WO2020135511A1 - 声音采集组件阵列及声音采集设备 - Google Patents

声音采集组件阵列及声音采集设备 Download PDF

Info

Publication number
WO2020135511A1
WO2020135511A1 PCT/CN2019/128338 CN2019128338W WO2020135511A1 WO 2020135511 A1 WO2020135511 A1 WO 2020135511A1 CN 2019128338 W CN2019128338 W CN 2019128338W WO 2020135511 A1 WO2020135511 A1 WO 2020135511A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound collection
components
sound
array
distance
Prior art date
Application number
PCT/CN2019/128338
Other languages
English (en)
French (fr)
Inventor
郑脊萌
高毅
纪璇
黎韦伟
于蒙
夏凯
冯军
陈柱
陈宏洋
阳文彬
王禹
刘勇
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Publication of WO2020135511A1 publication Critical patent/WO2020135511A1/zh
Priority to US17/319,024 priority Critical patent/US11856376B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/405Non-uniform arrays of transducers or a plurality of uniform arrays with different transducer spacing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones

Definitions

  • the present application relates to the technical field of acoustic processing, in particular to a sound collection component array and sound collection equipment.
  • a related art proposes an elliptical sound collection component array that uses eight sound collection components arranged in an oval shape.
  • the eight sound collection components are respectively provided with three sound collection components on both sides of the abscissa of a rectangular coordinate system, and two sound collection components are provided on the abscissa.
  • the above eight sound collection components are respectively along the rectangular coordinate system.
  • the axis of abscissa and the axis of ordinate are axisymmetric, and the above eight sound collection components are generally elongated.
  • a sound collection component array and a sound collection device are provided.
  • the array of sound collection components includes: two first sound collection components, two second sound collection components, and two third sound collection components;
  • Two of the second sound collection components are located on one side of the connection between the two first sound collection components, and two of the third sound collection components are located on the other side of the connection;
  • Two of the second sound collection components are symmetrical with the perpendicular line of the connecting line, and two of the third sound collection components are symmetrical with the perpendicular line;
  • the distance between the two first sound collecting components is greater than the distance between the two second sound collecting components, and the distance between the two first sound collecting components is greater than the two third sounds The distance between the collection components;
  • the distance between the two second sound collection components is different from the distance between the two third sound collection components.
  • a sound collection device includes the above-mentioned sound collection component array.
  • FIG. 1 is a schematic diagram of a far-field voice interaction scenario involved in this application.
  • FIG. 2 is a schematic diagram of a ring-shaped sound collection component array related to the related art
  • FIG. 3 is a self-lobe diagram of the ring-shaped 6 sound collection component array referred to in FIG. 2;
  • FIG. 4 is a schematic diagram of an elliptical sound collection component array related to the related art
  • FIG. 5 is a self-lobe diagram of the elliptical 8 sound collection component array referred to in FIG. 4;
  • FIG. 6 is a schematic diagram of a sound collection component array in an embodiment
  • FIG. 7 is a schematic diagram of an array of sound collection components in an embodiment
  • 15 and 16 are schematic diagrams of two sound collection component arrays arranged horizontally on the top surface of the device.
  • 17 and 18 are schematic diagrams of two sound collection component arrays vertically arranged on the front of the device.
  • a sound collection device provided with a sound collection component can collect sound signals in the surrounding space, and process the sound signals according to a predetermined manner to realize applications such as voice-based human-computer interaction.
  • the sound collection device may also have different product forms.
  • the sound collection device may include but is not limited to at least one of a smart speaker, a smart TV, a smart TV set-top box, a smart robot, and a smart vehicle-mounted device.
  • FIG. 1 shows a schematic diagram of a far-field voice interaction scenario involved in this application.
  • sound collection devices such as smart TVs, smart TV set-top boxes, and smart speakers are placed in the room.
  • the user issues control voices at any location in the room, such as "turning down the volume”.
  • the control voices issued by the user pass through the air
  • the sound collection device processes and recognizes the control voice, obtains corresponding control instructions, and controls the volume to be turned down.
  • a sound collection component refers to a hardware device component that converts sound (waves generated by vibration of an object) into an analog signal (electrical signal).
  • some sound collection components may further convert the obtained analog signal into a digital sampling signal.
  • the sound collecting component may include a microphone, a pickup, a sound sensor, and so on.
  • the sound collection component can usually only collect sound signals at one point, its collection performance and functions that can be realized are relatively limited. Therefore, in the related art, in order to improve the performance and function of sound collection, a scheme is proposed in which a plurality of sound collection components are arranged at different spatial positions to form an array of sound collection components.
  • the sound signal processing chip performs centralized processing on the sound signals collected by multiple sound collection components in the sound collection component array, which can improve the performance of sound collection and expand new functions. For example, in a smart device with voice recognition, multiple sound collection component arrays composed of multiple sound collection components can strengthen the target user's voice, suppress noise in the environment, and locate the direction of the sound source, ultimately improving voice interaction (especially It is the far-field voice interaction) speech recognition performance in the scene.
  • the ring array is a common array of sound collection component arrays.
  • FIG. 2 illustrates a schematic diagram of a ring-shaped sound collection component array related to the related art.
  • the ring-shaped sound collection component includes 6 sound collection components, which are distributed on a circular boundary centered on the origin of the rectangular coordinate system, and the respective positions of the 6 sound collection components Meet the following formula:
  • r is the radius of the ring, that is to say, the above six sound collection components are evenly distributed on a circular boundary centered on the origin of the rectangular coordinate system, and two of the sound collection components are located on the abscissa of the rectangular coordinate system .
  • is the pitch angle, and 0 ⁇ 90, Is the azimuth, and f is a specified frequency, and c is the transmission speed of sound.
  • the physical meaning of the steering vector can be understood as: when a plane wave signal with zero phase and unit intensity When the direction is incident on the array, the phase and amplitude of the output signal of each sound collection component in the array.
  • N is the number of sound collection components
  • I the scanning direction (that is, point-by-point scanning of all possible incident directions in space)
  • the physical meaning of the lobe diagram B is: at a given frequency point f, to what extent can the sound collection component array distinguish from Direction and from Two signals of direction, that is from The direction of the signal pair comes from The gain of the signal in the direction.
  • FIG. 3 shows the self-lobe diagram of the ring-shaped 6 sound collection component array referred to in FIG. 2.
  • FIG. 3 shows the self-lobe diagram of the ring-shaped 6 sound collection component array referred to in FIG. 2.
  • the sound collection component array In order to ensure that the direct sound propagation path between the sound collection component array and the target speaker is unobstructed, the sound collection component array often needs to be arranged on the top or front of the smart device. Therefore, the shape and occupied area of the sound collection component array will limit the appearance and structural design of the product. Taking the ring array widely used in smart speaker products on the market as an example, the occupied area is a circle with a radius of about 3.5 cm. Therefore, the appearance design of smart speakers equipped with this type of sound collection component array often uses (class) cylinders, which cannot reduce the thickness of their hardware products, and makes it difficult for hardware products to be placed in people's daily homes.
  • FIG. 4 shows a schematic diagram of an elliptical sound collection component array related to the related art.
  • the elliptical sound collection component array includes 8 sound collection components, and the coordinate of the i-th sound collection component in the rectangular coordinate system is (xi, yi), where 1 ⁇ i ⁇ 8.
