(CHO)和甘油三酯(TG)含量的作用。
按照与实验例2-1相同的方法进行检测,区别在于,每个测试组包括6只小鼠,所给予的缀合物为缀合物3;使用1×PBS缓冲液代替生理盐水(NS)将缀合物3溶解为所需浓度的溶液,并且空白对照实验使用1×PBS缓冲液;测试持续至给药后第112天。
图4A和4B示出了给予人APOC3转基因小鼠PBS和不同剂量的缀合物3后,小鼠血清中总胆固醇(CHO)水平和甘油三酯(TG)水平随时间的变化图。其中,给药前测试组记为第0天(D0),各血清CHO水平和TG水平相对于D0天的数值进行标准化。
从图4A可以看出,对于3mg/kg剂量组,单次给药后第14天,TG抑制率达93.6%;给药后第98天,TG的抑制率仍有66.4%。对于1mg/kg剂量组,单次给药后第14天,TG抑制率达93.3%;给药后第98天,TG的抑制率仍有37.7%。
从图4B可以看出,对于3mg/kg剂量组,单次给药后第7天,CHO抑制率达63.0%;给药后第98天,CHO的抑制率仍有49.2%。对于1mg/kg剂量组,CHO单次给药后第7天,CHO抑制率达52.2%。
图4A和4B的结果表明,缀合物3能够在长达98天的时间内显著降低转基因小鼠中的TG和CHO水平,并且该降低效果存在明显的剂量依赖效应。
实验例2-4:本实验例考察了缀合物4不同剂量下在人APOC3转基因小鼠体内对降低血清中总胆固醇(CHO)和甘油三酯(TG)含量的作用。
按照与实验例2-1相同的方法进行检测,区别在于,每组8只小鼠,所给予的缀合物为缀合物4;以0.3、1、3mg/kg三个剂量组分别给药,给药体积不变;测试持续至给药后第133天。
图5A和5B示出了给予人APOC3转基因小鼠生理盐水和不同剂量的缀合物4后,小鼠血清中 总胆固醇(CHO)水平和甘油三酯(TG)水平随时间的变化图。其中,给药前测试组记为第0天(D0),各血清CHO水平和TG水平相对于D0天的数值进行标准化。由图5A和5B的结果可知,缀合物4在3个剂量下对人APOC3转基因小鼠均有显著的降脂作用,且有剂量依赖性,3mg/kg给药组在第133天对TG的抑制率仍达50%。
实验例2-5:本实验例考察了缀合物4、6、7在人APOC3转基因小鼠体内对降低血清中总胆固醇(CHO)和甘油三酯(TG)含量的作用。
按照与实验例2-1相同的方法进行检测,区别在于,每组小鼠6只,所给予的缀合物为缀合物4、6、7和对比缀合物2;测试持续至给药后第112天。
图6A-6D示出了给予人APOC3转基因小鼠生理盐水和不同剂量的缀合物4、6、7和对比缀合物2后,小鼠血清中总胆固醇(CHO)水平和甘油三酯(TG)水平随时间的变化图。其中,给药前测试组记为第0天(D0),各血清CHO水平和TG水平相对于D0天的数值进行标准化。
由图6A-6D的结果可知,缀合物4、6、7在2个剂量下对人APOC3转基因小鼠均有显著的血脂降低作用,3mg/kg给药组在给药后84天内对TG的抑制率始终保持在50%以上,对CHO的抑制率保持在30%以上。值得关注的是,在3mg/kg和1mg/kg下,缀合物4、6和7对TG的抑制作用始终强于对比缀合物2,对CHO的抑制也有相同的趋势。
实验例2-6:本实验例考察了缀合物8和9不同剂量下在人APOC3转基因小鼠体内对降低血清中总胆固醇(CHO)和甘油三酯(TG)含量的作用。
按照与实验例2-1相同的方法进行检测,区别在于,每组小鼠8只,所给予的缀合物为缀合物8和9;以0.1、0.3、1、3、9mg/kg五个剂量组分别给药,给药体积不变,相应调整缀合物溶液浓度;测试持续至给药后第147天。
图7A-7D示出了给予人APOC3转基因小鼠生理盐水和不同剂量的缀合物8和9后,小鼠血清中总胆固醇(CHO)水平和甘油三酯(TG)水平随时间的变化图。其中,给药前测试组记为第0天(D0),各血清CHO水平和TG水平相对于D0天的数值进行标准化。
由图7A-7D的结果可知,缀合物8和9在5个剂量下对人APOC3转基因小鼠均有显著的降脂作用,且有剂量依赖性。
进一步地,根据上述缀合物8和9在不同剂量下,不同时间点时对TG的抑制率,测定了缀合物8和9在人APOC3转基因小鼠中,不同时间点下对TG水平抑制的ED 50值。
根据采用不同剂量的缀合物8和9,在不同时间点所测得的血清TG水平,利用Graphpad 5.0软件log(inhibitor)vs.response—Variable slope功能来拟合剂量-效应曲线,根据剂量-效应曲线计算各缀合物的ED 50值。
Figure PCTCN2019129016-appb-000087
式中:
Y是测得的血清TG水平(相对于D0天的TG水平进行标准化),
X为同一时间点时转染缀合物剂量的对数值,
Bot是稳态期底部的Y值,
Top是稳态期顶部的Y值,
LogED 50是当Y在底部到顶部之间一半时的X值,而HillSlope则是曲线的斜率。
经计算,单次施以缀合物8和9,不同时间点下对TG抑制的ED 50值见表9所示。
表9:缀合物8和9在不同时间下对TG抑制的ED 50值(mg/kg)
缀合物 第7天 第14天 第21天 第28天 第35天 第42天 第56天 第70天
缀合物8 0.27 0.16 0.53 0.94 0.90 1.22 1.95 3.93
缀合物9 0.32 0.11 0.60 0.58 0.64 0.73 1.11 2.82
根据表9结果,可以预见,对于人APOC3转基因小鼠,只需单次皮下注射0.16mg/kg的缀合物8或0.11mg/kg的缀合物9,就能实现给药后半个月时仍能降低一半TG含量的疗效;只需单次皮下注射不足1mg/kg的本公开的缀合物,就能达到给药后一个月时仍能降低一半TG含量的效果。
实验例3:本实验例考察缀合物4在人APOC3转基因小鼠体内对肝脏组织中APOC3 mRNA表达量的抑制率。
在实验前检测人APOC3转基因小鼠(B6;CBA-Tg(APOC3)3707Bres/J)的血清甘油三酯含量,选取血清甘油三酯含量大于2mmol/L的转基因小鼠随机分组,测试组每组5只小鼠,空白组(给予NS)4只小鼠,分别向各组小鼠给予缀合物4以及生理盐水NS。所有动物根据体重计算药量,采用皮下注射方式单次给药,siRNA缀合物给药剂量(以siRNA的量计)为1mg/kg和0.1mg/kg两个剂量组,缀合物分别以0.2mg/ml和0.02mg/ml浓度的0.9%氯化钠水溶液提供,给药体积为5mL/kg。给药后14天处死小鼠,收集肝脏,用RNA later(Sigma Aldrich公司)保存;随后用组织匀浆仪匀浆肝组织,再用Trizol(Thermo Fisher公司)根据总RNA提取的标准操作步骤提取得到肝组织总RNA。
采用与实验例1-1相同的实时荧光定量PCR方法检测肝组织中APOC3 mRNA的表达量。区别在于,在该荧光定量PCR法中,以β-actin基因作为内参基因,使用针对APOC3的引物和针对β-肌动蛋白的引物分别检测APOC3和β-肌动蛋白的表达量。
检测引物的序列参见表10。
表10:检测引物的序列
Figure PCTCN2019129016-appb-000088
肝中APOC3 mRNA的表达量以及缀合物对APOC3 mRNA的抑制率计算同实验例1-1。其中,对照组为本实验中施以生理盐水(normal saline,NS)的对照组小鼠,各测试组为分别施以不同浓度的siRNA缀合物的给药组小鼠。
图8示出了给予人APOC3转基因小鼠生理盐水和不同剂量的缀合物4后,小鼠体内肝脏组织中APOC3 mRNA表达量散点图。(表达量以小鼠β-actin作参比,以空白对照NS作标准化)
结果显示,单次给药缀合物4,在0.1mg/kg和1mg/kg下对转基因鼠中的人APOC3基因具有显著的抑制作用。其中,1mg/kg的缀合物4对APOC3 mRNA的抑制率高达82.0%,0.1mg/kg的缀合物4对APOC3 mRNA的抑制率为40.4%。
以上详细描述了本公开的一些实施方案,但是,本公开并不限于上述实施方案中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述一些实施方案中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方案之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。
以引用的方式并入
本说明书中提及的所有出版物、专利以及专利申请均以引用的方式并入本文,其程度与每一单独的出版物、专利以及专利申请均专门并且单独地以引用的方式并入本文的程度相同。

