WO2020135140A1 - 多频天线结构 - Google Patents

多频天线结构 Download PDF

Info

Publication number
WO2020135140A1
WO2020135140A1 PCT/CN2019/125826 CN2019125826W WO2020135140A1 WO 2020135140 A1 WO2020135140 A1 WO 2020135140A1 CN 2019125826 W CN2019125826 W CN 2019125826W WO 2020135140 A1 WO2020135140 A1 WO 2020135140A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna unit
antenna
fss
unit
parasitic
Prior art date
Application number
PCT/CN2019/125826
Other languages
English (en)
French (fr)
Inventor
罗兵
肖伟宏
覃雯斐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19905783.7A priority Critical patent/EP3886256A4/en
Publication of WO2020135140A1 publication Critical patent/WO2020135140A1/zh
Priority to US17/358,417 priority patent/US11843183B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/48Combinations of two or more dipole type antennas
    • H01Q5/49Combinations of two or more dipole type antennas with parasitic elements used for purposes other than for dual-band or multi-band, e.g. imbricated Yagi antennas

Definitions

  • the present application relates to the technical field of antennas, in particular to a multi-frequency antenna structure.
  • the common-aperture technology of the antenna refers to arranging the array antennas of multiple frequency bands in a common plane. Based on this, the size of the multi-frequency array antenna can be greatly reduced, and the application advantages of miniaturization, light weight and easy deployment can be obtained.
  • FIG. 1A is a schematic diagram of an antenna unit with a working frequency band of 1.7 GHz to 2.7 GHz provided in the prior art.
  • FIG. 1A takes two antenna units 11 with a working frequency band of 1.7 GHz to 2.7 GHz as an example.
  • the antenna unit is a 45 Dual linearly polarized antenna elements at ° and 135°.
  • FIG. 1B is a directional diagram of an antenna unit with a working frequency band of 1.7 GHz to 2.7 GHz provided by the prior art. As shown in FIG.
  • FIG. 1C is a schematic diagram of an antenna unit of 1.7 GHz to 2.7 GHz and an antenna unit with an operating frequency band of 0.7 GHz to 0.9 GHz provided in the prior art.
  • FIG. 1C shows that there are two antenna units 11 with an operating frequency of 1.7 GHz to 2.7 GHz. Take two antenna units 12 with an operating frequency band of 0.7 GHz to 0.9 GHz as examples. These two antenna units are dual-polarized antenna units with 45° and 135°. As shown in FIG.
  • the operating frequency band is 1.7 GHz to
  • the pattern indicators of various antenna units deteriorate to varying degrees, and the typical phenomena are the width and gain amplitude with frequency Large fluctuations, large fluctuations in gain with changes in spatial direction, drops (zero points) or spikes (ridge points) in different directions, and deterioration of the polarization suppression ratio.
  • FIG. 1D is another schematic diagram of an antenna unit with a working frequency band of 1.7 GHz to 2.7 GHz provided by the prior art. As shown in FIG.
  • the working frequency band is 1.7
  • the antenna pattern of GHz to 2.7 GHz has problems of deterioration of polarization suppression ratio (cross-polarized radiation rise shown by broken lines) and gain drop at some frequency points.
  • the present application provides a multi-frequency antenna structure, which can solve problems such as deterioration of polarization suppression ratio and gain drop of the frequency band antenna unit pattern at certain frequency points.
  • the present application provides a multi-band antenna structure, including: a first antenna unit, a second antenna unit, a reflector, and a first parasitic structure of the first antenna unit; the operation of the first antenna unit and the second antenna unit The frequency band is different, the first antenna unit, the second antenna unit and the first parasitic structure are arranged above the reflecting plate; the distance between the antenna unit with a high operating frequency band and the reflecting plate in the first antenna unit and the second antenna unit is less than that with a low operating frequency band The distance between the antenna unit and the reflector; the first parasitic structure consists of one or more FSS planes, the first parasitic structure exhibits a stop band characteristic for the first antenna unit and a pass band characteristic for the second antenna unit; the first antenna unit It is adjacent to the second antenna unit, and the distance between the first antenna unit and the second antenna unit is less than 0.5 times the vacuum wavelength of the minimum operating frequency band in the operating frequency band of the first antenna unit and the second antenna unit.
  • the distance of the parasitic structure is less than 0.5 times the vacuum wavelength corresponding to the working frequency band of the first antenna unit, and the distance between the second antenna unit and the first parasitic structure is less than 0.5 times the vacuum wavelength corresponding to the working frequency band of the second antenna unit.
  • the first parasitic structure includes one or more FSS planes
  • the first parasitic structure exhibits a stop band characteristic for the first antenna unit and a pass band characteristic for the second antenna unit, that is, the first parasitic structure works at the first antenna unit
  • the frequency band is equivalent to a continuous metal conductor
  • the working frequency band of the second antenna unit is equivalent to a vacuum, so that the desired "targeting" optimization function can be obtained. Therefore, problems such as deterioration of polarization suppression ratio and gain drop that occur in the frequency pattern of the first antenna unit at certain frequency points can be solved, and at the same time, the performance of the second antenna unit is not significantly affected.
  • the reflectance of the first parasitic structure to the first antenna element is greater than 60%
  • the reflection phase shift is between 135 degrees and 225 degrees
  • the transmittance of the first parasitic structure to the second antenna element Above 60% the transmission phase shift is between -45 degrees and 45 degrees.
  • the structure of each FSS plane is the same or different.
  • the FSS plane is disposed between the top of the first antenna unit and the reflective plate, and the angle between the FSS plane and the reflective plate is greater than 30 degrees.
  • the FSS plane is formed by a plurality of FSS units arranged uniformly.
  • the desired "targeting" optimization function can be better obtained. Therefore, problems such as deterioration of polarization suppression ratio and gain drop that occur in the frequency pattern of the first antenna unit at certain frequency points can be solved, and at the same time, the performance of the second antenna unit is not significantly affected.
  • the FSS unit is a closed ring conductor structure or a closed ring slot structure.
  • the closed ring conductor structure includes a bent winding pattern structure; the closed ring slot structure includes a bent winding pattern structure.
  • the minimum width of the conductor strip or the slotted strip in the bent-wound pattern structure is less than 0.02 times the maximum vacuum wavelength of the first antenna unit. Therefore, “targeting" optimization can be performed on the pattern of the first antenna unit, and the pattern of the second antenna unit in the adjacent space is not affected while optimizing the pattern of the first antenna unit.
  • the FSS unit is a non-rotationally symmetric structure. Therefore, the first parasitic structure can be better applied to the near field region.
  • the shape of the FSS unit is rectangular or circular.
  • the maximum side length of the FSS unit is less than 0.2 times the maximum vacuum wavelength of the first antenna unit; when the shape of the FSS unit is circular, the diameter of the FSS unit Less than 0.2 times the maximum vacuum wavelength of the first antenna unit.
  • the area of the FSS plane is smaller than the 1 square vacuum wavelength of the first antenna element.
  • the multi-band antenna structure includes: an antenna array composed of a plurality of first antenna elements and a plurality of first parasitic structures, and the plurality of first antenna elements and the plurality of first parasitic structures correspond one-to-one, The distance between each first antenna element and the corresponding first parasitic structure is the same.
  • the multi-band antenna structure further includes: a second parasitic structure; the second parasitic structure is disposed above the reflective plate, the second parasitic structure includes one or more FSS planes, and the second parasitic structure is opposite to the first
  • the antenna unit exhibits a passband characteristic and exhibits a stopband characteristic for the second antenna unit; the distance between the first antenna unit and the second parasitic structure is less than 0.5 times the vacuum wavelength corresponding to the operating frequency band of the first antenna unit, the second antenna unit and the second The distance of the parasitic structure is less than 0.5 times the vacuum wavelength corresponding to the working frequency band of the second antenna unit.
  • the multi-band antenna structure further includes: a third antenna unit and a third parasitic structure; the third antenna unit and the first antenna unit and the second antenna unit have different operating frequency bands, and the third antenna unit and The third parasitic structure is disposed above the reflective plate; the third parasitic structure includes one or more FSS planes, the third parasitic structure exhibits a stop band characteristic for the third antenna unit, and a pass band for the first antenna unit and the second antenna unit Characteristics, the first parasitic structure and the second parasitic structure all exhibit passband characteristics for the third antenna unit.
  • This application provides a multi-band antenna structure. Since the parasitic structure contains one or more FSS planes, the parasitic structure exhibits a stop-band characteristic for the antenna unit that needs to be optimized and a pass-band characteristic for the antenna unit in other frequency bands.
  • the frequency band that you want to optimize is equivalent to a continuous metal conductor, and the frequency band that you do not want to affect is equivalent to a vacuum, and you can get the desired "targeting" optimization function. Therefore, problems such as deterioration of polarization suppression ratio and gain drop of the frequency band antenna unit pattern at certain frequency points can be solved.
  • the FSS plane of the parasitic structure can be formed by evenly arranging multiple FSS units, so that the desired "targeting" optimization function can be better obtained.
  • the FSS unit may be a miniaturized FSS unit, so that the "target" optimization of the antenna unit pattern of a certain frequency band can be performed, and the antenna unit pattern of a certain frequency band is optimized without affecting Patterns of antenna units operating in other frequency bands in adjacent spaces.
  • the FSS unit can adopt a non-rotationally symmetric structure, so that the parasitic structure can be better applied to the near field region.
  • FIG. 1A is a schematic diagram of an antenna unit provided in the prior art with a working frequency band of 1.7 GHz to 2.7 GHz;
  • FIG. 1B is a directional diagram of an antenna unit provided in the prior art with a working frequency band of 1.7 GHz to 2.7 GHz;
  • 1C is a schematic diagram of an antenna unit of 1.7 GHz to 2.7 GHz and an antenna unit with an operating frequency band of 0.7 GHz to 0.9 GHz provided by the prior art;
  • FIG. 1D is another schematic diagram of an antenna unit provided in the prior art with a working frequency band of 1.7 GHz to 2.7 GHz;
  • FIG. 2A is a schematic diagram of a high-pass FSS provided by an embodiment of the present application and the transmittance of the FSS at different frequencies;
  • 2B is a schematic diagram of a low-pass FSS provided by an embodiment of the present application and the transmittance of the FSS at different frequencies;
