WO2020135240A1 - 背光模组、导光板及其导电水凝胶的制备方法 - Google Patents

背光模组、导光板及其导电水凝胶的制备方法 Download PDF

Info

Publication number
WO2020135240A1
WO2020135240A1 PCT/CN2019/126820 CN2019126820W WO2020135240A1 WO 2020135240 A1 WO2020135240 A1 WO 2020135240A1 CN 2019126820 W CN2019126820 W CN 2019126820W WO 2020135240 A1 WO2020135240 A1 WO 2020135240A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
light guide
conductive hydrogel
hydrogel
light
Prior art date
Application number
PCT/CN2019/126820
Other languages
English (en)
French (fr)
Inventor
季洪雷
邓天应
强科文
陈细俊
Original Assignee
深圳Tcl新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl新技术有限公司 filed Critical 深圳Tcl新技术有限公司
Priority to US16/973,960 priority Critical patent/US11300723B2/en
Priority to EP19903702.9A priority patent/EP3904924B1/en
Publication of WO2020135240A1 publication Critical patent/WO2020135240A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/38Amides
    • C08F222/385Monomers containing two or more (meth)acrylamide groups, e.g. N,N'-methylenebisacrylamide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/06Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of fluids in transparent cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133626Illuminating devices providing two modes of illumination, e.g. day-night
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the application relates to the technical field of LED display, in particular to a backlight module, a light guide plate and a method for preparing a conductive hydrogel.
  • the light guide plate is the main key component of the side-entry backlight module.
  • the traditional light guide plates are mainly plastics (PMMA, MS, etc.), in addition to optical grades Glass material light guide plates have been used in backlight module products.
  • the application of light guide plates in the prior art all have the problem of heat concentration of the backlight module, which makes the system heat dissipation design insufficient.
  • this application proposes a light guide plate and its backlight module that can accelerate heat dissipation and have high light transmittance, and also include Preparation method of hydrogel.
  • a light guide plate the main body of the light guide plate is optical glass material, the light guide plate has a built-in cavity, the cavity is filled with a conductive hydrogel, and both ends of the light guide plate are provided with an electrical connection with the conductive hydrogel in the cavity Electrodes; the conductive hydrogel is in liquid form when not energized, and when the conductive hydrogel in the cavity is energized, it becomes a colloidal form.
  • the heat of the light guide plate near the light source section increases, so that a temperature difference is formed between the far light source end and the near light source end of the light guide plate .
  • tiny crystal particles are added to the conductive hydrogel to enhance the light reflection and diffuse reflection functions of the light guide plate.
  • the conductive hydrogel is a hybrid hydrogel reinforced by tiny crystal particles.
  • quantum dots are added to the conductive hydrogel to improve the display color gamut.
  • fluorescent powder is added to the conductive hydrogel to improve the display color gamut.
  • the present disclosure also provides a method for preparing a conductive hydrogel for preparing the conductive hydrogel in the above light guide plate, which includes the following steps:
  • a conductive hydrogel with polyacrylic acid and tiny crystal particles is prepared by an aqueous solution polymerization method.
  • quantum dots are also added to the conductive hydrogel.
  • phosphor powder is also added to the conductive hydrogel.
  • the conductive hydrogel is a hybrid hydrogel reinforced by tiny crystal particles.
  • the present disclosure also provides a backlight module.
  • the backlight module is an edge-lit backlight module.
  • the backlight module includes a light guide plate.
  • the main body of the light guide plate is optical glass material.
  • the light guide plate has a built-in cavity.
  • the cavity is filled with a conductive hydrogel, and the two ends of the light guide plate are provided with electrodes electrically connected to the conductive hydrogel in the cavity; the conductive hydrogel is in a liquid form when not energized, when the conductive hydrogel in the cavity It becomes a colloidal form after being energized.
  • tiny crystal particles are added to the conductive hydrogel in the light guide plate to enhance the light reflection and diffuse reflection functions of the light guide plate.
  • the conductive hydrogel is a hybrid hydrogel reinforced by tiny crystal particles.
  • quantum dots are added to the conductive hydrogel to improve the display color gamut.
  • fluorescent powder is added to the conductive hydrogel to improve the display color gamut.
  • the light guide plate of the present application uses an optical glass material as the main body, and a cavity is provided inside the light guide plate.
  • the cavity is filled with a conductive hydrogel. It is in the form of a liquid when energized, and becomes a colloidal property after being energized, so that the conductive condensate gel changes between the liquid state and the colloidal state.
  • the tiny crystal particles in the conductive condensate gel are deflected by the electric field, and the light passes through a fixed deflection direction