Claims (58)

  1. 一种siRNA缀合物,其中,所述缀合物具有式(308)所示的结构:
    Figure PCTCN2019129016-appb-100001
    其中,n1为选自1-3的整数,n3为选自0-4的整数;m1、m2和m3独立地为选自2-10的整数;R 10、R 11、R 12、R 13、R 14和R 15各自独立地为H,或选自于由以下基团所组成的组:C 1-C 10烷基、C 1-C 10卤代烷基以及C 1-C 10烷氧基;
    R 3为式A59所示结构的基团:
    Figure PCTCN2019129016-appb-100002
    其中,E 1为OH、SH或BH 2
    Nu为siRNA,所述siRNA含有正义链和反义链,所述siRNA中的每个核苷酸各自独立地为修饰或未修饰的核苷酸,其中,所述正义链含有一段核苷酸序列I,所述反义链含有一段核苷酸序列II,所述核苷酸序列I和所述核苷酸序列II至少部分地反向互补形成双链区,所述核苷酸序列I和所述核苷酸序列II选自如下i)-v)中的一组:
    i)所述核苷酸序列I与SEQ ID NO:1所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列长度相等,且不多于3个核苷酸差异,所述核苷酸序列I中包含位置对应于Z a1的核苷酸Z a3,所述核苷酸序列II中包含位置对应于Z a2的核苷酸Z a4,所述Z a4是所述反义链5'末端的第一个核苷酸;或者,
    ii)所述核苷酸序列I与SEQ ID NO:13所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列长度相等,且不多于3个核苷酸差异,所述核苷酸序列I中包含位置对应于Z b1的核苷酸Z b3,所述核苷酸序列II中包含位置对应于Z b2的核苷酸Z b4,所述Z b4是所述反义链5'末端的第一个核苷酸;或者,
    iii)所述核苷酸序列I与SEQ ID NO:25所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列长度相等,且不多于3个核苷酸差异,所述核苷酸序列I中包含位置对应于Z c1的核苷酸Z c3,所述核苷酸序列II中包含位置对应于Z c2的核苷酸Z c4,所述Z c4是所述反义链5'末端的第一个核苷酸;或者,
    iv)所述核苷酸序列I与SEQ ID NO:37所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列长度相等,且不多于3个核苷酸差异,所述核苷酸序列I中包含位置对应于Z d1的核苷酸Z d3,所述核苷酸序列II中包含位置对应于Z d2的核苷酸Z d4,所述Z d4是所述反义链5'末端的第一个核苷酸;或者,
    v)所述核苷酸序列I与SEQ ID NO:49所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列长度相等,且不多于3个核苷酸差异,所述核苷酸序列I中包含位置对应于Z e1的核苷酸Z e3,所述核苷酸序列II中包含位置对应于Z e2的核苷酸Z e4,所述Z e4是所述反义链5'末端的第一个核苷酸;
    R 2是长度为1-20个碳原子的直链亚烷基,其中一个或多个碳原子任选地被选自于以下基团所组成的组中的一个或多个所替换:C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基;并且其中R 2可任选地具有由以下基团所组成的组中的任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、-N(C 1-C 10烷基)(C 1-C 10烷基 苯基)、-NH(C 1-C 10烷基苯基)、氰基、硝基、-CO 2H、-C(O)O(C 1-C 10烷基)、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH 2、-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、-C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基);
    每个L 1是长度为1-70个碳原子的直链亚烷基,其中一个或多个碳原子任选地被选自于以下基团所组成的组中的一个或多个所替换:C(O)、NH、O、S、CH=N、S(O) 2、C 2-C 10亚烯基、C 2-C 10亚炔基、C 6-C 10亚芳基、C 3-C 18亚杂环基和C 5-C 10亚杂芳基;并且其中,L 1可任选地具有由以下基团所组成的组中的任何一个或多个的取代基:C 1-C 10烷基、C 6-C 10芳基、C 5-C 10杂芳基、C 1-C 10卤代烷基、-OC 1-C 10烷基、-OC 1-C 10烷基苯基、-C 1-C 10烷基-OH、-OC 1-C 10卤代烷基、-SC 1-C 10烷基、-SC 1-C 10烷基苯基、-C 1-C 10烷基-SH、-SC 1-C 10卤代烷基、卤素取代基、-OH、-SH、-NH 2、-C 1-C 10烷基-NH 2、-N(C 1-C 10烷基)(C 1-C 10烷基)、-NH(C 1-C 10烷基)、-N(C 1-C 10烷基)(C 1-C 10烷基苯基)、-NH(C 1-C 10烷基苯基)、氰基、硝基、-CO 2H、-C(O)O(C 1-C 10烷基)、-CON(C 1-C 10烷基)(C 1-C 10烷基)、-CONH(C 1-C 10烷基)、-CONH 2,-NHC(O)(C 1-C 10烷基)、-NHC(O)(苯基)、-N(C 1-C 10烷基)C(O)(C 1-C 10烷基)、-N(C 1-C 10烷基)C(O)(苯基)、-C(O)C 1-C 10烷基、-C(O)C 1-C 10烷基苯基、-C(O)C 1-C 10卤烷基、-OC(O)C 1-C 10烷基、-SO 2(C 1-C 10烷基)、-SO 2(苯基)、-SO 2(C 1-C 10卤代烷基)、-SO 2NH 2、-SO 2NH(C 1-C 10烷基)、-SO 2NH(苯基)、-NHSO 2(C 1-C 10烷基)、-NHSO 2(苯基)和-NHSO 2(C 1-C 10卤代烷基);
    Figure PCTCN2019129016-appb-100003
    表示基团连接至分子其余部分的位点;
    M 1表示靶向基团。
  2. 根据权利要求1所述的siRNA缀合物,其中,每个L 1独立地选自式(A1)-(A26)基团中的一种或多种的连接组合:
    Figure PCTCN2019129016-appb-100004
    Figure PCTCN2019129016-appb-100005
    其中,j1为1-20的整数;j2为1-20的整数;
    R'为C 1-C 10烷基;
    Ra选自式(A27)-(A45)所示的基团或其任意组合所组成的组:
    Figure PCTCN2019129016-appb-100006
    Figure PCTCN2019129016-appb-100007
    Rb为C 1-C 10的烷基;
    或者L 1选自A1、A4、A5、A6、A8、A10、A11、A13中的一种或多种的连接组合;
    或者L 1选自A1、A4、A8、A10和A11中至少2个的连接组合;
    或者,L 1选自A1、A8、A10中至少2个的连接组合;
    或者,L 1的长度为3-25个原子;
    或者,L 1的长度为4-15个原子。
  3. 如权利要求2所述的siRNA缀合物,其中,j1为2-10的整数,j2为2-10的整数,R'为C 1-C 4的烷基,Ra为A27、A28、A29、A30和A31中的一种,Rb为C 1-C 5的烷基;
    或者j1为3-5的整数,j2为3-5的整数,R'为甲基、乙基和异丙基中的一种,Ra为式(A27)所示的基团或式(A28)所示的基团,Rb为甲基、乙基、异丙基和丁基中的一种。
  4. 如权利要求1-3中任意一项所述的siRNA缀合物,其中,n1为1-2的整数,n3为0-1的整数,且n1+n3=2-3。
  5. 如权利要求1-4中任意一项所述的siRNA缀合物,其中,m1、m2和m3各自独立地为2-5的整数,和/或m1=m2=m3。
  6. 如权利要求1-5中任意一项所述的siRNA缀合物,其中,每个所述靶向基团独立地为与哺乳动物肝细胞表面的去唾液酸糖蛋白受体亲和的配体;
    或者每个所述靶向基团独立地为去唾液酸糖蛋白或糖;
    或者每个所述靶向基团独立地选自D-吡喃甘露糖、L-吡喃甘露糖、D-阿拉伯糖、D-呋喃木糖、L-呋喃木糖、D-葡萄糖、L-葡萄糖、D-半乳糖、L-半乳糖、α-D-呋喃甘露糖、β-D-呋喃甘露糖、α-D-吡喃甘露糖、β-D-吡喃甘露糖、α-D-吡喃葡萄糖、β-D-吡喃葡萄糖、α-D-呋喃葡萄糖、β-D-呋喃葡萄糖、α-D-呋喃果糖、α-D-吡喃果糖、α-D-吡喃半乳糖、β-D-吡喃半乳糖、α-D-呋喃半乳糖、β-D-呋喃半乳糖、葡糖胺、唾液酸、半乳糖胺、N-乙酰半乳糖胺、N-三氟乙酰半乳糖胺、N-丙酰半乳糖胺、N-正丁酰半乳糖胺、N-异丁酰半乳糖胺、2-氨基-3-O-[(R)-1-羧乙基]-2-脱氧-β-D-吡喃葡萄糖、2-脱氧-2-甲基氨基-L-吡喃葡萄糖、4,6-二脱氧-4-甲酰胺基-2,3-二-O-甲基-D-吡喃甘露糖、2-脱氧-2-磺氨基-D-吡喃葡萄糖、N-乙醇酰基-α-神经氨酸、5-硫代-β-D-吡喃葡萄糖、2,3,4-三-O-乙酰基-1-硫代-6-O-三苯甲基-α-D-吡喃葡萄糖苷甲酯、4-硫代-β-D-吡喃半乳糖、3,4,6,7-四-O-乙酰基-2-脱氧-1,5-二硫代-α-D-吡喃葡庚糖苷乙酯、2,5-脱水-D-阿洛糖腈、核糖、D-核糖、D-4- 硫代核糖、L-核糖、L-4-硫代核糖中的一种;
    或者至少一个或每个所述靶向基团为半乳糖或N-乙酰半乳糖胺。
  7. 如权利要求1-6中任意一项所述的siRNA缀合物,其中,R 10、R 11、R 12、R 13、R 14和R 15独立地为H、甲基或乙基;
    或者R 10、R 11、R 12、R 13、R 14和R 15均为H。
  8. 如权利要求1-7中任意一项所述的siRNA缀合物,其中,R 2上同时含有与含氮骨架上的N连接的连接位点和与R 3中的P连接的连接位点;
    或者R 2上所述与含氮骨架上的N连接的位点与N形成酰胺键,所述与R 3上的P连接的位点与P形成磷酸酯键;
    或者R 2选自式(B5)、(B6)、(B5')或(B6')所示的基团。