  • 2C is a schematic diagram of a bandpass FSS provided by an embodiment of the present application and the transmittance of the FSS at different frequencies;
  • 2D is a schematic diagram of a band-stop FSS and the transmittance of the FSS at different frequencies according to an embodiment of the application;
  • 3A is a schematic diagram of a multi-band antenna structure provided by an embodiment of the present application.
  • 3B is a schematic diagram of a multi-frequency antenna structure provided by another embodiment of the present application.
  • 3C is a schematic diagram of a multi-frequency antenna structure provided by yet another embodiment of the present application.
  • 3D is a schematic diagram of a multi-frequency antenna structure provided by another embodiment of the present application.
  • FIG. 4 is a schematic diagram of frequency response characteristics to space electromagnetic waves after the FSS units are uniformly arranged into a large planar array provided by an embodiment of the present application;
  • 5A is a directional diagram of a first antenna unit provided by an embodiment of this application.
  • 5B is a directional diagram of a second antenna unit provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of an FSS baffle provided by an embodiment of this application.
  • FIG. 7A is a directional diagram of a first antenna unit and a second antenna unit when a baffle is not used according to an embodiment of this application;
  • FIG. 7B is a directional diagram of the first antenna unit and the second antenna unit when using a baffle according to an embodiment of the present application
  • FIG. 8 is a schematic diagram of a surrounding frame provided by an embodiment of the present application.
  • 9A and 10A are schematic diagrams of a closed ring conductor structure provided by an embodiment of the present application.
  • 9B and 10B are schematic diagrams of a closed annular slot structure provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a non-rotationally symmetric FSS unit provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a plurality of rotationally symmetric FSS units provided by an embodiment of the present application.
  • the pattern of the antenna unit with an operating frequency band of 1.7 GHz to 2.7 GHz has a deterioration in polarization suppression ratio at some frequency points (dashed line As shown, the cross-polarized radiation rises), gain drops, etc.
  • this application provides a multi-band antenna structure.
  • This application considers to solve the problems such as the deterioration of the planned suppression ratio and the drop of gain in the antenna unit pattern by increasing the parasitic structure of the antenna unit.
  • the parasitic structure is added only to the existing antenna structure, the following situation may occur: while optimizing the antenna pattern of a certain frequency band, it may have a deteriorating effect on the antenna pattern of other frequency bands.
  • the deteriorating effect of the parasitic structure on the pattern of other frequency bands is very similar to the side effects of anti-cancer drugs. While killing cancer cells, the drugs will inevitably damage normal tissue cells; when this side effect reaches a certain level, the drugs also The meaning of use is lost, so research on the use of drugs with "targeting" effects has become the key to improving the efficacy.
  • the main idea of the present application is that if a parasitic structure with "targeting" optimization function can be introduced, the deterioration of other frequency band patterns can be solved.
  • This "targeting" parasitic structure only has a current adjustment function for the specific frequency band antenna unit that is expected to be optimized, but does not work for antenna units in other frequency bands; this allows parasitic structure design for the frequency band that needs to be optimized, and the parasitic structure After adding the antenna structure, it will not affect the antenna elements in other surrounding frequency bands.
  • FSS Frequency Selective Surface
  • FSS is a planar structure composed of single-layer or multi-layer periodically arranged conductive patterns.
  • FSS has a space electromagnetic wave filtering function. According to its space filtering characteristics, FSS is generally divided into high-pass FSS, low-pass FSS, band-pass FSS, band-stop FSS and other types.
  • 2A is a schematic diagram of a high-pass FSS provided by an embodiment of the present application and the transmittance of the FSS at different frequencies, and FIG.
  • FIG. 2B is a schematic diagram of a low-pass FSS provided by an embodiment of the present application and the transmittance of the FSS at different frequencies
  • 2C is a schematic diagram of a bandpass FSS provided by an embodiment of the present application and the transmittance of the FSS at different frequencies
  • FIG. 2D is a bandstop FSS provided by an embodiment of the present application and the transmittance of the FSS at different frequencies Schematic.
  • the desired "targeting" optimization function can be obtained; by studying the passband and stopband characteristics of FSS, it is found that the transmittance of FSS in the passband is close to 100%, The reflectivity is close to 0, while the phase shift of the transmitted signal is close to 0 degrees.
  • FSS does not produce any modulation effect on the signal of the passband frequency, which can be equivalent to a layer of vacuum; in the range of the stop band, the transmittance is close to 0, the reflectivity is close to 100%, and the phase shift of the reflected signal is close to 180 degrees , Its effect is close to the continuous conductor plane, indicating that FSS can be equivalent to a continuous metal surface in the range of the stop band; using the above results, by reasonably designing the pass band and stop band characteristics of FSS, it is equivalent to the frequency band that you want to optimize For continuous metal conductors, the equivalent of vacuum in the undesired frequency band can obtain the desired "targeting" optimization function.
  • the FSS plane is first designed.
  • the FSS plane is composed of at least one FSS unit.
  • the FSS plane exhibits stop-band characteristics for the frequency band in the antenna structure that needs to be optimized.
  • the reflectivity of the stop-band electromagnetic wave is >60%, and the reflection phase shift is located at 135 degrees to 225 degrees; and the antenna elements for other working frequency bands in the antenna structure exhibit passband characteristics, the transmittance of the passband electromagnetic waves is >60%, and the transmission phase shift is between -45 degrees and 45 degrees.
  • the antenna structure described in this application may be a common-aperture antenna array or may not be a common-aperture antenna array, which is not limited in this application.
  • the FSS plane is used for parasitic structure design, that is, the parasitic structure includes one or more FSS planes.
  • the parasitic structure may be a surrounding frame, an isolation bar, a baffle, a guide piece, etc.
  • the application does not limit the specific structure of the parasitic structure.
  • the reflection of the electromagnetic wave is very weak, and the near field current will not be greatly adjusted, so the far field direction
  • the pattern remains basically unchanged; the parasitic structure formed by the FSS plane is used to select the antenna element and array pattern to be optimized according to the frequency, and the pattern of other antenna elements and arrays in the adjacent space does not have a dramatic impact.
  • the desired "targeting" optimization function is realized.
  • FIG. 3A is a schematic diagram of a multi-band antenna structure provided by an embodiment of the present application.
  • the multi-band antenna structure includes: a first antenna unit 31, a second antenna unit 32, a reflection plate 33, and a first antenna unit 31's first parasitic structure 34.
  • the first antenna unit 31, the second antenna unit 32 and the first parasitic structure 34 are provided above the reflection plate 33.
  • the first antenna unit 31, the second antenna unit 32, and the first parasitic structure 34 may have an electrical connection relationship with the reflector 33, or may not have an electrical connection relationship, which is not limited in this application.
  • the first antenna unit 31 and the second antenna unit 32 are adjacent, and the distance between the first antenna unit 31 and the second antenna unit 32 is less than 0.5 times the minimum operating frequency band among the operating frequency bands of the first antenna unit 31 and the second antenna unit 32
  • the vacuum wavelength for example, the distance between the adjacent first antenna element 31 and the second antenna element 32 is 100 mm.
  • the distance between the first antenna unit 31 and the first parasitic structure 34 is less than 0.5 times the vacuum wavelength corresponding to the operating frequency band of the first antenna unit 31, and the distance between the second antenna unit 32 and the first parasitic structure 34 is less than the operation of the second antenna unit 32
  • the vacuum wavelength corresponding to the frequency band is 0.5 times, that is, the first parasitic structure 34 provided in this application is applicable to the near field region.
  • the operating frequency bands of the first antenna unit 31 and the second antenna unit 32 are different.
  • the operating frequency band of the first antenna unit is 1.7 GHz to 2.7 GHz
  • the operating frequency band of the second antenna unit is 0.7 GHz to 0.9 GHz.
  • the operating frequency band of the first antenna unit is 0.7 GHz to 0.9 GHz
  • the operating frequency band of the second antenna unit is 1.7 GHz to 2.7 GHz.
  • the distance between the antenna unit with a high operating frequency band and the reflector 33 in the first antenna unit 31 and the second antenna unit 32 is less than the distance between the antenna unit with a low operating frequency band and the reflector 33.
  • the operating frequency band of the first antenna unit is 1.7 GHz to 2.7 GHz
  • the operating frequency band of the second antenna unit is 0.7 GHz to 0.9 GHz.
  • the distance between the first antenna unit and the reflector is smaller than the distance between the second antenna unit and the reflector.
  • the structure of each FSS plane is the same or different.
  • the FSS plane is disposed between the top of the first antenna unit and the reflective plate, and the angle between the FSS plane and the reflective plate is greater than 30 degrees.
  • the angle between the first antenna unit and the reflector is 90 degrees, or the angle between the first antenna unit and the reflector is 45 degrees.
  • the first parasitic structure may be a surrounding frame, an isolation bar, a baffle, a guiding piece, and the like.
  • the first parasitic mechanism is a surrounding frame.
  • FIG. 3B is a schematic diagram of a multi-band antenna structure provided by another embodiment of the present application.
  • the first parasitic mechanism 34 is a baffle composed of FSS, and the baffle may also be called an FSS baffle.
  • FIG. 3C is a schematic diagram of a multi-band antenna structure provided by yet another embodiment of the present application.
  • the first parasitic mechanism 34 is an isolation bar composed of FSS, and the isolation bar may also be called an FSS isolation bar.
  • FIG. 3A the first parasitic mechanism is a surrounding frame.
  • FIG. 3B is a schematic diagram of a multi-band antenna structure provided by another embodiment of the present application.
  • the first parasitic mechanism 34 is a baffle composed of FSS, and the baffle may also be called an FSS baffle.
  • FIG. 3C is a schematic diagram of
  • FIG. 3D is a schematic diagram of a multi-band antenna structure provided by yet another embodiment of the present application.
  • the first parasitic mechanism 34 is a guide piece composed of FSS, and the guide piece may also be referred to as FSS guide. To the film.
  • the first parasitic structure 34 exhibits a stop band characteristic for the first antenna unit 31 and a pass for the second antenna unit 32 Band characteristics.