  • the coordinates of the above eight sound collection components in the rectangular coordinate system are as follows:
  • FIG. 5 shows the self-lobe diagram of the elliptical 8 sound collection component array referred to in FIG. 4. Because the placement of this type of array on the product shape determines that most of the time users speak from 270 degrees, so Figure 5 still chooses To show the self-lobe diagram of the above elliptical array.
  • the number of sound collection components in the ring-shaped 6 sound collection component array shown in FIG. 1 above is small, but the array configuration is difficult to adapt to a plane with a narrow width, while the elliptical 8 sound collection component array can adapt to a narrow width plane, but More data needs to be processed, affecting processing efficiency.
  • the present application proposes a 6-sound acquisition array configuration with a narrow and long shape (such as a rectangle or an ellipse).
  • the array of sound collection components of this configuration can be arranged on the top or the smart hardware of the front elevation plane with a narrow and long shape, while maintaining a similar spatial discrimination capability (especially in the direction of 270°, which is most used by users).
  • the sound collection component array may be applied to a sound collection device.
  • the sound collection device may include, but is not limited to, a smart speaker, a smart TV, a smart TV set-top box, a smart robot, and a smart vehicle-mounted device.
  • the sound collection component array 600 includes:
  • Two first sound collection components 610 Two second sound collection components 620, and two third sound collection components 630.
  • two second sound collection components 620 are located on one side of the connection between the two first sound collection components 610, and two third sound collection components 630 are located on the other side of the connection;
  • two second The sound collecting component 620 is symmetrical with the perpendicular line of the connecting line, and the two third sound collecting components 630 are symmetrical with the perpendicular line;
  • the distance between the two first sound collecting components 610 is greater than the two second sound collecting components 620, and the distance between the two first sound collection components 610 is greater than the distance between the two third sound collection components 630;
  • the distance between the two second sound collection components 620 and the two The distance between the three sound collecting components 630 is different.
  • FIG. 6 refers to the rectangular coordinate system, in which the two first sound collection components 610 are on the abscissa axes on both sides of the origin of the rectangular coordinate system, And the distance between the first sound collection component 610 and the ordinate axis of the rectangular coordinate system is the first length.
  • the two second sound collection components 620 are in the first quadrant and the second quadrant of the rectangular coordinate system, respectively.
  • the vertical distance between the second sound collection component 620 and the ordinate axis of the rectangular coordinate system is the second length.
  • the second sound The vertical distance between the collection component 620 and the axis of abscissa is a third length.
  • the two third sound collection components 630 are in the third and fourth quadrants of the rectangular coordinate system, respectively.
  • the vertical distance between the third sound collection component 630 and the ordinate axis of the rectangular coordinate system is the fourth length.
  • the third sound The vertical distance between the acquisition component 630 and the axis of abscissa is the fifth length.
  • the first length is greater than the second length, the first length is greater than the fourth length, and the second length is different from the fourth length.
  • the solution involved in the embodiments of the present application provides a 6-sound collection array that is symmetrical along a perpendicular line connecting a certain two sound collection components, but is asymmetric along the connection between the two sound collection components , Which can adapt to the narrow and long design extending along the connection direction between the two sound collection components, and has fewer sound collection components than the 8 sound collection component array, and the data to be processed in sound signal processing is more Less, so as to achieve the effect of improving the efficiency of sound signal processing while adapting to the narrow and long appearance design.
  • the sound collection component array may be applied to a sound collection device.
  • the sound collection device may include, but is not limited to, a smart speaker, a smart TV, a smart TV set-top box, a smart robot, and a smart vehicle-mounted device.
  • the sound collection component array 700 includes:
  • Two first sound collection components 710, two second sound collection components 720, and two third sound collection components 730 Two first sound collection components 710, two second sound collection components 720, and two third sound collection components 730.
  • two second sound collection components 720 are located on one side of the connection between the two first sound collection components 710, and two third sound collection components 730 are located on the other side of the connection;
  • two second The sound collection component 720 is symmetrical with the perpendicular line of the connecting line, and the two third sound collection components 730 are symmetrical with the perpendicular line;
  • the distance between the two first sound collection components 710 is greater than the two second sound collection components
  • the distance between 720, and the distance between the two first sound collection components 710 is greater than the distance between the two third sound collection components 730;
  • the distance between the two second sound collection components 720 is different from the distance between the two third sound collection components 730.
  • FIG. 7 refers to the rectangular coordinate system. As shown in FIG. 7, the six sound collection components in the sound collection component array 700 are set according to the rectangular coordinate system.
  • the two first sound collection components 710 are respectively located on the abscissa axis on both sides of the origin of the rectangular coordinate system, and the distance between the first sound collection component 710 and the ordinate axis of the rectangular coordinate system is the first length.
  • the two second sound collection components 720 are in the first quadrant and the second quadrant of the rectangular coordinate system, respectively.
  • the vertical distance between the second sound collection component 720 and the ordinate axis of the rectangular coordinate system is the second length, and the second sound
  • the vertical distance between the acquisition component 720 and the axis of abscissa is the third length.
  • the two third sound collection components 730 are in the third and fourth quadrants of the rectangular coordinate system, respectively.
  • the vertical distance between the third sound collection component 730 and the ordinate axis of the rectangular coordinate system is the fourth length.
  • the third sound The vertical distance between the acquisition component 730 and the axis of abscissa is the fifth length.
  • the first length is greater than the second length, the first length is greater than the fourth length, and the second length is different from the fourth length.
  • the distance between the two first sound collection components 710, the distance between the two second sound collection components 720, and the distance between the two third sound collection components 730 may follow a certain ratio .
  • the distance between the two first sound collection components 710 is three times the distance between the two second sound collection components 720; and the two third sound collection components 730 The distance between them is twice the distance between the two second sound collection components 720.
  • the first length is three times the second length
  • the fourth length is twice the second length
  • the ratio between the distance between the two first sound collection components 710 and the distance between the two second sound collection components 720, and/or the two third sound collections may also be other values.
  • the distance between the two first sound collection components 710 may be 2.8 times or 3.2 times the distance between the two second sound collection components 720, etc.
  • the distance between the two third sound collection components 730 is The distance between the two second sound collecting components 720 is 1.8 times or 2.2 times and so on.
  • the vertical distance between the connection line of the second sound collection component 720 and the two first sound collection components 710 and the vertical distance between the third sound collection component 730 and the connection line are also Can follow a certain proportional relationship.
  • the vertical distance between the second sound collection component 720 and the connection line between the two first sound collection components 710 is between the third sound collection component 730 and the connection line Has the same vertical distance.
  • the third length and the fifth length are the same.