  9. 如权利要求1-8中任一项所述的siRNA缀合物,其中,该缀合物具有式(403)、(404)、(405)、(406)、(407)、(408)、(409)、(410)、(411)、(412)、(413)、(414)、(415)、(416)、(417)、(418)、(419)、(420)、(421)或(422)所示的结构。
  10. 如权利要求1-9中任一项所述的siRNA缀合物,其中,式A59中的P连接到siRNA正义链或反义链的端部,所述端部指所述正义链或反义链中从其一端起算的前4个核苷酸;
    或者式A59中的P连接到所述siRNA正义链或反义链的末端;或者式A59中的P连接到所述siRNA正义链的3'末端;
    或者式A59中的P通过形成磷酸二酯键连接至所述siRNA中的核苷酸的2'位、3'位或5'位。
  11. 如权利要求1所述的siRNA缀合物,其中,i)所述核苷酸序列I与SEQ ID NO:1所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列之间不多于1个核苷酸差异;或者ii),所述核苷酸序列I与SEQ ID NO:13所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列之间不多于1个核苷酸差异;或者,iii)所述核苷酸序列I与SEQ ID NO:25所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列之间不多于1个核苷酸差异;或者,iv)所述核苷酸序列I与SEQ ID NO:37示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列之间不多于1个核苷酸差异;或者,v)所述核苷酸序列I与SEQ ID NO:49所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列之间不多于1个核苷酸差异。
  12. 如权利要求1或11所述的siRNA缀合物,其中,i)所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列之间的核苷酸差异包括Z a4位置处的差异,且Z a4选自A、C或G;或者ii)所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列之间的核苷酸差异包括Z b4位置处的差异,且Z b4选自A、C或G;或者iii)所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列之间的核苷酸差异包括Z c4位置处的差异,且Z c4选自A、C或G;或者iv)所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列之间的核苷酸差异包括Z d4位置处的差异,且Z d4选自A、C或G;或者v)所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列之间的核苷酸差异包括Z e4位置处的差异,且Z e4选自A、C或G。
  13. 如权利要求12所述的siRNA缀合物,其中,其中Z a3是与Z a4互补的核苷酸;或者Z b3是与Z b4互补的核苷酸;或者Z c3是与Z c4互补的核苷酸;或者Z d3是与Z d4互补的核苷酸;或者Z e3是与Z e4互补的核苷酸。
  14. 如权利要求11-13中任意一项所述的siRNA缀合物,其中,所述核苷酸序列I和所述核苷酸序列II基本上反向互补、实质上反向互补或完全反向互补;所述基本上反向互补是指两个核苷酸序列之间存在不多于3个的碱基错配;所述实质上反向互补是指两个核苷酸序列之间存在不多于1个的碱基错配;完全反向互补是指两个核苷酸序列之间没有错配。
  15. 如权利要求11-14中任意一项所述的siRNA缀合物,其中,所述正义链还含有核苷酸序列III,所述反义链还含有核苷酸序列IV,核苷酸序列III和核苷酸序列IV的长度各自独立地为1-4个核苷酸,所述核苷酸序列III连接在核苷酸序列I的5'末端,核苷酸序列IV连接在核苷酸序列II的3'末端,所述核苷酸序列III和所述核苷酸序列IV长度相等并且实质上反向互补或完全反向互补;所述实质上反向互补是指两个核苷酸序列之间存在不多于1个的碱基错配;完全反向互补是指两个核苷酸序列之间没有错配。
  16. 如权利要求15所述的siRNA缀合物,其中,
    i)所述核苷酸序列I为SEQ ID NO:3所示的核苷酸序列,所述核苷酸序列II为SEQ ID NO: 4所示的核苷酸序列;且所述核苷酸序列III和IV的长度均为1个核苷酸,所述核苷酸序列III的碱基为C;或者,所述核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GC;或者,所述核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为UGC;或者,所述核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为UUGC;或者
    ii)所述核苷酸序列I为SEQ ID NO:15所示的核苷酸序列,所述核苷酸序列II为SEQ ID NO:16所示的核苷酸序列;并且所述核苷酸序列III和IV的长度均为1个核苷酸,所述核苷酸序列III的碱基为G;或者,所述核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GG;或者,所述核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AGG;或者,所述核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AGGG;或者
    iii)所述核苷酸序列I为SEQ ID NO:25所示的核苷酸序列,所述核苷酸序列II为SEQ ID NO:26所示的核苷酸序列;并且其中,所述核苷酸序列III和IV的长度均为1个核苷酸,所述核苷酸序列III的碱基为G;或者,所述核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AG;或者,所述核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为CAG;或者,所述核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为ACAG;或者
    iv)所述核苷酸序列I为SEQ ID NO:39所示的核苷酸序列,所述核苷酸序列II为SEQ ID NO:40所示的核苷酸序列;并且其中,所述核苷酸序列III和IV的长度均为1个核苷酸,所述核苷酸序列III的碱基为C;或者,所述核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AC;或者,所述核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GAC;或者,所述核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GGAC;或者
    v)所述核苷酸序列I为SEQ ID NO:51所示的核苷酸序列,所述核苷酸序列II为SEQ ID NO:52所示的核苷酸序列;并且其中,所述核苷酸序列III和IV的长度均为1个核苷酸,所述核苷酸序列III的碱基为G;或者,所述核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AG;或者,所述核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AAG;或者,所述核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AAAG。
  17. 如权利要求16所述的siRNA缀合物,其中所述核苷酸序列III和IV完全反向互补。
  18. 如权利要求11-17中任意一项所述的siRNA缀合物,其中,所述反义链还含有核苷酸序列V,核苷酸序列V的长度为1至3个核苷酸,连接在所述反义链的3'末端,构成反义链的3'垂悬末端;或者所述核苷酸序列V的长度为2个核苷酸;或者所述核苷酸序列V为连续的两个胸腺嘧啶脱氧核糖核苷酸或连续的两个尿嘧啶核糖核苷酸;或者所述核苷酸序列V与靶mRNA相应位置的核苷酸互补。
  19. 如权利要求11-18中任意一项所述的siRNA缀合物,其中,
    所述siRNA的正义链含有如SEQ ID NO:5所示的核苷酸序列,所述反义链含有如SEQ ID NO:6所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:7所示的核苷酸序列,所述反义链含有如SEQ ID NO:8所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:17所示的核苷酸序列,所述反义链含有如SEQ ID NO:18所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:19所示的核苷酸序列,所述反义链含有如SEQ ID NO:20所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:29所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:30所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:31所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:32所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:41所示的核苷酸序列,所述反义链含有如SEQ ID NO:42所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:43所示的核苷酸序列,所述反义链含有如SEQ ID NO:44所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:53 所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:54所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:55所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:56所示的核苷酸序列。