  • the so-called first parasitic structure 34 exhibits a stop band characteristic to the first antenna unit 31 means that the reflectivity of the first parasitic structure 34 to the first antenna unit 31 is greater than 60%, and the reflection phase shift is located at Between 135 degrees and 225 degrees.
  • the so-called first parasitic structure 34 exhibits a pass-band characteristic to the second antenna unit 32, which means that the transmittance of the first parasitic structure to the second antenna unit is greater than 60%, and the transmission phase shift is between -45 degrees and 45 degrees.
  • this application does not limit the above values "60%”, “135 degrees”, “225 degrees”, “-45 degrees” and “45 degrees”, for example: “70%” can be substituted for "60%", etc. .
  • the multi-band antenna structure includes at least one first antenna unit 31, and the so-called "at least one" includes two cases: one or more cases.
  • the multi-band antenna structure includes: two first antenna units 31, and the two first antenna units 31 constitute an antenna array in a certain operating frequency band.
  • the multi-band antenna structure includes a first antenna unit 31.
  • the center distance between the two first antenna units 31 may be, but not limited to, 80 mm.
  • the multi-band antenna structure includes at least one second antenna unit 32.
  • the so-called "at least one" includes two cases: one or more cases.
  • the multi-band antenna structure includes: two second antenna units 32, and the two second antenna units 32 constitute an antenna array of another operating frequency band.
  • the multi-band antenna structure includes three second antenna units 31.
  • the multi-frequency antenna structure when the multi-frequency antenna structure includes: a plurality of first antenna elements 31, the multi-frequency antenna structure also includes a plurality of first parasitic structures 34, wherein the plurality of first antenna elements 31 and the multiple One first parasitic structure 34 corresponds to each other.
  • the distance between each first antenna unit 31 and the corresponding first parasitic structure 34 is the same.
  • the multi-frequency antenna structure when the multi-frequency antenna structure includes: a plurality of first antenna elements 31, the multi-frequency antenna structure also includes at least one first parasitic structure 34, and the plurality of first antenna elements 31 Part of the first antenna unit 31 corresponds to the at least one first parasitic structure 34 in one-to-one correspondence, and other parts of the plurality of first antenna units 31 do not have the corresponding first parasitic structure 34.
  • the present application provides a multi-band antenna structure, wherein the antenna structure includes: a first antenna unit, a second antenna unit, a reflector, and a first parasitic structure of the first antenna unit; the first antenna unit and the first The working frequency bands of the two antenna units are different.
  • the distance between the first antenna unit and the second antenna unit in the high operating frequency band and the reflecting plate is less than the distance between the antenna element in the low operating frequency band and the reflecting plate; the first antenna unit and the second antenna The units are adjacent, and the distance between the first antenna unit and the second antenna unit is less than 0.5 times the vacuum wavelength of the minimum operating frequency band in the operating frequency bands of the first antenna unit and the second antenna unit, and the distance between the first antenna unit and the first parasitic structure It is less than 0.5 times the vacuum wavelength corresponding to the working frequency band of the first antenna unit, and the distance between the second antenna unit and the first parasitic structure is less than 0.5 times the vacuum wavelength corresponding to the working frequency band of the second antenna unit. It can be seen that the first parasitic structure is suitable for the near-field region.
  • the first parasitic structure since the first parasitic structure includes one or more FSS planes, the first parasitic structure exhibits a stop-band characteristic for the first antenna unit, and for the second antenna unit It has a pass-band characteristic, that is, the first parasitic structure is equivalent to a continuous metal conductor in the operating frequency band of the first antenna unit, and is equivalent to a vacuum in the operating frequency band of the second antenna unit, so that the desired "targeting" optimization function can be obtained . Therefore, problems such as deterioration of polarization suppression ratio and gain drop that occur in the frequency pattern of the first antenna unit at certain frequency points can be solved, and at the same time, the performance of the second antenna unit is not significantly affected.
  • the FSS plane is formed by a plurality of FSS units arranged uniformly.
  • the FSS unit exhibits a stop band characteristic for the first antenna unit and a pass band characteristic for the second antenna unit; using the commercial 3-dimensional electromagnetic simulation software HFSS, it can be simulated that the FSS unit is evenly arranged into a large planar array to the space Frequency response characteristics of electromagnetic waves
  • FIG. 4 is a schematic diagram of frequency response characteristics of space electromagnetic waves after the FSS units are evenly arranged into a large planar array provided by an embodiment of the present application. As shown in FIG. 4, the FSS units are evenly arranged The distributed plane has a strong reflection effect on the electromagnetic waves generated by the first antenna unit.
  • FIG. 5A is a directional diagram of the first antenna unit provided by an embodiment of the present application.
  • 5B is a directional diagram of a second antenna unit provided by an embodiment of the present application.
  • the frame formed by the FSS unit optimizes the directional diagram of the first antenna unit;
  • the pattern of the second antenna element does not have much impact. This achieves the desired "targeting" optimization function.
  • FIG. 6 is a schematic diagram of an FSS baffle provided by an embodiment of the present application.
  • the baffle may be used to improve the first antenna unit at -70 degrees.
  • Directional frequency attached lobe suppression performance; the baffle is placed at a 45-degree angle to the partial reflection plate where the first antenna unit is located.
  • FIG. 7A is a directional diagram of the first antenna unit and the second antenna unit when the baffle is not used, as shown in FIG. 7A, the left diagram is the directional diagram of the first antenna unit, and the right
  • the drawing is a directional diagram of the second antenna unit.
  • the first antenna element has a large lobe near -70 degrees.
  • FIG. 7B is a directional diagram of the first antenna unit and the second antenna unit when using a baffle provided by an embodiment of the present application.
  • the left diagram is the directional diagram of the first antenna unit, and the right side is attached
  • the picture shows the directional diagram of the second antenna unit.
  • the side lobe of the first antenna unit is improved, and the directional pattern of the second antenna unit does not deteriorate significantly. It can be seen that the baffle can achieve the required "targeting" optimization effect.
  • the overall size of the parasitic structure used to optimize the pattern is generally small, which requires that the FSS unit forming the parasitic structure uses a small-sized structure; so that multiple FSSs can be evenly arranged within a limited size range
  • the unit forms the macro effect of the partial reflection surface or the transmission surface.
  • the maximum side length of the FSS unit is less than 0.2 of the maximum vacuum wavelength of the first antenna unit Times.
  • the diameter of the FSS unit is less than 0.2 times the maximum vacuum wavelength of the first antenna unit.
  • FIG. 8 is a schematic diagram of a surrounding frame provided by an embodiment of the present application.
  • the surrounding frame is formed by surrounding four FSS planes (each FSS plane is rectangular in shape).
  • the size of a single FSS plane is 70mm*10mm
  • the vacuum wavelength of the first antenna unit is 0.5*0.07 wavelength
  • the size of a single FSS unit is 0.07*0.07 wavelength, or may be 10mm*10mm, where the FSS unit The size is much smaller than the size of the existing FSS plane.
  • the FSS unit may be a miniaturized closed ring conductor structure or a miniaturized closed ring slotted structure.
  • FIGS. 9A and 10A are schematic diagrams of a closed ring conductor structure provided by an embodiment of the application
  • FIGS. 9B and 10B are schematic diagrams of a closed ring slot structure provided by an embodiment of the application.
  • the so-called miniaturized closed-loop conductor structure refers to the structure including a bent winding pattern structure, and optionally, the smallest conductor strip in the bent winding pattern structure The width is less than 0.02 times the maximum vacuum wavelength of the first antenna unit.
  • 71 represents a conductor strip. Assuming that the width of each conductor strip in the bending and winding pattern structure is the same, the broadband of each conductor strip is less than the maximum vacuum wavelength of the first antenna unit 0.02 times.
  • the so-called closed ring-groove structure refers to the closed ring-groove structure including a curved winding pattern structure, and optionally, a slotted bar in the curved winding pattern structure The minimum width of the band is less than 0.02 times the maximum vacuum wavelength of the first antenna unit.
  • 72 represents a slotted strip.
  • the wideband of each slotted strip is less than the maximum of the first antenna unit 0.02 times the vacuum wavelength.
  • the black part shows a conductor
  • white shows a hollow.
  • the above-mentioned FSS unit may also have a feature of non-rotational symmetry.
  • the reasons for the non-rotationally symmetric structure of the FSS unit are as follows:
  • the non-rotationally symmetric structure can better meet the overall size of the parasitic structure; because the overall size of the parasitic structure is small, if the FSS unit uses a rotationally symmetric structure, its arrangement is difficult to meet the size of the antenna unit in both directions Claim.
  • the traditional FSS plane is used in the far field area, and the distance from the antenna unit is relatively long, usually the distance between the FSS plane and the antenna unit is greater than 1/2 vacuum wavelength; and the FSS plane is composed of a large number of FSS units
  • a large-area plane usually includes more than 100 FSS units, and the plane size is greater than 1 square vacuum wavelength; in such a case, the use of a rotationally symmetric structure can ensure that electromagnetic waves of different directions and different polarizations enter the FSS plane It can maintain a stable frequency response (frequency selection characteristics); in this application, the FSS plane used is a small-sized FSS plane composed of a small number of small FSS units, and the number of FSS units included in the FSS plane is usually less than 100, The area of the FSS plane is usually less than 1 square vacuum wavelength, and the distance between the FSS plane and the antenna unit is less than 1/2 vacuum wavelength.
  • the antenna unit may be a unit to be optimized (such as the above-mentioned first antenna unit) or an antenna that is not expected to be affected Unit (such as the second antenna unit above); in this case, the electromagnetic waves generated by different antenna units incident on the FSS plane only have a specific angle and polarization direction. In such a case, the use of a rotationally symmetric structure loses Originally meaningful, but the use of non-rotationally symmetric structures can achieve better passband and stopband effects in specific environments.