  • the optical rotation of the crystals occurs, so that the light can be transmitted in the light guide plate in the colloidal state, and the tiny crystal particles further enhance the function of light reflection and full reflection, allowing more light to penetrate, thereby improving the light efficiency; such as Adding quantum dots or phosphor material to the conductive gel can further improve the ultra-high color gamut of the backlight, and can make the display effect of the liquid crystal display device better.
  • FIG. 1 is a schematic diagram of the principle of the three-dimensional structure of the light guide plate of the present application.
  • FIG. 2 is a schematic diagram of the cross-sectional structure principle of the light guide plate of the present application.
  • FIG. 3 is a schematic diagram of the principle of the heat transmission direction of the light guide plate of the present application.
  • FIG. 4 is a schematic diagram of the principle of the light refraction direction of the light guide plate of the present application.
  • FIG. 5 is a schematic diagram of the principle of the light refraction direction of the prior art light guide plate.
  • the effect of the backlight module determines the display effect of the liquid crystal display module
  • the light guide plate is a key component in the backlight module.
  • the light guide effect of the light guide plate directly determines the level of the display effect .
  • the traditional light guide plate generally uses plastic materials.
  • the plastic light guide effect is not good, and it is easy to accumulate heat.
  • the heat of the backlight module cannot be effectively dissipated, making the system heat dissipation design more difficult.
  • This application proposes to use optical grade glass material as the main material of the light guide plate. Refer to FIGS. 1 and 2.
  • FIG. 1 shows a schematic diagram of the three-dimensional structure principle of the light guide plate of this application, and FIG.
  • the main body of the light guide plate 10 of the present application is an optical glass material, and the light guide plate 10 has a cavity 20 built in, and the cavity 20 is filled with a conductive hydrogel 21, and both ends of the light guide plate are provided with
  • the electrode (not shown) electrically connected to the conductive hydrogel in the cavity is in a liquid form when the conductive hydrogel is not energized, and becomes a colloidal form after being energized.
  • the hydrogel is a hybrid hydrogel reinforced with fine crystal particles. Adding fine crystal particles to the conductive hydrogel can enhance the light reflection and diffuse reflection functions of the light guide plate.
  • the hydrogel 21 in the light guide plate cavity 20 becomes a colloidal form after being energized, and the light is in the colloid When transmitting in the light guide plate, it encounters tiny crystal particles (not shown in the figure). Because the tiny crystal particles have the function of reflecting light, the light is reflected by the tiny crystal particles and then diffusely reflected before emitting light, which makes more Light can penetrate, thereby greatly improving the light efficiency of the light guide plate.
  • the light guide plate 10' transmits light relatively uniformly. There is no diffuse reflection effect, and the light effect is poor.
  • the light guide plate of the present application can further improve the heat dissipation problem of the backlight module by using the method of filling the cavity with conductive hydrogel.
  • FIG. 3 shows the heat dissipation of the light guide plate 10 in cooperation with the light source 60.
  • the hydrogel not only has high light transmittance, but also has the function of heat conduction. After the light guide plate 10 is energized, the hydrogel forms a colloidal form, and after the light source is heated, the hydrogel also has the characteristics of accelerated flow.
  • the heat of the light guide plate 10 near the light source section continues to increase, and the light guide plate 10
  • the temperature difference between the far light source end and the near light source end is enhanced, and the convective fluidity of the hydrogel is increased after being heated.
  • the heat from the near light source end is continuously transmitted to the far light source end, which further strengthens the heat dissipation function of the light guide plate of the present application, effectively solving the backlight mode Group of heat issues.
  • quantum dots or phosphors can also be added to the conductive hydrogel to increase the display color gamut and achieve an ultra-high color desire image quality effect.
  • the present application also provides a method for preparing the conductive hydrogel in the light guide plate, including the following preparation steps:
  • a conductive hydrogel with polyacrylic acid and tiny crystal particles is prepared by an aqueous solution polymerization method.
  • the present application also provides a backlight module.
  • the backlight module is an edge-lit backlight module, which is composed of the above-mentioned light guide plate.
  • the specific function of the light guide plate is the same as that of the above-mentioned light guide plate, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组、导光板(10)及其导电水凝胶的制备方法,导光板(10)主体为光学玻璃材料,导光板(10)内置空腔(20),空腔(20)内填充导电水凝胶(21),导光板(10)两端设置有与空腔(20)内导电水凝胶(21)电连接的电极;导电水凝胶(21)未通电时为液体形态,当空腔(20)内的导电水凝胶(21)通电后变成胶体形态。导电水凝胶(21)中添加有微小晶体颗粒,以增强导光板(10)对于光的反射和漫反射功能。导光板(10)能够增强背光模组对光的反射和漫反射功能,让更多光线穿透导光板(10)从而提高光效,导电水凝胶(21)中添加量子点或荧光粉能够进一步提高背光的色域,使液晶显示装置的效果更好。