  20. 如权利要求11-19中任意一项所述的siRNA缀合物,其中,所述siRNA为siAPa1、siAPa2、siAPb1、siAPb2、siAPc1、siAPc2、siAPd1、siAPd2、siAPe1或siAPe2。
  21. 如权利要求11-20中任意一项所述的siRNA缀合物,其中,所述正义链或所述反义链中的至少一个核苷酸为修饰的核苷酸,和/或至少一个磷酸酯基为具有修饰基团的磷酸酯基。
  22. 如权利要求21所述的siRNA缀合物,其中,所述正义链和所述反义链中的每一个核苷酸独立地为氟代修饰的核苷酸或非氟代修饰的核苷酸;
    或者所述氟代修饰的核苷酸位于核苷酸序列I和核苷酸序列II中,并且,按照5'末端到3'末端的方向,所述核苷酸序列I的第7、8、9位的核苷酸为氟代修饰的核苷酸;按照5'末端到3'末端的方向,所述核苷酸序列II的第2、6、14、16位的核苷酸为氟代修饰的核苷酸;
    或者按照5'末端到3'末端的方向,在所述正义链中,所述核苷酸序列I的第7、8、9位或者5、7、8、9位的核苷酸为氟代修饰的核苷酸,所述正义链中其余位置的核苷酸为非氟代修饰的核苷酸;按照5'末端到3'末端的方向,在所述反义链中,所述核苷酸序列II的第2、6、14、16位或者2、6、8、9、14、16位的核苷酸为氟代修饰的核苷酸,所述反义链中其余位置的核苷酸为非氟代修饰的核苷酸。
  23. 如权利要求21或22所述的siRNA缀合物,其中,每一个非氟代修饰的核苷酸独立地选自核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物中的一种;
    或者核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸选自2'-烷氧基修饰的核苷酸、2'-经取代的烷氧基修饰的核苷酸、2'-烷基修饰的核苷酸、2'-经取代的烷基修饰的核苷酸、2'-氨基修饰的核苷酸、2'-经取代的氨基修饰的核苷酸、2'-脱氧核苷酸中的一种;核苷酸类似物选自异核苷酸、LNA、ENA、cET、UNA和GNA中的一种;
    或者每一个非氟代修饰的核苷酸均为甲氧基修饰的核苷酸,所述甲氧基修饰的核苷酸指核糖基的2'-羟基被甲氧基取代而形成的核苷酸。
  24. 如权利要求21-23中任意一项所述的siRNA缀合物,其中,按照5'末端到3'末端的方向,所述siRNA的正义链中核苷酸序列I的第5、7、8和9位的核苷酸为氟代修饰的核苷酸,siRNA的正义链的其余位置的核苷酸为甲氧基修饰的核苷酸,并且,按照5'末端到3'末端的方向,所述siRNA的反义链中核苷酸序列II的第2、6、8、9、14和16位的核苷酸为氟代修饰的核苷酸,siRNA的反义链其余位置的核苷酸为甲氧基修饰的核苷酸;
    或者,按照5'末端到3'末端的方向,所述siRNA的正义链中核苷酸序列I的第5、7、8和9位的核苷酸为氟代修饰的核苷酸,siRNA的正义链的其余位置的核苷酸为甲氧基修饰的核苷酸,并且,按照5'末端到3'末端的方向,所述siRNA的反义链中核苷酸序列II的第2、6、14和16位的核苷酸为氟代修饰的核苷酸,siRNA的反义链其余位置的核苷酸为甲氧基修饰的核苷酸;
    或者,按照5'末端到3'末端的方向,所述siRNA的正义链中核苷酸序列I的第7、8和9位的核苷酸为-氟代修饰的核苷酸,siRNA的正义链的其余位置的核苷酸为甲氧基修饰的核苷酸,并且,按照5'末端到3'末端的方向,所述siRNA的反义链中核苷酸序列II的第2、6、14和16位的核苷酸为氟代修饰的核苷酸,siRNA的反义链其余位置的核苷酸为甲氧基修饰的核苷酸。
  25. 如权利要求11-24中任意一项所述的siRNA缀合物,其中,其中,所述siRNA为siAPa1-M1、siAPa2-M1、siAPa1-M2、siAPa2-M2、siAPa1-M3、siAPa2-M3、siAPb1-M1、siAPb2-M1、siAPb1-M2、siAPb2-M2、siAPb1-M3、siAPb2-M3、siAPc1-M1、siAPc2-M1、siAPc1-M2、siAPc2-M2、siAPc1-M3、siAPc2-M3、siAPd1-M1、siAPd2-M1、siAPd1-M2、siAPd2-M2、siAPd1-M3、siAPd2-M3、siAPe1-M1、siAPe2-M1、siAPe1-M2、siAPe2-M2、siAPe1-M3和siAPe2-M3中的任意一种。
  26. 如权利要求11-25中任意一项所述的siRNA缀合物,其中,所述具有修饰基团的磷酸酯基为磷酸酯基中的磷酸二酯键中的至少一个氧原子被硫原子取代而形成的硫代磷酸酯基;或者所述具有修饰基团的磷酸酯基为具有如式(1)所示结构的硫代磷酸酯基:
    Figure PCTCN2019129016-appb-100008
  27. 如权利要求26所述的siRNA缀合物,其中,所述siRNA中,硫代磷酸酯基连接存在于由以下位置组成的组中的至少一处:
    所述正义链的5'末端第1个核苷酸和第2个核苷酸之间;
    所述正义链的5'末端第2个核苷酸和第3个核苷酸之间;
    所述正义链的3'末端第1个核苷酸和第2个核苷酸之间;
    所述正义链的3'末端第2个核苷酸和第3个核苷酸之间;
    所述反义链的5'末端第1个核苷酸和第2个核苷酸之间;
    所述反义链的5'末端第2个核苷酸和第3个核苷酸之间;
    所述反义链的3'末端第1个核苷酸和第2个核苷酸之间;以及
    所述反义链的3'末端第2个核苷酸和第3个核苷酸之间。
  28. 如权利要求11-27中任意一项所述的siRNA缀合物,其中,所述siRNA为siAPa1-M1S、siAPa2-M1S、siAPa1-M2S、siAPa2-M2S、siAPa1-M3S、siAPa2-M3S、siAPb1-M1S、siAPb2-M1S、siAPb1-M2S、siAPb2-M2S、siAPb1-M3S、siAPb2-M3S、siAPc1-M1S、siAPc2-M1S、siAPc1-M2S、siAPc2-M2S、siAPc1-M3S、siAPc2-M3S、siAPd1-M1S、siAPd2-M1S、siAPd1-M2S、siAPd2-M2S、siAPd1-M3S、siAPd2-M3S、siAPe1-M1S、siAPe2-M1S、siAPe1-M2S、siAPe2-M2S、siAPe1-M3S和siAPe2-M3S中的任意一种。
  29. 如权利要求11-28中任意一项所述的siRNA缀合物,其中,所述siRNA反义链的5'末端核苷酸为5'-磷酸核苷酸或5'-磷酸类似物修饰的核苷酸;
    或者所述5'-磷酸核苷酸为具有如式(2)所示结构的核苷酸,所述5'-磷酸类似物修饰的核苷酸选自结构如式(3)-式(6)中任意一个所示的核苷酸,
    Figure PCTCN2019129016-appb-100009
    其中,R选自H、OH、甲氧基或氟;Base表示碱基,选自A、U、C、G或T。
  30. 如权利要求11-29中任意一项所述的siRNA缀合物,其中,所述siRNA为siAPa1-M1P1、siAPa2-M1P1、siAPa1-M2P1、siAPa2-M2P1、siAPa1-M3P1、siAPa2-M3P1、siAPa1-M1SP1、siAPa2-M1SP1、siAPa1-M2SP1、siAPa2-M2SP1、siAPa1-M3SP1、siAPa2-M3SP1、siAPa1U-M1P1、siAPa2U-M1P1、siAPa1U-M2P1、siAPa2U-M2P1、siAPa1U-M3P1、siAPa2U-M3P1、siAPa1U-M1SP1、siAPa2U-M1SP1、siAPa1U-M2SP1、siAPa2U-M2SP1、siAPa1U-M3SP1、siAPa2U-M3SP1、siAPb1-M1P1、siAPb2-M1P1、siAPb1-M2P1、siAPb2-M2P1、siAPb1-M3P1、siAPb2-M3P1、siAPb1-M1SP1、siAPb2-M1SP1、siAPb1-M2SP1、siAPb2-M2SP1、siAPb1-M3SP1、siAPb2-M3SP1、siAPb1U-M1P1、siAPb2U-M1P1、siAPb1U-M2P1、siAPb2U-M2P1、siAPb1U-M3P1、siAPb2U-M3P1、siAPb1U-M1SP1、siAPb2U-M1SP1、siAPb1U-M2SP1、siAPb2U-M2SP1、siAPb1U-M3SP1、siAPb2U-M3SP1、siAPc1-M1P1、siAPc2-M1P1、siAPc1-M2P1、siAPc2-M2P1、siAPc1-M3P1、siAPc2-M3P1、siAPc1-M1SP1、siAPc2-M1SP1、siAPc1-M2SP1、siAPc2-M2SP1、siAPc1-M3SP1、siAPc2-M3SP1、siAPd1-M1P1、siAPd2-M1P1、siAPd1-M2P1、siAPd2-M2P1、siAPd1-M3P1、siAPd2-M3P1、siAPd1-M1SP1、siAPd2-M1SP1、siAPd1-M2SP1、siAPd2-M2SP1、siAPd1-M3SP1、siAPd2-M3SP1、siAPd1U-M1P1、siAPd2U-M1P1、siAPd1U-M2P1、siAPd2U-M2P1、siAPd1U-M3P1、siAPd2U-M3P1、siAPd1U-M1SP1、siAPd2U-M1SP1、siAPd1U-M2SP1、siAPd2U-M2SP1、siAPd1U-M3SP1、siAPd2U-M3SP1、siAPe1-M1P1、siAPe2-M1P1、siAPe1-M2P1、siAPe2-M2P1、siAPe1-M3P1、siAPe2-M3P1、siAPe1-M1SP1、siAPe2-M1SP1、siAPe1-M2SP1、siAPe2-M2SP1、siAPe1-M3SP1、siAPe2-M3SP1、 siAPe1U-M1P1、siAPe2U-M1P1、siAPe1U-M2P1、siAPe2U-M2P1、siAPe1U-M3P1、siAPe2U-M3P1、siAPe1U-M1SP1、siAPe2U-M1SP1、siAPe1U-M2SP1、siAPe2U-M2SP1、siAPe1U-M3SP1和siAPe2U-M3SP1中的任意一种。