  • the non-rotationally symmetric structure of the FSS unit specifically includes: the outer shape of the FSS unit (also called the outer contour) is not a positive N-sided or circular type; or, although the outer contour of the FSS unit is a positive N-sided or circular type, but different Different metal wire widths or different fold lines are used on the edges or arcs.
  • FIG. 11 is a schematic diagram of a non-rotationally symmetric FSS unit provided by an embodiment of the present application.
  • this application does not limit that the FSS unit must be a non-rotationally symmetric structure, it can also be a rotationally symmetric structure, for example:
  • FIG. 12 is a schematic diagram of a plurality of rotationally symmetric FSS units provided by an embodiment of this application, such as As shown in FIG. 12, the external shape of the rotationally symmetric FSS unit may be a matrix or a circle.
  • the FSS plane can be formed by multiple FSS units arranged uniformly, so that the desired "targeting" optimization function can be better obtained. Therefore, problems such as deterioration of the polarization suppression ratio and gain drop that occur at certain frequency points of the pattern of the first antenna unit can be solved.
  • the FSS unit may be a miniaturized FSS unit, so that the "target” optimization can be performed on the pattern of the first antenna unit, while optimizing the pattern of the first antenna unit without affecting the adjacent space The pattern of the second antenna element inside.
  • the FSS unit can adopt a non-rotationally symmetric structure, so that the second parasitic structure can be better applied to the near field region.
  • the multi-frequency antenna structure as described above includes the first parasitic structure of the first antenna unit.
  • the multi-frequency antenna structure may also include the second parasitic structure of the second antenna unit.
  • the second parasitic structure is disposed above the reflective plate.
  • the second parasitic structure includes one or more FSS planes.
  • the second parasitic structure exhibits a passband characteristic for the first antenna unit and a stopband characteristic for the second antenna unit;
  • the distance between the first antenna unit and the second parasitic structure is less than 0.5 times the vacuum wavelength corresponding to the working frequency band of the first antenna unit, and the distance between the second antenna unit and the second parasitic structure is less than 0.5 times the vacuum corresponding to the working frequency band of the second antenna unit wavelength.
  • the reflectance of the second parasitic structure to the second antenna unit is greater than 60%
  • the reflection phase shift is between 135 degrees and 225 degrees
  • the transmittance of the second parasitic structure to the first antenna unit Above 60% the transmission phase shift is between -45 degrees and 45 degrees.
  • the structure of each FSS plane is the same or different.
  • the FSS plane of the second parasitic structure is disposed between the top of the second antenna unit and the reflective plate, and the angle between the FSS plane and the reflective plate is greater than 30 degrees.
  • the FSS plane of the second parasitic structure is formed by a plurality of FSS cells uniformly arranged.
  • the FSS unit of the second parasitic structure is a closed ring conductor structure or a closed ring slot structure.
  • the above-mentioned closed ring conductor structure includes a bent winding pattern structure; the closed ring slot structure includes a bent winding pattern structure.
  • the minimum width of the conductor strip or the slotted strip in the bent-wound pattern structure is less than 0.02 times the maximum vacuum wavelength of the second antenna unit.
  • the FSS unit constituting the second parasitic structure is a non-rotationally symmetric structure.
  • the shape of the FSS unit constituting the second parasitic structure is rectangular or circular.
  • the maximum side length of the FSS unit is less than 0.2 times the maximum vacuum wavelength of the second antenna unit;
  • the diameter of the FSS unit is less than 0.2 times the maximum vacuum wavelength of the second antenna unit.
  • the area of the FSS plane of the second parasitic structure is smaller than the 1 square vacuum wavelength of the second antenna element.
  • the multi-band antenna structure includes: an antenna array composed of a plurality of second antenna elements and a plurality of second parasitic structures, the plurality of second antenna elements and the plurality of second parasitic structures one by one Correspondingly, the distance between each second antenna element and the corresponding second parasitic structure is the same.
  • the multi-band antenna structure provided by the present application includes a second parasitic structure of the second antenna unit, where the second parasitic structure exhibits a stop band characteristic for the second antenna unit because the second parasitic structure includes one or more FSS planes,
  • the first antenna unit exhibits a passband characteristic, that is, the second parasitic structure is equivalent to a continuous metal conductor in the operating frequency band of the second antenna unit, and is equivalent to a vacuum in the operating frequency band of the first antenna unit.
  • “Targeting" optimization function Therefore, problems such as deterioration of the polarization suppression ratio and gain drop that occur at certain frequency points of the pattern of the second antenna unit can be solved.
  • the FSS plane of the second parasitic structure can be formed by evenly arranging multiple FSS units, so that the desired "targeting" optimization function can be better obtained. Therefore, problems such as deterioration of the polarization suppression ratio and gain drop that occur at certain frequency points of the pattern of the second antenna unit can be solved.
  • the FSS unit may be a miniaturized FSS unit, so that the "target” optimization can be performed on the pattern of the second antenna unit, while optimizing the pattern of the second antenna unit without affecting the adjacent space The directional pattern of the first antenna element inside.
  • the FSS unit can adopt a non-rotationally symmetric structure, so that the second acoustic structure can be better applied to the near field region.
  • the multi-frequency antenna structure may also be referred to as a dual-frequency antenna structure.
  • the multi-band antenna structure may include antenna units in more frequency bands in addition to antenna units in two frequency bands. For example, the following describes the antenna structure with a multi-frequency antenna structure and a third antenna unit:
  • the multi-band antenna structure further includes: a third antenna unit and a third parasitic structure; the third antenna unit and the first antenna unit and the second antenna unit have different operating frequency bands, and the third antenna unit and the third parasitic structure are provided Above the reflector; the third parasitic structure contains one or more FSS planes, the third parasitic structure exhibits a stop-band characteristic for the third antenna unit, and a pass-band characteristic for the first antenna unit and the second antenna unit, the first parasitic Both the structure and the second parasitic structure exhibit a passband characteristic for the third antenna unit.
  • the reflectivity of the third parasitic structure to the third antenna unit is greater than 60%, the reflection phase shift is between 135 degrees and 225 degrees, and the third parasitic structure to the first antenna unit and the second antenna
  • the transmittance of the cell is greater than 60%, and the transmission phase shift is between -45 degrees and 45 degrees.
  • the transmittance of the first parasitic structure to the third antenna unit is greater than 60%, and the transmittance phase shift is between -45 degrees and 45 degrees.
  • the transmittance of the second parasitic structure to the third antenna unit is also greater than 60% , The transmission phase shift is between -45 degrees and 45 degrees.
  • the structure of each FSS plane is the same or different.
  • the FSS plane of the third parasitic structure is disposed between the top of the third antenna unit and the reflective plate, and the angle between the FSS plane and the reflective plate is greater than 30 degrees.
  • the FSS plane of the third parasitic structure is formed by a plurality of FSS cells arranged uniformly.
  • the FSS unit of the third parasitic structure is a closed ring conductor structure or a closed ring slot structure.
  • the above-mentioned closed ring conductor structure includes a bent winding pattern structure; the closed ring slot structure includes a bent winding pattern structure.
  • the minimum width of the conductor strip or the slotted strip in the bent-wound pattern structure is less than 0.02 times the maximum vacuum wavelength of the first antenna unit.
  • the FSS unit constituting the third parasitic structure is a non-rotationally symmetric structure.
  • the outer shape of the FSS unit constituting the third parasitic structure is rectangular or circular.
  • the maximum side length of the FSS unit is less than 0.2 times the maximum vacuum wavelength of the third antenna unit; when the third parasitic structure is constituted
  • the diameter of the FSS unit is less than 0.2 times the maximum vacuum wavelength of the third antenna unit.
  • the area of the FSS plane of the third parasitic structure is smaller than the 1 square vacuum wavelength of the third antenna element.
  • the multi-frequency antenna structure includes: an antenna array composed of a plurality of third antenna elements and a plurality of third parasitic structures, the plurality of third antenna elements and the plurality of third parasitic structures one by one Correspondingly, the distance between each third antenna element and the corresponding third parasitic structure is the same.
  • the multi-band antenna structure provided by the present application includes a third antenna unit and a third parasitic structure of the third antenna unit, where the third parasitic structure is opposite to the third antenna unit because the third parasitic structure includes one or more FSS planes It has a stop-band characteristic and exhibits a pass-band characteristic for the first antenna unit and the second antenna unit. That is, the third parasitic structure is equivalent to a continuous metal conductor at the operating frequency band of the third antenna, and the first antenna unit and the second antenna unit The working frequency band is equivalent to a vacuum, and the desired "targeting" optimization function can be obtained. Therefore, problems such as deterioration of the polarization suppression ratio and gain drop that occur in the frequency pattern of the third antenna unit at certain frequency points can be solved.
  • the FSS plane of the third parasitic structure can be formed by evenly arranging multiple FSS units, so that the desired “targeting” optimization function can be better obtained. Therefore, problems such as deterioration of the polarization suppression ratio and gain drop that occur in the frequency pattern of the third antenna unit at certain frequency points can be solved.
  • the FSS unit may be a miniaturized FSS unit, so that the "target” optimization can be performed on the pattern of the third antenna unit, while optimizing the pattern of the third antenna unit without affecting the adjacent space Directional diagram of the first antenna unit and the second antenna unit.
  • the FSS unit can adopt a non-rotationally symmetric structure, so that the third parasitic structure can be better applied to the near field region.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供一种多频天线结构,包括第一天线单元、第二天线单元、反射板、所述第一天线单元的第一寄生结构;第一天线单元和第二天线单元的工作频段不同,工作频段高的天线单元与反射板的距离小于工作频段低的天线单元与反射板的距离;第一天线单元和第二天线单元相邻,第一天线单元和第二天线单元的距离小于两者中最小工作频段的0.5倍真空波长,第一天线单元与第一寄生结构的距离小于第一天线单元的工作频段的0.5倍真空波长,第二天线单元与第一寄生结构的距离小于第二天线单元的工作频段的0.5倍真空波长。从而可以优化第一天线单元的方向图出现的极化抑制比恶化等问题,且不会对第二天线单元的性能造成明显影响。