  • the vertical distance between the connection line of the second sound collection component 720 and the two first sound collection components 710 and the distance between the third sound collection component 730 and the connection line can also be different.
  • the ratio between the third length and the fifth length may be 10:9 or 5:4.
  • the first length is three times the second length
  • the fourth length is twice the second length
  • the third length and the fifth length are the same, for example, as shown in FIG. 7
  • the array shown is an asymmetric elliptical 6mic array, and the microphone placement is:
  • d x and d y are the distance between the corresponding microphone on the x-axis (abscissa axis) and y-axis (ordinate axis) of the rectangular coordinate system.
  • the distance between the two second sound collection components 720 and the vertical distance between the second sound collection component 720 and the above connection ie, the connection between the two first sound collection components 710
  • the ratio is 5:2, that is, the ratio of the second length to the third length is 5:4.
  • the second length is 1.5 cm
  • the third length is 1.2 cm.
  • the sound collection component is a microphone component or a pickup component.
  • the six sound collection components are located in the same plane.
  • the above six sound collection components shown in FIG. 7 may be arranged in the same plane.
  • FIG. 8 to FIG. 14 show self-lobe diagrams of the three sound collection component arrays according to the embodiments of the present application at different main azimuth angles.
  • FIG. 8 shows the circular 6 sound collection component array corresponding to FIG. 2 (referred to as the circular 6 array in the figure), the elliptical 8 sound collection component array corresponding to FIG. 4 (referred to as the elliptical 8 array in the figure) and the present
  • FIG. 9 shows an array of circular 6 sound collection components corresponding to FIG. 2, an array of oval 8 sound collection components corresponding to FIG. 4, and an array of asymmetric elliptical 6 sound collection components provided in embodiments of the present application.
  • f 500Hz, 1000Hz, 1500Hz and 2000Hz self lobe diagram.
  • f 500Hz, 1000Hz, 1500Hz and 2000Hz self lobe diagram.
  • FIG. 11 shows a circular 6 sound collection component array corresponding to FIG. 2, an elliptical 8 sound collection component array corresponding to FIG. 4, and an asymmetric elliptical 6 sound collection component array provided in an embodiment of the present application.
  • f 500Hz, 1000Hz, 1500Hz and 2000Hz self lobe diagram.
  • FIG. 12 shows the circular 6 sound collection component array corresponding to FIG. 2, the elliptical 8 sound collection component array corresponding to FIG. 4, and the asymmetric elliptical 6 sound collection component array provided in the embodiment of the present application.
  • f 500Hz, 1000Hz, 1500Hz and 2000Hz self lobe diagram.
  • FIG. 13 shows an array of ring-shaped 6 sound collection components corresponding to FIG. 2, an array of oval-shaped 8 sound collection components corresponding to FIG. 4, and an array of asymmetric elliptical 6 sound collection components provided in embodiments of the present application.
  • f 500Hz, 1000Hz, 1500Hz and 2000Hz self lobe diagram.
  • FIG. 14 shows a circular 6 sound collection component array corresponding to FIG. 2, an elliptical 8 sound collection component array corresponding to FIG. 4, and an asymmetric elliptical 6 sound collection component array provided in an embodiment of the present application.
  • f 500Hz, 1000Hz, 1500Hz and 2000Hz self lobe diagram.
  • the spatial resolution performance of the asymmetric elliptical 6mic array is not worse, even better than the elliptical 8mic array, which is reflected in the better sidelobe suppression performance of its own lobe pattern and the narrower main lobe width.
  • the asymmetric 6mic array shown in the present application can better adapt to the narrower planar layout than the circular 6mic array, and supports more flexible smart hardware product design. Moreover, by using fewer microphones than the elliptical 8mic array, the hardware cost and computational complexity are reduced, and at the same time, better spatial separation performance is achieved near the main user's use direction (270°).
  • the solution involved in the embodiment of the present application provides a 6-sound symmetrical along the perpendicular line connecting a certain two sound collecting components, but asymmetric along the connecting line between the two sound collecting components
  • the collection component array can adapt to the narrow and long design extending along the connecting direction between the two sound collection components, and has fewer sound collection components than the 8 sound collection component array, which needs to be processed in sound signal processing There is less data, so as to achieve the effect of improving the efficiency of sound signal processing while adapting to the narrow and long appearance design.
  • a sound collection device is further provided, and the sound collection device includes the sound collection component array shown in FIG. 6 or FIG. 7 described above.
  • the sound collection component array is horizontally arranged on the top surface of the sound collection device; or, the sound collection component array is vertically arranged on the front surface of the sound collection device.
  • the above top surface is an outer surface facing directly upward when the sound collection device is placed in a specified posture; and the above front surface is a designated outer surface facing each horizontal surface when the sound collection device is placed in a specified posture.
  • the above-mentioned designated posture is the posture that the sound collecting device is installed or placed when normally used according to the design requirements.
  • the above-mentioned designated posture may be a posture in which the sound collecting device is installed or placed according to the guidance.
  • the above-mentioned designated posture may be a posture in which the sound collecting device is installed or placed according to the instructions of the device's instruction manual.
  • the above-mentioned specified posture may also be a posture determined for installation or placement according to the installation/placement indication components (such as support frames, anti-slip mats, mounting holes reserved for wall-mounted components, etc.) in the sound collection device.
  • the above-mentioned specified posture is a posture where the surface of the support frame or the non-slip pad is vertically downward; or, when a surface of the sound collection device is provided with
  • the above-mentioned designated posture is the posture where the surface on which the mounting hole is located is perpendicular to the horizontal plane.
  • FIG. 15 and FIG. 16 shows a schematic diagram of two sound collecting component arrays arranged horizontally on the top surface of the device.
  • the asymmetric 6mic array is arranged along the long axis direction of the elliptical top surface of the smart speaker.
  • the minimum length of the long symmetry axis of the top surface can be designed as the distance between the two first sound collection components, and the minimum length of the short symmetry axis of the top surface of the smart speaker can be designed as the sum of the third length and the fifth length.
  • FIG. 17 and FIG. 18 show schematic diagrams of two sound collection component arrays vertically arranged on the front of the device. Take the sound collection device as a smart TV with a narrow and long area outside the front screen, and the sound collection component as a mic. The direction of the connection line between the two first sound collection components is the horizontal direction.
  • the first direction pointed by the perpendicular line of the connecting line between the two first sound collection components and the sound collection device is the same or opposite.
  • the sound collection device may be a smart device with a narrow and long top surface.
  • the above-mentioned oval 6 sound collection component array is symmetrical
  • the direction pointed by the axis that is, the ordinate direction of the rectangular coordinate system corresponding to the sound collection component array shown in FIG. 6 or FIG. 7 above) is the same as or opposite to the front direction of the sound collection device.
  • the direction pointed by the ordinate of the rectangular coordinate system that is, the first direction in FIG. 15
  • the front of the smart speaker that is, in FIG. 15
  • the second direction is the opposite.
  • the third direction pointed by the perpendicular line of the connecting line between the two first sound collection components is vertically upward or vertical down.
  • the front of the smart TV is parallel to the horizontal plane, and is arranged in an asymmetric 6mic array in a rectangular coordinate system.
  • the direction of the rectangular coordinate system (the first direction in FIG. 17) is vertical up.
  • the front face of the smart TV is parallel to the horizontal plane, and is arranged in an asymmetric 6mic array in a rectangular coordinate system, and the direction of the rectangular coordinate system (the first direction in FIG. 18) is vertical down.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本申请公开了一种声音采集组件阵列,该声音采集组件阵列包括:两个第一声音采集组件、两个第二声音采集组件以及两个第三声音采集组件;两个第二声音采集组件位于两个该第一声音采集组件之间的连线的一侧,且两个第三声音采集组件位于该连线的另一侧;两个第二声音采集组件以该连线的中垂线对称,且两个第三声音采集组件以该中垂线对称;两个第一声音采集组件之间的距离大于两个第二声音采集组件之间的距离,且两个第一声音采集组件之间的距离大于两个第三声音采集组件之间的距离;及两个第二声音采集组件之间的距离与两个第三声音采集组件之间的距离不同。