  31. 一种siRNA,所述siRNA含有正义链和反义链,所述正义链和所述反义链中的每一个核苷酸独立地为氟代修饰的核苷酸或非氟代修饰的核苷酸;所述正义链含有一段核苷酸序列I,所述反义链含有一段核苷酸序列II,所述核苷酸序列I和所述核苷酸序列II至少部分地反向互补形成双链区,所述氟代修饰的核苷酸位于核苷酸序列I和核苷酸序列II中,并且,按照5'末端到3'末端的方向,在所述正义链中,所述核苷酸序列I的第7、8、9位的核苷酸为氟代修饰的核苷酸,所述正义链中其余位置的核苷酸为非氟代修饰的核苷酸;按照5'末端到3'末端的方向,在所述反义链中,所述核苷酸序列II的第2、6、14、16位的核苷酸为氟代修饰的核苷酸,所述反义链中其余位置的核苷酸为非氟代修饰的核苷酸,并且,
    i)所述核苷酸序列I与SEQ ID NO:1所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列长度相等,且不多于3个核苷酸差异,所述核苷酸序列I中包含位置对应于Z a1的核苷酸Z a3,所述核苷酸序列II中包含位置对应于Z a2的核苷酸Z a4,所述Z a4是所述反义链5'末端的第一个核苷酸;或者,
    ii)所述核苷酸序列I与SEQ ID NO:13所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列长度相等,且不多于3个核苷酸差异,所述核苷酸序列I中包含位置对应于Z b1的核苷酸Z b3,所述核苷酸序列II中包含位置对应于Z b2的核苷酸Z b4,所述Z b4是所述反义链5'末端的第一个核苷酸;或者,
    iii)所述核苷酸序列I与SEQ ID NO:25所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列长度相等,且不多于3个核苷酸差异所述核苷酸序列I中包含位置对应于Z c1的核苷酸Z c3,所述核苷酸序列II中包含位置对应于Z c2的核苷酸Z c4,所述Z c4是所述反义链5'末端的第一个核苷酸;或者,
    iv)所述核苷酸序列I与SEQ ID NO:37所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列长度相等,且不多于3个核苷酸差异,所述核苷酸序列I中包含位置对应于Z d1的核苷酸Z d3,所述核苷酸序列II中包含位置对应于Z d2的核苷酸Z d4,所述Z d4是所述反义链5'末端的第一个核苷酸;或者,
    v)所述核苷酸序列I与SEQ ID NO:49所示的核苷酸序列长度相等,且不多于3个核苷酸差异,且所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列长度相等,且不多于3个核苷酸差异,所述核苷酸序列I中包含位置对应于Z e1的核苷酸Z e3,所述核苷酸序列II中包含位置对应于Z e2的核苷酸Z e4,所述Z e4是所述反义链5'末端的第一个核苷酸。
  32. 如权利要求31所述的siRNA,其中,每一个非氟代修饰的核苷酸独立地选自核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸或核苷酸类似物中的一种。
  33. 如权利要求32所述的siRNA,其中,核苷酸的核糖基2'位的羟基被非氟基团取代形成的核苷酸选自2'-烷氧基修饰的核苷酸、2'-经取代的烷氧基修饰的核苷酸、2'-烷基修饰的核苷酸、2'-经取代的烷基修饰的核苷酸、2'-氨基修饰的核苷酸、2'-经取代的氨基修饰的核苷酸、2'-脱氧核苷酸中的一种;核苷酸类似物选自异核苷酸、LNA、ENA、cET、UNA和GNA中的一种。
  34. 如权利要求31-33中任意一项所述的siRNA,其中,每一个非氟代修饰的核苷酸均为甲氧基修饰的核苷酸,所述甲氧基修饰的核苷酸指核糖基的2'-羟基被甲氧基取代而形成的核苷酸。
  35. 如权利要求31-34中任意一项所述的siRNA,其中,i)所述核苷酸序列I与SEQ ID NO:1所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列之间不多于1个核苷酸差异;或者ii),所述核苷酸序列I与SEQ ID NO:13所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列之间不多于1个核苷酸差异;或者,iii)所述核苷酸序列I与SEQ ID NO:25所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列之间不多于1个核苷酸差异;或者,iv)所述核苷酸序列I与SEQ ID NO:37示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列之间不多于1个核苷酸差异;或者,v)所述核苷酸序列I与SEQ ID NO:49所示的核苷酸序列之间不多于1个核苷酸差异,和/或所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列之间不多于1个核苷酸差异。
  36. 如权利要求31-35中任意一项所述的siRNA,其中,i)所述核苷酸序列II与SEQ ID NO:2所示的核苷酸序列之间的核苷酸差异包括Z a4位置处的差异,且Z a4选自A、C或G;或者ii) 所述核苷酸序列II与SEQ ID NO:14所示的核苷酸序列之间的核苷酸差异包括Z b4位置处的差异,且Z b4选自A、C或G;或者iii)所述核苷酸序列II与SEQ ID NO:26所示的核苷酸序列之间的核苷酸差异包括Z c4位置处的差异,且Z c4选自A、C或G;或者iv)所述核苷酸序列II与SEQ ID NO:38所示的核苷酸序列之间的核苷酸差异包括Z d4位置处的差异,且Z d4选自A、C或G;或者v)所述核苷酸序列II与SEQ ID NO:50所示的核苷酸序列之间的核苷酸差异包括Z e4位置处的差异,且Z e4选自A、C或G。
  37. 如权利要求36所述的siRNA,其中,其中Z a3是与Z a4互补的核苷酸;或者Z b3是与Z b4互补的核苷酸;或者Z c3是与Z c4互补的核苷酸;或者Z d3是与Z d4互补的核苷酸;或者Z e3是与Z e4互补的核苷酸。
  38. 如权利要求31-37中任意一项所述的siRNA,其中,所述核苷酸序列I和所述核苷酸序列II基本上反向互补、实质上反向互补或完全反向互补;所述基本上反向互补是指两个核苷酸序列之间存在不多于3个的碱基错配;所述实质上反向互补是指两个核苷酸序列之间存在不多于1个的碱基错配;完全反向互补是指两个核苷酸序列之间没有错配。
  39. 如权利要求31-38中任意一项所述的siRNA,其中,所述正义链还含有核苷酸序列III,所述反义链还含有核苷酸序列IV,核苷酸序列III和核苷酸序列IV的长度各自独立地为1-4个核苷酸,所述核苷酸序列III连接在核苷酸序列I的5'末端,核苷酸序列IV连接在核苷酸序列II的3'末端,所述核苷酸序列III和所述核苷酸序列IV长度相等并且实质上反向互补或完全反向互补;所述实质上反向互补是指两个核苷酸序列之间存在不多于1个的碱基错配;完全反向互补是指两个核苷酸序列之间没有错配。
  40. 如权利要求31-39中任意一项所述的siRNA,其中,
    i)所述核苷酸序列I为SEQ ID NO:3所示的核苷酸序列,所述核苷酸序列II为SEQ ID NO:4所示的核苷酸序列,且所述核苷酸序列III和IV的长度均为1个核苷酸,所述核苷酸序列III的碱基为C;或者,所述核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GC;或者,所述核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为UGC;或者,所述核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为UUGC;或者
    ii)所述核苷酸序列I为SEQ ID NO:15所示的核苷酸序列,所述核苷酸序列II为SEQ ID NO:16所示的核苷酸序列,并且所述核苷酸序列III和IV的长度均为1个核苷酸,所述核苷酸序列III的碱基为G;或者,所述核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GG;或者,所述核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AGG;或者,所述核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AGGG;或者
    iii)所述核苷酸序列I为SEQ ID NO:25所示的核苷酸序列,所述核苷酸序列II为SEQ ID NO:26所示的核苷酸序列,并且其中,所述核苷酸序列III和IV的长度均为1个核苷酸,所述核苷酸序列III的碱基为G;或者,所述核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AG;或者,所述核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为CAG;或者,所述核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为ACAG;或者
    iv)所述核苷酸序列I为SEQ ID NO:39所示的核苷酸序列,所述核苷酸序列II为SEQ ID NO:40所示的核苷酸序列,并且其中,所述核苷酸序列III和IV的长度均为1个核苷酸,所述核苷酸序列III的碱基为C;或者,所述核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AC;或者,所述核苷酸序列III和IV的长度均为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GAC;或者,所述核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为GGAC;或者
    v)所述核苷酸序列I为SEQ ID NO:51所示的核苷酸序列,所述核苷酸序列II为SEQ ID NO:52所示的核苷酸序列,并且其中,所述核苷酸序列III和IV的长度均为1个核苷酸,所述核苷酸序列III的碱基为G;或者,所述核苷酸序列III和IV的长度均为2个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AG;或者,所述核苷酸序列III和IV的长度均 为3个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AAG;或者,所述核苷酸序列III和IV的长度均为4个核苷酸,按照5'末端到3'末端的方向,核苷酸序列III的碱基组成为AAAG。