Description

多频天线结构
本申请要求于2018年12月27日提交中国专利局、申请号为2018116158441、申请名称为“多频天线结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种多频天线结构。
背景技术
天线的共孔径技术指的是将多个频段的阵列天线共口面排布,基于此可以大幅度缩小多频阵列天线的外形尺寸,获得小型化、轻量化、易部署的应用优势。
在共孔径技术中,由于不同频段的天线单元相互靠近放置,导致天线单元间相互耦合严重,天线单元的方向图指标出现恶化,不满足对天线单元预定的规格要求。图1A为现有技术提供的工作频段为1.7GHz~2.7GHz的天线单元的示意图,其中图1A以两个工作频段为1.7GHz~2.7GHz的天线单元11为例,该天线单元是一种45°和135°的双线极化天线单元。图1B为现有技术提供的工作频段为1.7GHz~2.7GHz的天线单元的方向图,如图1B所示,当只存在一种工作频段的天线单元时,天线单元的增益、波宽、极化抑制比等方向图等指标正常。图1C为现有技术提供的1.7GHz~2.7GHz的天线单元与工作频段为0.7GHz~0.9GHz的天线单元的示意图,其中图1C以存在两个工作频段为1.7GHz~2.7GHz的天线单元11和两个工作频段为0.7GHz~0.9GHz的天线单元12为例,该两种天线单元均是45°和135°的双线极化天线单元,如图1C所示,工作频段为1.7GHz~2.7GHz的天线单元与工作频段为0.7GHz~0.9GHz的天线单元靠近放置时,这种情况下各类天线单元的方向图指标出现不同程度的恶化,典型现象为波宽、增益随频率出现幅度很大的波动、增益随空间方向的变化出现较大起伏,在不同方向上出现跌落(零点)或尖峰(脊点)、极化抑制比出现恶化。例如:图1D为现有技术提供的工作频段为1.7GHz~2.7GHz的天线单元的另一示意图,如图1D所示,加入工作频段为0.7GHz~0.9GHz的天线单元之后,工作频段为1.7GHz~2.7GHz的天线单元的方向图在某些频点出现了极化抑制比恶化(虚线所示交叉极化辐射抬升)、增益跌落等问题。
发明内容
本申请提供一种多频天线结构,从而可以解决某频段天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题。
第一方面,本申请提供一种多频天线结构,包括:第一天线单元、第二天线单元、反射板、第一天线单元的第一寄生结构;第一天线单元和第二天线单元的工作频段不同,第 一天线单元、第二天线单元和第一寄生结构设置在反射板的上方;第一天线单元和第二天线单元中工作频段高的天线单元与反射板的距离小于工作频段低的天线单元与反射板的距离;第一寄生结构包含一个或多个FSS平面构成的,第一寄生结构对第一天线单元呈阻带特性,对第二天线单元呈通带特性;第一天线单元和第二天线单元相邻,且第一天线单元和第二天线单元的距离小于第一天线单元和第二天线单元的工作频段中最小工作频段的0.5倍真空波长,第一天线单元与第一寄生结构的距离小于第一天线单元的工作频段对应的0.5倍真空波长,第二天线单元与第一寄生结构的距离小于第二天线单元的工作频段对应的0.5倍真空波长。
由于第一寄生结构包含一个或多个FSS平面,第一寄生结构对第一天线单元呈阻带特性,对第二天线单元呈通带特性,即该第一寄生结构在第一天线单元的工作频段等效为连续金属导体,在第二天线单元的工作频段等效为真空,就可以获得期望的“靶向”优化功能。从而可以解决第一天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题,同时不会对第二天线单元的性能造成明显影响。
在一种可能的设计中,第一寄生结构对第一天线单元的反射率大于60%,反射相移位于135度至225度之间,第一寄生结构对第二天线单元的的透射率大于60%,透射相移位于-45度至45度之间。
在一种可能的设计中,当第一寄生结构包含多个FSS平面时,各个FSS平面的结构相同或者不同。
在一种可能的设计中,FSS平面设置在第一天线单元的顶部与反射板之间,且FSS平面与反射板的夹角大于30度。
在一种可能的设计中,FSS平面由多个FSS单元均匀排布形成。从而可以更好的获得期望的“靶向”优化功能。从而可以解决第一天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题,同时不会对第二天线单元的性能造成明显影响。
在一种可能的设计中,FSS单元是一个封闭环形导体结构或者封闭环形开槽结构。
在一种可能的设计中,封闭环形导体结构包括弯折绕线图形结构;封闭环形开槽结构包括弯折绕线图形结构。这种小型化的FSS单元,从而可以针对第一天线单元的方向图进行“靶向”优化,在优化第一天线单元方向图的同时不影响相邻空间内第二天线单元的方向图。
在一种可能的设计中,弯折绕线图形结构中导体条带或开槽条带的最小宽度小于第一天线单元的最大真空波长的0.02倍。从而可以针对第一天线单元的方向图进行“靶向”优化,在优化第一天线单元方向图的同时不影响相邻空间内第二天线单元的方向图。
在一种可能的设计中,FSS单元是一个非旋转对称结构。从而使得第一寄生结构可以更好的适用于近场区域。
在一种可能的设计中,FSS单元的外形为矩形或者圆形。
在一种可能的设计中,当FSS单元的外形为矩形时,FSS单元的最大边长小于第一天线单元的最大真空波长的0.2倍;当FSS单元的外形为圆形时,FSS单元的直径小于第一天线单元的最大真空波长的0.2倍。
在一种可能的设计中,FSS平面的面积小于第一天线单元的1平方真空波长。
在一种可能的设计中,多频天线结构包括:由多个第一天线单元构成的天线阵列和多 个第一寄生结构,多个第一天线单元和多个第一寄生结构一一对应,各个第一天线单元与对应的第一寄生结构之间的距离均相同。
在一种可能的设计中,多频天线结构还包括:第二寄生结构;第二寄生结构设置在反射板的上方,第二寄生结构包含一个或多个FSS平面,第二寄生结构对第一天线单元呈通带特性,对第二天线单元呈阻带特性;第一天线单元与第二寄生结构的距离小于第一天线单元的工作频段对应的0.5倍真空波长,第二天线单元与第二寄生结构的距离小于第二天线单元的工作频段对应的0.5倍真空波长。
在一种可能的设计中,多频天线结构还包括:第三天线单元和第三寄生结构;第三天线单元与第一天线单元和第二天线单元的工作频段均不同,第三天线单元和第三寄生结构设置在反射板的上方;第三寄生结构包含一个或多个FSS平面,第三寄生结构对第三天线单元呈阻带特性,对第一天线单元和第二天线单元呈通带特性,第一寄生结构和第二寄生结构均对第三天线单元呈通带特性。
本申请提供一种多频天线结构,由于寄生结构包含一个或多个FSS平面,寄生结构对需要优化的天线单元呈阻带特性,对其他频段的天线单元呈通带特性,即该寄生结构在希望优化的频段等效为连续金属导体,在不希望影响的频段等效为真空,就可以获得期望的“靶向”优化功能。从而可以解决某频段天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题。此外,寄生结构的FSS平面可以由多个FSS单元均匀排布形成,从而可以更好的获得期望的“靶向”优化功能。从而可以解决某频段天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题。进一步地,在本申请中,FSS单元可以是小型化的FSS单元,从而可以针对某一频段的天线单元的方向图进行“靶向”优化,在优化某一频段天线单元方向图的同时不影响相邻空间内工作于其他频段的天线单元的方向图。更进一步地,在本申请中,FSS单元可以采用非旋转对称结构,从而使得寄生结构可以更好的适用于近场区域。
附图说明
图1A为现有技术提供的工作频段为1.7GHz~2.7GHz的天线单元的示意图;
图1B为现有技术提供的工作频段为1.7GHz~2.7GHz的天线单元的方向图;
图1C为现有技术提供的1.7GHz~2.7GHz的天线单元与工作频段为0.7GHz~0.9GHz的天线单元的示意图;
图1D为现有技术提供的工作频段为1.7GHz~2.7GHz的天线单元的另一示意图;
图2A为本申请一实施例提供的高通FSS以及该FSS在不同频率下的透射率的示意图;
图2B为本申请一实施例提供的低通FSS以及该FSS在不同频率下的透射率的示意图;
图2C为本申请一实施例提供的带通FSS以及该FSS在不同频率下的透射率的示意图;
图2D为本申请一实施例提供的带阻FSS以及该FSS在不同频率下的透射率的示意图;
图3A为本申请一实施例提供的多频天线结构的示意图;
图3B为本申请另一实施例提供的多频天线结构的示意图;
图3C为本申请再一实施例提供的多频天线结构的示意图;
图3D为本申请又一实施例提供的多频天线结构的示意图;
图4为本申请一实施例提供的由该FSS单元均匀排布成大平面阵列后对空间电磁波的 频率响应特性的示意图;
图5A为本申请一实施例提供的第一天线单元的方向图;
图5B为本申请一实施例提供的第二天线单元的方向图;
图6为本申请一实施例提供的FSS挡板的示意图;
图7A为本申请一实施例提供的在不使用挡板时第一天线单元和第二天线单元的方向图;
图7B为本申请一实施例提供的在使用挡板时第一天线单元和第二天线单元的方向图;
图8为本申请一实施例提供的围框的示意图;
图9A和图10A为本申请一实施例提供的一种封闭环形导体结构的示意图;
图9B和图10B为本申请一实施例提供的一种封闭环形开槽结构的示意图;
图11为本申请一实施例提供的非旋转对称型的FSS单元的示意图;
图12为本申请一实施例提供的多个旋转对称型的FSS单元的示意图。
具体实施方式
如图1C和1D所示,加入工作频段为0.7GHz~0.9GHz的天线单元之后,工作频段为1.7GHz~2.7GHz的天线单元的方向图在某些频点出现了极化抑制比恶化(虚线所示交叉极化辐射抬升)、增益跌落等问题。为了解决该技术问题,本申请提供一种多频天线结构。
本申请考虑通过增加天线单元的寄生结构来解决天线单元方向图出现计划抑制比恶化、增益跌落等问题。然而,考虑到如果仅在现有的天线结构上增加寄生结构可能会出现如下情况:在优化某一频段天线单元方向图的同时对其它频段天线单元的方向图产生恶化作用。其中寄生结构对其它频段的方向图的恶化作用非常类似于抗癌药物的副作用,药物在杀死癌细胞的同时,不可避免也会伤害正常的组织细胞;这种副作用达到一定程度时,药物也就失去了使用的意义,因此研究采用具有“靶向”作用的药物也就成为了提升疗效的关键。
基于以上思路,本申请的主旨思想是:如果能引入一种具有“靶向”优化功能的寄生结构,就可以解决对其它频段方向图产生的恶化问题。这种“靶向”寄生结构只针对期望优化的特定频段天线单元具有电流调整作用,而针对其它频段的天线单元不起作用;这样就能针对需要优化的频段进行寄生结构设计,并且该寄生结构加入天线结构之后,不会对周边其它频段的天线单元产生影响。