Description

声音采集组件阵列及声音采集设备
本申请要求于2018年12月27日提交中国专利局,申请号为201811610594.2,申请名称为“声音采集组件阵列及声音采集设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及声学处理技术领域,特别涉及一种声音采集组件阵列及声音采集设备。
背景技术
支持远场语音交互的智能设备往往装备有声音采集组件阵列用于加强语音识别性能。因此,声音采集组件阵列的构型以及其指向性的能力便成为远场语音交互方案中的重要一环。
为了照顾智能设备的产品外观设计,相关技术中提出一种采用8个声音采集组件按照椭圆形排列构成的椭圆形的声音采集组件阵列。其中,该8个声音采集组件在一个直角坐标系的横坐标两侧分别设置3个声音采集组件,并在横坐标上设置2个声音采集组件,上述8个声音采集组件分别沿直角坐标系的横坐标轴和纵坐标轴呈轴对称,且上述8个声音采集组件总体构成呈狭长状。
然而对相关技术中的椭圆形声音采集组件阵列采集的声音信号进行处理时,需要对8个声音采集组件采集到的声音信号进行处理,导致待处理的数据量较大,影响处理效率。
发明内容
根据本申请提供的各种实施例,提供一种声音采集组件阵列及声音采集 设备。
一种声音采集组件阵列,所述声音采集组件阵列包括:两个第一声音采集组件、两个第二声音采集组件以及两个第三声音采集组件;
两个所述第二声音采集组件位于两个所述第一声音采集组件之间的连线的一侧,且两个所述第三声音采集组件位于所述连线的另一侧;
两个所述第二声音采集组件以所述连线的中垂线对称,且两个所述第三声音采集组件以所述中垂线对称;
两个所述第一声音采集组件之间的距离大于两个所述第二声音采集组件之间的距离,且两个所述第一声音采集组件之间的距离大于两个所述第三声音采集组件之间的距离;及
两个所述第二声音采集组件之间的距离与两个所述第三声音采集组件之间的距离不同。
一种声音采集设备,所述声音采集设备包括如上所述的声音采集组件阵列。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请涉及的一种远场语音交互场景示意图;
图2是相关技术涉及的一种环形声音采集组件阵列的示意图;
图3是图2涉及的环形6声音采集组件阵列的自有波瓣图;
图4是相关技术涉及的一种椭圆形声音采集组件阵列的示意图;
图5是图4涉及的椭圆形8声音采集组件阵列的自有波瓣图;
图6是一个实施例中一种声音采集组件阵列的示意图;
图7是一个实施例中一种声音采集组件阵列的示意图;
图8至图14是图7所示实施例涉及的三种声音采集组件阵列在不同的主方位角下的自有波瓣图;
图15和图16是两种声音采集组件阵列水平设置在设备顶面的示意图;及
图17和图18是两种声音采集组件阵列垂直设置在设备正面的示意图。
具体实施方式
下面将结合本发明本申请实施例中的附图,对本发明本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明本申请一部分实施例,而不是全部的实施例。基于本发明本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明本申请保护的范围。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。
随着智能音箱及其衍生品的流行,人机之间的语音交互,尤其是远场语音交互,逐渐成为了一个重要的人机交互界面,并被认为是未来最重要的用户流量入口。其中,设置有声音采集组件的声音采集设备可以采集周围空间中的声音信号,并对声音信号按照预定方式进行处理,以实现基于语音的人机交互等应用。
其中,根据具体应用场景的不同,声音采集设备也可以有不同的产品形态。比如,声音采集设备可以包括但不限于智能音箱、智能电视、智能电视机顶盒、智能机器人以及者智能车载设备中的至少一种。
比如,请参考图1,其示出了本申请涉及的一种远场语音交互场景示意图。如图1所示,在房间内放置有智能电视、智能电视机顶盒以及智能音箱等声音采集设备,用户在房间内的任意位置发出控制语音,比如“调低音量”,用户发出的控制语音通过空气传到声音采集设备处,被声音采集设备中设置的 声音采集组件接收到后,声音采集设备对控制语音进行处理以及识别等步骤,获得对应的控制指令,并控制音量调低。
随着声音采集及处理技术的应用场景的不断发展,对声音采集组件的要求也越来越高,目前业内提出了通过多个声音采集组件组成声音采集组件阵列,以提高声音信号采集性能,以及支持更多的功能。而本申请所示的方案,提出一种兼顾性能和产品外观性状的声音采集组件阵列。
在介绍本申请所示的方案之前,首先介绍本申请方案涉及的几个名词。
1)声音采集组件
在本申请中,声音采集组件是指将声音(由物体振动产生的波)转化为模拟信号(电信号)的硬件设备组件。可选的,部分声音采集组件还可以进一步将获得的模拟信号转换为数字采样信号。
其中,根据电路结构的不同,声音采集组件可以包括麦克风、拾音器以及声音传感器等等。
2)声音采集组件阵列
由于声音采集组件通常只能在一个点上进行声音信号采集,其采集性能和能够实现的功能都比较有限。因此,在相关技术中,为了提高声音采集的性能及功能,提出一种将多个声音采集组件分别设置在不同的空间位置处,以组成一个声音采集组件阵列的方案。声音信号处理芯片对声音采集组件阵列中的多个声音采集组件分别采集到的声音信号进行集中处理,可以提高声音采集的性能,并扩展新的功能。比如,在具有语音识别功能的智能设备中,通过多个声音采集组件组成的多个声音采集组件阵列可以加强目标用户语音、抑制环境中的噪声以及定位声源的方向,最终提升语音交互(尤其是远场语音交互)场景中的语音识别性能。
在相关技术中,环形阵列是声音采集组件阵列的一种常用阵列。请参考图2,其示出了相关技术涉及的一种环形声音采集组件阵列的示意图。如图2所示,该环形声音采集组件包含6个声音采集组件,这6个声音采集组件分布在以直角坐标系的原点为圆心的圆形边界上,且这6个声音采集组件各自的位 置满足以下公式:
{(x i=r·cos((i-1)*60°),yi=r·sin((i-1)*60°))|i=1,2,..,6};
其中r为圆环半径,也就是说,上述6个声音采集组件均匀分布在以直角坐标系的原点为圆心的圆形边界上,并且,其中两个声音采集组件位于直角坐标系的横坐标上。
定义声音采集组件阵列的导向矢量(steering vector)为
Figure PCTCN2019128338-appb-000001
Figure PCTCN2019128338-appb-000002
的表达式如下:
Figure PCTCN2019128338-appb-000003
其中,θ是俯仰角,且0≤θ≤90,
Figure PCTCN2019128338-appb-000004
是方位角,且
Figure PCTCN2019128338-appb-000005
f是某指定频率,c是声音的传输速度。导向矢量的物理意义可以被理解为:当某一个零相位、单位强度的平面波信号从
Figure PCTCN2019128338-appb-000006
方向入射到阵列上时,阵列中每个声音采集组件输出信号的相位和幅度。
同时定义声音采集组件阵列的“阵列自有波瓣图”为
Figure PCTCN2019128338-appb-000007
Figure PCTCN2019128338-appb-000008
的表达式如下:
Figure PCTCN2019128338-appb-000009