  41. 如权利要求40所述的siRNA,其中所述核苷酸序列III和IV完全反向互补。
  42. 如权利要求31-41中任意一项所述的siRNA,其中,所述反义链还含有核苷酸序列V,核苷酸序列V的长度为1至3个核苷酸,连接在所述反义链的3'末端,构成反义链的3'垂悬末端;或者所述核苷酸序列V的长度为2个核苷酸;或者所述核苷酸序列V为连续的两个胸腺嘧啶脱氧核糖核苷酸或连续的两个尿嘧啶核糖核苷酸;或者所述核苷酸序列V与靶mRNA相应位置的核苷酸互补。
  43. 如权利要求31-42中任意一项所述的siRNA,其中,
    所述siRNA的正义链含有如SEQ ID NO:5所示的核苷酸序列,所述反义链含有如SEQ ID NO:6所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:7所示的核苷酸序列,所述反义链含有如SEQ ID NO:8所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:17所示的核苷酸序列,所述反义链含有如SEQ ID NO:18所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:19所示的核苷酸序列,所述反义链含有如SEQ ID NO:20所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:29所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:30所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:31所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:32所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:41所示的核苷酸序列,所述反义链含有如SEQ ID NO:42所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:43所示的核苷酸序列,所述反义链含有如SEQ ID NO:44所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:53所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:54所示的核苷酸序列;或者所述siRNA的正义链含有如SEQ ID NO:55所示的核苷酸序列,所述siRNA的反义链含有如SEQ ID NO:56所示的核苷酸序列。
  44. 如权利要求31-43中任意一项所述的siRNA,其中,所述siRNA具有siAPa1、siAPa2、siAPb1、siAPb2、siAPc1、siAPc2、siAPd1、siAPd2、siAPe1或siAPe2所示的核苷酸序列。
  45. 如权利要求31-44中任意一项所述的siRNA,其中,其中,所述siRNA为siAPa1-M3、siAPa2-M3、siAPb1-M3、siAPb2-M3、siAPc1-M3、siAPc2-M3、siAPd1-M3、siAPd2-M3、siAPe1-M3和siAPe2-M3中的任意一种。
  46. 如权利要求31-45中任意一项所述的siRNA,其中,所述正义链或所述反义链中的至少一个磷酸酯基为具有修饰基团的磷酸酯基。
  47. 如权利要求46所述的siRNA,其中,所述具有修饰基团的磷酸酯基为磷酸酯基中的磷酸二酯键中的至少一个氧原子被硫原子取代而形成的硫代磷酸酯基;或者所述具有修饰基团的磷酸酯基为具有如式(1)所示结构的硫代磷酸酯基:
    Figure PCTCN2019129016-appb-100010
  48. 如权利要求47所述的siRNA,其中,所述siRNA中,硫代磷酸酯基连接存在于由以下位置组成的组中的至少一处:
    所述正义链的5'末端第1个核苷酸和第2个核苷酸之间;
    所述正义链的5'末端第2个核苷酸和第3个核苷酸之间;
    所述正义链的3'末端第1个核苷酸和第2个核苷酸之间;
    所述正义链的3'末端第2个核苷酸和第3个核苷酸之间;
    所述反义链的5'末端第1个核苷酸和第2个核苷酸之间;
    所述反义链的5'末端第2个核苷酸和第3个核苷酸之间;
    所述反义链的3'末端第1个核苷酸和第2个核苷酸之间;以及
    所述反义链的3'末端第2个核苷酸和第3个核苷酸之间。
  49. 如权利要求31-48中任意一项所述的siRNA,其中,所述siRNA为siAPa1-M3S、siAPa2-M3S、siAPb1-M3S、siAPb2-M3S、siAPc1-M3S、siAPc2-M3SsiAPd1-M3S、siAPd2-M3S、 siAPe1-M3S和siAPe2-M3S中的任意一种。
  50. 如权利要求31-49中任意一项所述的siRNA,其中,所述siRNA反义链的5'末端核苷酸为5'-磷酸核苷酸或5'-磷酸类似物修饰的核苷酸;
    或者所述5'-磷酸核苷酸为具有如式(2)所示结构的核苷酸,所述5'-磷酸类似物修饰的核苷酸选自结构如式(3)-式(6)中任意一个所示的核苷酸,
    Figure PCTCN2019129016-appb-100011
    其中,R选自H、OH、甲氧基或氟;Base表示碱基,选自A、U、C、G或T。
  51. 如权利要求31-50中任意一项所述的siRNA,其中,所述siRNA为siAPa1-M3P1、siAPa2-M3P1、siAPa1-M3SP1、siAPa2-M3SP1、siAPa1U-M3P1、siAPa2U-M3P1、siAPa1U-M3SP1、siAPa2U-M3SP1、siAPb1-M3P1、siAPb2-M3P1、siAPb1-M3SP1、siAPb2-M3SP1、siAPb1U-M3P1、siAPb2U-M3P1、siAPb1U-M3SP1、siAPb2U-M3SP1、siAPc1-M3P1、siAPc2-M3P1、siAPc1-M3SP1、siAPc2-M3SP1、siAPd1-M3P1、siAPd2-M3P1、siAPd1-M3SP1、siAPd2-M3SP1、siAPd1U-M3P1、siAPd2U-M3P1、siAPd1U-M3SP1、siAPd2U-M3SP1、siAPe1-M3P1、siAPe2-M3P1、siAPe1-M3SP1、siAPe2-M3SP1、siAPe1U-M3P1、siAPe2U-M3P1、siAPe1U-M3SP1和siAPe2U-M3SP1中的任意一种。
  52. 如权利要求31-51中任意一项所述的siRNA,其中所述siRNA为siAPa1UM3SVP、siAPe1UM3SVP、siAPb1UM3SVP、siAPd1UM3SVP、siAPc1M3SVP、siAPd1UM3SP、siAPd1UM3SPs、siAPa1M3SP、siAPe1M3SP、siAPb1M3SP和siAPc1M3SP中的任意一种。
  53. 一种药物组合物,其特征在于,该药物组合物含有权利要求31-52中任意一项所述的siRNA和药学上可接受的载体。
  54. 一种siRNA缀合物,所述siRNA缀合物含有权利要求31-52中任意一项所述的siRNA以及缀合连接至该siRNA的缀合基团。
  55. 权利要求1-30以及54中任意一项所述的siRNA缀合物、权利要求31-52中任意一项所述的siRNA和/或权利要求53所述的药物组合物在制备用于治疗和/或预防血脂异常的药物中的用途。
  56. 一种治疗和/或预防血脂异常的方法,其中,所述方法包括将有效量的权利要求1-30以及54中任意一项所述的siRNA缀合物、权利要求31-52中任意一项所述的siRNA和/或权利要求53所述的药物组合物给予患有血脂异常的受试者。
  57. 一种抑制肝细胞中APOC3基因表达的方法,该方法包括将有效量的权利要求1-30以及54中任意一项所述的siRNA缀合物、权利要求31-52中任意一项所述的siRNA和/或权利要求53所述的药物组合物与所述肝细胞接触。
  58. 一种试剂盒,其中,该试剂盒含有权利要求1-30以及54中任意一项所述的siRNA缀合物、权利要求31-52中任意一项所述的siRNA和/或权利要求53所述的药物组合物。
PCT/CN2019/129016 2018-12-28 2019-12-27 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途 WO2020135673A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/418,946 US20220062427A1 (en) 2018-12-28 2019-12-27 Nucleic acid, composition and conjugate containing nucleic acid, preparation method therefor and use thereof
KR1020217023004A KR20210110839A (ko) 2018-12-28 2019-12-27 핵산, 핵산을 함유하는 조성물 및 접합체, 이의 제조 방법 및 용도
JP2021537877A JP2022515503A (ja) 2018-12-28 2019-12-27 核酸、当該核酸を含む組成物及び複合体ならびに調製方法と使用
CN201980046892.XA CN112423794A (zh) 2018-12-28 2019-12-27 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
EP19902173.4A EP3903830A4 (en) 2018-12-28 2019-12-27 NUCLEIC ACID, COMPOSITION AND CONJUGATE WITH NUCLEIC ACID, PROCESS FOR THEIR PREPARATION AND ITS USE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811622633 2018-12-28
CN201811622633.0 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020135673A1 true WO2020135673A1 (zh) 2020-07-02