Description

背光模组、导光板及其导电水凝胶的制备方法
优先权
所述PCT专利申请要求申请日为2018年12月26日,申请号为201811603495.1的中国专利优先权,本专利申请结合了上述专利的技术方案。
技术领域
本申请涉及LED显示技术领域,尤其涉及一种背光模组、导光板及其导电水凝胶的制备方法。
背景技术
对于液晶显示背光模组而言,导光板为侧入式背光模组的主要关键部件,传统的导光板均是以塑胶类(PMMA、MS等)为主,除此之外还有光学级别的玻璃材料导光板已陆续在背光模组产品中有所应用。现有技术导光板的应用均存在背光模组热集中的问题,使得系统散热设计存在不足。
因此,现有技术还有待于改进和发展。
申请技术方案
鉴于上述现有技术的不足之处,本申请为解决现有技术缺陷和不足,提出了一种能够加速散热,且透光率高的导光板及其背光模组,同时还包括导光板内置的水凝胶的制备方法。
本申请解决技术问题所采用的技术方案如下:
一种导光板,所述导光板主体为光学玻璃材料,导光板内置空腔,所述空腔内填充导电水凝胶,所述导光板两端设置有与空腔内导电水凝胶电连接的电极;所述导电水凝胶未通电时为液体形态,当空腔内的导电水凝胶通电后变成胶体形态。
作为一种改进技术方案,所述导光板通电水凝胶形成胶体形态开始工作后,所述导 光板近光源段的热量升高,以使所述导光板的远光源端与近光源端形成温差。
作为一种改进技术方案,所述导电水凝胶中添加有微小晶体颗粒,以增强导光板对于光的反射和漫反射功能。
作为一种改进技术方案,所述导电水凝胶为微小晶体颗粒增强的杂化水凝胶。
作为一种改进技术方案,所述导电水凝胶中添加量子点,以提高显示色域。
作为一种改进技术方案,所述导电水凝胶中添加荧光粉,以提高显示色域。
本公开还提供一种导电水凝胶的制备方法,用于制备上述导光板中的导电水凝胶,包括如下步骤:
将微小晶体颗粒分散到丙烯酸单体的水溶液中;
利用N-亚甲基双丙烯酰胺作交联剂,过硫酸钾作引发剂,采用水溶液聚合方法制备聚丙烯酸和微小晶体颗粒符合的导电水凝胶。
作为一种改进技术方案,所述导电水凝胶中还添加有量子。
作为一种改进技术方案,所述导电水凝胶中还添加有荧光粉。
作为一种改进技术方案,所述导电水凝胶为微小晶体颗粒增强的杂化水凝胶。
本公开还提供一种背光模组,所述背光模组为侧入式背光模组,该背光模组包括导光板,所述导光板主体为光学玻璃材料,导光板内置空腔,所述空腔内填充导电水凝胶,所述导光板两端设置有与空腔内导电水凝胶电连接的电极;所述导电水凝胶未通电时为液体形态,当空腔内的导电水凝胶通电后变成胶体形态。
作为一种改进技术方案,所述导光板中的导电水凝胶中添加有微小晶体颗粒,以增强所述导光板对于光的反射和漫反射功能。
作为一种改进技术方案,所述导电水凝胶为微小晶体颗粒增强的杂化水凝胶。
作为一种改进技术方案,所述导电水凝胶中添加量子点,以提高显示色域。
作为一种改进技术方案,所述导电水凝胶中添加荧光粉,以提高显示色域。
与现有技术塑胶类的导光板相比较,本申请导光板采用主体为光学玻璃材料,在导光板的内部设置一个空腔,在空腔中填充导电水凝胶,利用导电水凝胶在未通电时为液体形态,通电后则变成胶体的特性,让导电凝水胶在液态和胶体态间转变,导电凝水胶 中的微小晶体颗粒在电场的作用下发生偏转,光线通过固定偏转方向的晶体时发生旋光作用,使光线能够在胶体状态下的导光板中传输,而微小晶体颗粒则进一步增强对光的反射和满反射功能,让更多的光线穿透,从而提高光效;如在导电凝水胶中再加入量子点或者荧光粉材料,还可以进一步提高背光的超高色域,能使液晶显示装置的显示效果更好。