其中,N为声音采集组件个数,
Figure PCTCN2019128338-appb-000010
为某给定目标方向(又称为波瓣图的主方向),
Figure PCTCN2019128338-appb-000011
为扫描方向(即对空间中所有可能的入射方向进行逐点扫描)。波瓣图B的物理意义是:在给定频点f上,声音采集组件阵列能够多大程度上区分来自
Figure PCTCN2019128338-appb-000012
方向和来自
Figure PCTCN2019128338-appb-000013
方向的两个信号,也就是来自
Figure PCTCN2019128338-appb-000014
方向的信号对来自
Figure PCTCN2019128338-appb-000015
方向的信号的增益大小。
请参考图3,其示出了图2涉及的环形6声音采集组件阵列的自有波瓣图。以r=3.5cm这个经典值为例,为了波瓣图展示的简洁性,固定设置θ 0=θ=0°,同时取f=500Hz、1000Hz、1500Hz和2000Hz、这四个对语音信号处理来说比较常用且重要的频点。以
Figure PCTCN2019128338-appb-000016
为例来展示其自有波瓣图,其它角度的自有波瓣图(根据旋转对称原理)与图3类似只是围绕图3中的原点进行旋转。
为了保证声音采集组件阵列和目标说话人之间的直达声音传播路径无阻 挡,声音采集组件阵列往往需要布置在智能设备的顶面或正面。因此,声音采集组件阵列的形状和占用面积便会对产品外观和结构设计形成限制。以目前市面上智能音箱类产品广泛采用的环形阵列为例,其占用面积为半径大约3.5cm的圆形。因此,装备这一类声音采集组件阵列的智能音箱的外观设计往往采用(类)圆柱体,而无法缩减其硬件产品的厚度,并给硬件产品在人们日常家居中的摆放带来困难。
为了照顾方形的产品外观设计,相关技术中还提出一种椭圆形8声音采集组件阵列方案。请参考图4,其示出了相关技术涉及的一种椭圆形声音采集组件阵列的示意图。如图4所示,该椭圆形声音采集组件阵列包含8个声音采集组件,且第i个声音采集组件在直角坐标系中的坐标为(xi,yi),其中,1≤i≤8。上述8个声音采集组件在直角坐标系中的坐标分别如下:
(x 1,y 1)=(d x,d y),(x 2,y 2)=(0,d y),(x 3,y 3)=(-d x,d y),(x 4,y 4)=(-2d x,0),(x 5,y 5)=(-d x,-d y),(x 6,y 6)=(0,-d y),(x 7,y 7)=(d x,-d y),(x 8,y 8)=(2d x,0);
其中,d x和d y是声音采集组件在x轴和y轴上的间距,在语音识别应用场景中的经典值:d x=2.25cm和d y=1.2cm。
请参考图5,其示出了图4涉及的椭圆形8声音采集组件阵列的自有波瓣图。由于这一类阵列在产品外形上的摆放,决定了绝大部分时候用户都是从270度方向说话,因此图5仍然选择了
Figure PCTCN2019128338-appb-000017
来展示上述椭圆阵列的自有波瓣图。
上述图1所示的环形6声音采集组件阵列中的声音采集组件数量少,但是阵列构型难以适应宽度较窄的平面,而椭圆形8声音采集组件阵列虽然能够适应宽度较窄的平面,但是需要处理的数据更多,影响处理效率。
对此,本申请提出一种占用面积为窄长形状(比如矩形或椭圆形)的6声音采集组件阵列构型。这种构型的声音采集组件阵列可以布置在顶部或者前立面平面为窄长形状的智能硬件上,同时能够保持类似的空间区分能力(尤 其是在用户最主要使用的270°方向)。
图6是一个实施例中一种声音采集组件阵列的示意图。该声音采集组件阵列可以应用于声音采集设备中,比如,该声音采集设备可以包括但不限于智能音箱、智能电视、智能电视机顶盒、智能机器人以及者智能车载设备等。如图6所示,声音采集组件阵列600包括:
两个第一声音采集组件610、两个第二声音采集组件620以及两个第三声音采集组件630。
其中,两个第二声音采集组件620位于两个第一声音采集组件610之间的连线的一侧,且两个第三声音采集组件630位于该连线的另一侧;两个第二声音采集组件620以该连线的中垂线对称,且两个第三声音采集组件630以该中垂线对称;两个第一声音采集组件610之间的距离大于两个第二声音采集组件620之间的距离,且两个第一声音采集组件610之间的距离大于两个第三声音采集组件630之间的距离;及两个第二声音采集组件620之间的距离与两个第三声音采集组件630之间的距离不同。
为了更直观的描述上述6个声音采集组件的相对位置关系,图6以直角坐标系为参考,其中,两个第一声音采集组件610分别处于直角坐标系的原点两侧的横坐标轴上,且第一声音采集组件610与直角坐标系的纵坐标轴之间的距离为第一长度。
两个第二声音采集组件620分别处于直角坐标系的第一象限和第二象限内,第二声音采集组件620与直角坐标系的纵坐标轴之间的垂直距离为第二长度,第二声音采集组件620与横坐标轴之间的垂直距离为第三长度。
两个第三声音采集组件630分别处于直角坐标系的第三象限和第四象限内,第三声音采集组件630与直角坐标系的纵坐标轴之间的垂直距离为第四长度,第三声音采集组件630与横坐标轴之间的垂直距离为第五长度。
其中,第一长度大于第二长度,第一长度大于第四长度,且第二长度与第四长度不同。
其中,本申请实施例涉及的方案,提供一种沿某两个声音采集组件之间 连线的中垂线对称,但是沿该两个声音采集组件之间连线不对称的6声音采集组件阵列,其能够适应沿该两个声音采集组件之间连线方向延伸的狭长外观设计,同时相对于8声音采集组件阵列来说具有更少的声音采集组件,在声音信号处理中需要处理的数据更少,从而达到在适应狭长外观设计的同时,提高声音信号处理效率的效果。
图7是一个实施例中一种声音采集组件阵列的示意图。该声音采集组件阵列可以应用于声音采集设备中,比如,该声音采集设备可以包括但不限于智能音箱、智能电视、智能电视机顶盒、智能机器人以及者智能车载设备等。如图7所示,声音采集组件阵列700包括:
两个第一声音采集组件710、两个第二声音采集组件720以及两个第三声音采集组件730。
其中,两个第二声音采集组件720位于两个第一声音采集组件710之间的连线的一侧,且两个第三声音采集组件730位于该连线的另一侧;两个第二声音采集组件720以该连线的中垂线对称,且两个第三声音采集组件730以该中垂线对称;两个第一声音采集组件710之间的距离大于两个第二声音采集组件720之间的距离,且两个第一声音采集组件710之间的距离大于两个第三声音采集组件730之间的距离;及
两个第二声音采集组件720之间的距离与两个第三声音采集组件730之间的距离不同。
为了更直观的描述上述6个声音采集组件的相对位置关系,图7以直角坐标系为参考,如图7所示,声音采集组件阵列700中的六个声音采集组件按照直角坐标系设置。
其中,两个第一声音采集组件710分别处于直角坐标系的原点两侧的横坐标轴上,且第一声音采集组件710与直角坐标系的纵坐标轴之间的距离为第一长度。
两个第二声音采集组件720分别处于直角坐标系的第一象限和第二象限内,第二声音采集组件720与直角坐标系的纵坐标轴之间的垂直距离为第二长 度,第二声音采集组件720与横坐标轴之间的垂直距离为第三长度。
两个第三声音采集组件730分别处于直角坐标系的第三象限和第四象限内,第三声音采集组件730与直角坐标系的纵坐标轴之间的垂直距离为第四长度,第三声音采集组件730与横坐标轴之间的垂直距离为第五长度。