Family

ID=71127722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129016 WO2020135673A1 (zh) 2018-12-28 2019-12-27 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途

Country Status (6)

Country Link
US (1) US20220062427A1 (zh)
EP (1) EP3903830A4 (zh)
JP (1) JP2022515503A (zh)
KR (1) KR20210110839A (zh)
CN (1) CN112423794A (zh)
WO (1) WO2020135673A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284559A1 (zh) * 2021-07-16 2023-01-19 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018374219C1 (en) 2017-12-01 2023-05-11 Suzhou Ribo Life Science Co., Ltd. Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method therefor and use thereof
WO2019105419A1 (zh) * 2017-12-01 2019-06-06 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
WO2020038377A1 (zh) 2018-08-21 2020-02-27 苏州瑞博生物技术有限公司 一种核酸、含有该核酸的药物组合物和缀合物及其用途
EP3862024A4 (en) 2018-09-30 2022-08-17 Suzhou Ribo Life Science Co., Ltd. SHORT INTERFERENT RNA CONJUGATE, METHOD FOR PREPARATION AND USE THEREOF
CN117580952A (zh) * 2021-07-16 2024-02-20 苏州瑞博生物技术股份有限公司 双链寡核苷酸、含双链寡核苷酸的组合物与缀合物及制备方法和用途
WO2023138650A1 (zh) * 2022-01-20 2023-07-27 上海拓界生物医药科技有限公司 一种dsRNA、其应用及制备方法
WO2023138659A1 (zh) * 2022-01-20 2023-07-27 上海拓界生物医药科技有限公司 一种dsRNA、其应用及制备方法
TW202345865A (zh) * 2022-01-24 2023-12-01 大陸商上海舶望製藥有限公司 抑制LPA(Apo(a))蛋白表達的組合物和方法
WO2023212134A2 (en) * 2022-04-28 2023-11-02 Dicerna Pharmaceuticals, Inc. Methods for synthesis of peracetylgalactosamine-1-pentanoic acid
WO2024002093A1 (zh) * 2022-06-27 2024-01-04 大睿生物医药科技(上海)有限公司 抑制载脂蛋白C3表达的siRNA