附图说明
图1是本申请导光板的立体结构原理示意图。
图2是本申请导光板的横截面结构原理示意图。
图3是本申请导光板的热量传输方向原理示意图。
图4是本申请导光板的光折射方向原理示意图。
图5是现有技术导光板的光折射方向原理示意图。
具体实施方式
为使本申请的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
作为液晶显示模组的重要部件,背光模组的效果决定了液晶显示模组的显示效果,而导光板又是背光模组中的关键部件,导光板的导光效果直接决定了显示效果的高低。在侧入式背光模组中,传统导光板一般采用塑胶类材料,塑胶类导光效果不佳,且容易积聚热量,背光模组的热量无法有效散出,使得系统的散热设计比较困难。本申请提出一种采用光学级别的玻璃材料作为导光板的主体材料,参见图1和图2,图1所示为本申请导光板的立体结构原理示意图,图2所示为本申请导光板的横截面结构原理示意图。结合图1和图2来看,本申请导光板10的主体为光学玻璃材料,导光板10内置空腔20,所述空腔20内填充导电水凝胶21,所述导光板两端设置有与空腔内导电水凝胶电连接的电极(图未示出),该导电水凝胶未通电时为液体形态,通电后则变成胶体形态。具 体而言,水凝胶是一种微小晶体颗粒增强的杂化水凝胶,在所述导电水凝胶中添加微小晶体颗粒,可以增强导光板对于光的反射和漫反射功能。结合图4所示的本申请导光板的光折射方向原理示意图来看,光源60出光进入到导光板10后,导光板空腔20中的水凝胶21在通电后成为胶体形态,光在胶体导光板内进行传输时,遇到其中的微小晶体颗粒(图未示出),因该微小晶体颗粒具有反射光的作用,光线被微小晶体颗粒反射以及漫反射后再出光,这样使得更多的光能够穿透,从而大大提高导光板的光效。相比现有技术的导光板而言,如图5现有技术导光板的光折射方向原理示意图所示,光源60出光进入到导光板10’后,导光板10’对光的传输比较单一,也没有形成漫反射效果,光效较差。
另外,对于导光板而言,由于导光的功能,其同样需要进行散热的设计,而本申请导光板采用上述空腔中填充导电水凝胶的手段还可以进一步改善背光模组散热的问题。如图3本申请导光板的热量传输方向原理示意图所示,图3示出了导光板10配合光源60散热的情况,因水凝胶不仅具有高透光率,同时还具有热传导的功能,在导光板10通电水凝胶形成胶体形态开始工作后,水凝胶在光源出光受热后,还具有加速流动的特性,光源60发热后,导光板10近光源段的热量不断升高,导光板10的远光源端与近光源端形成温差,水凝胶受热后对流的流动性增强,将近光源端的热量不断向远光源端传输,使得本申请导光板的散热功能进一步得以加强,有效解决了背光模组的散热问题。
基于上述导电水凝胶的基础,如果要进一步提高背光的色域,还可以在所述导电水凝胶中添加量子点或荧光粉,以提高显示色域,实现超高色欲的画质效果。
本申请还提供一种上述导光板中导电水凝胶的制备方法,包括如下制备步骤:
将微小晶体颗粒分散到丙烯酸单体的水溶液中;
利用N-亚甲基双丙烯酰胺作交联剂,过硫酸钾作引发剂,采用水溶液聚合方法制备聚丙烯酸和微小晶体颗粒符合的导电水凝胶。
本申请还提供一种背光模组,该背光模组为侧入式背光模组,采用了上述的导光板来组成,导光板的具体功能与上述本申请导光板相同,此处不赘述。
应当理解的是,以上所述仅为本申请的较佳实施例而已,并不足以限制本申请的技 术方案,对本领域普通技术人员来说,在本申请的精神和原则之内,可以根据上述说明加以增减、替换、变换或改进,而所有这些增减、替换、变换或改进后的技术方案,都应属于本申请所附权利要求的保护范围。