其中,第一长度大于第二长度,第一长度大于第四长度,且第二长度与第四长度不同。
在本申请实施例中,两个第一声音采集组件710之间的距离、两个第二声音采集组件720之间的距离以及两个第三声音采集组件730之间的距离可以遵循一定的比例。
比如,在一种可能的实现方式中,两个第一声音采集组件710之间的距离是两个第二声音采集组件720之间的距离的三倍;且两个第三声音采集组件730之间的距离是两个第二声音采集组件720之间的距离的两倍。
相应的,对应在图7所示的,按照直角坐标系设置的声音采集组件阵列中,上述第一长度是该第二长度的三倍,该第四长度是该第二长度的两倍。
可选的,在其它可能的实现方式中,两个第一声音采集组件710之间的距离与两个第二声音采集组件720之间的距离的比值,和/或,两个第三声音采集组件730之间的距离与两个第二声音采集组件720之间的距离的比值也可以是其它数值。比如,两个第一声音采集组件710之间的距离可以是两个第二声音采集组件720之间的距离的2.8倍或者3.2倍等等,两个第三声音采集组件730之间的距离是两个第二声音采集组件720之间的距离的1.8倍或者2.2倍等等。
在本申请实施例中,上述第二声音采集组件720和上述两个第一声音采集组件710的连线之间的垂直距离,与第三声音采集组件730和上述连线之间的垂直距离也可以遵循一定的比例关系。
比如,在一种可能的实现方式中,上述第二声音采集组件720和上述两个第一声音采集组件710的连线之间的垂直距离,与第三声音采集组件730和上述连线之间的垂直距离相同。
相应的,对应在图7所示的,按照直角坐标系设置的声音采集组件阵列中, 上述第三长度和第五长度相同。
或者,在其它可能的实现方式中,上述第二声音采集组件720和上述两个第一声音采集组件710的连线之间的垂直距离,与第三声音采集组件730和上述连线之间的垂直距离也可以不同。比如,对应在图7所示的,按照直角坐标系设置的声音采集组件阵列中,上述第三长度与第五长度之间的比值可以是10:9或者5:4等等。
以上述声音采集组件为麦克风(mic),上述第一长度是第二长度的三倍,第四长度是第二长度的两倍,且第三长度和第五长度相同为例,图7中所示的阵列为非对称椭圆6mic阵列,其麦克风摆放的位置为:
(x 1,y 1)=(3d x,0),(x 2,y 2)=(d x,d y),(x 3,y 3)=(-d x,d y);
(x 4,y 4)=(-3d x,0),(x 5,y 5)=(-2d x,-d y),(x 6,y 6)=(2d x,-d y);
其中d x和d y是对应的麦克风在直角坐标系的x轴(横坐标轴)和y轴(纵坐标轴)上的间距,在语音识别应用场景中的经典值为:d x=1.5cm和d y=1.2cm。因此,上述非对称椭圆6mic阵列在x轴上整个阵列的孔径长度为9cm,与上述图4所示的椭圆形8声音采集组件阵列一致,在y轴上整个阵列的孔径长度为2.4cm,也与上述图4所示的椭圆形8声音采集组件阵列一致。
可选的,两个第二声音采集组件720之间的距离,与第二声音采集组件720和上述连线(即两个第一声音采集组件710的连线)之间的垂直距离之间的比值为5:2,也就是说,上述第二长度和第三长度的比值为5:4。
比如,在一种可能的实现方式中,上述第二长度为1.5cm,上述第三长度为1.2cm。
可选的,该声音采集组件为麦克风组件或者拾音器组件。
可选的,该六个声音采集组件位于同一平面内。
在本申请实施例中,为了达到更好的声音信号采集效果,降低声音信号处理的复杂度,上述图7所示的六个声音采集组件可以设置在同一个平面内。
请参考图8至图14,其示出了本申请实施例涉及的三种声音采集组件阵列 在不同的主方位角下的自有波瓣图。
其中,图8示出了图2对应的环形6声音采集组件阵列(图中简称为环形6阵列)、图4对应的椭圆形8声音采集组件阵列(图中简称为椭圆形8阵列)以及本申请实施例提供的非对称椭圆6声音采集组件阵列(图中简称为非对称6阵列)在
Figure PCTCN2019128338-appb-000018
f=500Hz、1000Hz、1500Hz和2000Hz时的自有波瓣图。
图9示出了图2对应的环形6声音采集组件阵列、图4对应的椭圆形8声音采集组件阵列以及本申请实施例提供的非对称椭圆6声音采集组件阵列在
Figure PCTCN2019128338-appb-000019
f=500Hz、1000Hz、1500Hz和2000Hz时的自有波瓣图。
图10示出了图2对应的环形6声音采集组件阵列、图4对应的椭圆形8声音采集组件阵列以及本申请实施例提供的非对称椭圆6声音采集组件阵列在
Figure PCTCN2019128338-appb-000020
f=500Hz、1000Hz、1500Hz和2000Hz时的自有波瓣图。
图11示出了图2对应的环形6声音采集组件阵列、图4对应的椭圆形8声音采集组件阵列以及本申请实施例提供的非对称椭圆6声音采集组件阵列在
Figure PCTCN2019128338-appb-000021
f=500Hz、1000Hz、1500Hz和2000Hz时的自有波瓣图。
图12示出了图2对应的环形6声音采集组件阵列、图4对应的椭圆形8声音采集组件阵列以及本申请实施例提供的非对称椭圆6声音采集组件阵列在
Figure PCTCN2019128338-appb-000022
f=500Hz、1000Hz、1500Hz和2000Hz时的自有波瓣图。
图13示出了图2对应的环形6声音采集组件阵列、图4对应的椭圆形8声音采集组件阵列以及本申请实施例提供的非对称椭圆6声音采集组件阵列在
Figure PCTCN2019128338-appb-000023
f=500Hz、1000Hz、1500Hz和2000Hz时的自有波瓣图。
图14示出了图2对应的环形6声音采集组件阵列、图4对应的椭圆形8声音采集组件阵列以及本申请实施例提供的非对称椭圆6声音采集组件阵列在
Figure PCTCN2019128338-appb-000024
f=500Hz、1000Hz、1500Hz和2000Hz时的自有波瓣图。
以上述声音采集组件为麦克风为例,从图8至图14中的自有波瓣图对比可以看出:
1、在1500Hz以下,非对称椭圆6mic阵列的空间分辨性能均不差于,甚至优于椭圆形8mic阵列,体现在其自有波瓣图的旁瓣抑制性能更优,主瓣宽度 更窄。
2、在1500Hz以上,当主瓣方向接近0°或180°时,非对称椭圆6mic阵列的主瓣宽度仍然小于椭圆形8mic阵列。
3、在1500Hz以上,当主瓣方向接近270°时,非对称椭圆6mic阵列的主瓣宽度仍然小于椭圆形8mic阵列,且旁瓣抑制性能也不差于,甚至优于椭圆形8mic阵列。
由此可见,本申请所示的非对称6mic阵列,能够比环形6mic阵列更好的适应宽度较窄的平面布局,支持更灵活的智能硬件产品外观设计。并且,通过使用比椭圆形8mic阵列数量更少的麦克风,降低了硬件成本和运算复杂度,同时在主要用户使用方向(270°)附近取得了更优的空间分离性能。
综上所述,本申请实施例涉及的方案,提供一种沿某两个声音采集组件之间连线的中垂线对称,但是沿该两个声音采集组件之间连线不对称的6声音采集组件阵列,其能够适应沿该两个声音采集组件之间连线方向延伸的狭长外观设计,同时相对于8声音采集组件阵列来说具有更少的声音采集组件,在声音信号处理中需要处理的数据更少,从而达到在适应狭长外观设计的同时,提高声音信号处理效率的效果。
在本申请另一示例性实施例中,还提供了一种声音采集设备,该声音采集设备包括如上述图6或者图7所示的声音采集组件阵列。