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082607A2 (en) 2007-12-04 2009-07-02 Alnylam Pharmaceuticals, Inc. Targeting lipids
WO2010147992A1 (en) * 2009-06-15 2010-12-23 Alnylam Pharmaceuticals, Inc. Methods for increasing efficacy of lipid formulated sirna
CN103380113A (zh) 2010-11-15 2013-10-30 生命科技公司 含胺的转染试剂及其制备和使用方法
WO2014025805A1 (en) 2012-08-06 2014-02-13 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugated rna agents and process for their preparation
WO2015006740A2 (en) 2013-07-11 2015-01-15 Alnylam Pharmaceuticals, Inc. Oligonucleotide-ligand conjugates and process for their preparation
CN105378082A (zh) 2013-05-01 2016-03-02 Isis制药公司 组合物和方法
WO2016081444A1 (en) 2014-11-17 2016-05-26 Alnylam Pharmaceuticals, Inc. Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof
WO2017055627A1 (en) * 2015-10-02 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Apoc3 mutations for the diagnosis and therapy of hereditary renal amyloidosis disease
CN107109405A (zh) * 2014-06-06 2017-08-29 索尔斯蒂斯生物有限公司 具有生物可逆性和非生物可逆性基团的多核苷酸构建体
TW201925471A (zh) * 2017-12-01 2019-07-01 大陸商蘇州瑞博生物技術有限公司 核酸、含有該核酸的藥物組合物、綴合物、試劑盒及其用途
TW201929905A (zh) * 2017-12-29 2019-08-01 大陸商蘇州瑞博生物技術有限公司 化合物、綴合物及其用途與試劑盒

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023820B2 (en) * 2009-01-26 2015-05-05 Protiva Biotherapeutics, Inc. Compositions and methods for silencing apolipoprotein C-III expression
EA024534B1 (ru) * 2010-02-24 2016-09-30 Эрроухэд Рисерч Корпорейшн КОНЪЮГИРОВАННАЯ СИСТЕМА ДОСТАВКИ И КОМПОЗИЦИЯ ДЛЯ НАПРАВЛЕННОЙ ДОСТАВКИ МАЛЫХ ИНТЕРФЕРИРУЮЩИХ РНК (миРНК) И СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ
WO2015051366A2 (en) * 2013-10-04 2015-04-09 Novartis Ag Novel formats for organic compounds for use in rna interference
EP3169784B1 (en) * 2014-07-16 2020-06-10 Arrowhead Pharmaceuticals, Inc. Rnai compositions to treat apoc3-related diseases
SG10201913791QA (en) * 2014-08-20 2020-03-30 Alnylam Pharmaceuticals Inc Modified double-stranded rna agents
US20180245077A1 (en) * 2015-03-20 2018-08-30 Protiva Biotherapeutics, Inc. Compositions and methods for treating hypertriglyceridemia
CN108239644B (zh) * 2016-12-23 2021-05-28 苏州瑞博生物技术股份有限公司 一种小干扰核酸和药物组合物及其用途
AU2018374219C1 (en) * 2017-12-01 2023-05-11 Suzhou Ribo Life Science Co., Ltd. Double-stranded oligonucleotide, composition and conjugate comprising double-stranded oligonucleotide, preparation method therefor and use thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009082607A2 (en) 2007-12-04 2009-07-02 Alnylam Pharmaceuticals, Inc. Targeting lipids
US8106022B2 (en) 2007-12-04 2012-01-31 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugates as delivery agents for oligonucleotides
WO2010147992A1 (en) * 2009-06-15 2010-12-23 Alnylam Pharmaceuticals, Inc. Methods for increasing efficacy of lipid formulated sirna
CN103380113A (zh) 2010-11-15 2013-10-30 生命科技公司 含胺的转染试剂及其制备和使用方法
WO2014025805A1 (en) 2012-08-06 2014-02-13 Alnylam Pharmaceuticals, Inc. Carbohydrate conjugated rna agents and process for their preparation
CN105378082A (zh) 2013-05-01 2016-03-02 Isis制药公司 组合物和方法
CN105392488A (zh) * 2013-05-01 2016-03-09 Isis制药公司 用于调节载脂蛋白c-iii表达的组合物和方法
WO2015006740A2 (en) 2013-07-11 2015-01-15 Alnylam Pharmaceuticals, Inc. Oligonucleotide-ligand conjugates and process for their preparation
CN107109405A (zh) * 2014-06-06 2017-08-29 索尔斯蒂斯生物有限公司 具有生物可逆性和非生物可逆性基团的多核苷酸构建体
WO2016081444A1 (en) 2014-11-17 2016-05-26 Alnylam Pharmaceuticals, Inc. Apolipoprotein c3 (apoc3) irna compositions and methods of use thereof
WO2017055627A1 (en) * 2015-10-02 2017-04-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Apoc3 mutations for the diagnosis and therapy of hereditary renal amyloidosis disease
TW201925471A (zh) * 2017-12-01 2019-07-01 大陸商蘇州瑞博生物技術有限公司 核酸、含有該核酸的藥物組合物、綴合物、試劑盒及其用途
TW201929905A (zh) * 2017-12-29 2019-08-01 大陸商蘇州瑞博生物技術有限公司 化合物、綴合物及其用途與試劑盒

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning", 1989, COLD SPRING HARBOR LABORATORY PRESS
ANASTASIA KHVOROVAJONATHAN K. WATTS: "The chemical evolution of oligonucleotide therapies of clinical utility", NATURE BIOTECHNOLOGY, vol. 35, no. 3, 2017, pages 238 - 48, XP055410409, DOI: 10.1038/nbt.3765
BEAUCAGE ET AL., TETRAHEDRON, vol. 48, 1992, pages 2223 - 2311
CAS, no. 7790-28-5
GREENEWUTS: "Protective Groups in Organic Synthesis", 1991, JOHN WILEY & SONS
J. AM. CHEM. SOC., vol. 136, 2014, pages 16958 - 16961
MUTHIAH MANOHARAN: "siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes", ACS CHEMICAL BIOLOGY, vol. 10, no. 5, 2015, pages 1181 - 7, XP055448305, DOI: 10.1021/cb501028c
NORDESTGAARD BØRGE G., NICHOLLS STEPHEN J., LANGSTED ANNE, RAY KAUSIK K., TYBJÆRG-HANSEN ANNE: "Advances in lipid-lowering therapy through gene silencing technologies", ATURE REVIEWS CARDIOLOGY, 8 February 2018 (2018-02-08), pages 261 - 272, XP055721809 *
RAJEEV ET AL., CHEMBIOCHEM, vol. 16, 2015, pages 903 - 908
See also references of EP3903830A4
WATTS, J.K.G. F. DELEAVEYM. J. DAMHA: "Chemically Modified siRNA: tools and applications", DRUG DISCOV TODAY, pages 842 - 55

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284559A1 (zh) * 2021-07-16 2023-01-19 苏州瑞博生物技术股份有限公司 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途

Also Published As

Publication number Publication date
JP2022515503A (ja) 2022-02-18
US20220062427A1 (en) 2022-03-03
KR20210110839A (ko) 2021-09-09
EP3903830A4 (en) 2023-04-26
EP3903830A1 (en) 2021-11-03
CN112423794A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2020135673A1 (zh) 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
JP7365052B2 (ja) 核酸、当該核酸を含む組成物及び複合体ならびに調製方法と使用
TWI810226B (zh) 核酸、含有該核酸的藥物組合物、綴合物及其用途
WO2020135581A1 (zh) 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
TWI823879B (zh) 核酸、含有該核酸的藥物組合物與綴合物以及製備方法、用途與試劑盒
TW201925469A (zh) 雙鏈寡核苷酸、包含其的藥物組合物與綴合物、及其用途與試劑盒
EP3718572A1 (en) Nucleic acid, composition and conjugate containing nucleic acid, preparation method and use
WO2020233655A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
CN111973618B (zh) 核酸、药物组合物与siRNA缀合物及制备方法和用途
WO2020238766A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
CN111973619B (zh) 核酸、含有该核酸的药物组合物与siRNA缀合物及制备方法和用途
TW201925473A (zh) 核酸、含有該核酸的藥物組合物、綴合物、試劑盒及其用途
WO2020147847A1 (zh) 一种核酸、含有该核酸的组合物与缀合物及制备方法和用途
WO2020238763A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
WO2020238758A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
TW201925472A (zh) 核酸、含有該核酸的藥物組合物、綴合物、試劑盒及其用途
CN111973617A (zh) 核酸、药物组合物与缀合物及制备方法和用途
WO2020233650A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
WO2020233651A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
WO2020233680A1 (zh) 核酸、药物组合物与缀合物及制备方法和用途
TW202409279A (zh) 核酸、含有該核酸的藥物組合物與綴合物以及製備方法、用途與試劑盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902173

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023004

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019902173

Country of ref document: EP

Effective date: 20210728