本申请采用频率选择表面(Frequency Selective Surface,FSS)来实现这种具备“靶向”优化功能的寄生结构。其中FSS是一种采用单层或多层周期性排布的导电图形构成的平面结构。FSS具备空间电磁波滤波功能,根据其空间滤波特性,FSS一般分为高通FSS、低通FSS、带通FSS、带阻FSS等类型。图2A为本申请一实施例提供的高通FSS以及该FSS在不同频率下的透射率的示意图,图2B为本申请一实施例提供的低通FSS以及该FSS在不同频率下的透射率的示意图,图2C为本申请一实施例提供的带通FSS以及该FSS在不同频率下的透射率的示意图,图2D为本申请一实施例提供的带阻FSS以及该FSS在不同频率下的透射率的示意图。
利用FSS的空间滤波功能,采用FSS来设计寄生结构,可以获得期望的“靶向”优化功能;通过对FSS的通带和阻带特性进行研究,发现FSS在通带内透射率接近100%、反 射率接近于0,同时透过信号的相移接近0度。说明FSS不对通带频率的信号产生任何调制作用调制作用,可以等效为一层真空;在阻带范围内,透射率接近于0、反射率接近100%,同时反射信号的相移接近180度,其作用与连续导体平面接近,说明FSS在阻带范围内可以等效为连续金属表面;利用以上结果,透过合理设计FSS的通带和阻带特性,使其在希望优化的频段等效为连续金属导体,在不希望影响的频段等效为真空,就可以获得期望的“靶向”优化功能。
具体地,首先设计FSS平面,该FSS平面由至少一个FSS单元组成,该FSS平面针对天线结构中需要优化的频段呈现阻带特性,对阻带电磁波的反射率>60%,反射相移位于135度至225度之间;而针对天线结构中其它工作频段的天线单元呈现通带特性,对通带电磁波的透射率>60%,透射相移位于-45度至45度之间。需要说明的是,本申请所述的天线结构可以是共孔径天线阵列,也可以不是共孔径天线阵列,本申请对此不做限制。
其次,采用FSS平面进行寄生结构设计,即该寄生结构包含一个或多个FSS平面构成。该寄生结构可以是围框、隔离条、挡板、引向片等,本申请对寄生结构的具体结构不做限制。当期望优化频段的天线单元的电磁波入射到寄生结构时,由于该寄生结构包含FSS平面,FSS平面相对于该天线单元呈阻带特性,其功能等效于连续金属表面,该天线单元所产生的电磁波会被反射,从而达到调整近场电流的目的,实现期望的远场方向图优化效果。而当其它频段的天线单元产生的电磁波入射寄生结构时,由于FSS平面相对于该天线单元呈通带特性,电磁波所发生的反射非常微弱,近场电流不会受到大幅度调整,因此远场方向图基本保持不变;采用由FSS平面构成的寄生结构,根据频率来选择需要优化的天线单元和阵列方向图,而对临近空间内的其它天线单元和阵列的方向图不产生剧烈的影响,这样就实现了期望的“靶向”优化功能。
基于上述的主旨思想,下面对本申请提供的多频天线结构进行详细说明:
图3A为本申请一实施例提供的多频天线结构的示意图,如图3A所示,该多频天线结构包括:第一天线单元31、第二天线单元32、反射板33以及第一天线单元31的第一寄生结构34。
第一天线单元31、第二天线单元32和第一寄生结构34设置在反射板33的上方。其中,该第一天线单元31、第二天线单元32和第一寄生结构34可以和反射板33具有电性连接关系,也可以不具有电性连接关系,本申请对此不做限制。
第一天线单元31和第二天线单元32相邻,且第一天线单元31和第二天线单元32的距离小于第一天线单元31和第二天线单元32的工作频段中最小工作频段的0.5倍真空波长,例如:相邻的第一天线单元31和第二天线单元32的间距为100mm。第一天线单元31与第一寄生结构34的距离小于第一天线单元31的工作频段对应的0.5倍真空波长,第二天线单元32与第一寄生结构34的距离小于第二天线单元32的工作频段对应的0.5倍真空波长,即本申请提供的第一寄生结构34适用于近场区域。
需要说明的是:第一天线单元31和第二天线单元32的工作频段不同。例如:第一天线单元的工作频段为1.7GHz~2.7GHz,第二天线单元的工作频段为0.7GHz~0.9GHz。或者,第一天线单元的工作频段为0.7GHz~0.9GHz,第二天线单元的工作频段为1.7GHz~2.7GHz。其中,第一天线单元31和第二天线单元32中工作频段高的天线单元与反射板33的距离小于工作频段低的天线单元与反射板33的距离。例如:第一天线单元的工作频段为 1.7GHz~2.7GHz,第二天线单元的工作频段为0.7GHz~0.9GHz。这种情况下,第一天线单元与反射板的距离小于第二天线单元与反射板的距离。
可选地,当第一寄生结构34包含多个FSS平面时,各个FSS平面的结构相同或者不同。可选地,FSS平面设置在第一天线单元的顶部与反射板之间,且FSS平面与反射板的夹角大于30度。例如:该第一天线单元与反射板的夹角为90度,或者,第一天线单元与反射板的夹角为45度。
该第一寄生结构可以是围框、隔离条、挡板、引向片等。例如:如图3A所示,该第一寄生机构是围框。图3B为本申请另一实施例提供的多频天线结构的示意图,如图3B所示,该第一寄生机构34是由FSS构成的挡板,该挡板也可以被称为FSS挡板。图3C为本申请再一实施例提供的多频天线结构的示意图,如图3C所示,该第一寄生机构34是由FSS构成的隔离条,该隔离条也可以被称为FSS隔离条。图3D为本申请又一实施例提供的多频天线结构的示意图,如图3D所示,该第一寄生机构34是由FSS构成的引向片,该引向片也可以被称为FSS引向片。
无论第一寄生结构34是围框、隔离条、挡板、引向片等任何结构,所述第一寄生结构34对第一天线单元31都呈阻带特性,对第二天线单元32呈通带特性。如上所述,可选地,所谓第一寄生结构34对第一天线单元31呈阻带特性指的是第一寄生结构34对第一天线单元31的反射率大于60%,反射相移位于135度至225度之间。所谓第一寄生结构34对第二天线单元32呈通带特性指的是第一寄生结构对第二天线单元的的透射率大于60%,透射相移位于-45度至45度之间。当然,本申请对上述数值“60%”、“135度”、“225度”、“-45度”和“45度”不做限制,例如:可以用“70%”替换“60%”等。
在一种可能的设计中,该多频天线结构包括至少一个第一天线单元31,所谓“至少一个”包括两种情况:一个或多个的情况。例如:如图3A、图3C和图3D所示,该多频天线结构包括:两个第一天线单元31,两个第一天线单元31构成某工作频段的天线阵列。再比如:如图3B所示,该多频天线结构包括一个第一天线单元31。其中,如图3A、图3C和图3D所示,两个第一天线单元31的中心间距可以是但不限于80mm。
在一种可能的设计中,该多频天线结构包括至少一个第二天线单元32,同样,所谓“至少一个”包括两种情况:一个或多个的情况。例如:如图3A、图3C和图3D所示,该多频天线结构包括:两个第二天线单元32,两个第二天线单元32构成另一工作频段的天线阵列。再比如:如图3B所示,该多频天线结构包括三个第二天线单元31。
在一种可能的设计中,当多频天线结构包括:多个第一天线单元31时,该多频天线结构也包括多个第一寄生结构34,其中,多个第一天线单元31和多个第一寄生结构34一一对应。可选地,各个第一天线单元31与对应的第一寄生结构34之间的距离均相同。
在另一种可能的设计中,当多频天线结构包括:多个第一天线单元31时,该多频天线结构也包括至少一个第一寄生结构34,所述多个第一天线单元31中的部分第一天线单元31和所述至少一个第一寄生结构34一一对应,所述多个第一天线单元31中的其他部分的第一天线单元31不具有对应的第一寄生结构34。
综上,本申请提供一种多频天线结构,其中该天线结构包括:第一天线单元、第二天线单元、反射板、所述第一天线单元的第一寄生结构;第一天线单元和第二天线单元的工作频段不同,第一天线单元和第二天线单元中工作频段高的天线单元与反射板的距离小于 工作频段低的天线单元与反射板的距离;第一天线单元和第二天线单元相邻,且第一天线单元和第二天线单元的距离小于第一天线单元和第二天线单元的工作频段中最小工作频段的0.5倍真空波长,第一天线单元与第一寄生结构的距离小于第一天线单元的工作频段对应的0.5倍真空波长,第二天线单元与第一寄生结构的距离小于第二天线单元的工作频段对应的0.5倍真空波长。由此可知,该第一寄生结构适用于近场区域,进一步地,由于第一寄生结构包括一个或多个FSS平面,第一寄生结构对第一天线单元呈阻带特性,对第二天线单元呈通带特性,即该第一寄生结构在第一天线单元的工作频段等效为连续金属导体,在第二天线单元的工作频段等效为真空,就可以获得期望的“靶向”优化功能。从而可以解决第一天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题,同时不会对第二天线单元的性能造成明显影响。
在一种可能的设计中,FSS平面由多个FSS单元均匀排布形成。其中,该FSS单元针对第一天线单元呈现阻带特性,针对第二天线单元呈现通带特性;采用商业3维电磁仿真软件HFSS可以模拟得到由该FSS单元均匀排布成大平面阵列后对空间电磁波的频率响应特性,图4为本申请一实施例提供的由该FSS单元均匀排布成大平面阵列后对空间电磁波的频率响应特性的示意图,如图4所示,由该FSS单元均匀排布成的平面对第一天线单元产生的电磁波有很强的反射作用,反射信号所占的能量比例>70%,透射信号比例>30%;同时由该FSS单元均匀排布成的平面对第二天线单元产生的电磁波反射率较低,反射信号所占的能量比例<30%,透射信号比例>70%。假设多个该FSS单元均匀排布构成FSS平面,四个FSS平面围设成围框,该围框作为第一天线单元之后,图5A为本申请一实施例提供的第一天线单元的方向图,图5B为本申请一实施例提供的第二天线单元的方向图,由图5A和图5B可以看到,FSS单元构成的围框对第一天线单元的方向图起到了优化作用;而对第二天线单元的方向图没有产生太大的影响。这就实现了期望的“靶向”优化功能。
同样地,多个FSS单元还可以构成挡板,如图6所示,图6为本申请一实施例提供的FSS挡板的示意图,该挡板可以用于改善第一天线单元在-70度方向的频附瓣抑制性能;该挡板与第一天线单元所在的部分反射板呈45度角度放置。图7A为本申请一实施例提供的在不使用挡板时第一天线单元和第二天线单元的方向图,如图7A所示,左侧附图为第一天线单元的方向图,右侧附图为第二天线单元的方向图。如图7A所示,第一天线单元在-70度附近出现了较大附瓣。图7B为本申请一实施例提供的在使用挡板时第一天线单元和第二天线单元的方向图,如图7B所示,左侧附图为第一天线单元的方向图,右侧附图为第二天线单元的方向图。如图7B所示,第一天线单元的附瓣得到了改善,同时第二天线单元的方向图没有出现明显的性能恶化,由此可知,挡板可以实现需要的“靶向”优化效果。
需要说明的是,一般要求用于优化方向图的寄生结构的整体尺寸较小,这就要求构成寄生结构的FSS单元选用小尺寸的结构;这样才能在有限的尺寸范围内均匀排布多个FSS单元,形成局部反射面或透射面的宏观效果。例如:针对上述第一寄生结构,在一种可能的设计中,当构成第一寄生结构的FSS单元的外形为矩形时,该FSS单元的最大边长小于第一天线单元的最大真空波长的0.2倍。当构成第一寄生结构的FSS单元的外形为圆形时,该FSS单元的直径小于第一天线单元的最大真空波长的0.2倍。在一种可能的设计中,FSS 平面的面积小于第一天线单元的1平方真空波长。例如:图8为本申请一实施例提供的围框的示意图,如图8所示,该围框由4个FSS平面(每个FSS平面的形状为矩形)围合构成。可选地,单个FSS平面的尺寸为70mm*10mm,而第一天线单元的真空波长为0.5*0.07波长,而单个FSS单元的尺寸为0.07*0.07波长,或者可以是10mm*10mm,这里FSS单元的尺寸远远小于现有技术的FSS平面的尺寸。