可选的,该声音采集组件阵列水平设置在该声音采集设备的顶面;或者,该声音采集组件阵列垂直设置在该声音采集设备的正面。
其中,上述顶面是声音采集设备按照指定姿态放置时,朝向正上方的外表面;上述正面是声音采集设备按照指定姿态放置时,朝向水平方面的各个外表面中的指定外表面。
其中,上述指定姿态是声音采集设备按照设计要求正常使用时安装或摆放的姿态。
比如,上述指定姿态可以是声音采集设备根据指导安装或摆放的姿态。再比如,上述指定姿态可以是声音采集设备根据设备的使用说明书的指导进 行安装或者摆放的姿态。
或者,上述指定姿态也可以是根据声音采集设备中的安装/摆放指示组件(比如支撑架、防滑垫、为壁挂组件预留的安装孔等等)确定的安装或者摆放的姿态。例如,当声音采集设备的一个表面上设置有支撑架或者防滑垫时,上述指定姿态是支撑架或者防滑垫所在的表面垂直向下的姿态;或者,当声音采集设备的一个表面上设置有为壁挂组件预留的安装孔时,该上述指定姿态是安装孔所在的表面垂直于水平面的姿态。
比如,请参考图15和图16,其示出了两种声音采集组件阵列水平设置在设备顶面的示意图。以声音采集设备是顶面为椭圆形的智能音箱,声音采集组件为mic为例,如图15和16所示,非对称6mic阵列沿着智能音箱顶面椭圆形的长轴方向布置,智能音箱顶面的长对称轴长度最小可以设计为两个第一声音采集组件之间的距离,且智能音箱顶面的短对称轴长度最小可以设计为第三长度和第五长度之和。
再比如,请参考图17和图18,其示出了两种声音采集组件阵列垂直设置在设备正面的示意图。以声音采集设备是正面屏幕之外包含窄长状区域的智能电视,声音采集组件为mic为例,如图17和18所示,非对称6mic阵列设置在智能电视正面下部的窄长区域,且两个第一声音采集组件之间的连线的方向是水平方向。
可选的,当该声音采集组件阵列水平设置在该声音采集设备的顶面时,两个所述第一声音采集组件之间的连线的中垂线指向的第一方向与该声音采集设备的正面朝向的第二方向相同或者相反。
在本申请实施例中,上述声音采集设备可以是顶面为狭长形状的智能设备,为了能够达到最好的声音采集效果,在此类智能设备中,上述的椭圆形6声音采集组件阵列的对称轴所指向的方向(即上述图6或图7所示的声音采集组件阵列对应的直角坐标系的纵坐标方向)与声音采集设备的正面朝向相同或相反。
比如,在图15中,按照直角坐标系布置的非对称6mic阵列,该直角坐标 系的纵坐标所指向的方向(即图15中的第一方向)与智能音箱的正面朝(即图15中的第二方向)向相反。
或者,在图16中,按照直角坐标系布置的非对称6mic阵列,该直角坐标系的纵坐标所指向的方向(即图16中的第一方向)与智能音箱的正面朝(即图16中的第二方向)向相同。
可选的,当该声音采集组件阵列垂直设置在该声音采集设备的正面时,该两个所述第一声音采集组件之间的连线的中垂线指向的第三方向为垂直向上或者垂直向下。
比如,在图17中,智能电视的正面朝向与水平面平行,按照直角坐标系布置的非对称6mic阵列,该直角坐标系的纵坐标所指向的方向(即图17中的第一方向)为垂直向上。
或者,在图18中,智能电视的正面朝向与水平面平行,按照直角坐标系布置的非对称6mic阵列,该直角坐标系的纵坐标所指向的方向(即图18中的第一方向)为垂直向下。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种声音采集组件阵列,其特征在于,所述声音采集组件阵列包括:两个第一声音采集组件、两个第二声音采集组件以及两个第三声音采集组件;
    两个所述第二声音采集组件位于两个所述第一声音采集组件之间的连线的一侧,且两个所述第三声音采集组件位于所述连线的另一侧;
    两个所述第二声音采集组件以所述连线的中垂线对称,且两个所述第三声音采集组件以所述中垂线对称;
    两个所述第一声音采集组件之间的距离大于两个所述第二声音采集组件之间的距离,且两个所述第一声音采集组件之间的距离大于两个所述第三声音采集组件之间的距离;及
    两个所述第二声音采集组件之间的距离与两个所述第三声音采集组件之间的距离不同。
  2. 根据权利要求1所述的声音采集组件阵列,其特征在于,
    两个所述第一声音采集组件之间的距离是两个所述第二声音采集组件之间的距离的三倍;及
    两个所述第三声音采集组件之间的距离是两个所述第二声音采集组件之间的距离的两倍。
  3. 根据权利要求2所述的声音采集组件阵列,其特征在于,
    所述第二声音采集组件和所述连线之间的垂直距离,与所述第三声音采集组件和所述连线之间的垂直距离相同。
  4. 根据权利要求3所述的声音采集组件阵列,其特征在于,
    两个所述第二声音采集组件之间的距离,与所述第二声音采集组件和所述连线之间的垂直距离之间的比值为5:2。
  5. 根据权利要求1所述的声音采集组件阵列,其特征在于,所述声音采集组件为麦克风组件或者拾音器组件。
  6. 根据权利要求1所述的声音采集组件阵列,其特征在于,所述六个声音采集组件位于同一平面内。
  7. 一种声音采集设备,其特征在于,所述声音采集设备包括如权利要求1至6任一所述的声音采集组件阵列。
  8. 根据权利要求7所述的声音采集设备,其特征在于,
    所述声音采集组件阵列水平设置在所述声音采集设备的顶面,所述顶面是所述声音采集设备按照指定姿态放置时,朝向正上方的外表面;
    或者,
    所述声音采集组件阵列垂直设置在所述声音采集设备的正面,所述正面是所述声音采集设备按照指定姿态放置时,朝向水平方面的各个外表面中的指定外表面。
  9. 根据权利要求8所述的声音采集设备,其特征在于,
    当所述声音采集组件阵列水平设置在所述声音采集设备的顶面时,两个所述第一声音采集组件之间的连线的中垂线指向的第一方向与所述声音采集设备的正面朝向的第二方向相同或者相反。
  10. 根据权利要求8所述的声音采集设备,其特征在于,
    当所述声音采集组件阵列垂直设置在所述声音采集设备的正面时,两个所述第一声音采集组件之间的连线的中垂线指向的第三方向为垂直向上或者垂直向下。
  11. 根据权利要求7所述的声音采集装置,其特征在于,所述声音采集装置包括智能音箱、智能电视、智能电视机顶盒、智能机器人以及者智能车载设备中的至少一种。
PCT/CN2019/128338 2018-12-27 2019-12-25 声音采集组件阵列及声音采集设备 WO2020135511A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/319,024 US11856376B2 (en) 2018-12-27 2021-05-12 Sound acquisition component array and sound acquisition device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811610594.2A CN109660918B (zh) 2018-12-27 2018-12-27 声音采集组件阵列及声音采集设备
CN201811610594.2 2018-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/319,024 Continuation US11856376B2 (en) 2018-12-27 2021-05-12 Sound acquisition component array and sound acquisition device