Claims (15)

  1. 一种导光板,其中,所述导光板主体为光学玻璃材料,导光板内置空腔,所述空腔内填充导电水凝胶,所述导光板两端设置有与空腔内导电水凝胶电连接的电极;所述导电水凝胶未通电时为液体形态,当空腔内的导电水凝胶通电后变成胶体形态。
  2. 根据权利要求1所述的导光板,其中,所述导光板通电水凝胶形成胶体形态开始工作后,所述导光板近光源段的热量升高,以使所述导光板的远光源端与近光源端形成温差。
  3. 根据权利要求1所述的导光板,其中,所述导电水凝胶中添加有微小晶体颗粒,以增强导光板对于光的反射和漫反射功能。
  4. 根据权利要求3所述的导电板,其中,所述导电水凝胶为微小晶体颗粒增强的杂化水凝胶。
  5. 根据权利要求1所述的导光板,其中,所述导电水凝胶中添加量子点,以提高显示色域。
  6. 根据权利要求1所述的导光板,其中,所述导电水凝胶中添加荧光粉,以提高显示色域。
  7. 一种导电水凝胶的制备方法,用于制备权利要求1中所述的导电水凝胶,其中,包括如下步骤:
    将微小晶体颗粒分散到丙烯酸单体的水溶液中;
    利用N-亚甲基双丙烯酰胺作交联剂,过硫酸钾作引发剂,采用水溶液聚合方法制备聚丙烯酸和微小晶体颗粒符合的导电水凝胶。
  8. 根据权利要求7所述的导电水凝胶的制备方法,其中,所述导电水凝胶中还添加有量子点。
  9. 根据权利要求7所述的导电水凝胶的制备方法,其中,所述导电水凝胶中还添加有荧光粉。
  10. 根据权利要求7所述的导电水凝胶的制备方法,其中,所述导电水凝胶为微小晶体颗粒增强的杂化水凝胶。
  11. 一种背光模组,所述背光模组为侧入式背光模组,其中,该背光模组包括导光 板,所述导光板主体为光学玻璃材料,导光板内置空腔,所述空腔内填充导电水凝胶,所述导光板两端设置有与空腔内导电水凝胶电连接的电极;所述导电水凝胶未通电时为液体形态,当空腔内的导电水凝胶通电后变成胶体形态。
  12. 根据权利要求11所述的背光模组,其中,所述导光板中的导电水凝胶中添加有微小晶体颗粒,以增强所述导光板对于光的反射和漫反射功能。
  13. 根据权利要求11所述的背光模组,其中,所述导电水凝胶为微小晶体颗粒增强的杂化水凝胶。
  14. 根据权利要求11所述的背光模组,其中,所述导电水凝胶中添加量子点,以提高显示色域。
  15. 根据权利要求11所述的背光模组,其中,所述导电水凝胶中添加荧光粉,以提高显示色域。
PCT/CN2019/126820 2018-12-26 2019-12-20 背光模组、导光板及其导电水凝胶的制备方法 WO2020135240A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/973,960 US11300723B2 (en) 2018-12-26 2019-12-20 Backlight module, light guide plate, and preparation method for conductive hydrogel of light guide plate
EP19903702.9A EP3904924B1 (en) 2018-12-26 2019-12-20 Light guide plate, method of manufacturing the light guide plate, and backlight