在一种可能的设计中,为了实现小尺寸的FSS单元,该FSS单元可以是小型化的封闭环形导体结构或者小型化的封闭环形开槽结构。例如:图9A和图10A为本申请一实施例提供的一种封闭环形导体结构的示意图,图9B和图10B为本申请一实施例提供的一种封闭环形开槽结构的示意图。如图9A和图10A所示,可选地,所谓小型化的封闭环形导体结构指的是该结构包括弯折绕线图形结构,可选地,弯折绕线图形结构中导体条带的最小宽度小于第一天线单元的最大真空波长的0.02倍。如图9A和图10A所示,71表示导体条带,假设弯折绕线图形结构中各个导体条带的宽度相同,则每个导体条带的宽带均小于第一天线单元的最大真空波长的0.02倍。如图9B和图10B所示,可选地,所谓封闭环形开槽结构指的是该封闭环形开槽结构包括弯折绕线图形结构,可选地,弯折绕线图形结构中开槽条带的最小宽度小于第一天线单元的最大真空波长的0.02倍。如图9B和图10B所示,72表示开槽条带,假设弯折绕线图形结构中各个开槽条带的宽度相同,则每个开槽条带的宽带均小于第一天线单元的最大真空波长的0.02倍。需要说明的是,在图9A、图9B、图10A和图10B中黑色部分表示导体,白色表示空心。
在一种可能的设计中,上述FSS单元除了具有小型化特征之外,还可以具有非旋转对称的特征。FSS单元采用非旋转对称结构的原因如下:
第一、采用非旋转对称结构能够更好地满足寄生结构的整体外形尺寸;因为寄生结构整体尺寸较小,如果FSS单元采用旋转对称结构,其排布很难恰好满足天线单元两个方向的尺寸要求。
第二、传统FSS平面是应用于远场区域,与天线单元之间的距离较远,通常FSS平面与天线单元的距离大于1/2真空波长;并且FSS平面是由数量较多的FSS单元构成大面积的平面,通常包括的FSS单元的数量大于100,构成的平面尺寸面积大于1平方真空波长;在这样的情况下,采用旋转对称结构能够保证不同方向、不同极化的电磁波入射到FSS平面能够保持稳定的频率响应(频率选择特性);而在本申请中,使用的FSS平面是由少量小型化FSS单元构成尺寸较小的FSS平面,该FSS平面包括的FSS单元的数量通常小于100,该FSS平面的面积通常小于1平方真空波长,FSS平面与天线单元的距离小于1/2真空波长,该天线单元可以是待优化的单元(如上述第一天线单元)或者不期望受影响的天线单元(如上述第二天线单元);在这种情况下,不同天线单元所产生的电磁波入射到FSS平面的电磁波只存在特定的角度和极化方向,在这样的情况下,使用旋转对称结构失去原有意义,反而是使用非旋转对称结构能够获得特定环境下更好的通带和阻带效果。
FSS单元采用非旋转对称结构具体包括:该FSS的外形(也被称为外轮廓)不是正N边型或圆型;或者,该FSS单元的外轮廓虽然是正N边型或圆型,但不同边或弧段上采用不同的金属导线宽度或不同的折线方式。例如:图11为本申请一实施例提供的非旋转对称型的FSS单元的示意图。当然,本申请并不限定FSS单元一定得是非旋转对称结构,它也可以是旋转对称型的结构,例如:图12为本申请一实施例提供的多个旋转对称型的FSS 单元的示意图,如图12所示,该旋转对称型的FSS单元的外形可以是矩阵或者圆形等。
综上,在本申请中,FSS平面可以由多个FSS单元均匀排布形成,从而可以更好的获得期望的“靶向”优化功能。从而可以解决第一天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题。进一步地,在本申请中,FSS单元可以是小型化的FSS单元,从而可以针对第一天线单元的方向图进行“靶向”优化,在优化第一天线单元方向图的同时不影响相邻空间内第二天线单元的方向图。更进一步地,在本申请中,FSS单元可以采用非旋转对称结构,使得第二寄生结构可以更好的适用于近场区域。
如上所述的多频天线结构包括第一天线单元的第一寄生结构,除此之外,该多频天线结构还可以包括第二天线单元的第二寄生结构。其中,该第二寄生结构设置在反射板的上方,第二寄生结构包含一个或多个FSS平面,第二寄生结构对第一天线单元呈通带特性,对第二天线单元呈阻带特性;第一天线单元与第二寄生结构的距离小于第一天线单元的工作频段对应的0.5倍真空波长,第二天线单元与第二寄生结构的距离小于第二天线单元的工作频段对应的0.5倍真空波长。
在一种可能的设计中,第二寄生结构对第二天线单元的反射率大于60%,反射相移位于135度至225度之间,第二寄生结构对第一天线单元的的透射率大于60%,透射相移位于-45度至45度之间。
在一种可能的设计中,当第二寄生结构包括多个FSS平面时,各个FSS平面的结构相同或者不同。
在一种可能的设计中,第二寄生结构的FSS平面设置在第二天线单元的顶部与反射板之间,且该FSS平面与反射板的夹角大于30度。
在一种可能的设计中,第二寄生结构的FSS平面由多个FSS单元均匀排布形成。
在一种可能的设计中,第二寄生结构的FSS单元是一个封闭环形导体结构或者封闭环形开槽结构。
在一种可能的设计中,上述封闭环形导体结构包括弯折绕线图形结构;封闭环形开槽结构包括弯折绕线图形结构。
在一种可能的设计中,弯折绕线图形结构中导体条带或开槽条带的最小宽度小于第二天线单元的最大真空波长的0.02倍。
在一种可能的设计中,构成第二寄生结构的FSS单元是一个非旋转对称结构。
在一种可能的设计中,构成第二寄生结构的FSS单元的外形为矩形或者圆形。
在一种可能的设计中,当构成第二寄生结构的FSS单元的外形为矩形时,该FSS单元的最大边长小于第二天线单元的最大真空波长的0.2倍;当构成第二寄生结构的FSS单元的外形为圆形时,FSS单元的直径小于第二天线单元的最大真空波长的0.2倍。
在一种可能的设计中,第二寄生结构的FSS平面的面积小于第二天线单元的1平方真空波长。
在一种可能的设计中,所述多频天线结构包括:由多个第二天线单元构成的天线阵列和多个第二寄生结构,多个第二天线单元和多个第二寄生结构一一对应,各个第二天线单元与对应的第二寄生结构之间的距离均相同。
需要说明的是,第二寄生结构和第一寄生结构的功能类似,关于第二寄生结构的功能 可参考上述实施例的内容,本申请对此不再赘述。
综上,本申请提供的多频天线结构包括第二天线单元的第二寄生结构,其中由于第二寄生结构包含一个或多个FSS平面,第二寄生结构对第二天线单元呈阻带特性,对第一天线单元呈通带特性,即该第二寄生结构在第二天线单元的工作频段等效为连续金属导体,在第一天线单元的工作频段等效为真空,就可以获得期望的“靶向”优化功能。从而可以解决第二天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题。其中,第二寄生结构的FSS平面可以由多个FSS单元均匀排布形成,从而可以更好的获得期望的“靶向”优化功能。从而可以解决第二天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题。进一步地,在本申请中,FSS单元可以是小型化的FSS单元,从而可以针对第二天线单元的方向图进行“靶向”优化,在优化第二天线单元方向图的同时不影响相邻空间内第一天线单元的方向图。更进一步地,在本申请中,FSS单元可以采用非旋转对称结构,从而使得第二几声结构可以更好的适用于近场区域。
上述的多频天线结构如果仅包括两个频段的天线单元,如第一天线单元和第二天线单元时,该多频天线结构也可以被称为双频天线结构。实际上,多频天线结构除了可以包括两个频段的天线单元,还可以包括更多频段的天线单元。例如:下面以多频天线结构还包括第三天线单元对该天线结构进行说明:
所述多频天线结构,还包括:第三天线单元和第三寄生结构;第三天线单元与第一天线单元和第二天线单元的工作频段均不同,第三天线单元和第三寄生结构设置在反射板的上方;第三寄生结构包含一个或多个FSS平面,第三寄生结构对第三天线单元呈阻带特性,对第一天线单元和第二天线单元呈通带特性,第一寄生结构和第二寄生结构均对第三天线单元呈通带特性。
在一种可能的设计中,第三寄生结构对第三天线单元的反射率大于60%,反射相移位于135度至225度之间,第三寄生结构对第一天线单元、第二天线单元的透射率大于60%,透射相移位于-45度至45度之间。其中,第一寄生结构对第三天线单元的透射率大于60%,透射相移位于-45度至45度之间,同样,第二寄生结构对第三天线单元的透射率也大于60%,透射相移位于-45度至45度之间。
在一种可能的设计中,当第三寄生结构包含多个FSS平面时,各个FSS平面的结构相同或者不同。
在一种可能的设计中,第三寄生结构的FSS平面设置在第三天线单元的顶部与反射板之间,且该FSS平面与反射板的夹角大于30度。
在一种可能的设计中,第三寄生结构的FSS平面由多个FSS单元均匀排布形成。
在一种可能的设计中,第三寄生结构的FSS单元是一个封闭环形导体结构或者封闭环形开槽结构。
在一种可能的设计中,上述封闭环形导体结构包括弯折绕线图形结构;封闭环形开槽结构包括弯折绕线图形结构。
在一种可能的设计中,弯折绕线图形结构中导体条带或开槽条带的最小宽度小于第一天线单元的最大真空波长的0.02倍。
在一种可能的设计中,构成第三寄生结构的FSS单元是一个非旋转对称结构。
在一种可能的设计中,构成第三寄生结构的FSS单元的外形为矩形或者圆形。
在一种可能的设计中,当构成第三寄生结构的FSS单元的外形为矩形时,该FSS单元的最大边长小于第三天线单元的最大真空波长的0.2倍;当构成的第三寄生结构的FSS单元的外形为圆形时,FSS单元的直径小于第三天线单元的最大真空波长的0.2倍。
在一种可能的设计中,第三寄生结构的FSS平面的面积小于第三天线单元的1平方真空波长。
在一种可能的设计中,所述多频天线结构包括:由多个第三天线单元构成的天线阵列和多个第三寄生结构,多个第三天线单元和多个第三寄生结构一一对应,各个第三天线单元与对应的第三寄生结构之间的距离均相同。
需要说明的是,第三寄生结构和第一寄生结构的功能类似,关于第三寄生结构的功能可参考上述实施例的内容,本申请对此不再赘述。
综上,本申请提供的多频天线结构包括第三天线单元和第三天线单元的第三寄生结构,其中由于第三寄生结构包含一个或多个FSS平面,第三寄生结构对第三天线单元呈阻带特性,对第一天线单元和第二天线单元呈通带特性,即该第三寄生结构在第三天线的工作频段等效为连续金属导体,在第一天线单元和第二天线单元的工作频段等效为真空,就可以获得期望的“靶向”优化功能。从而可以解决第三天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题。其中,第三寄生结构的FSS平面可以由多个FSS单元均匀排布形成,从而可以更好的获得期望的“靶向”优化功能。从而可以解决第三天线单元的方向图在某些频点出现的极化抑制比恶化、增益跌落等问题。进一步地,在本申请中,FSS单元可以是小型化的FSS单元,从而可以针对第三天线单元的方向图进行“靶向”优化,在优化第三天线单元方向图的同时不影响相邻空间内第一天线单元和第二天线单元的方向图。更进一步地,在本申请中,FSS单元可以采用非旋转对称结构,从而使得第三寄生结构可以更好的适用于近场区域。