Publications (1)

Publication Number Publication Date
WO2020135511A1 true WO2020135511A1 (zh) 2020-07-02

Family

ID=66117175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128338 WO2020135511A1 (zh) 2018-12-27 2019-12-25 声音采集组件阵列及声音采集设备

Country Status (3)

Country Link
US (1) US11856376B2 (zh)
CN (2) CN109660918B (zh)
WO (1) WO2020135511A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660918B (zh) 2018-12-27 2021-11-09 腾讯科技(深圳)有限公司 声音采集组件阵列及声音采集设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140219472A1 (en) * 2013-02-07 2014-08-07 Mstar Semiconductor, Inc. Sound collecting system and associated method
CN106723736A (zh) * 2016-12-23 2017-05-31 南京医科大学 基于相位变换加权广义互相关算法的自主寻人智能拐杖
CN207495509U (zh) * 2016-07-07 2018-06-15 深圳狗尾草智能科技有限公司 虚拟机器人的音频输入装置和虚拟机器人设备
CN108471561A (zh) * 2018-03-30 2018-08-31 上海摩软通讯技术有限公司 拾音控制方法、装置以及音箱
CN109660918A (zh) * 2018-12-27 2019-04-19 腾讯科技(深圳)有限公司 声音采集组件阵列及声音采集设备

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929685B2 (ja) * 2005-11-15 2012-05-09 ヤマハ株式会社 遠隔会議装置
JP4894353B2 (ja) * 2006-05-26 2012-03-14 ヤマハ株式会社 放収音装置
EP2499839B1 (en) * 2009-11-12 2017-01-04 Robert Henry Frater Speakerphone with microphone array
JP5630872B2 (ja) * 2011-04-15 2014-11-26 株式会社オーディオテクニカ 狭指向性マイクロホン
US20130201162A1 (en) * 2012-02-05 2013-08-08 Ian Daniel Cavilia Multi-purpose pen input device for use with mobile computers
US20140172133A1 (en) * 2012-12-17 2014-06-19 David M. Snyder System, method, and apparatus for powering, controlling, and communicating with led lights using modified power-over-ethernet
US9659577B1 (en) * 2013-03-14 2017-05-23 Amazon Technologies, Inc. Voice controlled assistant with integrated control knob
KR102172718B1 (ko) * 2013-04-29 2020-11-02 유니버시티 오브 서레이 음원 분리를 위한 마이크로폰 어레이
US9294860B1 (en) * 2014-03-10 2016-03-22 Amazon Technologies, Inc. Identifying directions of acoustically reflective surfaces
US9432768B1 (en) * 2014-03-28 2016-08-30 Amazon Technologies, Inc. Beam forming for a wearable computer
US9838646B2 (en) * 2015-09-24 2017-12-05 Cisco Technology, Inc. Attenuation of loudspeaker in microphone array
US9961437B2 (en) * 2015-10-08 2018-05-01 Signal Essence, LLC Dome shaped microphone array with circularly distributed microphones
ITUA20164622A1 (it) * 2016-06-23 2017-12-23 St Microelectronics Srl Procedimento di beamforming basato su matrici di microfoni e relativo apparato
CN106340305B (zh) * 2016-11-04 2024-03-19 北京声智科技有限公司 自校准的远场语音交互设备及远场语音自校准方法
CN106331956A (zh) * 2016-11-04 2017-01-11 北京声智科技有限公司 集成远场语音识别和声场录制的系统和方法
CN106910500B (zh) * 2016-12-23 2020-04-17 北京小鸟听听科技有限公司 对带麦克风阵列的设备进行语音控制的方法及设备
CN206349145U (zh) * 2016-12-28 2017-07-21 北京地平线信息技术有限公司 音频信号处理设备
CN106782585B (zh) * 2017-01-26 2020-03-20 芋头科技(杭州)有限公司 一种基于麦克风阵列的拾音方法及系统
CN207232386U (zh) * 2017-06-15 2018-04-13 重庆锐纳达自动化技术有限公司 一种用于声源定位的麦克风阵列布置结构
US10349169B2 (en) * 2017-10-31 2019-07-09 Bose Corporation Asymmetric microphone array for speaker system
CN108156559A (zh) * 2017-12-23 2018-06-12 广州市尊浪电器有限公司 一种智能音响控制系统的实现方法
CN107943449A (zh) * 2017-12-23 2018-04-20 河南智盈电子技术有限公司 一种基于面部表情识别的智能音响系统
CN108307259B (zh) * 2018-01-24 2019-08-23 腾讯科技(深圳)有限公司 噪音消除处理方法、装置、计算机设备、存储介质和音箱
CN108632653B (zh) * 2018-05-30 2022-04-19 腾讯科技(深圳)有限公司 语音管控方法、智能电视及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140219472A1 (en) * 2013-02-07 2014-08-07 Mstar Semiconductor, Inc. Sound collecting system and associated method
CN207495509U (zh) * 2016-07-07 2018-06-15 深圳狗尾草智能科技有限公司 虚拟机器人的音频输入装置和虚拟机器人设备
CN106723736A (zh) * 2016-12-23 2017-05-31 南京医科大学 基于相位变换加权广义互相关算法的自主寻人智能拐杖
CN108471561A (zh) * 2018-03-30 2018-08-31 上海摩软通讯技术有限公司 拾音控制方法、装置以及音箱
CN109660918A (zh) * 2018-12-27 2019-04-19 腾讯科技(深圳)有限公司 声音采集组件阵列及声音采集设备

Also Published As

Publication number Publication date
US11856376B2 (en) 2023-12-26
CN110351633A (zh) 2019-10-18
CN109660918A (zh) 2019-04-19
CN109660918B (zh) 2021-11-09
US20210266664A1 (en) 2021-08-26
CN110351633B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
US11765498B2 (en) Microphone array system
CN106653041B (zh) 音频信号处理设备、方法和电子设备
US6535610B1 (en) Directional microphone utilizing spaced apart omni-directional microphones
US11438691B2 (en) Auto focus, auto focus within regions, and auto placement of beamformed microphone lobes with inhibition functionality
KR100499124B1 (ko) 직교 원형 마이크 어레이 시스템 및 이를 이용한 음원의3차원 방향을 검출하는 방법
TW202005415A (zh) 圖案形成麥克風陣列
US11750972B2 (en) One-dimensional array microphone with improved directivity
CN103181190A (zh) 用于远场多源追踪和分离的系统、方法、设备和计算机可读媒体
CN114051738A (zh) 可操纵扬声器阵列、系统及其方法
US20160161588A1 (en) Body-mounted multi-planar array
WO2020135511A1 (zh) 声音采集组件阵列及声音采集设备
US20160165339A1 (en) Microphone array and audio source tracking system
Konforti et al. Array geometry optimization for region-of-interest broadband beamforming
US11895478B2 (en) Sound capture device with improved microphone array
WO2022262316A1 (zh) 声音信号处理方法及装置、计算机可读存储介质
US20240185876A1 (en) Sound signal processing method and apparatus, and computer-readable storage medium
CN110858943A (zh) 收音处理装置及其收音处理方法
US11706562B2 (en) Transducer steering and configuration systems and methods using a local positioning system
US20230224635A1 (en) Audio beamforming with nulling control system and methods
US20230086490A1 (en) Conferencing systems and methods for room intelligence
US11778379B2 (en) System and method for omnidirectional adaptive loudspeaker
JP2017126826A (ja) ロボット
US20230412735A1 (en) Distributed Network of Ceiling Image-Derived Directional Microphones
CN110717299A (zh) 一种基于形体设计的机器人发声系统优化方法
Sugiyama et al. A tablet personal computer with diagonal microphone placement for the landscape/portrait interchangeable mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906488

Country of ref document: EP

Kind code of ref document: A1