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811603495.1A CN111367007B (zh) 2018-12-26 2018-12-26 背光模组、导光板及其导电水凝胶的制备方法
CN201811603495.1 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020135240A1 true WO2020135240A1 (zh) 2020-07-02

Family

ID=71128491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126820 WO2020135240A1 (zh) 2018-12-26 2019-12-20 背光模组、导光板及其导电水凝胶的制备方法

Country Status (4)

Country Link
US (1) US11300723B2 (zh)
EP (1) EP3904924B1 (zh)
CN (1) CN111367007B (zh)
WO (1) WO2020135240A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201251634Y (zh) * 2008-09-11 2009-06-03 扬昕精密股份有限公司 背光模块的导光板
CN103676317A (zh) * 2013-12-11 2014-03-26 合肥京东方光电科技有限公司 一种导光板、背光源及液晶显示装置
CN105891936A (zh) * 2016-05-20 2016-08-24 京东方科技集团股份有限公司 导光元件及其制作方法以及背光模组
CN106249481A (zh) * 2016-09-18 2016-12-21 青岛海信电器股份有限公司 一种背光模组及导光板的制备方法
US20180067253A1 (en) * 2016-06-13 2018-03-08 Innolux Corporation Display device
CN108794773A (zh) * 2018-06-29 2018-11-13 四川理工学院 一种导电水凝胶的制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2053998A1 (en) * 1990-10-23 1992-04-24 American Cyanamid Company Narrow band radiation filter films
JPH0895042A (ja) * 1994-09-22 1996-04-12 Nippondenso Co Ltd 液晶表示装置
JPH1186621A (ja) * 1997-09-03 1999-03-30 Sharp Corp 照明装置
JP2000131688A (ja) * 1998-10-22 2000-05-12 Advanced Display Inc 照明装置
JP4074977B2 (ja) * 2001-02-02 2008-04-16 ミネベア株式会社 面状照明装置
JP4975970B2 (ja) * 2005-01-21 2012-07-11 日本エクスラン工業株式会社 収着式熱交換モジュールおよびその製法
TWI417604B (zh) * 2005-12-28 2013-12-01 Semiconductor Energy Lab 顯示裝置
CN100406484C (zh) * 2006-01-10 2008-07-30 华侨大学 石墨/聚丙烯酸钾导电水凝胶及其制备方法
JP2008003254A (ja) * 2006-06-21 2008-01-10 Idemitsu Kosan Co Ltd 光線反射用多層シート、これを用いた反射器、照明装置及び液晶表示装置
WO2009102733A2 (en) * 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Integrated front light diffuser for reflective displays
WO2011019050A1 (ja) * 2009-08-13 2011-02-17 株式会社タイカ 光学用ゲル部材、それを用いる光学装置の組み立て方法及び光学装置
TW201142207A (en) * 2010-05-24 2011-12-01 Chi Lin Technology Co Ltd Illuminating device