Claims (15)

  1. 一种多频天线结构,其特征在于,包括:第一天线单元、第二天线单元、反射板、所述第一天线单元的第一寄生结构;
    所述第一天线单元和所述第二天线单元的工作频段不同,所述第一天线单元、所述第二天线单元和所述第一寄生结构设置在所述反射板的上方;所述第一天线单元和所述第二天线单元中工作频段高的天线单元与所述反射板的距离小于工作频段低的天线单元与所述反射板的距离;
    所述第一寄生结构包含一个或多个频率选择表面FSS,所述第一寄生结构对所述第一天线单元呈阻带特性,对所述第二天线单元呈通带特性;
    所述第一天线单元和所述第二天线单元相邻,且所述第一天线单元和所述第二天线单元的距离小于所述第一天线单元和所述第二天线单元的工作频段中最小工作频段的0.5倍真空波长,所述第一天线单元与所述第一寄生结构的距离小于所述第一天线单元的工作频段对应的0.5倍真空波长,所述第二天线单元与所述第一寄生结构的距离小于所述第二天线单元的工作频段对应的0.5倍真空波长。
  2. 根据权利要求1所述的多频天线结构,其特征在于,所述第一寄生结构对所述第一天线单元的反射率大于60%,反射相移位于135度至225度之间,所述第一寄生结构对所述第二天线单元的的透射率大于60%,透射相移位于-45度至45度之间。
  3. 根据权利要求1或2所述的多频天线结构,其特征在于,当所述第一寄生结构包含多个FSS平面时,各个FSS平面的结构相同或者不同。
  4. 根据权利要求1-3任一项所述的多频天线结构,其特征在于,所述FSS平面设置在所述第一天线单元的顶部与所述反射板之间,且所述FSS平面与所述反射板的夹角大于30度。
  5. 根据权利要求1-4任一项所述的多频天线结构,其特征在于,所述FSS平面由多个FSS单元均匀排布形成。
  6. 根据权利要求5所述的多频天线结构,其特征在于,所述FSS单元是一个封闭环形导体结构或者封闭环形开槽结构。
  7. 根据权利要求6所述的多频天线结构,其特征在于,所述封闭环形导体结构包括弯折绕线图形结构;
    所述封闭环形开槽结构包括弯折绕线图形结构。
  8. 根据权利要求7所述的多频天线结构,其特征在于,所述弯折绕线图形结构中导体条带或开槽条带的最小宽度小于所述第一天线单元的最大真空波长的0.02倍。
  9. 根据权利要求5-8任一项所述的多频天线结构,其特征在于,所述FSS单元是一个非旋转对称结构。
  10. 根据权利要求5-9任一项所述的多频天线结构,其特征在于,所述FSS单元的外形为矩形或者圆形。
  11. 根据权利要求10所述的多频天线结构,其特征在于,
    当所述FSS单元的外形为矩形时,所述FSS单元的最大边长小于所述第一天线单元的最大真空波长的0.2倍;
    当所述FSS单元的外形为圆形时,所述FSS单元的直径小于所述第一天线单元的最大真空波长的0.2倍。
  12. 根据权利要求1-11任一项所述的多频天线结构,其特征在于,所述FSS平面的面积小于所述第一天线单元的1平方真空波长。
  13. 根据权利要求1-12任一项所述的多频天线结构,其特征在于,包括:由多个第一天线单元构成的天线阵列和多个第一寄生结构,所述多个第一天线单元和所述多个第一寄生结构一一对应,各个第一天线单元与对应的第一寄生结构之间的距离均相同。
  14. 根据权利要求1-13任一项所述的多频天线结构,其特征在于,还包括:第二寄生结构;
    所述第二寄生结构设置在所述反射板的上方,所述第二寄生结构包含一个或多个FSS平面,所述第二寄生结构对所述第一天线单元呈通带特性,对所述第二天线单元呈阻带特性;
    所述第一天线单元与所述第二寄生结构的距离小于所述第一天线单元的工作频段对应的0.5倍真空波长,所述第二天线单元与所述第二寄生结构的距离小于所述第二天线单元的工作频段对应的0.5倍真空波长。
  15. 根据权利要求14所述的多频天线结构,其特征在于,还包括:第三天线单元和第三寄生结构;
    所述第三天线单元与所述第一天线单元和所述第二天线单元的工作频段均不同,所述第三天线单元和所述第三寄生结构设置在所述反射板的上方;
    所述第三寄生结构包含一个或多个FSS平面,所述第三寄生结构对所述第三天线单元呈阻带特性,对所述第一天线单元和第二天线单元呈通带特性,所述第一寄生结构和所述第二寄生结构均对所述第三天线单元呈通带特性。
PCT/CN2019/125826 2018-12-27 2019-12-17 多频天线结构 WO2020135140A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19905783.7A EP3886256A4 (en) 2018-12-27 2019-12-17 MULTI-BAND ANTENNA STRUCTURE
US17/358,417 US11843183B2 (en) 2018-12-27 2021-06-25 Multi-band antenna structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811615844.1 2018-12-27
CN201811615844.1A CN111403899B (zh) 2018-12-27 2018-12-27 多频天线结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/358,417 Continuation US11843183B2 (en) 2018-12-27 2021-06-25 Multi-band antenna structure

Publications (1)

Publication Number Publication Date
WO2020135140A1 true WO2020135140A1 (zh) 2020-07-02

Family

ID=71128355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125826 WO2020135140A1 (zh) 2018-12-27 2019-12-17 多频天线结构

Country Status (4)

Country Link
US (1) US11843183B2 (zh)
EP (1) EP3886256A4 (zh)
CN (2) CN111403899B (zh)
WO (1) WO2020135140A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112688052B (zh) * 2019-10-18 2022-04-26 华为技术有限公司 共孔径天线及通信设备
WO2024015749A1 (en) * 2022-07-11 2024-01-18 Peter Chun Teck Song Dual mode cloaking base station antenna system using frequency selective surfaces
CN116111339B (zh) * 2023-04-12 2023-06-09 华南理工大学 一种多频段的标志天线

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404639A (zh) * 2000-12-21 2003-03-19 凯特莱恩工厂股份公司 天线且特别是移动式无线通信天线
CN104600439A (zh) * 2014-12-31 2015-05-06 广东通宇通讯股份有限公司 多频双极化天线
CN205141139U (zh) * 2015-11-11 2016-04-06 京信通信技术(广州)有限公司 一种双频双极化基站天线
CN106299670A (zh) * 2016-10-14 2017-01-04 深圳国人通信股份有限公司 一种双频超宽带基站天线
CN107453044A (zh) * 2017-07-25 2017-12-08 重庆邮电大学 一种双极化微基站mimo天线单元
US20180034161A1 (en) * 2016-07-29 2018-02-01 John Mezzalingua Associates, LLC Modular unit cell construction for a high performance, low profile (hplp) telecommunications antenna
CN107834198A (zh) * 2017-11-30 2018-03-23 京信通信系统(中国)有限公司 一种多波束天线
CN108539383A (zh) * 2018-05-24 2018-09-14 南京澳博阳射频技术有限公司 多频基站天线和天馈系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985118B2 (en) * 2003-07-07 2006-01-10 Harris Corporation Multi-band horn antenna using frequency selective surfaces
CN101859924B (zh) * 2010-05-11 2013-04-24 浙江大学 基于频率选择表面谐振单元的双频段阵列天线
CN102340050A (zh) * 2010-07-16 2012-02-01 富士康(昆山)电脑接插件有限公司 多频天线及多频天线阵列
JP5706047B2 (ja) 2011-11-01 2015-04-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて端末のサウンディング参照信号伝送決定方法及びそのための端末
CN103311658B (zh) 2012-03-15 2018-03-02 深圳光启创新技术有限公司 天线装置
KR20140032545A (ko) 2012-08-31 2014-03-17 삼성전자주식회사 상향링크 제어 채널 자원이 동적으로 변하는 무선통신 시스템에서 사운딩 운용 방법 및 장치
CN103259087B (zh) 2013-05-07 2015-04-08 西安电子科技大学 基于频率选择表面的l/c双波段共口径天线
CN203589218U (zh) * 2013-11-26 2014-05-07 深圳光启创新技术有限公司 天线
US9300042B2 (en) * 2014-01-24 2016-03-29 Honeywell International Inc. Matching and pattern control for dual band concentric antenna feed
EP2963736A1 (en) * 2014-07-03 2016-01-06 Alcatel Lucent Multi-band antenna element and antenna
US9980257B2 (en) 2014-09-26 2018-05-22 Qualcomm Incorporated Ultra-low latency LTE reference signal transmission
WO2016081036A1 (en) * 2014-11-18 2016-05-26 CommScope Technologies, LLC Cloaked low band elements for multiband radiating arrays
GB2539279A (en) * 2015-06-12 2016-12-14 Secr Defence Frequency selective surface for reducing antenna coupling
WO2017056437A1 (ja) * 2015-09-29 2017-04-06 日本電気株式会社 マルチバンドアンテナおよび無線通信装置
US10608856B2 (en) 2016-06-16 2020-03-31 Samsung Electronics Co., Ltd. Transmission of reference signals in a communication system
CN106207456B (zh) * 2016-08-22 2021-10-22 广东通宇通讯股份有限公司 一种多频天线
CN108347318B (zh) 2017-01-23 2021-02-12 华为技术有限公司 一种上行传输方法及装置
WO2018199753A1 (en) * 2017-04-25 2018-11-01 The Antenna Company International N.V. Ebg structure, ebg component, and antenna device
US10431877B2 (en) * 2017-05-12 2019-10-01 Commscope Technologies Llc Base station antennas having parasitic coupling units

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404639A (zh) * 2000-12-21 2003-03-19 凯特莱恩工厂股份公司 天线且特别是移动式无线通信天线
CN104600439A (zh) * 2014-12-31 2015-05-06 广东通宇通讯股份有限公司 多频双极化天线
CN205141139U (zh) * 2015-11-11 2016-04-06 京信通信技术(广州)有限公司 一种双频双极化基站天线
US20180034161A1 (en) * 2016-07-29 2018-02-01 John Mezzalingua Associates, LLC Modular unit cell construction for a high performance, low profile (hplp) telecommunications antenna
CN106299670A (zh) * 2016-10-14 2017-01-04 深圳国人通信股份有限公司 一种双频超宽带基站天线
CN107453044A (zh) * 2017-07-25 2017-12-08 重庆邮电大学 一种双极化微基站mimo天线单元
CN107834198A (zh) * 2017-11-30 2018-03-23 京信通信系统(中国)有限公司 一种多波束天线
CN108539383A (zh) * 2018-05-24 2018-09-14 南京澳博阳射频技术有限公司 多频基站天线和天馈系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3886256A4

Also Published As

Publication number Publication date
CN115714273A (zh) 2023-02-24
CN111403899B (zh) 2022-10-28
US11843183B2 (en) 2023-12-12
CN111403899A (zh) 2020-07-10
EP3886256A1 (en) 2021-09-29
EP3886256A4 (en) 2022-01-05
US20210320409A1 (en) 2021-10-14

Similar Documents

Publication Publication Date Title
JP6766180B2 (ja) アンテナアレイ内の相互結合を低減するための装置および方法
US11217896B2 (en) Circularly polarised radiating element making use of a resonance in a Fabry-Perot cavity
Feng et al. Dual-polarized filtering magneto-electric dipole antenna arrays with high radiation-suppression index for 5G new radio n258 operations
US20190386364A1 (en) Angle of incidence-stable frequency selective surface device
US20190341695A1 (en) Simple and Compact Filtering Dielectric Resonator Antenna
WO2020135140A1 (zh) 多频天线结构
CN110718752B (zh) 一种基于收发结构形式的超宽带强耦合透镜天线
EP2911241A1 (en) Dual-band multiple beam reflector antenna for broadband satellites
Cao et al. Compact shared-aperture dual-band dual-polarized array using filtering slot antenna and dual-function metasurface
CN106299628B (zh) 一种天线和无线路由器
WO2016138763A1 (zh) 双极化天线
EP4080682B1 (en) Antenna, antenna module and wireless network device
Luo et al. Antenna array elements for Ka-band satellite communication on the move
Nahar et al. Efficiency enhancement techniques of microwave and millimeter‐wave antennas for 5G communication: A survey
JP2022544961A (ja) 全帯域直交モード変換器
EP4053996A1 (en) Multi-band antenna and method for tuning multi-band antenna
CN115693150A (zh) 辐射单元与天线
WO2022068548A1 (zh) 后盖及终端
CN115020990A (zh) 龙勃透镜天线
GB2615582A (en) Multiband antenna and antenna system
Paul et al. Reduction of mobile phone radiation exposure using multi-stopband frequency selective surface
Pandit et al. Terahertz metamaterial FSS for future wireless communication systems
WO2023032046A1 (ja) ダイポールアンテナ及びアレイアンテナ
Abhirami et al. Gain Enhanced X-Band Antenna using Novel Metasurface
Cao et al. Shared-Aperture Multi-Band Stacked Array With±45° Dual Polarization

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905783

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019905783

Country of ref document: EP

Effective date: 20210621

NENP Non-entry into the national phase

Ref country code: DE