JP2015531972A (ja) * 2012-08-31 2015-11-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光拡散粒子を有する熱伝導シートに基づいた照明デバイス
CN106519287A (zh) * 2016-11-18 2017-03-22 陕西品达石化有限公司 一种纤维素基导电水凝胶的制备方法
CN106895278A (zh) * 2017-03-20 2017-06-27 京东方科技集团股份有限公司 一种led、背光模组、显示装置以及背光模组的制作方法
CN113717405B (zh) * 2021-09-24 2024-05-03 天津中电新能源研究院有限公司 一种柔性导电水凝胶及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201251634Y (zh) * 2008-09-11 2009-06-03 扬昕精密股份有限公司 背光模块的导光板
CN103676317A (zh) * 2013-12-11 2014-03-26 合肥京东方光电科技有限公司 一种导光板、背光源及液晶显示装置
CN105891936A (zh) * 2016-05-20 2016-08-24 京东方科技集团股份有限公司 导光元件及其制作方法以及背光模组
US20180067253A1 (en) * 2016-06-13 2018-03-08 Innolux Corporation Display device
CN106249481A (zh) * 2016-09-18 2016-12-21 青岛海信电器股份有限公司 一种背光模组及导光板的制备方法
CN108794773A (zh) * 2018-06-29 2018-11-13 四川理工学院 一种导电水凝胶的制备方法

Also Published As

Publication number Publication date
CN111367007B (zh) 2021-07-06
US20210255382A1 (en) 2021-08-19
CN111367007A (zh) 2020-07-03
EP3904924B1 (en) 2023-09-06
EP3904924A1 (en) 2021-11-03
US11300723B2 (en) 2022-04-12
EP3904924A4 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
CN104914622B (zh) 量子点发光器件和背光模组
CN104303099B (zh) 照明装置和显示装置
US10509289B2 (en) Display device
CN103293744B (zh) 一种显示装置
CN204855992U (zh) 液晶显示模组及液晶显示装置
CN107229157A (zh) 透明显示装置及其制备方法
CN105140376B (zh) 荧光粉层、器件及相应光源和投影系统、及相应制作方法
CN205015588U (zh) 背光模组和液晶显示装置
CN105807485A (zh) 液晶显示模组、装置及控制方法
CN101109869A (zh) 侧入直下式背光模组
CN104793284A (zh) 导光板、背光模块及液晶显示器
KR20120045968A (ko) 액정표시장치
CN205679890U (zh) 一种曲面液晶显示屏及显示装置
CN205484892U (zh) 导光板、背光模组以及显示装置
WO2020135240A1 (zh) 背光模组、导光板及其导电水凝胶的制备方法
CN108375814A (zh) 新型微结构导光板及其显示模组
WO2013139049A1 (zh) 侧入式背光模组
CN205374797U (zh) 一种玻璃导光板及其液晶显示模组
CN208207271U (zh) 新型微结构导光板及其显示模组
CN207232586U (zh) 背光模组及显示器
CN204345358U (zh) 侧入式led灯
CN207731053U (zh) 一种液晶显示模组
CN207992635U (zh) 一种直下式tv背光板
KR100420615B1 (ko) 광섬유를 이용한 엘시디용 백라이트
CN106918946A (zh) 量子点液晶面板和液晶模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903702

Country of ref document: EP

Effective date: 20210726